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ON THE WAVE SURFACE.
By J. E. PRESCOTT.

GOME of the following propositions, although not new, may
a in a form interesting to a portion of your readers.
Others are, I think, not known.

1. If I, m, n, a, 8B, v, be a direction cosines of the normal
to & wave front and of the direction of vibration respectively,
we have Fresnel’s well-known condition

{ .. m n
E(b —c‘)+B (c’—a")+;(a‘—b’)=0,
and since the vibration is in the plane front
5.a'+ﬁ.ﬁ'+$.¢=o.

e B
Eliminating,

l m
alf (F—a)+ P 0-a)] BR@-5)+oy -0

T @@=+ F -
If v be the velocity of propagation, v*=a"a’+ 58"+ c*y*;
and these equations assume the form

l _ m _ n =P
a(v'—a’)  B(-0)  y(v'-¢)
r m' n*

e ti s
- la+mB+ny !
VOL. II. B




2 On the Wave Surface.

and, the denominator being zero, wo have also
r m' n' 0 @
v’ + v’ b’ + "” c”— ............ .
2. Now let 0, & be the angles between the wave axes
and the normal to the front the direction cosines of the

( b' b'
wave cones are i+ '\/ a"T '\/ Then

+#/(a"—¢") cos@=14(a*—0") :tn«/(b'—c"),
(0= 0) 80 = P(B — &)+ m? (0" = &)+ (- B)
1 2lnv/{(a" - &) (B" - )},

and similarly for €';
s (a®—¢")" sin’d sin'@ = {I*(8" - ¢") + m*(a’ — ¢*) +2* (a* = 0")}*
—4l'n* ("= 0%) (8" —¢)
={I'(0"+¢") + m*(a’ + ') + n*(a" + B")}*
—4(I'°¢* + m'a*c" + n'a'd")
=(v'+9,")' — v, ',
where v,, v, are the roots of (I);
. +(a’~c") sinf sin@ =v*— v}
Also +(a'— ") cosf cos@ = T'(a*— %) — n*(B* — ')
=a'+ ' = {I' (0" + ") + m*(a* + &) + v’ (a* + %)}
=a'+c (v +9,).
3. If m v be the direction cosines of an radms (92 of

the wave , we have, from Mr. A. Smith’s metho.
determining its equa.tnon, the relations

Mot —a) _ p(o'= ) _y(o=0)
=) = mE=F) = n(=F) = 7= 0=

8 cvidently being the angle between the ray and the normal
g y

to the correapon ing front; and
PRI !
Ty —a)’ Y R e A
r m* LAY
Now by (1) P= {(va_ax): + (v’—b"_)-i + (v":‘-c")'} ’

. 1
‘P=v-7(m,—).




On the Wave Surface. 3

And combining equations (P) and (@)
A _ om v 1
a(f—a) B -0) (=) V=)

The equations (P), (@), (B) connect respectively the normal
and vibration, the normal and ray, the ray and vibration.

R.

4. The equation to the wave surface may be put in the

form . \ v"
A
e o b =0 (II).
T AT A
Now if ¢, ¢' be the angles between the ray and the ray

axes, 7, 7, the roots of this equation, by pursuing precisel
the same Bxpedient with regard to (h) that we %x«i’ in (2),
with regard to (I) we can prove that

1 1y . s, 11
i(?-—?)smcﬁsmd;—r‘, e

This law was discovered experimentally by Biot and Brewster,
stated by the former in the language of the theory of emis-
sion. It was afterwards proved analytically by Fresnel.

r, r, measuring the velocities of the two waves in the di-

rections of the luminous rays themselves.

5. From (R) we have
cos(angle between ray and direction of vibration)

NS g
=M+PB+W=7'N/(7'”—”)(,.-_GS+,x’:_bx+r|_ca)
= V[~ ") =sin §;

hence, the angle between the ray and the direction of vibra-
tion is the complement of the angle between the ray and
the normal to the front. Now the directions of vibration
are perpendicular to the normal and to one another; there-
fore, the plane, containing the ray and its corresponding
direction of vibration, passes through the normal to the front.
Through the two directions of vibration there will be two
planes, at right angles, passing one through each of the two
rays determined by (Ii) and intersecting in the normal to
the front. Hence, to find the direction of vibration corre-
sponding to any ray, we have only to project the ray on
B2
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the tangent plane, at the point where the ray meets the
surface. This prﬁ}ection wal be the direction gf vibration.
Also, the planes containing either ray and the directions of
vibration will evidently be at right angles.

6. It is easily shewn (Griffin’s Tract, 81) that the equa-
st;(;-!fl' to the tangent come at & singular point of the wave
ace is

favta =214 2w - {onta -0 + 22y - o)

&=y
= 1 (a —b)(b —f)y’=0.

Now the luminous cone, along the generating lines of which
the rays, producing external conical refraction, pass, will
be formed by drawing normals to all the tangent planes at
the singular point. To find its equation put, for brevity,
the above in the form

(daz + Cez) (Acx + Caz) = By,

Aax + Cez=A\DBy, Acw+0az=%By,

M being an arbitrary constant.
Eliminating between these two equations
Ax By Cz

c @—c @ :
-2 $oan

Hence the equation to a tangent plane of the cone required is
AMa—c _Aa'—d"), a—No _
e—y—ty—p —tEe—(g—= 0,
differentiating this equation with regard to A
A @ _ %=
L@-a)+2(F - =0,
and substituting in it
Y
%(a’—c’)—?(% - %’;)=0;
therefore, the equation to the cone is

Ber-avs(F-5)(F-5)-o
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or giving 4, B, C their values

{av-e)-s 2v@-01} ow - ) - S via =10}
+(a* =)y =0, E.

7. To obtain the circular sections of this cone. The

projections on the plane of xy of the sections of the cone
amil of a sphere

w‘+y‘+z’+..u..=0,

by a plane &+ my + ns = p, must coincide.

Substituting for £ in the two equations, and comparin
the coeflicients of «xy, we see that m must be zero; anﬁ
the ratio of the ooe:zcients of o', y* gives

(=) Pla—B) + 1 TS (@B B (P
P ld+d j@=B\ &P
or v o A (F=a) + 50

The roots of this equation determine the planes which

2 2
give the required circular sections. One root isz ~/ (%i'-:-%’) ,
the other g (g%’:;,) . Hence the circular sections are

parallel to the tangent of the ellipse or circle, in the plane
of zz, at the point of their intersection.

8. The directions of vibration, corresponding to the gene-
rators of the luminous cone (E), will be determined by pro-
jecting the r‘?‘; axis upon the tangent planes at the singular
point (5). e may therefore consider them as all passing
through the point where the ray axis meets the wave sur-
face and each point of the curve determined by the inter-
section of a sphere described on the ray axis () as diameter,
and the cone (E) movegﬂpamllel to itself, so as to have
the center of the wave surface for the origin. The equation
to the sphere is

. a' - b* (A
2 +y +o =m¢(m) +za~/(‘-‘—,—_?) ,
and that to the cone .

(=)' + (@' -y +(a'—- V) 2* =2 ‘i:c_" V{(a*=5) (0"~ ¢y},
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/(G2 2 (PR G2
5y G D

which is the equation to a plane, perpendicular to the plane
of zz, and passing through the tangent to the ellipse, in the

lane of xz, at the angular point. Hence the curve sought
18 the circle in which the sphere is cut by this plane. The
direction will be determined by joining each point of this
circle, whose plane is perpendicular to that of «z, to the point
where the ray axis meets it. And we may consider the cor-
responding planes of polarization as perpendicular to the
plane of this circle, and joining the corresponding points to
that of the circle, which is opposite to the point in which the
ray axis meets it, as was originally determined by Sir

illiam Hamilton.

9. Let a, B be the angles which the ray axis and the tan-

gent to the elh;gse at the singular point made with the axis
of x; o, 2' coordinates of the singular point. Then

=222 JE0), et JE0)

therefore mn(a+B)=—v{(a,_;)c(b,_c)}.

Hence tangent of angle of tangent cone in the plane of zz
— 3 (B —
=cos(a+;8)=._‘\/{(“’ b (& c’)}'

ac

tangent of angle of luminous cone in the plane of xz
Vi@ -¥) ('~ ¢)
’

ac

=—cot(a +8)=
diameter of circle of vibrations
- Y (Caled N e d);
=bcos(a+B)= p ey«
. 111 .
10. By putting 2’35 for a, b, ¢ in (E), we get the

equation to the luminous cone producing internal conical
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refraction, \ \
[N (b =c") — s4/(a" = 0%} {m% N@ =) -2 Z—,V(a’— b’)}

+(a'=¢") ¥P=0cueecren (F).
It is shewn easily (Griffin’s Tract, 34) that a section of this
cone, by a plane perpendicular to the wave axis, is a circle;
the section at a distance (b) from the vertex, being the circle
of contact; the obtl;er circular sectionsdof the cone will evi-
dently be the subcontrary sections, made by a plane perpen-
dicular to the other generator in the plane of xz.

11. The directions of vibration, corresponding to the
generators of this luminous cone (F'), will be determined by
projecting these rays on the corresponding tangent plane to
the wave surface, ¢.e. on the plane of the circ%: of contact,
which is perpendicular to the plane of xz. 'We may therefore
consider them as joining each point of this circle to the point
where the wave axis meets it, and the planes of polarization,
as perpendicular to the plane of this circle and joining the
corresponding points to that point of the circle, which is
opposite to the point in which the wave axis meets it.

12. Let «, 8 be the angles forgged with the axis of «
by the radii joining the centre of “the wave-surface to the
points of contact of the tangent, common to the circle and
ellipse, in the plane of xz,

a® sina’ b a , . B®-c
tan,9’=——z—.m=?tana, tana —}\/(GT——b_').
Hence tangent of angle of luminous cone on the plane of 2z
\ 2% (B —
e (g ) D=2

Diameter of circle of vibrations
bt ) =YD E =),

13. By turning the coordinate axes, so that the axis of =
coincides first with the ray and then with the wave axis, the
equations to the cones (&) and (F) assume the simple forms,

ya_*_gn_'_w ‘V{(a"—b‘) (b’—dg)}=0’

- prsmmEBO=O)
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From the second we obtain at once puttin§( ;= cbl) the -

equation to the circle of contact, radius Vi@~ éz*b

14. Professor Lloyd, in performing the experiment of
conical refraction, observed the luminous circle with a tour-
maline; he then perceived that only one ray disappeared at
a time, and that on turning the tourmaline through any
angle, another ray disap , at a point such tgat the
intervening arc of the circle subtended, at the centre of the
circle, an angle double of the angle through which the
tourmaline been turned. Whence he deduced the law,
“The angle between the planes of polarization of any two
rays of the cone, is half the angle between the planes through
the rays and the axis of the cone.” Now from (7) and (11)
we see that in both cases this law is true; for in either
circle the arc, cut off by two planes of poiarization sub-
tends, at the centre of the circle, an angle which is double
that between the planes of polarization.

THE EiNETARY THEORY.
By Rev. PERCIVAL FRosT.

1. THE exact paths described by more than two bodies
acting mutually upon one another with forces vary-
ing according to the Law of Gravitation, and projected in
any manner in space, have never been determined. Mathe-
matical Analysis, in its present state, has been unable to
supply a solution of the complications of the problem pre-
senteg to it.
Hence, having failed in their attempts to solve the general
roblem of the motion of three bodies, mathematicians have
geen compelled to examine whether any circumstances, which
belong peculiarly to the Solar System, would enable them
to take such a view of any portions of it, that, by limitations
introduced into the more general problem, they might be
able to apply the lever of their analysis with advan
sufficient to obtain the position of the planets and their
secondaries, at any given time, if not with rigid exactness,
at least w?:ix sufficient accuracy to compete with the delicacy
which is introduced into astronomical observations in the
present advanced state of Practical Astronomy.
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This has been done, and the peculiar circumstances of
which they have availed themselves may be stated as follows:

(1) The Sun, which is the largest body of the system
has a mass which is a thousand times greater than that o
the hu‘gest of the accom‘yanying bodies whose motion is
required, and hundreds of thousands of times greater than
that of the smaller ones.

This preponderance would imply that the attraction of
the Sun upon any planet must be greater in those propor-
tions than that of the accompanying bodies on the same
planet, unless in any case it should hapyen that this pre-
sonderance of mass were compensated for by a greater

egree of proximity; but the favourable conditions, under
which the bodies of the Solar System are at present moving,

revent any compensation of the kind; for, even when the
gun is at its greatest distance from the planet acted upon,
and any of the disturbing planets at their least distance, it
is easily shewn that the action of the disturbing planet can
only bear a very small ratio, the greatest being less than
1 : 100, to that of the Sun in its most unfavourable position.

(2) Thz(f)lanets, though not the planetoids and comets,
are observed to describe qaths which differ by extremely
small quantities from the ellipses which they would each de-
scribe about the Sun, if at any instant the other planets were
to cease to exist. In fact, the deviations from such ellipses
are 8o slight that they are only ptible under the hand-
ling of the most delicate methods of measurement, and in
many cases even such treatment fails to detect the deviations,
except by allowing them to accumulate by the action of the
disturbances during a long period.

(8) The eccentricities of the ellipses, which so nearly re-
present the paths of the planets, are extremely small; so that,
if these paths were represented on paper on a large scale
the fact that they are not circles could only be established
by very exact measurements of the breadths in different
directions.

(4) The inclinations of the planes of these ellipses to one
another are very small.

(5) The planets are very mnearly, though not exactly, of
a spherical form, so that their attractions may be consit{ered
the same as if they were collected at their centers of gravity,
as far a8 their actions upon one another are concerned,
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although the deviation from perfect sphericity is sufficient to
affect the motion of their satellites and of themselves about
their centers.

Definition of the Instantaneous Ellipse.

2. The elli})se, which would be described by a planet
about the Sun’s center, supposed fixed, as one of the foci,
if the disturbing forces exerted by the other planets were
supposed to cease to act, is called the Instantaneous Ellipse.

e elements of the Instantaneous Ellipse are the mean
distance and eccentricity, which determine the itude and
form of the ellipse; the longitude of perihelion, which deter-
mines the position of the major axis; the longitude of the
node, and tlllz) nclination of the plane of the ellipse to a fixed
plane of reference, which determine the position of the ellipse
in space; and the mean longitude of the e{;och, or the mean
longitude of the position at which the planet would have
been at the fixed epoch from which the time is measured
if it had been moving during that time in the undistur
orbit; this last element serves according to the ordinary
elliptic theory to determine the position of the planet in the
instantaneous ellipse at the time under consideration, which
position by construction coincides with the actual position of
the planet at that time.

8. We shall commence by determining the law of the
disturbing forces in the case of one disturbing ‘planet, and
a&erwarfs extend the investigation to the case of any num-
ber of planets: we shall then investigate the rate of change
of the elements of the instantaneous ellipse, and thence
obtain formule for calculating the elements themselves at
any fixed time.

To calculate the disturbing forces exerted by a planet upon
another in motion about the Sun.

4. Let S, m, m' be the positions of the Sun, the disturbed
and the disturbing glanets at any time;
r, 7' the distances of m and m' from §;

that of m from m'. And let 8, m, m

ge the measures of the accelerations of
these bodies at an unit of distance.

The forces on S are ;,-inSm, s

m .
and & in Sm'.
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The forces on m are g in mS,

r

m .
and -P—,, n mm',

The relative motions will not be disturbed if we apply to
every part of the system the forces on the Sun in a contrary
direction, in which case the Sun may be considered as at
rest, and m as acted on by the forces

S+m_ in m§S,
T__

ml

e parallel to m'S,

-

m .
and — in mm.

]

Of these forces % is that under the action of which the In-

stantaneous Ellipse would be described if the action of m'

ceased, and the disturbing force on m is the resultant of

:_’,‘, and = o s acting in the directions determined above.

To investigate an ession for the component of the dis-
turbing forces esumate%ar any dz'fectwn

5. If », ©' be the distances of the planets m, m' from

the Sun é, o the angle between

them, p the distances of m from m'.
Let Su be any given direction.
The disturbing forces of m' on m

are :f- in the direction parallel to

m'S, and :—:; in the direction parallel * =
to mm'.
The resolved parts of these foroes in the direction Su are

" . cosm' Su + 5 cosm 'mP,
T 3
where m.P = du is a displacement of m in the direction Su.

Then du.cosm’' Su =d(r cosw),
and du.cosm'mP=—dp;
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therefore, the component in the direction Su
_m' d(rcosw) m' dp

TR T P du
dRB
i =_m’rcosm Z"_'

]

v P
This fanction is called the disturbing function.

To obtain measures of the Radial, Transversal, and Ortho-
gonal disturbing forces.

6. The position of a point in space may be determined
by the polar coordinates, r, 6 of its projection upon the plane
o{ the instantaneous ellipse constructed for any time ¢ and
the distance ¢ from that plane.

If tbzaflanet m be supposed to receive successively the
geometrical displacements Ar, A0, and A{, while m' remains
stationary B undergoes a corresponding change, and the
limits of corresponding ratios AR AR AR are the com-

ponding Ar? rA8? AL?
ponents of the disturbing forces in those directions;

therefore, the radial disturbing force = g_f ,

dR
the transversal .......cce00v. = )

dR
the orthogonal ............ =T

where each derivative of R is taken with respect to r, 6, {
as if they were the only variables.

To ewpress R in a form prepared for development.
7. Let m, m' be the projections of m and m' on the
fixed plane of reference.
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Sml =Ty Sm!' = "1"

mm, =g mm'=2,
0,, 6, the longitude of m and w’;
or LmBm'=6'-0,
pP=mm’+2—s]
= rl, - 2’1"1' cos (01' - 6) + rn" + (z' -z )'7
7 cos = projection of Sm on Sm’

= sum of the projections of SM, Mm , and mm on Sm'
(where m M is perpendicul’m' to Sm,)

’

r 8
=8M S te5;
therefore Re=w m' {rr.' cos(6,'—6) + 22’}
(n*+ o)}
'

e eos(0,—0) T+ (F—

To express R in terms of the elements of the instantaneous
orbits of m and m' at the time t. 4

8. LetQ, ¢, =, a, ¢, n, s, be the longitude of the node,
the inclination, the longitude of perihelion measured on the
plane of reference up to the node and thence on the plane
of m'S instantaneous ellipse, the mean distance, the eccen-
tricity of the ellipse, the mean angular velocity, and the
mean longitude at the commencement of the epoch, supposing
the motion of m undisturbed.

6 the longitude of m on its instantaneous plane. Therefore

. Se, . ’
6= ”|t+31+ selsm(”lt-‘"l "'w:) +Tel mg(”:t""x" w:) +&c'$

e ' el
r=a, (l—l——2L —e, cos(n,t-+8,—w,) -3 cos2(n,t+s,—w,)+&c.) .
Let Qm be the plane of m’s instantaneous orbit, Sm, the

7
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projection of Sm, 8T drawn towards the first point of Aries,

SQ the line of nodes.
tan (0, — Q) =cos¢ tan(0— Q) ;
(1- cost) tan(6 — Q)
1+ cose, tan’(6 — Q)
_ (1 —cos?) tan (6 — Q)
T 7 sec’(0-Q,) — (1 —cos)) tan*(6 - Q)

therefore tan(6,—6)=—

= — sin' 3 sin2(0-2)),

neglecting squares of sin* z

4,
2 ?
therefore 6, — 0= — tan™ (sin”;—‘ sin2 (60— Q,))

= sin’% sin2 (6 — Q) to the same order;

therefore 01=0—sin“g sin2(6-Q,),

and r,=r cosmSm, =r (1 — } tan’mSm,) nearly
=7 (1 — § tan"¢, sin" (6, — Q,))

=r- %‘ tan"s, + % tan’s, cos2(6,- Q)),

g=r tannSm =7 tan? sin(6,—Q),

whence, with similar expressions for 7/, &, and 2, B can be
expressed as a function of the elements of the orbits, and the
time,

In order to adapt this expression for B to the purposes
of numerical calculation, it is necessary to develope it accord-
ing to ascending powers of the small quantities, the eccen-
tricities of the Instantaneous ellipse, and the inclinations of
the orbits to the fixed plane of reference.

This is a development accompanied by considerable diffi-
culties; and at present we shall suppose that the develop-
ment has been effected, and proceed to the explanation of
methods of obtaining the values of the elements of the in-
stantaneous ellipse at any time.




The Planetary Theory. 15

To calculate the disturbing forces in the case of more
planets than one.

9. If we neglect the squares of the disturbing forces, .e.
if we consider the disturbance of a disturbance as too small to
be considered, the disturbance of the motion of the disturbed
planet from exact elliptical motion in any direction will be
the algebraical sum of the disturbances, which would be
caused in the direction by the action of each planet, if sup-
posed to be the onllg disturbing cause. .

Hence, if R, K',...... be the disturbing functions corre-
sponding to the planets m', m",...... R the disturbing function
corresponding to combined action of all the disturbing planets,

B=R+R'+......
and % is the component, in the direction Su, of the resultant
of all the disturbing forces.

General description of the method of determining the rate of
change of the elements of the instantaneous ellipse.

10. The elements of the instantaneous ellipse depend
upon the velocity and direction of motion of the planet at
the observed time: this dependence is expressed by means
of equations. :

ese equations are of the same form in the case of two
instantaneous ellipses constructed for any two different in-
stants.

If therefore the equations be prepared, corresponding to
the two ellipses constructed for tEe times ¢ and ¢+ 3¢ sepa-
rated by a very small interval &8¢, by taking the differences.
& new system of equations is found which connect the sm:
changes of the elements with the changes of the velocity and
direction of motion of the planet during the interval .

The changes of the velocity and direction of motion are
due to the action of the principal force and of the disturbing

forces, whose accelerating effects are measured by ;,, and

the differential coefficients of the disturbing function R; they
can therefore be expressed in terms of these measures and the
time 8¢ of their action.

Hence, by substitution of these expressions in the new
system of equations, the changes of each element can be ex-
pressed in the form bSt, where U is a function of the elements
at the time and of ¢; and U the rate of change is determined,
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To calculate the rate of change of the mean distance of the
tnstantaneous ellipse.

11. Let a, a,+ 8a, be the mean distances in the instan-
taneous ellipses constructed for the times ¢, ¢+ 8¢ from a
fixed epoch.

r, r+ Or the radii vectores of the planet,
v*, v'+ 8" the squares of the velocities.

Then v"=-2—’-"—£'-
r a'

2u [
1] s _ -
o'+ 8 r+& a,+da,’

Hence if 8 be very small, neglecting the squares of the
small changes,

2udr = pda
8””=— '“T +“"a—xg‘oo|---o ooooooooooo oo-(l)-
Now, 8v* is the change of the square of the velocities due

to the action of the forces whose measures are — ,&«' + %—? in

the direction Sm. in the direction perpendicular to Sm

dB
! rd0
and tending to increase 0, and % in the direction perpen-

dicular to the plane of the ellipse for the time ¢.
Hence if v, v, v, be the velocities in those directions,
considering the forces constant during the time &¢,

&' =38v,"+ 8v.' + 8v}
=2(—§+ %) 8r+2%.r89+2%d{;
therefore, substituting in equation (1), we obtain
wda dR dR dR ..\ .
F=a 30+ 8);

al 7178r+—3_€

and since, at the time ¢, m has no velocity perpendicular to
the plane of the instantaneous ellipse, 8¢ is entirely due to

the action of the disturbing force and is of the order %—?— o7,
and may therefore be neglected.
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Therefore, dividing by &t and proceeding to the limit,

o, (Bdr AR D
a'dt “\dr dt " dodt
d(R
o= 2 p RIS veeveeeraennases 2),
where d—gﬁ denotes the differential coefficient of R with re-

spect to ¢ only so far as R is a function of » and 0.

If now we refer to the values of » and 0, we shall see
that in the differentiation B must be considered as a function
of ¢, only so far as ¢ is involved explicitly in the expression
nt+e, and implicitly in the elements a, ¢, ¢, n, and =,:
and since the differential coefficients of these elements depend
upon the disturbing forces, the squares of which are neglected,
tl*l)e:e elements may be treated as constants; therefore

d(R)  ndR dR

dt d(ntte) tds’
]
therefore, by (2), the rate of change = % = ?ﬁfl— %?: .

To calculate the rate of change of the eccentricity of the

+nstantaneous ellipse.

12, Let e,e,+8, and k, h + 8k, be the eccentricities
and double sectional areas at the times ¢, and ¢+ 82,

. 1d (,d0\ dR . .
Then since e (r’ E) =70 by the equations of motion
of m di, _ dR
dt — do’

and O@=nt+e +f(nt+e —w),
r=¢(ntte, —w);
dR dR dr dRdO
therefore ¢i_sl=37'¢_i-e‘+;i-(.)d_s,’

dR _dR dr | dR 49
dw, dr dw, ' 0 dw,’

d9 do
Also a-e—l + 67;'1 = l,

dr dr

&t Iw, =%

1 1
VOL. II. C



18 The Planetary Theory.

dR dB dR
de, dw =’

. dh, dR dR
therefore dt ds dw

and h; = pa, (1 1') ?
therefore, differentiating the loga.rithms,
de,
2dh, _ da, “ %

hdt dt a dt _1 ’

therefore

de, —e'dh —e'da
therefore Et-' =— ok 1 _d_t‘ 2e,a: E‘ ,
and u=n'a’;
therefore
B _modlie) (IR | dB) | no(1—e) R
de pe, dex dwl ©e, ds,

which is the rate of change of the eccentricity.

Lemma 1. To find the change of the longitude of the
16];0071 and perihelion due to a change of the position of the line
of nodes

13. The longitude of a point m in the orbit QU=q» .Q.+Q/m
If now the plane of the orbit
be changed, so as to arrive at
the position Um Q,, m chaxges
to m, such that Um =
and longitude of

m, = v +Qm,.

Draw Q N perpendicular
to UNQ. The increase of the
longitude of m equals 2Q, — QN= AQ, (1- coss,) , ultimately ;
therefore, if Ae, and Aw, "be the changes of ¢, and =, due to
the change A.Q

Ae, Aw
AQ, A.Q

= 1 — cost,, ultimately.

d0
de,

Lemma II.  To find the values qf I T and =, r and 0

being expanded in terms of the mean anomals y.
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14. Since r may be expressed in terms of the mean
anomaly by eliminating » from the equations

r=a (1 —e, cosu),
nt+e —w =u—esinu;
dr . du
therefore %= a.e, sinu %, — @, 008 Y,
0=(1-e,oosu)éz-—sinu;
&l
- )
therefore R L L NPT
a,de, 1—e cosu

_e—cosu _1 1—e¢cosu—(1—¢')

l—e,cosu e 1 —e, cosu
= l{l - 21(_1:_‘1.)} =— 005(0 _gl);
e, r
dr
therefore 7o, =~ @, 08 0-w=,).

Similarly, 6 may be obtained from the equation

0—= 1+e %
tan =% = /(114 tan®
2 \/(1-«5,) tangs

or log{tan}(0—w,)} = 4log (1+¢,)— flog(1—e¢,) +log (tanu);

1 df 1/ 1 1 1 du
therefore @, ~ 2 (= il py e,) Snu &’
d 1 a) .
therefore &= (1 —y + -;l) sin(0- =,).

To calculate the rate of change of the longttude of perthelion
of the instantaneous ellipse.

15. When a body is moving in an undisturbed elliptic
orbit, the velocity is the resultant of two constant velocities,

viz. %e perpendicular to the major axis, and f’,—l perpendicular
to the radius vector.
c2
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Let ASx, A'Sx’' be the positions of the major axes of the
instantaneous ellipses at
the times ¢ and ¢ + &,
m, m,, the positions of

2

the planet at those times, ,
A 84’ = bw, mSm, = 80, “
supposing the motion of * s 4
the plane of the instan-

taneous orbit not to be

taken into account. =

At the time ¢+ &, the velocity of m is the resultant of
two velocities ;;Te‘__’_ 8%6‘ perpendicular to 4'Sx’ and ;T"+ 8’%
perpendicular to Sm., lHence, the velocity of m, estimated
parallel to 4'8 = (£+ 85 sin.4'im,

But this velocity is the component of the velocity in that
direction in the orbit constructed for the time ¢, correspondin,
to the vectorial angle 0+ 80 — w,, together with the velocity
due to the action of the disturl»ing force in that direction

which is gg—; therefore

. i . em . dR
(% + s%‘-) sin(m 84') = h& sin (m, 8.4") — ;‘_"‘smsw,ﬂa =X

therefore, neglecting terms of the second order of small quan-
tities depending upon &¢,
. e
) ’%.sm(O—wl) + —;:‘fdw,—-

therefore % 2% OB £ 4B in (0-w,).
1

dR

am—st=0;

Baut resolving the forces in the direction Sz,

dR dR dR .
T = g - cos(f—w )} + psin (6-=,);
therefore
o= dR dR (1 1 .
I s (0-w)+ T {;+ T _e,)} in(0— w,)
1 1 1
- a: {‘(i—r ) del de del B 1 1

dw, 1—e® dR
therefore -s—t‘ = '\/(m) 7‘:,
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which is ultimately the rate of change required, as far as the
motion of the perihelion on the orbit is concerned. It re-
mains to determiné the term which must be added in con-
sequence of the motion of the plane of the orbit itself.

Now the change of the longitude of the perihelion which
is due to the change of the position of the line of .nodes is
(1 —coss) AQ,;

therefore % = limit %w, +(1 —sgosi,) 30, H

therefore the rate of change, taking this motion into account,

dw 1—e’\ dR .\ 4O
=W'=x/(7ﬁ)%:+(l—°°“')ﬁ

pLInS §
_nay(l—e') dBR + tanis, dRE
B pe, del I 'J(l _eag) ) dix

To calculate the rate of change of the longitude of the
node of the plane of the tnstantaneous ellipse.

16. Let 2,2 + 8Q, be the longitudes of the node at the
times ¢, ¢+ 8¢, 0 the longi-
tude of the planet at the
time ¢ measured as
on the plane of the orbit
Qm found for the time
t; m, the position of the
pianet at the time ¢+ &,
SM the projection of Sm, on the plane Qm.

Let m,SM= ¢, 2’ the distance from the plane.

The velocity at the time ¢+ 8 perpendicular to the plane
m,8M="20 _ % sitimately, and the velocity perpendicular

dt
to the plane me=z—§ &t. If therefore x be the inclination

of the plane of the instantaneous orbit at the time ¢4 8t
to Qm,

rdR
h, d7
Let a sphere cut the directions of Sm, SM, &c.

sindQ, _ siny
sin(0—Q,) ~ sing

(See Art. 16).

tany = ot.

Then
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1, being the inclination to the fixed plane 7Q of reference;
tllerefore, neglecting quantities of the second order in &,

sin (0 -9, rein(0—Q) dR
8= — = I O
Now, if we consider 2, constant while ¢, alone varies,
a displacement Az’ may be considered as due to a chan
At of ¢ alone, in which case mQM=A¢, and from the
right-angled triangle m QM,
tan¢ =sin(f — Q) tanAs,
and As’'=7 tan¢ ultimately,
=rsin(0-Q,) A¢;
therefore proceeding to the limit
dR___1 4B
de  rsn(@-0) d,’
(9, being considered constant in the differentiation);

aQ. 1 dR
therefore -7; =i, &,

na dR
= ,uw/l—e,% sins, di, ’

which is the rate of change of the longitude of the node.

To calculate the rate of change of the tnclination of the
plane of the instantaneous orbit.

17. Let s, ¢, + &, be the inclinations to the fixed plane of

4

reference of the planes of the instantaneous orbits constructed
for the times ¢ and ¢+ &t.

Then employing the same method as before,
co8(t, + &¢,) = cosy coss, — sin’y sins, cos(0—-Q,);
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therefore, neglecting terms of a higher order than the first,
—sini i, = sind, cos(0 - 2);
therefore i, ='i°s—(:;al) % ot
1
Consider now ¢, constant, while @, only varies, a dis-
placement Az’ may be considered as due to a change AQ,
of 2, alone, which is the same thing as letting the plane

.(l).]M Erevolve about SU perpendicular to SQ to the position
m

For, by the quadrantal triangle NUQ,
cos UNQ =cos ¢ cos NUQ
therefore UNQ =¢ to the first order, or the inclination is
unaltered, and by the right-angled triangle m UM,
tanm, M=tan (m, UM) cos (6 —2,),
and sin(m, UM) =— AQ, sins,, since NQ, =— AQ,;

therefore As'=r tanm M =—AQ, .r cos(0—Q,) sins,, ultimately;

dR 1 . .. AR
therefore dd "~ roos(0—Q)smi, t aq’
where AR denotes the change .of R due to the change of Q,
whether as involved explicitly, or implicitly in e, and = ;

therefore AR= aR aAQ + % Ae, + ;IT’R' Aw,

dal
e, and @, being the only elements affected by a change in Q,,

Ae , _Aw
o W =2%.
and Q. 1 %, 0.}

di, 1 dR dR dR .
therefore d_‘_— m {E + (d-—el + -(T‘;‘l) (l—OOBt,)}
na 1 dR i, (dR dR
= ava—a) { ag, Tt (E."&F.)}’
which is the rate of change required.

Note. That the plane Gm may revolve about a line SU perpendicular
to 80, so as to change the position of the line of nodes without
altering the inclination, is obvious from the fact that this effect is

roduced by making the plane revolve about a normal to v8Q, to which
it may be supposed rigidly attached; and this is equivalent to two
rotations, one about a normal to itself, and the other about ST, and
the former produces no alteration in either the position of the line
of nodes, or the inclination.’
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ON A GENERALISATION GIVEN BY LAPLACE OF
LAGRANGE'S THEOREM.

By Dr. SCHLAEFLI, Professor of Mathematics at the University of Bern.

1. THE theorem which we are about to explain may be
enunciated as follows:
“Let F(x, «,...x,) denote any given function of the »
“ variables z,, z,, ... #,, which by means of the n equations

z, =t +ad, (@, z,..2), [m=1,28,..n]..(1),

% depend on the 2n variables ¢, ¢, ... ¢, a, a,, ... a,, consider
“these as the independent variables and assume’ that the
“functions F, ¢, ¢,, ... b,, in their explicit form, contain no
“other variables than the dependent ones ,...x,. Then
“a, a, ... a, being positive integers, we have
s A ittt &IF
daida’...da’  dt"Tdt .. dt | da da, ... da ]’

% where the brackets may indicate that, after having trans-
¢ formed the included derivative into a rational and integral
“ expression comprising only derivations with regard to
:: ﬁ, ty oo t.,“.the quan,?ties ¢,y P,y .. b, are to be replaced

B By e .00

ap‘la’ce g{ves this theorem (see Méc. cél. t. 1. p. 175, of
the first edition) for the purpose of expanding F'(x,, z,, ... «,)
in ascending powers and products of the » independent
variables a,, aﬁ, ... a.; and therefore it is only for the case
of their vanishing that he wants to know the corresponding
derivatives of F, which can then be explicitly expressed in
terms of ¢, ¢, ... ¢,, and require no more regard to the implicit
connexion between all the variables of the system. Accord-
ingly, Laplace’s proof of this theorem holds only with the
restriction that a,, @, ... a, all vanish. But the theorem is
generally true; and that 18 what I presently endeavour to
show, though T have not succeeded in effecting the proof
in so sim(lyle a manner as Laplace does for the special case
mentioned.

. dF
2. To show briefly that T da . da, ° be expanded

into a series of terms composed of ¢, ¢y .- b, and the
derivatives of thesc functions and of F, all taken with respect
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to ¢, ¢, ... t, alone, we may content ourselves with the first
steps of the successive transformation. In the first equation
z, =t + a¢, of the system (1) and in F, if we conceive
the dependent variables «,, z,, ... z,, by means of the re-
maining equations, to be expressetf in terms of ¢, ¢,... ¢,
8y &y .. o, a0nd &, we shall easily find that

aF_, dF

da, " dy’

This result, depending in no manner upon the substitutions
made use of, but solely on ¢,¢,... ¢, a,a, ... @, being re-
garded as the independent variables, may be extended to
every function of z,, z,, ... z, alone and to each index. We
then have

PF _dp dF . d dF)_ dp dF ., d g_r)
iyt AL A ARLY L A (Y
g, dF . dp, dF &F

=¢’7t: Tt,+¢‘ dr, Et:+¢,‘¢’dt_,dt”

and so on. Now let the symbol ( ) denote the ex-

F
. rF . bis Py P s
pansion of Toda -, just explained, and put ( b b ,ﬂ)
instead of it, when thorein throughout by Poy ...l¢’” have t:aen
replaced by ¢, ¢, ...¢. " The theorem to be proved
may then be expressed as follows : :

J’l*‘t’""""ﬂ F - d’ﬁﬂ,'h-dﬂ,.‘” ( F 2
daiida. da A A d \p,, ¢::,...¢;»)"'( )

3. The proof depends chiefly on the combinatory character
of the new symbolical expression and can only be effected
under the supg:)sition that all the combinatory formul® we are
concerned with are already admitted as true, for a system
of less than n_equations. As the given system (1) will be
the one and only subject of our consideration, always keeping
its n equations, it may be proper to add a remark tenging
to illustrate how we can nevertheless speak of less than =
equations. The expansion of a derivative of F with regard
to a,a,...a, (where m <), for instance, has the very
same form as for a system of only m equations with 2m in-
dependent variables; for it is obvious that in the m first
equations of the system (1), by the help of the n— m remain-
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ing ones, we may substitute the values of the dependent
variables 2, oo, 0 terms of 4., ¢, ety Gopiy Gigyeeo®e
and =z, a:,, a: ™"and that then the same rules apply as to
a genuine system of m equatlons.

‘Whenever one or more pairs of corresponding variables ¢,
a are not be permuted with the remaining pairs, we shall, for
distinctness, write them by other letters, such as u, 8, or v, v,
and the corresponding functions by ¥, ¥, and the exponents
by b, c. Again, sets of powers of the several ¢’s in the sym-
bols may be shortly indicated at by &, ¢/, @, ..., with the
meaning that the sets &, ¢, ..., employed in a smgle roduct
of such aymbols shall always exhaust the whole of those of
the powers ¢* which are admitted into permutation. After
this preparation, the combinatory character of the symbol
in question is defined by the equation

F X\ & (F
=23 ) Jocoeee
(X1 B By oo B ") (‘b) du (xp) ®h
where the sum extends to a.ll partitions into two sets &, &'
of the powers ¢, ¢, ... $," inclusively of those partitions

where all the powers fall wi one set, and the other set
disappears. @', for instance, denote the set which dis-

appears, then (F) will be = F'; and if the set ® at first

disappears and at last comprehends all the powers 4> , then
the sum in (3) begins with

X 34 6 )

(¢:*, ¢.¥;.-. 4 &

Now, it may first be shown that the s ca{mbollcal expression
deﬁned by (3) has in fact a symmetrical form. By writing

v, 7, ¥, ¢ instead of ¢, a,, ¢,, a, the above equation becomes
changed into

(g, 9,0) =2 ()% (o) +2 (o) (&7):
where each sum extends to all partitions of the given set

o, that is ¢,™. ¢,’, into two sets ¢’ and &". But
since the symi)ols on the rlght-ha.nd refer at most to n—1

and ends with
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equations, we assume for them the formula (8) as granted;
we thus obtain

2(5) 4 (v, ) =2 (3) () i ()
+2(3)- % @) % ().

2 () () =2 () 2 (@) &)

and by adding the two expressions and eollectin%lnnder one
sign of derivation the terms which can be so collected, and

applying again the formula (3),
(2, v 0) =2 () 5% {(%) % ()}

+2(3) & @) (o)

-2 (1) % (4, 0) * 2 (ofor) & (&)

that is to say, that an exchange of ¢, ¢ for ¢, ¢, does
not affect the symbolical expression; and as the same reason
holds for every other index than 2, the asserted symmetry
in fact exists.

It is proper to remark that (ﬁ), as containing in general

only derivatives of F' with respect to the variables ¢, must

vanish whenever ¥ is a constant, and that it reduces itself then

only to this constant ¥, when the set & disappears. Conse-

atlnently, if, for instance, the exponent a, = b 18 equal to zero,
e formula (8) becomes

(x;f' o) = -2 () P— (@).

4. Theorem. Ifafunctioni)econtaining ex;licitly no variables
but the dependent ones «, be a product #G, we shall have

the equation
( - Jf_" ¢..") =3 (ﬁ) (g) ........... (5).



28 On a generalisation given by Laplace

Dem. Admit this formula as true for systems of less than
etL uations. Then, puttmg u, x, b instead of ¢, ¢, a,, by
the help of (3) and (5 we shall 'obtain

(x", ¢ 1:?', ¢>..‘-) =2 (cb) % (ﬂ?) .
=2 (3) (@) 7 () +2 () (@) & (o)
=32 (3) () + 2 (¢, 0) ()

If, therefore, the formula (52 holds for less than n equa-
tlons, it must contmue to hold for a system of n equations.

Now (5) is = ¢° dt H conaequently

(¢) -G +oag-7(g)+(5) o

that is, the formula (5) is true for a single equation, and
therefore it is generally so. Hence and from (3) follows
the corollary

(xw') & ¢:.'1 cor 4’."‘) =2 (g) (ﬁ”') % (41";)

=3 (’g) ( ,,f" ¢,) ......... (6).

5. The principal subsidiary theorem, upon which the proof
of the formula (2) depends, may thus be expressed :

d F d F

e7e) ] =5 1 a, a_ Joee 7 M
ag (X ) D™ By ""f’.") du (XM 1 Bahy B -ee Py ") @;
but, when & = 0, it is to be written thus:

é% (¢t"7 ¢ﬂf: ¢ ) (76 ¢ ¢1:’ ) 8)-
Dem. We have, in virtue of (3),

(0,028 E) % () +> () alas (&)

But, if the truth of (8) be granted for less than n equations,
we here shall have

Jiﬂ(f) = (xﬂ) =3 (ﬁ)% (5’)’
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and likewise when F is replaced by x". Thus we obtain

(o) =2 (3)-&F) &)
+2(3)- {26

-52(3) 3@

and, according to (6),

%3 (x’l,rﬁ) ='d% (x"£: cb) )

This is the general formula (7) for » equations, and it still
remains to prove the particular formula (8). We have

;E (4«", b f ¢:—) = 2% = (":) % (5)

-2(3)za (@) 2 5(0)-4(0)

and, by employing the formula (8) itself, if granted for less
than n equations,

-3(D)a(e0) 2 (D E0)

= (g, i it )

Vs X B D5 oo P

Lastly, if we consider that for one equation z = ¢ + a¢
the formula (8) L = @—(F is true, we shall find that
e formula ( Tia--uﬁdt— ¢) , We 8 a
the proof of the general theorem is now complete.

6. If the symbolical expression in (3) be only expanded
in respect to the several derivatives of F, it will assume the
following form:

p] (¢-0 l.'.:l nﬂum) oo >.( ¢u.‘) d.—“ F
R S F

(¢.", ¢.{: ~--¢.") -

The sum here extends to all the possible partitions into two
sets, of all the indices 1,2, 8,...n. Though the first set (here
1,2, 3,...m) employed in the lower row of the symbolical
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expression on the right-hand may disappear, yet the second

set (here m + 1, m + 2, ... n) employed in the product at the

lﬂper place of the symbol, must contain at least one index.
o first term of the sum is therefore

. . 4 F
1'¢:""°¢-'dtl dt’ . dt.’

and the row of the n last terms begins with

(4’:’: 4’?’!: ‘"' ¢.a'> gd—f:';

the number of all the terms is of course 2* — 1.

The proof of (9), if granted for an inferior system, is easy,
" but irksome to be written; it is only based upon the form:
(8) and (5).

7. If we want again to expand the expression (9) inresgect
to the functions ¢,, gf e m[:d their detn}v)'sﬁves go that there
shall be no more symi»ols but the usual ones of diﬂ'erentiation,
then we must in every possible way distribute all the indices
1, 2, 3,...n into any number of sets (of course at least one set,
at most n sets). Within one and the same set, it matters not
how the indices may be arranged ; but each permutation of the
same sets (one set with another) is to be counted as a distinct
arrangement. For any such arrangement of the indices, take
the products of those among the given Fowers L N S O S
which correspond to the single sets of indices, and put them
in the same order in a horizontal line. Then take likewise
the products of the symbols of derivation 7, .. 4
oorresgonding to the same sets of indices in the same order
as before, and prefix the compounded symbols of opera-
tion thus obtained to the above groducts of powers, so that
the first remains unoperated on, but that each of the follow-
ing products of ]powers is operated on by the immediatel
foregoing symbol, and that the last symbol operates on l'!
Now multiply all these results, Then the aggregate of all
such products will be the complete expansion of the ex-
pression (9).

By way of illustration let us assume n = 10, and as one
of the many possible partitions of the indices, take

8,4; 2,5,6; 1,10; 7,8,9.
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To this arrangement then will correspond the following term
of the expansion, viz.

g L0020 Db d,") (b b dY) LF
s O e dt, T dtdedt, T didt, Cddidi,’

The number of terms in such complete expansion of the
expression (9) is equal to the coefficient of " + 1.2.3...n in the
expansion of 1+ (2— ¢°) developed in ascending powers of .
tI'f we denote it by 4, it may be calculated from the recurrent
ormula

..—i-; n(n—1)....n—=A+1)
- 1.2..n
which gives us 4 =1, 4, =1, 4,=38, 4,=13, 4, =15,
.A5 = 541, efc.
Bern, Jan, 18566.
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ON THE A POSTERIORI DEMONSTRATION OF THE
PORISM OF THE IN-AND-CIRCUMSCRIBED
TRIANGLE,

By A. CavvrEY.

¥ my former paper “On the Porism of the In-and-circum-
scribed Triangle” (Journal, t. 1. p. 844) the two porisms
(the homographic and the allographic) were established &
priort, i.e. by means of an investigation of the order of the
curve enveloped by the third side of the triangle. I propose
in the present paper to give the & posteriors demonstration
of these two porisms; first according to Poncelet and then
in a form not involving (as do his demonstrations) the prin-
ciple of projections. objection to the employment of the
rinciple may be stated as follows: viz. that in a systematic
evelopment of the subject, the theorems relating to a par-
ticular case and which are by the principle in question ex-
tended to the general case, are not in anywise more simple
or easier to demonstrate than are the theorems for the general
case; and, consequently that the circuity of the method can
and ought to be avoided.
The porism (homographic) of the in-and-circumscribed
triangle, viz.—
a triangle be inscribed in a conic, and two of the sides
envelope conics having double contact with the circumscribed
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conic, then will the third side envelope a conic having double
contact with the circumscribed conic.

The following is Poncelet’s demonstration, the numbers
are those of the Trait2 des Proprietés Projectives:

No. 431. If a triangle be inscribed in a circle and two
of the sides are parallel to given lines, then the third side
envelopes a concentric circle.

This is evident, for the angle in the segment subtended
by the third side being constant, the length of the third side
is constant; hence, the length of the perpendicular from the
centre upon the third side is also constant and the third side
envelopes a concentric circle.

Hence, by the principle of projections—

If a triangle be inscribed in a conic and two of the sides
pass through given points, the remaining side envelopes a
conic having double contact with the circumscribed conic, the
line through the two points being the chord of contact.

No. 434. Conversely, if there be a triangle inscribed in
a conic and the first side envelope a conic having double
contact with the circumscribed conic, and the second side
pass through a fixed point in the chord of contact, then will
the third side also pass through a fixed point in the chord
of contact. .

No. 437. In particular, if there be a triangle inscribed
in a conic and two of the sides pass through fixed points,
then will the third side pass through a ﬁxgg point, viz. the
point forming with the other two points a conjugate system.

No. 439. It follows that—

If there be a tria.nile inscribed in a conic and the first
side passes through a fixed point, and the second side en-
velopes a conic having double contact with the circumscribed
conic, then will the third side envelope a conic having double
contact with the circumscribed conic.

For the chord of contact meets the polar of the fixed
point with respect to the circumscribed conic in a point;
the line joining this goint with the third angle (i.e. the angle
opposite the third side) of the triangle meets the conic in
a variable point; and joining this variable point with the
first and second angles of the triangle we have a new
triangle; two of the sides of this new triangle (by Nos.
434 and 437) pass through fixed points; hence the remain-
ing side, i.e. 5‘18 third side of the original triangle, touches
a conic having double contact with the circumscribed conic.

We have thus passed from the case of the two sides
passing through fixed points to that of one of the two sides
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enveloping a conic having double contact with the given
conic and the other of them passing through a fixed point;
and, by a repetition of the reasoning, Poncelet passes to the
general case, viz.

If there be a triangle inscribed in & conic, and two of
the sides envelope conics having double contact with the
circumscribed conic, then will the third side envelope a conic
having donble contact with the circumscribed conic.

But it is somewhat more simple to omit the intermediate
case of a conic and point, and pass directly, by the reasoning
of No. 439., from the case of two points to that, of two conice.

In fact, considering the point of intersection of the two
chords of contact, the line joining this point with the third
angle of the trianile meets ti:e conic in a variable point, and
joining this variable point with the first and second angles
of the triangle we have a new triangle: two of the sides
of this new triangle (by No. 434.) pass through fixed points;
hence the remaining side, i.e. the third side of the original
triangle, envelopes a conic having double contact with the
circumscribed conic; and the general case is thus established.

'{‘he porism (allographic) of the in-and-circumscribed tri-
angle, viz.—

"a triangle be inscribed in a conic and two of the sides
envelope conics meeting the circumscribed conic in the same
four points, then the third side will touch a conic meeting
the circumscribed conic in the four points.

The following is Poncelet’s demonstration :

No. 433. In the particular case of the homographic
porism, viz.—that in which two of the sides of the triangle
pass through fixed points and the remaining side envelopes
a conic having doubfe contact with the circumscribed conic—
it is easy to see that the lines joining the angles of the
triangle with the two fixed points and with the point of
contact on the third side, meet in a point; this follows at
once by the principle of projection from the case in No. 431.,
viz. the case of a triangle inscribed in a circle when two
of the sides are parallel to given lines and the third side
touches a concentric circle. Hence,

No. 531. If there be a triangle inscribed in a conic, and
two of the sides envelope fixed curves, and the third side
envelopes a certain curve; the lines joining the angles of
the triangle with the points of contact meet in a point.

In fact, attending only to the infinitesimal variation of
the position of the triangle, the curves enveloped by the
first and second sides may be replaced by the pomts of con-

VOL. I D
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tact on these sides, and the curve enveloped by the third
side may be replaced by a conic having double contact with
the circumscribed conic, and the general case thus follows
at once from the particular one.

Nos. 162 and 163. LEMMA.* If, on the sides of a triangle
ABQC, there are taken any three points L, M, N in the same
line, and the harmonics A', B’y C' of these points (i.e. the
harmonic of each point with respect to the two vertices on
the same side of the triangle), then the lines 44', BB', CC’
will meet in a point; and, moreover, if 4A'L, B'M, C'N
are bisected in F, G?, H (or, what is the same thing, if
FA*=FB.FC, GB"=GC(.GA, HC"=HA.HB), then will
the three points F, @&, H lie in a line. This is, in fact, the
theorem No. 164.—In any complete quadrilateral the middle
points of the three diagonals lie in a line.

It is now easy to prove a particular case of the allographic
porism, viz.

No. 531. If there be a triangle inscribed in a circle, such
that two of the sides envelope circles having a common secant
(real or ideal) with the circumscribed circle; then will the
third side envelope a circle having the same common secant
with the circumscribed circle.

For if the triangle be ABC, and the points of contact of
the sides OB, CA with the enveloped circles and the point
of contact of the side AB with the enveloped curve, be
A'y B', C'; if moreover the points of intersection of the
circumscribed circle and the two enveloped circles be M, N,
and the common secant MN meet the sides of the triangle
in F, G, H; then F, G, H and A’y B', (' are points on the
sides of the triangle ABC, such that F, @, H lie in a line,
and A4’y BB', CC' meet in a point. And by a property
of the circle '

FA" = FM.FN = FB.FC,

GB™ =GM.GN = GC.GA.

‘Whence by the lemma (or rather its converse) HC"=HA.HB
and by a property of the circle HA.HB = HM.HN; and
therefore, HC™ = HM. HN, a property which can only belong
to a circle having, with the other circles, the common secant
MN: the particular case is thus demonstrated. And the

* T have not thought it necessary to give the figures; they can be
supplied without difficulty.
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principle of projections leads at once to the general case of
the allographic porism.

To exhﬁ)it e demonstrations in a form independent of
the principle of projections, it will be convenient to enunciate
the following three lemmas: the first of them being, in fact,
the theorem contained in No. 434, as generalised by No. 531 ;
the second of them a theorem connected with and including
the properties of the circle assumed in Poncelet’s demon-
stration of the allographic porism; and the third of them
a theorem derivable by the principfe of projections from the
theorem in Nos. 162 and 163.

Lemma I If there be a triangle inscribed in a conic,
such that two of the sides envelope given curves and the
third side envelopes a curve; then the lines joining the
angles of the triangle with the points of contact of the
opposite sides meet in a point.

Leuma I, If there be three conics meeting in the same
four points, then any line meets the conic m six points
forming a system in involution.

CoroLL. 1, If the line be a tanient to one of the conics,
then the point of contact is the double or sibi-conjugate tEoint
of the involution formed by the points of intersection with the
other two conics. And conversely if the curve envelo[ied
by the line is not given, but the preceding property holds
for all positions of the tangent line; then the curve enveloped
by sucﬁo line is a conic passing through the points of inter-
section of the two given conics.

CoroLL. 2. If one of the conics be a pair of coincident
lines, then the other two conics are conics having double
contact, with the line in question for their chord of contact;
any line meets the chord of contact in a point which is a
double or sibi-conjugate point of the involution formed by
the points of intersection with the other two conics; and
if the line be a tangent to one of the conics, then the point
of contact and the point of intersection with the chord of
contact are harmonics with respect to the points of inter-
section with the other conic. And conversely if every
tangent of a curve intersect a line and conic in such manner
that the point of contact and the point of intersection with
the line are harmonics with respect to the points of inter-
section with the conmic; then the curve is a conic having

D 2




36 A Posteriort Demonstration of the Poriem

double contact with the given conic, and the line in question
is the chord of contact.

The third lemma is a theorem (first explicitly stated, o
far as I am aware, by Steiner, Lebrsiitze 24 and 25, Crelle,
t. XIIL p. 212, and demonstrated b Bauer, t. x1x. p. 227
which, in a note in the Phil. Mag., Augt. 1853, I have call
the Theorem of the harmonic relation of two lines with respect
to a quadrilateral.

Lemma IIT. If on each of the di 8 of a quadrilateral
there be taken two points harmonically related with respect
to the angles upon tj:‘i)s diagonal ; then if three of the points
lie in a line, the other three points will also lie in a line:
the two lines are said to be harmonically related with respect
to the quadrilateral.

The relation may be exhibited under a different form.
The three diagonals of the quadrilateral form a triangle, the
sides of which contain the six angles of the quadriiteral;
and considering only three of the six angles (one angle on
each diagonal) these three angles are points which either
lie in a Iine, or else are such that the lines joining them
with the opposite angles of the triangle meet in a point.
Each of the three points is, with respect to the involution
formed by the two angles of the triangle and the two points
harmonically related thereto, a double or sibi-conjugate point,
and we have thus a theorem of the harmonic relation of two
lines to a triangle and line, or else to a triangle and point,
viz. Theorem. If on the sides of a triangle there be taken
three points which either lie in a /ne or else are such that
the lines joining them With the opposite angles of the triangle
meet in & point; and if on each side of the triangle there
be taken two points forming with the two angles on the
same side an involution having the first-mentioned point on
the same side for a double or sibi-conjugate point; then if
three of the six points lie in a line, the other three of the
six points will also lie in a line; the two lines are said to
be harmonically related to the triangle and line, or (as the
case may be) to the triangle and point.

The proof of the two porisms 18 by the preceding lemmas
rendered very simple.

Demonstration of the homographic porism.

First, the particular case, where two of the sides pass
through fixed points. Lemma I. gives the construction
of the point of contact on the third side, and the figure
shews that the point of contact and the pont in which the
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third side is intersected by the line through the two given
points are harmonics with respect to the points of intersec-
tion of the third side with the circumscribed conic. Hence,
(Lemma IL Coroll. 2.) the curve touched by the third side
is a conic having double contact with the circumscribed conic,
and the chord of contact is the line joining the two given

ints; and conversely if one of the sides touch a conic

ving double contact with the circumscribed conic and
another of the sides passes through a fixed point on the
chord of contact, then the third side will also pass through
a fixed point on the chord of contact. The general case is
deduced from the particular ome precisely as before, viz.
where two of the sides touch conics having double contact
with the circumscribed conic, then considering the point of
intersection of the two chords of contact, the line joining
this point with the third angle of the triangle meets the
circumscribed conic in a variable point, and joining this
variable point with the first and second angles of the tri-
angle, we have a new triangle two of the sides of which
(by the converse of the particular case) pass through fixed
points: hence the remaining side, i.e. the third side of the
original triangle, touches a conic having double contact with
the circumscribed conic.

Demounstration of the allographic porism.

Let ABC be the triangle, 4', B', ' the points of contact
on the three sides, then by Lemma I. the lines 44', BB', 0C’
meet in a point. Take & pair of lines ing throu, h the
points of intersection of the circamscribed conic with the two
given conics enveloped by the sides CA, CB, and let one
of these lines meet the sides of the,triangle in the points
F, G, H, and the other of them meet the sides of the
triangle in the points F, G, H'. Then considering the
following three conics, viz. the last-mentioned pair of lines,
the circumscribed conic, and the conic enveloped by the side
CA ; these are conics passing through the same four points,
and the sidle C4 is a tangent to one of them; hence by
Lemma II. Coroll. 1., @, &, C, A will be an involution
having the point B’ for a double or sibi-conjugate point, and
similarly 7, F°, G, B are an involution inavin the point
A' for a double or sibi-conjugate point. It follows from
Lemma III. that H, H'y, A, B will be an involution havin
C’ for a double or sii)i-eonjugate point. Hence by Lemma I,
Coroll. 1. (the two given conics being the before-mentioned

air of lines and the circumscribed conic) the curve enveloped
y the side 4B will be a conic passing through the points
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of intersection of the pair of lines and the circumscribed
conic, or, what is the same thing, the points of intersection
of the circumscribed conic and the conics enveloped by the
other two sides.

3, Stone Buildings, Oct. 2, 1856,

GEOMETRICAL THEOREM.
By Rev. HAMNET HOLDITCH.

F a chord of a closed curve, of constant length ¢+, be

divided into two parts of len, ¢, ¢ respectively, the
difference between the areas of the closed curve, and of the
locus of the dividing point, will be arec'.

Solution. Let AB be the chord in any :
position; P the dividing point, so that p \
AP=c, BP=c'; let Q be the point in
which the chord intersects its consecutive
position ; let [4] be the area of the given

remposindys A Qo B oo r
Then (4]- [0)=} f:'fdo .................. ),
but also (41-[@=4] (o+¢~n'at;
therefore 3 f' Pdo=} f:'(c+c'-r)=do,
or (c+o’)frd0=§j:'(c+c')’d0;
therefore f' rd0 =1+ C) errererrerrerreen (@)
Also (71~ (a1 =4 [[e=rras,

therefore, by (1), [4]~ [P1=4 [ " (2or — ) dB

=cf"rd0-—qrc’

=ar¢ (¢ + ) — mc", by (3),
=mrec.
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NOTE ON THE SYMMETRICAL EXPRESSION OF THE
CONSTANTS IN THE EQUATIONS OF
ALGEBRAICAL CURVES.

By 8aMurL RoBeErTs, M.A.

]F the right line = cosa’ + y sina’ — p' =0 be thrown into
the form IL + mM + nlg =0 (Salmon's Conics, p. 55),

where
L =z cosa, + y sing, — p,
M = @ cosa, + y sina, — p,
N =  cosa, + y sina, — p,,
the coefficient / must be of the form
1 sin 4

= Det.(cosa, sind, —p) %
A being the angle between M =0 and N = 0, and a, being
the E;rpendicular from the intersection of those lines on
the line

a=gxcosa +ysing —p =0........ ores(a).

Similarly,
sin B

™ = De. (cosa', sind’, — p') %o

where B is the angle between L =0 and N =0, and «,

is the perpendicular from LN on (a).
In like manner

ne sinC
Det.(cosd',sina’y — p') %
where C is the angle between L =0 and M =0, and a,

is the perpendicular from LM on (a).
Consequently, if we treat in the same manner the lines

B=w003“n +y3illa" _pn =0,
" =wcosam +y sina'" _pm =0’
and / n, L, m, n_ be the corresponding coefficients of the
tmns&r";lx’ed“eti:mtﬁm;, we shall havedl(?,gl 1 L)y (my my, m),
i rdina

(n, n,, n,) proportional, respectively to the ear coo;
ofIﬂV,L ,%OM,wiﬂ’xregardtothelinesa,ﬁ,q.
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If then we transform the equation ¢ (<, ¥/, ') = 0 into

the quantities (a,a,a,), (b,5,5,), (c,c,c,) Will respectively be the
trilinear coordinates of Et[lﬁ),, t)a;z),l(:'cy with respect to &', ¥/, 2'.
By the aid of Taylor’s theorem the transformed equation is
easily developed. Thus, using the notation

__ag, dau, 4y,
g_a|_r+a'._:+a'__:’
where U,= ¢ b,

one of the numerous symmetrical forms, which the develop-
ment assumes, will be

U+ Uy" + Ug*
+ -1 A -1 Aul—l LI A w1 Az n-1
l Azy“ + “yz + A + Azz“ + “ys + a Y
(ALY AR 4 AV At w3 s
+ g (A YT A A+ Ay Ay

+ AAzzy™ + AAzyzs™" + AAyzx™™ + .........
adod +““wyz +o¢b¢yzw +

A being a symbol of operation and the corresponding subjects
U, U,, U, being suppressed. It is immediately seen that the
fgrm of the development may be varied by the use of the
identity -

1 kYT — 1 bar' ]
1.2...% ﬁ. U= 1.2...n — k‘.ﬁ 2

and a corresponding identity for A*.A™*,

)
The development (b) shews that if LM, MN, NL are on
the curve, the terms containing a variable in the n® degree

vanish ; for
U,=0U,=0,=0.

And if each of the lines of reference is the polar of
the intersection of the other two, the terms containing a
variable in the n — 1™ degree vanish, and so on.

It evidently enables us to treat the general equations of
curves expressed in trilinear coordinates in & manner ana-
logous to that in which their Cartesian equations are usunally
dealt with, namely, by transformation of coordinates; and
although many of the conclusions thus derived can quite as
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easily be deduced from other considerations, the above method

appears less chargeable with artifice.
A})plied to the general equation of the second degree, the
transtormation above given becomes

U2+ Uy + Ug + ﬁmy + Azs + By = 0...(1).
Take U, = U, = U, = 0, and we have
ﬁzy + Azs + eyz =0 eerennernenenns (2),

representing conics circumscribing the triangle of reference.
Take U, = U, = 0, 3=A=0,andwehave
ae

Qx‘+eyz=0 ..................... (3)-
TakeA=A=e=0,andwehave

ad ao
UL+ Uy + U =0..ouuueenn (4),

the triangle of reference being self-conjugate.
In the case of conics, we obviously have

A= e = sin4 sin B.Bp,, =sin4d sinB.R"p,,
A=A =2sind sin0.R"p_ =sind sinC.Rp,,
ﬁ = 2 = sinB sinC. B"p, = sin B sin0.R"p,,,
3 now meaning the result of the operation
ay, ay, au,
-4 —: -
kl dl, +kl dl‘ +k| dl.)

ABC being as before the angles of the transformed triangle
of reference, and 5:“ denoting the perpendicular from (klk§c,)
to the polar of (17,0,).

& AR
Again, for U, we may put % or -—?—&' ,

A s o
{5 N 7/ S -;301' a_u%lzﬂ, ,
A . "
for U. Zor sin'C. B'p..
€ "°%9csccoscsene —_—
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Andsince  &"= A.A = si’d sin'B. RE pupi:

And there are similar values for A’ and A’ we may write
(1) in the form

sin’AR'p_ o + sin’BR"p,y* + sin’CR"p, 2
+ 2 {sind sinBV(R’R"p.,szy + sind sinCv(R'R"p,,p,,)
+ sin B sinC/(R"R"p, p,,) y2} =
Bat if the polars of 4 and B intersect on the line 4B, we
shall have
Poa*Pss = Pos+ Piat

Therefore this is a condition that 4B may touch the coni
and substituting this and two similar conditions for 40, B
we ha.ve the general equation of a conic inscribed in the
ie of reference.
e general equation of a circle inscribed in the triangle
is readily obtaine for we have

B
Pea —"°°5§, Py =T, COB5y Pee =17, C085,
A4 B o
Dig =7, C0BGy Py =T, C0BGy P, =7,0085,

A B c
Doy =73 C0Boy Py =T7,C085, Pp =T1,C085,

. A . B . C

rlsm-i oosé f’5m§'=cos§ f.ﬂlnE- C
= " %9 ) ) =co8o,
E a.-R" .pk

And substituting and dividing by coa(o) and p*, we get
the general form which may be written

a:*cosé +y*cos§+ 2t cosg 0.

Again, (2) may be written
ind p, | sind p,

sinC p,,wy sinB p,, z8+ys =0,
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Pus_ABsind p, ACsin€

ps ACsng’ p,” BC sing'’
where 6, ¢ are the angles which 4B, CB make with the
tantEent at B, and &, ¢' are the angles which 4C, BC make
with the tangent at C; (2) therefore becomes

sin § sin &'
mwy+mwz +yz=0.

Now, for .a circle, the angle made by a chord with the
tangent at its extremity is equal to the angle in the alter-
nate segment; therefore,

sinCzy + sin Bez + sin Ayz = 0,
is the equation of the circumscribed circle. It appears also
that if 4B, CB make equal angles with the tangent at B
of the comec, and 40, BC make equal angles with the
tangent at 0, then BA, CA make equal angles with the
tangent at 4.
%3) may be written ‘
sin"4.Rp 2" + 2 sind sin B.R"p ,zy = 0,

where B'R" are determinate functions of the coordinates of
4 and O, the angles 4BC and the constants of (1), but the

B p,. .

ratio —; =<2 is illusory.
L
So (4) may be written
sin'A4.R'2* + sin’B.R"y* + sin*C.R"2" = 0.
And the like may be said of R'R"R".
‘We can express the general equation of the second degree
in terms of the angles of the triangle of reference, and the
tial coordinates of their polars in various ways. For
(1) may be written
R’ sind {sin Ap, " + sinBp, oy + sinCp, 22}
+ R"sinB {sinBp,y* + sin Ap zy + sinCp, yz}
+ R" sinC {sinCp,s* + sindp xz + sinBp,yz} =0,

B _Pe E _pe B _pu
Whm R-m—?m, R" _Pcb’ R"=Ph’
and Pa-PioPoa = Dia Dot Pocr
The equation

ar® + by’ + ce® — 6dzyz = 0,

and
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represents the general equation of a cubic referred to three
lines containing its nine points of inflexion. It appears also
that it represents a cubic referred to a self-conjugate trim§le
with respect to it. Hence the nine points of inflexion of a
cubic lie on each of four self-conjugate triangles, and a cubic
has four and no more than four self-conjugate triangles.
Hence, also, all cubics having the same mine points of in-
flexion have the same self-conjugate triangles.

I think the above examples, although elementary, shew
that the method may be advan y employed for the
symmetrical and systematic demonstration of theorems com-
monly proved by isolated transformations; and it would seem
to be applicable in some degree to transcendental curves.

Lincoln, October 1, 1856,

ON CERTAIN FORMS OF THE EQUATION OF
A CONIC.

By A. CAYLEY.
T® find the general equation of a conic which passes through
two gi
Let

tiwen points and touches a given line.

e coordinates of the given points be («, 8, v), (a, 8, 7)
and the equation of the given line be Az + uy + v2=0. Then
writing

U=2, Yy, 2|, v=8|2 Y, 2|, =2 Y, £,
By a B, v oy B, o
a b ¢ d By o a b o

o sonle paasing.through he two ghven poina wil ber "
uw - v' = 0.
We have identically
8| e+ py + vz, x, Yy, 2 =0;
A+ pBtry oo B oo
A+ pB 4w, dy By o
"Na + ub + ve, @, b c|
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and hence putting

% B, v

a’, Bl’ 7’

a b ¢
A= (Aa'+pf+vy)s
B=— (Aa + pb + wc),
C=—(a+pB+ ry)s

We have

(Ax+py+v2)sv + Cw + Au + By =0,
and consequently the equation Az + uy + ve =0 is equi-

- valent to
Au + Bv + Cw = 0,

and we have only to express that the line represented by
this equation touches the conic uw — v* = 0.

Combining the two equations, we find Au+ Cw+ By (uw)=0,
i.e. (Au+Cw)' — B'uw = 0, an equation which must have
equal roots; and the condition for this is obviously 44 C—B*=0.
Or putting the condition under the form — B+ 2 4/(4C) =0
and substituting for 4, B, C their values, the condition becomes
{{=+/{—1) as usual}

Aa + pb + ve + 26 v/ {(Aa+ pB +wy) (Ad' +pB + w)} = 0.
We have consequently

= (Aa+ pd + ve)!
T A(Aa+pB+vy) M+ pB + )’

and the equation of the conic is

v=

AAa+pB+wy) (A +pB +w) |z, y, 2|2 ¥, =
a8y ||d,B,y
a,byclla b ¢

+ Qatpbtre | @ g, £ =0,
a By o
a, B,

But the equation of the conic may be obtained in a different
form as fzﬁows: we may first write B" = 44 Cuw, and then
substituting for — Bv the value (Az + uy + v2) sy + du + Cw,
the equation becomes

{Au+ Cw + Mz + py + v2) sv}* = 44 Cuw.
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or extracting the root of each side and transposing
{V(4u) + V(Cw)} + Az + py + v2) sv = 0,
and thence
V(45) + ¥(O) + $V(s9) V(\z+ py + vs) = 0,
or substituting the values of 4, C, v, , w, and omitting the
common factor 4/(s) the equation becomes

V' +p8+m)V( 2, 3, 2 ) +iV Mat+pB+m)V( 2, 3, £ )
o8,y a,B,y
a, b c a b c
+ivQztuy+ve) (| a B, v|) =0,
a,B, vy
a b c

a form symmetrically related to the three lines
Az + py + ve =0,

%y 2|=0, |2 ¥ £(=0.
% B v o« B,
a b c a b ¢

Let it be required to find the conic passing through the two
points («, 8, 7), («, 8, 7', and touch?::the three iues

Aetpy+ve=0, Azt py+rve=0, Ax+py+ve=0.

The constants a, b, ¢ have to be determined in such
manner that the equations obtained from the preceding,
writing successively (M, s, ¥,), éhﬂ By ¥)y (A F'vl:s
(A, py v) may represent one and the same e(gl:tlom
three equations so obtained will therefore subsist simul-
taneously, and we may from the equations in question
eliminate a, b, c; the resulting equation
Vnz+ Y +ve), VOz+uy+re), VOz+uy+rg)|=0
viva+uB+vy), vMat+pB+v,y), v(hatpB+vy)
~/(7L,a'+p,ﬁ’ + vl'y')7 ‘\/(xza,'*"‘ﬂ + yz'Y'), N/(X‘a'-l-ﬂﬁ +y.71)
is the equation of the conic in question ; this is in fact evident
from other considerations.

To find the condition in order that a conic passing through
the points (a, (3, v), (@, £, 9') may touch the four lines

At py+trve=0, Az +py+ve=0
A+ py+vz=0, Ax+py+vz=0.

by
for
the
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The relation first obtained between a, b, ¢, s gives four
equations from which these quantities may be eiiminated, the
resulting equation

X1’ Py Yy ‘\/{(xxa + ,"IB + vx") ()’la’ + "'IB, + I’"y')} =0

l‘l’ By Vg ‘\/{(X:a."" "iﬁ + VQ'Y) (lna' + I":B ' + V,'y')}

Ay By Vo V{(Ma+ B+ r) (Ma + S vy )

Mo B Vo V{Na+pB+vy) (Mg +pB vy )

is the required relation.

The preceding investigations apply directly to the circle
which is a conic passing through two given points. Thus
the equation of a circle touching the three lines

|
i
Ax +-B?/ +C=0, 1

Az + By +0' =0,
A"z + B"y + C" =0,
is |/ (4dz+By+C), ¥(A'z+B'y+0'), (4 "z+B"y+C")|=0.
VA+B),  y(A+BY,  J(A4'+B"%)
V(4 - By), V(4' - B%), V(4" + B")
Whence also the equation of a circle touching the three lines
x cosa + y sina —p =0,
xcosB +ysinB—g=0,
@ cosy + y siny — 7 =0,
is sin§(B—y)+/(xcosa+ysina—p)+ sing(y—a)y/ (zcosSB+ysinS—q)
+sind(a— B) v/(x cosy + y siny — ) = 0.
To rationalise the equation, I remark that an equation
V(4) + #/(B) + ¥/(C) = 0 gives in general
and that 4L1,1,1,1,1)(4, B, C) =0,
(1,1,1, I) i: 1)[2psin’}(B—v), 2¢sin’}{y—a), 2r 51”3‘ (a—8)1
or as it may also be written
(1,1,1,1,1,1)[ p{1—cos(B—y)}, g{1—cos(y—a)}, r{1—cos(a—B)}]",
is identically equal to
{p (sinB — sing) + ¢ (siny —sina) + r (sina —sinB)}*
+ {2 (cosB — cosyy) + ¢ (cosry — cosa) + r (cosa — cos 3)}*

- {p sin(B—1v)+ gsin(y —a) + »cos(a — B)}".
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Hence if we replace p, g, r by
xzcosa+ysina—p, xcosB+ysinB—gq, xcosy+ysinf—r,

the last mentioned expression equated to zero will give the
equation of the circle, and we obtain

{vz+ p (sinB — siny) + ¢ (siny — sina) + 7 (sina — sinB)}*
+ {Vy —p (cos 8 — cosry) — g (cosy — cosa) — 7 (cosa— cos 8)}*
— {psin(B—9)+¢sin(y—a) +7sin(a— )}’ =0,
where v =sin{8—¢) + sin(y—a) + sin(a—B),

and we have thus the equation of the circle in the usual
form with the coordinates of the centre and the radius put
in evidence.

The condition that there may be a circle touching the

four lines
Ar +By +C =0,
dc + By +C =0,
A"z + B"y + C" =0,
A"z + B"y + C" =0,
is by the general formula shown to be
4, B, C, (4 +B) |=0,
4, B, C, J(4* +B"
4", B", C", J(4™ + B™)
4", B", C", ¥(4™ +B™)

which is in fact obvious from other considerations.
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NOTE ON THE REDUCTION OF AN ELLIPTIC ORBIT
TO A FIXED PLANE.

By A. CAYLEY.

E principal object of the present note is to obtain an

expression for the quantity e, which I call the modified
mean longitude at epoch, viz. taking as the elements the
longitude of the node, inclination and any four elements
which determine the motion in the plane of the orbit, then
the longitude measured in the fixed plane or reduced iongi-
tude will be a function of the form

nt + ¢, + periodic terms,

where e, is a determinate function of the elements, and it
is proposed to find the expression of this function. But as
the corresponding formule relating to the excentricity and
longitude of the pericentre are not in general given as part
of the theory of elliptic motion, but occur only, so far as
I am aware, in works on the lunar theory, I have thought
it desirable to include these formule and take as the subject
of this note the reduction of an elliptic orbit to a fixed
‘plane. 'Write

a, , the semiaxis-major,

e, , the excentricity (= sin«,),

=, the longitude of pericentre in orbit,
¢, , the mean longitude in orbit at epoch,
6 , the longitude of node,

¢ , the inclination (= tan™),

and moreover

n , the mean motion {= /\/ (ai,)} .

Where by longitude in orbit is to be understood as usual
a longitude measured in the fixed plane as far as the node
and from the node in the qlane of the orbit: the meaning
of ¢, is perhaps more clearly fixed by saying that e, — =,
denotes the mean anomaly at epoch.

VOL. II. . E
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The elements most nearly corresponding to the above,
in the orbit reduced to the fixed plane, are

a,, the modified semiaxis-major,
¢, , the modified excentricity,
@, the modified longitude of pericentre,
e, , the modified mean longitude at epoch,
6 , the longitude of node,
¢ , the inclination (= tan™y),

and moreover

n , the mean motion {not equal to /\/ (ai’)} .

* Where 6, ¢, n are the same as in the actual orbit, but

a, e, ®, ¢, are defined as follows: viz. e, w, are functions
of e, @, 0, ¢ given by the equations

tan (=, — 0) = seco tan(w, —6),
=& cos (@, — 6)

°" cos(w,~ 6) ’
a, is determined by the condition
a, (- eo’) =a, (l - elﬁ)’

And e is determined so that the reduced longitude may be
equal to
nt + ¢, + periodic terms.

It is easy to see that comsidering the orbit and the fixed
plane as great circles of the sg ere, and projecting the
pericentre upon the fized plane by an arc perpendicular to
the orbit, then w, denotes the longitude of such projection
of the pericentre; and e, is equal to ¢ into the secant of
the projecting arc. In fact we have a right angled spherical
triangle, of which the projecting arc in question is the per-
pendlcufar, and the hypothenuse and base of which are
w, — 0 and =, — 0 respectively, and the base angle is the
inclination ¢. It is to be remarked that =, 18 not the
reduced longitude of the pericentre, an expression that would
signify the longitude of the g;ojection of the pericentre by
an arc perpendicular to the fixed plane; this 18 the reason
why I have throughout used the word modified instead of
what would at first sight have appeared the natural one,
viz. the word reduced. The modified semiaxis-major is ob-
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viously a semiaxis-major calculated from the latus rectum
of the orbit by means of the modified excentricity e,
The relations between e, =, ¢, =, may be written
tan(w,— 0) = sec¢ tan(w, — 0),
e, = ¢, secg /{1 —sin’p sin® (w, — 0)},
or again '
tan(w, — 0) = cosg tan (=, - 6),
e, = ¢, /{1 —3in"¢ sin*(w, — 6)}.
Write now
r,, the radius vector,

v,, the longitude in orbit,
A, the latitude (= tan™s).
And in like manner
7,, the reduced radius vector,
v,, the reduced longitude,
A, the latitude (= tan™s).

Then », — @ and v, — @ are the hypothenuse and base
of a right angled spherical triangle, the perpendicular being
A and the angle at the base being ¢. We have

tan\ = tan¢ sin(v,— 0),
sin\ = sing sin(v, — 6),
tan (v, — 6) = cos¢ tan(v, — 6),
cos (v, — 0) = sech cos(v, —6).
We have for the radius vector
1__ 1
7 a a, (1 - 61’)
and the reduced radius vector is thence found as follows:
viz. we have 7, = r_cos), that is
1
;; - e, (r- ex’)
But ¢, sech cos(v, — =)
=6 sec cos {(va - 0) - (wl - 0)}
= ¢, sech cos(v,— ) cos(w, — ) + ¢, sec sin (v,— 6) sin (=, — 6)
= ¢, sec co8 (v, — ) cos(w, — 6) {1+ tan (v, — ) tan (=, — 6)}
= eocos(”o - 6) cos(qo_ 0) {l + tan(vo_ 0) tan(wo_ 0)}
= ¢, co8(v,— ) cos(w,— 6) + ¢, sin (=, — 6) sin (&, — 6)
= €,C08\7, = ﬂ'°),

1+ ¢ 008(‘01 - ﬂ")},

{secA + ¢, sec cos(v,—w )}

E2
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and by the definition of @, we have a, {1 —¢)) = a, (1-¢).
‘Whence

1 1

,_.o = !) {secl. +e, 005(0.— wo)}7

a, (1 -6

which, combined with the equation
tan\ = tan¢ sin(v,— 0),

determines the position of the body in terms of the modified
elements and of the reduced longitude v,. Introducing into
the two equations s (= tan\) and ¢ (= tang) in the place of
A and ¢, they become

1 1

;o = m {‘\/(l +") +C°COB(').—W°)},

s=q Bin(vo—oL

v;lhich is the form in which the equations occur in the lunar
theory.

P?oceeding now to the formule which involve the time,
it is to be remarked that the true anomaly and the quotient
of the radius vector by the semiaxis-major are given func-
tions of the excentricity and the mean anomaly, and calling
for a moment the last mentioned quantities e, § I repre-
sent the functions in question by

elta (e, £), elgr (e, £).

Orbmore simply when the mean anomaly only is attended
to by
elta £, elqr £.

I have found this notation very convenient as a means of
dis%nsing with the introduction of the excentric anomaly.

he reduced longitude is found in terms of the time {y
means of the equations

tan(v, — 6) = sec¢ tan(v, - 6),
v, - o, = elta(nt+e - =),
the former equation gives, as is well known,
v, — 0 =v, — 6 — tan'}¢ sin(20, —26) + § tan‘} sin(4v, —46) — &e.,

(where the successive coefficients are the reciprocals of the
natural numbers) we have therefore

o, = v, — tan'}s sin{(3v, — 2,) + (27, ~ 20)} + &,
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or, as it may be written,
v,=v, ~ tan'}¢ {8in(2v, — 2w,) cos(2=, — 26)
+ cos(2v, — 2w sin (2w, — 26)}
+ § tan*}¢ {sin(4v, — 4o ) cos (4w, — 46)
N + 008 (4v, — 4w,) 6in (4w, — 46)}
- &e.,

and for the present purpose it is only necessary to attend
to the non-periodic part of the functg:)n on the right-hand
side. Now

v, — o, =elta(nt+e, —w),

the non-periodic part of which is n¢ + ¢ —=,. And the

:;:F'(”x-"'x) is given by the equation

(62) of Hansen’s Memoir “ Entwickelung des Products” &e.
Abhand. der K. Sichs Qesellschaft zu Leipsig, . 11. (1853).

In fact, Hansen’s 8 = ﬁ'Ti‘f'-'?) = tan}«, and the formula
gives for the non-periodic parts
cos (”1 - wx) = (—)# tan“*"n (1 +p cos"l)l
sinp (v, —w,) =0,
Hence, substituting these values and putting for the non-
periodic part of v, the assumed value nt + ¢, we find
s, =8, — tan’}p tan’}x, (1+ 2 cosw,) sin (2w, — 26)
+ jtan‘yp tan'he, (1+ 4 cosr,) sin (4, —26)
- &e.
The series on the right-hand side may be summed without
difficulty, and we obtain
tan'{¢ tan’}«, sin(2w, — 26) }
1+ tan’}¢ tan’j«, cos (2w, — 26)
2008k, _ ta.n*}? tan*}, sin (2w, — 20‘) i
+2tan"}¢ tan’§«, cos(2er,—26) +tan‘}g tan'f«, ?
in which formula the values of tani¢, tani«x, (in terms of

7 21
% &) are g +V/(1+9) 1+ 4/(1-¢)
V(1 —e’). We have thus the required ex&ression for the
modified mean longitude at epoch, and all the modified ele-
ments are now expressed in terms of the original elements.

non-periodic part of

&

=el—tan"{

y and that of cosw, is




54 Reduction of an Elliptic Orbit to a Fixed Plane.

The following investigation leads to a theorem which it
is, I think, worth while to notice. We have

ro' % = ‘\/{dao (1 - eo’)} cos ¢,

and thence
ao* (l - eo’)i dvo

dt = (o) cos¢ {sech + ¢, cos (v, —w,)}*

= ang (1- 61")i dvo
~ V@) V(1 +7) VL + o sin’(y, — @)} + ¢, cos(v,— =, )]
or as it may be written

dvo o . -3
Wi+ Sin’(vo—wo)}+e°cos(v°—wo)]’=\/ (a_li) (1—¢,) "(1+y" )Mt

= n (1—e,) ¥ (14+")ide.

But it is easy to see that if the mean longitude nt + ¢,

is expanded in terms of v, the relation between these quan-
tities must be of the form nt + e, = v, + periodic terms. It
follows that in the preceding equation the non-periodic part
of the function which multiplies dv, (the expansion being in

multiple cosines of v) must be equal to (1—e2) (14t

Hence, putting for e, its value, we find that the non-periodic
part oz’

1
V{1 +¢ sin*(v,— 0)} + ¢, cos(v,— =) ]
expanded in multiple cosines of v, is

[1- e 1= Loysin',- 0)}]" L+

a theorem which might, it is probable, be verified without
much difficulty.

2, Stone Buildings,
October, 1856.
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AN ATTEMPT TO DETERMINE THE TWENTY-SEVEN
LINES UPON A SURFACE OF THE THIRD ORDER,
AND TO DIVIDE SUCH SURFACES INTO SPECIES
IN REFERENCE TO THE REALITY OF THE LINES
UPON THE SURFACE.

By DB. SCHLAFLI, Professor of Mathematics at the University of Bern.
Translated by A. CAYLEY.

PRELIMINARY remarks. Contrary to the usual practice I
would, in the case of a curve, term singular those points
only at which Taylor's theorem fails for point coordinates,
ant{ where in consequence the tangent ceases to be linearly
determined ; and in like manner term singular those tangents
for which the point of contact ceases to be linearly deter-
mined. Thus a point of inflexion is not a singular point,
but the tangent at such point is a singular tangent. Accord-
ing to the same principle, in the case of a surface, I call
sin points those only for which the tangent plane ceases
to be linearly determined. I say further that a surface is
general as regards order when it has no singular points,
general as regards class when it has no singular tangent
planes. By class I understand the number of tangent planes
which pass through an arbitrary line; by singular tangent
planes, the tangent planes for which the point of contact
ceases to be linearly determined. By order of a curve in
I mean the number of points in which the curve is
intersected by an arbitrary plane, by class (as for surfaces)
the number of tangent planes (pia.nes containing a tangent
of the curve) which pass through an arbitrary point. On
account of their reciprocal relation to curves I guard myself
from putting devel«%;able surfaces on a footin§ with proper
curved surfaces, and call them therefore simply deve?x}lzs
without the addition of the word surface, since they do not,
like proper surfaces, arise from the double motion of a plane
but arise from the simple motion of a plane. I call indeed
degree of a developable the number of points of intersection
with an arbitrary line, but class the number of generating
planes which pass through an arbitrary point. ’%he repre~
sentation of an algebraical curve in space requires at least
two equations, that is, two surfaces passing through the curve.
If these surfaces can be chosen so that their complete inter-
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section is merely the curve in question, such curve may be
termed a complete-curve (Vollcurve). But when this is not
possible, and the complete intersection of any two surfaces
passing throufh the curve consists always of such curve
accompanied by one or more other curves, the curve in
question is termed a partial-curve (Theilcurve).*

Suppose now that f(w, z,y, 2) = 0 is the homogeneous
equation of an algebraical surface of the »™ order ; w, =, ¥, z the
coordinates of a point P of the surface, which, as the s
originally given, I will (:tla.ll for :ihortnes; the dasis. More-
over let D=w’%+z'd_z+y'@+ "d_z represent a linear
derivation symbol, in which the elements ', 2, 3/, 2’ denote
the coordinates of a goint in space, which may be éesignated
by the same letter D: the derivation symbol may be called
for shortness the symbol of the point to which it relates.
The system f=0, Df=0 expresses that the point D is
situate in the tangent plane to the surface at the point D.
This plane cuts the basis in a curve , f= 0, Df = 0, %)"{= 0
which has the point of contact as a double point; I wi
call the curve simply the contact section (Bernﬁgungschnitt).
Since P is an arbitrary point uplon the surface, there are in
the contact section two disposable elements; when therefore
we add the condition that the curve has a second double point,
there remains but one disposable element; and if we assume
that there are three douli:ﬁa points in all, the plane becomes
determinate. In other words, to a general (as regards order)
algebraical surface of an order higher than the second, there
beqzngs a developable, the generating planes of which touch
the surface in two points. Among these generating planes
there are found a determinate number of planes touching the
surface in three points. The developable may be termed the
doubly circumscribed developable,} the planes the triple tan-
gent planes of the surface. The problem which next presents
itself is to determine the curve along which the surface is
touched by the doubly circumscribed developable.

® The names Vollcurve and Theilcurve belong to Steiner.

+ (Note by the Translator). This is the developable which I have
ealled the node-couple developable; and further on, the osculation curve
is that frequently called the parabolic curve and which I have termed
the spinode curve; the osculating circumscribed developable is what I
have termed the spinode developable, and the self-touching double points
what I have termed tacnodes. See my paper “On the Singularities of
Surfaces,” Cambridge and Dublin Mathematical Journal, t. VIL. p. 166.
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*Suppose as before that (w, x, y, 2) are the coordinates
of a point P of the basis f=0 and moreover that (v, #, ¥/, ¢,
(w", 2", y", #") are the coordinates of two points lying in the
corresponding tangent plane, 7, D" their symbols in
of P, so that Df =0, D'’f=0. If then ¥, x, » are three
new variables, and 1}0-15 +xD' + D" denotes a point common
to the tangent plane and the basis (i.e. if Y +xw' + 0",
Y+ xx' + wz’, &c. are the coordinates of the point in
question) then

F(y, xy o) = 1" (xD' + 0 D")if + 34 (xD' + o D")f...
+ T3 WD +eD)f =0

is the equation of the contact section, where ¥, y, @ are to
be oons?&ered as the coordinates of a point in a plane; ¥ is
a symbol for the polynome on the right-hand side considered
as a function of ¥, x, w, the coordinates of P, D, I being
treated as constant. If then the curve besides the double
peint P(at which point ¢ =0, & = 0) has another double point

Q, then putting for shortness dTIZ = Fy, &c., the equations

Fy =0, Fy =0, F, = 0 must be satisfied without ¥ and
vanishing. This gives an equation between the coordinates
in space of the points P, D, D", and (as might be expected
from the nature of the question) finally an equation contain-
ing only w, z, ¥, 2z, and which combined with the equation
J =0 represents the required curve of contact of the doublly
circumscribed developable. But since by reason of the double
point P the resultant of the polynomes Fy, Fy, Fe vanishes
tdentically, the system must be repl by a system for
which this does not happen; to effect this we may proceed
as follows:
The functions Fy, Fu may be brought under the forms

Fy = Mx + No, Fo= Py + Qo,
and the equations Fy =0, Fu=0 give therefore
A=MQ-NP=0
and the function A for ¥ = 0, @ = 0 reduces itself to
(D) (D) = (DDSP}

® Remark. This section contains an attempt to algly Jacobi’s
method, given in Crelle’s Journal, for the determination of the double
tangents of a plane curve, to the doubly circumscribed developable of
a surface.
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Moreover in the development of
2 n
the lowest term in respect to x, o, is
n -3 3.
— W D + oD
Considering now the resultant © of the system

F|p=0, Fx=0, A=0,
this must be in the first place divisible by the resultant K

of the system
Fy=0, M=0, N=0,
and in the next place by
I = (Df)(Df) - (DDY),
since ¥ =0, @ =0, T'=0 are also a solution of the system ©.
Baut since we have identically

—2_ Ny Fy = NG + (Ny+ Qu) Fy — Axw,
and since for I = 0 and considering y, @ as indefinitely small
quantities of the first order, the polynomes Fy, A are only
of the first order, but G is of the third order, ® must be
divisible by I*.* As regards K there is nothing to shew that
a higher power than the first enters as a factor into ©, and
a further examination shews that © is in fact divisible only
by the first power of K.

In relation to ¥, x, ® we have Fy, Fy each of the d
n—1, A of the degree 2?1-2) and M, N of the degree
n— 2. The coefficient of a term 1}*;2(%" in Fy is in
regard to the coordinates of the points P, D, D' respectively
of the degrees a+1, 3, 4, in Fy of the degrees a, 8+1, v,
in M of the degrees a, 8+ 2, v, in N of the de
ay B+1, y+1, in P the same, and in @ of the degrees

. g‘lote by the Translator). I do not quite understand the reason-
ing: but if we write F= Ax" + 2Bxw + Cw* and take I' the value of
AC- B* corresponding to x=0, w=0, then when x, w are small
dyA, dy B, dyC are proportional to 4, B, C, and the system (8) may
be written Ax*+2Bxw + Cuw*=0, Ax+Bw=0, T+ 4 x+ Bw=0, the
last two equations shew that (putting for shortness AB, - 4, B =T')
vz;yr Tw are respectively equal to — BT, + AT, and substituting these

ues in the first equation, the left-hand side of the resulting equa-
tion contains the factor (A4B*- 2BAB + CA*) I, which is equal to
A(AC- B)T", i.e. the resultant contains the factor IS,
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a, B, v+ 2, consequently in A of the degrees a, B+ 2, v +2.
Lastly, I' is in regard to such coordinates of the degrees
2(n—2),2,2. It follows that in reference to the coordinates
of the three points respectively,

O is of the d‘;grees

2n(n—1)(n—-2), 2(r-1°+2(n—-1)(n-2), 2(n-1)",
and K of the degrees
n(n—2) (n—-1'(n—-2)+2(n-1)(n-2), (n—1)*(n—2).

‘Whence Kgl"‘ is of the degrees

(n—-2)(n*—8), n(n—1"—-6, n(n—1)'-6;

this resultant will be denoted by 2 (n - l-?_) .

If we put

=9+ +po, x=ax +Bo, =gy +d,
then in the new system of coordinates (Y, i, ') the funda-
mental point P is the same as before, and only the two
other points D, I’ have assumed arbitrary new positions
in the tangent plane of the basis at 2. The polynome
of the equation of the contact section, consideres as ex-
pressed in terms of ¥, x', @' will have the same properties
as the before mentioned polynome, it will have therefore a
corresponding resultant Q'; and since z', " are respectively
replaced by Az + az' + 42", px + Bz’ + 82" and similarly
for the other coordinates, ' will be in regard to each of
the series of constants A, a, v and u, 8, & of the degree

n(n—1)" — 6. But since ¥ =0, ¥ =0, o = 0 is a solution
of the new system, which implies ad — By =0 without besides
having the variable solution ¥ =0, ¥'=0, @' =0 as a

necessary consequence, Q' must be divisible by a power of
ad — By, in such manner that the quotient may differ from
Q onl i)y a trivial constant (that is a constant independent
of a, B, v, 8, \, u), we must therefore have
Q = (a8 — By,
sinoedfor xs=n=,3='yz-f0,;d=8=£ .Q.’dand ‘35 muss
coincide. Suppose now df = pdw + gdx + rdy + sdz, an
consequently (sll:loee the equation =0 is satisﬁetf) ’
po+gr+ry+ee=0,
whence among other relations

(pw + gx) (pw +ry) = gray — pswe.
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And writing :
Degl_,% p_,2_,2

=93 " ? &’ ‘dy 2z’
the points 2¥, D" will be on the tangent plane. Putting

moreover

X g ray tswe’  pzx +yge
V=¥ T X" ot " putgz

we have
Sy + gxy o — pxy y¥ + 50, 2§ — ro)
=f(w¥' +7x, ¥’ — 2o, y¥' —px, 2¥' +¢o),

and Q= (11’,—':1—2)""’”

as before, under the supposition £f=0. But since as well
Q' as Q are integral functions of w, z, y, £ : p, ¢, 7, 8, Viz.
in regard to the first set of the degree (n—2) (»'—6), and
in regard to the second set of the degree 2[n(n—1)*— 6],
it follows that putting for p, ¢, 7, s the values of these quan-
tities considered as derivatives of the polynome f, we must
have identically

(p0+gz)**0" — (pw + r9)"™*"0 = V%,

where V is a rational and integral function of w, z, y, =.
There is nothing from which it would appear that the system
S=0, pw + gz =0, pw + ry = 0, or what is the same thing
Pw = — qx = — ry = 82 represents a curve and not a mere
system of discrete points. But since the curve

pot+ge=0, pu+ry=0

lies wholly in the surface Vf= 0, and no part of the curve
lies in the surface f=0, the curve must lie wholly in the
surface ¥V =0, and the form of the identical equation shews
that the curve in question enters as an [n (n— 1)"— 6]-tuple
curve of the surface ¥'=0. Now I believe that whenever
a complete curve is represented by the equations £ =0, =0
every surface passing through the curve may be represent
by an equation %¢ + lu = 0. From such an axiom 1t follows
that, for the present case, we must have identically

V= (gt ga) ™I T = (pro-+ry)" T,

where T, 7" are rational and integral functions. And when
this is once granted, it follows from known and strictly de-
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monstrated theorems relating to the divisibility of rational
fanctions, that we must have identically

Q = (pw+ ¢2)"*"*R + T},
where R is a rational and integral function.

The required curve of contact was at first contained in
the system © =0, f=0, then after the separation of ex-
traneous curves in the system Q2 =0, f=0. This last
:Zstem in virtue of the relation just obtained breaks up into

e multiple system pw + gz =0, f=0, and the unique
system B =0, f=0. The former on account of its arbi-
trariness cannot contain the required curve, which must
therefore be contained in the latter system. But R being
obviously of the degree (n—2)(n®—n"+n—12), the degree
of the curve of contact is at most n(n—2) (n’—n'+2n—12).
We proceed to shew that the curve is actually of this degree ;
from which it will follow that it is a complete curve, that is,
that a surface B = 0 passes through the curve of contact an
intersects the basis only in this curve and in no other curve,
if at least the axiom relied upon was not deceptive.

ine a cone having for its vertex a point D, circum-
scribed about the surface, and let it be required to find for
this cone the de, g, the class k, the number of double
sides d, of cuspidal (stationary) sides r, of double tangent
planes 7, and of stationary tangent planes w. It is clear
that it is only necessary to know three of these six num-
bers in order to determine the others by means of the same
three relations which apply to plane curves, viz.

n—r=3(k-g), glg—1)=k+2d+3r, k(k—1)=g+2t+ 3w.

gee Steiner’s Memoir on the subject, Crelle, t. xlvii.,, and
iouville, t. xviii. p. 309; also Salmon’s Treatise on the
Higher Plane Curves, p. 91). The curve along which the
cone touches the surface is defined by the system f=0, Df=0;
the tangent (when A denotes the symbol of one of its points)
by Af=0, DAf=0. Comparing this with the system
=0, S’fz =0, which determines the two tangents at the
ouble point of the contact section; it is easy to see that
the tangent PA of the curve of contact of the surface and
circumscribed cone, and the generating line PD of the cone
are harmonically related to the two tangents of the contact
section at the double point.* Each generating line therefore

® This also follows easily from the more general theorem: If three
surfaces touch at the same point, the pairs of tangents of the three
contact sections at the point in question form a pencil in involution.
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of the cone which coincides with one of the two tangents at
the double point of the contact section will be also a tangent
to the curve of contact of the surface with the circumscribed
cone, and in particular when the point of contact of the tangent
plane is a cusp of the contact section, the tangent of the curve
of contact of the surface with the circumscribed cone coincides
with the cuspidal tangent of the contact section, so long as
the generating line of the cone has any other direction what-
ever. In the former case the cone has a cuspidal (stationary)
generating line, in the latter a stationary tangent plane. For
the cuspidal or stationary generating line the conditions are
Jf=0, Df=0, D’f=0, and we have therefore » =n(n—1)(n—2).
For a cusp of the contact section of the basis it is n
that the system Af =0, A!'f'= 0 should have in reference to
the elements of A two conicident solutions, which may be
expressed by the evanescence of yf (the Hessian functional
determinant or Hessian). Consequently the stationary tan-
ent planes of the cone are given by the system f= 0,
= 0, Af = 0, and therefore w =n(n—1) x 4 (n—2). The
order g of the cone is the class of the section of the basis
by a fane through the vertex of the cone, so that g=n(n—1)
and the class k& of the cone is the class of the basis, that i
k=n(n-1)". We have already four of the requ.lra
numbers, more than enough therefore to determine the two
others. We find

d = jn(n—1)(n—2)(n-3),
t=4{n(n—1)(n—2)(n" —n"+n—12).

I stop to consider this last number ¢. Since this represents
the number of planes passing through a given point D and
touching the basis in two distinct points, 1t is naturally the
class of6 the doubly circumscribed developable of the basis.
But the curve of contact is intersected by the polar surface
= 0, obviously onB' in the pairs of points of contact of
the planes through D); consequently the number of these
points of intersection is 2¢ and the degree of the curve of
contact is
2¢
n —

which was the number above obtained as the maximum limit
of the degree of the curve. I am indebted to Dr. Steiner
for this process for determining the class of the doubly cir-
cumscribed developable. The determination of the order of
the circumscribed developable appears to me a very inter-

1 =n(n—2)(n*—n'+n—12),
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esting problem. If it ‘were solved, as to which I at present
know nothing, we should be in a condition to derive, by
means of it, the number of the triple tangent planes of the
surface, and generally an explanation of 51 the singularities
which a general (as regards order) surface presents in respect
to its class.

The order in question would be determined if it could
be found, how often, for example, the right line w=0, =0
is intersected by a generating line of the developable. If we
retain the symbols

D d d d d

=g =P g D"=8‘73'/—"Ea

the generating line in question will pass through the points
P ang: D, nl‘sor the second double point (besiges P) of the
contact section we must have Qil= 0. The former system,
the resultant of which was Q, then easily reduces itself to
the following:

fonl 9 — g

n-i-1_ (-3 2
Ziaa ¥ " D=0
- -2 ng -3 e
eV o D¥=0
fnact 1 fei1 -1 g
ZiaaaY e DD'f =0,

to which is to be added f=0. From these four equations
the four unknown quantities ¢ : w, w:x:y: 2 are to be
determined and the extraneous solutions rejected. It is of
course intended that p, ¢, r, 8, which denote the first derived
functions of f, shouldp be replaced by their values. In order
to give an idea how numerous the extraneous solutions ma
be, I may mention that for n = 3, the system reduces itself
to f=0, D=0, D=0, and that all the 90 solutions
are extraneous, inasmuch as 18 solutions belong to the system
(to be taken six times over) w =0, =0, f=0, and 72 to
the system (to be taken six times over) » =0, s =0, f=0.
In order to exhaust the singular tangent planes of a
general (as regard ordex? surface, we must imagine the planes
which touch the basis along the curve =0, vf= 0, conse-
quently in curves having a cusp at the point of contact, such -
planes, considered in respect to class, have two coincident
E‘oints of contact, and are therefore singular tangent planes.
he system of the planes in question generate what I call the
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osculating circamscribed developable, the curve in question
may be called the osculation curve; it separates the region
of the basis where the measure of curvature is negative
(consequently where yf is positive and the two tangents at
the double point of the contact section are real) from the
region where the measure of curvature is positive. There
are certain determinate points of the basis where the oscu-
lation curve and the curve of contact of the doubly cir-
cumscribed developable, 1° simply intersect, 2°touch. A plane
which touches the basis at a point of the former kind nter-
sects the basis in a curve having a double point and also
a cusp; & plane touching the basis at a point of the latter
kind cuts the basis in a curve having at the point of contact
a self-touchingh double point, that 18, a double point where
the two branches touch; the tangent at such double point
coincides with that of the osculation curve; and if in the
neighbourhood of such a point we follow the motion of the
douile tangent plane, we find that upon one side of the
curve of osculation the two points of contact of the plane are
real points indefinitely near to each other, and on the other
side the plane is still real but the two pomts of contact are
imaginary and conjugate to each other.

ith respect to these singular developables and planes
I assume the numerical relations following :

1. a= }n(n-l)({n-d) (n* —n* +n —12) the class of the
d;)gbly circumscribed developable, 4 the (still unknown)
order.

2°. b=4n(n—1)(n—2) the class of the osculating cir-
cumscribed developable B = 2n (n —2) (3n —4) its order.

3°. x the (still unknown) number of the triple tangent

lanes.
P 4. A=4n(n—2)(n— 38)(n’+ 3n— 16) the number of planes
touching the surface in a curve having a double point and
also a cusp.

5°. p = 2n(n—2)(11n —24) the number of planes touching
the surface in a curve having a self-touching d‘()mble point.

The class of the surface is k=n(n—1)". If the surface
were general (as regards class) the order would be % (k—1)".
The difference % (& — 1)* —n is to be accounted for by means
of the singular developables and tangent planes. The doubly
circumscribed developable in itself (abstracting the tangent
planes of a higher singularity included in it) diminishes the
class of the surface by ak + 24, the osculating circumscribed
developable (with the like abstraction) diminishes the class
by 2bk + 3B, each triple tangent plane (abstracting the three
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sheets of the developable to which it is common) diminishes
the class by 3, each tangent plane cuttini the surface in
a curve having a double point and cusp by 4, and lastly
each tangent plane cutting the surface in a curve having
a self-touching double point by 6. We have thus

(a+2b)k +24 + 3B+ 3k + 4\ + 6p =k (k—1)" — n,

which gives between the still unknown numbers 4 and « the
following relation :

24 + 8k=}n(n—2) (n'— 4n*+Tn"—45n"+118n"—115n"+508n—912).
For n = 3 we have
a=21, b=380, B=24, A=0, p=51, k=12

But as a curve of the third order cannot have two double

ints without breaking up into a conic and a right line, it
18 clear that the doubly circumscribed developable of a surface
of the third degree can consist only of planes passing through
fixed lines upon the basis, and that since the class is a = 27,
there are upon the basis 27 such lines which play the part
of the developable in question. But as these lines are not
in general intersected by an arbitrary line, we must have
A =0 for the degree of this degenerate developable and the
formula gives « = 45 as the number of the triple tangent
planes, which it is clear meet the basis in three right lines,
a number which may be obtained by other considerations.

Remark by the ;"ranslator. The investigations contained
in the present portion of Prof. Schlifli’'s Memoir, with respect
to the general theory of algebraical surfaces, are similar in
character to those of ilr. Salmon, and several of the author’s
results have been already given in Mr. Salmon’s Memoirs
in the Journal, but the theory is here carried a few steps
further than in the memoirs just referred to; and the know-
ledge which I have of Mr. Salmon’s still unpublished Memoir
on Reciprocal Surfaces, in which the whole subject is con-
sidered in a more complete manner (and in particular formulae
are given leading to the determination of the two numbers
A and x) was clearly not a reason for delaying the publi-
cation of Prof. Schlifli’s interesting Memoir, which was
kindly sent by him for insertion in the Journal.

(To be Continued )
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SOLUTION OF A MECHANICAL PROBLEM.

A UNIFORM rod is constrained to slide with its extremities on

a conic section, whose axis major is vertical, and whose
Iatus-rectum is less than the length of the rod : find the posi-
tion of stable equilibrium.

This problem admits of a very simple solution, depending
on the principle that for a position of stable equilibrium, the
height of the centre of gravity must be a minimum.

t AB be the rod, & its middle ﬁ»int, 8 the lower focus
of the conic section, draw BN, 4
vertical, meeting the lower direction
in M, N. TLet ¢ be the eccentricity
of the conic section.

Then the height of G above the N
direction g
=} (4M+ BN) B
1
= 52(‘4'3 + BS),
M

and the height of G will therefore be

least when 48 + BS is least, that is, when A4 and B both
lie in a straight line passing througfl S, or when the rod
passes through the focus of the conic section.

H. G.

ON SIR W. R. HAMILTON'S METHOD FOR THE
PROBLEM OF THREE OR MORE BODIES.

By A. CAYLEY.

TaE problem of three or more bodies is considered by Sir

W. R. Hamilton in his two well known memoirs on a
general method in Dynamics, Pkil. Trans. 1834 and 1885,
and the differential equations for the relative motion with
respect to the central body of all the other bodies are obtained
in a form containing a single disturbing function only.
Several methods of integration are given or indicated, among
others, one which is in fact the method of the variation of
the elements as applied to the particular form of the equa-
tions of motion. But the investigation shews (and Sir W. R.
Hamilton notices this as a defect in his theory, as compared
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with the ordinary theory of the variation of the elements),
that in the method in question, the elements are not oscu-
lating elements, i.e. that the positions only, and not the
velocities of the bodies can be calculated, as if the elements
remained constant during an element of time. The peculiar
advantage of the method is of course the having a single
disturbing function only, and this seems so important, that
if I may venture to express an opinion, I cannot but think
that the method will ultimately be employed for the purposes
of Physical astronomy. But, however this may be, it has
appeared to me that it may be useful to present the method
in a separate and distinct form, disengaged from the general
theory as an illustration of which it was given by the author;
and this is what I propose now to do.

Consider a centra? body M, and two other bodies M, M,,
and let the coordinates of M referred to a fixed origin be
x, ¥, 2, and the coordinates of M,, M, referred to the body
M as origin be z, y, 2, and z,, y,, 2, respectively. Then
the coordinates of M,, M, referred to the fixed origin, a.lre
z+z, y+y, 2+2 and z+x, y+y, 2+2 respectively,
and if ;;/s u{gal T denotes the Viszfvivy:or half surg of eagil
mass into the square of its velocity, and U denote the force
function, then we have

T 48 (& 4y 457,
+ M (@ +2,)+ (4 +3,.)" + (& +2,)}
+ 34 {@ + 2] + & +9,)"+ (' +2,)
U= __._}l_l"‘l___—
V(wl” + yl’ + zl’)
v MM,
Vi +5,+2))
. MM,
‘\'/(wl - w:)' + (."/1 - ya)* + (zl - z:)i ’
and the equations of motion are as usual

d dT _dT _dU
dtdd ™ dz dx’
&e.

If we assume that the centre of gravity of the bodies is at
rest, then we have
M + M, (& +3,)+ M, (& +2,)=0, &,
F2
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and consequently
Mz + Mz | My'+ My p Mz'+ Mg/
—e——l1l 32 = = 1 =

CETMr MM, Y T MMM, T HrM M,

Now the value of 7 is
T=}M+ M, + M) (" +y" +2"
+o (Ma+ Ma,) +y (My, + My,) +2 (M, + Mg,)
+EM, (=" +9,"+27)
+ *M; (w!’. + yﬁ” + zﬂ b
or putting for &, ¥/, 2’ their values
T= *M; (mlm +y1" + z’m)
+ M, (243, +2,)
1
BAD Y S e
(M, + M)+ (My, + M.\ + Mz, + MgV,
and with this new value of 7' the equations of motion still are

Suppose now that the differential coefficients of 7, with

?psct 1tz° f‘é y% ta, 2,, 94, 2, are respectively P, Q,, R, ;

aT
dz; = F, &e,
and imagine 7 expressed as a function of P, @, Q,R,

and when this is done put H=7T-U (so0 that H stands for
a function of P, @, R, ; P, @, R,; 19 205 Ty , then
the equations of motion in Sir W. R. ﬁamﬂton '8 orm are

d'vdeP dH

% -dP &~ & &
Now from the last given value of 7’
' M ’ ’
B=Me/ =y v o, Mom + M)

’ M ! r
Po=Ma) - g v, Wm + M)
and thence
M

B b=

M;wn' + ‘M!wi')"
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and consequently
Mz/=P+ %(P +B),

Mg =P, + 53 (P + P),
and we have '
1

T=§7 {P,+

pE+n) e+l

+ {Rl+f[(R‘+R,)}.]
e :{a+%(1>,+?,)}'+{Q.+%(Q,+Q.)}'

+{B+ P n)]

— g3 M+ M+ ) (B + B +(Q, + Q)+ (B,+ B,

or reducing ol . -
=(2—ﬂ 2M)( +Q'+RBY
(2;1 )(P"+Q +R))

.P,-P,-PQ‘Q,'FB,R‘),

+ f[(
and consequently

H= (2;4 )(P'+Q +RY)

+(2%M’ om) B+ QI+ B)
+ 5 PA+Q.Q+ER)
MM

T TErryEen

___ MM,

Vi)' +y, +2,)
- MM,

‘\/{(zx _xs)"l' (yl "'3/,)’ + (’1—2:)’} !
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and H having this value, the equations of motion are as
before mentioned

do, _dH 4P, _dH
&~ dP’ &~
Instead of H write H+ T where
1 1
B = (g3, * aag) B+ 0T+ B
1 1Y\,
+ (ﬁ[‘ + m) (F'+Q+R,))
. {
J(wl’+y‘l’+zl’)
P L.
Viz'+y' +2))’
and T= 2 (PP+@Q,+RR)
- MM,
‘\/{(mj —Z,),-}- (yl—y!)'-l- (zl_z’)’} ’

and the function T is to be treated as a disturbing function.
The equations of motion for the body M, become

di=M+M,P+ﬂ dP, MMz, ar
dt MM ~' dP’ dt

&e.

o M+M, o d9,_ MMy _dr
dt ~ MM, " dQ,’ dt
ot g, M &
¢ 1 1 ,t (m‘! + .'/;’ + z‘s)i 1
and there is of course a precisely similar system of equations
of motion for the body A}:
If we mneglect T the left hand equations shew that
‘1];, Q‘c’l R, :}enote the velocities or differential coefficients
Yy 9% ltipli MM,
vl -th, 7 multiplied by the constant factor o+
and substituting these values in the right hand equations,
we obtain the ordinary equations for the elliptic motion of
the body M,; and similarly for the body M,, We may,
if we please, complete the solution by the method of the
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variation of the arbitrary constants. Suppose for this pur-
pose that a, b, ¢, e, f, g, are the elements for the elliptic
motion of the body M,, then treating these elements as
variable we must have

dr, do,  do, db, . de, dg, @
T ETBR DG A &
dP, da, dP, &b, . dP, dg,  dr
Fo B o R i Rl

and it appears from these equations that as already noticed
the disturbed values of the velocities are not (as they are
in the ordinary theory) identical with the undisturbed values.

The disturbing function T may be considered as a func-
tion of the elements of the two orbits and of the time, and
it is easy to obtain, as in the ordinary theory, the values of

the differential coefficients ‘%, &ec. in the form

da, ar ar avr
dt =(a17 bl) EE-}- (ax’ cx) d_cl eee (an 91) @:!
8 (aﬂ bl) + 8 (“u bl)
8 (.1/1) Ql) 8 (‘717 R:) !

db

where (a, %)= g (2, 8) +

(=, P,
if for shortness wdi
8((1!, 1 1
S(,P) dx,dP, dP d=z,°

It will be remembered that in the ordinary theory, if 2
denote Lagrange’s disturbing function {.Q=—R if K is the
distarbing function of the Mecanique Celeste) the eorrespond-
ing formule are

%=("’ b)%}"‘("’ c)%...+(a,y)%,

5(a,8) . 8(a,8) , 5(a,b)
AR AR 1AL

where (ay b) =
if for shortness

or, what is the same thing, where
_ &(ayb) 3(ayb) &(a,e)
@8 =~ 5a ) " 55,9) 56, 4)’
1 §(a,8) da db _ da db
an S, 2) dodd dr dx’
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Now the values of the coefficients (a, ,), &c. depend merely
on the form of the expressions for a, b, &c. in terms
of P, Q, R, =, y, z and ¢; hence comparing the two

stems of formulee and observing P, Q,, K, (which in the

’

ormule for the present theory correspond with z,, ¥/, &/
in the other system of formurli} are ctively :e:]m;.l, to
wﬂ;’[ 5?', 2/, each of them multiplied by the constant factor

m, it is easy to see that the formul® for the variations
1

of any given system of elements in the present theory are
at once deduced from the formule for the variations of the
same system of elements in the ordinary theory by writing
— T in the place of @ and multiplying the values of the

1

variations by the constant factor ) A
Take then as elements Jacobi’s canonical system,* viz.

if we put

a, the semiaxis major,

e, the excentricity,

=, the longitude in orbit of pericentre,

e, the mean longitude in orbit at epoch,

6, the longitude of node,

¢, the inclination,

and n, the mean motion {= ,\/ (M+3M')} ’

a,

then the canonical elements are
1 = %’”l,ax’a
na, ‘\/(1 - 61’)’
= mav(l-e) cong,
1

’Tx (el - w:)’

1= wl—eﬂ

= 0

1 1

LR
I

&
I

B a

¢ I have for uniformity adt:sted Jacobi’s canonical system, see his
paper “Neues Theorem der analytischen Mechanik,” Crelle, t. xxx. pp.
11?3120 (1846); but it is proper to remark that Sir W. R. Hamilton,
in his Memoirs above referred to, employs a slightly different but
ually elegant system of canonical elements, and that the discovery
of such a system belongs to Sir W. R. Hamilton and is part of his

general theory.
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(the sign of the two elements &, 4, has been changed, but
this makes no difference in the formule) then the equations
for the variations of the elements are
A, __M+M ar
dt MM, dF,’
a8, __ M+ M, dr
dt MM, d&,'
4, _ MM dx
de MM, 4B’
a¥, _ 4 M+ M, dY
dat ' MM, d&’
d, _  M+M, ot
dt MM, dw,
aw, _ | M+ M, dv
dt MM, Jde,’
and it is easy thence to deduce the formule for the variations
of a.n&{ system of elements which it may be thought proper
to make use of, for instance the system a,, ¢, =}, ¢, 6, §,.

It will be recollected that in the preceding system of
formule the value of the disturbing function T is

T= ;—[ (PP+Q¢,+RR)
- MY,
‘\/{(w! - ms)' + (.1/1 _ya)” + (zl - zx)’} ’
and that as a first approximation P, Q,il R, are ectively

equal to the velocities x,, y,, 2/, each multiplied by the

constant factor Mi-}l-”ﬁ’ and P, Q,, R, are respectively equal

ce T, -
to the velocities 2, y,’, £,, each multiplied by m—i?, .
2, Stone Buildings,
18tA Oct., 1866.
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ON THE GEOMETRICAL INTERPRETATION OF THE
EXPRESSION rt - &

By H. W. ELPEINSTONE.

I¥ Gregory’s Solid Geeometry the following remark is stated
to be due to Mr. Cayley: viz. that the curve of inter-
section of a surface with its tangent plane has generally a
double goint at the point of contact. This remark is more
fertile of consequences than may at first sight be evident.

Let Y i G I (1)
be the equation to a surface, and let

{—2=p (E—2)+q(n—¥) cererueenneen 2)
be the equation to the tangent plane at the point zyz on the
surface in which p,, ¢, are the particular values of =’ dz
at the point in question. dy

The curve of intersection of the tangent plane and its
surface is obtained by combining equation (2) with the

equation
E=F(E;m) cevvverininnninninnnes (3).

Let us find the values of % belonging to the curve of
. intersection at the point of contact. Differentiating (2) and
(8), we have

from (2) dE=p dE+q,dn..ccuncancannnn...... (4),

from (3) dé=pdE+qgdy.....ccannnnn...... (5),

where in (5) we must substitute p,, ¢, for p and ¢ respectivel
after differentiation. On attemi;tlgng top find qthe l;ﬁtue o’;'
% from equations (4) and (5) it appears under the form o

dn 0
Differentiating again, we have

from (4) d*E=p,TE+ AN evvveiveeiiriinieriiriiiine, (6),

from (5) &'¢=p P'E+ q &'n+ rdE" + 2sdEdn + tdn’ ....... (1),

where for p, ¢, 7,6, ¢ we must substitute their values at the
point in question. Subtracting equation (6) from (7) we
arrive at the equation

dE\" d
r(d—f’) + 2 475; =0 crverrrrarinnns (8),
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for determining the values of gg at the double point in

question. n
The roots of (8) are real and unequal, real and equal, or
imaginary, os '
S—rt>=<0.viiiiiinrninnnnn. (9),
a well known condition for determining the form of the
surface at the point in question.

1st. Let 8 —rt>0.

The roots of equation (8) are real and unequal; con-
sequently the tangent plane cuts the surface along two
lines in the neighbourhood of the point of contact. e 4
parts into which the tangent plane thus divides the surface
will be alternately above and below the tangent plane

above
below b: below. A saddle will afford a familiar example.

above

2nd. Let £ —rt<0,

Here the roots of (8) are imaginary; consequently the
surface is not cut by its tangent plane in the neighbourhood
of the point, it therefore lies wholly on one side of it, or
is convex.

8rd. Let &—rt=0.

This may occur for three different reasons.
1st. r, s, ¢t may all vanish at the point in question. In
this case we have to differentiate again in order to find the

values of :—ii—s, the point on the curve of intersection becomes
a triple point at least, and the point on the surface becomes
a singular point.

2nd. s* — ¢ may be rendered =0 by the existence of some
factor in both p and ¢ which vanishes at the point on con-
tact. This indicates a ridge on the surface, and is treated of
in all the elementary works on the Differential Calculus.

3rd. &' —rt may equal zero without satisfying either of the
above mentioned conditions. The interpretation (which is
generally slurred over in works on Geometry) may be ob-
tained without much trouble from the expression for the
radius of curvature of a normal section to a surface

k

B=rm +2m+t°
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In this case, since the two values of Z—S are equal, the
two branches of the curve of intersection touch at the point.
And since the denominator of Il becomes =0, when the
normal section is taken along the common tangent, it follows
that that section has a point of inflection at that pomt. Con-
sequently the form of the surface in the neighbourhood of the
point may be represented as follows: take any plane curve
with a point of inflection in it, and let two plane curves,
having a common tangent, move with their point of contact
on the first mentioned curve, so that their common tangent
may coincide with the tangent to the other curve at the
point of inflection. It may however happen that the normal
section, instead of having a point of inflection, becomes a
straight line. This is a line along which the surface may
be bent; and if such a line occurs at every point of the
surface, the surface may be bent along such lines in sncces-
sion, il every element is in the same plane as the suoceedixg
one; or, in other words, till the surface is plane. Suc
surfaces are known under the name * developable,” and at
every point satisfy the condition & —rt=0.

ON LAGRANGE'S SOLUTION OF THE PROBLEM
OF TWO FIXED CENTRES.

By A. CAYLEY.

THE following variation of Lagrange’s Solution of the Pro-

blem of Two Fixed Centres,* is, I think, interesting, as
showing more distinctly the connection between the diffe-
rential equations and the integrals. The problem referred
to is as follows: viz. to determine the motion of a particle
acted upon by forces tending to two fixed centres, such that
r, ¢ being the distances of the particle from the two centres
respectively, and @, B, v being constants, the forces are
;,,+2¢yr and = + 2vq.

Take the first centre as origin and the line joining the
two centres as axis of z; and let 2 be the distance between
the two centres, then writing for symmetry

z=x =x,+h,

* Lagrange’s Solution was first published in the Anciens Mem. de
Turin, t. IV. and is reproduced in the Mecanique Analytique.
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(so that , is the coordinate corresponding to the first centre

as origin, and x, the coordinate corresponding to the second

centre as origin) the distances are given by the equations
P=alt+y’+d, ¢'=2'+y"+7,

and the equations of motion are

a4 axr
—d:=__fl_€;}_2ey(xl+w"
d o

- __,;y — 4y,

d!

e BT

and we obtain at once the integral of Vis-viva, viz. mul-

tiplying the three equations by %, %, %, adding and

integrating (observing that %= % = %) we have
3 {(‘%’) +(2)+ (%j)} =24 %- ¥ (P +¢) +2H...(1,0),

and with equal facility, the equation of areas round the line
joining the two centres, viz. multiplying the second and third
equations by — 2, y, adding and integrating, we have

dz dy _
yzt—ZE—.B ................. (2,“).

So far Lagrange: to obtain a third integral I form the
equation

- o do dy de
-2(y’+z)7,+(w‘+w.)(y7}{+z§)] x

{%;.—H = +%’+ 2y(w,+x,)}

_ s P -
[ ey wa ]
dy , ay By
{d_t’ + > + ? + 4y }
- 1
+| (x,+z)2 %— 2, % X

d'z  az Bz‘
{TJP—+F+?+472 }=O.
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The terms, independent of the forces, are

—2 (4 ) E LT o) (y B s T D2
dat dt* dt dt) dr

Hata)g (g +o ) -2 (§ 4 5 %)

which are equal to
de( dy dz dx\  (dy\*)
[ (' +#" )( )““"’) ( dt+zdt) “’{(dt) +(dt) }J’
and the terms depending on the forces are readily reduced

to the form
d hﬁ:v
A= P el

in fact, considering first the terms multiplied by a, these are
dy  d
{ 2(y’+z) -+ (3, +m)(yd3t'+zd:)}

+ ;, {(a,-,+a:,) (y’+z’)gt- — 2z, (y%+z‘§)} ,

which is equal to

%{(a: —-z) (' +7) dz+a:(w x,)(yd'z-i-zz)}
3vsogni3)
R )
3o

and similarly the term multiplied by 8 is
22 o

dt ¢’ .
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lastly, the term multiplied by 4 is .

—4 (=, +w)(y"+z’)d + 2 (x, +a:,)’( z%)

+4(x,+w,)(y’+z’)%:-— 8z, (y%+z§)
=2~ ).(ydt"'zg:)
—h"(y"+z")

The preceding combination of the differential equations gives
therefore an equation integrable per se, and effecting the
integration we have

..-(y’-{-z)( ) +(z,42) 5 (y‘z“z) ~2g {(ZZ)“‘@)'}

haw+hqg+h (y’+z ........ (3,“)’

which is_the third integral equation. It may be convenient
to mention here (what appears by the comparison of the
formulse obtained in the sequel with the oorrespondmg for-
mule of Lagrange) that the value of Lagrange’s constant
of integration 0 18

C=K —2HF — B* + }ok'.
Making use of the ordinary transformation
dy\' , (dz dy de\' [ de B
+ @)+ @) =0 F -2+ 05 -,
the integral equations may be written under the forms
da\* 1 dy dz\
+Z) IO (3 +=%)

a f3 . B
=-+ i y(*+4¢") +2H- -—-—;—......(1, b),
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__(y"-l-z’)(%:)‘ﬂwﬁw,) (y‘%hz Z—:) %—?E% (y%+zd§t)’

hax, Bz, ., 0 Bz
-— _g_+h—y(y’+z)_l{+y-;,-+'—;, ...... (3, %),

and observing that 3"+ 2, ,, «, are in fact functions of r, ¢,
it is clear that the determination of 7, ¢ in terms of ¢ depends
upon the first and third equations alone. Moreover the form
ofothe equations shews that we can at once eliminate d¢ and
thus obtain a differential equation between r, ¢ alone. It
would be difficult to discover & prior: before actually obtain-
ing the differential equation in question, that it would be

ossible to effect the separation of the variables, but we
Enow that this can be done by taking instead of r, ¢ the
new variables u=7+g¢, s=r—g¢. In order to complete the
solution the first step 18 to introduce the variables 7, ¢ into
the first and third equations: for this purpose we have

s B—-r+ -
w’=——§7—_¢’ _w’=_Tg’_’ x,-}-w’:—kg’,
?/""z’:ggn

if for shortness
v =2¢" + 2 + 2R’ — K —* — ¢,
and consequentl
ISR
A AN g%) ’
d dz 1 dr
v {(k’—r’+ g’)r%+(k’+r’—g’)q%}.

Substituting these values in the two equations, we find

v (rdr— gdq) +{(K* -7+ ¢")rdr + (K + 7* — ¢") g dy}*

=24 {g + %—V -y +g)v+ 2Hv—2h’B"} de ... (1,¢),
—V'(rdr—gdg)* :
+2v{rdr—gdg) (- @) {(B =" + ) rdr + (K + - ¢’) ¢dg}

+{ =~ ("= gVHE "+ @) rdr + B+~ ¢*) gdg)®
e [?“TV (B +7* — g)+ ”%(h’—”"f?’)‘w’

+4Ky — 4B (A — (' f)*}] e ......(2,0).
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The first equation is easily reduced to
AR Pg (@' + dg’) + (B —r* — &) rqdrdg}

=2h"{"§+ %V-- v+ v +2Hv—2h’B’}dt",
the second equation gives
KR~ r+g") rdr+ (B + 7" - &) gdg}’
— & {(B* — 1"~ 3¢") rdr — (A" — 37" + ¢") gdg}*

=kt [2irv (h"+r'-g’)+g—'€;l7 #-r+¢")—9v*
+ 4Ky — 4B — (P — q’)’}] a2,

and the function on the left-hand side is

8k (B —* — ¢") ¢'r* (dr' +dg") + 4k* {(B* =" — ¢*)* +4¢* "} rqdr dy.

Hence putting for a moment

M=°$ + '8—: - yv (P +¢") + 2Hy - 20° B,

N=22 (i +2- )+ B2 =1 0) ~ o
! +2Ky - 2B (i~ (* - ¢V},
2r'q (dr+dg) + (K*~r*~g") 2rqdrdq=Mdt',
2(N'—r'—g") 2r°¢* (dr'+dg") + {(B*—r"—¢)*+ 4¢"r*} 2rgdr dg = Ndt',
and thence recollecting that
—(# =7 =g +ag7 =,
we find

v2rqdrdg={(# - - ") 2M~ N} d¢*,

v2r'g (&' +dg)=[-{(# -7~ ) +4g" | M+ (B - ¢') N]d?’,
and substituting for M, N their values, the functions on the
right-':umd side contain v as a factor, and dividing by v,
we obtain

we have

2rqdrdg= [g(sm q’—h’)+g(r‘+3g’—h’)
7 (8 + 8" + 106" — 25 — 3W'g* — )
+4H(9’+r‘—k")+2K-2B']dt’ e (L),
VOL, II. G
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2r°¢" (& + dg*) = [2ar (" + 34" — &%) + 2Bq (3" + ¢*—F*)
— 17+ ¢+ 15¢" (P + @) = B (r*+ ¢* + 6°¢") — B+ ¢)+ A%}
+2H {r' + ¢* + 60°¢* — 2R° (r* + &) + R}
+2K (P4 @ —H) =2 (* + @) B AP @, d),

and by comparing the first of these formule with the corre-
onding formule of Lagrange, we find, as already observed,
that the relation between the constant K and ’s
constant C is K=C+2HA'+ B*—14k'. And substituting
this value of K, the two equations become identical with those
of Lagrange.*
The equation y % -z %:%=B, (putting y = /(" + 2°) cos ¢,
2=4/(y" + #')sin¢d) gives at once (y* + 2*)d¢ = Bdt, and

substituting for y* + 2° its value = 4%, we find

4%'B
d¢=4g"r’—(k’—1’—q’)'dt ........... (8,4

which is the third of Lagrange’s equations.
To complete the solution, the combination of the first and
second equations gives

rg (dr1dg)=[a{lr+g)-F(r+g}+B{(r+g—#(r+q)}
—7{rtg-Frtg'-A(rg)’+ 4}
+H{(r+9)" 28 (r£q)" + 4
+2K{(r+g)' - 4"} - 2B*(r+q)7] d¢,

and thence putting r +¢ =8, r—¢g=u and writing for

shortness
S8=(a+B)(s"— %)
- i’Y (8°—k’3‘—h's’+ h‘)
+ H(s"'— 20" + )
+2K (8 — &%) — 2B,

* The formuls referred to are the formule (3), (c), Mec. Anal. t. 11.
page 112 of the second edition and page 97 of the third edition, but
there is an inaccuracy in the formule (c), B* ought to be changed into
B*%*; the error is continued in the subsequent formulee and besides
the constant term — CA* is omitted on the right-hand side of the formule
(e) and in the subsec}::ent formule, i.e. in tge functions of s, u, the term
- B*should be - B** - CA".
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and U=(a—B) (v’ —u'k)
— 1y (@ =R = B's* + 1K)
+ H (u' — 2h%" — &)
+ 2K (v* —&*) —2B%",

we have g (8 —u')'ds'=8d¢............... (1,e),
Yo (& —u')du'=Udt ............... (2,e),
4%'B
d¢ =— (?m) dt ............ (3, e).
and thence finally @ p
WS)=4/(U)'" ...... ceeeresnnee (1,/),
&ds  u'du

dt=*{m-;/(—U—)} .......... ....(2,f),

Bhr'ds Bu'du
d¢=(s'—h’) ‘\/(S) - (u’—k’) '\/(U) “““ ‘(31f)7

so that the problem is reduced to quadratures, the functions
to be integrated involving the square roots of two rational
and integral functions of the sixth degree.

2, Stone Buildings,
10¢A Nov., 1856.

NOTE ON CERTAIN SYSTEMS OF CIRCLES.
By A. CAYLEY.

I* will be convenient to remark at the outset that two
concentric circles, the radii of which are in the ratio of
1: ¢ (¢ being as usual the imaginary unit), are orthatomic,*

* Two concentric circles are, it is well known, conics having a
double contact at infinity, and it appears at first sight difficult to recon-
cile with this, the idea of two particular concentric circles being ortho-
tomic. The explanation is that any two lines through a circular point
at infinity may be considered as beinf at right angles to each other, and
therefore any line through a circular point at infinity may be can-
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and that the most convenient quasi representation of a circle,
the centre of which is real and the radius a pure imaginary
unantity, i8 by means of the concentric orthotomic circle.
his being premised consider a circle and a point C. The
points of contact of the tangents through C to the circle
may be termed the taction points; the points where the
chord through C perpendicular to the line joining C with
the centre meets the circle, may be termed the section
points. It is clear that, for an exterior point, the taction
points are real and the section points imaginary, while, for
an interior point, the section points are real and the taction
points imaginary. A circle having C for its centre and
passing through the taction points (in fact the orthotomic
circle having C for its centre) is said to be the taction
circle. A circle having C for its centre and passing through
the section points is said to be the section circle. Of course
for an exterior point the taction circle is real and the section
circle imaginary; while for an interior point the taction
circle is imaginary and the section circle is real. It is
proper also to remark that the taction circle and the section
circle are concentric orthotomic circles.

Passing now to the case of two systems of orthotomic
circles, let MM’, NN’ be lines at right angles to each other
intersecting in }Z, and let M, M’ be real or pure imaginary
points on the line MM’, equidistant from % Imagine a
system of circles, each of them having its centre on the
line NN' and passing through the points M, M’ (so that’
MM’ is the radical axis of these circles). There are always
on the line NN’ two pure imaginary or real points N, XJ '
equidistant from R, such that the circles, each of them
having its centre on MM’ and passing through the points
N, N (NN’ being therefore the radical axis of these circles),
are orthotomic to the first mentioned system of circles.
Moreover if B be made the centre of a circle passing through
M, M, then the concentric orthotomic circle passes through

sidered as being at right angles to itself. The two concentric circles
in question have, in fact, at each circular point at infinity a common
tangent, but this common tangent must be considered as being at right
an? es to itself. The paradox disappears entirely upon a homographic
deformation of the figure; two lines KL, KM are then deﬁnef:o be
at right angles when joining K with the fixed points Z, J, the four
lines XL, KM, KI, KJ are a harmonic pencil; but when K coincides
with I, then KT is indeterminate and may be taken to be the fourth
harmonic of the pencil, i.e. any two lines JZ, IM through the point I
may be considered as being at right angles.
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N, N’; this is in fact only a particular case of the general
property. . :

uppose now that M, M’ being given as the points of
intersection of two circles having their centres on NN, it
is required to find a circle having for its centre a given point
C on NN' and gea.ssing through the points M, M'. In the
case of M, M being real, the rel?uired circle is obviously
given and is always real. But if M, M' are imaginary;
then if about any point of MM as centre a circle be de-
scribed orthotomic to one of the circles, it will be orthotomic
to the other circle, and will meet NN’ in the real points
N, N'. Now if p be the radius of the required circle (i.e.
of the circle having C for its centre and passing through
the points M, M), then p*=(RC)'+ (RM)'= (RC)" ~ (RN%’.
Hence if RC> BN or if C lies outside the space NN, p* is
positive or the required circle is real, and the radius is at
once constructed from the preceding expression

o*= (RC) — (BN
But if RC<RBN or C lies within the space NN, then the

required circle is imaginary, but the concentric orthotomic
circle is at once constructed from the formula

p*=RN'- RC".

Suppose now the point C is a centre of similitude of the
two circles. The circle having C for its centre and passing
through the points M, M is a taction circle of all the taction
circles of the two circles, it may be termed the tactaction
circle. The concentric_orthotomic of the circle having C
for its centre and passing through the points M, M’ is a
section circle of all the taction circles of the two circles,
it may be termed the sectaction circle. Consider first the
case where the circles intersect in a pair of real points; here
the two centres of similitude are on opposite sides of B ; the
tactaction circles are both real, the sectaction circles both
imaginary. Secondly, the case where the two circles are
wholly exterior each to the other, the two centres of simi-
litude lie on the same side of R, viz. the centre of inverse
similitude between R and N, the centre of direct similitude
beyond N. Hence the tactaction circle corresponding to
the centre of direct similitude and the sectaction circle
corresponding to the centre of inverse similitude are real,
the other tactaction circle and sectaction circle are ima-

i Thirdly, the case where one of the circles is
wholly interior to the other; here the two centres of simi-
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litude are still on the same side of R, but the centre of
direct similitude lies between R and N, and the centre of
inverse similitude lies beyond AN. Hence the sectaction
circle corresponding to the centre of direct similitude and
the tactaction circle corresponding to the centre of inverse
gimilitude are real, the other sectaction circle and tactac-
tion circle are imaginary.

To obtain a distinct 1dea of the methods made use of in
Gaultier’s “ Memoire sur les moyens généraux de construire
graphiquement un cercle déterminé par trois conditions,”
(Journ. Polyt. t. 1X. p. 124), and in Steiner's “ Geometrische
Betrachtungen,” Crelle, t. 1. p. 161; it should be remarked
that both of these geometers, confining as they do their at-
tention to real circles, do not consider the section circle of
an exterior point, or the taction circle of an interior point.
The taction circle of an exterior I,)oint, or the section circle
of an interior point is Gaultier's ¢ Cercle radical,” and
Steiner’s ¢ Potenzkreis,” and Steiner also speaks of the
radius of this circle as the * Potenz” of its centre in relation
to the given circle. The nature of the Cercle radical or
Potenzkreis, (i.e. whether it is a taction circle or a section
circle) is of course determined as soon as it is known whether
the centre is an exterior or an interior point, and Gaultier
distinguishes the two cases as the “radical reciproque” and
the “radical simple,” and in like manner Steiner speaks of
the Potenz as being “aiiszerlich” or *innerlich.” Again,
for two circles and for a given centre of similitude Gaultier
and Steiner employ the tactaction circle or the sectaction
circle, whichever of them is real, Gaultier without giving
any distinctive appellation to the circle in question, Steiner
calling it the Potenzkreis of the two circles, and in parti-
cular the “ aiiszere Potenzkreis” or the ‘ innere Potenzkreis,”
according as it has for centre the centre of direct similitude
or the centre of inverse similitude.

The preceding properties of circles are of course at once
extendetf to conics passing each of them through the same
two points; it is I think worth while to notice what the
analogue is of a pair of concentric orthotomic circles. If the
fixed points are I, J and if the point corresponding to the
centre is K, then the conics are of course conics touching
the lines KI, KJ in the points I, J, and one of the conics
being given the other is to be determined. It is easily seen
that if an arbitrary line through I meets the conics in P, P’
and the line KJ in M, then the points I, M, P, P’ are a
harmonic range, and this condition gives the construction of
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the second conic; it of course follows that an arbitrary line
through J meets the conics in points @, ¢ and the line K7
in a point N such that the points J, N, @, ¢ are also a
harmonic range. The two conics in question may be termed
“inscribed harmonics” each of the other.

Addition. The equation of the tactaction circle, corre-
sponding to the centre of direct (or inverse) similitude, of
two given circles, may be found as follows:

Let the equations of the given circles be .

(z-a)' +(y—B)" =¢,
(z—a)+(y—B) =
then the coordinates of the centre of direct similitude are
ac'—adec B —PBec

0y

¢ —-c cd—c

b

which are therefore the coordinates of the centre of the
}actaction circle; and the equation of this circle is of the
orm

AM(z—a)f'+ y—B)"— ] + (1-N)[(z - o)+ (y — B)"' - =0,

or expanding and reducing

(@ +9) -2 [r+o (1-N)] -2 [Br+ 8 (1- W]y
+A(@+8 =) +(1=7) (a”+ 8" =) =0.

‘We must therefore have

, _ac —adc
atd(1-N)="",
' — Bc

a8 1-n=E =8,

which are consistent with each other and give

c —c
A= 1-A=——.
c-c! c—c

‘We have then
A@+B -+ (1-2) (" +8"-c")

1 [¢ (@ + 8" —c(a™+ B™) +cc (¢ —)];

c—c
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and the equation of the tactaction circle is
. _gac—dec Bc' - Be
@+y-2 g * ¥ =¢
= (@ +B) = e (@ +BY) + o (¢ — )],
which may also be written

( _ aw"— a'c)" + (3/— ﬁc’—B’c)’

’
d-c c-c

- el e+ (B =A== o).

We have thus the equation of the tactaction circle corre-
sponding to the centre of direct similitude, and that of the
tactaction circle corresponding to the centre of inverse simili-
tude is at once obtained from it by changing the sign of
one of the two radii ¢, c.

Consider any three circles and combining them in pairs,
by what has preceded the equations of the tactaction circles
corresponding to the centres of direct similitude will be

("= @ +y)—2(ac"-a'c)z—2(Bc" -B'¢)y

+¢" (@ + B%)— ¢ (@ +B7) +cc" (¢"— ¢')=0,
(e =) (*+3")-2(a"c — ac”)x—2(B"c — Bc")y

+ c(@”+B™)—c"(a" + B)+ c'c(c —c")=0,
(¢ = )" +y")—2(ac’ — ac)z—2(Bc’ — Be)y

+c(@ + B)—c@* + 8"+ cd(c — c¢)=0,

and representing these equations by U=0, U'=0, U" =0,
we have identically cU+¢' U’ +¢"U" =0, hence the three
tactaction circles pass through the same two points, or what
is the same thing, have a common radical axis.
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THE PLANETARY THEORY.
(Continued fom P. 23).
By Rev. Percrvar Frosr.

To calculate the rate of change of the mean longitude
the disturbed planet. 4 i 4 7

18. The disturbing function R is a function of » and 6,
so far as it detpends upon the position of m alone; therefore
the change of R due only to the change of the position
of m may be found by considering R only as a function
of ”l"" 8,y Gyy 6y Ty ix and ‘Qx' »

d(R) dRd(nt+e)  dR da,  dR de
Hence & =%, e =+_17;+%:7tr
dR dw, . dR &, . dR dQ,
tOe @ Y dtan &
dR) _ dR
and -%)=n,a;

dR d(nt+s) dR 2na'dR dR
therefore Z-. & =”1E__;5_La—g:&:

1
88 sy s @B AR nga tan}s dBR dB
ne, e V= g G~ VT=a)) @, &
na, 1 dR . (dR dR\) dR
* e fag ek (5 + )R,
- ma B dR.
pV(I—e?) sint, ds, dQ’ .
d(nt+s 2na'dR 1— dR
..‘-(_la_{_l)g._,n‘_ ;‘G; d_;;_’_&aﬁf‘(el 1’) {I_V(l_et:)} 'JT‘
+ M9 tands, dB
rV(1—¢) di,*
which is the rate of change of the mean longitude.

19. In the foregoing articles equations have been found
which are sufficient for the determination of the elements
of the Instantaneous Ellipse at any time, reckoned from a

YOL. IL. ):
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fixed (;E:ch at which the values of these elements are known:
and, from these elements, the position of the planet can
be completely determined.

It will be seen that the elements of the instantaneous
orbit of the disturbed planet are subject to two distinct species
of variation, which are called Secular Variations and Pertodic
Variations.

The Secular Variations do not depend upon the con-
ﬁ%mtion of the different bodies of the system, but on the
relative positions and magnitudes of the orbits themselves.
They may either increase indefinitely with the time, or they
may be subject to periods of long duration, yet having no
reference to the positions of the boﬁies in their orbits.

The Periodic Variations depend only on the positions of
the. bodies, relatively to each other, or to their nodes or

ribelia, and receive the same values whenever the general

isposition of the system recurs. Some of these variations
are of short period, t.e. pass through all their values in one
or two revolutions of some of the planets, others are of long
duration and depend on the number of revolutions which two
or more Elanets must perform before they again assume the
same configuration.

Of these Periodic Variations, some have been distinguished
by the name of Long Inequalities, and these are not to be
eol:)fou?dled with tl&e fmoéiw Sgcular Van;ﬁtcbm nvﬁvhich are
also of long period, but depend, not on the co tion
of the planet.s,}ifut of the orbigs. ’ g

20. The equations obtained above are capable of solution
by successive approximation, in consequence of the smallness
of the eccentricities and relative inclinations of the orbits,
as exactly as is necessary for comparison of theory with
observation; and we should then be in a position to de-
termine the perturbations of the radiug vector, longitude
and latitude of a disturbed planet, due to the action of the
disturbing bodies. But, if it be required to determine onl
the Periodic Variations of these coordinates of a planet, 1t
is a more simple method to have recourse at once to the
equations of motion.

Before completing the account of the solution of the
problem under the former aspect, we shall obtain the equa-
tions, by means of which the Periodic Variations of the radius
vector, and of the longitude and latitude are more directly
determined : and, as before, we shall neglect the squares of
the disturbing forces.
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Eguations of motion of the Disturbed Planet.

21. The position of the planet m can be determined by
its distance r, the longitude 6 on the orbit, and the latitude,
or the angular distance from the fixed plane of reference.

Now, if the fixed plane of reference be taken to coincide
with the original position of the plane of m’s orbit, since the
departure from that plane is due to the disturbing forces, the
inclination of the plane of the instantaneous orbit is of
that order of smallness, and » and 6 may be used for the
projections on the fixed plane, since they differ by quan-
tities depending on the squares of the inclinations.

Hence for the equation of the radial acceleration,

Pr (i u dR
E,—f('d—t) ‘-—;j-l-z; cersessesancace (l).
Again, by Vis Viva,

(&) oo @) + (B (- 5+ 20
in which (Z—f). being the square of the velocity perpendicular
to the plane is of the order of the square of the disturbing

force: also % ds is the change of R due to the change

of position of m alone in the time d¢, and since it depends
upon m’s position only in consequence of being a function
oF;nantities which involve ¢ in the form nt+¢;

therefore, % ds=‘-i-(fTR_|—_?)d(nt+s)=n %?;

therefore, (%).f"'(‘%)’ 2w asc.... ).

The remaining equation for determining the latitude A is
d's pz dR

dt’ + ? = ; ..................... (3),

where Z=1r sinA.

These three equations are the equations of motion which
we shall employ.
H2
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To investigate the differential equation for the pertwrbation
of the radius vector.

22. From the equations of motion of the planet m

d'r—-r dﬂ) ——?—d ............... (1),
r
and (‘-57’;) +¢(‘§) % m[Barc.... ).

Multiplying (1) by », and adding to (2),
d'r (dr by dR dR
7 =3 ( ) = r-zr—+2n[-a—a- dt+ C,

# T \&
d'(r‘) 2;4 dR dR
or 7 +2r Z —+4n Z dt+2C.

If we neglect the terms involving R we have an equation
for determining » in the orbit of m when undisturbed by the
action of the disturbing forces, and we can obtain the effect
of the dlsturbxng forces by writing 7+ &r for 7, & being
the due to the disturbances, and since the squares of
the disturbing forces are to be neglected, we may omit all

terms but those of the first order in &r, and leave the

terms involving R unaltered in form.

& (r+ B dB . (dR
Thus 7 20+ 81-+2 o ——+4n dedt

]

ar
and TJ?_

d* (rdr dR dR
therefore, '%r‘l + 5 rdr=r '2'; +2ﬂfI dt,
which is the equation for determining 7.

To tnvestigate the perturbation tn longitude.
23. Wntmg 7+ 8 and 6+ 86 for r and 6 in the equation

of Vis Vlva.
df) 2 4 on fde &+ 0,

and neglectmg the squares of the disturbing force,

dr dér d6 déé  p
dtdt+8({f)+”d¢dt &r = fde

—20+2 H
r
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and observing that in the undisturbed orbit +* 9 hy

dt
IR
CRT NPT
md M) Wy g 9B, (R
h%a+%(%8r)—?d'—d(;@=-2r%—3n ‘%dt;
thea’efore,b80=2d‘(£8r)—%:Sr—ﬁfr‘fl—gdt—?mff%dt’,

whence 88 can be found when 8- has been calculated.

To tnvests the differential i the bation
i vestigate iffer equation for the pertur

24. In the equation

if we take for the fixed plane the plane of m’s orbit at
the commencement of the epoch, and write for 2, » (A + 8A),
we obtain the equation

@) p o _dR
—aF e =g

whence if S\ be calculated, the latitade may be found relative
to a.:x fixed plane inclined at a small angle to the former
by adding this value of A to the latitude of m found on
supposition that it does not change its plane of motion.

On the developement of R.

25. The first step towards the solution of the equations
found above, is the expansion of the disturbing function in
ascending powers of tge small quantities, the eccentricities
and inclinations of the orbits. Now, although it is not
possible, within the limits within which it is desirable to
confine ourselves, to enter upon the expansion to high orders
of the small quantities, still it is necessary, in order to obtain
a clear idea o‘} the nature of the approximations, to enter upon
some of the points which arise in tﬁe developement of R.



We shall therefore endeavour to give some idea of the
methods adopted as shortly as possible.

Recurring to the expression for R obtained in Art. 7, and
the developements of the coordinates of the planets given in
Art. 8, we observe that

Be=e m' {rr' cos (8, —0,) + 24}
(r 42

’

m
+ {'x‘ - 2"1"1' cos (01' - 1) + r!m + (‘:, - ’)’}T !

in which expression 7, and », differ from 4, and @, by quan-
tities depending upon the small numbers ¢, ¢/, tans,, tans/,
and 8,0, from n/t+¢'—nt—e by quantities of the same
order, and that 2, 2’ are themselves of the order of the in-
clinations.

The first term can readily be put in the form

= 73 {co8(6, - 6) +tan) tanX’ — ftan’\' +...},
1

if =7 tan), and s'=rtan},.
The second term may be written
m' m' (r tan\' — 7 tan))*
T _ 7 T L1t I .
= 2rroos(0/=0) + 71 a9y 0 cos(6/—0)+r

If therefore we write ,=a, (1 +u) and »/=a (1 +v'),

and RB'=—211{cos(6, ~ 6) +tan) tan)’ - § tan"\ +...}
1

m m' (a,' tann' — e, mx).
T_9aa cos(0'—0)+a 1 . ' ' ’
(a,*—2a,a, cos(6,'-0,)+a,"} {a*—2a,a, co8(6, —0.)4-'1,"}l

we obtain R by Taylor’s theorem in the form

*1

dR dR' , ,
R'+¢—k: a,u-i- &—.‘, a, u +eeee
Expansion of (8" — 2aa’ cosdp+ ")t in a series of simple
cosines.

26. Let
(a*—2aa’ cosp +a”) ¥ =40, + C, cosp +C, cos2¢ +... (1).
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(1) To calculate the values of C,, C..
Since a'- 2aa’cosp + a” = (a + 4’} — 2aa’ (1 - cos ).

4ad’
Let 0’=m,

]
(a+a')d(l - sing+*)=*0.-01 0052‘\’0""0. 0054‘\;"—-..;

therefore, integrating from ¥=0 to ¥ =1,

and for ¢ write = — 2y ; therefore

To= 1 ; ayr
4 ° a+a' ], N(1-C"sin'y)’
ﬁgain multiplying both sides by cos2y and integrating as
ore

L3

Ty 1 [a‘(l—?sin'\}r)d\]r
4 ' atd ), Y1-=Csin'y) "
These definite integrals are included in the form

F (a+ B sin) dyr
o ¥(I—dsm'y)?
which is numerically calculated by reducing it to another
integral of the same form in which ¢ is less, and 8o on b

successive reductions until the ¢ becomes insensible. This
may be effected as follows:

It sin (29— ) =3, sin ¥,
cos (2+ - ‘l’x) (2d‘I' - d‘kl) =6 0081’0“ d"’n H
dy, _ 2dvyr
therelore @Y — )  cosBP =) Fo,008%, "
Now cosy, _ siny 1

co82y+oc, sy  A(l+ 20, o2y + )

= ws(Q‘P"q’\l) +¢ 00"’1 .
1+2c, cos2¢r+0} '’

therefore
dyr, _ 2dyr _ 24y
V(I=c s y,) ~ V(1+2¢,00829+6.)  (L+o)(I-Csin'y) ’

dc,
1+¢)"’

if c’=(
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and  sin'y = (1 - c0s39) = {1 — cos(3y — ¥, + ¥}
= §{1+0, sin’y, — cony, /(1 - ¢ sin')],

and if ¥=0, ¥,=0,
% ) ¥u=7;
therefore
sm'a}'
7 (a+d sin'y)dy _ (*1 + ¢, ! P
. VA= an'y) Wl c' s y,) 20‘*‘"- ¥
+b,
"(l +cl) ;Va(_l—:ln—%) d‘Pn

b be
where a‘=a+§ a.ndb=—25,

—J(1-0)
and a= 1 FVi=-o)}

c c
therefore P = m ’
and ¢<1; therefore ¢, <c,
whence, if be obtained successively as ¢, from ¢, c, at
length {)eoomes insensible, and therefore by .
7 a,+b, sin"y,

wod [} et .-
therefore

/.v(l+b;:;:sr)d«p T (14e)(14)-. { (1+ . )}
therefore
1C,= ——.(1+c,)(1+c)(1.,. )...

Om- i () (+e) (o). f1-1-F - 53 ..)

= G (—;+—!+‘£§ﬁ+ )
whence 0, and C, can be calculated to any degree of accuracy.
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The numerical calculation is rendered very simple by
assuming

¢, =sina,

oooooooooooooooooooooooo

T
0,=0°(}sma +5

(@) To calculate C, O, ....
Differentiating the equation (1) with respect to ¢,
ad sing =0, sing + 20, sin2¢ +... ;
(a*— 2aa’ cos +a™)!
therefore, multiplying by &' — 2aa’ cos¢ + a”,
aa’ sing (§C,+C, cos¢p + C, cos2¢ +...)
= (a"~2aa’ cosp +a") (C, sing + 20, sin2¢ +...);
therefore ad’ {C, sin¢ +C, 8in2¢ + C, (sin3¢ — sing) +...}
=2(a"+4a") (C, sing + 20, sin2¢ +...)
—82ad' {C, sin2¢ +2C, (sin3¢ + sing) +...},
and equating the coefficients of sink¢
aa' (0, ,—0,,,) =2(a"+ a") k0, — 2ad {(k—1) O, + (k+1) C,, .} 5

2 ~n
therefore (2k+1)C,,, + (2k—1)C, , —2k. 212 0,=0,
b 1 aa

whence the complete series can be determined.

Bapansion of (s* — 2as’ cosp +a™) %,

27. Let(a"~3aa’ cosd+a™) ' =4.D+D,c08¢+D,c082¢+...(2);
therefore §C,+0C, cosd +C, cos2¢ +...

= (a’+ a" —2ad’ cos¢) (3D,+ D, cosd + D, cos2¢ +...)

=(a’+a") (}D,+ D, cosp + D, cos2¢ +...)

—aa' {D, cosp + D, (1 + cos2¢) + D, (cos3¢ + cos) +...} ;

ging’ sina” +) .
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therefore equating coefficients of cosk,
Ci=(a'+a") D, —ad' (D, + Dy,,),
and proceeding as in the last article,
(@k—1) D, + (2k+1) D, , -2k“ +2 p=0;

therefore (2k—1)Cy=(2k~ 1) {(a*+a") D.— ‘D, .}
+aa' (2k+ 1) D, —2k(a’+ a™) D
=-(a+4") Dy+ 2ad D, ,;
therefore (2% + 1) C,,,=— (o’ + a") D,,, + 2aa'D,;
therefore (48— 1)0,,, = (a"+a") {(2k+1) D, -wZte p,}
+2ad (A%—1) D,
- {273. @) _ (ske—1) 2aa'} D,
+(2k+1) (@' +a") D5
therefore (44" —1) {(a*+ @) 0, —2aa’'C,, }
= {4k (a"+ a™)' — (2k — 1) 4a’a" — (2k + 1) (a’ +a™)"} D,
= (2k—1) (@* - o™ D,;
therefore D, = (2%+1) {(a(+ ¢:”) ,?) — 2ad' CM}
whence D, D,, &c. can be completely determined.

To calculate the differential coefficients of C, and D, with
respect to 8, a'.

28. Differentiating equation (1), of Art. 26, with respect

toa
_ a—d cosg ‘ *}d—q’-i-% cos+...
(a* —2aa’ cosd +a™)
-1 @’ —2aa’ cosp +a”+a’—a”
2’ (a® - 2aa’ cos¢+a")‘
= (}0 +C, 008 +...)

a'—a"

(4D,+ D, cosp +...);
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dC}_ 1 a"—a"

therefore *(-h———;aOt——Ta—Df

_ (2% + 1) {(a®* + a™) 0‘—2aa'0”_|_} @)

- 2a (a* —a")

_(k+1)a"+ka” (2% +1) o’

T T a(a"-d) Ca- a*-d Cour

Also O, being a homogeneous fanction in 4 and &' of the
order — 1, i 0
’ & & ——

a w +a a = 0},

aC

o be determined by differentiating (2),
, &*C, &0 _ dC;
and ‘Tt @ =" @
Thus the differential coefficients can all be determined.

29. The differential coefficients of O, can be found in
a very simple form in terms of D, &e.

Infferentiating (1) with respect to a
§%+‘%m¢+ou;..=— __a-ad cosd

(a* —2aa’ cos¢ + a”)‘
=—(a—ad cosd) (4D, + D, cosd +...... )

=—a(}D,+ D,cosd + ...)+%, {D,cos¢ +D, (1+cos2¢)+...} ;

therefore ‘!d%=-aDg+% (Day + Dy,,)y

and %‘%=— 'DH'; Dy + Do)y
20, dD, . d (dD,, . dD,
T = Do+ 5 (T )

Differentiating (2), of Art. 27, with respect to a and ¢,
P+ 7«: co8¢p+......=—38 (a"-2aa’ oos¢+a")4 (a+a' cosg),

D, sin¢g + 2D, co82¢ + ...... =3 (a'- 200’ oos¢+a")-‘ aa'sing ;
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therefore a (i T g:ooscp+ ...... ) (a—a' cos¢)
—a' (D, sing + 2D, sin2¢ +...... ) sing
=— 8a(a"— 2aa’ coa¢+a")4 {(a—a’ cos¢)* + o™ sin¢}
= —8a(a"— 200’ cosp +a")  =—3a (4D, + D, cosg + ......);
dD dD,, , dD
therefore a{a E‘-—}a ( o+ f“:”)}
—§a' {(k+1) D, — (k—1) D}
=—3¢D5,

therefore % = D,—— {(k+1) D, — (k—1) D} + 3D,
= QD&— o0 {(""‘ 1) D,,—(k-1)D, .

And ‘% being & homogeneous function of a and &’ of

degree — 2,

oL, &G o dC
‘T dd = &
&0

therefore a Tada = 2aD;—a' (D, + D,,)
+4a’ {(k+1) Dy, — (k—1) D, )} —2aDs;

therefore 20 =4k +1) Dy,
da*c a'C,
whence de_ao—' D and ——L, da da’ = .D
results which will be useful hereafter.
‘We have now shewn how to obtain R’ in the form
- [w, +(C+28) 00n(6,~ ) + 0, 00836, = 6) + e
1

—f‘k(tanxwx'—gtan’x# ...... )
(o tan X, tan D {3D;+.D,con(6,~0,}+D,c082(6 -o,)...}] ,
and "f , jf,, &., can be determined immediately,
iR IR
and R= B'+‘§fau+da, a, +'}da,a’u’+ ......
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In order to expand R in a series of simple cosines the above
arguments are put into the form pnt— gn't + a, we observe

that 0/ —0=n'+e —nt—e +v —v,
tan) = tang¢, sin(0, - Q),
and tan)\' = tani, sin (6, — 2);

where v'—v=2¢/sin(n/t+¢'— w )~ 2¢sin(nt+e - w)

5e™ . 5e’ .
+5- sm2(nl't+c;—w,')——41 sin2(nt+e —w,)

- sin-% sin2(n/t+8'—Q) + ain’% sin2(nt+¢,—Q,)

whence cosk (6, — 6,) =cosk(n 't +¢'—nt—sg)

~ ksink(n'+e'—nt—s). (v —v)

— 3K cosk (n't+e'—nt—e) (v =)'+ ......
and the expansion can be effected by the ordinary trigono-

metrical formule for transforming powers and products of
sines and cosines into series of simple cosines.

To calculate the constant part of R when expanded in a
series of simple cosines.

80. The expansion of R as far as the second order of
small quantities is

o’ {} C,+ (C"—a;‘:},) cosd + C, 082 + ...... }
+{*%+(‘%_$) m¢+‘%cos2¢+ ...... } ou
+{§.‘5_‘%+GTC:}+%) cos¢+%%eos24>+ ...... }a,'u'
+(§%+%m¢+ ...... ) dae
+ {} (I%;%? + (3%;0—',' + a—?") co8p +...... } aa, /vy’

* (D, + D, 08¢+ ... (a tanX' — a, tanh)®

Qa ' "
~ ook (tan tanX’ — ftan®y)
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2
where u=—¢,cos(nt+e )+ 8—2'— {1—cos2(nt+e,—w,)} +...

—{tan’s, {1 —cos2(nt+s,—Q)}+......
p=n't+e' —nt-—e+v —9,
]
v=2¢ sm(nt+s —w)+ 5—2‘— sin2(nt+e, —w )+ ......
and tan\ = tant, sin (nt +¢, —Q),

and similar expressions for ', v', and tan)'.

We must now examine the terms in order, which give
rise to terms independent of the time, to the second de,
of small quantities; and, for the sake of shortness, we will
write I for n't+8'—nt—e,

(1) cosdp=cos(l+v'—v)=cosI{l — §(v'—v)'} — sinI(v'-v),
v'v gives rise to the term '

4ed'sin (n,/t+8' —w) sin(nt+e¢, —w),
and therefore to  2¢¢ cos(/—w,/+w);
. cos¢ gives rise to the term 2¢,6, cost cos(I— =, + =),

and therefore contains a constant term e,¢,’ cos (w,” — w,).

(2) u contains the constant term 4¢* —} tan's,,

and %, 4e™ — }tan's).
(3) w cos¢ contains — wo'sin I,
uv' contains — 2e¢¢,’ sin(n 't +¢'— =) cos(nt+e, —w),
and therefore ee sin(l—w'+w);
therefore u cos¢ contains a constant part — ee, cos(w,' ~ w,),
% COBP evernnrnnrnnaneniininnnnnns —3ee cos(w, - w).

(4) »" and ™ contains e’ and }e,” respectively.
(5) wu' contains ee’ cos(nt+e’ —w,) cos(nt+e —w),
and therefore 3ee cos(I-w ' +=);
therefore uu' cos¢ contains a constant part e, cos(w, —w,).
(6) 2 tan) tan\' contains
tan, tans, sin(n’, +¢'— Q) sin(n ¢t +8 —Q),
and therefore tans, tandé cos(/— Q'+ Q));
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therefore 2 tanA tan)\’ cos¢ contains a constant part
§ tans, tans;’ cos (2, - Q).

_ (7) tan® and tan"\’ contain § tan', and } tan"s, respec-

tively.
I.{F be the constant part of R, we obtain, collecting all
the terms,

{40+ (0 ) o st - )

+ (ZTQ:: - a—t,,-) daee’ cos(w,' —w))
+(35+23) st e

dg, dC,
+}(, da, © +a,da,e )
a'C, a'C,
+§( a, Tre +a"$f¢:)
a0, ' '
+ a0/ (th da, + 'l) e, cos(w, —a,)
+ }a,a,'D, tang, tant,' cos (2 —Q,)
dC, dcC, 3
—§(a,4ta.nc+a,da,tan )
-3 D, (a” tan", + @, tan’,)}

—m {,}oﬂ( o e da.) +i( dal°+1}a,"da"')

d a'C,
+}(4C+2a,c(l£‘+2 ,’df}-F e, W)ec cos(w, —w,)

-

_g( "D, +a ég)m” g( "D +a"iq9)tancl

' da ' da/
+4a,a,'D, tans, tans,’ cos(Q,' — .ﬂl)} .
Now 3C,+ C cosdp + ...... =(a,'—2a,a cosd+a™)¥;
dcC,

-} da°+ .=(} D,+D, cosp+...) (a cosp—a,)...(1);

therefore dC D,+4a/D,;
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dcC,

therefore a'D +a, = a'D,,
1
LI n ’ dC ’
and similarly, a"D, +a, da—-—’, =aa,D,.

Again, ‘z‘? beingf a homogeneous function of degree — 2,

b d¢. 40 __,do,

% T3 T dada da, ’
dcC a’C, d’C
therefore, a,da"-!-}a, da"= taa’ ,da‘h,
dO

=a °+{a,"—,!sxmxlarly,

therefore the coefficient of ¢, md 8¢,” each = {aa,'D,
Again, the coefficient of 2,

1ee, cos(w, —w ) =2¢, +aa’ 1 da da?’

and C, sin¢g+...... =(4D,+ D, cosp +......) a,a sing;
therefore 0,=%(D,~ D) aa/,
d'C,
and ) da’ —D, See Art. 31;
therefore 2C, +aga/ da,da'g-aa 'D,.
Hence

=m' [* 00 + éalal’ {D 1 (el’ + ela) —2D, le'lel' cos (ﬁll - wl)}
- %alal"D 1 {t‘a'n’il + tan’ill -2 tan‘.l tanix' cos (‘Q'A, -‘Ql)}] ’
in which all the coefficients have been investigated.
On the order of the terms in the complete development of
R in a series of simple cosines.

31. The last step which we shall give in the development
of R is that in which the order of the terms of the form

POOS{}) (”1t+31’)_9(”1t+e1)+a}7
and Qcos{p(n't+e)+g(nt+e)+8)

is determined, in which it will be shewn that P is of the
order p~g, and @ of the order p +g.
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The discovery of the relation which the coefficient of any
term bears to the argument is essential, because it enables us
to select a priors those terms, among the infinite number into
which B 18 developed, which alone can give rise to dis-
turbances which will be sensible.

For example, one term in the expression for 80 given in

Art. 23, is — 3n, f fiﬁ d’. Hence, a term
1

Peos{p(n/t+e)—g(nt+e)+a}
in the development of R would give rise to a term

3ngP .
@fi_” gy P (nte) —g(nt+e) +dl.

If therefore the ratio of the mean angular velocities of
m' and m, viz., n/: n_be very nearly the ratio of two in-
tegers ¢ and p, which are not very ] y pn/ —qn, will
be very small, and although P is of Ze :ﬁ:r p~q and may
be extremely small, the term to which it gives rise in 3 may
be large enough to become sensible.

Thus, in the case of Jupiter and Saturn, the ratio is 2 : 5,
and in that of Venus and the Earth 13 : 8, so nearly that
the terms in B which are of the order 3 and 5 respectively,
become sensible.

Order of the term P cos(pn,'t —qnt + a).

32. To determine the order of the terms, we must refer
to the expression for R given in the Art. 30.

(1) In the expansions of u, ¥, v, v, tan\, tan\' we
observe that the following remarkable law holds: that the

order of any term whose argument is pnt+a, or pn/t+d
is p the multiplier of n,t or = 't.

(2) The same law obtains in the expansions of the powers
and products of powers of u, v, tan\.
or, suppose two series in which this law holds to be
multiplied together, of which the general terms are

L cos(Int + a) and M cos(mnt + 8),
the general term of the product is
$LM [cos {(I — m) nt + a — B} + cos {(I+ m) nt + a + B}].

hence a term of the form P cos(pnt+¢q) is the sum of all
the terms for which !+m or l-m=p, the order is therefore
that of LM, and the principal part of P is of the order of

VOL II. I
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the smallest value which /+m can assume consistent with
those conditions, and since l~m=p+2m, or p+2/, and
1+ m=p, p is the order of the term in the product; therefore
the law holds for the product of two such series, and since
gowers and products of powers of u, v, tan\ can be formed

y the continual multiplication of such series, the law holds
for these powers and products, and the same is true for
u', v, tanX\'

(3) In the expansion of products of powers of u, u' as
ur, w' the order of the coefficient of a term whose argument
is (pn' tgn)t+a is p+gq, the sum of the multipliers of
n't and n.t.

For, the general terms in u”, «'” being

L cos(Int + &), and M cos(mn t+ B8),
in which L and M are of the order I, m respectively, that
of the product is LM cos(lnt + mnt+a + B) which is of
the order I+ m.

(4) Again,
cosk (6, ~0,) =cos{k(n't+e —nt—s)+k (v —v)}
=cosk(nt+e' —nt—e) cosk (v —v)
—sink (n,/t+e'—nt—e) sink (v'— v).

Now, it is evident that the laws given above held also im
the expansions of eosk(v'— v), and sink (v’ —v); therefore
the general term of the expansion of cosk (6~ 6,) is to be
obtained from the product of the sine or cosine of

k(n/t+e/—mt—s),by P (Qe+),
where P is of the order given by these laws;
therefore, since mt-gi+a
=k (”nlt + 31' -nt— 8.) - {(k iP) nl,t— (k t 9) nt+ B])

or, k(’"'nlt"’ enl —nt— e,) + {(P - k) nxlt— (q - k) nn""'f}'
Hence the term in R whose argument is pn/t—gnt+a is
a series of terms whose orders are £+ p+k + ¢ for all
possible values of % from 0 to .

The smallest value of k+p+k+¢ is p+g¢, but since
k~p+k~g=2k—(p+gq) or p~g, its smallest value is p~g;
therefore the order of such terms 18 p~g.
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Order of the term P cos(pn,'t + qn,t + ).

33. In the expansion of powers and products of powers
of u, v, tan), u', v/, tan)\’, the order of a term whose argument
is (pn't+qn)t+a is p+g, the sum of the multipliers of
n,'t and n.t.

Hence, as in the last article, the general term in the
expansion of cosk (0, —6,) is obtained from the product of

the sine or cosine of % (n,/t+¢ —nt—e) by P ?i): (@t+),
where P is of the order given by the laws investigated above;
therefore, since prt+qnt+a
=k(n't+e'—nt—e)F{(kFp)n't+(ktg)nt+ B}
The term in R whose argument is pn't +gnt+a is &
geries of terms whose orders are (k3 P)+ (kT g) for all
possible values of % from 0 to « .

The smallest value of this expression is p+ ¢; therefore
the order of such terms is p + ¢.

34. By the aid of these properties of the function R,
we are in a condition to select those terms of the higher
orders of the small quantities, which, in the process of solution
of the equations of motion, are of sufficient importance to be
employed in the calculation of the disturbances of a planet
by particular disturbing planets, and thus to avoid the ac-
cumulation of terms arising from the complete development
of the disturbing function.

ON CERTAIN POINTS OF SINGULAR CURVATURE
IN PLANE CURVES.

By E. WALKER, Trinity College, Cambridge.

T is my purpose in the present communication to draw

attention to a difficulty which occurs in the consideration
of a certain class of points of singular curvature ; a difficu
which no writer, that I am acquainted with, has explained,
certainly none of those whose works are carrent in this Uni-
versity.

Tlf; difficulty I allade to may be stated thus:

Let y=f(x) be the equation to any plane carve, and

suppose that when z = q, #= o, whilst d—‘: remains finite ;
12
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then at the point z=a the carvature is infinitely great, and
the question is, what meaning shall we attach to such a
result ?

In certain cases, as we know, such a point is a cusp, but
only when the lowest fractional index in the expansion of
f(a+ &) is of a particular form. In other cases the curve to all
appearance is continuous at the point in question, and these
are the cases which I now propose to consider.

Let us take as an example the curve whose equation is

At the origin we have
and the curvature is infinite.

If we trace the curve in the usual way, we shall find its
form to be that represented in the annexed figure.

L

Al -4

What then do we mean by saying that the curvature at 4
is infinite ?

Of course it is easy to reply, that since we take the circle
as the standard of curvature, we only mean, that the de-
flexion from the tangent is infinitely more rapid, in the
immediate vicinity of the point A4, for the curve whose equa-
tion is (1), than 1t can be for any circle; that is, that if we
take any circle whatever, and &aoe it so that the line Az
shall be a common tangent to the two curves, then, if their
concavities are turned the same way, the circle must pass
between the curve BAB' and the straight line Az. But this
does not get rid of the difficulty, which is, to shew how the
above conclusion can hold for all circles (for instance, if the
radius of the circle be indefinitely diminished), if the above be
the correct form of the curve.

Perha&s the following considerations may throw some
light on the difficulty.

Suppose that, instead of (1), we take the equation

ay* +aby' =a‘....ccourveervenene. . (2),
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which becomes identical with (1) when 4=0. The form of
the curve is given in the annexed figure, where 4C = b.

) ¥
B
a Cs

Now draw a straight line touching the branch 4B at
some point between A4 and B, and make this tangent revolve
till it touches the curve at some point between 4 and B'.
It will be found that when the point of contact comes to 4,
it does not at once pass on to the branch 4B, but comes
back nl(:on the loop AC, so that the tangent has to revolve
through two right angles in passing from BA to AB'. In
fact there are two cusps meeting at 4. The above result
will be true, however much we diminish A4C, so that in the
Limit when (1) and (2) coincide, the tangent will turn ab-
ruptly through two right angles in passing from B4 to AB'.

e may now perhaps be better able to understand how it is
that we cannot represent the curvature at A by reference to
any circle whatever, and if it be objected that there is some-
thing arbitrary in the way in which we have added a term to
the original equation, I reply that the more correct way of
looking at the question is, that this equation, which is of the
third degree in y, has been arbitrarily deprived of this term
which properly gelongs to it, and it constantly happens, that
when we qzwer the enemfity of an expression, anomalies
present themselves which can only be explained by recurrin
to the more general form, of which the particular form shoul
be ed as the limit.

e above example is only one out of many where the
same difficulty occurs, but I regret that I cannot pursue the
subject farther at present, though I hope to resume it at some
future time. In the meanwhile my object will have been
attained, if what I have said should lead to a closer exami-
nation of this class of singular points, which has not hitherto,

a8 far as I am aware, attracted by any means the share of
attention which it merits.
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AN ATTEMPT TO DETERMINE THE TWENTY-SEVEN
LINES UPON A SURFACE OF THE THIRD ORDER,
AND TO DIVIDE SUCH SURFACES INTO SPECIES
IN REFERENCE TO THE REALITY OF THE LINES
UPON THE SURFACE.

By DE. SCHLAFLI, Professor of Mathematics at the University of Bern.
Translated by A. CAYLEY.

(Continued from p. 65).

] IMAGINE to myself a homogeneous equation of the third

order in the four point coordinates w, «, y, 2, where all the
twenty coefficients have any values whatever. From this
may be calculated the function denoted above by R, which
in the present case is a function of the degree 9. The
surface =0 will then meet the given basis surface of the
third order f=0, in the twenty-seven lines of this surface.
If therefore the equations f=0, R=0 are combined with
any two linear equations

l=aw+bz+cy+de=0, I'=a'z+by+ce+dw=0,

it must be demonstrable that the resnltant of the four
functions f, B, [, I' can be (in respect to the indeterminate
coefficients of the linear functions I, ') decomposed into twenty-
seven factors of the form

aa + Bb +qe, d | +
ad' + Bb' +ye', &

« 8,9
a, b ¢
al, bl’ c'
where the constants a, B, v, &, B, ' satisfy the cendition

ad'+ BB +vy =0. And then there will pass through the
line corresponding to any such factor, the four planes

yz— By +adz=0,
—yw+ay+B2=0,
Bw—az+q'z=0,

—dw—Br—g'y=0.

Suppose that one line of the given basis surface f=0
fs known: and let the system of coordinates be transformed
in such manner that two fundamental planes s, ¢, pass through
the line in question. The equation of the surface will not
contain any part not divisible by s or ¢, and it can therefore
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: t,T
polynomes of the secon order. The basis surface contains
therefore all the conics represented by the two equations
8+M=0, 8+AT=0, where \ is an arbitrary constant. But
A can be so disposed of that the conic may break up into
a pair of lines: the condition for this is, in regard to A, of
the fifth order; consequently, through each line of the basis
there pass five planes, each of which intersects the basis in
the three sides of a triangle, and the number of such planes

is 2—73—'§= 45. Suppose that A, u are two different constants,

satisfying the condition in question: the equation of the basis

can then be brought under the form | s+ M, S+AT'| =0,

s+ut, S+uT

which may be denoted more simply by l u, U |=0. Here
z, X

" be reduced to the formjo, 8| =0, where S and T denote

U, X are polynomes belonging to surfaces of the second
order, which. are respectively touched by the planes u, .
If p 18 the polynome of any other plane which touches both
of the surfaces !, X, then there exists a constant a for
which U+ apu breaks up into two factors, and in like manner
& constant ﬁpz;r which X+ ,gpu breaks up into two factors.
The plane p belongs to a developable of the fourth class,
and has as such a single motion, i.e. its equation contains
a single arbitrary parameter. We may therefore impose
another condition, and write a= 8. R&;place ap by the single
letter p, and take D, A as symbols of the points in which
the surfaces U, X are touched by the planes u, z respectively.
Since then, each of the lE)Olynomea U+ pu, X+ px breaks up
into factors, it is clear that the equations

D (U+pu)=0, A (X+px)=0

will be satisfied identically. But obviously, DU=au, AX = bz,
where a and b are constants, and Du=0, Az=0. The fore-
going equations become therefore +Dp=0, b+Ap=0,
whence | a, Dp | =0, or if we please | Du, uDp |=0, (the left-
b, Ap Az, zAp
hand side divisible by ux) an equation which 18 homogeneous
and linear in respect to the coefficients of p; that is, there
exists a fixed point through which the simply moveable
plane p always passes. 'ﬁhe problem has therefore four
solutions. And if we select at pleasure one of the four
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lynomes p which satisfy the required conditions, and write
%+pu=—yz, X + pa = vw, the equation of the basis becomes

|u,-ys =uvw+xyz=0.
z, vw
The possibility of such a transformation might have been
seen & priort, since the six linear polynomes u, &c., contain
18 ratios of coefficients, to which 18 to be added a constant
factor contained in one of the products wzye, uvw; so that
there are in all 19 disposable constants, which is precisely
the number of conditions to be satisfied. We may call uvw
a trihedral, and say that in the equation wvw + zyz=0, the
basis is referred to a pair of trihedrals.

Six linear polynomes are connected together by two in-
deqendent linear homogeneous equations. We may mul-
tiply one of these by an arbi factor, and add it to the
second, and the relation so obtained will of course be satis-
fied. t such a relation be

Au+ Bv+ Cw+ Dz + Ey + Fe=0,

where the coefficients are considered as containing a single
arbitrary multiplier. It follows then, that
Au(Bv + Dx) (Cw + Dx) + Dx (Au + Ey) (Au + Fz)
= ABCuvw + DEFzxyz,

consequently, that if ABC= DEF, the function on the left-
hand side is & new expression for the polynome of the basis.
The equation ABC=DEF is, in regard to the arbitrary
constant contained implicitly in the coefficients, of the de-
gree 3, and gives therefore 3 solutions, which may be thus
represented,

au+bv+ow+de+ey+fz=0, abc = def

dut+bo+cdwt+de+éy+fe=0, ab'c =def,

a’lu+b"v+c"w+dlw+e"y+ "z=o’ al'b"c”-__d'e" ',
there are thus in all 27 such transformations into trihedral
pairs such as

au (bv + dzx) (cw + dz) + dc (au + ey) (au +f2) =0.

The original trihedral pair uvw +2yz =0, gives immediately
nine lines. ~'We may for shortness represent the line
(#=0,2=0) by uz. We have besides, 18 systems such
a8 (au+dx=0, bv+ey=0, cw+jfz=0), where the third
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equation is always a consequence of the two others; these
ms represent the other 18 lines, which may be com-
prised in the following two schemes,

through wuz, vy, wz pass I, I, I'
« .E’ v-;; wz & m,m'y m"
“  ue,vmuy ©omon, "
through wz, vz, wy pass p, 7', p"
“ us vz 4 g4, 4

“  uy,vz,ws % o, "
Two lines which belong to one and the same scheme do
not intersect, when they are either lines represented by the
same letter different] accented, or by different letters simi-
larly accented; but they intersect when letters and accents
are both different. And two lines belox:fing to different
schemes, intersect when the accents are the same, and do
not intersect when the accents are different.

Of the 45 triangle planes, 6 form the original trihedral
%av.i.r, 27 more are represented by equations such as au+dz=0.

e represent the plane au +dz=0, by (ux), the plane
a'u +d'z=0, by (uz), and so in similar cases. The following
scheme shews the three lines contained in each plane.

uz, l, p| vz, n, r | wr,m, g

uy, my v | vy, b g|wy, myp

ug, n, q| vz, mp|ws l r
and similarly with one or two accents. Finally the 12 remain-
ing tEla.nea are 6 planes such as /m'n”, and 6 planes such as pg'r"
in the representation of which the accents may be omitted
since the utation of the.letters is alone sufficient. The
last mentioned planes admit of no very symmetrical repre-
sentation. The plane (!mn) for example has among other

“ forms of its equation the following,

od —cd of' - &)
= (au+dz)—fo(bv+ey)=o.
Any two triangle planes which have no line in common,
determine a third plane which forms with them a trihedral,
and this again determines the other trihedral of the pair.

22-22 = 120 tribedral pairs, that is, the

There are thus in all

‘K\'\, . ‘T:
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problem to reduce the equation of the basis to the form
uvw+ays=0, is of the degree 120. Each trihedral pair
gives immediately only nine lines. It is always possible
to place together three trihedral pairs to give all the twenty-
seven lines; and one pair determines by itself the other two
pairs. There are thus ;in all 40 such triads of trihedral
pairs, the following is a scheme of such triads,

1 triad uow + XYz,
(Imn) (mnl) (nlm) + (Inm) (nml) (mlr),
(pgr) (a7p) (rpq) + (rq) (gp) (gpr)s
27 triads such as
o (02) (10z) + @ (uy) (ue),
(vg) (w2)” (prg) + (vy)” (t0z) (pgr),
(ve) ()" (Inm) + (v2)" (r0y) (lmm),
12 triads such as
u(Imn) (pr) + (u) (uy)’ (ue)"
v (nlm) (rgp) + (vz) (vg)’ (v2)",
w (mnl) (gpr) + (10z) (0y)’ (@2)".
Choosing from each pair of any triad a single trihedral,
we obtain nine planes which intersect the basis in all the
27 lines, The polynome of the ninth deE:ee above repre-
sented by R, can therefore in 820 ways be combined with
the polynome f of the basis, 8o as to break up into linear
factors, An easier survey of the 27 lines of the basis / may
be arrived at as follows. We have
Quzx
yO0v
wezl

2 (uvw + zyz) = =0,

this equation by linear combinations of the lines and columns
may be exhibited in the more general form

r, 8 t|=0,
v, &, t
. 7.II’ 8", t"
where all the elements of the determinant are linear functions
of u, v, w, &, y, 2. Hence every point determined by a
gystem of equations such as

p=ar+Bs+yt=0, p'=d'r+Bs+y't=0, p"=a"r+B"s+vy"t=0,

"
|
]
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will Jie on the basis, and conversely the ratios a:8:¢q
may be determined for a given point of the basis. But if
the condition is imposed that the polynomes p, p', " shall be
connected by an identical equation, such as xp + «'p" + &"p" =0,
in other words, that the three planes sh:ﬁ intersect not in
a point but in a line, we arrive at the condition that all
the determinants of a rectangular matrix. with three hori-
zontal and three vertical lines, the elements of which are
all linear homogeneous functions of a, 8, , vanish. It is
then clear that tiis problem has six solutions. If we assume
for example that kp + &'+ &"p" =0 is an identical equation,
the equation of the basis may be exhibited in the form

0, ws+&'s'+x"s", xt+ut+x"t"|=0,
] § t
PI', " ’ f
D, 8 ’

which shows that each line (p=0, p'=0, p"=0) corresponds
to a line (Zwr =0, ks =0, Z«t=0) which it does not intersect.
But if @, 8, y belong to a different solution, and the cor-

.

responding polynomes are denoted by ¢, ¢, ¢", then we have

2kq, X3, Skt | =0
g, d, ¢
f’ , 8” , "'
for the equation of the basis, and it is clear that now the
two lines (Sxg=0, ¢'=0) and (Zkg=0, Z«xs=0) intersect,
since the systems have in common the equation 3xg=0.
Each of :Ze six lines represented by a system sutgl as
(p=0, p'=0, p"=0) intersects all the five non-corresponding
lines given by a system sach as (2xr=0, Sxs=0, Z«t=0)
and only the two corresponding lines do not intersect. I call
such group of 12 lines of the basis a “double-six.” It is
clear that no two lines belonging to the same six intersect.
The number of all the double-sixes is 36. For since each
line is intersected by 10 other lines, there remain 16 lines by

which it is not intersected. There are therefore 27;6=216

}mirs of lines which do not intersect. Through one of the
ines of such a pair pass five lines which do not intersect
the other line oF the pair; this other line and the five lines
form together a six, and these completely determine the
other six of the double-six. But of such pairs of corre-
sponding lines as the first-mentioned pair there are in the




\Y
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double-six only 6; consequently 2—'156-=36 is the number of

the double-sixes.
If now we start from the equation

0, u, 2| =0,
¥ 00
w, 2, 0
we have at once three solutions of the J)roblem, to make
the polynomes Su + yx, ay+ v, aw+ Bz dependent on each
other, namely (8=0, y=0), §a=0, y=0), (a=0, 8=0);
the other three are obtained as follows: Suppose that
x (Bu + yx) + &' (ay + yv) + " (aw + B2) =0
is the identical relation between the three polynomes, and
Au+ Bv+Cw+ Dx+ Ey+ Fz=0

the general identical relation, where 4, &c. are to be con-
sidered as linear functions of a single disposable quantity.
‘We must therefore write

A=«xB, B=k'y, C=«x"ay, D=xy, E=xka, F=«"B,

which give ABC=DEF. This equation admits, as we know
already, of three solutions. And preserving the former no-
tations, we thus arrive at the double-six

(=%

' o0
VY, W2, UT, Ny N, N

where no two lines of the same horizontal row and no two
lines of the same vertical row intersect, but any two lines
otherwise selected do intersect.

By means of the double-sixes we arrive, as already
noticed, at an easy survey of the 27 lines and 45 planes of
the basis. For represent a double-six by

(a,, Oy Qyy Oy By “s)
bﬂ bﬂ b.’ bc’ bu bs !

the two intersecting lines a, 4, belong to a triangle which
I represent by 12 and its third side by c,,. This third side
c,, forms with a, b, a triangle which I represent by 21. We
have thus fifteen lines ¢, each of which intersects only those
four lines a, b, the suffixes of which belong to the pair
of numbers forming the suffix of the c. And any two c's,
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the suffixes of which have & number in common, do not
intersect ; but two ¢’s, the suffixes of which have no number
in common, do intersect. There are consequently triangles
such as ¢, ¢, ¢, which may be represem by (12, 84, 56),
where as well the numbers tnter se of each pair, as the three
pairs snter se, may be uted. We have therefore 30
triangles such as 12, and 15 triangles such as (12, 34, 56),
in all 45. Finally there are 10 trihedral pairs such as

(12) (23) (31) + (13) (32) (21)
(45) (56) (64) + (46) (65) (54)
(14,25,36)(15,26,34)(16,24,35) +(14,26,35)(16,25,34) (15,24,36)
and 30 trihedral pairs such as '
(85) (46) (12, 36, 45) + (36) (45) (12, 35, 46)
(51) (62) (16, 25, 34) + (52) (61) (15, 26, 84)
(18) (24) (14, 28, 56) + (14) (28) (13, 24, 56)

The double-sixes give rise to the remark that there is here
exposed to view an apparently very elementary theorem
which may be thus enuntiated: “ Drawing at pleasure five
lines a, b, ¢, d, e which meet a line ) then mag any four of the
five lines be intersected by another line besides £. Snlgmse
that 4, B, C, D, E are the other lines intersecting (3, c, 4, €),
¢, d ¢ a), (d, ¢ a, B), (¢, @, b, ¢), and (g, 3, c, ) respectively.
en 4, B, C, D are mtersected by the fine e; there must
be another line f intersecting these four lines, and this line
will of itself intersect the remaining line E; i.e. there will
be a line f intersecting the five lines 4, B, C, D, E” Is
there, for this elementary theorem, a demonstration more
simple than the one derived from the theory of cubic forms?
en the equation of the cubic surface referred to a real
system of coordinate axes, has all its coefficients real, it is
easy to see that the surface will be real. The question how-
ever arises, how many of the 27 lines and 45 planes may be
imaq’nary§ The complete investigation would be tedious,
and I content myself in giving a mere survey of the species
into which the general surface of the third order divides
itself in regard to the reality of the 27 lines. There are
only the five species following:

4. All the 27 lines and 45 planes are real.

B. 15 lines and 15 planes are real. The twelve imagi-
nary lines form a double-six, where each line of the one six
is conjugate to the corresponding and therefore not inter-
secting line of the other six, wherefore none of the imaginary
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lines have a real point. Any two pairs of corresponding
imaginary lines are intersecte léy a real line; and as mancz
ways as the double-six can be divided into thrice two su
pairs, in so manz ways do the corresponding real lines form
a triangle, viz. there are fifteen real triangles.

C. 7 lines and 5 planes are real: namely, through a
real lme there pass 5 real planes, but of these three only
contain real triangles, in eac% of the other two the triangle
consists of the orginal real line and two imaginary lines
meeting in a real point.

D. 3 lines and 13 planes are real: namely, there is one
real triangle, and through each side there pass (besides the
plane of the trian§le) 4 real planes.

E. 3 lines and 7 planes are real : namely, there is a real
triangle, and through each side there pass (besides the plane
of the triangle) 2 real planes.

With respect to the reality or non-realit-{I of the six linear
polynomes in the expression wvw + xyz, which is equivalent
to a given cubic polynome with real coefficients, the follow-
ing 13 cases have to be distinguished. I call them forms
of the trihedral pair wvw + 2yz=0, and I shew in the follow-
ing enumeration to which species of cubic surface each form
be?ongs: instead of linear polynome the word plane may
be used.

1°. All the six planes of the trihedral pair are real. This
form occurs only in the species 4 and B.

2°. u and 2, v and y, w and z are conjugate to each other;
that is, the two trihedrals of the pair are imaginary and con-
jugate. In Band C.

8°. u, v, w, z are real, y and z conjugate. In D and E.

4°. u and « are real, v and w, and 'y and z conjugate to
each other. In Cand Z.

5°. » and z are real, the four others imaginary, but no
two of them conjugate: but v and w have their real line in
z, and y and z their real line in ». (Every imaginary plane
contains of course a real line). In Band C.

6°. u and z are real, the four others imaginary and no
two of them conjugate: and u alone intersects y, z in real
lines. In C and 5 '

7°. u and « are real, the four others imaginary and not
cox&iu‘ga.te. Neither w nor « have a real triangle. In D
and Z.

8°. u and x are conjugate, the four others are imaginary
and not conjugate; v and y have a real point in common,
and so have w and z. In C and E.
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9°. u is real, the five other planes are imaginary and not
conjugate, » intersects  in a real line, and y, 2 in conjugate
lines. And y alone has with each of the pfanes v and v, a
real point in common. In E.

10°. All the six planes are imaginary and not conjugate ;
% and z have in common a real point, v and y & real line,
and v and z a real line. In C.

11°. All the six planes are imaginary and not conjugate,
each plane of the one trihedral has in common with each
plane of the other trihedral a real point. In D.

12°, All the six planes are imaginary and not conjugate ;
u has in common with z a real point, and also with y, an
also with #; moreover z has a real point in common with v,
and also with w.

18°. All the six planes are imaginary and not conjugate ;
% has a real point in common with z, and so also v with
y, and w with z. In E.

If in any one of these thirteen forms the particular com-
plete character of each of the six linear polynomes is repre-
sented explicitly, and then the transformation is undertaken
of this form into another trihedral pair, it often happens that
a root of the cubic equation which has to be solved for this
gurpose can be rationally represented by the constants of the
orm without the necessity of emtracting a cube root. Two
trihedral pair forms thus easily transformable the one into
the other may be termed eguivalent ; when the one of them
presents itse& in any two species of the surface, the other
also presents itself in the same two species. It is only the
two other roots of the above mentioned cubic equation
ABC=DEF which decide, according as they halzg)en to be
real or imaginary, to which of the two species the surface
belongs, annfl:bey give rise to a transformation complicated
with a square root; trihedral pairs thus transformed into
each other, on account of the possible tramsition from one
species into a different one, I non-equivalent ; the more
8o that the discussion of the one form does mot render un-
necessary that of the other. In this sense

. The forms 2°, 5° are equivalent and occur in B and C,
“ 46,8 “ “ Cand E,
({3 3°, 7° ({3 ({3 D and Ei
({3 9“, 12°’ 18° ({3 “ E’
while, on the contrary, the following forms are each of them
isolated, viz. 1° in 4 and B, 10° in C, and 11° in D.

The forms of the triads of trihedral pairs arrange them-

selves as follows:
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120 The Relation between the distances of a

A has 40 triads (1, 1, 1;.

B has 10 triads (1, 2, 2) and 30 triads (5, 5, 5).

c has)4 triads (2, 2, 4), 12 triads (5, 8, 8), and 24 triads
6, 10, 10).
D hae 16 triads (3, 11, 11) and 24 triads (7, 7, 7).

E has 2 triads (4, 4, 4), 4 triads (3, 13, 13), 6 triads
(1, 8, 8), 12 triads (6, 12, 12), and 16 triads (9, 9, 9).

conclusion I remark that the double-sixes play a part

in the theory of the nodes of a cubic surface. I call “node”
any point (w, z, y, z) of an algebraical surface f(w, z, ¥, 2)=0,
for which Df=0 is satisfied for all values of the four elements
of the differentiation system D, and *proper node” a point
at which the cone of the second order represented by Df=0
does not break up into a pair of planes. If a surface of the
87 order f=0 has a proper node (v, z, ¥, £), then the six
lines passi?g through such node and represented by the
equations =0, 5‘f=0 form a double-six, in which each
two ggrresponding (non-intersecting) lines of the two sixes
coincide.

NOTE ON THE RELATION BETWEEN THE DISTANCES
OF A STRAIGHT LINE FROM THREE GIVEN POINTS.

By N. M. FerRegs, Gonville and Caius College, Cambridge.

¥ Salmon’s Higher Plane Curves, Art. 1X., p. 10, an in-

vestigation is given of the relation existing between the
tangential coordinates of a straight line, that is, between its
distances from three arbitrarily chosen points.

The result is there arrivm{ at through the intervention of
Cartesian coordinates, but it appears desirable to place the
system of tangential coordinates on an independent basis, and

erefore to supply a proof of the relation in question not
depending op any other system.

¢
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Let A4, B, C be the three points of reference, PQ any straight
line, draw 4D, BE, CF, severally perpendicular to ﬁQ.
Then, in accordance with the convention with respect to the
use of the negative sign, if 4D be considered positive, BE
and CF, lying wholly without the angles ABC, A CB respec-
tively, will be negative. Let then 4D =a, BE=-j,
CF=—¢«. Through 4 draw E'F" parallel to PQ, produce
BE, CF to meet E'F' in E', F" respectively, then

BE' = - (B+a), CF =— (y+a).

Bisect the angle BAC by the straight line 40, and let
OAD = 6.

Let BC=a, CA=0, AB=c.
Then -Bj“=1;—§=sinBAE'=cosBAD=cos(§+o). |
Similarly -'L%‘i‘:m(;ﬁ_ ),
1 B+a K g+a)
therefore — A( -t )—cosﬁ,
2 cos —
2
1 Bt+a o+ay_ . .
—— A( " b )—smo,
2sm-§

therefore, adding squares and simplifying,
1 _((B+a) (v+af) 2cosd(B+a)(y+a) _,.
sin'd | ¢ o sin*4 be -
therefore
B (B+a)'+ ¢ (v + a)' — 2bc cos. 4 (B + a) (y + o) = b*c*sin’4,
orb'(B+a)+c(y+a)—(b'+c"—a') (B+a) (y+a)=4K",
K denoting the area of the triangle 4BC; a result which
may be put into the symmetrical form,
ada + 08 +cy — (B +—a’) By— (¢ +a*— V") ya
—(a'+ 8- aB =4K",
which is substantially identical with that given by Mr.
Salmon, in the article above referred to.

VOL. II. K
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FACTORIAL NOTATION.
By H. W. ELPHINSTONE, Trinity College, Cambridge.

THE object of the following paper is to call the attention of

Mathematicians to the advantages of the Factorial Nota-
tion. This notation has, according to Professor De Morgan,
met with little attention in England. The only English
works in which I have found it made use of are Professor
De Morgan’s Differential Calculus; Nicholson’s Essays ;
and a paper in the Cambridge Tranmsactions, by Henry
Warburton. It seems surprising that this notation should
have met with such universal disregard, for it is useful not
in Elementary Algebra only, but it plays a part in the Cal-
culus of Finite Diéerences, similar to that which the notation
of Indices does in the Differential Calculus.

1. Definition. The product of any number of factors in
Arithmetic progression 1s called a factorial, and is expressed
by the following notation :

z(xz+ a)...[z+(n-1)a} =2""

in which « the first factor is called the dase, n the number
of factors is called the factorial index, a the common dif-
ference between the factors is called the factorial difference.

It follows from our notation that
z(z—a)...{x—(n—1)a} ="

n|-1 nil
Fractions of the form % , TTIIf occur frequently in

analysis, and may be called divided factorials.

2. Reduction of factorials with a difference +a to a dif-
ference + 1.

2" * =z (xta) (x+2a)...{xt (n—1)a}

=a'§ (g;t 1) (§t2)---{§i (n— 1)}

-<(@"
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Since all factorials may in this manner be transformed so as
to have a difference + 1, I shall generally confine my atten-
tion to factorials of the form z"|™.

3. In the factorial z"|" suppose that the common diffe-
rence has a different sign from x the base, and that n is
numerically greater than xz, there will be a factor equal to
zero, so that the whole factorial will be equal to zero.

There are various other properties which will suggest
themselves very readily; or they may be found in “A
Treatise on Factorial Analysis, &c.,” by Thomas Tate. But
as I only desire to explain the factoria{ notation, I shall not
dwell upon them.

4. Basic Transformation. Divided factorials with a posi-
tive difference may be made to undergo a transformation
which is very often of the greatest use.

x‘ll lﬁ-lll.zﬂll lﬂ-l'f.‘l
T T T T LT
(n+ 1)1
=T

Hence the rule. Take the index increased by unity for
a new base, and the base decreased by unity for a new index.

The diﬁiculty that occurs in remembering this rule is to
remember which of the two, the index or base, is diminished.
This can be done by noticing that the new denominator of the
fraction consists of the missing factors of the old numerator.

When the common difference is negative the formula is
not so simple, for we have

w‘l—l lsll _ (” + l)l—.l]

WS WS L ER L B

As an example of this transformation we may reduce the
coefficients in (1+2)™ to a common denominator.
For

201 7|l
(14+2z)"=1 -n:v+11—',—:—, -+ (- 1)"’1-‘,—Il o + &e.
011 11 2|1 it
1™ 9= g™t '(r+1)n~1‘1

=—=a —iF x4+ i‘.‘_TI‘l a:’—...+(—l) 1,,__1 I Y a:'+&c.

1~ l 17 7%

K2
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5. To interpret a factorial with a negative index

- ll-lﬂ'ﬂll
= i
10—1-00!‘!
= 1"’l‘.(:c—1 +m)-|—1 ?
or putting m =0,
S I
T (@ =1)
-1
=0T
g I
lr-ﬂ-nlx )
17* 1
t! 7 = = .
herefore x| 0 = @+ )T

Hence the rule. A factorial, with a negative index, is

ual to the reciprocal of a factorial, whose base is the
original base increased or diminished by unity according as
the common difference is negative or positive, and wiose
index and common difference are those of the proposed
factorial with changed signs. 1

Observe the analogy to the expression ™ = >

These two expressions may also be put under the forms

z"|'= !

(z_n)'I‘l )
| -
(+n)*7"

If, instead of making m equal to zero, we put m=n, we
shall have

z-14n-n |1
1 |

Oll

= =
which may be compared with the expression z°=1.
6. The analogy between factorials and powers is no

where seen more distinctly than when we proceed to take
their differences.

Ag'=(z+1)"I'=2"'=(z+1)""I'(z + n—2)
=n(z+l)“"]‘,
AL =(z+ 1) =2 =" e+ 1 = (—n+1)}

=nz"|.
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Hence the rule. Multiply by the index, subtract unity from
the index to form a new index, and if necessary add unity to
the base, so that the highest factor may remain what it
was before.

PP SRR TS ISR B T o
xull - (2)-!-1)"‘ wﬂll - (z+1)u-r|1 z+n x - zu-lll,

Al _ 1 1
@) &

1 ( 1 1 \_  -n

T e+l z—n+t 1) T (@+ )M
Hence the rule, multiply b({ the index with changed sign,
add unity to the index: and if necessary, add unity to the
base, so that the lowest factor may remain what it was
before. Compare these formulas with

[ 3 n-1 d 1 n
T Tr T T

The difficulty in remembering these rules, is to remember
in what case the base remains the same, 'This can be done
by noticing that the most important factor, i.e. the greatest

in 2*|® and the least in :c'_ll" is retained in each case.
‘We shall have
A @=11 = (et 1)a"l;

1
n1 - 1\
therefore 3 2"| =31 l(:c )™,
A ™ = (n+1)2"|7,
1
»l-1 _ 1| -1
therefore = 2| e (I
1 —(n—1
AEFTP (m-p ))
1 -1 1
therefore zx.l, =21
l - n—l) .
Ao T AT
1 -1 1

therefore = =1 = —
"
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The rules are. To find the finite integral of z"|*, increase
the index by unity for a new index, and divide by the index
so increased, diminishing the base by unity if necessary, so
that the greatest factor may remain the same.

To find the integral of 5%, subtract unity from the index

for a new index, divide by the new index with its sign
changed, diminishing the base if necessary, so that the least
factor may remain the same.

As in the former case, we may observe that the most
important factor is retained unaltered.

Compare this with
p— L g f‘é’ = -1
jwdx—n+l eH |F= n-1)™"
7. Let A’ denote the difference taken with respect to n.
2, (a4 1)
Then A -l-—ll_A ——I,TI"—-
li-ﬁll
(m_l)l'ﬂll
= 1
!
=2

a curious formula shewing that the operations A’ and =
are equivalent.

8. Suppose that
E=1+A.
Then Ef (@) = (1+ A)f (=),

=(14+ma+ % a4 &) f (@)

F @t m) =f(@)+ maf (z) + T A (@) + &,

similarly, f(a— m) =f(z) — mAf () + ’l"—l'l &Y (@) — &e.,
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or putting z=0, .
f (m) —f (0) +mAf (0) + l” 1 :f(O) + &0'7

S (—m) =f(0) - maAf 0+ 1'| Af (0) — &e.,

known formulas analogous to those of Taylor and Maclaurin.

9. We can also obtain other expressions for f(z) in
terms of m’|™.

For since A=E-1,
1

and A=§ .

It follows that 1=2"(E-1)",
1=A"(E-1)™,
1=E"(1+4)",
1=E"(1+A);

from these four expressions we get

@) =2F (o4m) - mEF (w+m-1) +—1:— 3 (o+m-2) - &,

f (@)= A% (@-m) + maf (—m+1) +1.—,1 Af (@+m—2) +&e.,

J@=f(@+m)-mAf(x+m)+ l'l' Af(a:+m) &e.,

F@ =flo=m)+maflo—m)+ o Af(o—m) + &

Expressions for f(x) in terms of the factorials of some other
quantity m.

10. The formulas of Art. 8 afford an easy proof of the
binomial theorem of factorials.

Expanding the left-hand side of the following equations
by those formulas we have

! -1
(@+m)"I'=a"+ n @+ 1) '"m+ 25y T (x+2)""'m" ™ +

+’;,—'|, (@+ )" 1w + &,
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21
(z+m)nl-1=zul-1+ . nza.al—lm_*_’;’lll | L

| -1 -1

2] -1
(z=m)'I'=a"'—n(z+1)""I'm +?1—,|—|; (z+2)"*)'m"|* — &e.,

HAY 3 (@) P e,
] | -

1
- - n
(z__m)nl |=wn| 1__ wl—l'lm_'_ . wﬂllmtll_&n.

1%

r|-1
T

11. Let v denote 1~ E7, a difference used by German
writers. Then y™ is the function generally denoted by &.
And we have

vxnll =zu|1 - (w_ l)nll’

=z ' {z+n-1-(z-1)} ,
S-111
= i*y
&.Il = l w‘flll
n+1

ve' =27 - (x-1)"|"
= (o= 1) o= (=)
=n(z-1)"""

8ol = s (@ 1)

Formulas that are occasionally of use.

I have now, I hope, written enough to call attention to
the Factorial Notation. I hope at some future time to make
a communication to the Journal, containing some other pro-
perties of Factorials.

Trinity College, ’ H. W.E.
May, 1867.
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ON A PROPOSITION IN ATTRACTIONS.
By E. J. RouTtH, M.A,, 8t. Peter’s College, Cambridge.

ET a number of particles mm,...attract another particle P
with forces which vary inversely as the n+1™ power
of the distance, and let-

V=33,
7

then, if dV be the difference between the value of V at
any point P, and that at an adjacent point P, where PP’ = dw,
the attraction on P resolved in the direction PP is the
limit of

1dV

X—n dz’

exc;ytinf when n=0.
. For let m be one of the attracting particles and let

P
P

mP=r, and §=the angle mP makes with PP, then ulti-
mately, mP =r+dx cosf. And the increase of V, so far
as it depends on m, will be

m m m

r+dxcosd) 7 ,ﬁcow.nda;;
14V m cosf
therefore 147 5 m el

=resolved part of the force in the
direction PP,
This quantity ¥V is called the potential at P.

Def. Let two surfaces 4, 4’ be so connected with an
external point 8, that if any radius vector SPP' be drawn,
catting them both the product SP.SP is a constant quantity
«*, then we may call these surfaces reciprocal surfaces, and
the pointa P, P’ reciprocal points.

Prop. To compare the attractions of two reciprocal bodies
on two reciprocal points.

Take any two reciprocal points Y, Y not on the surfaces,
then SY. ng' =« Eet us compare the values of the poten-
tials ¥, V' of the two surfaces 4, 4’ at the two points Y, Y".
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With vertex S describe a cone cutting off from the surfaces
two elementary areas PQ, P'Q. Let the law of density
over the two surfaces be represented respectively by

A " and A
SP B’T’I’

mass
(dist)™*

and let the law of attraction be

area PQ A"
potential of PQat Y _ PY" ' SP"
potential of PQ at ¥’ area PQ A" ~

PY™ " 8SP~

But because SP.SP' =«"=8Q.8¢Q the triangles PSQ,

Q'SP are similar, and therefore
area PQ _ SP*
area PQ  SP*'

Again, Pand Y being any two points, and P, Y’ the re-
ciprocal fmints, the triangles SPY, 8Y "D are s{milar; and
PY SY_ ¥
PY 8P 8P.8Y"

Hence substituting, the ratio of the two potentials becomes
_ 8sp* §p" 8p™ A
- 8P* 8Y"" 8P™°
SP v
AN ) el

Hence, provided m+m’'+n=4, this ratio is constant, and
the same for all the elements. ﬁenoe, for the whole surfaces,

VofdatY A™™ 1

VofAatY' « " 8SY"
Thus, when the gotential of one surface is known, that of
the other may be found. .

Then

theref(;re

A,
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If instead of comparing the potentials of the surfaces we
wish to compare those of the volumes, the mode of proceeding
will be the same as before.

YY

Take two reciprocal elements PQR, P’'Q'R’' as before,

vol QB A"
potential of PQ at ¥ PY" ° SP™

potential of P'Q at ¥'~ vol QF A"
P'Y™ *SP™
and because SP. SP’ = constant, differentiating
S8P.d(8P')+ SP'.d (8P)=0,

or SP.P'R' = SP'.PR,
;nd, as before, the areas PQ, P'¢Q are in the ratio SP*: 8P,
ence .
vol PQ  8P°
vol P'Q ~— 8P™’

and the ratio of the potentials will now be found to be
)
hence, provided m+m'+n=86, this ratio is constant, and
the same for all elements, and therefore for the whole volumes ;
VofdatY _A™™ 1
Viofd atY'  «™* SY"’

If instead of surfaces or volumes we wished to compare
the potentials of two arcs 4, A4', then we may prove, in
the same way, that provided m +m' +n=2,

VofdatY ™ 1
Viofd atY «* 8Y"°

From these results we may infer the two following

properties.

1. If the Potential of an arc, surface, or volume 4’ be
constant (= V) the density being supposed to follow the law

therefore
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S—}:—'ﬁ, then the potential of the reciprocal arc, surface, or
volume will be the same as that of a certain mass ll[' collected
at S, provided the demsity follows the law % where
m+m' + n is either 2, 4, or 6, according as the bodies con-
sidered are arcs, surfaces, or volumes.

2. If the potential of an arc, surface, or volume A4’ be
the same as that of a certain mass M’ collected at a point O,
then the potential of the reciprocal will be the same as
that of a certain mass M collected at O, where O, O are
reciprocal points. And this mass M may be found thus.
By the previous formulee,

A M 1
Vor 4 on Y—x,._” oY 57"

A M 8Yr 1

= OY* 08 BY
therefore M=h—n'g,;8—0,

where u is either 2, 4, or 6.

In the following applications of these two theorems it
is to be understood that the law of attraction is the inverse
square.

Theorem. The potential of a spherical shell of inde-
finitely small thickness, whose density varies inversely as
the cube of the distance from the centre at an tnternal

8
particle, is constant and equal to 4—:,; where a' is its radius.

Reciprocal Theorem. The centre being the pole, the
reciprocal of such a surface is a homogeneous spherical shell,
and therefore, the potential of a spherical shell at an ex-
ternal point is the same as that o 8 certain mass collected
at its centre. And this mass is % 4:,? = 4wa® which is
the mass of the shell itself.

Theorem. The potential of a homogeneous spherical
surface of radius o' at an internal particle Y is constant
and equal to 4wa'.

Recyprocal Theorem. Take the pole 8 either within or
without the shell, it is easy to see that the reciprocal surface
of a sphere is another sphere. Therefore the potential of
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a spherical surface whose density varies inversely as the
cube of the distance from a point S at another point Y,
separated from S by the attracting surface, is the same as
that of a certain Inass collected at &S.

This mass is % 4ma'. For let ¢ be the distance of 8

from C the centre of the sphere 4. Then 8 being the centre

of similitude of the two spheres, if «* be taken equal to

the rectangle of the segments into which a chord from 8§ is

divided by either sphere, t.e. equal to i (c*—a') the two

spheres become identical, and therefore the mass collected
47\'a

at §=—75—+..

+(c'—a

Theorem. The potential of a spherical surface of uniform
density and radius o' on an external particle is the same
as that of a mass 4ma™ collected at its centre.

Rectprocal Theorem. The potential of a spherical surface,
whose density varies inversely as the cube of the distance
from a point S, on another point Y on the same side of
the attracting surface as S, is the same as that of a certain
mass collected at a point O.

This mass is )L. . 80.4ma”, and O is given by §O.8C=«",
K
if then we take as before &’ =+ (¢’ — a’) we find

im\’a a
M= t(=d) ¢
and CO.C8=a"
It may be readily shewn that the actual masses of the

. 4m\® 3
shells in the two last theorems are ——:r (: or ———4”7\?,.9
a'—c c—-a’e

according as § is internal or external.

Theorem. The potential of a spherical shell formed by
two spheres, whose radii are a', 5’ and the distance between
whose centres O, 0, is {', at an external point Y' is the
difference of the potentials of the two masses §ma™ and §b"™
collected respectively at 0, O,

Reciprocal Theorem.* By properly choosing f' we can of
course make the two reciprocal ﬁ;heres concentric. Therefore,
the potential of a spherical shell bounded by two concentric
spheres whose radil are a,b and whose density varies in-

* When «* is taken equal to ¢* - a*, a sphere and its reciprocal become
identical, and the geometrical construction becomes very simple. If
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versely as the fifth power of the distance from a point S at
a point Y on the same side of the attracting mass as &8, is
the difference of the potentials of two masses collected re-

spectively at O, O,
Th . 280, 4,
ese two masses are respectively g and

3
L]
x—f,—ol.;wb". By drawing a figure, and considering the

similar triangles it will be seen that if C be the common
centre,

8C*-ao , «
SOI=——SC anda =a.S—0,_a,,,
sCc*-¢ , e
SO‘——-—S—C— and b =b.m,
and the masses are therefore

D\°r.a® d AN'7D*
3.80.(8C=a) " 3.8C.(RC—7)""
and the points O, O, may be found by
: C0,.C8=a", CO, C8=1"

Theorem. The potential of a homogeneous spherical shell,
formed as before ll)); two eccentric spheres at an internal
point Y’, is equal to 2m(a” - 3") - 3§ w(0,/ Y™~ O,'Y"). .

Rectprocal Theorem. The potential of a spherical shell,

formed as before by two concentric spheres and whose density
varies inversely as the fifth power of the distance from a

any two spheres APP, AQQ’ be described touching the given sphere

¥

in 4, where SA is a tangent, then it may be eas{}y shown that the
potential at ¥ of the element PQ whose density is 5B bears a constant

ratio to that at ¥’ of the element P'Q’ whose density is unity; hence
the potential at ¥ of the whole sphere with variable density bears
a known ratio to the potential at ¥’ of the same sphere supposed
homogeneous.
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point § on a point Y separated from S by the attracting

mass, is

" 2mAd w1 27rAL , ,
=57 (=¥~ 5y (07" 0,77

_2m\ ad b
- 8Y° {(c"—- ) (c"—b')}
2m\ (OY & oY &
~3.87 {(—c"—a’)’ ‘BT F-b) m?'} ’
_2mN (@' =) (¢' - a'P) 1
= (c’—a”'(c’—b’)' 'S_Y

9m ( 0, 0¥ ) 1
T3 (@=ay -y’

We may find the attractions of other surfaces besides
spheres. For example, the potential of an ellipsoidal shell
at an internal point is constant, whence taking S at the
centre, the potential of the surface of elasticity, the density
varying inversely as the cube of the distance from the centre
at an external point, is the same as that due to its whole
mass collected at its centre of gravity.

We can put these results of the two theorems in page
(132) into a more convenient shape. Let N, N’ be the
masses of the two reciprocal bodies, then, by the same sort
of reasoning as before,

SN _gpm™mte s
SNt ’
A ™ dN
S N= ;,—,.:’,' . f g_P—T, .
(1) In the first case the mass M collected at S
= %‘ . V', and therefore
M constant potential

N "~ actual potential of whole mass at S”

If therefore we can choose Y’ to coincide with S, this
ratio is unity, and therefore the mass M collected at S is
the actual mass of the body.
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(2) In the second case, the mass M collected at O
M
N
M

. y _ 8o’ _ potential at § of M collected at O
. N_f aN’ actual potential at S
(5P

If then, as before, we can choose Y’ to coincide with §,
this ratio is unity, and therefore the mass collected at O,
the reciprocal of g , is the actual mass of the reciprocal body.

If the point Y’ can be chosen to coincide with 8, then
Y can be taken at infinity, and it follows therefore that if
the potential at a point Iz that can be taken very distant
be the same as that of a mass M collected at a point O,
then M is equal to the mass of the body. It may also be
shown in a similar manner that this pont O is the centre
of gravity of the body. The following investigation will
put this mn a clearer light.

Take O for origin, and let OY=c and OP the distance
:lfl' any particle dm at Pfrom O=r, and let the angle POY =6,

en

V= -
f(c"—2cr cosd + )
= d—? [1+nr°°so+3{(n+2) ”028’0-—’—:}+...] .
c c 2 c c

‘We have to determine under what circumstances this can be
put into the form

dm

a constant + %I,

equating the coefficients of the several powers of ¢, we have

M= [dm,
whence M is the mass of the body. Also
fr cosfdm =0,

except when n =— 1, and then it will be sufficient to equate it to
a constant. In the first case, it follows at once that O is the
centre of gravity. In the second case, since the line QY is
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quite arbitrary, it is easily seen that the equation cannot be
satisfied unless the constant is zero, and therefore we infer the
same conclusion as before. Again

(n+2) fr* cos*8dm — [r*dm =0,
except when n =—2, and then it will be sufficient to equate it
to a constant. Taking Y in the axis of  this becomes
(n+1) f*dm = [y*dm + [z'dm,
and similarly taking Y in the axes of y and 2, we get
(n+1) fy'dm = [2*dm + [«’dm,
(n+ 1) [2'dm = [ dm + [y’ dm,
and these three equations cannot coexist unless n=—2, or
n=1 and the three integrals equal.

In the former case the law of attraction is as the distance,
and we have, in all cases,

V=[rdm + " [dm
= constant + potential of M collected at the centre of gravity.

In the latter case, the law of attraction is as the inverse
square of the distance, and the potential can only be the same
as that of a mass M collected at the centre of gravity when
that point is such that every axis through it is a principal
axis.

In a similar manner we can determine in what cases the
potential at an internal point is constant ; as before

dm

V= 5
(¢* —2¢r cos + )

ctcog’d

dm ccosd =n
= 7[1-}-7: - +§{(n+2)—7——-;,}+...],

expanding in powers of c;becanse c is now less than ». It

may similarly be shown that this cannot be independent of
c unless n =1, that is, the law of attraction must be inversely
a8 the square of the distance.

When the force of attraction varies as the simple inverse
power of the distance, then n=0, and the potential of an
attracting mass takes a different form; but in this case the
quantity we have called V' becomes the mass of the body,
and therefore the reciprocal theorems, though they no longer

YOL. II. L
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apply to the attractions of spheres and other bodies, will still
enable us to find their masses when their density varies as
some power of the distance from a point.
em. The surface of a sphere of radius o' is 4ma™
and its volume is §ma”.
Reciprocal Theorem. The surface of a sphere of radius «,
whose density varies inversely as the fourth power of the

4
distance from a point, is (:—‘?Td’;—:—, , and the volume of a sphere,

whose density varies inversely as the sixth power of the
4ma’\’®
3(c*—a*)"®"

Many other theorems may be established in a similar way,
but as the volume and surface of a sphere, whose density
varies as any function of the distance from an external point,
may be found more easily by another process, such methods
are comparatively useless. For instance, by dividing the
spherical surface into circular elements whose planes are
perpendicular to the straight line joining ¥ and the centre,
it may be shown that the surface of a sphere whose density
varies inversely as the »™ power of the distance from Y, is

distance from an external point, is

2ma x"{ 11 }
c n=2c—al " otal )’
oo )
¢ n=2la—cl a+el )’

according as Y is external or internal to the sphere.

GEOMETRICAL THEOREM.
By the Rev. JosepH WoLSTENHOLME, Christ College.

1. THE circle passing through the middle points of the sides
of a triangle passes also through the feet of the per-
pendiculars let fall from the angular points on the opposite

" sides.
For if ABC be the triangle, abc the triangle formed by

’\
i
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joining the middle points of its sides, and CF perpendicular
-10 AB, join Fa: then a being the middle point of the hypo-
thenuse of the right-angled triangle CFB, aF = aB,

taFB=_taBF.
But abcB is a parallelogram ;
therefore L aBF = / abc,
LaFB = £ abc,
Labe + LaFe

equals two right angles, or the circle circumscribing abe will
pass through 7': and similarly through the feet of the per-
pendiculars from 4, B, on BC, CA.

2. This circle also bisects the straight lines joining the
angular points to the point of intersection of the dperpen-
diculars from the angul!;r ints on the opposite sides.

For let AD, BE, CF the perpendiculars meet in d, and

B

a

F,

A

let Cd be cut by the circle in ¢'; and join ¢'D, Fa. Then
LaDc' = ¢ aF¢ in the same segment

= £aCF,

because a is the middle point of the hypothenuse of the right-
angled triangle CFB.

Hence Dc' =Cc, and since CDd is a right angle, a
circle with centre ¢’ and radius ¢'C or ¢'D will meet Cc
again in d, or ¢d=c'C, and COd is bisected by the circle.
Similarly for Ad, Bd.

Hence d is the centre of similarity of this circle and the
circle circumseribing the original triangle; and any straight
line drawn through d and meeting the two circles will be
bisected by the inner circle.

Moreover, since 4, B, C, d, are the centres of the in-
scribed and escribed circles of the triangle DEF, we see that

L2
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the circumscribing circle of any triangle bisects all the six
lines joining two and two of the centres of its inscribed and
escribed circles.

The above furnishes a proof of the following problem
(Senate-House, Jan. 4, 1855):

‘“Shew that the diameter of the circle, which passes
through the feet of the perpendiculars from the angular
points of a triangle upon the opposite sides, is equal to the
radius of the circle described about the triangle.’

For these two circles circumscribe similar triangles, as
ABC, abe; the dimensions of one of which are twice those
of the other.

A THEOREM RELATING TO SURFACES OF THE
SECOND ORDER.

By A. CaYLEY.
IVEN a surface of the second order
G
(2, b, ¢, d, f, g, by I, my m) (2, g, 2, 0)*=0,

and a fixed plane
ax + By +yz +dw=0,

imagine a variable plane ‘
§x+ny+ &+ ow=0,

subjected to the condition that it always touches a surface
of the second order, or what is the same thing such that the
parameters £, 9, {, o satisfy a condition

(8, b, ¢, 4, f, gy b, 1, m, n) (§, 9, § w)*=0.

The given surface of the second order, and the variable
plane meet in a conic, and the fixed plane and the variable
plane meet in a line, 1t is required to find the locus of the
pole of the line with respect to the conic.

The pole in question is the point in which the variable
plane is intersected by the polar of the line with respect
to the surface of the second order: this polar is the line
joining the pole of the fixed plane with respect to the surface
of the second order, and the pole of the variable plane with
respect to the surface of the second order. Let a,, 8, v, 3,
be given linear functions of a, 8, v, 8, and £, 9, {, », be given
linear functions of §, 9, §, o, viz., i

@ B, ¢, 8, §, & B, L M N),
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are the inverse system to (a, b, ¢, d, f, g, %, |, m), then let
a, = qa + WP + Gy + LY,
B, =Wa+ BB + Fy + M3,
7= Ga+ fﬁ +¢fy + NS,
8, = Ra + MB+ Ny + B},
and in like manner,
£E=RAL+ By + &+ Lo,
7, = BE+ By + FL+ Mo,
{=&E+ 1 + El+ No,
o, =LE + My + N+ Do,
then the coordinates of the pole of the fixed plane are as
al:Bl:‘ylzsﬂ
and the coordinates of the pole of the variable plane are as
El P gn : 81)
whence the equations of the polar are
Ty Y & =0,
%y Py Y 81
Eﬂ () gn *,
a system of equations which may be thus represented
£, =Ko+ pa,
7, = KAy + pB,
§ =K\z + py,
o, =Ko+ us,
where K is the discriminant of the system
(@) by ¢, dy e, £, g, by 1 my m),

x=ax+ hy + g2 + lw,

¥ = kx + by + fz + mw,

z =gx+ fy + cz + nw,

w = lo +my + nr + diw,

the last preceding system of equations may be written

§=2x + pa,
=Ny +uB,
§=2rz + wy,
0 =AW + pud,

write
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equations in which A, u are indeterminate, and where x,y,z,w
may be considered as current coordinates, and this system
represents the polar above referred to. Combining the equa-
tions in question with the equation

fx+nmy+ &+ ow=0,
of the variable plane, we have
A (@x +yy +2z+wwW) + u (ax + By + 2 + dw) =0,
ie. A(a...)(x,y, 2 0)' +p(az+ By + 9z +dw) =0,
or what is the same thing
A:p=ax+By+yz+dw:{q...)(x, y, 2, v),

and substituting these values in the expressions for £, 7, §,
we have £, 7, {, ® in terms of the coordinates z, 3, 2, w of
the pole above referred to, i.e., if for shortness,

U=(a, b, ¢, d, f, g, b, I, m, ) (z, g, 2, w)',
P=azx+ By +qz+ dw,

then
E=%Pdll7_ aU;
7=4Pd,U- BT,
{=3PU— T,
o=4Pd U- 38U,

and combining with these equations the equation.
a...) (& & o)=0
we have (a...) (&, & @)'=0,

(a...) (4P4,U~aU, 4 P4, U~BU, 4 Pd,U~yU, } Pd, U~8U)'=0,

for the required locus of the pole of the line of intersection of
the variable Flane and the fixed plane, with the conic of
intersection of the given surface of the second order and
the variable plane. The locus in question is a surface of
the fourth order; and it may be remarked that this surface
touches the given surface of the second order along the conic
of intersection with the fixed plane.

Tth April, 1857.
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ON THE PORISM OF THE IN-AND-CIRCUMSCRIBED
TRIANGLE.

By Anxprew S. HART.

] PO not pretend to add.anything to the very complete and
elegant & priori investigation of this porism given by Mr.
Cayley in the 4th number of the Quarterly Journal, p. 344,
but the following & posteriors demonstration of the allographic
case appears to me somewhat more simple and elementary
than that given in the last number of the Journal, pp. 35—38.
LeuMa. If two chords of a conic touch a second conic,
the lines which join their extremities will touch & third conic
passing through the points of intersection of the two others.
For let 4 =0, Cpi 0 be the equations of the two chords,
and B=0, D=0 the equations of the lines which join their
extremities, then the equations of the three conics are

AC=BD, AC=M", BD=M",

which evidently pass through the same four points, and the
four points of contact are on the same right line M =0.

e elementary proof of this lemma in the case of circles
having the same radical axis, follows immediately from the
consideration that tangents to two of these circles, from any
point on the circumference of a third, bear a constant ratio to
one another. .

Now let ABC, abc be two triangles inscribed in the same
conic P, and let 4B, ab touch another conic @, then Aa,
Bb will touch a conic X passing through the intersections of
P and @, and if BC, bc* touch another conic R, passing
through the same four points, then Bb, Cc will also touch the
same conic X; therefore, since Aa and Cc touch this conic,
AC and ac will touch a conic S which passes through the
same four points. Q.E.D. :

® The tangent BC being drawn, there may be two tangents drawn
from &, and it is evident that only one of them will answer the conditions
of the question; all ambiguity may, however be removed by observing
that the right line drawn from the point of contact of Bb to the point
of contact of BC must pass through the points of contact of bc and of Ce.
The second tangent from b will obviously belong to the second conic
which passes through the four points of intersection and touches Bb.
And since this conic does not touch Aa, the remainder of the demon-
stration will not apply to it.

Trinity College, Dublin,
3rd April, 1857,
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ON A NEW SOLVIBLE FORM OF EQUATIONS OF
THE FIFTH DEGREE.

By James CockLE, M.A., F.R.A.8,, F.C.P.S., Barrister-at-Law, of
the Middle Temple.

I¥ea foot note, appended to pages 114—116 of my second
paper on the method of vanishing groups, published in
volume VIL. of the Cambridge and Dublin Mathematical Jour-
nal (May 1852), I exemplified a process which, applied to
" + Az" + Bx"* + C2™* + &e. = 0,

gives (in the respective cases of cubics and biquadratics) the -
characteristic functions

A*—3Band - 4° + 44B - 8C.
The same process applied to a quintic (put for convenience
under the form
@’ — 5Px" — 5Qx* — 5Rx + E = 0)
leads to a function no less characteristic ; for the evanescence
of one of its six values indicates that the roots are all of the
form aX+ aﬂX'_*_ aler’
and consequently, as I have elsewhere (Phil. Mag., August
1856, p. 124) pointed out, all obtainable.
The product of these six values is homogeneous and of
P
the 24th degree with respect to the roots, and constitutes the
¢ symmetric product” [l)eculiar to quintics. KEquated to zero
it affords a new solvible form which seems to me worthy of
notice for its generality, two conditions only being involved,

one of which may be dispensed with by substituting = + 4
for z in the given equation.

Let 8=P+ R,

G=P@ +4(3PS—-2@) PS+ @ + 8+ QSE,

H=Q(6P8—@)— SE,

K=PQ@+ PS(PS-6Q")—-Q'(PS— Q)+ QSE,
and, by means of

w—Qu'+ PP+ 8)u—PQ=0,
let u be eliminated from
Gu' + PSHu + P*K,

the result, freed from extraneous factors, is the ¢ symmetric
product” of which we are in search. - '
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Let Pbe zero and @ finite. The evanescence of the sym-
metric product depends upon

G=¢Q"+ R+ QRE=0,

a property of a form of Euler’s.

Let P be finite and @ zero. The corresponding con-
dition is 8= 0,
and De Moivre's form is indicated.

These are verifications of the preceding results, and tests
of the extraneous factors. '

There is an oversight in my solution of a biquadratic by
this method. It is easily corrected, as follows.

From (see Cambridge and Dublin Mathematical Journal,
vol. vI1., p. 116)

P'=0and 4'=0,

we deduce successively
h=Y Hh=Yo B=-0@'+y") D=0
and the roots are, thus, determined.

76, Cambridge Terrace, Hyde Park, *
6th April, 1867,

ON THE GEOMETRICAL INTERPRETATION OF
THE EXPRESSION #¢ - s,

By H. W. ELPHINSTONE, Trinity College.
(Continued from p. 76.)
IT has been pointed out to me, that the condition which I
gave for the existence of a ridge, in a former paper, is not
sufficiently general. This may easn}y be seen, and the true
condition found, by transformation of coordinates.
Let 2, y, # be the old axes , 7, { the the new axes, and
let the cosines of the angles between them be given by the
annexed table:

Eﬂé“

Then if V be any function of z, y, 2,
we have
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av _ dv av v
E?=a_+alT+aaE1
av ., dv av av
E dx+b| dy+b: dz’
av_ dv av av
d;‘_cd—ac+c‘7i§+c' )

and if V=0, we have

av dVd;’ =0, dV+£ll’d§ o
FETETE dy T dqdn

Hence, we get

=b

v, av_ dv
‘E_ a%'i-al-d—y"l'a,dz
LN L LA L
Yot
V. 4,4V

d_{'__bdx b‘d +6
R | G L4
S otz

Let V=f(z,y)—2=0

be the equation to the surface; then p, ¢, being the new
values of p and ¢, we shall have v

= ap+aqg—a
oopteg-g,’
bp+bg-b,
pteg—c,
Now when there is a ridge, p and ¢ become equal to gero,
owing to a factor w, common to each of them, vanishing.

Let then P = uw, g =vw;

Q==

au+av)w—a
therefore p== fzmrv))wﬁ
1 2
(bu’ + bnv) w— bl
P e a e

(cutcep)w—c,’

The most general forms of p and ¢ that give rise to a ridge.
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I may remark that p, g, satisfy the equation ¢ — »¢=0.
For if Tn signifies that after differentiation w is put equal to
zero, we shall have, writing «, y, # instead of £, 5, { respec-

tively, ; 2 o
T= = Tdn, &’

_dp, _ df dw

=y = dwdw, dy

dg,  &f dw

&z = dydw, &’

_dg,_ &f dw

T dy  dydw,” dy’

which values of 7, s, ¢ satisfy the equation & —»¢=0, when
8 — rt = 0 neither owing to , s, and ¢ being separately
equal to zero, nor owing to p and g being of the above-
mentioned forms.

Suppose that s' —r¢=0 without r, s, ¢ being separately =0
?nd wngnout 2 and g being of either of the above mentione
orms

It has been pointed out to me that I fell into an error at
page 76 of the Journal, in supposing that because the two

values of ?Is are in this case equal, the two branches of the

curve of intersection would touch at the point. This mis-
take, which occurs in several elementary works, is men-

tioned by Mr. Salmon in his “Higher Plane Curve?};
p- 29. He there points out, that when the two values of n
in a plane curve become equal, there is generally a cusp and
not a point of osculation. The condition for the existence
of the gntter is that the equation to the curve, when referred
to the double point as origin, becomes of the form

v +op,+u +&.=0,
where u_ is a function of » dimensions in £ and #.

If we apply this reasoning to the curve formed by the
intersection of a surface and 1ts tangent plane, we see that
in the case which we are considering the curve of intersection
will generally bave a cusp ; while the radius of curvature

k
k= rm® + 28m + ¢
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of a normal section along the tangent to the cusp will become
infinite, and will ehange sign on each side of the cusp because
&' —rt does so. Hence this section will have a pomt of in-
flexion; and the form of the surface near the point may be
represented as follows: Let there be a.plane curve containing
a point of inflexion; let a second curve in a plane perpen-
dicular to the former contain a cusp, and move along the
former so that the tangents at the cusp and at the point of
inflexion may coincide. The locus of these points, which I
pros{)se to call a terrace, will separate the convex from the
saddle-shaped parts of the surface. A familiar example may
be seen on the common bell, the upper part of which 1s
convex and the lower part saddle-shaped.

If on the other hand there is a true point of osculation,
the radius of curvature of a normal section containing the
tangent common to the two branches of the curve of inter-
section of the surface and its tangent plane will become
infinite, but will not change sign because s’ —r¢ does not
do so; hence the normal section will not have a point of
inflexion but a point of suspended curvature. The locus of
such points will, I imagine, present no peculiarity to the
naked eye. We may conceive its appearance as follows:
Take two bells, whose radii through the terrace are the
same, cut off the convex parts and apply the two saddle-
sha;éed arts together so that the two terraces coincide.

hould there be any difficulty in understanding how, in
the one case, &' —r¢t changes sign while it does not in the
other, it may perhaps be removed by the following con-
siderations.

The equation s*—r¢=0 is the equation to a curve which
contains the Yrojections of all the singular points, ridges,
terraces, and loci of the last mentioned points. The plane
of zy will therefore be divided into parts, in some of which
8'—rt is positive while in others it is negative. We cannot-
get from those parts in which it is positive, to those in which
it is negative, without crossing the curve, and if we do cross
the curve we must make the expression s'—r¢ change sign.
In the case of a terrace, when we proceed along the tangent
to the cusp, we do cross the curve so that s* — ¢ must change
sign. In the case of the true double point of the curve of
intersection, when we proceed along the tangent common to
the two branches we do not cross the curve, so that in this
case the expression s —r¢ cannot change sign.
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ON MULTIPLE POINTS.
By H. R. Droor, M.A,, Fellow of Trinity College, Cambridge.

1. '['HE present paper contains (1) an elementary discussion
according to an infinitesimal method of the prin-
cipal propositions in the theory of double points, including
some not to be found in Cambridge text books; (2) a
translation of these propositions into language applicable to
the case, that of most practical importance, where the double
point is at the origin ; and (3) demonstrations of several of the
same propositions according to the ordinary methods of the
Differéntial Calculus.

2. 1. Let L ) | (1),

where ¢ is an integral algebraic function, be the equation to
a curve, and let (2, y) (z + %, y + k) be points on the curve.
Then, by Taylor’s theorem,

$(@th y+A)=0
is equivalent to

dg . dp, (D¢, . & . &P
Ek+@k+§(w—h 2 b et Ik k")

1 (d’ ., d’¢ ., _
+ E.E(% i +3mhk+&c.)+&c._0...(2).

3. The curve being algebraic, none of the differential
coefficients of ¢ can be infinite.

It is also allowable to assume that the fact of some of
the differential coefficients of a given order vanishing at a
given point, while others remain finite, will not affect the
em;enti::l’0 nature of the curve at that point.

For the formule for the transformation of the coordinates
to other rectangular axes through the same origin are

e=l'+my, y=ma-ly,
and by successive differentiation we shall obtain
d-¢ = 2 Ak(', d ¢

& prarrd
where 4,0, A", &c. are all functions of I and m of the n]"
degree. If then _4¢_ be finite for any value of %, every

a7 dy

— S e
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transformed differential coefficient Zl_rf'i_d:"‘—" will be finite,
rovided / and m be so assumed as not to make 4, vanish
or any value of ».

4. T shall sometimes use »,, u,, &c.... u, for
duy  du

dch"'dyk’

d'u ., d'u d'u

a™u . AU ey, n(n—1) duw .,

%‘h +nmh k+ 1.2 dw._,dy,h k’+&c.,

according to which notation equation (2) will be written

u,+%’+ét+&c.+'ti;+&n.=o.

5. Suppose a given small value 2 to be given to %, the
equation (2) will be very approximatefy satisfied by

do
dx
k: == T¢ hn
&y
and %, will be the only value of % satisfying equation (2),
which is of the same order of smallness as 2. The reader

will easily see that every point (z+ %, 3/'*'";) will be on

some branch through (x, y), while the other values of %

satisfying equation gz) are finite, and correspond to the points

where other branches of the curve meet the ordinate whose

equation is (E=aé +4).
(]

So long as % has a finite and determinate value, the

point (x, y) cannot be a multiple point, .because %, has only
one value for the same value of A, ; nor a conjugate point
because %, has a real value; nor a cusp, because it is real
both for positive and for negative values of A,
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If only one of the quantities Z—g and §—¢ be finite, and the
other be zero, the equation may, as has been shown in
Art. (2), be transformed to other coordinates through the
same origin, for which they will both be finite.

The point (z, y) will therefore not be either a multiple
point, a conjugate point, or & cusp, unless both

d
%=°’ “‘“‘33“0 ..... e (3).

6. For points where these equations are satisfied, equa-
tion (2) becomes

Lo o L6 I
el +2d—w7yhk+—y-,k’
L (@0, o B s PO s, P
+§(@h +3dz,dyhk+3dmly,hk’+dy,k)
LS R SOOI @),

3.4

and if as before we assume A=4%, there will be two values
of k, real or imaginary, equally small with 4. These values,
and not any of the other values of %, will correspond to
branches through (z, y).

e d'¢ . d’¢ 2
I r= R~ e (&c—dy)’
these two values of % will be real, for equation (4) may be
transformed into

N R I
Y

in which we may substitute for % in u,, u,, &c. the values
obtained from the last equation by omitting those terms.
We shall thus obtain

2o Y (28

(‘%ﬁ)u.féﬁsh‘ - “% )-% bt - Ph} - &.
dy
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Provided 4, be below a certain finite magnitude, the quantity
on the nght-ha.nd side of the last equation is always positive,
and the two values of % are therefore real.

We shall therefore in this case have two real branches
passing through the point (z, ).

If o9 .% < (d%)’,

the quantity on the right-hand side of the last equation will
always be imaginary, and there being no real branch through
(x, y), that point is a conjugate point.

¢ ¢ _ (d'$
8.1 R (da:dy)
the equation (4) becomes

W@/ ()4

- (d°¢h' 2¢ 11359 w+d"’k')

de® d:c"dy dzdy " " dy
v,
- 3—1 —&C. vttt (5).
I put the positive sign before }\/ ‘;—'—}’ , but of course its
sign will be the same as that of (ch .

d’¢)
Substituting &= %— h,, in the terms on the right-
W

hand side of equation (5), we get

{«/(J) /(&)

ey oo V8, oy 2] o (50)
Y

Q“
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The sign of the quantity on the right-hand side d(:gends on
that of its first term, and unless the coefficient of that term
be zero, it changes with the sign of 2,. Therefore, generally,
k will have two real values very nearly equal for one sign
of k, and two imaginary values for the other, and on one
side of the point (x, ) there will be two real branches with
a common tangent, and on the other nothing. The point
(@, y) is therefore a cusp.

9. The exceptional case in which the sign may remain
the same, whether %, is positive or negative, is when

)

V(w)

makes the coefficient of 2 vanish, that is, when

V(@)r /()

is a factor of u,.
Equation (4) then becomes

W@m/ (@4
+ {N/(%) h,+,\/(‘%,”) k} 0+ 55+ & =0...(6),

assuming v,, a function of 4 and % of the second order,

RN

o ER Gy o

Substituting % = — ﬁg|—)h, as before, we shall have

k=—

&
-

g3k

[
|
e
[l
=
. -

VOL. II. M
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10. If P be positive, the two values of % equally small
with 4, will be real and nearly equal, whether %, be positive
or negahve In this case there will be two real branches
hava a common tangent at the point, which will be what
is called & point of osculation.

If P be negative, these two values of % will be imaginary,
and the point will be a conjugate point; but inasmuch as
the imaginary parts of these values are of the order k', the
imaginary branches may be considered as having the 'real

line{«/(@) \/( 4’)7: 0} through (z, y) 8s & com-

mon tangent.

If P=0, the sign of the right-hand side will depend
on the terms beyond u, and also on any part of v, which

from involving the factor )\/ (‘Zg’) h+ \/ (‘fi;d’) k, was left
5

out of P. (See the example in Art 15.

11. The expression for P may be determined as follows :

ab,s, . TP ., ¢
) k35 hk+3ddhk’+ »

SO G

‘ d when k= - (%)h
. %._;3 ,,

the particular value of v, is determined by differentiating
both the numerator and the demominator with respect to

k, and is d’¢ P 2
4
da:"d h'+6dmdy,h,k+3d - I

W(‘?}‘)

r |de F LT 2
Rt

&
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1)
andthereforeP—T— W

d’¢ &gy
b | e, & 4/ T

T \Tdy ~ da:dy N/ * 3y I
2y e ay
d d % 6 d'¢ m
1 ¢¢ 4¢ 4
“ri|E '@y (TP Mdy'm

dy* dy’
d'¢ d’¢
A E‘ d‘¢ a2
~ &y (T3 G| TS
dy” dy’

12. If in equation (5) all the third differential coefficients
of ¢ are equal to zero, the equation becomes

W@ /@) st
whence { \/ (Z8) 5.+ \/ (fly?) } —— PRt fc;

and the nature of thé point is determined by the sign of P,
as in Art 10. It will the same whenever the first term
after u, isu,. But if the first term after u, be ,,,, the whole
. Pprocess applxed to u, in Articles 8—10 must be used.

13. If all the second differential coefficients of ¢ vanish
the point is a triple or higher multiple point, the nature of
wlm:io might be determined by a method similar to the

preceding.

14. II. The general expression for an equation of the
n]® degree in = and y, referred to a point on the curve
as origin, is

u AUt Ut e FU =0, i, (T,

where u, u, ... u, are homogeneous functions of z and y of
the 1st, 2nd v n]"' degrees.

Equatlon (2) is of this form in % and k, and the relations
between its terms, which are the conditions for the existence

of different kinds of multiple points, subsist also between the
M2
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corresponding terms of every equation referred to a point
on the curve as origin. ‘

From Art 5, we learn that the origin will not be either
a multiple point, a conjugate point, or a cusp, if equation
(7) contains the term u,. .

From Arts 6 and 7 we learn that (there being no term
u), if » divide into two unequal real factors, the origin
is an ordinary double point, the two factors being the equa-
tions to the tangents there, and if », divide into two
imaginary factors, it is a conjugate point. From Art 8 we
learn that if » =0, and » {Je of the form v’ the origin
will be a cusp, having the line v, =0 for the tangent
there, unless u, is of the form v,

These three propositions are enunciated in the 2nd chapter
of Mr. Salmon’s Higher Plane Curves, pp. 27 and 28. l}he
present paper originated in an attempt to supply an ele-
mentary demonstration of the last of them.

If equation (7) be of the form

v+ v, +u, + & =0,

we learn from Arts 9—11, that, if the results of substituting
for y in terms of # from the equation v, =0, in the expression
]

%L—u‘ be positive, the origin will be a point of osculation,
and if negative, a conjugate point with the real line (v,=0)
for a common tangent.

If the result of the substitution be zero, the origin will
generally be a cusp, but requires further examination.

15. Ex. The curve
a'y’ —ay'c — mayx’ + «* =0,
has at the origin a point of osculation, a conjugate point,

or a cusp, according as m> <or = 2.
This 18 seen when the equation is put into the form

(ay - 7—"22’).= (%’ - 1) &' + ay'x,

the term ay’z being left out of v, because ayx the part it
would co:.'t/:'ibute to v, is of a féher order of smallness
than ™%

an —- .

16. Even when a proposed equation to a curve containing
& multiple point is referred to another point as origin, it
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is often easier to make the multiple point the origin and
then determine the nature of the multiple point from the
transformed equation, than to perform the differentiations
required by the general rules given in the first part of this
paper.

17, III. Mr. Salmon (Highker Plane Curves, p. 28)
remarks that a point where two branches touch, or what
I have called a point of osculation, is formed by the union
of two double points. This suggests another mode of arriving
at the conditions established in Art 8.

If (x, y) be one of the double points, (z+ d, y + dy) will
be the other. Of the equations below, those marked (7/2) are
the conditions for (, y) being a double point, and (8) gives

the two values of Z—Z’_ at the point; (9) and (10) are the con-
ditions for (z+ dz, y+dy) being a double point, and (11) is
the equation for determining d—i at the latter point, its value
at which will of course be the same as at (z, ).

‘%’=o, %=o ............ @),
%+2%§%+%.(%)’=0 ............ (8),
%+%'dz+£%dy=0 ............ ),
%+%dx+%dy=0 ......... (10),
%*24%5%"%'(%).
e B, £ )
+ {d‘i:‘;y +2 % % + i‘ld’_y,‘é (%)'} dy=0...(11).

From (2), (9), and (10), we get
¢ T9_ (ﬂ)’
o ' dy* ~ \dzdy) ’
a condition which Arts. 6 and 7 shew to be necessary.
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Also from (9) and (11) we get

] ¢ d‘
ﬁ“aﬁ?zﬁ*ﬁ(ﬁ) 3535 «/(«Td’)
Now if

a’¢ d dy d’¢ (dy\' &b (dy\'
& P gy d T Ty @) () =0--(12)

£ o &y I¢ d_y)-
dy &7 &y de  dadyt \da)
R AT NCIREC )

da'dy ' dedy’ \dz) ' dy’

()
whence % = - dx; satisfies equation (12),

V(&)

or \/ (did’) dy + \/ (ﬁ) is a factor in its left-hand side. ‘

dy*) " dz de’

This is the same condition as was deduced in Art. 8.
I have shewn in Art. 10 that a point for which this condition
is satisfied may be either a point of osculation, the union ‘
of two real double points, or a conjugate point with a real |
tangent, the union otP two conjugate points, or a cusp, which
may be considered either as the union of a cusp with an
ordinary double point, or as its union with a conjugate point,
according to the signs given to dz and dy.

18. The following equations are obtained by differen-
tiating {¢ (, y) =0} regarding y as an implicit function of z,
‘i—i + % Z—Z =0 eireernnniniiiennns (a),
%’wdfgy. Z—Z_+ ‘;—;/L’:’. (%)'+ %.%=0...(a, ,
s 54 ot (02 9]
po(Z8 T8 YTy Aoy

dady VI @) Tl B
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By i (B

S W
rolig iy it @) En e @)
+4(d‘i’$y+§;f flz)@ ‘z j;,—o ............... @)

At every multiple point we have 9% _ 0, and %’ =0, and

dx
dy 0 dy .
Tz of the form L The two values of 7 e double point

are given by equation (). If these values be unequal or
imaginary, the corresponding values of i, may be obtained

by substituting them successively for i—z in equation (a,).

8
But when these values are equal, the coefficient of % in

3,
equation (a,) is zero, and that equation gives :—i—}= o, unless
dl
dy _ (F)

7

. . 0
which case 7318 of the form o

The condition for % not being =o is the same as was
found in Art. 8, for the point not being necessarily a cusp,
which shews that whenever %:m , the point (z, y) is
a cusp.

From equation (a) it appears that whenever %=ot R

makes the other part of that equation=0, in

=x.

Rl

In the exceptional case two values of % in terms of p
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and the differential coefficients of ¢ are given by equation (a,).
These two values will be unequal imaginary or equal ac-
cording as a certain expression, which will be found to be
identical with that found in Art. 11 for P, is positive, negative
or zero. This identity shews (Art. 10) that two unequai

values of :%-y, correspond to a point of osculation, and two

imaginary values to a conjugate point with a real common
tangent.
y differentiating (a,) we shall get an equation (g,), in

which the coefficient of E‘Z is

d'¢ d'¢ dy d'¢ (dy\' d'¢ d'
?O{dw’d'y+2_dzdy" ‘dz W'(dx) +7z?‘aw}’
a quantity which is zero, when the two values of % derived

3,
from (a,) are equal. This indicates that generally %:oc ,
when these two values are equal; but, as before, the other
part of equation (a,) may become zero, on substitu'ting their
values as found for Ey and %’,, in which case % will be

of ‘the form g, and two values of it will be found from the

8,
equation (a). If these two values of Z—z-y, be real and unequal,

we shall have two real branches, not only touching, but having
the same curvature at the point (2, y); and if imaginary,
two imaginary branches having the same curvature as any
real curve, which passing through the point has % and %

of the same value.

19. The following theorems might be deduced by ex-
amining this series of equations continued further.

(1) At an ordinary double point % has two unequal
values, and the equatio:ls a(a,), (a,), &ec.... give corre-

: dly dy
sponding real values for T &e.




On Multiple Points. 161

(2) At a point of osculation of the | order, that is, a
point where two branches have a contact of the z|™ order,

s,
% ) % %, after appearing under the form g are found

41
to have each only one value, and %{ has two unequal
real values.

(3) At a conjugate point either %, or some subsequent

differential coefficient %. has two imaginary values. In the
dy d% d™ .
latter case, Ey, d_.;:{ dz—':'/” after appearing under the

form 9,
0 .

imaginary branches have a contact of the »— 1™ order

with every real curve through the point which has

are found to have each one real value, and the two

é"_/ d‘y du-ny
& T

of the same values, as are finally found for them in the
curve ¢ (x, ) =0.

(4) At a cusp some differential coefficient subsequent to
W 2 7Y — e, and each of the proceding difforential coeffi-
cients, after appearing under the form ?—), is found to have one

single real value. The two branches of the cusp will be
found to have a contact of the n— 1™ order with each other.
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NOTE ON THE ¢CIRCULAR RELATION’ OF
PROF. MOBIUS.

By A. CavLEY.
THEOREM.
Given the points 4, B, C; P,
and the points 4, B, C;

Describe the circles a, 8, v, @ as follows: viz.
a through (B, C, P),
B “ (G4, P),
y “ (4,5 P),
o “ (4,B0),
and the circles «, 2, v, @' as follows: viz.,
o' through (', B, ¢') 'and
o through (B’, C') cutting ' at the angle at which « cuts o,
B’ (13 (0’, A') (13 m' (13 B 143 o,
Yy % (4,B) ¢ o “« v 4 e,

’

then will «, 8, o' meet in a point P, i.e. we shall have the
points 4, B', é”, P such that the circles ', 8, o/, ' pass

o' passes through (B', C', P,

B' “ (0'7 ‘A') P)’

Y ¢ (4,B,P)

o' « 4, B, 0.
We may construct in this manner two figures, such that to
three points of the first figure there correspond in the second
figure three points which may be taken at pleasure, but these
once selected to every other point of the first figure there will
correspond in the second ﬁﬁnre a perfectly determinate point.
And the two figures will be such that whenever in the first
figure four or more points lie in a circle, then in the second
figure the corresponding points will also lie in a circle. The
relation in question is due to Prof. Mibius, who has termed
it the Krews-verwandschaft (circular relation) of two plane
figures. See his paper Crelle, t. LiI. pp. 218—228, extracted

from the Berichten of the Royal Saxon Soctety of Sciences
of the 5th Feb, 1853.
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ON THE DETERMINATION OF THE VALUE OF
A CERTAIN DETERMINANT,

By A. CAYLEY.
(CONSIDERING the determinant
6, 1,
n, 6, 2
n—-1, 6, 8

let the successive diagonal minors be U, U,, U,, ...U, ..., it
is easy to find

U,=1,
U,=6,
U,= (6 -1) - (n—1),
U=0(0-4)—-3(n-2)86,
U=(F-1)("-9)—6(n—3)(F-1)+3(n—-3)(n-1),
which in fact suggests the law, viz.
U = (0+z—1)(0+z—38)(0+x—35)...(0-z+5)(0—z+3)(0—x+1)

..——"’("';‘ 1) (n—z+1)(0+x—3)(0+z—5)...(0—z+5)(0—x+3)

+ x(z—1) (‘;’: 2)(=-3) (n—+1)(n—a+3) (0+x—5)...(0—z+35)
- &e.

: yZ2(z=1).(z—-28+1)
+(2) 2.4...23

(n—2z+25—1)(0+x—28-1)(8+2—25—3)...(0—2+25+1)

(n—z+1) (n~2+3)...

to s=4x or }(x—1) as z is even or odd.

And of course if = denote the number of lines or columns of the
determinant, then U, is the value of the determinant. This
theorem, or a particular case of it, is due to Prof. Sylvester:
I have not been able to find an easier demonstration than the



164 Determination of the Value of a Certain Determinant.

following one, which, it must be admitted, is somewhat com-
plicated. I observe that U, satisfies the equation

U-0U0_+(z-1)(n-z+2)0_,=0.
And writing z— 1 and # —2 for z, we have the system
U-60U_+(z-1)(n—2+2)U_,=0,
U.,-0U_+(x-2)(n—2z+3)U_,=0,
U,-0U0_,+(x-38)(n—2z+4)U,, =0,
or, eliminating U, and U_,,
U, +{(@—1)(n—2+2) + (0~ 2) (n-2+3) — 61T,
+(z—2)(®—3)(r—z+3) (n—ax+4)U,_ =0.
Suppose, for shortness,
(0+2—1)(0+2—3)(0+2—5)...(0-z+5)(0—z+3)(0—=z+1)=H_,
and assume
U=4,,H-4,  H,_..+(-y4,,4H_,...,
where 4, , is independent of & )
U, contains the term (—-)°4,, H_,,
U, contains the term ()4, , H_,, ,
which is to be multiplied by
(x=1)(n—z+2)+(z—2) (n—z+3)—F.
This multiplier may be written under the form
(z—1)(n—z+2)+(x—2) (n—2+3)- (x—2s—1)*
—{*—(xz—2s—1)%}
— M, (o~20-1)},
if, for shortness, ~
M, ,=@x-1)(n-2+2)+(x-2)(n—z+38)— (z—25—1)%
Now ,
moltipliod into =17~ (= 2e=1}
(-4, B,
gives rise to the terms
(-)'.M;,, AH,' H_,, -.('—)'A.-s,: g,
(since {¢"~ (x—2s— 1)} H,_, ,=H_),
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or, what is the same thing,
-(-rM,, 4 H_,—-(-y4,,.H,

@y =1 g, 4=t
== _) { 24 51 z—g,:-1+An-g,¢} 30)
U, , contains the term ()4, HH "

or, what is the same thilig, (-)4 H

248 T o—as®

Hence we must have
A —-(4,,.+4, ., 4

2y 81 a—i,o-l)

+(x—2)(z—-8)(n—x+3)(n—x+4)4,,, =0,
where

M _=@E-1)(r-2z+2)+xz—-2)(n—2+3)— (z—2s+1)"

Zy 81
This may be satisfied by assuming
4,,=B,  (n—z+1)(n—x+3)..(n-2+2s—1)
for then
4, =B,  (n—2+3)..(n—x+2—1y(n—z+25+1)
4,,,,=B_,,  (n-2+3)...(n—z+25-1)
(n—z+3)(n—z+4)4 .,
=B, ,,(n—z+4)(n—2+3)...(n—2+2s -1),
and consequently
Bm (n—=z+1),
e (B T+ 28+1),
M B

6a-1 " a8y +1)
+ (z-2) (- 8)(n—x+4) B, ,=0.
ﬁnd if this equation be satisfied independently of 2, we must
ave
B,,. (22: 3) th+(m_2) (w_3) 'Bc-4,o-s= 0,
B, - (2s+ 1)B, , ,—{5z—8— (x—28+1)"} B, ..

+4(z—2)(z-3)B,,,,=0.

and these are both satisfied by

z.x—1...20—28+1

B =—%133.5
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in fact substituting this value and omitting the factor
(x—2) (x—38)...(z— 28 +1)
2.1.2.3...8 ?
the first equation becomes
z(x—1)—(z—2s) (x—28—1)— (2 —3) 28+ 43(s—1)=0,
and the second equation becomes
z(x—1)—(28+1) (x—28) (x—28-1)
— {5z —8— (x—2s+1)"} 28+ 168 (s — 1) =0,
which are identical, the first being
-z
-2+ (48+1)z—28 (28 +1)
—4sx +6s
+48(s—1)=0,

and the second being
-z
—(28+41) (" — (48 +1) =+ 28 (28 + 1)}
+28 (o — (45 + 3) x + (26 —1)" + 8}

+168.(s—1) =0,
which may be easily verified.

Hence writing for B, its value and recapitulating, the
equation

U+{z-1)(n-—2z+2)+(xz—2) (n—2+3)-F|U,,
+(z-2)(z-3)(n—2z+38)(n—2+4)0,,=0

is satisfied by

U=4,,H-4, H_..+(-)4, 4H,_,...

to 8= 4 or }(x —1) as z is even or odd,
where

H, =(0+a—1)(0+2—3)(0+z—5)...(0-z+5)(0-2+3)(0-z+1),

_z(x—1)...(x—2s+1)
4,,= 125 s (n—z+1)(n—2+3)...(n—a+2s—1),

and since for 2=0, 1, 2, 3 the values of the expression U,
coincide with those of the first four diagonal minors, the
expression gives in general the value of the diagonal minor,
or when x denotes the number of lines or columns of the
determinant, then the value of the determinant.

2, Stone Buildings, 1s¢ April, 1857.
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CORRESPONDENCE.
To the Editors of the Quarterly Journal of Pure and Applied Mathematics.

GENTLEMEN
I wish to state that my investigations con-
cerning Reciprocal Surfaces (to which My, Cayley has alluded,
p- 65) have been published in Vol. xx11I. of the Transactions
¢Ia)f the Royal Irish Academy. 1 find for the numbers which
rof. Schlifli calls 4 and « the following values:

A=4n(n-2)(n—3) (n"+2n-4)
6k =n(n—2)(n' — 4n°+ Tn’— 45n* +114n° — 1117 + 548n—960).
GEORGE SALMON.

Trinity College, Dublin,
April 13, 1857.

ON THE SUMS OF CERTAIN SERIES ARISING FROM
THE EQUATION x=u+tfx.

By A. CavirEY.

J,AGRANGE has given the following formula for the sum
of the inverse n™ powers of the roots of the equation

T=u-+ !fz, 8
B = (=) + (- g (1),

where n is a positive integer and the series on the second
side of the equation is to be continued as long as the ex-
ponent of u remains negative (Theorie des equations numne-
rigues, p. 225). Applying this to the equation 2 =1+ &,

- R ape R(R—2841) o,
2(z™) =1 T &1

_ynlr=get 91;.1.);-(7: =@t g e g (3)

to be continued while the exponent of 1 remains negative.

Let n=pus+p, p being not greater than s—1, the series
may always be continued up to ¢=p, and no further. In
fact writing the above value for » and putting ¢=pu + 6, the
general term is

+(

+9
()" Ty (be+P) oo+t 0-1)... (o~ a4 I P05,



168 On the Sums of Certain Series

Now if p+pu—8(s—1) is negative or zero, the term is to
be rejected on account of the index of 1 not being negative,
and if this quantity be positive, then since p — 65+ 1 is neces-
sarily negative for any value of @ greater than zero, the
factorial (p— 6s+u+ 6—1)...(p— 05+ 1) begins with a posi-
tive and ends with a negative factor, and since the successive
factors diminish by unity, one of them is necessarily equal
to zero, or the term vanishes; hence the series is always to
be continued up to ¢=4p.

Hence
S(ere) =1 & ;lr FACLET) {(F1—22)3 tpt+l} .
4oy (pstp){(—g)stp+g—1}...{(p—g)s+p+1} ,
1.2...9
— 0 eeerieerreere et sae e s ae s (3).

Continued to ¢ = p. .
By taking the terms in a reverse order, it is easy to derive

(e B(e )= uotp) L)) Gipde )t
 (ptpt+gs—g—1)...(u+1—g)

+) 23...(p+q)s £
—&C tereirrr e, (4).

Continued to g = . ,
Suppose in particular s=2, and t=—%1, so that the

. . -1 1
equation in z becomes %—= -97:,—-, whence z=—a or

_a
Ta+1
(@+1)" , (=) _. ma+l ~n(n-38) (a+l)’
< 7 -l+l 2 T3 )t
a+ 1)" or (a+1)*("'"
o« a -

]

, or substituting in (2)

Continued to the term involving (

Puta=— a—:—b-; and therefore

+1———b a+1 b a+1 _ ab
GTI=Te Ta Tavb’ & (@tb)?
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whence
a'+b'_l_7n ab n(n—3) a'F’
Gtor " T1(@rbr T 12 (a+d)
(a+B)—a"— 5"
nab(a+8)

—&e. ... r(6),

or =@+5 =22t by ab
(n—4) (n—5)
2.3

to be continued as long as the exponent of (¢+25) on the
second side is negative.

This formula, which is easily deducible from that for
the expansion of cosnf in powers of cosf, is employed by
M. Stern, Crelle, t. xx. in proving the following theorem:

+ (@+B)™" @' = &e. ... (T),

_, n-=3 (n—4)(n-—5)_
If 8=1- 5 + 23 &e. ......... (8).

Continued to the first term that vanishes, then according as
n is of the form 64+ 3, 6k + 1, 6k or 6k +2,

3 1 2
‘S=1_l, 8:0, S:—-;", S=;‘ ......... (9),

which is in fact immediately deduced from it by writing

b=wa, » being one of the impossible cube roots of unity.

Substituting the above values of z in the equation (4),
1+a)™-(1+a)*

(pt)p & (p+2)(p+1)p(p-1) a
=+ 1)“{” Fes e FVY (a+1)’+"'}

(1+ay +(1+a)”

1, p @& (p+)p(p—-1) o
= % {;* g ait 2.3.4 @iyt
............... (11),
whence ( ) .
- ptl)p «
(l+a)’“+(l+a)’—(2p+l)a{l+ 23 a+1+---}
1 p o _
+2p {1—) + E m"'n-} —Usuppose ...... (12),

Le. A(-F(1+ap=(-y"Uor (1+ay=(-) ST
YOL. IL N
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Where A and I refer to the variable p. The summation is
readily effected by means of the formule

S(—y*(2p+1)(p+s+1)...(p—8) = (=P (p+s+1)...(p—s-1),
(=" (p+s)...(p—8)2p=(-)(p+3)...(p—s—1).
and thence

{1 p(p-1) @  (ptl)p(p-1)(p-2) o
(o= {1+ 2 o (PRIR RS o)
+a{1'1;+ (p+1l);’.§.1”“1) lfa+ } ...... (13),

a formula of Euler’s (Pet. Trans. 1811) demonstrated like-
wise by M. Catalan (Liouville, t. 1X., p. 161-174) llg in-
tﬁe tly different

duction. It may be expressed also in sligh
form ( ) . | ‘
_fi, (ptl)p o  (p+2)(p+1)p(p-1) «
(l+a)’_{1+ 12 It+a” 1234 Tyt
_a (p. (p+lp(p-1) o
+l+a{l+ 1.2.3 Txat e (14).

The two series (13), (14) are each of them supposed to con-
tain p+1 terms, p being an integer; but since the terms
‘after these all of them vanish, the series may be continued
indefinitely. Suppose the two sides expanded in powers of p,
the coefficients leobe separately equal, and thus the identity
of the two sides will be independent of the particular values
of p, or the equations (13), (14), and similarly, (10), (11), (12
are true for any values of p whatever. It is to be observ

that the series for negative values of p do not differ essen-
tially from those for the corresponding positive values; as
—a

may be seen immediately by writing—p for p, and T+

for a.
Suppose next s =3, or that the equation in z is =1+ &,

. — 2
to rationalise the roots of this, assume t=4(B' D then the

B +3 W ’ 3
T oo e “’=‘~.’.(ﬁ11)’ ”=52?ﬁti)’ ?g*tlv
and hence
2"{(B+ 1)"+ (_)u(ﬁ_])n}+(ﬁl_l)'=l _n t+"_(n____5.) ¢
B+ 1 1.2

_ n'(n=T)(n—8) £t (=) n (n—2r—1)...(n—38r+1) ¢

1.2.3. 12 --.(13),
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4(B-1¢

where t=— 5, and the series is to be continued up
(Be+3) s n-l %-2
to the term mvolvmﬁ t3,t3,orts.
Again, from the ormula (4) we deduce the three following
forms,
(e 2B+ D"+ (B 1)} +(6 - 1
2% (B -1)"
_a, (1 (ﬂ+1) (B+3)(p+2)(p+1)p (p—1)
=3u {» o 0t 2.3.4.5.6 ¢
(k+2g—1)...(b-g+1) ,
+ .. (=) 93..8g Lo (16)

(_ )“ 20,4,‘“ {(B + 1 3u+1 - (_)n(ﬁ )D[L*H} (Bﬁ — l)lp'ﬂ
(- 1" (B +9)

=(3,,,+1){ ("_+2l("_'*'_l)ﬁrx

2.3.4
4 et (p+3)(p+2)ptp(p-1),
2.3.4.5.6.7
+(-)'(”+:g §q+§+l) e (17),

(_ 2»,‘49{( + l)a,.ﬂ_'_ (_yt(ﬁ_ 1)’,“"} + (ﬁ' l)’f‘ﬂ
i 2w (8 -1y (8 +3)’

~(3u+2) {#;rl (p+3Xp+20pt+ )

2.3.4.5

_ (u+ 29"‘ 1) (u—g+1) \
+(=y NCTED) ...... (18
all of them continued up to ¢ — u.

2, Stor:e Buildings,
18t Agril, 1857,

N2
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ON THE TRANSFORMATION OF COORDINATES.
By SaMUEL RoBERTS, M.A.

N a former paper gVol. IL of this Journal, p. 39) I em-

ployed the general linear transformation from ',y 2’ to
az+by+cz ax+by+cz, ax+by+cz and pomnted out
the meaning of the new constants introduced. My main
object mow is to shew more fully than therein appeared
that this transformation is symmetrical, comprehensive, an
convenient as a basis for the theory of curves.

When we transform from

utoax+dy+csz
v to a,:c+b,y+c,z}
wtoaxr+by+csz

we have by inversion

Uy v, W
z equivalent to { b,b,,0,

Cy3 Cyy Cy

%, 0, W
¥ equivalent to {c, c,, c,}
@138y %4

b,b,5%

%, v, W
z equivalent to {a‘,a,,a.} y
17 722 7

since we may remove the common factor

alblcl
ab crt.
a b c

3 88

Thus it is put in evidence that the three points whose co-
ordinates are respectively proportional to e.aa,, bbb, cc,c,
are the angles of the new triangle of reference z, ¥, z}.
I may remark that the leading problem of Mr. ayle{ 8
paper on certain forms of the equation of a conic (Vol. IL.
p. 45) is readily proved by the direct use of the above
transformation, which enables us to deduce from a given
system of conditions relative to u, v, w, the corresponding
gystem relative to , y, 2. This is the fundamental process
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of which the following pages contain a few illustrations.
An actual identity will be shewn to exist between several
processes usually employed without reference to their com-
mon_origin.
We take then, as our basis, the transformation of U=0
from » v w to
a,sindx + b, sinBy + ¢, sinCz,
a,sinAx + b, sin By + ¢, 8in Cz,
a,sinAx + b, sinBy + ¢, sin Cz,
where aaa,, bbb, ccc, are the coordinates of the angles
4, B, C'of the new tlrfa'x,lgle of reference.
The development may be written

Usin"Az" + Asin"" 4 sinBr™'y + A sin""' 4 sin Cz* 'z,
a da ca

L | PR LR | ] M : o -y n-g
+ i3 {a sin By'+£ sin’ Cz +2aﬁ sinBsin Cyz} sin' y

+ Usin"By" + Asin* " Bsindy™ "z + A sin™ " Bsin Cy* 'z,
b ab ob

+ 1 A*sin’42” + A'sin' Oz + 2AA sind sin Czz} sin™ ™ By*™
1.2 b abod !

+ Usin"Cz" + Asin™" Csindz""z + A sin™* C'sinBz""y,
[] ac be

+ 11_2 {.A,' sin'4a’ + A sin'By" + 204 sind sin Bzy} G O™,

+ e =0y ceerieniirninnnes (2).
A &c., meaning b,D.‘+ b.D,+ b,D.,a &c., and the subject U
da s

being suppressed. If in this equation we make z=0, the
remaining terms give an equation in z and y, determining
the intersections of U and 2. Now if p be any point in
AB, pa, pb, the perpendiculars from it on BC, AC, we

have

pasind _ Bp

pasinB~ Ap’.
or the ratio in which 4B is divided by p. This considera-
tion immediately conducts to the equations of the polars of
the curve. They, including the tangent, are formed by
successively equating to zero, the coefficients of the resulting
equation when z=0. It is unnecessary to pursue these de-
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ductions here. If we form the discriminant of the terms in
z and y, we obtain the condition that a line passing through
aaa, and bbb, may touch the curve, or aaga, being
va.rlal)les, the equation of the tangents through 555, As
a particular case of the above transformation, if we multiply

the original equation by ", transform from
vz to ¥z,
7y to vy
yzto— ax— By + 2/,

and proceed to take the corresponding discriminant, we have
the condition that ax+ By + 9z =0 may touch the curve, or
the reciprocal, if a8y are variables. ere is, however, the
usual irrelevant factor 4™, for strictly speaking we have
obtained the condition that the line shaﬁ' touch " U=0. It
is obvious that in the foregoing process it is immaterial
whether we suppose z = 0 before or after transformation. The
former assumption is tantamount to the usual procedure..

The condition that a line passing through two given
oints may touch U=0, may be obtained from slightly dif-
erent considerations. If the first polar of a point p, the
first polar of a point ¢, and the line through {, ¢, intersect in
a point, (pg) must be a tangent. For let » be the point of
intersection, then since r is on the first polar of p,p is on
the polar line of r, and similarly ¢ is on the polar line of
r, and therefore (pq) being the polar line of a point on itself
is Ja tangent. Hence the resultant of the _elimination of

xyz from
, dU ,d(_]’+ ,dU_O
T g dy Y=

.adU a0 ,dU _
x d_.’l}- + y’ z?; + 2 Iz = 0,
(ylz" _y"z') x + (z'm" — mIzll) y + (xfy" — z"yl) z — 0’
ives the required condition, containing x'y'z’ z"y"2" in the
egree n(n — 1) and the coefficients of Uin the degree 2(n — 1).
These equations may be put under the form
" ) dU "1 0 dU
(zz-zz)d—w+ (yz-—-yz)@=o,

’n " _r dU " 1 ' n dU
(€Y' —2y) 7 + @7 -y2") Z =0

v’ ’ ‘0

e - ') o+ (& ~2'2") y + (&Y' ~2y) 2=,

A3
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or if we require the condition that az+ By +vz=0, may
touch U, we iU

B—--ady =0

dU AU _ )y e (a)
E —-—a E =0/
ax+By+yz=0
@8 indeed is clear from the form of a tangent. There
remains however the unavoidable irrelevant factor.
If we required the condition that V=0 should touch
U=0, and attempt to obtain it by eliminating a variable

between V and U, and taking the discriminant of the result,
the process is eqmvalent to eliminating{between

dU  dU de dvV dV dz
&t & " wta &m0
V=0,
dU dU dz avV 4V ds
AL "I TR R T
bet aUu dv _dU dV_O
or betweon dz dz  dz dm !

dv dv _ 4y av
dy "dz dz "dy
V=0,
of which (a) is a particular case. It is easy to see, in fact,
that the usual methods of forming the condition} are ob-
tained by selecting three equations from the followmg

aUu dV dU dv

=0,

PR i i e P U=o,
aU dV _dU av
T do e dm = O V =0,
dU dV dU dv
d‘?.z—'gg.@=o, ..................... (3),
the simplest system, as Mr. Salmon has shewn, being
U=0,
V=0,

4y av _du av
dx'dy dy "dx
wherein it is easy to account for the irrelevant factor.

=0;
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If each of the coefficients of the terms in = and y of (2) vanishes,
U will contain the linear factor z, or a line passing through
aaa, and bbb. We see then that in this case any point

on the factor line is on all the polars of any other point
B on that line, and vice versd. In fact the series of con-
ditions implies a tangent having a contact of the n+1™
degree, which can only be the case when z is a factor, for
it can usually meet the curve in only n points. The con-
ditions that U may contain ax + By + 4z =0, will be obtained
more simply by a particular transformation. Multiply the
original curve by «", and transform from

e to yz,
vy to vy,
vz to —ax— By +7,
we have then (n+ 1) equations of condition, two of which
contai g,— , uniquely. There are therefore (r—1) inde-

pendent conditions, (as is indeed evident from other consider-
ations) that a curve of the »™ degree should have a linear
factor. I do not however see how the conditions obtained
from these equations by the elimination of a By are to be
reduced to their lowest terms in the coefficients. In the case
of the second degree, we have

Fa'—2Day + Ay* =0,
FB*—2EBy + Cy'=0,
Fof3 — DBy~ Eay+ By'=0,

which give the square of the condition with a factor F™.
The geometrical meaning of these equations and those of
higher curves readily appears.

If we write the terms of (2) in  and y in the form

I (zy, +y2,) (@Y, + 92,)-.... (Y, + y,) = 0,

@, @,...9, y, being the roots, we see that the series of con-
ditions 1s given by making this equation true independently
of = and y, and we have a form equivalent to that obtained
by Mr. Cayley’s method, viz., by eliminating = y z from

U=o0,

Z=0,

au+Bv+qw=0,
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where Z is a linear factor. In this general form, however,
top many conditions are given. The conditions express that

a root =t becomes indeterminate, but although this inde-
]

terminateness may be denoted by g it does not indicate that

@, =0, and y, =0 absolutely, which would imply that =, y, 2’
meet 1n a point. The transformation is, as I have observed,
tantamount in effect to substituting in ¢« (zyz) =0, the value
of 4z derived from ax+By+9z=0. In fact, if a curve
U=0 contains a curve V=0, then the conditions complied
with, are expressed by substituting in U the values of z in
terms of =z and y derived from V=0, and equating the
respective coefficients of the result to zero. If these con-
ditions are satisfied, & fortior?, they will be more than sufficient
for the case in which U and V contain a common factor of a
lower degree.

We obtain in this way an equation ¢ (z, y) =0, and con-
sequently, the conditions are given by

M (zy, + zy) (@Ys + 2Y,) -+ (TYp + T ) = 0,

independent!&r of z and y, m and n being the degrees of
Uand V. We have therefore again, in the general case, a
form equivalent to making the resultant of

U=o0,
V=0,
ax + By =0,

ual to zero independently of « and 8. Thus appears the
identity of results obtained by considering that an arbitrary
line through any point must meet the curves U and V in
a common point, or considering that one or more of the
values of z derived from V=0 must satisfy U=0, inde-
pendently of z and y.

In the application, however, to the theory of curves, we
are chiefly concerned with the case in which U contains a
given linear factor, and simple transformation gives us the
requisite conditions. For instance, to determine the Hessian,
we have

A a factor in A*,
)z nz

or Lz + My, + Nz, a factor in

Az’ +2Bry,+ Cy'+2Dxz +2Ey 2 + 2Fzy, =0,
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and transforming

x, to z,
L N '
yo-ga-—zatys
z toz,
we have ¢ (M,— L,0)=0,

¢(0)'MM)=01
M, L,0A0,- N,M=0,

and
AM*—2BLY + CL* = — (AC B')U—( 72 =0
FM*—2ENM+ CN* = ;g—l (FO~F)U - 1),1%' =0,
(EL—DM) M+ (BM~ CL) N
n
2~ (DC- EB)U- ———ﬁ, Hzz=0.

If (xyz) be on the curve
H=0,

for =0, 2= 0 are inadmissible as implying that ¥, z, ¢ in-
tersect in the point of contact.

In like manner, in the case of contact of a higher order,
we must have

Aafa.ctormA or¢;

rrs

and proceeding, as before, we should have £+ 1 conditions,
only one of which it is necessary to consider; for instance,

¢ (M,— L,0)=0.
If (zye) is on the curve, this will reduce to
Qp'=0,
and, by means of other equations of the system, we shall find
Q' =0,
Qprz=0;
so that @, =0 will be the condition required for a contact of
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the £+ 1® order. The problem of finding the double tangents
whose points of contact are distinct involves similar consider-
ations. Let ¢=0 be the condition that

NAT N T RA L+ uPT=0

FoY ] zz
shall have equal roots, then ¢ must contain
Aor Lz + My, + Nz ;
z.z

1
and we shall have a series of equations

¢ (M,—- L,0) =0,
¢(07-MM)=0,
&e.

any one of which will be sufficient to give the required
condition, for A intersects ¢ in only one point. Since the

series of equatziﬁns is obtained by eliminating z, between
A=0, and ¢$=0, and ¢ is of the degree (n+2) (n—3), we

shall have

. I (myl + z.y )(H)('.') = 07
and IT=0 will be the condition sought, the degree of which
in the coefficients, and in z y z, is easily determined.

The number of double tangents, however, can be de-
termined by a different mode. examining the coefficients
of the developed equation, we find, if z is a double tangent,

¢ (alagaa) = 0’
du du du
b‘dz.'-b'%:-{-b'a'::
du du du
a, 5+ a, 5~ + a, 5-=0.
1 db‘ 2 . 8 db‘ ?
¢ (blbﬁbs) = 0'
Eliminating from the three last 4 5.5,, we obtain an equation
of the degree n(n—1)"+n or n'—2n’+2n in agagq, being
the locus of points, whose polar lines and first polars intersect
on the curve. The locus must contain the square of the
curve. :

This gives n (n’—2n") points of intersection with ¢ (a,a,a,)=0,
where the tangents are double, but it includes three times the
number of points of inflexion, which are points of contact
of double tangents touching consecutively. Hence we have

n{n®—2n"—3.3 (n—2)},

0,
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for the number of contacts of double tangents whose points
of contact are distinct, or

n(n+3)(n—2)(n-3)
2 ?

for the number of double tangents. Possibly a similar method
might be advantageously employed in the case of surfaces.

g\With regard to multiple contacts not distinct, the con-
ditions appear to take a simpler form, if we assume the
satisfaction of those prior in order to the one we are dealing
with. We have seen that the conditions for a contact of
the &™ order implies that a aa, any point on the line of con-
tact lies on the curve, and on the n—127—2%... (n—k+1)™
polars of 555, any other point on the line. Now the line
must evidently take the form

z da, y da, z da,” "’
ca . . du du
and we may consider it as passing through 7" da® and
aaga,. Therefore we have ! '
U.=0,
du du du du

______ 0, satisfied identically,

W P du du du | B D
da, da, da, " da, da da, ' da’ da}
&e. &e.

and writing ‘}l—:; =L, % = M, the law of formation is

() -2 ()

2
the differentiation being taken on the supposition that M
and L are constant. From this we obtain (Salmon’s H. P.-C.,

p- 82),
o dA dA pn—p+1) "
A”—ME—LE'i'—;—;l—‘FA' .

1 2

=0,

kz dar! dar! dar!
T a-1 (D da +E da. +F da.)'




On the Transformation of Coordinates. 181

But if U and A touch at a.a.a., we have

t73°8)
dar! dart
Y =
-1 -1
L dz’ —Nfl‘?a—'=o, A =0,
L ] 1
1 -1 .

and consequently, if the third condition above given be satis-
fied, that is, if H =0, we have
dar dar
’i — — — —
A =M 7 L 7,

1

the differentiation being complete. And instead of differenti-
ating 47, we may employ the form to which A” reduces by the
aid of the prior conditions, for since A?=0, and A*', A",
&e., touch U and one another at aa.a,, it will be sufficient
in order that A® may touch U, at the same point, that the
reduced form of A® touch U.

The factor 2* being omitted, and H substituted for the

third condition, we have then

U=o,

H=0,
dwaH_dudd_,
dal da' da. da’- !

dU d dlU d\**
(7 @, 7 7a) 2=

These conditions imply that U and H have a contact of the
(k- 2)" order. It is also evident that we may treat either
U or H as the subject of the operation, and may consequently

write :
U=0,
=O,
i av_aH av_,
1 t] £ dal
dH d dH d\*?®
(o, &~ 7, ) U=
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which, however, are higher in degree. The above conditions
that two curves may have a multiple consecutive contact,
have a close analogy to those necessary, that a right line
may have a similar contact with a curve. They, however.
of course give rise to irrelevant factors. If then U and H
have a contact of the ™ order, U has a tangent at that point
of the (k+ 2)" order. This indeed appears from the fact that
at every intersection of U and H, the tangent has a contact
of the 3™ order, and if the tangent touch at 1234, it may
be considered to pass through 123, 234 if at 12345 it passes
through 123, 234, 345, and so on. :

The development (2) is convenient for shewing at a glance
the meaning of the disappearance of any particular coeflicient.
For instance, suppose we require the signification of

the coefficient of 2™y"#* = 0.
This will be equivalent to
A™A", U=0,

ae be o
and indicates that C is on the m™ polar of 4, with regard
to the n™ polar of B, with regard to the curve. The other
relations are determined by symmetrical transposition. The
coefficient of "y", where 2n is the degree of the curve, is
A"ﬁ’, or e:tt, or ea“u, and if it vanishes we see that 4 is
ao a
on the »™ polar of B, and vice versd. Thus, if the coefficient of
a?fy", 2", 2" in a curve of the 4™ degree vanish, the triangle
of reference has a kind of self-conjugate property, the second
olar of one angle assing through the other two. Again,
if the coefficient ofP a"y"2" =0, A is on the n™ polar of B,
with regard to the ™ polar of C.
An analogous method of transformation is applicable to
tridimensional space. If the plane

a=2a'cosa+y cosB+ 2 cosy—p'=0
be transformed into the shape
lz +my +nz + po =0,

where
z=a cosa, +¥ cosB + 2z cosy, —p, ......... (a),
y=a cosa,+y cosfB, + 2 cosy, —p, .ecree... (8,
2=a'cosa,+y cosB,+2 coBY, — P, ..euennn (c),

o=z cosa,+y cosB, +2 cosy, —p, .euvne.. (d),
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we shall have four equations to determine /, m, n, p. Elimi-
nation gives

cosa,, cosfS, cos
cosa,, cosf,, cosry, cosan wos & cos‘y" e
l= cosa,, CO80,, COSY, a <+ L) 2 Y Py

COBay, COB[S, COBY, Py
cosa,, cosf3,, cosry,
cosa,, cosf,, cosy,, p,

‘Where is the K{.rpendlcular from the intersection of
(®)y (), a«)) on a. Now if we take a line

CO8YyZ = CO8 a2,
cosry,y = cos .2,

rpendicular to (3) and a line parallel to the intersection of
{)‘3 and (d) in the form

(cosa, cosB,) z={cosy, cosB,)’ s,
(cosB, cosa,)' y =(cosy, cosa,) 2,

{)ehere cosa, cosf3,)’ = cosa, cos B, — cos B, cosa,} the angle
tween these lines will be given by

j cosa,, cosfS,, cosy, |
cos§ =1cosa,, cosB, cos'y,} ‘
cosa,, cosf3,, cosy,

+ {(cosa, cosB,)™ + (cosry, cosB,)" + (cosry, cosa,)”}},
The divisor is equivalent to
{1 — (cosa, cosa, + cosS, cosf,+ cosry, cosy,)'}},

or to sing, ¢ being the angle between the planes (c) and (d), |
and the value of the determinant

cosa,, Co80,, CO8%Y,(,

{oosa,, cosS,, cosy,
cosa,, CO8

o COBY,

is sin § sin 0, 6 being the complement of & or the angle made
by the intersection of (c) and (d) with the plane (3).

Dividing out then this major determinant as a factor
common to [, m, n, p, we may write

l equivalent to sin4b sincd . a,,
Ab meaning the angle made by the edge of the new tetra-
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hedron passing through 4 the intersection of (8), (c), and (d)
with the plane (5) and cd denoting the angle between (c) an:
(d) ; we shall also, have, using a similar notation,

m equivalent to sin Bc . sinad . a,,
n equivalent to sin Ca . sindd . a,,
2 equivalent to sinDc . sinac. a,,

a,, a,, @, being the perpendiculars from B, C, D, on a.

” And'if W(;g takelihl;%e other planes B, v, 8, and transform
in a similar manner, we shall obtain analogous results re-
lative to these planes, and (a) () (c) (d) taken in corresponding
threes. That 1s to say, if we transform the equation

$(aBvyd) =0,
from a B 3 as planes of reference to
lz+my+nz+po=0,
lz+my+ng+po=0,
lx+my+nz+po=0,
lz+my+nz+po=0,
then 7, 1, 7, I will be the coordinates relative to a8y 3, of

1) "9)
(y2 ) ,mulﬁplled by sinAb . sincd, m,, m,, m,, m, will be the
similar coordinates of (xzw®) multiplied by sinBc.sinad,
n,, n, 7y, n, Will be the similar coordinates of (vyw) mul-
tiplied by sin Ca . sinbd, and p,, p,, ‘p,iﬁ‘ will be the similar
coordinates of (z y z) multiplied by sin Db . sinac.
The consideration of nghtaangled spherical triangles at

the angles of the tetrahedron of reference gives
sin 45 sincd = sin Ac sinbdd = sin Ad sinbe,
sin Ba sincd =sin Bc sinad =sin Bd sinac,
sin Ca sindd = sin Cb sinad = sin Cd sinab,
sin Da sinbc = sin Db sinac =sin Dc sinab.

In making the transformation, it is convenient to suppose
the new &llantities zyzw to contain the above factors im-
plicitly. The development is easily obtained by working out
¢ (al+bl-'-cl+dl’ a!+bﬁ+ c! + d" al + b! + cS+ d a + bl + cd+d‘)’

3) e

which gives the successive coefficients, while the correspond-
ing powers of the variables are determined by the number of
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times the different letters enter. e, &c., a,, &c., q,, &c., a,, &c.,
will be on the above assumption the coordinates of the angles
of the new tetrahedron with respect to the old. We have then

Us® + Aya™ + Azz™" + Awx™’
a ba ca da

1
+ — A% + A% + A'w' + 2AAy2 +2AA 2AAzw} "™
1.2 {ba !/” ca da t ba cay + badaym + G}KD

cada
U " -1 A N=1 A n-1
+ ‘y + :‘bxy + cbzy + dbwy

+ 1 (A + A%2* + A’0" + 2AA7z + 2AAz0 + 20 Azaly™?
1.2% Py db abed abdb b ab

+ 02" + Axz™™ + Ayz"" + Aw2™!
] ac be de
1
+ —{A'? + A’ + A" + 2AAzy + 2AAzw + 2A Ayw]z"?
1.2 {aa + bo !/’+ do @+ acbcwy acde @+ Mdcym}
+U0" + Az + Ayo™™” + Azo™
d ad bd ed

1
— {A%* + A* A'Z*+2AA 20 Axz + 2AA "2
t 1.2 {ad +bdy‘+cd + aauwy-i- adod + u“yz}m

The coefficients satisfy the identity

] man 1 »n
—_ R — »
12...m+n e., e‘, g 1.2..m+p 3 I,A, ?’
m+n+p being the degree of the curve. This equality
expresse}; that g1f C is on the m™ polar surface of A(} witi\
regard to the n™ polar surface of B with regard to the surface g,
then B is on the m™ polar surface of 4 with regard to the p'
polar surface of C with regard to U; and similar interpre-
tations may be made of the other symmetrical forms of the
coefficients. We thus see, as in the analogous case of plane
curves, what is implied by the vanishing of a given coefficient.
To obtain the equation of the curve of intersection with
the surface made by a plane passing through three given
ints a,, &c., b, &c., ¢, &c., we have only to make w=0
i (3).
uating the coefficients to nothing, we obtain the con-
ditions that the surface U may contain @ a plane passing
through those three given points. If w is a tangent, the equation

VOL. IT. 0

.
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in xyz thus obtained must have two equal sets of roots; that
is, the curve of section, as Mr. Cayley has remarked, must
bave a double point. This is readily seen by projecting the
coordinates x, ¥,z on w. If » is a tangent at a, &c., we
must have

U=0=A

]
a aa
A=0,
ba
A=0,
ca
or A=0
za

is the equation’ of the tangent plane at a, &c. If we take
the determinant of the terms in w, y, z, and consider one of
the sets of coordinates as variable, we have the equation of
tangent planes through two given points.

o obtain the condition that a plane

le +my +nz + po=0

should touch, we must multityly the original equation (in
xyzo suppose) by p" and transform from

px to px,
py to py,
pz to pz,
pow to — le—my —nz+ .

It is clear this process is the same as substituting the value
of o derived from the equation of the plane in that of the
surface.

If we reT’lire the equation giving the intersections of a
line formed by the intersection of z and w, we must make
these variables vanish in (3); we thus obtain

Us® + Aya™ + A% +...
P A =0...... (@)
‘”%’/ +Azy +§3x’y +...

Let R be any R%oint on the edge AB of the tetrahedron
ABCD, and Ra, Eb, 0, 0 its coordinates, then we have
sin.4b. AR = Rb,

sin Ba. BR = Ra,
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Hence, the coefficients of (4) equated successively to 0 give
the equations of the successive polar surfaces. (4) is in fact
equivalent to the usual substitution for aBy8 of

ax+by, ex+by, az+by, az+by;

and of course the usual deductions may be made from it
relative to tangent lines, as in Mr. Salmon’s paper on the
Contact of Right Lines with Surfaces, (Vol. 1. p. 329 of this
Journal).

If we equate the whole of the coefficients of (4) to zero,
we obtain the conditions that the surface may contain a line
passing through 4 and B. The meaning of these conditions
can be interpreted in the mode before pointed out. Putting
then ..., ,,..., for the roots of (4), the series of condi-

tions is obtained by making

I (xy, + 2y)...(xy, +2,y)=0

independently of 2 and y. This results from one or more
sets of roots becoming indeterminate. Now if we take three
surfaces U=0, V=0, W=0, and eliminate first z and then
@ between ¥ and W, and substitate the values of ¢ and
derived from the resultant in U, we have an equation

¢ (zy) =0

of the degree mnp, and equating the coefficients of this to
zero we obtain the conditions that U, ¥V, W may contain
a common line. For these equations are sufficient if U con-
tains the whole intersection of ¥ and W, and a portion are
sufficient if U, V, W contain a common line of a lower degree.
We see then that the series of conditions will be given by

I (Kl?yl + ylz)"'(wyu-"l_yww) = 0’

indeK;ndently of z and y, a form similar to that obtained
by Mr. Cayley’s assumption of am arbitrary plane. An
entirely arbitrary plane, however, gives superfluous condi-
tions; for it can be subjected to two conditions and yet pass
through the whole of space by rotation, for instance, round a
fixed axis. Instead then of assuming a plane, we see that
the required conditions are obtained by eliminating z and
o from
U=0,

V=0,
W=o,
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and making the resultant=0 independently of = and y. It
is obvious the result will be of the Seg'ree ‘

pnp + vmp + wnn

in variables contained in the coefficients of U, ¥V, W in
degrees u, v, 7 (m, n, p being the orders of the surfaces).

The application of the foregoing notation and the develo
ment (3) to the general equation of the second order will
illustrate its use. Let

Ax’ + Ay* + A2" + Ao'+ 2Azy + 2822 + 2470 + 2Ay2 + 2020
aa 1) cc dd ad ac ad bo ed
+ 23_1/&) =0.cceiurnnns (5)

be the general equation, zyzw being still supposed to contain
the angular factors implicitly.
We see at once that

Az + Ay' + A2+ Aw* =0
aa bb co dd

implies that the tetrahedron of reference is self-conjugate.
Again,

A+ Ay + 2820 =0

aa b cd

implies that the plane ¢ is the tangent piane at D, and d is
the tangent plane at C, the plane a is the polar plane of 4,
and b the polar plane of B. Tt is also obvious that

Azy + Aze + Azw + Ayz + A =0

circumscribes the tetrahedron of reference.
In thé surface of the second order A is equal to ﬁ. Hence

AA...A=AA...A,

obcd ks DBade ak
or if p,, represent the perpendicular from % %%k, to the polar
planep& 1011, we have ik

1727874
PasePedr+ Pia = PiaPao** - Pas

If therefore a,, &c., b,, &c., k,, &c. be points on the surface
forming a gauche inscribed polygon, and we divide both
members of the last given equation by the product of the
sides of the polygon, it appears that if a gauche polygon
be inscribed in a surface of tE: second degree, the continued
product of the sines of the angles which each side makes with
the tangent plane at its right-hand extremity is equal to the




On the Transformation of Coordinates. 189

similar product of the sines of the angles made with the
tangent planes at the other extremities. The corresponding
theorem- for conics is readily proved in an analogous way,
and the equation

8in 6 sing’ _
sin¢xy+ sin 6’ w2 +ys =0,
the general equation of a conic circumscribing a triangle
xy2, 18 in conformity with the theorem referred to. lgor
<. sin¢
multiplying by sing? e get
sin 8" in ¢

TY+ g T2+ ;;;75 yz=0,
in consequence of
sin@ sin @ sin@" =sin¢ sing’ sing”,
we have then
PasPoaPacPea™ PsaPas Ped Pacy
PasPiscPealia= PoaPos Pic Patr
PoaPas PocPeo = PaaPsaPes Pacy

we also have
A
@ _Pu
A
pry cb

and so on symmetrically.
By the aid of these considerations, we may write (5) in
the following and corresponding forms
P“&!xn_*_&ayx_i_&e z"+£“£"
Pila Pas y 7 DPuPo
Pos gy 4 Pt gy  Pii gy Pt Pt g, Pt }
9 {Led 5y + 2+ L2 20+ o+ yzr =0
* {pc.z"’ 2 2 T T I
where the meaning of the coefficients very clearly appears.

Since A=Rp,, A=Rp,
ba aa

ﬁ = V(BRp;,pu)s

we obtain, precisely as in the case as conics, the equation
where the eSgea of x, y, z,  are tangent lines. For if the
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polar plane of 4 and the polar plane of B intersect on 4B,
we have geometrically

PoaPss = Pab Piar

and the other conditions may be similarly found. The
negative sign of the root gives the equation of the circum-
scribed surface ; the positive sign makes the equation a perfect
square, in which case, strictly speaking, every line is a
tangent.

t L+y+2+o"' =0, (@)

+B 4+ + =0, %)
represent the same surface, constants being implicit, and let
Ax* + By' + O + Do*+ Exy + Fyz + Gzo
+ Hyz + Kyo + Lew=0...... (),
Aad*+ B8 +C'oy+ D8+ E'afB + Fay+ Q'ad
+HBy+ KB8+ Lyd=0...... (d)
represent another surface. If
z=la+mpB+ny+p?,
y=lta+mB+ny+ps,
z=la+mpB+ny+ps,
wo=la+mB+ny+pl
we shall have, by virtue of (%),
P+ + 0+ =1, lm +1im +lm, +lm, =0,

&e. &e.,
and therefore
a=lz+ly + Iz + Lo,

B=mx+my+ 'r;z,z +mm,
y=n%x + 0y +nz + no,
S=pz+py+pr+po;
and therefore, by virtue of (a'),
P+mr+nl+p’=1, LL+mm +nn =0,
&e. &e.,
and consequently it is easily seen that
A+B+C+D=A'+B +C'+ D,
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and if v is the determinant of (¢) and ¥’ of (d'), we have,
by virtne of the condition, that a plane should touch the
surface

dv  dv dv dy _dv' dv' dv'  dv
ddtatactap=aataptactap-
Hence (1) if two tetrahedrons be self-conjugate with re-

gard to a surface of the second degree, and if another surface
of the second degree be circumscribed about seven of their
corners, it must pass through the eighth, and (2) if a surface
of the second degree be inscribed within seven of their sides, it
must touch the eighth. These theorems correspond to the
theorem relative to conics inscribed and circumscribed about
self-conjugate triangles, and the mode of proof corresponds
with that given for conics by Mr. Salmon, in his Geometrical
Notes, contained in this Journal. The plane theorem may
of course be proved in a similar manner. I may remark,
that, as in the use of conics we may obtain the forms of (5)
subject to given conditions. .

ith reference to the equation of a conic passing throth
two given points and touchin'ia given line, a rather simpler
process suggests itself than the one %iven by Mr. Cayley
Vol. . p. 46L for finding the genmeral equation of a conic

tll:roug

¥assing two given points and touching a given line,
or we have immediately
Ty Yy 2 T, Y #
V(@BY) A (@ o), vom+ gt
a, b, ¢ o, By
a B, v
0, N/(a, b, c), VAa + pfB + va))=0
2 B,
«, By
;\/(“1 B, '7) ) 0, V(M + pf + vl
a, b, ¢

for the required equation. The imaginary quantities dis-
appear by the alteration of the order of the constants.

By observing the meaning of the coefficients we are able
to determine the form of the equation, when an angle of the
tetrahedron of reference is & double point. It is obvious that
if the angle xzw is such a point, the coefficients of 3", zy™",
2y™", wy™* vanish. The like applies to plane curves; for
instance, if a curve of the fo order has three double
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points at the angles of the triangle of reference, we see at
once that the coefficients of =, 3*, 2*, tz‘, z2*, yo, y2*, 2y, 22’
all vanish, so that the equation takes the form

Az} + By's* + 022" + (D + Ey + Fz) aye.

The same applies to curves of any degree, and ienerally,
if the angles of a self-conjugate triangle be on the curve,
they must be double points, as indeed is otherwise evident.
Since the independent constants of transformation are six,
we may put curves of .the fourth order into the form

Az'+ By* + Cz* + Dzy* + Exz® + Fyz' + Gzy® + Hza' + Kyo'

the relations of the triangle of reference in this case appear
from the forms of the vanishing coefficients.

Stourbridge, March, 1857.

ON THE SIMULTANEOUS TRANSFORMATION OF
TWO HOMOGENEOUS FUNCTIONS OF THE
SECOND ORDER.

By A. CayLEY.

N a former paper with this title, Cambridge and Dublin Math.
I Journal, t. 1v. pp. 4750, I gave (founded on the methods
of Jacobi and Prof. Boole) a simple solution of the problem
but the solution may I think be presented in an improveti
form as follows, where as before I consider for greater con-
venience the case of three variables only.

Suppose that by the linear transformation®

@y 2)=(a, By )@y ¥y 2)
a, B, o
a", B"’ 7’[

* I represent in this manner the system of equations

z = ax, + By, + vz, &ec.
and so in all like cases.
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we have identically

(@ b ¢, fy 9 B)(@,9,2)"'=(ay b, cy fy 9 h)(®s ¥, 2),
(4, B,C, F, @, H)(=2,y,2)'=(4, B, C, F,, G,, H)(=,y,,2,)"
And write also

(Eymy &) =(a, o, a"
B, B, 8"

Y Y 7"

Comparing these with the relations between (z, y, 2) and
(zn ) zl)’ we see that

(E’ ) ;’) (zv ¥ z) = (EI) My gl) (zn Yo zl)’
and multiplying the first of the relations between two quadrics
by an indeterminate quantity A, and adding it to the second,
we have

(Aa+4,...) (2, y, 2)'=a,+ 4,,...) (x,, ¥, 2.)"

We have thus a linear function and a quadric transformed
into functions of the same form by means of the linear sub-
stitutions, and any invariant of the system will remain un-
altered to a factor prés, such factor being a power of the
determinant of substitution. The invariants are, 1° the dis-
criminant of the quadric; 2° the reciprocant, considered
not as a contravariant of the quadric, but as an invariant of
the system. And if we write

K=Disc. Mz + 4,...) (x, , 2)",
®, ¥, €, §, & W) (& 7 )" =Recip. Ma + 4, ...) (z, y, 2",
then K,, &c. being the analogous expressions for the trans-
formed functions, and the determinant of substitution being
represented by II, we have
K, =IT'K,
Ry o) oy §) =T (K, ...) (§,m, ©),

and substituting for £, 7, & their values in terms of §, 7, §,
the last equation breaks up into six equations, and we have

K,=IT'K,
(®,...) (@ o, @)’ I,

(&, g)

(“;1 ) (B, By B") (0y 7'y ¥")=TT'H,



194  Transformation of Two Homogeneous Functions.

which is the system obtained in a somewhat different manner

in my former paper. Putting f,=¢g =k =F =@, =H =0
and writing also (which is no additional loss' of gienen;lity),

a,=b =c,=1, the formule become
(@) &y ¢, fy 9, B) (= y,2)'=(1, 1, 1)(=} 25 z,"),
(4, B, G, F, G, H)(x, y,2)"= (4, B, C) (=, 3., z,),

viz. there are two given quadrics which are to be by the same
linear substitution transformed, one of them into the form
x'+y'+¢’ and the other into the form 4.2*+ By*+ Cl‘t,"
where A4,, B, C, have to be determined. "The solution is
contained in the #ollowing system of formule, viz.

(4,+2) (B, +)) (C,+)) =IT* Disc. (\a + 4, ...),

which gives 4, B, C, as the roots of a cubic equation, and
gives also

1=1IT* Disc. (a, ...) ="« or l'l’==;]-‘ suppose,

and we have then, writing for shortness, (¢) (X, Y, Z) for
{(BA+M(C+N), (C+N)(4,+7), (4,42 (B+MHX, T, 2),

, 1
(#) (' o, a")_—_;g,

()& 8% BY=1,
W, v am=le,
(+) By, B, B"Y") = % ¥,
(¢) (yay 7', y'd") = ;1‘ &,

() (a8, 4B, 48" =1 B,

where (4, 3, €, §f, &, ) are the coefficients of the recipro-
cant of (Ma+ 4,...)(z, ¥, 2)". WritingA=—-A4, - B, or—C,
the quadric functions on the left-hand side become mere
monomials, and we have the actual values of the squares
and products o', By, &c. of the coefficients of the linear sub-
stitutions: thus o', &, +*, By, ya, aB are respectively equal
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to X, B, €, F, &, W, each into the common factor
1
< (B,—4,)(C,— A), the suffix denoting that we are to write

in the expressions for &, B, €, §, &, W the value — 4, forr;
and similarly for the sets («', 8, 7) and (a”, 8, 7).

2, 8tone Buildings,
27 March, 1857.

A WORD ON FOCI

By SamurL RoBErTs, M.A.

L. 7 the n real foci of a curve of the n" class be taken
two and two, to each pair of real foci so taken
corresponds a pair of imaginary foci, lying on a real line bisect-
ing and p:ﬁ)endicular to the line joining the two real foci
and at equal imagi distances on either side thereof, as
is known in the case of conics. The general theorem follows
from consideri.nf the points of intersection, and the lines
joining them, o
(y _yx) t "/(_ 1) (”—zx) =0,
¥-3) £V (-1) (x—=) =0,
or the evanescent circles
=9 +@=z) =0,
G- +(@-=2)'=0.
Hence, if two real foci coincide, the two con‘esgonding ima-
i foci coincide with the resulting real double focus,
and 2 (n — 2) single imaginary foci coincide in 2 (» —2) double
imaginary foci, and the total number of foci is (n —1)*
nerally, if m real foci coincide, then the correspondin
m (m —1) imaginary foci coincide in the same point, an
2 (m — 1) (n — m) single imaginary foci coincide -with 2 (n —m
imaginary foci, forming 2 (» —m) imaginary foci of the m
degree.
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2. “All curves of the third degree whose highest terms
are divisible by «* + y*; and all curves of the fourth degree
whose equations are of the form

(@ +9) +u, (@, +,)+4,=0
have four foci lying on a circle,” a known theorem.

3. If four real foci lie on a circle, then the imaginary
foci corresponding to the real foci taken in pairs lie four
and four on circles cutting the circle whereon the four real
foci lie at right angles.

For let ABCD the real foci lie on the circle ABCD with
centre R, and let 4B, CD produced meet in O. Draw radii
RP.RQ perpendicular respectively to 4B.CD, and let

PB=c¢, QD=¢, OP=t, 0Q=t.

Then if » be the radius of circle with centre O and cutting
circle ABCD at right angles, we have

P==-=t"="=04{(-1)c}'=t"+ {¥(-1)c}".

But the imaginary foci corresponding to 4, B lie on EP
at distances + 3%— 1) ¢ from P, and the imaginary foci corre-
sponding to C, D, lie on B@Q at distances ++/(— 1) ¢' from Q.
f)lgerefore the circle whose centre is O and radius r, passes
through the imaginary foci corresponding to 4, B, and & D.
erefore, applying similar reasoning to the pairs 4D,
BC, BD, AC, the aﬁove theorem holds good.

4. The circles whereon the corresponding imaginary foci
lie cut one another at right angles mutually.

For let L+ y'=a
be the equation of circle 4BCD, and
(x—z)'+y—y) =2'+y - a"..cc..c.... (1),
(E—x)+(H—y) ==ty —a".......... (2)

be the equations of circles on which two corresponding set of
four imaginary foci lie.
Transform to centre of circle (1), whereby

(1) becomes &' +y' =2+ y,' —a’,
(2) becomes
(w+m1 —wg)"" (.7/ +Y _yw)’=m:+y:—a'
= (z,— 2). + (?/1 -y,)' -z’ —y1’+a')
if zx,+yy,=a"
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But this is 8o because z,y, is on the polar of z,y, with respect
to '+ y"'=a’, and therefore (1) and (2) cut one another at
right angles. Similar reasoning appliés to the remaining
circles, whence the above theorem.

And considering the nature of circles so related we are
able to conclude amongst other inferences, that the twelve
lma.gum? foci lie on six right lines passing through the
centre of the circle whereon the real foci lie, and therefore
intersecting on the curve (Salmon), and generally, the circles
being symmetrically related, that twelve corresponding foci
lie in lines passing through the centre of the circle whereon
the remaining four lie. .

Alro the triangle formed by the centres of any three of
the circles is self-conjugate with respect to the fourth, and
one of the circles must be imaginary; namely, that the
centre of which is the intersection of the diagonals of the
quadrilateral ABCD, moreover the radical axes of any three
pass through the centre of the fourth.

However, the properties of four circles cutting one another
mutually at right angles, though worth observing, are in-
dependent of the nature of the curves whose foci lie thereon,
ansetherefore more proper subjects of separate investigation.
It will be observed that the before-mentioned Eroperlies of
imaginary foci are due to the disposition of the real foci,
their origin and only indirectly dependent on the curve.

5. If the four real foci of a bicircular quadratic lie on
the same right line, the double foci lie also thereon.

For take the line as axis of « and let the equation of
the curve be of the form

(- a)+ 5} +m Vi@=D+ ) +n (@ of + 5} =0,

or IJ(4)+my(B)+2n+(C)=0,

equivalent to

U'A*+ m"B* 4+ 2" C* — 2P'm* AB—20'n* AC - 2m*n*BC =0,
this may be put into the form )
@+ + (@ +9") (ex+f)+g92' + he+ k=0,

and further into the form

{(@+5 +e+f) +¥lg— )2} (& + ¥+ e+ £) = V(g —€) 2}
+ (-2 )zc+k—F'=0,
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wherefrom we gather that the coordinates of the centres of
the circles are
e+ —-e e— —e

y=0, w=———-ir(a'—q—-)-’ y=0, w=.—_;y__) s
and these being the double foci the proposition is true.

Ovals of Descartes and Cassini are of this class.

It may be remarked that the triple focus of a Cartesian
oval is that point whereof the polar cosine is a circle.

Noo. 1857.

—w

NOTE ON A FORMULA IN FINITE DIFFERENCES.
By A. CayLEY.

¥ Jacobi’s Memoir ¢ De usu Legitimo Formule Summatorie

Maclauriniane, Crelle, t. X11. pp. 263—273 (1834), expres-
sions are given for the sums of the odd powers of the natural
numbers 1, 2, 3...z in terms of the quantity

u=z(x+1),
viz. putting for shortness
Sr=1"4+2"+..+ &,

the expressions in question are

Sz* = i,

Bt = ju' (u—14),

8’ = fu' (v - gu+3),

8’ = fu* (w* — §u’ + 3u— §),

St = Pou’ (u — 4u’ + Y u' — 10u + 5),

Ba* = qut (u* — 4P u' + 3 u’ — 138" + Sffu— ),

&e.,

which, especially as regards the lower powers, are more simple
than the ordinary expressions in terms of .

The expressions are continued by means of a recurring
formula, viz. if

1 1 2’
=2—pT2 {ur -_— alu”...+ (—')'-la’_'u },

1

8= o bk () b,
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then
2p (2p-1)a, =(2p-2)(2p—-3)b, —p(p-1),
2?(21,"1)“: =(2P"4) (2}"'5) ba "(P“‘)(I""2)bn
2p(2p—1)a, =(@2p—6)(2p—-7)8, —(p-2)(p-3)b,

2p(2p—-1)a,,= 5.6 by — 3.4 b

-4
0 = 3.4 b,,— 2.3 b,

by means of which the coefficients 4 can be determined when
e coefficients a are known.
Jacobi remarks also that the expressions for the sums of
the even powers may be obtained from those for the odd
powers by means of the formula

— 1 1
S’ = STl d_ 8",
which shews that any such sum will be of the form (2z+1) u
into a rational and integral function of »: thus in particular

Sa =} 2z + 1) u.

To shew & priori that Sz can be expressed as a rational
and integral function of %, it may be remarked that Sz***'=¢ =
where ¢ = denotes the summatory integral = (z + 1)**, taken
80 as to vanish for z=0: ¢ is a rational and integral func-
tion of z of the degree 2p + 2, and which, as is well known,
contains o’ as a factor. Suppose that y is any positive or
negative integer less than x, we have

br— by =+ 1™ + (g + 2 2,
and in particular putting y =—1 -,
pr—¢,(-1-2)=(-2)"" +(1-2)""...+ 2" =0,

since the terms destroy each other in pairs; we have there-
fore pz=¢, (- 1~2). Now u=2"+z, or writing this equa-
tion under the form 2’=—x+u, we see that any rational
and inbegral function of & may be reduced to the form Pr+ @,
where and @ are rational and integral functions of w.
‘Write therefore ¢ = Pr + Q: the substitution of — 1 — =
in the place of = leaves u unaltered, and the equation
¢z=¢,(—1—=x) thus shews that P=0; we have therefore
¢, 2= @ a rational and integral function of 4. Moreover ¢z
as containing the factor ', must clearly contain the factor

«*, and the expressions for Sz™*' are thus shown to be of
the form given by Jacobi.
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We may obtain a finite expression for Sz" in terms of the
differences of 0" as follows: we have

Ba®=1"4+2"..4 2" ={(14+ A)+ (1 + A)"...+ (1 + A)} 0"

=2 (+ar-1jor,

and putting (1+ A)*=e*18(1+4) and observing that the term
independent of x vanishes, and that the terms containing
powers higher than ™' also vanish, we have

Sa* =8, {1 e log"(1+A)} .z,

where the summation with respect to %, extends from k=1
to £=n+1, or what is the same thing (since the term corre-
sponding to £=1 in fact vanishes) from k=2 to k=n + 1.
The equation " =—z + u gives
ot =P+ Qp
and it is easy to see that writing for shortness
k-3 k—4.k—5 , k—5.k—6.k—7

Mp=1+——ut—Fo—u 1.2.3

where the series is to be continued to the term u?*® or ui*>
according as % is even or odd, we have

Py=(-)"My,, Q=(-)uM,
we have consequently

8= o8, (X2 logt 1+ oy} 0. e

3
w +...,

A
+S,{‘:Alog*(1+A)}o*.(L)H";‘ﬁ.

If n is odd, =2p + 1, then (by what precedes) the first term
vanishes, or we have

— ¥
8, {l"f‘- log"(l+A)}0"”‘ O Moo, (bt tohmtp2),

and the formula becomes

%,
&v"’“-=8’,{1'2A log"(l+A)} 0"“(—)1%‘5 ) (k=1tok=2p+2),
which it may be noticed puts in evidence the factor but
not the factor «". \
\
N

<
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If n is even, = 2p, then (by what precedes) the coefficient
of x is to the constant term in the ratio 2 : 1, or we have

)kt —
s,{‘*—A log*(1+A)}ov(_?_(“_ffl+,;2—“”t) 0, (k=1tok=2p+1),

a
and the formula becomes.
_\
Sz’”=(2x+l)8’,{l:A log"(1+A)}0”( Vol (=ttol=gp+1).
The values of the functions M are as follows:
M, =0,
M,=1,
M, =1,
M =1+u,
M =1+ 2u,

M, =1+3u+u,
M, =1+ 4u +3u’,
&e.
As a simple example of the formulse, we have

&P = {1 41014 A)} . ju

+ {‘ 4 log'(1+A)}0’.- ju

+ {1 2 1oge(1 4 A)} 0. dalu+),

and the coefficients are
(A - 48) 0P=1-6=4,
(A'— 1AY)0°=6— }6=3,
A 0= 6,

B = ju— ju+ Hu+ )= o,
which is right; the example shews however that the calcn-
lation for tie i:igher powers would be effected more readily
by means of Jacobi's recurring formula.

2, Stone Buildings, 27¢A Oct., 1857.
VOL. II. P

and therefore



( 202 )

ON THE INCOMMENSURABILITY OF THE PERIMETER
AND AREA OF SOME REGULAR POLYGONS TO
THE RADIUS OF THE INSCRIBED OR CIRCUM-
SCRIBED CIRCLE.

By M. E. ProUHET, Professor of Mathematics at Paris.

THE present r has for its object the exposition of an
e:?tensxon ]:)atpe some theorems Jven b MxpoTerqu in
Liouville’s  Journal of Pure and Applied Mathematics,” (First
Series, t. IIL p. 477.), and_may l?)wnsndered as a sequel
to a note of mine mserted in the same Journal, On the
Ares of Circles which have their tangents expressed by rational
numbers (Second Series, t. 1. p. 215).

TrEOREM I.

Ifmbepn’meton,tan’—n;:-rﬁarootqfanirredzm'bk
equation of the (n—1)" degree at most, having all sts roots

real.

Demonstration. Let
mmr

tan — =x;
n
then tann ("::r)=0

_nla=1)(n=3) , nn-1)(n=2(n-8)n—4) , ..

_ 1.2.3 1.2.3.4.5
B nn—1) , n(n—1)(n—2)(n—3) .
1- 1.2 o + 1.2.34 — ete.

Consequently tanl';lr or z is a root of the equation

0 - el

of which the last term is 2** or na™* according as n is an
even or odd number.
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Now it is obvious that the equation (1) has for its roots
the real values

tan —, tangf, ...... tan(n-2)7r, tan(“-l)w,
n n n
n
(tan —==tanz =0, being omitted if n be even) .

Therefore, if the equation (1) be an irreducible one, the
theorem is demonstrated; if not, that equation will be the
roduct of two or more irreducible equations, of degrees in-
erior to the (n—1)", but having :ﬁ their roots real, and

among them will be found the root mTvr .

TreoreM II.
If%" be an irreducible fraction and n any number, 1,2, 3

or 6 excepted, tm"'%f will be expressed by an irrational
number.
In the first place, let n be a prime number greater than 3.

Then tan"—'::—r will be a root of the equation

(@) “”"‘—ﬂ"——l—g—.(g"—-—g)z”+ ...... in(n—lg.(;—m

&that is, the equation (1) reversed). But M. Eisenstein has
emonstrated the following theorem: “If the coefficient of
the leading term of an equation be unity, and all the other
coefficients whole numbers that can be divided by the prime
number n; if the last term cannot be divided by =', the equa-
tion is an 1rreducible one.” All these conditions are ed
by the equation (2) which is therefore irreducible.

Henoe it follows that tm‘-":‘—" is irrational, that is, tau,—':-‘-"f
cannot satisfy the binomial equation
#-R=0,

R being a rational number, for the binomial #*— R cannot
obviously be divided, if # —1> 2, by the lefi-hand side of an
equation of the (n — 1) degree, kaving all tts roots real.

P2

LFn=0,
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In the second place, let n=/%p, p being a prime number

>3. We have
tan'ﬂr{p ~2lp-1(p-2) tan'm—w-l-...}.
tan® ™7 — 'k(ﬂ)= hp 1.2.3 hp
P kp p(p=1) a7
1—-—L——* tan"— +...
1.2 P

?lr
hp
if it could be rational, tan' —— would be rational, which is

impossible by the first part of the demonstration. Therefore
the irreducible equation

¢ () =0,
which tan% must satisfy (Theorem I), is a complete equa-
tion of the second degree, and then ¢ (x) cannot divide the

binomial o* — B. Consequently tan‘%r cannot be rational.

In the third place, from tan* ", tan"'%’, tan* 22 being
irrational, it may be shown, in the same manner, that

tat 2, tan* T2, tan* T are irrational, if A be > 1, and

the second theorem is entirely demonstrated.

from which we may conclude that tan®—— is irrational: for,

Taeorem III.
Among reqular polygons, circumscribing a circle of which
the radius =1, .
I'. Of the square only, the perimeter and the area ave

2°. Of the triangle, square, and hexagon, only, the second
powers gf the perimeter and area are rational.

8°. Of all the other regular polygons, neither the perimeter
nor the area are rational.

Demonstration. ip being the perimeter and s the area of
a regular polygon of n sides, circumscribing a circle of which
the radius = 1, we have

T ™
p—2ntan;, 8=n tan;

irrational expressions in the above-mentioned cases, from the
Theorem II.
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THEOREM IV.
Iftan" T is irrational, sin* — 4s érrational.
We have identically

T
., mm n

If the left-hand side were any rational number R,
tan'%r would be a root of the equation
R (1 +a')=2a"

or R"(}},+ l).=

That equation must have only two real roots, equal in ab-
solute value, but with opposite signs. Hence the irreducible

equation which ta.n-;:—r must satisfy, would be a binomial
equation, but this is impossible, for by hypothesis, no power
of tan '535 is rational. Therefore, etc.

THEOREM V.

Among the reqular polygons inscribed in a circle of which
the 'radaua =
gtke}wmagononly, the perimeter ts rational.
° the triangle, square, and hexagon, only, the second
the pervmeter 1:dratwnal o he
tlwsquare and dodecagon, only, the area is rational.
re: trm%k hea:ag’on y on, and dodecagon,
only, ‘the seoo of the area 18 7
. The ﬁ;regomg polygons excepted, no power of the pers-
meter or the area 13 rational.
Demonstration. This follows from the trigonometrical
expressions .

o =92 si ko
perimeter = 2n 8in o’

: . 27
area = }n sin——,
and from the Theorems II. and IV.
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General Scholium.

I have made many attempts to deduce the incommen-
surability of a, from the foregoing principles; but unfor-

tunately, the circumstance that n sm’—nr ,y n tan::' are always

irrational, is not sufficient to shew that the limits of these
expressions for n=c0, are also irrational: for many ex-
amples can be given of expressions always irrational of which
the limits are rational.

{Ex. A'/(44“%,), whenn=oo}.

Therefore some other principles are wanted in the question.

The only demonstration of the incommensurability of
that I am acquainted with, is a beautiful one, given by
Lambert and a little modified by Legendre. The attempt
of T. R. Young in his Mathematical Dissertations (p. 117)
I do not regard as clearly satisfactory, because it is grounded
on the identity of two transcendental equations which have, in
truth, an infinite number of common roots, but may have
another infinite number of roots not common to the two
equations. On this account, the method of proof referred to
appears deficient in logical accuracy.

~ ON THE SYSTEM OF CONICS WHICH PASS THROUGH
THE SAME FOUR POINTS.

By A. CAYLEY.

] coNsipER the system of conics iass::g through the same
four points; these points may be or imaginary, but
it is assumed that there is a rea st{stem of conics, this will
in fact be the case if two conics of the system are real. The
four points are therefore given as the points of intersection
of two real conics, and it will be proper to assume in the first
instance that the conics intersect in four separate and distinct
points, none of them at infinity. The four points may be
all real, or two real and two imaginary, or all imaginary.
First, if the points are all real, we have here two
viz. each of the points may lie outside of the triangle forma
by the other three, or as this may be expressed, the points
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may form a convex quadrangle ; or else one of the points may

be inside the triangle formed by the other three, or as this

may be expressed, the points may form a triangle and in-

terior point. In each case the pairs of lines joining the
oints, two and two together, will be conics (degenerate

t{perimlws) forming part of the system of conics. nsider
e two cases separately.

Fig. A. Four real points forming a convex quadrangle. The
system contains two bolas, and the pairs of lmes and
the parabolas divide tﬁe plane of the into five distinct
regions, one of which contains only ellipses, and the other
four contains each of them hyperbolas.

Fig. A'. Four real points forming a trianq}: and interior
point. The system does not contain any parabolas, the three
pairs of lines divide the plane of the figure into three distinct
regions, each of which contains only hyperbolas.

Next, if the points are two of them real and two of them
imaginary. The line joining the two imaginary points will
be real and this line may meet the line joming the two real

ints, in a point outside the two real points, or included

tween them, i.e. the real centre of the quadrangle may
lie outside the real points, or may be include% between them.
Consider the two cases separately.

Fig. B. Two real and two imaginary points, the real centre
of the quadrangle lying outside the real points. The system
contains two parabolas, and these with the line joining the
two real points and the line joining the two imaginary points
divide the plane of the figure into three regions, one of which
contains ellipses and the other two contains each of them
hypeﬁ{gbo%s " Two real and he real

ig. B'. Two real and two imagi ints, the centre
of the quadrangle lying betweenagtll::rryea?lo ints. There are
no parabolas, and the system contains only hyperbolas.
) astly, when the four points are imaginary. We have
here only & single case.

Fig. C. Four imaginary points. The points lie on two real
lines, there are (besides the point of intersection of these
liness two other real centres of the quadrangle, which lie
harmonically with respect to the two lines. The system
contains two parabolas and these and the two lines divide
the plane of the figure into four regions, two of which contain
each of them ellipses, and the other two contain each of them
hyperbolas.




( 208 )

THEOREMS RESPECTING THE POLAR CONICS OF
CURVES OF THE THIRD DEGREE.

By the Rev. T. 8T. LAWRENCE SMITH, B.A.

I¥ ‘A Treatise on the Higher Plane Curves’ the author, the

Rev. G. Salmon, has given a method of forming polar
curves, from the first up to the (n— 1)* degree, for any point
with reference to a fixed curve of the n™ degree; the E%Ee
number of subjects which this work emb prevented the
author from giving any more than a very general description
of these polar curves; but it has occurred to me that some
interesting results might perhaps be obtained from their
investigation, in the particular case when the curve with
respect to which they have been formed, is but of the third

degree.
ng:hall call the distances of any point from the curve,
measured along a transversal,

P Psy Py

and the distances of the same point from its polar conic,
measured along the same transversal,

the relations between these ;;;;:l:s are given by the equation
s%-2;2%+2p—}-’=o,
which is equivalent to the two following :
%+}'=§{i+i+i} ..... I, Y
%=§{l-}&+;§+%&} ....... (II).

To find geometrically in what cases the polar conmic is
an hyperbola, suppose the transversal to have been drawm
parallel to an asymptote, in this case one of the two inter-
cepts r, becomes mfinite, and (II) becomes

1 1 1
—_——t— =0
Plpi PJ" P.P; ’
o PPy g J(I10);

PiPsPy
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therefore, either
Pyt Pt p= 0,

or some two of the radii vectores p, p,, p, are infinite, that
is, any point, whose polar conic i3 an hyperbola, lies either on
some diameter or on an asymptote to the curve. The fact of a
diameter being the polar line of the point at infinity in the
conjugate direction affords another proof of this; for, if a
point lie on a polar conic, its polar line passes through a fixed
point, the pole of the conic; if then a point at infinity lies
on a polar conic, its polar line, that is, the diameter conjugate
to its direction passes througf) the pole of the conic, so that
as before the polar conic will pass through a real point at
infinity if its pole lies on a real diameter.

The polar line of any point, lying on a fixed line, touches
a fixed c%onic (see ‘Hz:thrp;’Zane Curves,’ p. 151) hence every
diameter, as being the polar line of a point at inﬁnity, touches
a fixed conic; it follows therefore that the 501“ conic of any

int will be an hyperbola when two real tangents can be

rawn from this point to the fixed conic; if the point lie on

the fixed conic itself, the polar conic will be a parabola ; when
the tangents are imaginary it will be an ellipse.

Hence, to find the locus of all points, whose polar conics
are hyperbolas having one of their asymptotes parallel to a
fixed direction, find the diameter conjugate to it, and it will
be the locus required.

The intersection of two diameters conjugate to fixed direc-
tions, will evidently be a point whose polar conic is an
hyperbola, both of whose asymptotes are fixed in direction,

The polar conic of any point lying on an asymptote will
always have a real point at infinity, if the curve have a
double point at infinity; a line joining any point to this
double point will be in this sense an asymptote to the curve,
that is, two of its intercepts will be infinite; hence, with
re to such a curve, no point can have a polar ellipse.
This follows too from the consideration that in this case the

lar conic must pass through the double point, t.e. must
E:ve a real point at infinity.

If the curve have a cusp at inﬁnig, since the first polar
of every point must pass through the cusp, and have its
tangent the same as the t&nﬁ:lt at the cusp, it appears that
one asymptote of every polar conic is fixed; in this case
the E conic can never be a parabola, unless the tangent
be altogether at infinity, when it will always be a parabola.
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We shall show farther on, that such a curve is the only
one of the third degree, with respect to which the polar
conic of any point is a parabola.

Equation (ﬁl) is evidently satisfied by

Py=Wy =P,y py=0,
in this case (I) becomes
.1- +l =0,

r

1" ]

oraséhaabeenahmdymumedeqnaltozero

' 1
=0

7,

therefore the polar conic of any point lying on a tangent to
a double poin?, cusp, or point ofpi(:nﬂen{)]:,gat inﬁnityg,'ei: an
hyperbola one of whose asymptotes is the tangent on which
the point lies.

o find in general when this shall be the case, namely,
that the polar conic of a point shall be an hyperbola on
one of whose asymptotes it shall lie, since 3

~-e

1 1 1
- + - + - = 0,
Py Ps Ps
1
U U T
PPy PP PsPy
or PiPs + PPy T PuPy =0,
P1PsPs
Pteath_ o
P:1PsPs

either therefore
Py=®,y py=®, p,=0o,
the case we have just discussed, or

p,P,+PgP.+PlP'=0} ....... veneee vy,
pp+p +p =0
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that is, the point is an intersection of a diameter and a
diametral conic, both conjugate to the direction of the

aqgmw
ence, to find a point such that its polar conic shall be
an hyperbola, one of whose asymptotes passes through the
point in a fixed direction, construct the diameter and dia~
metral conic respectively con'ugaw to this direction, either of
their intersections (if real) will be the point required.

This asymptote will meet the curve in one real and two

i points, for the result of eliminating p, between

the two equations (IV) is

Py + PPyt Py =0,

an equation whose roots are imagi ; hence no such point
can lie within an oval or loopagfmthe curve have such), or
in any place where a line through it must meet the curve
in three real points.

Since through no point but the center of a conic, can
there be drawn two chords to be bisected at the point, it
follows that any point will be the center of its own polar
“conic, when through the point there can be drawn two trans-
versals for which r, and 7, have equal and ops::ite values,
and also that if two such transversals can be drawnm, every
transversal through the point will give this relation between
7, and r,; for any such transversal we have

o+ r,=0;
1 1
therefore -4+ = =0;
rl ‘rl
and therefore from (I)
l + l + ‘l:' =0,
Py Ps P
or PPy + PPy + PP, = 0,

since the other solution

Py =y Py=P, py=x0,

(the case just discussed) will not satisfy

. . r,+7r,=0,
though it does satisfy
1. 1
—4==0.
7', rl
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Since the equation
PPy + PPy + PPy =0

must be satisfied for two directions, such a point as we are
seeking must be an intersection of two diametral conics, and
since when true for two directions, it must be true for all,
it follows that all the diametral conics must intersect in the
same points; this is true, for they all are the polar conics of
points on the line at infinity, and must therefore intersect in
the four poles (real or imaginary) of that line.

This might also be shown as follows: the polar line of
any point with respect to the curve, is also its polar line
with respect to the polar conic of the point, but if a point
be the center of its own polar comic, its polar line with
respect to the conic will be the line at infinity, which must
therefore be also its polar line with ect to the curve, any
such point must consequently be one of the poles of the line
at infinity.

If the curve have a double point, since every polar conic

asses through it, it is one of these four tpoleos; this might have
geen anticipated, for the polar conic for such a point is the
pair of tangents intersecting (that is, having their center) at
the point; if the double point be at infinity, these tangents
become a diametral conic, and as every other diametral conic
intersects both of them at the double point, it can only meet
each of them once again, therefore in this case there can
be only fwo other poles; if the curve have a cusp, as all
polar conics touch at it, they can only meet each other in
two other points; if the cusp be at infinity, its two coincident
tangents are a diametral conic, and therefore must contain
all the poles, but as all the other diametral conics touch
this line at the cusp, they can never meet it again; hence
in this case the cusp at infinity is the only pole.

Since in general onlz one point can be found such that
its polar conic is an hyperbola having both its asymp-
totes parallel to fixed directions, it follows that in general
only one point can be found the polar conic of which is
a circle, since the imaginary asymptotes of every circle
through fixed imaginary points at infinity. ere is but
one case that seems to call for any notice, namely, when
these circular points at infinity are points upon the curve;
from equation (III), which is still true, even though the
vectors are now imaginary, we have, supposing p, the vector
to the point at infinity, 1

— =0,

PP
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which shows that one of the other vectors must be infinite
too, that is, that the lines drawn through the pole, parallel
to the imaginary asymptotes of the circle, are tangents to
.the curve at the circular points, and, therefore, that the pole
in vglich the} inters;ct t]zies } donfle focus. F the third
ence, tf two ¢ oct of a curve of t 2y 7]

coincide, the polar conic of that point s a circle. i

In considering the subject analytically, I shall use the
form of the general equation of the third degree, given by
Mr. Salmon, -

=0,

or ax’+by +c.2° + 6dxyz + 8agx’y + Bagx’
+ 8b,y" + 8b,xy" + 8c,2°x + 3¢, y2" = 0,

in which, however, I shall take = and y as the ordinary rect-
angular coordinates, and 2 as the line at infinity.

The condition that the Yolar conic of & point shall be
an hyperbola, parabola, or ellipse, is

(ﬂ)’ _EULT>
dxdy

this can be obtained either directly from the equation of the
lar conic, or thus: '
The locus of points whose polar conics are hyperbolas,
having one asymptote parallel to a fixed direction, been
y proved to be the diameter conjugate to that direction,
the equation of which diameter is

U . d'U . AT
(co80)* —5 +2 cos sind Tady + (sin6)* v 0...(V),
0 being the angle between the fixed direction and the axis
of =

The form of this equation shows at once that it represents
a line which always touches the conic

aUv\* 44U U
(my) - Tja}'— -dT/,— | S (VI);

therefore, since from any point there can be always drawn
two tangeﬂnts (real or imaginary) to any conic, there can be
always drawn through any point two diameters to the curve,
conjugate to the two values of (cos 6 : sin 6) obtained by solving
equation (V).
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If ¢ be the angle between the two directions of the line
% 8in@ — y cosd = 0 obtained by this solution

(ﬂ)’-ﬂ’i"ﬂ
tang = + ﬂ%M e (VID);

&ty

hence this angle will be real, that is, icular values can
then be found for (cos@ : sin 6) to satis ), or geometrically,
the coefficients (cos )", cos@ sin 8, (sinf)* can then be so deter-
mined that the diameter may pass ugh a fixed point,
when, for the coordinates of that ‘point,

(d’U)’ _avu d'U>

dzdy dz' dy*
‘We thus learn that the conic (VI) divides the plane into twe
regions, the polar conics of any point in one of which (that
from which real tangents to the conic, ¢.e. diameters to the
curve, can be drawn) will be an hyperbola, in the other an
ellipse, while the polar conic of any point on the conic (VI
itself will be a bola.

Equation (VII), if ¢ be constant, gives the locus of points
whose polar conics will be hyperbolas having a fixed angle
between their asymptotes, this locus will always be a conic,
except in the one instance when ¢ is a right angle, t.e.
when the hyperbolas are equilateral, it then becomes the line

U 4T
=ty

If the coefficients in this equation are each zero, it will
be satisfied for any %oint, in this case every point will have
:?m equilateral hyperbola for its polar conic. Equatien (VI)

mes

0.

AN G AN
(=a) + (@) -°
the equation of two imaginary lines intersecting in the real
int
" TU_, dU_,
dzdy= Y @B

the polar conic of this point should therefore be a para
inasmuch as it is a ioint on (VI), and likewise an
hyperbola, inasmuch as every polar conic with respect to
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such a curve should be such; furthermore, on actually in-
vestigating the conic, it will be found to be neither la
nor hyperbola, but the line at infinity and another line, ita
equation being

£ {2z (%) + 2y (%) + 2 (‘%.U)} =0,

z, z being given by the equations
(al’ + a.') z + (ala. + ald) 2= 0,
(al. + a:) y+ (a'ao - aud) £=0.

This apparent contradiction is easily explained ; the different
species of curves of the second degree are classed analytically,
not awordmg to their shape or form, but according to the
points at infinity through which they pass, each curve is
therefore an hyperbola, a parabola, or an ellipse, accordingly
asit passes through two real, two coincident, or two imagi::{,
points at infinity. This analytical classification agrees perf
with the ordimx ideas of their forms and properties, in aﬁ
cases but one, that is, when the curve breaks up into the
line at infinity and any other line whatsoever, as while it
is totally different geometrically from either hyperbola, para-
bola, or ellipse, it satisfies the analytical definition of them
all; since the line of infini passes through all points at
infinity, real or imaginary, these two lines are an hyperbola
as passing through two real points at infinity, a parabola
as touching the line at infinity, an ellipse as passing through
two imaginary points at infinity, and a circle as passing
through the circular points at infinity.

e can thus see too the reason why, though such a curve
should apf:rently have no double point or point of inflexion
whose polar conic is not two lines at right angles to each
other, yet that an exception may arise if one of these lines
be altogether at infinity.

It cannot however have & real cusp at all, for the only
case that this consideration would apparently admit, would
be a cusp at infinity, whose tangent was likewise at infinity,
but polar conics, with to such a curve, we have

y shown must be all parabolas.

The conditions among the eoeﬂicien% that all polar conies
with respect to a curve of the third degree may be equi-
lateral hyperbolas, are

q+b,=0, a,+b,=0, aa+bo=0‘
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And in order that the polar conic of every point may be
a parabola, the coefficients in equation (\;{) must be each
identically zero.

The requisite conditions are -

a'—ab =0, b'—apb =0,
d'—apb, =0, ab —ab =0,
2bd—ab,—ab =0, 2ad—ab,—ab =0,

equivalent to four independent conditions; introducing a
quantity % for convenience, these equations give

a,=ka, b =Fa, b=~Ka,
bs=k’“s’ d=ka',

when these values have been substituted in the general
equation it can be easily thrown into the form

{o, (= +ky) + 30} (¢ + ky) + 2* {3 (0@ + oY) + ¢z} =0,

which represents a curve having a cusp at infinity to which
the line at infinity is tangent, as has been already stated ;
it is now however shown to be the only curve of the third
degree possessed of this property.

The point whose polar conic is a circle, is the intersection
of the two lines

avu aU 4&'U
dw—dy=0’ -d—’D’—-—W=O ......... (VIII),

these equations may be iot, either directly as the conditions
that the equation of the conic may represent a circle, or
as the real intersection of the imaginary diameters, conjugate
to the directions of the circular points at infinity, the equa-
tions of which are
a@U a'U %
g dy,i?a/( l)hdy=0.
Should either of the two equations (VIII) be satisfied iden-
tically, the other then becomes a locus the polar conic of
any point on which will be a circle. In this case the conic
(V{)be)reaks up into two right lines, through the intersection
of which the present locus passes, the polar conic of this
int of intersection presents the same apparent anomaly,
to be explained in the same way, as that noticed above.
Any line taken at random will be a polar line having
four, or in the general case of a curve of the »™ degree,




Equation of the Surface of Centres of an Ellipsord. 217

(n—1)* fixed poles, but every conic will not be a polar conic;
as.in the case of polar conics two points fix the pole, but
through these two points there can be made to pass an infinite
number of other conics, none of which will be polar conics.
As a simple illustration take the case of a curve of the
third degree having a double point, every polar conic must
pass through it, thereforé no conic not passing through it
can be a polar conic at all.

As five conditions are required to determine a conic, that
a conic passing through two fixed points may be a polar
conic, three other conditions must be fulfilled equivalent to
demanding, in the case of a curve of the third degree, that
the polar lines of three other points on the conic may pass
through the intersection of the polar lines of the two fixed

ints.
b Several of the foregoing theorems can be easily extended
to the general case of a curve of the n' degree gut as (VI)
would then be a curve of the 2 (n —2)" degree, the considera-
tion would, except in particular cases, not be so interesting.

Crossmaylen,
9tA November, 1857.

ON THE EQUATION OF THE SURFACE OF CENTRES
OF AN ELLIPSOID.

By the Rev. GEORGE SALMON.

HAvve lately worked out the equation of this surface, I
propose to print it here, together with a short sketch
of the method by which it was obtained.

Let the axes of the given ellipsoid be g, 5, ¢, and let the
major axes of the two confocal surfaces, which can be drawn
through any point on the surface, be a', a”, then I start with
the principle (which can easily be proved, see Cambridge and
Dublin Math. Jour., Vol. v, p. 177) that the centres of the
two circles of greatest and least curvature corresponding to
that point, are the poles of the tangent plane to the given
surface with respect to the two confocal surfaces. In other
words, the coordinates of one of these centres are

a”zl b" ! c”z’
w=—aT’ =—b?" z=—c'i— ---------- 3 .(A)-

YOL. IT. , Q
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From these equations we can at once find the locus of the
centres corresponding to a line of curvature on the given
surface. For, o' being constant along a line of curvature,
and z'y’2’ satisfying the relations

z'l ] z'! /3 2 ¢
FTFETEh EtEptaa=Y

we have by substitution from the former ecluationa (and at
h L ]

the same time writing a” =a*— 2%, 3*=8"—&", *=c*—A")
oz byt de L
(a"—h’)’ + (bs_ hi)l + (c‘—h’)' - l’
a'z* by e

GRS YGRS

Equations which represent a curve of the fourth degree.
And if between those equations we eliminate %, we shall
have the equation of the surface of centres. This elimina-
tion however being between two equations, each of the sixth
degree in %", is so laborious as to be scarceiy practicable. It
can easily be imagined, however, that the conception of the
surface of centres, as the aggregate of the curves correspond-
ing to lines of curvature on tie original surface, may not
ive rise to the simplest mode of generating that surface.
d accordingly the method that I proceed now to explain
instead of leading to elimination between two equations of
the sixth degree, only leads to elimination between an equa-
tion of the second and one of the third degree. Substitute
in the equation (4) the expressions for ', ¥, ¢' in terms of
the axes of the confocal surfaces, viz.

z'. _ al a" al'! n_ btb'lbl'! zm= c!cﬂ c"’
T@-e=e) YT © T =)
and we get
25 a®a™ s 3 b a3 %"
e Y R g o e R v B
or if K=d-a* F=a"-a"

. ( a'— h!)!( a’—k’) . (b!__ h!)l (bl__ k’) s ( A hl)l( - k')
i o T I A e e R e o)

-
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Now if we form the biquadratic equation, three of those
roots are equal to A* and one equal to &%,

¢ — PO + Q6" — RO+ 8=0,

it is manifest that the three equations (B) (which give the
results of substituting a, b, ¢ for 8) give the linear relations
between P, @, R, S, enabling us to express any three of
those quantities in terms of the remaining one. But since
these quantities are coefficients of a biquadratic equation
having three roots equal, P, @, B, S are connected by the \
known relations obtained by equating to zero the two in-

variants of the equation, or we have

128—3PR+Q’=0}
32QS+ PQR-9R'—-9P*S8S=0

one of which gives rise to an equation of the second, the
other to one of the third degree.

Let a'+0+c'=p, a'b'+b'c'+c'a*=q, a'b'c’=r,

then I have found it convenient to express ¢, R, § in terms
of P—p which I shall call A, and the equations (B) will be
found to give rise to the relations

P=\ +p,
Q=pr+q+¢,
R=grhtr+4,
S=rrA+p,
where ¢=a'c'+ by’ + c'?’,
v=a' "+ "+ b (' +a’)y' + & (o’ +8) 2,
p=r(c+y +2".

Substituting these values in the equations (C), the question
is reduced to the elimination of A between

AN+ (2pp - 3¢ — B) M+ ¢" +29¢ — 3pyr +12p+ C=0,
B\ + (p¥+ qp— 9 +pB-8C)\
+{¢¥ + (pg+3837) p+ ('~ 179) ¥ + 14pp + gB - 8rd} 2
+ pdyr+32¢p—9Y*+ prop+( pg—18r) ¥r+(829— 9p") p+rB=0,

where A=p'-38g, B=pg—9r, C=q"-3pr.
Q2
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We might, if we chose, by subtracting the first equation
multiplied by B\ from the second multiplied by 4, reduce
the problem to elimination between two quadratics, and con-
sequently obtain the result in the form U*=VW, where U
is of the sixth, ¥ of the fourth, and U of the eig‘xth degree
in , y, 2. As this method, however, introduces a new con-
stant factor, 1 have preferred, instead of calculating the equa-
tion in this form, to obtain it in the expanded form. I have
used the following abbreviation :

ax=§, by=9, cz=§ b-'=a, ~a'=B, o'-b'=yv,

" and in order to make apparent a certain symmetry between
the plane at infinity and the three principal planes, I write
o'=—1. The result then is as follows:

a‘f“' + Bo”u + 10 ;u +af Beyo o™
+3 (8 + ") (B9 + 4'L"n" + «°F 0" + oy Fe’’}
+3 (v +d) (y'T°F + aE°C + 00" + a'By'n e}
+3 (aa -I-ﬁ”) {a‘f‘o‘r]’ +B“'7m?+ 'ycfww' +a‘48"y°§"w‘°}
+3 (8 +38% +9°) {B'7° + ¥"n'C + o* e’ + By 0’E'}
+3 (7" + 39" + o) (YE'C + o'C'E + B'n 0" + o dw’y')
+3(a* +3a'8"+ B') (a’n'E + B°E'n’+ 90 + «'B'w’L}
+ 3 (2a* + 3a’8" + 3a’y' — 18%")

x (@8’ + B'n°E0" + ' PFo" + Bly'd’on'}
+3 (28 + 38" + 38%* — To'a")

x (B0 TE + o' Cn'e" +a'En'e” + v'a'B'e’E")
+3(29* + 3¢y'a’ + 39"8" - 7a'8")

x (Y08 + d'E00’ + 8'9°C0’+ oSy’ E 7'}
+(B+ 7" + 98 + 98%") (n°L* + °F'a®)
T4 (o + 0+ 9y'a" + 9'a’) (L8 + Bnte®)
+(o° + B+ 908" +9a°8°) (E° + 7*{°e’)
+3 {a® +6a‘8" + 3a'y* + 3’8" + By — 214*B}

x {E0'C + B'n°Eo’ + 'CE0’ + B0 0%}
+38 {o® + 6a'y” + 8a'8" + 3a'y* + Bly* — 21"y}
x (E9'C' + /' CE 0" + B'r°F o' + B Ce’)
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+38{8°+ 68" + 38'" + 38%" + a'y* — 21a"8%y"}
x (1€ + P’ + o'’ + o’y 'E e’
+3{B°+ 68" + 38" + 38%* + ay* — 214’By’}
x (F°E'S + ¥’ + a'rfe + o'y E ')
+3{7" + 6y'a’ + 3¢9'8"+ 34%a* + B'%* — 2128}
x (8" + 80" + B'n° o’ + a'B'En'e’}
+38 {y* +69'8"+ 3v'a’ + 3¢'8" + B — 21a’B'}
x (&8 + B8'°L'0 + a'E0* +a'8'E'n'e')
—38 {14 (a'8" + '8 + By + By + 7'’ + 7'a’) + 204’8}
x (a8 + B'' + o't + "Bl e’} En" 0
+9{a'8" + a8 + B'y" + By + v'd’ + o' — 144’8}
x {E9'C + "B E'y'0" + B9 o' + ' E )
-3 {4a® — 7a°(8'+ 9") — 1988y + 684’8 (8 + ') +428'y'}
x (0" + a'E'o’} E'n" 0
—38{48°—18%(y* + a’) — 1988'y"a* + 68a*B"* (v* + a’) + 429*a‘}
' x {{’E' + 80"} E'y'o’
—3 {4y’ —To*(a* +8%)—1987'a’8" + 68a’B'y* (a® +6°) +42a'8'}
x (E'" + 4"’} E'0'Co’.
The sections of the surface by the three principal planes,

are an ellipse three times, and the evolute of an ellipse.
Thus, if we make z2=0 in the equation, we get

{a’a"c® + B0y — a’B') {(a’2’ + By — o")* + 27a’by ey},
But it appears also that the section by the plane at infinity

is also of the same nature, since the highest terms of the
equation are

(a'x"+ b’y’+ c'z’)’{(a’a’x’—l-b’ﬁ'y’+c’fy’z"')’—27a’b’c"a"ﬁ’rfx’y’z’}.

In conclusion, I may mention that the reciprocal of this
surface is one of the fourth degree. The equation of the
reciprocal was, I believe, first given by Dr. Booth in his
tract on Tangential Coordinates. The tangential coordinates
employed by him are the reciprocals of the intercepts made
by the tangent plane on the axes, and these are evidently
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proportional to the ordinary coordinates of the reciprocal
surface. It is easy to see that the tangent plane to one of
confocal surfaces through the point z'y'2’ is also a tangent
plane to the surface of centres. The reciprocals of the inter-
cepts which this plane makes on the axes are therefore

Z
E— %) ’I—gfn t'_'gi'
The relation R .
LA ML
azam+btbm+cscm"‘0
gives P op
E+r+)=@-a")(5+ %+ 35),

and the relation

gives o
@+ + I —1) = (a'—a”) (£ + 2"+ 7).

The equation of the reciprocal is therefore
2 2 __ (9 %, 2 E" 1’ g’
(E+a+ ) =@+ +0-1) (5 + 5+ %)

Nov. 20, 1857,

ON THE FORMATION OF TABLES OF LOGARITHMS
OF THE TRIGONOMETRICAL RATIOS.

By H. W. ELpnixsTONE, M.A., Trinity College, Cambridge.

e following account of the method of forming tables of

the logarithms of the trigonometrical functions is taken
from Franceur’s Cours Complet de Mathematiques' Pures,
Art. 588. This method is not given in any ome books
in common use at this University, and I have therefore been
led to insert it in the Journal, in the belief that it might be
of use to students.

Suppose that angles in the tables have a constant diffe-
rence of 10", let % = circular measure of 10", and if 6 be any
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angle given in the tables let 6 =nk. We have, by Euler’s
formula,
ginf = sinnk

=nk{l—¥-:|£:+;:—lk:—&c.},
cos 6 = l—’;.Tlf:+';‘T’ﬁ-&c.
Let y= ?1‘:—’;:—21‘3]{':4'&0-:

Then we shall have
8inf = nk (1 —y),
cosf =1-— 2,

and taking logarithms to base 10,

log sin@ = logn + logk — M{y + ‘%’ + %. +}» ’

3 3
logcosﬁ=—M{z+%+-z—+...},

3
or substituting for y and # their values
. ME , ME ,
log sin@ = logn + logk — 23" “1se" &e.,
. ME ., MK,
logcosﬁ-—-—2—n “ 32" — &e.,

writing these under the form
log sinf = logn + logk — An* — Bn* ~ &c.,
log cosf = — An* — Bn' — &e.,

the values of 4, B, 4, B admit of easy calculation by means
of a table of logarithms, tlney are found to be as follows:

logA =10.2307828
logB = 20.1248113
log 4, = 10.7079041
log B, = 19.3009025
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If we do not apply these series to the calculation of log sines
and log cosines of angles greater than 12° and require 9
decimal places only, we may stop at the terms involving n*.
The logarithms of tangents, cotan§ents, secants, and co-
secants are obtained from those of sines and cosines by
addition only.

Although we may apply this method so long as the ang}e
is not greater than 12°, it is more convenient to apply the
following method when the angle is greater than 5°:

sin(6+%) sinf cosk + cosd sink
sind sind B
= cosk (1 + cotd tank)
=1+ k cotd (true to 9 decimal places),
log sin (0 + k) — log sin 8 = log (1 + & cotd)
= Mk cotd = A suppose.

Similarly
log cos (8 + %) — log cosf = — Mk tanf = A’ suppose,

where A, A’ are the successive tabular differences. The
values of A, A’ may easily be calculated by means of a table
of common logarithms; as they change but slowly, the same
values may be used for the computation of several successive
gines and cosines.

By means of these formulas we can calculate sines and
cosines and therefore all the other trigonometrical functions
of angles from 0° up to 45°, and there is no need to proceed
any farther.

The following formula of verification is of use to enable
us to see whether we have allowed any errors to accumulate :

log2 + log sin @ + log cos @ = log sin26.

If we add 10 to the characteristic of the logarithms thus
found we shall have the “tabular” logarithms.
For example let us calculate sin (4°.30).

Here n = 1620,
logA = 10.2307828 log B = 20.1248113
logn® = 6.4190300 logn* = 12.8380600
"1.6498128 | 8.9628713

The corresponding numbers are 0.00044649
' and 0.00000009
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hence we have
logk = 5.68557487
logn = 3.20951501
-.00044649
-.00000009
2.89464330 = log sin4°.30' to base 10
and 8.89464330 = tabular log sin4°.30'.

Again, let us obtain the tabular difference between
log 8in10°.10".30" and log sin10°.10.40".
log cotf = 0.7459888
log (Mh) = 5.3233592
log A = 4.0693480
A = 0.00011731.

AN EXAMPLE OF THE INSTINCT OF CONSTRUCTIVE:
GEOMETRY.

By CeciL JaMes Moxwro, Trinity College, Cambridge.

THERE is a class of optical illusions, as they may be called,

arising from a readiness in the eye to detect any simple
geometrical relations which may exist among an assemblage
of points presented to it. Curves of perhaps considerable
complexity, and apparently almost of arbitrary form, are
often as 1t were forced upon it; but of course always re-
ducible to exact geometrical laws.

Suppose two systems of lines (I will suppose them, for
the saY(e of distinctness rather of language than conception,
to lie on the same surface, and that plane), varying respec-
tively by finitely differing values of a single parameter, to
intersect; as many systems of polygons may be drawn
through the intersections of corresg:mdmg pairs, a8 ingenuity
may conceive relations between the parameters in order to
determine correspondence. But, in the case of lines actually
drawn, the eye 1s irresistibly led to select two of these rela-
tions, and to form the appropriate polygon, or rather the
simpiest curve that can be drawn through its determinin,
points. The principle upon which we instinctively proce
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is to step from one point to the nearest which would mnot
require a violent deviation from a direction previously chosen :
thus, if M, N, M', N’y M", N" be consecutive pairs of lines,
we shall proceed from (mn) to (m'n’), and thence to (m"n")
(to designate the points of intersection by an obvious nota-
tion), or from (mn") to (m'n’), and thence to (m"n), and so on.
The relations between the parameters which will prescribe
these two courses are found by equating their sum and
difference respectively to a constant quantity, which is itself
the parameter of the new system. From either equation and
those of the given systems the first parameters may be
eliminated, and an e?uation results satisfied by the coordinates
of the new series of points, which is in fact the equation of
the simplest line that can be drawn through them. Perhaps
there are short-sighted persons (for they seem to be quickest
at detecting these relations) who can see the curves formed
by proceeding by two steps of the one system to one of the
other, or generally any of the curves depending on the rela-
tion (m and n being the parameters)

Am + Bn=C;
but I can only catch those given by 4+ B=0, and therefore
min=0_C.

T will now indicate a fow examples which will be easily
verified, as they may be observed every day.

1. If each system consist of radii passing through a fixed
oint, of which each makes the same angle with that which
?ollows it, then, in the case in which this angle is the same for
both systems, the resulting systems are circles and hyperbols
through the fixed points. The first is evident from Euclid’s
third book : for the second, take the line joining the points
for the axis of «, and the line perpendicular to this half way
between the points for that of y; let the distance of the two
ints be 2a, and the interval between consecutive radii a.
hen :

r—a

and, if m and n be eliminated by means of the equation

o
m+n=—,
a
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® being an arbitrary constant,

z'—y'—2 cotw.xzy —a'=0;
giving a hyperbola passing through the points, and having
or its asymptotes the lines through the symmetrical point

which make with the line joining the points angles whose
tangents are equal to

4 (— cotw + cosecw).
An example may be observed in the figure illustrating the

reflexion of a conical pencil of rays at a plane surface in
Goodwin's Course. -

2. Taking a pair of series of concentric circles whose radii
are in some regular progression, we have ovals, varying of
course in form according to the nature of the progression.
If the progressions are arithmetical the ovals are those of
Cassini; and when the successive differences are the same
in both, they become confocal ellipses and hyperbole.

If the progressions are geometrical, so that

p=ak",
p'=bF,
pp™ =ab"kC=c" or v,
the two systems are, first, the curves of the fourth degree,
(' + a”)* - 4a’"* cos’=¢",
and, secondly, the circles,
1+
1-9
If the radii vary as some power (the %) of the number
representing the (;r“z‘,r of the circle, we get
3

©)':(6) -0

and find new forms of ovals, including the sim%ller case of
curves of the second order and even straight lines when

k=4.

o this general class belong the two systems observed
to result from the intersections of the waves produced by
throwing two stones into water. Until the waves have
spread considerably the resulting curves are scarcely dis-
tinguishable from the ellipses and hyperbole given by the
case of arithmetical progression.

4 2a rcosd +a*=0.
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8. If the given lines are not in the same plane or in
planes at all, the result is of course the same, and it is
simplest in practice to consider their projections. Thus the
apparent intersections of two rows of railings, each row in
a vertical plane, and each rail parallel to those in its own
row, lie in curves of the second order, when projected on a
plane: (a case mentioned in a paper referred to in the note).®

And generally, in the case of straight lines, if one system
be defined by two equations containing m in the p™ and p’™
degrees respectively, and the other by two containing n in
the ¢ and ¢'™ degrees; the visual cone directed by the locus
of apparent intersections is of a degree not higher than the
5{‘*‘1"*‘1) (g+g¢'+1)* Forif u, v, & ¢ x, 9,2 be

e coordinates of the eye, a point in a line of one system,
and a point of the cone required; £, 5, { satisfy the first
pair of equations and their coefficients contain m: at the
same time they are functions of the first degree of the
quantity expressed by the equal ratios

E-u 7-v {-w,
z-u’ y-v' z-w'-
they may therefore be eliminated by substitution in the two
uations, which will thus be of the first degree in terms
of this quantity, and of the " and " in terms of m. When
this quantity 18 eliminated m enters into the resulting equa-
tion i the (p+p')" degree. In the same way the corre-
sponding equation for the other system contains » in the
§q+ ¢)" degree. But they each contain z, y, z in the first
egree and are actually therefore of the degrees p+p' +1
and ¢+¢'+1 in terms of their variables. Further the equa-
tion, m +n= a constant, is of the first degree. The result
therefore of elimination is of a degree not higher than the
(p+2 +1)(g+¢ +1)" in terms of z, y, 2.

4. Take the example of parallel circular equidistant nnfs
lying in a right circular cylinder. Let the axis of the
cylinder be the axis of y, and the eye be in the axis of
# at a distance c; the radius being a. The nearer sides of
the rings will apparently intersect the further; let us find
the result projected on the plane zy. If a cosé, 7, and a sin 6
be the coordinates of a point in a ring,

(y—n)

aeo50='£v, asin0=°—,
y ,

* Gergonne, t. XIX. pp. 371-374. Note sur la théorie Anal. du Moiré.

Fas
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whence (& +c)n"—~2"yn + (' —a") y*=0;

now any pair of simultaneous values of x and y gives two
values of 7, that is to say, determines the apparent intersec-
tion of two rings; and a value of # being the parameter
for each ring, we have to form the equations,

7,17, =a constant;
that is, A and Z being arbitrary parameters,
ha' - 2cy + he* =0,
and (= o) 2’y + K'z* — o’y + K'c*=0.

An example is furnished by a cylinder of wire gauze.

Some apparent examg es owe their vividness to another
cause. The circles and hyperbole of the first case will be
produced by two radii revolving, each about one point, at
the same rate, the relation between the parameters being
now not selected by the eye but prescribed by the circum-
stances of the motion: and here we have the further ad-
vantage of perfect continuity. The effect is heightened by
increasing the number of revolving lines, as the impression
on the retina may be thus renewed before it has time to
fade. Hence the circles are seen in great perfection on
looking through one wheel of a carriage in motion at the
opposite one. If the wheels turned round in opposite ways
we should see the hyperbol. *

NOTE ON THE EXPANSION OF THE TRUE ANOMALY.
By A. CavLEy.

F the trne anomaly and the mean anomaly are respectivel
I denoted by u, m, and if e be the excentricity, then a{

1—4/(1-¢°)
e

take ¢ to denote the base of the hyperbolic system of loga-
rithms, we have

usual 4 —esinu=m; and if we write A= and

u=m+237 4, si_n;rﬂ ,
and A = Nelre WA L ATTelre(A-A)

where, after expanding the exponentials, the negative powers
of A are to be rejected and the term independent of A is to
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be multiplied by § (see Camb. Math. Journal, t. 1. p. 228 and
t. ITL. p. 165).

It 18 easily seen that ¢ is the lowest power of e which
enters into the value of 4, and the question arises to find
the numerical coefficient of the term in question; this is
readily obtained from the formula; in fact considering first
a term of the form

A (A=),
since A is itself of the order e, when the negative powers of
M\ are rejected this is at least of the order ¢ and it is con-
sequently to be neglected if s> ». But if s <7 all the powers
of A are negative and the term is to be rejected. The only
case to be considered is therefore that of s=r, in which case
there is a term containing ¢. 'We thus obtain from A~ clre(A-x~)
the term

e
Yr1as

In the next place a term of the form A'e¢'(A—A7') is at
least of the order ¢' if s>, or the terms to be considered
are those for which s=or <r. But in such term the only
part of the order ¢ is

(_)0 x’-‘ el’
or since neglecting higher powers of ¢ we have A = }e, this is
(=re™e,
and the set of terms arising from
A c-lre(k-)t")’

A PP P AP
2 1712 T 12..(r—1) " 212,

the last term being divided by 2 because arising from a term
independent of A. Hence the first term of 4, is

4 r o

by {1 titia -t 1.2...7'} ’

a result which it may be remarked is contained in the general
formula given in Hansen’s Memoir “ Entwickelung des Products
dec.,” Leipzig Trans., t. 11. p. 277 (1853).

The preceding expression is

_eo0 1 )[“,c_,dx’

or l"ir+1

is
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and to find its value when 7 is large, we have
- - L] \ yer _ 1’ . L z r y
[z’c dx fo(y+r)e dy = ¢ /o (1+r)e dy
=7r¢’ ]‘ cwlq(hg)dy
o

_'-'-+—'—’--&o.
=r'c"f‘c T dy
)

- r'c"f (1 + 3% +) c—gdy

=" Vé?f: {1 + %_fs' +) *de,

or neglecting all the terms except the first, this is
=rc Vor f e“’dz
o
= V2mroc”.

Hence multiplying by %,c'c’ -l‘—(rl—+T) and observing that

when 7 is large, we have, by a well known formula,
T'(r+1)=~2mrrec”,

we obtain finally the result that when r is large the first
term of A4, is approximately

eC 14
-(5)

I take the O}:ﬂortunity of mentioning the following some-
what singular theorem, which seems to belong to a more
general theory: viz. iff u—e sinu =m, then we have

log(1 —e cosw) =£ log(1 — ae cosg),

where $-> tang=m,

rovided that the negative powers of a are rejected and a
18 then put equal to unity.



232 Note on the Expansion of the True Anomaly.

X To shew this, we have by Lagrange’s theorem, observing
that
d

ym F(1—e cosm)=e sinmF" (1 —e cosm),

. ]
F(1—e cosu)=F(1— e cosm) +ei si*mF"’ (1 - e cosm)
¢ d
iz dn
and the coefficient of ¢ in F(1 —e cosu) is

sin®mF" (1 —e cosm) + &c.,

=r 1 r—1 . s
1020..("‘—]) rﬁlcos'm-'. 1 Fp\-l CcoS "m sin'm

_(r=(r=2) F,_, dim (cos™m sin’m) + &c.} s

1.2
where Fr=F"(1).
Hence in particular when Fx=logz, F.=(-)""1.2...(r —1)
and thence the coefficient of ¢’ in log (1 — e cosu) is

1, 1 . 1 d .
- {; cos"m — Icos"'m sin*m — 13 7m (cog™m sin*m) — &c.} ,

continued as long as the exponent of cosm is not nega-

tive. Now in the expansion of ilog(l—aw cos¢) where
¢—(-litan¢=m the coefficient of ¢ is —;a"‘ cog”¢p which
(by Lagrange’s theorem) is equal to

1 1 . )
-5 a~! {cos"m — i’ cos"m sinm tanm

- T;? 3% (r cos™ m sinm tan'm) — &c.}
= - {; a™ cos’m — -:1 o™* cos™m sin"m

1.2

where the series is continued indefinitely, but if we reject
the negative powers of a and then put a et}ual to unity this
is precisely equal to the former expression for the coefficient
of ¢ and t{xeez)rmula is thus shown to be true.

2, Stone Buildings, W.C,,
17th Nov., 1857,

1 .
— — & cos™m sin’m — &e. } ,
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ON THE GENERAL LAWS OF OPTICAL
INSTRUMENTS.

By J. C. MAXWELL.

THE optical effects of compound instruments have been

enerally deduced from those of the elementary parts
of which they are composed. The formule given in most
works on Optics for calculating the effect of each spherical
surface are simple enough, but, when we attempt to carry
on our calculations from one of these surfaces to the next,
we arrive at fractional expressions so complicated as to make
the subsequent steps very troublesome.

Euler (Acad. li{ de Berlin, 1757, 1761. Acad. R. de
Paris, 1765) has attacked these expressions, but his investi-
gations are not easy reading. agrange (Acad. Berlin
1778, 1803) has reduced the case to the theory of continue
fractions and so obtained general laws.

Gauss (Dioptrische Untersuchungen, Gottingen, 1841) has
treated the subject with that combination of analytical skill
with practical ability which he displays elsewhere, and
has made use of the properties of principal foci and prin-
cipal planes. An account of these researches is given by
Prof. Miller in the third volume of Taylor’s Scientific Memoirs.
It is also given entire in French by ﬂ Bravais in Liouville’s
Journal for 1856, with additions by the translator.

The method of Gauss has been followed by Prof. Listing
in his Treatise on the Dioptrics of the Eye (in Wagner’s
Handwirterbuch der Physiologie) from whom I copy these
references, and by Prof. Helmholtz in his Treatise on Phy-
mlglqwal Optics (in Karsten’s Cyclopddie).

he earliest general investigations are those of Cotes,
iven in Smith’s Optics, 11. 76 (1738). The method there
18 geometrical, and perfectly general, but proceeding from the
elementary cases to the more complex by the method of
mathematical induction. Some of his modes of expression,
as for instance his measure of ‘ apparent distance,” have never
come into use, although his resuﬁs may easily be expressed
more intelligii)ly; and indeed the whele fabric of Geome-
trical Optics, as conceived by Cotes and laboured by Smith,
has fallen into neglect, except among the writers before
named. Smith telﬁx us that it was with reference to these
optical theorems that Newton said “ If Mr. Cotes had lived
we might have known something.”

VOL. II. R
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The investigations which I now offer are intended to
show how simple and how general the theory of instruments
may be rendered, by considering the optical effects of the
entire instrument, without examining the mechanism by
which those effects are obtained. I have thus established
a theory of “perfect instruments,” geometrically complete
in itself, although I have also shown, that no instrument
depending on refraction and reflexion, (except the (pla.ne
mirror) can be optically perfect. . The first of this
theory was communicated to the Philosophical Society of
Cambridge, 28th April, 1856, and an abstract will be found
in the Philosophical Magazine, November, 1856. Proposi-
tions VIII. and IX. are now added. I am not aware that
the last has been proved before.

In the following propositions I propose to establish certain
rules for determining, K'?)m simple data, the path of a ray of
light after passing tirough any optical instrument, the posi-
tion of the conjugate focus of a luminous point, and the

itude of the image of a given object. The method
which I shall use does not require a knowledge of the in-
ternal construction of the instrument and derives all its data
from two simple experiments.

There are certain defects incident to optical instruments
from which, in the elementary theory, we suppose them to
be free. A perfect instrument must fulfil three conditions:

I. Every ray of the pencil, proceeding from a single
point of the object, must, after passing through the instru-
ment, converge to, or dive m, a single point of the
image. The corresponding r(i}ect, when the emergent rays
have not a common focus, has been appropriately called (by
Dr. Whewell) Astigmatism.

IL If the object is a plane surface, perpendicular to the
axis of the instrument, the image of any point of it must also
lie in & plane pe endicular to the axis. When the points
of the image lie In a curved surface, it is said to have the
defect of curvature.

I1I. The image of an object on this plane must be similar
to the object, whether its linear dimensions be altered or not ;
when the image is not similar to the object, it is said to be
distorted.

An image free from these three defects is said to be

In the figure (fig. 1) let 4 aa, represent a plane object
perpendicular to the a.xzs of anli;:'trunl:ent represented by 1.,
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then if the instrument is perfect, as regards an object at that
distance, an image A,a,a, will be formed by the emergent
rays, which will have the following properties:

I. Every ray, which passes through a point a, of the"
object, will pass through the corresponding point a, of the
1mage. ’

II. Every point of the image will lie in a plane perpen-
dicular to the axis.

III. The figure Ajaa, will be similar and similarly
sitnated to the figure 4.aa,.

Now let us assume that the instrument is also perfect as
regards an object in the plane Bjb 8, perpendicular to the
axis through B, and that the image of such an object is in
the plane B,bﬂ and similar to the object, and we shall be
able to prove the following proposition :

Prop. I. If an instrument give a perfect image of a plane
object at two different distances from the instrument, all
incident rays having a common focus will have a common
focus after emergence.

Let P, be the focus of incident rays. Let Pab, be any
 incident ray. Then, since every ray which passes through a,
passes through a,, its image after emergence, and since every
ray which passes through 4, passes through b, the direction
of the ray Ea,bJl after emergence must be ab,.

Similarly, since «, and 8, are the images of , and 8
ilf Pa B, be any other ray, its direction after emergence will
e a3,
oin aa, b0, aa, b8, ; then, since the parallel planes
Aaa, and ’B,b,ﬁl are c‘lﬁ’ by the plane of pthe twg rays
through P, the intersections a,a, and 48, are parallel.

Also, their images, being similarly situated, are parallel
to them, therefore a,a, is parallel to 5.8,, and the lines ab,
and o3, are in the same Flane, and therefore either meet
in a point P, or are parallel.

Now take a third ray through P,, not in the plane of the
two former. After emergence it must either cut both, or
be parallel to them. If it cuts both it must pass through
the point P,, and then every other ray must pass through P,
for no line can intersect three lines, not in one plane, with-
out passing through their point of intersection. If not, then
all the emergent rays are parallel, which is a particular case
of a perfect pencil. So that for every position of the focus

R2
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of incident rays, the emergent pencil is free from astig-
matism.

Prop. II. In an instrument, perfect at two different dis-
tances, the image of any plane object perpendicular to the
axis will be free from the defects of curvature and distortion.

Through the point P, of the object draw any line P,Q,
in the plane of the object, and through P,Q, draw a plane
cutting the planes 4 B in the lines aa, 8, These lines
will be parallel to P d, and to each other, wherefore also
their images, a,a, 5,8, will be parallel to i’,Q, and to each
other, and therefore 1n one Ylane.

Now suppose another plane drawn through P,@, cutting
the planes 4, and B, in two other lines parallel to P Q..
These will have parallel images in the planes A, and
and the intersection of the planes passing through the two
pairs of images will define the line P,Q. which will be parallel
to them, and therefore to P,Q,, and will be the ¢mage of P,Q,.
Therefore F,Q),, the image of P, ¢, is parallel to it, and there-
fore in a plane perpendicular to the axis. Now if all corre-
sponding lines in any two figures be parallel, however the
lines be drawn, the figures are similar, and similarly situated.

From these two propositions it follows that an instrument
giving a perfect image at two different distances will give
a perfect image at all distances. We have now only to
determine the simplest method of finding the position and
magnitude of the image, remembering that wherever two
rays of a pencil intersect, all other rays of the pencil must
meet, and that all parts of a plane object have tﬂeir images
in the same plane, and equally magnified or diminished.

Prop. III. A ray is incident on a perfect instrument
rallel to the axis, to find its direction after emergence.
Let a5, (fig. 2) be the incident ray, 4 a, one of the planes

at which an object has been ascertained to have a perfect
image. A.a, that image, similar to 4,2, but in magnitude
such that A o =xda,.

and let Bp =yBp,.

171

Similarly let B3, be the image of B

?

Also let 4 B, =c, and 4,B,=4, i

Then since e, and b, are the images of a, and b, the line

Fapb, will be the direction of the ray after emergence, cutting

the axis in F,, (unless =y, when a,b, becomes parallel to

the a.xi% The point ¥, may be found, b remembering that
Aa =Bb, Aa =xAa, Bb=yBb,. {Ve find—

1719 171 Ve T

A|F'1=c| = *

y—x
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Let g, be the point at which the emergent ray is at the
same distance from the axis as the incident ray, draw g,
perpendicular to the axis, then we have

F,G,= .
Y y—-=o
Similarly, if «8,F, be a ray, which, after emergence,
becomes parallel to the axis; and G . 2 line perpendicular
to the axis, equal to the distance of the parallel emergent
ray, then
AF=¢ -4 |, F@ =22
1% 1 z—y 1 z—y
Definitions.
I. The point F,, the focus of incident rays when the
emergent rays are parallel to the axis, is called the first
principal focus of the instrument.

II. The plane G,g, at which incident rays through F,
are at the same distance from the axis as they are after
emergence, is called the first principal plane of the instru-
ment. F, G, is called the first focal length.

III. The point F,, the focus of emergent rays when the
incident rays are para].lel, is called the second principal focus.

IV. The plane G,g,, at which the emergent rays are at
the same distance from the axis, as before incidence, is called
tlg: s;icond principal plane, and F,G, is called the second focal

th.

gWhen =y, the ray is parallel to the axis, both at inci-
dence and emergence, and there are no such points as ¥ and
G. The instrument is then called a telescope. x(=y) is
called the linear magnifying power and is denoted by [, and

the ratio (c—:‘is denoted by n, and may be called the elongation.

In the more general case, in which « and y are different,
the principal foci and principal planes afford the readiest
means of finding the position of images.

Prop. IV. Given the principal foci and principal planes
of an instrument, to find the relations of the foci of the inci-
dent and emergent pencils.

Let F.F, (g . 3) be the aprincipal foci, G, @G, the principal
pﬁanes, Q, the focus of incident light, @ P, perpendicular to
the axis.
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Through @, draw the ray Q,¢,F,. Since this ray passes
through F| it emerges parallel to the axis, and at a distance
from it equal to G,g,. Its direction after emergence is
therefore ez,g, where G,g,=G.g,. Through Q, draw Q,y
parallel to the axis. The corresponding emergent ray will
pass through F,, and will cut the second principal plane at
o distance G,y,=G\y,, 8o that Fy, is the direction of this
ray after emergence.

Since both rays pass through the focus of the emergent
pencil, Q,, the point of intersection, is that focus. Draw
Q,P, perpendicular to the axis. Then P,Q =Gy,=Gy,
and G g,=G,9,=P,Q, By similar triangles F,F,Q, and

F.Gy,
I:E : 'F_:Gl i ‘PIQI : (Glgl =) PsQl'
And by similar triangles F,P,Q, and F,Gy,
PQ(=6y): P.Q,:: GF,: FP,
‘We may put these relations into the concise form
PF, PQ _GF,
F,6," R0, FE!
and the values of F,P, and P,Q, are

F.G.G,F. F &
FP,== 35" ad B,Q,= 37 B0

These expressions give the distance of the image from F
measured along the axis, and also the perpendicular distance
from the axis, s