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PEEFACE

r
I
1HE subject selected for the Adams' Prize of 1910 was " Some investi-

-*- gation connected with the physical constitution or motion of the

earth." A number of questions on which it is desirable to obtain further

knowledge were mentioned ; among them were " The stresses in continents

and mountains, when the supposition of the existence of the isostatic layer

is accepted ; the propagation of seismic waves." At the time when this

announcement was made, March 1909, I had found that modification of

previous theories concerning the effects produced by compressibility in a

body of planetary dimensions which forms the basis of the investigations in

Chapters VII—X of this Essay, and had sketched a programme of work

dealing with the special subject cited above from the announcement. The

investigations concerning the effects of the earth's rotation on earth tides

did not arise as part of the original programme, but were undertaken after a

discussion of the subject at the Winnipeg Meeting of the British Association

for the Advancement of Science.

As the analytical investigations in the Essay are rather intricate, it has

been thought advisable to prefix an Abstract, stating the special hypotheses

and limitations in accordance with which the various problems are discussed,

and describing the conclusions which have been reached.

My best thanks are due to the authorities of the Cambridge University

Press for the readiness with which they have met all my wishes in regard

to the printing.

A. E. H. L.

Aprilf 1911.

a3
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ABSTRACT

The first three Chapters deal with the problem of determining the Stress

produced in the Interior of the Earth by the Weight of Continents and

Mountains. Chapter I contains a brief discussion of the distribution of land

and water on the surface of the globe. This discussion is designed to

evaluate roughly the amplitudes of those spherical harmonic inequalities

which are most prominent in the shape of the lithosphere. By the litho-

sphere is here meant the surface of the land in places where there is land,

and the surface at the bottom of the sea in places where there is sea. The
most important deviation of this surface from a spherical form is the

inequality specified by the ellipticity of the meridians; but this inequality

is without influence upon the distribution of land and water, for the litho-

sphere and the surface of the sea both have elliptic meridians, and the

difference of their ellipticities is trifling. After the ellipticity of the meridians

the most prominent inequalities are those which are manifested in the

existence of a single continental block, embracing all the continents, and

surrounding two great areas of depression, the basin of the Pacific Ocean

and the basin of the Atlantic and Indian Oceans, the portions of the Southern

Ocean which lie to the south of these oceans respectively being counted

as parts of them. The inequalities manifested in mountain ranges and deeps

have not nearly so much importance in regard to the figure of the Earth as

a whole.

In Chapter I it is explained how the shape of the lithosphere could,

if the elevation or depression of every point above or below a mean level

were known accurately, be expressed by equating the radius vector, which

joins the centre of gravity and a point of assigned latitude and longitude, to

a sum of spherical surface harmonics, which are definite functions of the

latitude and longitude, each provided with a suitable coefficient. Further it

is shown, on the basis of previous work by the writer, that the inequalities

manifested in the continental block and ocean basins may be represented

roughly by restricting the sum in question to harmonics of the first, second,

and third degrees. It appears that the elevations and depressions answering

to the first and third harmonics are nearly equal, the third slightly the

greater, and greater than those answering to the second harmonic ; and that
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an amplitude of 2 km., implying, in the case of the uneven harmonics, a range

of 4 km. from greatest elevation to greatest depression, and, in the case

of the second harmonic, a range of 3 km., would be amply suflScient to

express the elevation of the actual mean surface of the land above the

bottom of the sea.

Such deviations from the spherical figure as are manifested in the

continental block and the ocean basins, and in mountains and deeps, imply

the existence within the earth of tangential stresses. Thev could not be

maintained if the stress at every point across every plane passing through

the point were normal to the plane. The maintenance of the ellipticity due

to the rotation does not require any tangential stress. In Chapter II it is

explained that the problem of finding the stress required for the support of

continents and mountains is strictly indeterminate, as it would admit of an

infinite number of solutions founded on different hypotheses ; and a solution

is sought on the basis of isostasy. Even when this hypothesis is adopted the

problem is still indeterminate, and that in two ways. In the first place the

hypothesis, as developed by previous writers, lacks precision. In the second

place the equations of equilibrium of a solid body, subjected to its own gravi-

tation, do not suffice for the determination of the stress within it until some

relation between stress and strain is introduced ; and, in the present problem,

the notion of strain is inappropriate, because the earth is not strained from

a state without continents and mountains to a state possessing these features.

It becomes necessary to make two assumptions. The first assumption

amounts to assigning a special form to the hypothesis of isostasy. According

to the hypothesis, the inequalities of the earth's figure (apart from the

ellipticity due to the rotation) are associated with inequalities of density in

a superficial layer, the thickness of which is about one-fiftieth of the radius,

in such a way that the stress in the interior parts is hydrostatic pressure

which is not affected by the inequalities of density. This condition could be

satisfied by an infinite number of laws of density in the layer, and the

special law which is chosen is dictated by analytical convenience. It proves

to be convenient to assign a form to the inequalities of potential that are

due to the inequalities of density, and to deduce a law of density which, it

must be admitted, appears to be rather artificial. This is effected by taking

the inner surface of the superficial layer, or " layer of compensation," to be

a spherical surface of radius b, and the mean outer surface to be a concentric

spherical surface of radius a, and supposing that the terms which are

contributed to the potential at any point within the layer by the inequalities

of density contain as factors the expressions (a — r) and (r — by, where r

denotes the distance of the point from the centre of the spherical surfaces.

The rotation is neglected. The factor (a — r) secures that, in spite of the

inequalities, the mean outer surface is an equipotential surface, a condition

which must be fulfilled, at least approximately, if the theory is to be brought
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into accord with geodetic observations. The factor (r — 6) must occur, and

be repeated, if, as is laid down in the hypothesis, the stress at every point

within the inner surface of the layer across every plane passing through the

point is normal to the plane. Clearly the function by which the potential

due to the inequalities is expressed is not determined by the condition of

possessing the two factors (a — r) and {r — b)-. To any spherical harmonic

inequality of the surface there must answer a term of this potential which

contains also, as another factor, the spherical surface harmonic expressing the

inequality. This term may, without affecting the hypothesis, be multiplied

by any function of r. By choosing this function in various ways we could

arrive at an infinite number of laws of density in the layer, all of them

equally compatible with the hypothesis of isostasy. The law actually chosen

is obtained by taking this function to be the lowest power of r for which

the equations of the problem can be integrated without introducing any

logarithmic terms. The corresponding inequalities of density are deduced

from the inequalities of potential by Poisson's rule. Apart from these in-

equalities, the density of the layer of compensation is taken to be uniform.

No assumption is made in regard to the distribution of density of the matter

within the inner surface of the layer, except that it is symmetrical about the

centre. Even when the law of density is settled, in the sense described

above, the problem of determining the stress remains indeterminate, and it

is necessary to make another assumption in order to render it determinate.

The second assumption relates to the subsidiary equations which take the

place occupied by stress-strain relations in the ordinary theory of elasticity.

It is assumed that, apart from a hydrostatic pressure, the stress at any point

in the layer is related to a vector quantity, called the " fictitious displace-

ment," in the same way as the stress in an isotropic elastic solid body, which

is slightly strained, is related to the displacement of the body, and further

that the divergence of this vector vanishes, as it would do if the vector

denoted an actual displacement in an incompressible solid. This assumption

must be distinguished from the assumption that the earth behaves as an

incompressible solid body which undergoes a slight strain.

On the basis of the two assumptions described above the equations of

equilibrium of the earth are formed, and the solution corresponding to any

spherical harmonic inequality is obtained. The strength which the material

of the layer must have in order to support an inequality of assigned

amplitude, and specified by an assigned spherical surface harmonic, is to

be determined by calculating the " stress-difference," which is the difference

between the algebraically greatest and least principal stresses at a point.

Formulae for calculating the stress-difference answering to any zonal har-

monic inequality are obtained. The solution of the equations of equilibrium

is expressed in terms of a number of definite integrals, and these are not at

first evaluated analytically, but the solution is completed in an approximate

L. G. 6
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fashion for inequalities which are expressed by zonal harmonics of low

degrees. The work is simplified by taking the mean density of the matter

within the inner surface of the layer of compensation to be twice the mean

density of the matter of the layer, in accordance with the known fact that

the mean density of the earth is about twice the mean density of surface

rocks. The stress-difference which is calculated, in accordance with the

assumptions described above, as that necessary to support an inequality,

specified by a spherical harmonic inequality of the first, second or third

degree, and having an amplitude of 2 km., is much smaller than the tenacity,

or the crushing strength, of any ordinary solid material. In particular, in

the case of the harmonic of the third degree, it is less than ^^ of a metric

tonne per square cm. For the support of similar inequalities of the first and

second degrees smaller tenacities would be required. Further it appears

that, for harmonic inequalities of the first degree, the maximum stress-

difference occurs at a depth equal to one-third of the thickness of the layer

of compensation, and beneath places where the gradient of the superficial

inequality is steepest. For harmonics of the second and third degrees, it

occurs at a slightly smaller depth, and beneath places intermediate between

those where the height of the superficial inequality is greatest and those

where the gradient is steepest. As the crushing strengths of various kinds

of granite have been measured as | of a metric tonne per square cm. and

upwards, it may be concluded that no exceptional strength is needed in the

materials of the layer in order to support a continental block and ocean

basins, of such dimensions as those which actually exist on the earth, but

these could be maintained easily by any ordinary solid material. The theory

gives no support to the doctrine that the earth is a " failing structure."

In Chapter III the analysis developed in the previous Chapter is adapted

to the problem of determining a stress-system by which inequalities that

may be taken to represent mountains could be supported. Such inequalities

may be taken to be expressed by zonal spherical harmonics of rather high

degrees. The solution of the equations of equilibrium obtained in Chapter II

is completed by an analytical evaluation of the definite integrals that occur

in it, and by a numerical calculation of their values in the special case where

the degree of the spherical harmonic concerned is 50, which is the assumed
ratio of the mean radius of the earth to the mean thickness of the layer of

compensation. The corresponding stress-difference is calculated approxi-

mately. It appears that it is greatest at the mean surface, and beneath

places where the height of the superficial inequality is greatest. The solution

is adapted to the special case of a series of parallel mountain-ranges at

distances apart equal to about 400 km., and with crests at a height of about

4 km. above the valley bottoms ; and, as in the previous Chapter, the work
is simplified by taking the mean density of the matter within the inner

surface of the layer of compensation to be twice the mean density of the
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matter composing the layer. The stress-difference which is calculated, in

accordance with the assumptions described above, as that necessary to

support such mountains is about the tenacity of sheet-lead, or a little

greater than half the crushing strength of moderately strong granite.

From this theory it would appear that much stronger materials are required

to support existing mountains than to support existing continents. The
theory is however imperfect, because existing mountains are much less well

represented by means of a few zonal harmonic inequalities than existing

continents.

The next three Chapters of the Essay, Chapters IV—VI, deal with the

problem of Earth Tides. In Chapter IV there is given a resume of the work
of previous writers. As this Chapter is explanatory, and does not contain

any intricate analysis, it may suffice here to state that it is designed to bring

out the points which have not been elucidated in previous discussions of the

problem. One of these points is the fact, disclosed by Dr Hecker's observa-

tions, that the force which disturbs a horizontal pendulum at Potsdam is

a larger fraction of the tide-generating force when it acts east or west than

when it acts north or south. The suggestion, made by Sir George Darwin,

that this phenomenon may be due to the rotation of the earth, seemed to

demand that the effect of rotation should be investigated. An investigation

of this effect is undertaken and carried out in the two following Chapters.

This investigation is based upon certain simplifying assumptions which may
be stated here. The first assumption is that the earth may be treated as

a homogeneous solid body, the material of which is absolutely incompressible,

but possesses a finite degree of rigidity. The second assumption is that,

apart from the action of tide-generating forces, this body is in a state of

initial stress, by which its own gravitation is balanced throughout its mass,

while the body rotates uniformly about an axis passing through its centre of

gravity. The third assumption is that the figure of the body, when un-

disturbed, is an ellipsoid of revolution about this axis, the ellipticity, supposed

small, being connected with the angular velocity in the same way as it would

be if the material were homogeneous incompressible fluid. This involves the

further assumption that the initial stress is hydrostatic pressure. These

assumptions involve the hypothesis that, when the body is disturbed, the

stress at any point is compounded of the initial hydrostatic pressure and an

additional stress, which depends upon the displacement produced by the

disturbing forces in the same way as the stress in an incompressible solid

body, which is slightly strained from a state of zero stress, depends upon the

relative displacements of the parts of the body. In the problem in hand

the disturbing force may be taken to be the tide-generating force of the

moon; and, according to a well-known analysis, this force is derived from

a potential, which can be expressed as a sum of terms, every term being the

product of a spherical solid harmonic of the second degree, a simple harmonic

62
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function of the time, and a constant coefficient. The most important term

of this sum is the term which answers to the principal lunar semi-diurnal

tide, and the period of that simple harmonic function of the time which

is a factor of this term is half a lunar day. The investigation is restricted

to determining those effects which are simple harmonic functions of the time

and have this period, that is to say it is conducted as if the corresponding

term of the tide-generating potential were the only one.

In Chapter V it is explained how the problem may be treated approxi-

mately, in accordance with the assumptions stated above, as that of finding

a correction to the known solution of the problem of determining the dis-

placement that would be produced in a homogeneous incompressible solid

sphere by constant forces, these forces being derived from a potential which

is proportional to a spherical solid harmonic of the second degree. It is

shown that the desired correction must consist of two parts, one depending

upon the inertia of the body, and the other upon the ellipticity of its figure.

These are described as the " correction for inertia " and the " correction for

ellipticity." The rest of Chapter V is occupied with the working out of the

correction for inertia. It is shown that the problem can be reduced to the

statical problem of determining the displacement that would be produced in

a homogeneous, incompressible solid sphere by a certain system of body

forces. The ordinary solution of this problem cannot, however, be adapted

to the question in hand, and the solution necessarily introduces new features.

For the various questions which arise, and the methods adopted for dealing

with them, the reader must be referred to the Chapter itself. The result

which is obtained may be stated as follows :—In addition to the inequality

determined by the ordinary known theory, the periodic tide-generating force

raises two inequalities in the surface, one expressed by a constant multiple of

the tide-generating potential, and the other expressed by a certain spherical

harmonic of the fourth degree. The potential of the forces which can

disturb a horizontal pendulum contains additional terms proportional to the

same two spherical harmonics. The first does not alter the ratio of the

forces which act in the east-west and north-south directions, but, in con-

sequence of the presence of the second term, there is a force acting on the

pendulum against the moon's force in the north-south direction, but not in

the east-west direction. The sense of the correction is therefore precisely

that required by Hecker's result, as, indeed, it is obvious beforehand that it

should be. The magnitude of the correction is calculated on the assumption

that the rigidity is about that of steel. It turns out to be so small as to be

quite outside the limits of error of observation. Without any analysis it

could be expected that the correction would be proportional to the quantity

cuo^lg, where a denotes the mean radius of the earth, &> the angular velocity

of rotation, g the mean value of gravity at the surface ; but this quantity

might have been multiplied by a rather large coefficient. The result found
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is that it is multiplied by a rather small coefficient. No probable value

of the rigidity will make the coefficient large.

Chapter VI contains an investigation on similar lines of the correction

for ellipticity. It is explained how the problem may be reduced to that

of expressing the boundary-conditions which hold at the surface of the

disturbed ellipsoid of revolution to boundary-conditions which hold at the

surface of a sphere of equal volume. This reduction requires a considerable

amount of rather intricate analysis, for which the reader must be referred to

the Chapter itself. The result which comes out is that, in addition to the

inequality produced by tide-generating forces in a homogeneous incompressible

solid sphere, these forces raise two inequalities in the surface of the ellipsoid

of revolution, one proportional to the tide-generating potential, and the other

expressed by a spherical harmonic of the fourth degree. The potential of

the forces which can disturb a horizontal pendulum contains two additional

terms which are proportional to the same two spherical harmonics. The
correction for ellipticity affects the forces which can disturb a horizontal

pendulum in two ways. In the first place the additional terms in the

potential must be taken into account. In the second place the forces must
be derived from the potential by forming derivatives in the directions of

meridians and parallels drawn on the ellipsoid of revolution, not on the

sphere of equal volume. It appears that the forces in both directions, east-

west as well as north-south, are subject to correction, and both are altered by

amounts which are multiples of the ellipticity. The corrections are calculated

for the latitude of Potsdam on the supposition that the rigidity is about that

of steel. It is found that both forces are increased, the east-west component

less than the north-south component. Thus the sense of the correction is

opposite to that required by Hecker's result. It is obvious beforehand that

the magnitude of the correction should be proportional to the ellipticity, but,

without investigation, the sense of the correction could not be guessed, and

its magnitude might have been such that the ellipticity would have to be

multiplied by a rather large coefficient. The coefficient by which it is

actually multiplied differs but little from unity, and therefore the correction

falls almost outside the limits of error of the observations.

From these investigations it appears to be unlikely that the effect

observed by Hecker is due to the rotation of the earth. Although simplifying

assumptions are introduced, it is improbable that they can affect the sense

or that they can affect very much the order of magnitude of the corrections

which should be made on account of the rotation. By making similar

assumptions, and taking account of deviations from the spherical figure other

than the ellipticity, and expressed by spherical harmonics of low degrees,

it would be possible to work out similar corrections in order to express the

effects which might be due to the distribution of land and water ; but, after

what has been done, it would seem to be very improbable that such effects
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would be large enough to be observed. But, if the cause of the observed

effect is not to be sought either in the rotation of the earth or m the

distribution of land and water, it may be suggested that it is possibly due to

the attraction of the tide-wave in the North Atlantic and its pressure on the

bed of the ocean. A rough calculation sketched at the end of Chapter VI

indicates that these causes may be of about the right order of magnitude to

produce the observed result if they are timed properly.

After the Essay was in type ray attention was called to an investigation

of Earth Tides which had been conducted by A. Orloff • at Yurief (Dorpat).

He used two horizontal pendulums, hung in the meridian plane and the

plane of the prime vertical, and supported in a different way from those used

by Hecker, and he adopted a different method of reducing his observations.

The results which he found are similar to those found by Hecker. The lunar

semi-diurnal parts of the observed effects show a close agreement of phase

with the corresponding part of the tide-generating force, the observed

deflexions of the pendulums are on the average a little less than two-thirds

of what they would be if the earth were absolutely rigid, and the force that

deflects a horizontal pendulum at Dorpat is a larger fraction of the tide-

generating force when it acts east or west than when it acts north or south.

If the results were expressed by a diagram, as on p. 55, the inner curve

would be flatter than the outer in the same direction as in that diagram, but

not nearly so much, the ratio of the major axes of the inner and outer curves

at Dorpat being about 0'65, and that of the minor axes about 0-55. These

results appear to be in accordance with the above explanation of the pheno-

menon observed by Hecker ; for a horizontal pendulum at Dorpat (Lat. about

60° N., Long, about 27° E.) would be much less affected by the tide-wave in

the North Atlantic Ocean than a similar instrument at Potsdam (Lat. about

53° N., Long, about 13° E.).

The next four Chapters of the Essay, Chapters VII—X, are devoted to

the Dynamics of a Gravitating Compressible Body of Planetary Dimensions.

In the classical solutions of the problems of corporeal tides and the vibrations

of the earth, considered as a spherical solid body, the assumption was made

that the substance could be treated as incompressible. The remarkable

effects that could be caused by compressibility were first brought to light by

Jeans, but he found it necessary to regard the self-gravitation of the body as

balanced in the undisturbed state by external body forces, instead of being

balanced, as it must be, by internal stress. A theory of the balancing of the

self-gravitation by "initial" stress, which was worked out in detail by the

author, is now found to stand in need of modification. In that theory it

was assumed that the stress at any point of the body when disturbed consists

* A. OrloCF, " Beobachtungen iiber die Deformation dea Erdkorpers nnter dem Attraktions-

einfluss des Mondes an Zollnerschen Hoiizontalpendeln." AUr. Nachrichten, Nr. 4446, Bd. 186

(October, 1910).
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of two stress-systems :—the initial stress and the additional stress. The
initial stress was taken to be hydrostatic pressure ; and the additional stress

was taken to be related to the strain, by which the body passes from the

undisturbed state to the disturbed state, by the same formulae as hold in an

isotropic elastic solid body which is slightly strained from a state of zero

stress. The modification which it is now proposed to make in the theory

consists in a different way of assigning the value of the hydrostatic pressure

(constituting the initial stress) at a point of the disturbed body. When
a small portion of the undisturbed body around a geometrical point P is

displaced so as to become a small portion of the disturbed body around

a neighbouring geometrical point Q, it suffers dilatation and distortion.

In the Essay it is regarded as carrying its initial pressure with it and

acquiring an additional stress which depends upon the dilatation and

distortion. Thus the stress at Q in the disturbed body is here regarded

as compounded of the hydrostatic pressure at P in the undisturbed body

and a stress correlated in the usual way with the displacement. In my
previous theory the hydrostatic pressure at the geometrical point Q in the

disturbed body was taken to be the same as the hydrostatic pressure at the

same geometrical point Q (not P) in the undisturbed body. In Chapter VII

this modification of the theory is explained in detail, and the equations of

vibratory motion are formed in accordance with it. For simplicity it is

assumed that the body in the undisturbed state is homogeneous. A typical

solution of the equations is found. The typical solution contains a single

spherical solid harmonic, and more general solutions can be obtained by

a synthesis of typical solutions. It appears that the functions of the radius

that are involved in the typical solutions are already well-known, but the

parameters, by which, in these functions, the radius is multiplied, are the

roots of a quadratic equation, the coefficients in which involve the frequency

of vibration, the elastic constants, and the density of the body. The special

equations which express the condition that the bounding surface is free from

traction are obtained. A short discussion is given of the special formulae

which hold when the displacement is purely radial.

The first application of the general theory of Chapter VII is to determine

the Effect of Compressibility on Earth Tides. This is discussed in

Chapter VIII. Solutions of this problem have been obtained by various

writers, but in none of them is proper account taken of the initial stress.

It was, as a matter of fact, by an attempt to apply my previous theory of

initial stress to the problem that I found that that theory needed modi-

fication; for it led to the surprising result that the (compressible) earth

should yield less to tide-generating forces than it would do if it were in-

compressible. A new solution of the problem is here obtained on the basis

of the modified theory developed in Chapter VII, and the results that are

obtained are entirely in accordance with what might be expected. The
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problem is treated as a statical one. The earth is treated as an elastic solid

body, which, in the undisturbed state, is homogeneous and bounded by
a spherical surface, and it is assumed that, in the undisturbed state, the

gravitation of the body is balanced throughout its mass by hydrostatic

pressure. The rigidity of the material composing the body is taken to be

about that of steel, and it is found that, if the Poisson's ratio of the material

is J, the height of the corporeal tide is increased, on account of the com-

pressibility, by about 10 per cent, of itself, while, if the Poisson's ratio of

the material is i, the increase is about 20 per cent. It is known that the

earth actually yields less to tide-generating forces than it would do if it were

homogeneous and incompressible, the rigidity being supposed to be adjusted

in accordance with the assumptions of homogeneity and incompressibility

and the results of horizontal pendulum observations. It is also known that

the effect of heterogeneity (the density increasing from surface to centre)

is to diminish the yielding, while the effect of compressibility is now found

to be an increase of the yielding, as could be expected beforehand. It appears

therefore that heterogeneity of density produces more important effects in

modifying the resistance which the earth offers to disturbing forces than does

the compressibility of the substance.

The next application of the general theory of Chapter VII is to the

problem of Gravitational Instability. The problem arises from the fact that

gravitating matter tends to condense towards any part where the density is

in excess of the average. In a body of ordinary size this tendency is checked

by the elastic resistance of the body, but in a body of planetary dimensions

the resistance may be insufficient to hold the tendency in check. For

example, it might be impossible for a body of the size and mass of the earth

to exist in a homogeneous state. If such a body existed for an instant

it might be unstable, and then the slightest change of density in any part

would be followed by a large progressive change which would only come to

an end when equilibrium in a new configuration, differing appreciably from

the original one, was reached. To investigate the question for a body of

given constitution in a given configuration, we have to begin by forming the

equations of vibration of the body, supposed to be slightly disturbed from

that configuration, and then to seek the conditions that must be satisfied

if there can be a vibration of zero frequency. For the sake of simplicity we

may begin by considering a body of the same size and mass as the earth to

be formed of homogeneous material, and seek the conditions that that body

may be gravitationally stable. A first solution of this problem was given

some years ago by J. H. Jeans. He avoided all questions of initial stress by

assuming that, in the undisturbed state, the self-gravitation of the body was

balanced by an external system of body forces. He found that when the

body is disturbed, so that the radial displacement at a point is proportional

to a spherical harmonic of an assigned degree, the condition for the existence
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of a vibration of zero frequency became a transcendental equation to determine

a certain modulus of elasticity of the material as a multiple of gpad, where

g denotes the mean value of gravity at the surface, p„ the density in the

undisturbed state, and a the mean radius. The equation in question

contained also, as a parameter, the ratio of the rigidity to the incom-

pressibility. It was found that the elastic resistance necessary to render the

body stable in regard to disturbances specified by spherical harmonics of the

first degree would be sufficient to render it stable in regard to disturbances

specified by spherical harmonics of any higher degree. The conditions

necessary to secure stability in regard to radial disturbances were not

discussed. It was taken as probable that, if a homogeneous body with

certain elastic constants is unstable in respect of disturbances specified

by spherical harmonics of any degree, a heterogeneous body, with not very

different values of the average elastic resistances to compression and dis-

tortion, would be unstable in respect of the same type of disturbances. It

was found that in accordance with the assumptions here described the earth

would be gravitationally stable if it were homogeneous, the average rigidity

and incompressibility of its substance being those deduced from the theory

of seismic waves ; but it was suggested that, if the earth was once in such

a condition as regards elastic resistance to compression and distortion that,

if homogeneous, it would have been gravitationally unstable, it should now

exhibit some traces of this past state, and that such traces might be found

in the existing distribution of land and water on the surface of the globe.

In particular, it was pointed out that the geographical fact of the land and

water hemispheres was in accordance with the result that the instability

would manifest itself in respect of disturbances specified by spherical

harmonics of the first degree.

A second solution of the problem was afterwards given by the present

writer on the basis of that theory of initial stress which has already been

mentioned. In its main results this solution did not differ very much from

that given by Jeans, but one result that was found was that if the body,

supposed homogeneous, was unstable at all it would be unstable as regards

radial displacements. On this theory therefore, if the land and water hemi-

spheres could be traces of a past state, in which the earth would have been

unstable unless the mass of one hemisphere had been greater than that of

the other, it would be necessary that the argument stated above as to the

average values of the elastic resistances in a heterogeneous body should be

sound. At the same time it was shown how the rotation could be taken

into account. The modes of vibration of a rotating body in the form of a

planetary ellipsoid can be correlated with those of a sphere at rest ; and it

was proved that to such modes of the sphere as are specified by spherical

harmonics of the first degree there would answer, in the ellipsoid, modes

specified by harmonics of the first, second, and third degrees properly
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superposed. It was pointed out that the earth does exhibit proniinent

inequalities of these degrees. The idea that the main features in the shape

of the earth might be due to its having once been in such a state that, if its

mass had been arranged symmetrically around its centre, it would have been

unstable, seemed to be of sufficient interest to make it desirable to obtain

a fresh solution on the basis of the new theory of initial stress. This is

given in Chapter IX of this E^say. The new results throw some further

light upon the question. It remains true, in so far as the problem has been

examined, that elastic resistances which are sufficient to secure stability in

respect of disturbances specified by spherical harmonics of the first degree

are also sufficient to secure stability in respect of disturbances specified by

spherical harmonics of any higher degree j and it also remains true that,

if the ratio of the elastic resistances to compression and distortion is neither

large nor small compared with the values which it has for ordinary solid

materials, subjected to experiment at the earth's surface, then elastic

resistances which are sufficient to secure stability in respect of radial

displacements are amply sufficient to secure stability in respect of displace-

ments specified by spherical harmonics of the first or any higher degree.

But the interesting result is found that, if the rigidity is rather small

compared with the resistance to compression, the body may be unstable

in respect of displacements specified by spherical harmonics of the first

degree although stable as regards radial displacements. This result is

distinctly favourable to the hypothesis that the division of the earth's surface

into a land hemisphere and a water hemisphere may be a survival from

a past state in which a symmetrical arrangement of the matter about the

centre would have been unstable. The superficial displacements which occur

in any mode of vibration of the body, whether of zero frequency or not, are

associated with inequalities in the density, and these are of the same spherical

harmonic type as the radial inequality of figure, so that, if the actual inequali-

ties of the figure of the earth, or any large part of them, can be traced to

the cause under consideration, the elevations and depressions of the surface

should be compensated by defects or excesses of density in the underlying
material, as is assumed in the theory of isostasy. It seemed therefore to be
worth while to examine the distribution of density which a sphere would
take up if it were unstable when homogeneous, with no tendency to condense
towards the centre (stability as regards radial displacements), but with
a tendency to sway to one side, so that one hemisphere would have a pre-

ponderant mass (instability as regards displacements specified by spherical

harmonics of the first degree). The result is not very favourable to the
hypothesis. It is found that the inequalities of density would be deep-
seated, instead of being practically confined to a superficial layer, as the
doctrine of isostasy lays it down that they should be. It must, however, be
understood that the results have been obtained by making several simplifying
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assumptions. The body of which the gravitational stabihty is examined

is assumed to have the same size and mass as the earth, it is assumed to be

homogeneous as regards the distribution of its density and as regards its

elastic resistances to compression and distortion, it is assumed that, in the

undisturbed state, the initial stress by which the self-gravitation of the body

is balanced throughout its mass is simply hydrostatic pressure. It is possible

that the result might be different if the problem could be solved for a body

of which the density increases from surface to centre and the elastic

resistances to compression and distortion are different at different depths.

It is also possible that the part of the earth's volume within which there

is compensation of the superficial inequalities of figure by inequalities of

density may now be more restricted than it was once, or, in other words, that

in the course of long ages an inequality which was once appreciable at great

depths may have been progressively diminishing, and diminishing faster near

the centre than near the surface. This suggestion is, however, rather

speculative. In Chapter IX the problem of gravitational instability is

solved for an initially homogeneous sphere, the material of which is supposed

to possess resistances to compression and distortion which are in one or other

of certain definite ratios, and the displacements of which, with their accom-

panying inequalities of density, are taken to be either symmetrical about the

centre or specified by spherical harmonics of the first, second, or third degree.

Chapter X is devoted to a determination of the Normal Modes of

Vibration of a Gravitating Compressible Sphere. The sphere is taken to

be homogeneous in the undisturbed state, and to be of sufficient rigidity to

secure gravitational stability. The modes fall into two classes in exactly

the same way as those of a sphere which is free from gravitation ; and the

modes of the first class, characterized by the absence of radial displacement,

are unaffected by gravitation. If the rigidity is small enough, the modes

of the second class are of two kinds, which may be described roughly as

vibrations governed mainly by elasticity and vibrations governed mainly by

gravity. The latter have the smaller frequencies, and the two kinds of

modes are described in the Essay as being of "quick types" and "slow types"

respectively. If the rigidity has one or other of a certain determinate set

of values, there may be vibrations of intermediate types. The particular

case of vibrations specified by spherical harmonics of the second degree is

worked out in detail, and it is found that, for a body of the size and mass

of the earth, there are no vibrations in modes of this degree, which are of

slow or intermediate types, if the Poisson's ratio of the material is ^, and

the rigidity is great enough to secure stability in respect of radial displace-

ments. It is known that, for a homogeneous sphere which is free from

gravitation, the gravest of all the normal modes of vibration is of a type

in which the sphere becomes an harmonic spheroid of the second degree,

and that, if the sphere has the same size and mass as the earth, and the
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material is incompressible and as rigid as steel, the period of these vibra-

tions is about 66 minutes. It is known also that, if gravitation is taken

into account, but the other conditions, including that of incompressibility,

are maintained, the period is reduced to about 55 minutes. It is now found

that, when account is taken of compressibility as well as gravitation, the

period is almost exactly one hour, the Poisson's ratio of the material being

taken to be i.

The theory of the vibrations of a body of planetary dimensions leads

naturally to a discussion of the theory of Seismic Waves. This theory is

considered in Chapter XI. The Chapter begins with a description of the

most important steps that have been taken in the interpretation of seismic

records, accompanied by a statement of the chief points in respect of which

the existing theory seems to require extension. These relate to the oscillatory

character of the recorded movements and the nature of the Large Waves.

To elucidate these matters a series of problems are solved. The first of

these problems is to determine the laws of transmission of waves through a

gravitating compressible planet. On the basis of the dynamical theory

developed in Chapter VII it is shown that, if the planet in the undisturbed

state is spherical and homogeneous, waves of pure distortion, characterized

by rotation of the elementary portions without change of volume, can be

transmitted in precisely the same way as if the body were free from

gravitation, but that the law of propagation of dilatational waves is affected

by gravitation. In the first place the waves cannot be purely dilatational,

but there must be a small rotation accompanying the change of volume.

In the second place the velocity of propagation is not constant, but it

depends partly on the locality and partly on the wave-length, the shorter

waves travelling faster than the longer ones. This result indicates dispersion,

and suggests that the displacement observed at any place during the

preliminary tremors should be oscillatory, with gradually increasing intervals

between successive maxima. Both these characters are in accordance with

observation.

The second problem discussed in Chapter XI is that of the limiting form

to which the frequency equation, obtained in Chapter X for a vibrating

sphere, tends when the degree of the spherical harmonic involved is high.

The result gives the wave-velocity with which a train of simple harmonic

straight-crested waves can be transmitted over the surface without pene-

trating far into the interior. The sphere being assumed to be homogeneous

when undisturbed, the waves must, except for a small correction depending

on gravity, belong to the type discovered by Lord Rayleigh, and since known
as " Rayleigh-waves." The correction has the effect of introducing a slight

amount of dispersion, and if, as is probable, the average Poisson's ratio of

surface rocks is not less than ^, the wave-velocity increases slightly as the

wave-length increases.
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The observed fact that, in the earlier phases of the large seismic waves,

the motion of the ground is mainly in a direction at right angles to the

direction of propagation of the waves, cannot be brought under any theory

by which the Large Waves are identified with Rayleigh-waves ; and, so long

as the earth is treated as homogeneous, it is theoretically impossible for

waves of any other type to be transmitted over the surface without

penetrating far into the interior. To introduce the possibility of waves

which shall have the two characters: (1) transverse horizontal movement,

(2) superficial transmission, it has been proposed by more than one ^vriter

to assume that the body of the earth is covered by a rather thin layer of

matter having diflferent mechanical properties from the matter beneath it

;

but the conditions necessary to secure these characters in the transmitted

waves appear not to have been investigated hitherto. The third problem

discussed in Chapter XI is that of the transmission of transverse waves

through a superficial layer, such waves to be practically confined to the layer,

the motion in the subjacent material diminishing rapidly as the depth

increases. The problem is discussed under the simplifying assumptions that

the surface may be treated as plane and the waves as straight-crested ; and

it is proved that the essential condition for the existence of waves having

the desired characters is that the velocity of simple distortional waves in

the layer should be decidedly less than that in the subjacent material. It

is proved further that the wave-velocity of a simple harmonic wave-train

cannot be less than the velocity of simple distortional waves in the layer,

and that it increases with the wave-length, approaching the velocity of

simple distortional waves in the subjacent material as a limit. The analogy

of waves on deep water, the only example of waves subject to dispersion

which has been worked out fully, suggests that, on account of the relation

between wave-velocity and wave-length, the disturbance received at a place

should be oscillatory, and the intervals between successive maxima should

diminish as time goes on. This result is in accordance with observation of

the earlier phases of the Large Waves.

If we invoke a superficial layer, or crust of the earth, to help us to

explain the phenomena presented by the earlier phases of the Large Waves,

we must not neglect to consider the effect of such a layer in modifying the

laws of transmission of those superficial waves in which the horizontal

displacement is parallel to the direction of propagation. The problem of

the transmission of such waves through a superficial layer is the fourth

problem considered in Chapter XI. The surface is treated as plane, the

material as incompressible, and the waves as straight-crested. It is proved

that there necessarily must be a class of waves similar in type to Rayleigh-

waves, and that simple harmonic waves of this class have a wave-velocity

which, for very short waves, is the velocity of Rayleigh-waves, but increases

as the wave-length increases, approaching the velocity of simple distortional
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waves in the layer as a limit. A result of some theoretical interest is that
these waves, analogous to Rayleigh-waves, may not be the only type of
waves which, while they do not penetrate far beneath the layer, have their
horizontal displacements parallel to the direction of propagation. Under
suitable conditions there may be a second type. The condition that waves
of the second type may exist is found to be that the diflference between the
velocities of simple distortional waves in the two media should be small.

As this condition is opposed to the condition which was found to be essential

if waves with transverse horizontal displacement are to be transmitted
through the layer without penetrating far into the subjacent material, the

possible existence of the new type of waves under suitable conditions would
seem to have no bearing on the interpretation of seismic records. The
waves in the layer which are analogous to Rayleigh-waves are subject to

slight dispersion, both on account of gravity, as was seen in the solution

of the second problem, and on account of the change of mechanical properties

at the under surface of the layer, and, on both accounts, the wave-velocity of

a simple harmonic wave-train increases as the wave-length increases. The
analogy of waves on deep water leads us to expect that the movement which

can be observed at any place should be oscillatory, and that the intervals

between successive maxima should diminish as time goes on. These results

are in accordance with observations of the central phases of the Large

Waves.

The view as to the nature of the Large Waves which is put forward

in the Elssay is that these waves are of two distinct types. The motion

of either type is regarded as an aggregate of motions corresponding to

standing simple harmonic waves, which combine to form progressive waves,

or, what comes to the same thing, as an aggregate of motions transmitted

by simple harmonic wave-trains, the period of any simple harmonic wave

depending upon the wave-length according to rather complex laws. The

waves of the first type are waves of transverse displacement, transmitted

through a superficial layer, and not penetrating far into the matter beneath

it. The second type of waves are analogues of Rayleigh-waves, and differ

from these only by the modifications that are necessary on account of gravity

and the change of mechanical properties at the under surface of the layer.

The wave-velocities of simple harmonic waves of both types increase as the

wave-lengths increase, and there is for each type a maximum and a minimum
wave-velocity, but the minimum of the first type is identical with the

maximum of the second. Since the propagation is practically two-dimensional,

minima of wave-velocity are less important than maxima, for it is known

that waves propagated in two dimensions are prolonged in a sort of " tail,"

even in the simplest case, that in which all simple harmonic wave-trains

travel with the same velocity. If the above-stated view as to the nature of

the Large Waves is correct, we should expect that there would be a marked
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change of type in the observed movement, and that this change would occur

at diflferent places at such times as would correspond to the passage over the

surface of a phase travelling with the velocity of simple distortional waves

in the layer, the horizontal displacement before the change being mainly

transverse to the direction of propagation, and after the change mainly

parallel to this direction. The existence of such a marked change of type is

well established by observation. The proposed view would also account for

the facts in regard to the gradual changes in the observed " periods." It

suggests, in fact, that these so-called periods are not genuine periods of

simple harmonic wave-trains, but intervals of time separating successive

instants at which the displacement attains a maximum, the displacement

being an aggregate of simple harmonic displacements. This suggestion also

furnishes a possible explanation of the apparent discrepancy between theory

and observation which arises from the fact that, whereas in Rayleigh-waves

the vertical displacement is larger than the horizontal, the vertical displace-

ments observed by seismologists are always smaller than the horizontal. In

an aggregate of standing simple harmonic waves, in each of which the

theoretical relation between the two components of displacement holds, but

the periods are not proportional to the wave-lengths, the relative magnitudes

of the maxima of the two components may depend upon the initial

circumstances.

The results obtained in Chapter XI, like those obtained in Chapters II

and III, suggest that there is a veritable " crust of the earth," or superficial

layer, the mechanical properties of which dififer from those of the matter

composing the interior portions. The results are, in fact, obtained by

assuming that such a layer exists. But a little consideration shows that the

results could not be very different if the constitution were such that all the

quantities, density, rigidity, and so on, by which it is specified, were expressed

by continuous functions of the depth, or, more generally, by continuous

functions of the position of a point within the earth. Heterogeneity there

certainly is, and the simplest heterogeneous constitution that can be imagined

is that specified by a nucleus and a superficial layer; but a constitution

specified by continuously varying quantities might very well be quite as

consistent with the results of observations made at the surface as this

discontinuous structure, especially if the quantities should vary rather

rapidly near the surface and more gradually at greater depths.





CHAPTER I

THE DISTRIBUTION OF LAND AND WATER

1. The purpose of this Chapter is to explain how the surface of the

earth may be represented by means of spherical harmonics, and to estimate

the amplitudes of those harmonics which are concerned in the representation

of the most important features.

If we wish to discuss the distribution of land and water with greater

precision than is customary in books on Geography we may adopt either of

two points of view :—those of Mathematical Geography and Geophysics. In

Mathematical Geography the object aimed at is a precise geometrical or

analytical description of the actual shape of the earth's surface. In Geo-

physics we seek the causes which have led to the shape being what it is.

Before we can make any progress with the geophysical enquiry we must

know what the shape of the earth's surface really is. To know this is to

know the equation of the surface referred to some assigned axes and origin.

But here it is necessary to distinguish one from another various ^rfaces

which are all equally regarded as being "the surface of the earth" when

different matters are discussed. The visible surface is that surface on which

the atmosphere rests, the matter of which it is the bounding surface being

land in some parts and water in others. The surface of the ocean is disturbed

by tidal and other waves, but the mean surface of the ocean, which is a level

surface of the earth's attraction (the rotation being taken into account),

enables us to define the surface which is called the geoid. This is a closed

surface which is everywhere a level surface of the earth's gravity modified by

the rotation, and coincides with the mean undisturbed surface of the ocean

wherever there is ocean. In treatises on the " Figure of the Earth " the

problem to which most attention is paid is the problem of determining the

geoid. The height of any place above the geoid is its " height above sea-

level," and the depth of the bottom of the sea at a spot " below sea-level " is

the depth below the geoid. The geoid is the surface that is always used as

a zero in determining levels. But when we speak of the surface of the earth

we may, and often do, mean a surface which is neither the visible surface

nor the geoid, but the surface of the land, in places where there is land, and

1
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the surface at the bottom of the sea, in places where there is sea. A name

sometimes used for this surface is the Uthosphere, and this name will be

adopted here*- We regard the question that is posed when precise informa-

tion as to the shape of the earth is sought as the question of determining the

shape of the Uthosphere. To know the shape of the lithosphere we must

first find the shape of the geoid, next find the height of every spot of land

above sea-level, and then find the depth of the sea at every locality in the

sea (determined by latitude and longitude). This is the course that is

necessary in practice, but an abstract geometrical description need not intro-

duce the sea at all, it would be concerned only with determining the shape

of the somewhat irregular round body on which the ocean and the atmosi^here

rest. The result of the enquiry, if it could be obtained, would be expressed

by writing down the equation of the lithosphere, which is the surface of this

somewhat irregular round body.

2. The shape of the geoid is known with considerable exactness. It is

very nearly an oblate ellipsoid of revolution of ellipticity 1/297, the axis of

revolution being the polar axis of the earth. For determining the litho-

sphere the best origin is the centre of this ellipsoid, and the most appropriate

coordinates are polar coordinates, the co-latitude and longitude of a point.

Let these be denoted by r, 6,
(f>.

The equation of the lithosphere would

express r as a function of and ^.

Let the equation of the nearly spherical harmonic spheroid of the second

degree which most nearly coincides with the geoid be

r = fflo — § aofo -Ps (cos 0),

where a^ denotes the mean radius (637 x lO' cm.), €» the ellipticity of the

meridians (^j), and P, the zonal surface harmonic of the second degree given

by the formula

Pj(cos^) = fcos»0-i.

The actual surface of the geoid must be expressible by an equation of the

form
r = a„ - f a„e„ Pi, (cos 0) + F, {0, </>),

in which ^o (^i <^) could be expanded, if it were known, in a series of surface

harmonics, and the series would contain no term in Pj (cos 0). In other

words Po ifi> <t>)
must be such that the equation

"Pj (cos 0) Po (0, </)) sin 0d0 = O
/•8ir /-ir

d<t>
JO Jo

is satisfied. The function P„ (0, <f>)
is small compared with a^ for all values

of and ^. What is more important is that it is small compared with aoe„.

The deviations of the geoid from an harmonic spheroid of the second degree

* The word " lithoaphere " is sometimes used as a, synonym for the "crust of the earth,"

whatever that may be.
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are everywhere quite trivial compared with the deviations of the harmonic
spheroid (of the second degree) of closest fit from a sphere of equal volume.

3. In like manner the equation of the lithosphere must be of the form

r = a - f a.„eo P^ (cos 6) + F(0,
<f>),

in which a denotes the mean radius of the lithosphere. It is known that

a < Oo, for the volume within the lithosphere is slightly smaller than
that within the geoid. The distance denoted by a„—a is between 3 and
4 km., and the level at depth a„ — a below the level of the sea is known as
" mean sphere level." The elevation, or depression, of the lithosphere above,

or below, the geoid is expressed by the formula

F{e,4,)-F,{e,,i>)-{a,-a),

and we may say that where this expression is positive there is land, and

where it is negative there is sea. But this statement needs qualification if

there is land below sea-level ; the land around the shores of the Caspian Sea

may serve as an example. Since all the values of F^ {6, <j}) are small com-

pared with Oo — a, the main features of the distribution of land and water are

seen to be expressed by the function F (ff, <^), which represents the elevation

of a point on the lithosphere above mean sphere level (depression when the

function is negative). Since, however, F{6, if) may be positive without

being so great as «„ — o., large tracts of the lithosphere which ought to be

regarded as places of elevation, because they are above mean sphere level,

are actually submerged. This description applies not only to the whole of

the continental shelf but also to the beds of nearly land-locked seas, such as

the Mediterranean, and even to some parts of the open ocean.

4. The elevated portions of the lithosphere, the portions that are above

mean sphere level, form the "continental block*," and the remaining parts

the "ocean basins." The lithosphere protrudes beyond the mean sphere

r = a in some parts and lies inside it in others, but the characteristic property

of the mean sphere is that the volume contained between the sphere and the

protruding part of the lithosphere is equal to the volume contained between

the sphere and the parts of the lithosphere which lie inside it. The conti-

nental block is believed to form a single continuous regionf of elevation, the

great continents being all connected together beneath the sea at depths

which do not much exceed 3 km. at any place. A map of the world at mean

* The name is often given to the portions of the lithosphere which are actually land or

continental shelf (within the hundred-fathom line). The usage adopted in the text seems more

appropriate to the present discussion,

+ This was not the case in the map of the world at mean sphere level drawn by H. E. Mill in

The Scottish Geographical Magazine (Edinburgh), vol. vi. 1890, p. 184, where the Antarctic land

is shown separated from the rest of the block ; but the writer has been informed by Dr Mill that

the depth of mean sphere level below sea-level was underestimated in 1890.

1—2
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sphere level, with merely local irregularities smoothed out, shows an ex-

tremely simple plan. The contour line at this depth gives a very good

indication of those features of the shape of the lithosphere which must be

regarded as the most important. It seems to the writer that a geometrical

plan of the earth, to be acceptable, must show a contour line actually or

nearly coinciding with this line. In other words the function denoted

above by F {6, <f>)
must vanish at all points of a curve which lies everywhere

close to this curve, and it must be positive on the side towards the conti-

nental block, and negative on the side towards the two great ocean basins.

5. Now whatever the function F{0,
(f>)

may be, it can be expanded in

a series of surface harmonics, and the most important features of the shape

ought to be represented by the first few terms of the series. We should

expect therefore that an expression, consisting of surface harmonics of the

first three or four degrees, could be constructed to vanish along a curve

which nearly coincides with the outline of the continental block, and to be

positive within the block. It has been shown that the first three degrees

suflSce for the purpose*- Thus a first approximation to the shape of the

lithosphere is given by a formula of the type

where Si, S^, S3 denote surface harmonics of degrees indicated by the

suffixes.

6. According to the paper cited above we may take

Si = {(16-5) cos 4> + (9-5) sin <^} sin ^ -- 8 cos 0,

S^ = {(1-5) cos
<l> + (2-5) sin

<f>}
sin 2d + ((- 7) cos 2<^ + (- 4) sin 2<^) sin» 6

-)- {3 cos 20 -1-1},

S,= (- 5) {cos 36 + (0-6) cos 0}+ {(- 1-25) cos ^ -I- (- 0-5) sin
<f>]

(sin -I- 5 sin 30)
+ (6-5) sin 24, (cos - cos 30)

+ {(- 0-25) cos
3<l> + (3-5) sin 3<^} (3 sin - sin 30).

Si is a zonal harmonic with a maximum value (about 20-5) near to the point
= 67°, <^ = 30°. ^2 is not exactly a zonal harmonic, but is very nearly a

zonal harmonic having a maximum numerical value (about 10) near to
= 105', <^ = 15°. At this point, and at its antipodes, Sj is negative. S3 is

not exactly a zonal harmonic, but does not differ much from a zonal harmonic
having its pole near to = 75°, <^ = 35° ; the maximum value (at the pole)
is about 25. The actual values of the coefficients in the expressions for

Su Si, S, do not express any fact about the shape, as the scale of the
inequalities was arbitrary in the paper cited. The ratios of the coefficients
are alone significant. It appears that the harmonics of the first and third
degrees are much more important than those of the second degree, the

• A. E. H. Love, Proc, R, Sgc. Lond. (Ser. A), vol 80, 1908, p. 555.
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harmonics of the third degree slightly more important than those of the first

degree. The greatest elevations and depressions corresponding to harmonics
of the first and third degrees occur near the same places (Northern Africa
and its antipodes in the Pacific Ocean). Now the average depth of the
ocean may be taken roughly to be about 4 km.*, and the average height of

the continents above sea-level is less than ^ km., so that, if we allow that a

large part of the continental elevations and the oceanic depressions can be

represented by harmonics of the first three degrees, it would seem that an
amplitude of 2 km. would be more than sufficient for any one harmonic,

since this gives an elevation of 4 km. for the highest point above the lowest

point in the case of any harmonic of uneven degree.

It is proper to observe that, although the formulae given in the paper

cited above furnish a fair representation of the outline of the continental

block, they do not adequately represent the amount of elevation or depression

at a place. In particular, they make the Pacific Ocean much deeper than

any other ocean, and they make the northern part of the continent of Africa

much higher than any other land. This defect does not seem to render

them ineffective as approximations to the first three terms of the series by

which the radius of the lithosphere would be expressed if it were known

accurately.

* A more exact estimate is not needed for the purpose in hand.



CHAPTER II

THE PROBLEM OF THE ISOSTATIC SUPPORT OF THE CONTINENTS

7. The existence of the continental elevations and oceanic depressions

proves decisively that the earth as a whole cannot be in a state of fluid

equilibrium, that is to say a state such that the stress at any point, across

any plane passing through the point, is normal to the plane. For, if this

were so, the stress at any point would be the same in all directions round

the point, or it would have the character of hydrostatic pressure ; and then

the surfaces of equal pressure would coincide with the equipotential surfaces,

and, in particular, the surface of the earth would be an equipotential surface,

everywhere at right angles to the direction of gravity. To an observer any-

where on the earth's surface the ground would appear to be a level plain.

Since this is not the case, it is certain that the stress at a point within the

body of the earth cannot have the character of hydrostatic pressure ; there

must be tangential tractions as well as normal tractions.

8. The question to be discussed is : How are the great inequalities, the

continental elevations and the oceanic depressions, supported ? The idea

which one naturally forms is something like this : one imagines a perfectly

spherical or spheroidal solid model of the earth to be deformed by paring

away material from the parts that are to form the oceanic depressions and

heaping it up to form the continental elevations. In fact, one naturally

thinks of the continental block as if it were stuck on to the earth like a

postage-stamp on an envelope. But this notion is quite erroneous. In the

first place the attraction of the block would probably be so great that the

sea would be drawn up over it and it would be almost submerged*. In
the second place it is doubtful if the material of which the earth is com-
posed could be strong enough to stand the strain f. But the decisive

reason for rejecting this notion is that the values of gravity, as observed at

places in the interior of the continents and in the open ocean, or on oceanic

islands, cannot be reconciled with the values that would be deduced by
assuming the notion to be correctj.

• This is the result obtained by F. E. Helmert, Math. u. phyi. Theorien d. hoheren GeodiUie,
Teil 2, Kap. 4 (Leipzig, 1884).

+ This is the general result of the calculation made by G. H. Darwin, "On the stresses

caused in the interior of the earth by the weight of continents and mountains," Phil. Trans. R.
S. vol. 173 (1882), revised in Scientific Papere, vol. ii. p. 457 (Cambridge, 1908).

J See § 38 of Teil 2 of the treatise by Helmert cited above, and also his article "Die
Schwerkraft u. d. Massenverteilung d. Erde " in Ency. d. math. Wissenschaften, Bd. vi. Teil i.

Nr. 7 (Leipzig, 1910).
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Most writers who have rejected the idea above described have supposed

that the superficial inequalities of shape are correlated with internal in-

equalities of density, so that the elevated portions are, as it were, floated

up and kept in position by hydrostatic pressure. This hypothesis under

various forms is known as the " hypothesis of compensation " or the " hypo-

thesis of isostasy," and is ascribed to J. H. Pratt. Certain anomalies observed

in the measurements of gravity in Northern India were interpreted by him
as pointing to a compensation of the mass of the Himalaya by a comparatively

light layer of matter beneath them ; and he also pointed out that the geo-

graphical fact of the land and water hemispheres indicated a displacement

of the centre of gravity of the earth from the centre of the geoid towards

the middle of the Pacific Ocean*. The hypothesis was adopted by Helmert

in 1884 for the reason already stated as decisive against older notions. In

recent times it has been revived and developed very much in America by

C. E. Dutton-f- and by O. H. Tittmann and J. F. HayfordJ. It has also been

tested by Helmert§ in discussions of various series of geodetic observations.

The forms of the hypothesis which have proved to be adequate for Geodesy

seem to be not quite sufficiently precise for the purpose of determining a

system of stresses by which the inequalities can be supported, and a rather

special form will presently be proposed. It must, however, be understood

that the special form is introduced for the sake of analytical simplicity

rather than physical appropriateness.

Special form of the hypothesis of isostasy.

9. According to the hypothesis of isostasy, as developed by Hayford, the

earth consists of a central core coated over with a rocky crust. Within the

core it is assumed that there are no tangential stresses, but the matter is in

a state of fluid equilibrium; the tangential stresses necessary to maintain

the continents and mountains are supposed to be confined to the crust.

Within the thickness of the crust the mass is assumed to be so distributed

as not to afiect the hydrostatic equilibrium of the core. This condition

would imply the same amount of mass in every vertical column of the crust,

* J. H. Pratt, "On the deflection of the plumb-line...," Phil. Trans. B. S., vol. 149 (1859),

p. 745 ; and " A treatise on. ..the Figure of the Earth," 3rd edition, 1865, pp. 135, 159.

+ C. E. Dutton, "Some of the greater problems of physical geology," Bull. Phil. Soc.

Washington, vol. xi. 1892,

X Tittmann and Hayford, " United States geodetic operations in the years 1903—1906,"

Comptei Bendus de la 15me. conference gimrale de I'association geodSsique intemationale, 1908.

See also J. F. Hayford, " The figure of the earth and isostasy from measurements in the United

States," Washington, 1909.

§ F. K. Helmert, "Die Schwerkraft in Hochgebirge," Ver'&ff. k. preuss. geodiit. Inst. Berlin,

1890 ; see also L. Haasemann, " Bestimmung d. Intensitat d. Schwerkraft im Harze," Veriff. k.

preuss. geodat. Inst. Berlin, 1905, and F. B. Helmert, "Die Tiefe d. Ausgleiohsflache..." Berlin

Sitzungsberichte, 1909.
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if the thickness of the crust could be neglected, and the core were truly

spherical
;
for a layer of uniform surface-density on a sphere gives rise to

no attraction at an internal point. The height of the elevated parts of the
crust is thus assumed to be compensated by defect of density. For this

reason the crust is described as the " layer of compensation." When account
is taken of the thickness of the layer it appears that the law of density
stated above is only a first approximation. The thickness of the layer is

estimated by Hayford to be about 120 km., and this estimate is supported
by Helmert. As this is not far from ^ of the radius of the earth, the

numerical work in this Chapter and the following will be performed on
the supposition that the mean thickness of the layer is ^ of the earth's

radius.

10. Among the considerations which led to the h)rpothesis of isostasy

one of the most important was the fact, established by geodetic observation,

that the actual forms of the equipotential surfaces near the surface of the

earth are very approximately oblate spheroids, as they would be if the whole

earth were in a state of fluid equilibrium under gravitation and rotation.

This result implies that the inequalities of potential which are due to the

inequalities of density in the crust, and to the deviations of the outer surface

of the crust from an equipotential surface, are very small in the neighbour-

hood of this outer surface. With a view to a precise formulation of the

hypothesis of isostasy, it is convenient to assume that these inequalities of

potential actually vanish at the mean outer surface of the crust. It is part

of the hypothesis that they vanish within the core. We shall therefore take

them to vanish at both the mean outer and the inner surfaces of the layer of

compensation. Further the gravitational attraction within the earth varies

continuously from point to point. Within the core it must be independent

of the inequalities of density which occur in the layer of compensation. At

any point within the layer of compensation the gravitational attraction

depends partly on the inequalities of density. To secure continuity at the

internal surface of the layer it is necessary that those terms in the expression

for the attraction which arise from these inequalities should vanish at this

surface.

11. In order to formulate this theory analytically it will be sufficient to

neglect the rotation of the earth. If a body of the size and mass of the

earth, at rest, could support assigned continental elevations and oceanic

depressions without requiring an improbable degree of tenacity in its

materials, a body of similar constitution rotating once in a day could almost

certainly support similar elevations and depressions. We shall therefore

take the core to be spherical, and the outer surface of the layer of com-

pensation to be a nearly spherical surface concentric with the surface of the

core, and shall suppose the radial elevation of the outer surfeice to be
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expanded in a series of spherical surface harmonics, and we shall write the

equations of these two surfaces in the forms:

for the core r = 6,

for the crust r = a + Se„5„,

Avhere the suffix n denotes the degree of the surface harmonic Sn, and e„ is a

small constant indicating the magnitude of the inequality. In general it will

be sufficient to discuss the case where 2e„)Si„ reduces to a single term. The

inequalities of density within the layer of compensation are then to be

correlated with this term.

12. The density at any point within the core will be a quantity which

can be expressed as a function of r only. The expression for the density at

any point within the layer of compensation will consist of two terms, the first

term being a function of r, and the second term the product of a function of

r and the spherical surface harmonic Sn- The potential at any point in the

core will be a function of r only. The potential at any point within the layer

of compensation will be the sum of two terms, one of them a function of r

only, and the other the product of a function of r and /S„. The second term

is the inequality of potential above mentioned; we shall denote it by V. It

is convenient to assume a form for V and deduce a form for the density.

To give effect to the considerations already adduced in regard to the form of

V we must suppose that the 7--factor of V contains (a — r) and (r — by as

factors. The factor (a — r) secures that the mean surface is an equipotential,

the factor (r — by secures that the inequality of potential and the correspond-

ing inequality of attraction shall both vanish at the surface of the core.

Accordingly we assume for V an expression of the form

(r-a)(r-6)»/(r)r»€„S„.

The factor r" has been introduced in order that we may have to deal with a

spherical solid harmonic ?-"/Si„. The factor /(/•) is in our power ; all forms for

it except such as become infinite at a, or b, or at an intermediate value of ?-,

are equally compatible with the hjrpothesis of isostasy, according to the

statement of this hypothesis made above. It might be possible to choose

it so as to diminish the amounts of the calculated tangential stresses, but,

for the present, it is better to choose it with a view to analytical simplicity.

It turns out to be convenient to assume that / (?-) is simply proportional

to r*. See p. 18 infra, ftn. As the outcome of this discussion we put

V' = A„(r-a)(r-byr'W„ (1),

where Wn is written for the spherical solid harmonic r"iS„, and A„ is a

constant to be determined in terms of e„.

13. To simplify the problem to the utmost we are going to assume

that the mean density of the layer of compensation is independent
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of r. Within the layer of compensation the density p is assumed to be
given by

P = P. + P' (2),

where p^ is a constant, and p' is the inequality of density mentioned above.
Then the potential V is that due to (i) a volume distribution of density p in
the region a>r>b, (ii) a surface distribution of density pi6„S„ on the surface

r=a. The potential Vo at any point within the core is a function of r only.

The potential V at any point within the layer of compensation is expressed
by the equation

V=V, + V',

where V,= ^-n-y{p,-p,)^ + ^wyp,(3a^-t^) (3),

7 denotes the constant of gravitation, and p„ is the mean density of the core.

To determine p' we have the equation

V-V = - 4,Tryp' (4),

and in accordance with (1) this gives

- 47r7/3'= 4„ [7 (2n + 8) r» - 6 (2n + 7) r« (a + 26)

+ 5 (2n + 6) r»6 (2a + 6) - 4 (2n + 5) r'al^] F„ . . .(5).

V is the potential of a certain volume density and a certain surface density,

as explained above. V vanishes at r = a, and therefore the potential at any

point outside the surface r = a, due to the same volume density and surface

density, is zero. The surface characteristic equation for the potential at the

surface r = a therefore becomes

and this gives -4„(a-6)'a"+'' = 47rypie„ (6).

14. Corresponding to the superficial inequality expressed by e„S„ we

have the inequalities of potential and density expressed by

^„ (r — a){r — by f . nr t'7\^-
{a -by ^^^"'yp'^"^" ^^)

and p /j,[7(2n + 8)r»-6(2n+7)(a + 26)r-

+ 5 (2/1 + 6) 6 (2a + 6) r» - 4 (2n + 5) oiV] ^^pi^J^, . . .(8).

It may be shown without much difficulty that this somewhat complicated

law of density accords with the suggestion that, in the layer of compensation,

the product of density and thickness should be constant. If the thickness is

small compared with the radius, this relation holds to a first approximation.
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It is to be observed that this law of density appears to be needlessly

complicated. It has been adopted to simplify the expression for the potential,

and is, as has been explained, only one of an infinite set of laws which are all

equally consistent with the general hypothesis of isostasy. It may be shown

in regard to this particular law that the excess density p , corresponding to a

single spherical harmonic, changes sign within the layer of compensation, so

that, if a single harmonic were involved, the portion of the layer where there

is superficial elevation would consist of a double layer, lighter outside and

heavier inside ; and in like manner the portion of the layer where there is

superficial depression would consist of a double layer, lighter inside and

heavier outside. The simple phrase " heavier matter under the oceans," by

which the hypothesis is sometimes popularly expressed, would be misleading.

Immediately beneath the oceans the matter is made out to be heavier than

the average surface rock, but beneath this heavier matter there would also

be some matter of less density than the average density appropriate to its

depth. It can be shown without much difficulty that this peculiarity is not

restricted to the assumed law of density, but is a necessary consequence of

the two assumptions : (1) that within the internal boundary of the layer of

compensation the stress is hydrostatic pressure, (2) that the mean surface is

an equipotential surface.

Equations of equilibrium.

15. The theory by which the stress is to be determined is a modified

theory of elasticity. The ordinary theory is not applicable because the

interior of the earth must be in a state of initial stress. In other words,

if gravitation could cease to act, or if a body force equal and opposite to the

local value of gravity could be brought to act at every point within the

earth, changes of such magnitude would be produced in the shape and size

of the earth, and in the distribution of its mass, that the corresponding

displacement could not be calculated by the ordinary theory of elasticity,

in which it is assumed that the stress-strain relation is linear. Another

way of expressing this idea is furnished by the observation that in the

ordinary theory we contemplate a body in two states, the strained state,

in which it is held by forces, and the unstrained state in which it would

be if the forces ceased to act. If the (gravitational) forces by which the

earth is held in its actual shape, with its actual distribution of density,

were to cease to act, the earth would pass into a new state; and if this

state is regarded as the unstrained state, and the actual state is regarded

as the strained state, then it is certain that the strains involved are not

small quantities, as they would have to be if the ordinary theory were

applicable, and the unstrained state, which would need to be known if the

ordinary theory were to be applied, would be quite unknown.
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Our problem really is to determine a stress-system by which gravitation
can be balanced in a body of known size, shape and mass. The problem
admits of an infinite number of solutions even if the distribution of the
mass IS known, for there are six components of stress at a point, and they
are connected with the known body forces by three differential equations;
they must also satisfy the conditions that the surface is free from traction.
These equations and conditions are insufficient. In the ordinary theory of
elasticity they are supplemented by the stress-strain relation, and by the
equations expressing the components of strain in terms of a vector quantity—
the displacement by which the body passes from the unstrained to the
strained state. Thus the number of unknowns is reduced from six to
three—the number of independent quantities that determine a vector. Now
we have seen that the notions of strain and displacement are not appropriate
to the problem in hand, and we may not therefore have recourse to the
methods of the ordinary theory. The problem must remain indeterminate,
and all we can do is to obtain explicitly one or more of the infinitely

numerous solutions.

One solution of the problem was obtained by Sir G. Darwin* by assuming
that the stress is connected with a displacement by the same equations as

hold in the ordinary theory of an elastic incompressible solid, but that this

displacement is not one by which the body could pass from a spherically

symmetrical configuration to the actual configuration. For simplicity the
density was taken to be uniform. The results showed that the tangential

stresses required, according to this solution, to support the continental

inequalities would be rather large, and that great tenacity in the materials that

compose the earth would be required if the inequalities were really supported

in this way.

16. A different solution of the problem will be obtained here by adopting

the hypothesis of isostasy, in the special form already explained, and supple-

menting it by assumptions which shall simplify the problem and render it

determinate. The general idea underlying these assumptions was introduced

by Lord Rayleighf, and may be expressed in the statement that the stress

at a point consists of two superposed stress-systems : one, a state of hydro-

static pressure by which the gravitation of a spherically symmetrical earth

would be balanced throughout its interior; this is the initial stress. The

second stress-system is taken to be correlated with a displacement, as in the

ordinary theory ; this is the additional stress. In the problem in hand the

notion of displacement is not very appropriate. We may introduce a vector

quantity connected with the additional stress by the usual equations, and

* Loc. cit. ante, p. 6.

t Lord Bayleigh, " On the dilatational stability of the earth," Proc. R. 8. London, A,

vol. 77, 1906.
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call it a " displacement," but we must not regard it as the displacement by
which the body would pass from the unstrained state to the actual state.

This being the case, we may simplify the problem by assuming that the

divergence of the vector vanishes, as it would do if the vector were the

actual displacement of an incompressible solid; and then we shall have to

introduce into the expressions for the additional stress terms that represent

an additional hydrostatic pressure as well as the terms that contain differential

coefficients of the components of the fictitious displacement*. This procedure

is simpler than that of taking the fictitious displacement to involve dilatation.

17. According to the hypothesis explained above, the stress at a point

in the core is hydrostatic pressure po, expressible as a function of r only by

means of the equation
dV,_ldp^Q

(9).
or po or '

Within the layer of compensation the stress will be taken to consist of

two stress-systems : (i) a hydrostatic pressure jpi , expressible as a function

of J' only, (ii) an additional stress. The pressure pj will be taken to be given

by the equation

To express this idea we introduce six components of stress denoted by

and put

in the core X:,= Yy = Z^ = -p„, Y^ = Zx = X,j = (11),

in the layer X^ = -pi + X^', Yy = -p,+ Yy, Z, = -pi + Z; (12),

but Yi, Zx, Xy do not vanish in the layer.

18. For the determination of the stress at any point within the layer of

compensation we have the three equations of equilibrium of the type

dX^_^dX_y_^dZ,^ dV^^
(13^

dx dy dz ^ dx ^ '

and the special conditions which hold at the inner and outer bounding

surfaces of the layer. At the inner surface r = 6 there must be continuity

of stress; and therefore the normal traction on this surface must be a

pressure, equal to the value assumed by p^ when r is put equal to b, and

the tangential traction on this surface must vanish. The outer surface

r= a-^ e„/S„ must be free from traction. These conditions are manifestly

not sufficient to determine the six components of stress, and the problem

is strictly indeterminate. We therefore set ourselves the task of finding

* The ordinary formula irx=XA + 2/(du/dz becomes X^= -p + iiidujdx, vheie p denotes a

hydrostatic pressure, if the material is incompressible.
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a stress-system which shall satisfy the conditions above stated, and, as was

explained above, we render the problem determinate by imposing additional

conditions. These conditions amount to assuming that there exists a vector

(u, V, w) which is such that the stress expressed by the six components

(Zx', Yy, Zi, 7j, Z^, Xy) is related to it in the same way as if u, v, w
were the components of displacement in an isotropic incompressible elastic

solid body slightly strained from a state of zero stress. It is particularly

to be noticed that we do not assume the material of the sphere to be actually

incompressible. The " displacement " (u, v, w) is not any actual displacement

suffered by the material of the sphere in passing from a state which it has

at one time to a state which it has at another time. It is only a subsidiary

quantity arbitrarily introduced for the purpose of making the problem deter-

minate.

19. This assumption implies the equations

X^=-p' + 2,j.

du
Yy=-p+2ii^, Z, =-p+2/ig-

\ -(14),

.(15).

du dv dw _
dx dy dz

in which p' denotes an additional pressure.

The equations of equilibrium then take the form

8». dp' „, dV ^\
dx dx "^ '^ dx

_dp, _dp' - 9^ n
dy dy ^ ^ dy~

dp, dp' „, SV ^

On substituting p, -I- p for p and F, + V for V, and neglecting the product
p'V, these equations become three of the type

-d^-d-x+^^^ + P^l^ + P^-d^ +P^^^-
By putting, in accordance with (10),

i'i = Pi^i + const.

we reduce these equations to three of the type

dx

dp' dV
,

,dV,^+^V^ + p +p'^ =
dx dx dx .(16).

In these equations V,, V", and p' have the forms given in the equations (3)

(7) and (8).
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Solution of the equations.

20. We shall now proceed to a solution of the equations. They are

three of the type

-% + f^^'- + *-W' ^r^^.y [^ ir -a)(r- by '-^

+ {1r^ -6 (a + 2b)r* + 5b(2a + b) r^ - 4!a¥r'] xWn

+ i-^P.' (^^' 5 + l)^J_ 6)1
[7 i^n + 8) r= - 6 (2n + 7) (a + 26) r-

+ 5(2n+ 6)b(2a + b)r>-4>{2n + 5)abH-'']a;Wn = 0...(n),

with 5- +— +— = (18).
dx oy oz

To solve them we put p' z=f^Wn (19),

dW 7iW ?iW
u = F^°-^+G^xW^, v= Fn^-^ + GnyWn, w =^„^' + G„zF„...(20),

where f„, Fn, Gn denote functions of r. To satisfy (18) we must have

=^+ >-'§= + (» + 3)e.-0 (21).

Hence we get

fd'Fn ,
2ndFn

and
(22),

+|Tw»(^'^ + l)^;i+I(fz^[7(2« + 8)r»-6(2n + 7)(a + 26)r-
Pi

+ 5 (2n + 6) 6 (2a + 6) r" - 4 (2n + 5) a¥r^] = 0. . .(23).

(n + 1) d\ /I dP^^

dr/ V^ dr
„. 1 d /d''F„2ndF„\ fd' 2(ti
^'°^^

r S;; l"d^
"^ T "d^J - Idr^ +

—



or

+
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we get on eliminating /„ from (22) and (23)

(d'ffn 2{n + l)dGJ (d' 2(« + l) dUldFn\
'^

I
dr» r dr ) '^ [dr^ r dr] \r dr I

+ |7r7p.'(g^-g + l) ^„^g_^y {7(2n + 8)r°-6(2n + 7)(a + 26)r«

+ 5(2n + 6)6(2a + 6)r'-4(2w + 5)a6V»} = 0,

or, by (21),

fd= 2(n + l) dU dff„ ,„ „,^ )

4 „^^p,. P;^ 63 __^__
J7

(2n + 8) r= - 6 (2n + 7) (a + 26) r

+ 5(2K + 6)6(2a + 6)-4(2»n-5)a6=H

+ ^'"^'''^
a^+^ia-bf

^^ (^'^+ 8) »" - 6 (2« + 7) (a + 26) r^

+ 5 (2n + 6) 6 (2a + 6) r^ - 4 (2»i + 5) oi^r'} = 0.

Thus G„ satisfies the equation

= tT7'°^^x, n r^iTlfl b' (7 (2n + 8) r»+< - 6 (2»i + 7) (a + 26) r^+'
a"+< (a - 6)' L pi

' ^
' '

+ 5 (2« + 6) 6 (2a + 6) 7^+" - 4 (2n. + 5) a6»r«'+']

+ 7 (2n + 8) r"**' - 6 (2» + 7) (a + 26) r»»+» + 5 (2n + 6) 6 (2a + 6) r^+'

-4(2n + 5)o6''r»»+M (24).

When Gn is found from this equation /„ and Fn can be deduced.

21. On integrating both members of equation (24) with respect to r

we get

^
J^'la^ ^'l^-^^^l^ Tr

{7r'"^"-6(^ + 26)r»'^^ + 56(2a + 6)r^+'

- 4a6V'»+''} dr

+ [Ir^-^ - 6 (a + 26) r™*' + 56 (2a + 6) r»'+« - 4a6»r="+»|1

+ 4,
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where A is constant, or we have

+^^3/(7r»--...)$ + |:{r^(r-a)(r-6y]]

+ -^

d ( 1 d
or — u, ^^ ( ^—=-

or

'a"+*(a-bf

+ 3 ^-^^' ^. Jl
»--

|; {'^ (^ - «) ('• -m dr

'"Tr

f 1 d
(^+3Gt„)|

T^+^'rfr-

+ JL{^(^_a)(r-6« .fOn+i

^_i^Wl!n_„ fpo-Pl ^ <^ 1^.7/„_„W„_ fry]

jjn+S"

L. G.
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Hence

T^+' dr ^ "^

-P'-P'ein-lW
jl^. [Jl

»^'+' (r -a)(r- by dr| dr

where B is constant, or we have

_^|.(^+3G„)

- ^^^^ 6 (n - 1) 6»r«'+2 T^ | T r«'+' (r - a) (r - 6)' drl dr

- To T\ + -Br»+=.
(2n + 1)

Hence we find*

+ 6 ?^^^6» /%*"+» r{r-a)(r-bydr.dr
Pi Jb Jb

_P^Pj6(n-l)6' Tr^'+ii C -^, r r^+^(r-a){r-bydr.dr.dr
P\ Jb Jb r^'^ J

b

+
j

r»'+« (r - a) (r-by dr

Br^+^ ^
2(2n + l) 2n + 3

or — fiGn

A B G
2(2n + l)r»+' 2n + 3 r™+'

* It is in the determination of the (orm of G„ that we get a simplification by assuming that

V contains r* as a factor (see p. 9, ante). If we assumed that the function f (r) there intro-

duced is of the form r* where k is an; integer, then at some stage of the integration a logarithm

would be introduced if k were less than 4. The simplest formula for V' which will not introdqcg

A logarithm is obtained by taking /(r) to be proportional to r*.



THE PROBLEM OF THE ISOSTATIC SUPPORT OF THE CONTINENTS 19

_ 6 (n - 1)^ ^,IV+'' l^' ^JV»+' (r - a) (r- 6)= rfr . dr . dr

+^3 Jl
^^ (^ -a)(r- by dr'j .

The expression (r — a) under the signs of integration can be replaced by

(r — b) — (a — b), and thus each of the integrals can be expressed as the

difference of two integrals one of which contains (a — 6) as a factor. Thus

we may write ABC
- M»» = -

2 (2n + 1) r-+'
+ 2;r^ + ^:ii« + 7- (25).

where

Pi ' J b J b

-Q(n-l)P^^,jj-^^^j[:^,jy^'(r-bydr.dr.dr

i-^yP'^^ n [
Po-P^ JL rr^^+Hr-bYdr

_ 6 (n - 1)^^ /%-+» /^' ^J%»« (r- &)= dr . dr . dr

It will be convenient hereafter to note that we have

|;(r»-7»)

^_t[yPl^fL.n\^^^^^b'r«^+Hr-a)(r-by + 6^!^^^b'r^+'^^-^
a^+*(a-by L Pi P>

*

+ ^+6 (^_ a) (r - 6)= - P-^^^^ 6 (71 - 1) 6» r-*' j'^' ^, J^'
r»+' (r - 6/ dr.dr'^

a»+*(a-6) L Pi ^

-Q{n-lf-^^^¥7^^' ^"^ ^[^i^'^'{r-hydr.d^ (27).

2—2
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22. To find the forms of F,, and /"„ we begin by noting the equation (21),

which is

The,efo„ 'g».-i{^^+(. +
5,.f= +

<«+ 3)e.),

and

2G + ^^ + ?!*^
" d/r^ r dr

= -Mr^^ + (3n + 5)r^ + (n + 3)(2n + l)G„-2n(?„l

= -^lft-(^-3)d-«-±l{.f«.(2«.a).4

Hence by (22)

^" a»+<(a-6)='- ^^ ^

_ 6 („. - 1)e^ J!-
J^''

^«+. (^ _ „) (^ _ ft):

+
'-^{'^(^-«)(^-6)'}J

+
A

njan+i

+ 6^!^^^'6'r(r-a)(r-6)'dr
Pi .'6

-6(«-l)^63j^''_L.j">«(,_„)(^_j).dr.dr

+ r«(r-a)(r-6)»l-!i±l A
,
" + lp
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where the terms in A and B come to

A
.
w + 1 r,

(2w + 1) r™+i
"^

re '

so that we have

Po-P- 6»r (r -a)(r- by + r* (r - a) (r - 6)''

(28),

where

dr

_ 6 («^ - 1) ^i^:^' 6' f
"^

i, r »^+' (r - 6)» dr . drl

-a-fef?i>[«<"')^'-/:<-')'*

- 6 (»i - 1)
''"^'^ r r"-*! (r - 6V dr

-6(n'-l)^^^^^b'j''-^^j'r^+Hr-bydr.dr^ (29).

23. Again to find F„ we have the equation (21), viz.

1-^.1; ('--«») + -««

Hence

df„_ A B A B_ C
' dr ~ « (2m + l)r^'*"?i'' "^2(271 +1)7^ 2« + 3^ r»»+»

+ A^p[Bi^Jp^IL£l}i>r^ir-a)(r-by + Q''-^^^-^h'r \\r-a){r-bfdr
a»+4 (a - 6)2 L p, pi J

^
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- 6 (n - 1)^!^^=^ b'r r -^, f
'"r«+^ (r -a)(,r- by dr . dr

Pi J b * •'6

+ j^(r-a){r- lif

pi ' J b J b

_6(„-l)Pj^63_l_|V»+»j'^''^,|V+'(r-a)(r-6)'dr.

where the terms ixx A,B, C are

This gives on integration with respect to r

„_ A(n- 2) w + 3 p ^
C

t n + ^^ "~ (2n-l)2«(2ji + l)r»-'^2n(2n + 3) (2» + l)r»'+'
"

(30),

where

+ 6 ''"^^ 6»

J
%'

/"''

(r - a) (r - 6)» dr . dr

-6(n-l)^^^^b'rrr -^J'^r^+'{r-a){r-bYdr.dr.dr
Pi J b J b 1 J b

+ rr={r-a)(r-6)»dr|

-6(n-l)P^b'f'^^^jy^^f'^^jy+^(r-aKr-bydr...

+ Jl:;i^Jl^^(r-a){r-bydr.dr'^ ,
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or, as it may be written,

^„ = JTJP''""
,
[g^^^ 6'

fV (r - hf dr + 6 ^-^^^^ ^fr Hr - bf dr . dr
a"+* (a - 6/ L pi Jb pi Jb Jb

_ 6 (n- l)^^r^ 6» fr f^, fV+i (r-

-

bf dr.dr.dr + [%' {r-bydr'\
Pi Jb Jb'T^ Jb Jb J

a»+*(a-6)|_ pi ib
'

Pi Jb Jb^

_6(m-l)^iZ^6» rrp^rr^+'Cr-ft)^ dr.dr.dr +rr»(r-6)2drl

- !Z7'\. ri fP-^'fe' r 4-rr-+nr-6)'dr.dr
a»+*(a-6)= L pi JbT^^-Jb

+ 6 ^5:^^ 63 [' 1 r j^+2 r tr - by dr. dr. dr
Pi Jbi^^'^Jb Jb

- 6 (n - 1)^?^^' 6» f^ -^ fr^n-a f^ ^ r^»+^{r - 6)' dr.dr.dr. dr
Pi JbT^'^^Jb Jbr^^'Jb

+ Jl:i^2Jl^-'"^'i^-bydr.dr

a^+Ha-b)
\_ p, Jj r«'+V6 ^ ^

+ 6'?^i:^'63r_l_f%2»+2 [''(r-6ydr.dr.dr
P\ J b

"^ J b J b

- 6 (n - 1) ??^1^' 6' f'^, f r^+' f^ ^^^^ f

"^

r«'+i (r - 6)" dr . dr . dr . dr
Pi J b f" 'J b J b 'i J b' b

+

We have now expressed the functions (?„, jP„, /„ in terms of integrals all

of which can be evaluated without much difficulty, and therewith have

obtained the solution of the equations (17) of p. 15. The result gives

formulae for the "displacement" (u, v, w) and the additional pressure p'

in terms of the spherical harmonic Wn, the distance r, and four constants

A,B, G, D. The constants are to be determined by means of the boundary

conditions, and when this is done the stress can be calculated.

24. The initial pressure (po in the core, and p^ in the layer of com-

pensation) is determined by the equations (9) and (10) of p. 13 and the

conditions that p^=pi3itr = b and jOi = at r = a. The actual values of p^

and pi are not required in the problem of determining the tangential stresses.

Manifestly p^ depends upon the distribution of mass in the core, about which

no assumption has been made beyond that of spherical symmetry.
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Boundary Conditions.

25. We proceed to investigate the boundary conditions by which the

constants A, ... are to be determined.

The traction across any spherical surface within the layer of compensation

has components Xr, Yr, Zf which are expressed by equations of the type

^,._!,^.,-,+e(|+.g-.) (32).

in which ^ = oni + yv -^^ zw (33).

The corresponding expressions within the core are given by

Now we have ?= {nF^ + r^G„) W^,

so that ^ = {nF„ + -r«G„)^ +
J ^ (»^n + ^'G„) x TT...

Also we have

Hence the expression for Xr in the layer becomes

'(p. +?')+* -f+^<"-«^.+-e.P-5'

+{?f"+^'f"*(»-^2W"''^-]
It follows that the normal component of traction across the spherical

surface, which is {xXr + y F, + zZr)/r, is given by

xX. + yYr^zZr^_ M^r^JK^^njn-l)
r ^'^ ^ ' r |_ ar r

+ 2r»^ + 2 (n + 1) rG„^ F„...(34).

The tangential traction across the spherical surface can be resolved into

components parallel to the axes, the a;-component being

„ XxXr + yYr+ zZr
A-r ,

r r

and we find for this the value

+ {-ne.-2„(„-l)^- = ^"}«r.]...(35).
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26. The conditions of continuity of stress at the surface r = h are that

the normal component of traction is equal to —p,, and the tangential traction

vanishes. Since p„=jp, at r = 6 these conditions give the two equations

and r^+2{n-l)F„ + i^Gn = Q (36).

These two equations hold at r = h. The first of them can, by using (21),

be reduced to

_/„ + 2^[!i(^)^„-2.G„ = (37).

27. The conditions that the surface r = a + 6„(S„ may be free from
traction are three equations of the type

-^(p.+i'').=„..„s„+?(| + »-|:-)=0 (38),

where I is the cosine of the angle which the normal to the surface drawn
outwards makes with the axis of x. Since pi vanishes at r = a its value at

r = a + 6„(S„ can be taken with sufficient approximation to be 6„jS„^, and
or

the above equation can be reduced to

-^(-...e„^«+i>')+^(| + ^|^*-«)=0 (39),

where —g is written for (9F,/3?')a, which is the same as (p,~' dpi/dr)a, so that

Pn-pi b'

9 = ^TTVPl
pi cC'

+ a\ (40).

On reducing the equations of this type in the same way as before it will

be found that they become

-/» + ^{«(«-l)^«-2r»(?„l=-^ (41).

and »-^ + 2(m-l)J?'„ + r^G„ = (42).

These two equations hold at r = a. The first of them really expresses

the result that the normal traction on the mean sphere r = a is a pressure

equal to the weight of the harmonic inequality. The second of them

expresses the condition that the tangential traction on the mean sphere

vanishes.
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28. With a view to the determination of the four constants A, B, C, B
we write the results obtained in §§ 21—23 in the form

A B C
-^<?„ = -2(2„+i)r«'+> + 2^ri:3'^r^^'*"^"

^*^^'

-M|;(»-»+'G„) =-2^ + 57-+» + |;(r»'+»7„) (44),

^F
^(n-2) n + 3 G

'^ " (2«-l)(2M)(2n + l)r"'-'^2»(2« + 3) ^(2n+l)r»'+'^ ^ "

(45).

/"=(2^r^4)^.-"-^^-a-^?i)^(^^
(46),

where i^„ vanishes both when r = a and when r = 6, and 7,,, t- (»^"'"'7»), ^71,

<^„ all vanish when r = 6.

The normal stress-condition at r= 6 is

A n + 1
;

T>

(2/1 + 1) 6"'+' n

A(n-l)(n-2) (n-l){n + 3) 2rt(»-l)C i)

(2n-l)(2n-|-l)6'»'+''^ 2»i-|-3
"^ (2w+ 1)62»+»"^ ^ ^6=

2^ 4£ 4g
"

(271 + 1) 6-"'+' "^
2n + 3

"*" 6*"+» '

which is

_ n"- + 3»-l A (n + l)(n'-n-S) „

(2«-l)(2n+l) &»»-•'" «(2n-|-3)

The tangential stress-condition at r = 6 is

(n -!)(«- 2) ^ (^-l)(^ + 3) 2(1.-1) C ,,,
»i(2»i-l)(2» + i)6="-''*" ~n(2n + 3) "^271-^1 6«.+i +^^'*- ^^

"^

1 A 1

'»i(2n-H)6«'-'"''n

1 A 2B¥ 2C
"*"

2k 4- 1 6="-' 2n + 3 6"'+i ~
'

ich is

n^-l A n + 2 2{n + 2) C
n(2n-l)(2n-|-l)6»-''^2n + 3 2n-|-l h-^+^^^'^~ ' ^^^

which is
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These give C = ^rni tt+h—?

—

-^htth ^£6™+' (47),^ 2(2ri,+ l) 2»i(n + 2)(2rH-3)

o / i\n 2w'+l 4 w'-l „,, , .ox

2<"-^>^=^r(2;rriH2^rFi?5^-^K2^r+r)^^
(*^>-

29. The tangential stress-condition at r = a is

n'-l A_ n + 2 „ ^ 2(w+2) _nn
n(2n-l)(2n + l)a"'-''''2n + 3 2n+l a"'+'

•" ^'* ^

+ 2 (« - 1) «D„ (a) +^ |; (r-+'7»)a - 2a»y„ (a) = 0,

which is

_ (n+2) r_b^ 1_\ 2«^+l /J 1_\
(2m + 1)» \a'"+' a^-V w (2n - 1) (2ft + 1)' \b^-' a^'-'J

(2w' + 4«, + 3)
f
b^+' \ n^-1

n(2n+l)(2«+3)U™+' / w(2n+l)^ "'

^

+ 2 (n - 1 ) *„ (a) +^ |; (r--+»7„), - 2a=7„ (a) = 0,

r 2«' + l gw-i _ fc«.-i ^ 71+2 g' - 6n
'""

["*" n (2w - 1) (2n + 1)^ a«'-' 6™"' "^
(2n + 1)' a«'+' J

r 2w' + 4w + 3 a»»+3-;,2»+3 w'-l ^ _ , "I ^*"[ n(2n+l)(2»i + 3) a"'+'
'^ n{2n + iy°' ^J

+ 2(«-i)4>„(a) + ^|;(r--+=7„)„-2a=7„(a) = (49).

The normal stress-condition at r = a is

_ n' + Sn-l A (w + l)(w'-w-3) „
(2n - 1) (2n + 1) a»'+'

*"
n (2n + 3)

2(n +mn + 2) _C_ D

+ --^- -' *„ (a) - «^„ (tt) + 47„ (a) = 0,

which is

r(n + l)(w + 2) / 6" _ 1 \ 2«'+l / 1
1_Y

L (2m + 1)2 Va"'+^ a^'+V (2ra - 1) (2w + 1> Wfc"'"' a"'+V

r(n+l)(2?i' + 4n + 3) /
6"'+°

_ A _ nl-_l /A' _*
[ n (2n + 1) (2ri + 3) U'""'' / 2n + 1W

+
^"^"~^^

*» («) - «^» («) + 47» («) = 0,

B
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[- 2n' + l a"*-' - b"'-' _ (« + 1) (n + 2) a' - b^~\ ^
°''

L(2ft-l)(2n + l)' a"'+'6«'-' (2n + l)^ a»+» J

r >i°-l fl'-6° (ri+l)(2»' + 4n + 3) a"'+'-6'"+n ^
^[271 + 1 a= 7i(2n+l)(2n+3) «""+» J

+ ''^-^"^'^<I>„(a)-,/>„(a)+4^„(a) = (50).

Put a-h = t (51).

so that t is the mean thickness of the layer of compensation. Then the

equations (49) and (50) can be written

n (n + 2) /2« t^ A
,2»—

1

r 2>i'+l {( A-'«'-» 1 « (n + 2)m _ ^\
[(2«-l)(2n + l)nV J ^r(2n + l)»Va a^/*

+ [(2n+l)(2n + 3)l V a) \^2n + \\a aV
\

+ 2« («-!)*«(«) + ^^(»*'^'7n)a-2«a^7n (a) = (52),

2n' + l (/ n-<=»-i _ I _ (» + l)(w + 2) /2« _ <^\] jA_

-l)(2n + l)Ul J ) (2« + l)'= U aVja""-

-
(>i + l)(2n^ + 4n + 3) {,_/,_ i^'+'l ,

rt'-l /2< _ ^\] ^^,
»i(2« + l)(2n + 3) [ V J ) 2n+lV« WJ

and

(2m

+

+ 2?i(n-l)^„(a)-a^(^„(a) + 4a=7„(«)=0 (53).

These equations can be solved for A and B and then Cand D can be found

from equations (47) and (48).

30. Instead of proceeding with a general algebraic solution it appears to

be more convenient to solve the equations approximately in two cases. In

the first case n is a small integer, one or two or three, and tja is a small

fraction. In the second case n is a large integer, so that ntja is of the order

unity.

The Stress-difference.

31. Before working out these solutions we consider the formulae relating

to the conditions that must be satisfied in order that the material may be

strong enough to support the inequalities.

Several recent writers on the strength of materials have drawn from

experiment the conclusion that rupture is produced when the greatest

shearing stress developed in a material exceeds a definite limit. The stress

at a point can always be expressed by means of three principal stresses,

which are the tractions across three particular planes that cut each other
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at right angles, and the greatest shearing stress developed in the material

is half the absolute value of the difference between the algebraically greatest

and least of the principal stresses. This difference has been called the

stress-difference. According to this view, rupture is produced if the stress-

difference exceeds the tenacity of the material. Alternative views, which

now receive less support, are to the effect that rupture takes place when the

absolutely greatest stress, provided it is not a pressure, or the absolutely

greatest strain, exceed definite limits. Such views are inapplicable to our

problem because on the one hand the greatest stress is certainly a pressure,

and on the other hand there is no question of strain ; for the earth is not

strained from a state without continents and mountains to a state presenting

these features. In this problem therefore our procedure must be to evaluate

the stress-difference required to support continents and mountains of such

dimensions as actually occur, and compare it with the tenacities of various

materials, or with the crushing strengths of these materials.

We observe that the stress-difference is unaltered if with the actual

stress we compound any hydrostatic pressure. Thus the only part of the

stress that need be considered is the part that is correlated with the

" displacement " (u, v, w).

32. To simpliiy the problem we shall assume that the spherical har-

monics by which the inequalities of the surface are expressed are zonal.

We shall use polar coordinates referred to the axis of the zonal harmonics.

Let these be r, 6, </>. Then the direction d<^ is that of one of the principal

stresses.

Let P, Q, R denote the relevant parts of the normal component tractions

across the surfaces ^ = const., ^ = const., r = const., which pass through any

point, S the shearing stress consisting of two equal tangential tractions, one

acting in the direction dd across the surface r = const., the other acting in

the direction dr across the surface ^ = const. The stress-system expressed

by P, Q, R, S is the same as that expressed by Xx'+p, Yy'+p', ZJ + p',

Yi, Zx, Xy. Let Ni, Ni, N, denote the principal stresses. Then

and Ni, N3 are given by the equations

n; + n,=p + r, N,N,=PR-S\

so that we have N, = ^[(P + R) + 'J{(P- Rf + 4S=)]

,

i\r, = i [(P+R)- v{(P - Rf + 4sn]-

Also, since the mean pressure corresponding to this stress-system vanishes,

we have
P + Q + R = 0,

or P+R=-Ni.
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The stress-difference is the absolute value of the numerically greatest of

the three expressions

.(54).

^{{P-Ry + iS^}
.

33. Again let m,, rt^, Mj denote the components in the directions dd, d4>,

dr of the " displacement " (w, v, w). Then, according to the usual formulae

for strain components referred to polar coordinates, we have

or

Also by (20) of p. 15, since Tr„ is independent of <^,

1 ?W /rt \

[ ...(55).

Hence

P = 2m |^r«- F„ ^^ + («r»-= i?'„ + r»G„) ,SfJ
,

Q = 2^ [r"-^- F,. cot ^ ^' + («r''-» i?'„ + r»G„) >S„1

,

E = 2,j. j^Tir"-' ^» + n (n - 1) r»- !-„ + r»+'^ + (n+l) r»(?„1 «„

,

S = /t
l^r"-'^ + 2 (n - 1) r»-' J^„ + r»G„1 ^^^

.

The expression for S accords with the values found on p. 24 for the
tangential traction on a spherical surface. The expression for P can be
simplified by means of the equation

and the expregsjons for R and S can be simplified by means of the equation

n dF„ dG„ ,
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Thus we find

F = 2^i^{r»Gn-nV^^Fn)S„-r«-'F„cote^'] (56),

e = 2M[(r»ff„ + m-»-«^„)S„ + r''-»J'„cot0S (57),

iJ = 2/it[{-2r"(?„ + n(n-l)r»-»i'„}S„] (58),

S= ^ Q2r»G„-^|;(r-+»G„) +2(n-l)r»-^^] (59),

and

P - E = 2/u, Usr^G^ - »i (2n - 1 ) r»-»^„} S„ - r-»-»^„ cot 6S (60).

In any particular case the stress-difference can be evaluated by means of

these formulae.

Harmonic Inequalities of Low Degrees.

34. We are going to proceed with an approximate solution applicable

to small integral values of n. We have to begin by evaluating the four

constants A, B, C, D. The constants G, D can be expressed in terms of

A, B only by equations (47) and (48) of p. 27, and the constants A, B are

determined in terms of the values at r = a of the functions 7,1, 4>„, and so on.

The functions 7„ and so on have been expressed completely in terms of

integrals, and we wish to obtain a first approximation to them on the

supposition that a — 6, or t, is small compared with a or h. In working out

this approximation we shall at the same time introduce the simplification

that arises if /Jo= 2/)i. This means to say that the mean density of the layer

of compensation is assumed to be half of the mean density of the core, so

that it is in accordance with the known fact that the mean density of surface

rocks is about half the mean density of the earth.

35. In evaluating approximately the integrals by which 7„, ... are

expressed we put r — h = x, expand all powers of r in powers of x, and keep

only the terms of lowest degrees. We note that, when r = a, x=t. The

factor r — a, where it occurs outside a sign of integration, will be retained

without substitution. For example, we have from (26), p. 19,

-6(»-l)^6--j4«'»-4l6^ + 6^3^-^^|-^]

' 6 (n - 1) ^, 6---^V=
^^'

StL ^ + 6^- ^"'"H
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The terms of lowest order are those in a^jt^ and a?jt, and, if these alone are

retained, wo may in the factors that multiply them ignore the distinction

between a and h, and thus find as the approximate form for 7„

a" (3r-2^) («!)•

(62).In particular 7,. (a) = - ^^^+1^" •~
In the same way we find

|:(r-7-.) = -f^7P,^.„. [2«a»- ^f>^ +«a- (t " S)] ^^^^-

In particular ^ (»-""+'7n)a = - 1^7/3,= e„ . ia"+> nP (64).

*.-*^-(t-|^) ("»)

In particular ,^„(a) = _ ^^{^» <2 (66).

Further
|7r7p.'e„ /2g_ ^\

a"-' U* 2tV * •'

In particular a>„ (a)= -i^^^ . ^ (68).

Hence we find

2» (« - 1) d,,. (a) + i,^ (r=--.7„)a - 2na^7. («) = - ^3^' . ^ . ..(69),

and

2« (« - 1) *,. (a) - „=<^„ (a) + 4a^7„ (a) = - to^^"J' .
"' + ^-3

. ...(^q).

36. Now in equations (52) and (53) of p. 28 the coefficients of A and B
contam t as a factor, and, omitting powers of t above the first in these
coefficients, we get

At , B„*

(2n + 1 )=>' f
2"' + 1 + 27» (n + 2)} + ^^-^ 12»^ + 4n + 3 + 2 (n» - 1)}

and
«"-' '6'

^<
(27TT)^ f

2**'+ 1 - 2 (™ + 1 ) (« + 2)}

*"2^ •^ • i^*^ ('^ - 1) - (2«^ + 4n + 3)} = i2:yg!ii\ '^+!L::3



THE PROBLEM OF THE ISOSTATIC SUPPORT OF THE CONTINENTS 33

On solving these equations we find

^=4.,,.»e„to»^^--i -̂^)^^;;+^^»+^ >
(71),

Again to the same order of approximation the equation (47) is

G = ^
^^"-' +Ba^^'

2n» + 4n+3
2(2n + l)

'

2ft(n + 2)(2n + 3)'

and this gives

C=|7rw»e„ta»+3
3g^^^_^3^

(73).

Similarly equation (48) becomes

a'»-'n(2n-l)(2K + l)» n(2n+l)'
and this gives

D = |,r7p,-e„to-»^^
36 (2.-1) (2. + 1)

^^'^^

This completes the determination of the constants in the case where n is a

small integer.

37. To calculate the stresses P, Q, R, S introduced on p. 29 we have to

pick out the most important terms in the expressions /ir"~'Fn, —fir^Gn,

—»^ TT ('^^'^n)' ^^^ iiow we may put r = a except in the expressions (r - a)

and {r — b), and we may also put a for h.

The most important terms of fir"~^Fn are

r {n-2)A (n + B)Ba^ C "

|_ 2n(2n-l)(2n + l)a''"->^2n(2n + 3) (2n + l)a"'+'

which reduce to ^''''yPi'fntQ) (75).

The most important terms of — /i.r" G„ are

A B GA IS _l
""

L 2 (2n + l)a»'+'
"*"

2»H- 3
"*"

a^

,. , , ^ „ ^4»^— 2n —

3

.^„\
which reduce to — firypifnt n^ \iO)-

The most important terms of s?2 T'(^"'^'^") ^^^

1 r ,
(r-a)(r-by Aa „ ^,,1

which reduce to

, c (r-a)(r-by ^ , n(4n' + 47i-9) .^».

f 7r7/,,»6„2n
'

^^
^ -

f 7r7p,=e„«
^ ^ (77).

L. G. 3
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Hence the most important terms in P, Q, R, S are

P = -t.,,,e„.f-^^^i^^.+ icot.f) (78).

R = ..^yp,^e,y^^S. (80).

^ 4 .
„(r-a)(r--6)'dS,, .giy

These expressions admit of certain verifications in that they make

P+Q + R = 0, and make S vanish at r = a and at r = b.

38. With a view to the calculation of the stress-difference we note that,

to the same order of approximation as was adopted above,

P-R = -i-rryp,^ej{jsS^+^cote^) (82).

To this order all the quantities P, Q, R are the same at all depths in the

layer of compensation, and the quantity S\ which vanishes at both the

bounding surfaces of the layer, has its maximum value somewhere on the

surface r — b = ^t, that is at a depth equal to |- the thickness of the layer, and

at this depth we have

S'- = [i-^P^e^t^^J (83).

The expression (P — Rf + 4>S^ is therefore equal to

{i-rryp,^eJY {(jS„ + i cot ^J + (^f ^Jj (84).

39. We have seen in Chapter I that the earth's surface presents a large

inequality which is expressed by an harmonic of the first degree. We put

11 = 1 and jS„ = cos 0. Then

Q = -47r7pi=e.<JgCOS^,

and {{P - Ry- + 45=1^ = {^Tryp.^e.t) [Q cos Of + (^^ sin 6^]^,

the maximum of this occurs when 6 = ^-ir and is ^•n-ypi'eit ^, which is much
greater than the greatest value of Q. Hence the maximum stress-difference

occurs at a depth equal to one-third of the thickness of the layer of com-

pensation, and at the equatorial circle of the inequality (the circle at which

it changes from elevation to depression). This maximum value is approxi-

mately equal to ^-gp^e,, since pi is taken to be ^p„, and p, is approximately
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equal to the mean density of the earth. If t/a is -^ (see above p. 8), the

maximum stress-difference is about "006 of the weight of a column of rock of

height equal to the maximum height (ej) of the inequality. For the purpose

in hand this maximum height may be taken to be 2 km. (see Chapter I), and
the weight of the column per unit of area is 0'55 metric tonnes, so that the

maximum stress-difiference amounts to 0'0033 metric tonnes per square cm.

This amount is quite trivial compared with the tenacity, or the crushing

strength, of any reasonably strong material, e.g. granite, marble or even

sandstone.

It appears therefore that the materials of which the earth is composed

could support a much larger inequality of the type here in question than

actually exists.

It is perhaps worthy of note that, if the inequality were of a greater

height than the material could support, collapse would occur at places where

the gradient is steepest, that is to say at the great circle of zero elevation,

and not at the places of maximum depression and elevation. This conclusion

seems to be rather contrary to the expectation which one would naturally have.

40. When w = 2 we have

Sn = I COS^ e-^,

^' = - 3 sin (9 COS e, cot §' = - 3 cos= e.

da da

Hence Q = 37r'y/>i=€2<(|cos-^- y'^).

and {(P - Rf + 4S=}^ = ^7ryp^%t (^V + V^- cos= 6 - ^i,l cos^ e]K

The maximum of Q (absolute value) is iirypi-e^it^^, and it occurs when

= 90°.

The maximum value of {(P - R)- + 4>S^]^ is about ^jrypi'e^t (1-3434),

and it occurs when ^ = 43" 16' nearly. The maximum stress-difference is

found to be the maximum value of ((P - i?)= 4- 4S^}*, and this is approxi-

mately 0-67 X gpie^t/a. If, as before, t/a is ^V. this is about 0-0134 times

the weight of a column of rock of a height equal to the greatest elevation

that answers to the harmonic inequality in question.

If we take the maximum elevation to be 2 km. (e^ = 2 x 10'), the

corresponding tenacity required amounts to about 00074 metric tonnes per

square cm., which again is quite small compared with the tenacities of

most hard rocks.

There is no reason to think that, apart from the ellipticity of the

meridians due to rotation, the earth's surface presents any harmonic in-

3—2
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equality of the second degree with an amplitude of anything like 2 km.

(see Chapter I). On the other hand the ellipsoidal inequality which it

does present is certainly not zonal. Since any harmonic of the second

degree can be expressed as the sum of a small number (2 or 3) of zonal

harmonics with different axes, and since the stress-difference arising from

a sum of harmonic inequalities is certainly less than the sum of the stress-

differences due to them severally, we may conclude that such ellipsoidal

inequalities as the surface of the earth presents, apart from the ellipticity

of the meridians, could easily be supported by any reasonably strong materials.

It should be noted that, just as in the case of the first harmonic, the

maximum stress-difference occurs at a depth equal to one-third of the

thickness of the layer of compensation. But it does not occur either at

the places where the height of the inequality is greatest, or at those where

the gradient is steepest, but at intermediate places.

The maintenance of the greatest ellipsoidal inequality, the ellipticity of

the meridians, does not require any tenacity of the material. The stress

involved is hydrostatic pressure. If we took account of the rotation we
should have to modify the values of p^ and ^i , so that these quantities would

no longer be expressible as functions of r only. It is unlikely that the

requisite modification would alter sensibly the order of magnitude of the

tangential stresses required to support the continents.

41. When n = 3 we have

de
S„ = I cos^^ - f cos d, ^ = _ 3 sin ^(5cos= ^- 1),

JCf

cot -^' = - f cos e (5 COS" - 1).

Hence Q = ^irypi'e.t i cos 6" (15 cos'' - 13).

The maximum of the absolute value of Q occurs when = 57° 3' nearly, and
is approximately (1164) i-Tryp^^eit.

Also

\(P - Ry + 4>S-'}i = i7ryp,^e,t {|A - -UgijS^ COS' + iffl^ cos* - s^^ cos" 0\i,

and the maximum of this occurs when 6* = 22° 45' nearly, and is about
{l-65)i^yp,^e,t.

The maximum stress-difference is the maximum value of

ii-^Q + '^{(P-Ry + 4>S'}l

it occurs when ^=50° 20' nearly, and is about (2-08) i -Tryp,%t. Hence the
maximum stress-difference is about 104, x gp.e^t/a. If, as before, t/a =^
It 13 approximately the weight of a column of rock of height equal to 0-0208
of the greatest height of the harmonic inequality, and, if this greatest height is

2 km., the requisite tenacity is about 0-0114 of a metric tonne per square cm
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At a place given hy 6= 50° 20', and at a depth equal to one-third of the

thickness of the layer of compensation the stress-difference has the value

written above. Just as in the previous cases we may conclude that any
reasonably strong material could support such inequalities of the third

degree as the surface of the earth actually presents.

42. The results obtained in the foregoing discussion are extremely

favourable to the hypothesis of isostasy. It appears that, if the superficial

elevations and depressions expressed by the continental block and ocean

basins are correlated with suitable inequalities of density, in accordance

with the hypothesis, the requisite tangential stresses may everywhere be

quite moderate, and the inequalities could be supported easily by any

reasonably strong solid material.

The hypothesis has been supposed to be applicable not only to the main

features of the shape of the lithosphere but also to the more local irregu-

larities which are mountains and "deeps." For the expression of these

irregularities spherical harmonic terms of high degrees would be needed.

To get anything like a correct representation of the Alps, for instance, a

very large number of terms would be needed, but the amplitudes of them

individually would probably be rather small compared with the 2 km. which

has been allowed as the maximum amplitude of the larger inequalities. The

forces required to support such irregularities may be very different from those

required to support an inequality which is well represented by a single

spherical harmonic term, or a few such terms, and so the investigation on

similar lines to those of this Chapter, but dealing with the case of n large,

does not throw so much light on the actual support of mountains as the

previous investigation does on the support of continents. As, however, there

seems at present to be no other way of attacking the question, an investiga-

tion of this kind will be given in the next Chapter.



CHAPTER III

THE PROBLEM OF THE ISOSTATIC SUPPORT OF THE MOUNTAINS

43. To illustrate, so far as the methods of the last Chapter permit, the

way in which the hypothesis of isostasy affects the problem of how the

mountains are supported, we shall consider the outer surface of the layer of

compensation to have a single inequality expressed by a zonal spherical

harmonic of high degree. Near the pole of the harmonic the inequality

would appear as a rounded isolated mountain, surrounded by a circular valley,

which is again enclosed by a circular mountain ridge, and beyond this there

would be a series of ridges and valleys. Towards the equatorial plane of the

harmonic, the mountain ridges and intervening valleys assume a profile

which approximates to a simple sine-curve. Of course this configuration is

quite unlike that of any actual mountains, though something like it may be

partially developed wherever there is a series of parallel mountain-chains

with intervening valleys, e.g. in British Columbia where there are four

mountain-ranges running nearly north and south. A little consideration of

the actual heights of known mountains suggests that a height of 4 km.* for

the altitude of the crests above the valley bottoms would be an outside

estimate for any such inequality.

For the most part we shall confine our attention to the special example

in which the degree of the harmonic is 50. This corresponds to a series of

mountain-chains about 400 km. apart. But it will be desii-able at first to

proceed with a general theory.

44. In the notation of the last Chapter, when n, the degree of the

harmonic, is large, the product nt/a cannot be neglected, and the approximate

method previously employed fails. Instead of approximating to the values of

the integrals which occur in §§ 21—23, we must obtain for them complete

expressions which we can afterwards compute in special cases. By a process

of successive integration by parts we can express each of the integrals in

question as a sum of a few powers of (?•— 6). We proceed to exemplify

the process.

* This is tlie estimate adopted by Sir G. Darwin, loc. cit., ante. p. G.
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We have

;{r-bf--
2n + 4 ' ' (2n + 4)(2« + 5)

3.2
(2m + 4)(2»h-5)J6

»-™+*
/ ,N, 3r'»+=(r-6)=
(»• — 6/

3 2 f
(2m + 4)(2?H-5)J6 ^ '

2*1 + 4 ^ ' (2ji + 4)(2n + 5)

3 . 2r"'+» (r-b) 3.2 (r"'+' - 6="+')

(2n+ 4)(2?i+5)(2;i + 6) (2n-i-4)(27i+5)(2n+6)(2n+ 7)

'

Hence

jr'^+'>(r-bydr
J b

=
(2. + 4)(2.-f5K2n4-6)(2n + 7)

^"' "
'•="" + ^^'^ + '^ ^^'" ^^^

" ^)

(2« + 7)(2n + 6) ^,„,,^^. ^^,
^

(2n + 7)(2n + 6)(2n+5)
^.,.,,^^. ^^;

This can be written

jr'^'+^r-bydr

3 ! r"'+'

"2*~n^
1 - (6/r-)-'"+^ 2nxlr

where x is written for (r — 6).

2''»V/?-'- 2^ftV/r' •

V

45. By the process exemplified above we may express all the integrals

in which 2n occurs as an index. For this purpose we introduce the notation

'^
' ^ /' K-S\/^ K-S+l\ /, k\

2nxjr

2?(

2''-nW/r^ 2''wV/r-"'

' K-S\'
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then we have the following results* :—

/'J_r,..»+3(,.-6)'dr.dr =—V|^^i'(7,3)

1 + 27,

1 r-» /I 1 a; 1 a^

r2»i U 10»- 60W
1+2^

rr 9 I
7-'"+''

j^
,^+. (r _ 6). dr = - |j^ F{5, 3),

[;iTi//"^Ur-6)'*-.dr = |^ $^'(5, 4),

/%--£4^JV-+>(r-6)».i'-.d»-.dr=|;^ {^(5, ^)-F{1, 4)}.

1 2?i

1 3! r ( lx\

'in

\

""

I
"^jji'i+a

\
-J—

I

j-sn+i (r — by dr .dr.dr.dr

1 3!r«f„,, ., 2War'/r' ^2«»W/r«)
=
-—r 2"' ;isf («. 4)

- -51- +
-6T-|

2?i

^ l_3!r«j 2°nV/r° 2'nVlr-
f

l\]

"^2n

rr rr O i
,.2n+7

r"'+' (r-6)»dr.dr =^ -^J^(7, 4),
Jb Jb 2- n-"

1 3 ! r ^, /-, _lic\

T5!2n I Gr)'
2n

rr Q I «Ji)i+l0

I ,^+t(r_6)»(£r = -|^^^^i?'(10, 3),

* All the resultB obtained in this section and in § 46 may, ot coarse, be verified by differentiation.

2n

+
+
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l + 2n

2_2n \i~'ir'^6V' 14P'^56^ 504^/
^2m

In like manner we have also the following set of results :

—

j^r»"+»(r-6)»dr=|j 1^^(6,2),

2)

1 r^ ,/l la; 11 r' a/'l_l^ , j^«:\
, 1 2»i

'^ U 6 r 30 r»J
•

l + ij-
2»i

/J;3tJ/"+"(*-6)»*-.dr = -|^2^(4, 3),

1 2_! »^ ^ /, 1 a:\

+~T4!2n* [ 5r)'
2n

I

*"—— ['^r"'+= 1

*"

-—u I
%=»+' (r - 6V dr . dr . dr . dr

=—r2^«»r^ •
^^'^! 5^1

2«

1 2 ! r» f 2Va;'/r' 2'7Mr' /, . 1\1

^271

rr rr 2 ' »•»»+•

r»»+2 (r_t)»d»-.dr = -9^^-J^(6, 3),
J b J b Z 1i
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'^l T4>\2n'^V 5r)'

2n

I.

i'^V3~12r''"3r= 6 »^ 21 »-^ 168^'

2«

1 1-= -

+
1 271

2?i

46. In addition to these we require some simpler integrals which do not

depend upon n. The following results can be obtained without difficulty.

la; \ x^
I i-^{r — hydr = r-a^{-^

j^i-{r-b) dr-r-af\^^
4 r 6 r= 14 »»

"^
56 ?•* 504 W

/;./V-&)=dr.d.=^..^(i-ig,

p , i,„ , , /l 5 a; 1 a;^ 1 3;= la;* 1 ar^

These particular results have been used incidentally in evaluating the

integrals which depend upon n.

47. I computed these integrals to four places of decimals for four values

of r, viz.: a, a — -^t, a — -^t, a — ^t, where t stands, as before, for a — b, the

mean thickness of the layer of compensation. I took w = 50, and tja = -^^-

In the appended tabular statement the result of the computation is expressed

by recording the numerical coefficients of certain simple expressions. The

first column contains the integral, the second the simple expression, the

third, fourth, fifth and sixth in order the values of the coefficients of this

expression for r = a, r= a — O'l <, r = a - 0"2<, r= a — 3t. When the integral
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is expressed by two terms, one expression is put under the other. Certain

integrals are omitted from the table because the values of their coefficients

never amount to more than 00002. Two of the integrals have been com-

puted for r = a only, because their values are required in the determination

of the constants, but not in the calculation of the stress-diiference within the

layer of compensation.

Table of Integrals.

Integral
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Table of Integrals {continued).

Integral
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and a numerical coeflScient. The function is placed in the first column and

the simple expression in the second. In the third, fourth, fifth, and sixth

columns are given the numerical coefficients for the values a, a — O'lt, —

dr
{r^'^^yn) -^'rypi'^fna'-"-''

Uypi'^n—„

-i'^ypi^^n-

-inypi^e„

u I a-O-lt a-0-2f
1

I

•0070

•0783

•1378

•1194

•1479

0785

•1089

•2067

•0672

•0873

a-O-St

•2118

•0522

•0645

49. From these results we find, on putting n = 50 wherever necessary,

2« (n - 1) *„(a) + ^^^ (r»+»7«)a " 2naY> (a) =-1^^ (0-0844)

and

2n(n-l) 4>„(a) - a'<f>n (a) + 4ci=7„(a) = - ^T-''^" (0-2375).

The equations (52) and (53) of p. 28 now give for the constants A, B
the values expressed by the equations

^A^ = f7r7p,='e„a"+= (0-3610),

From these values, by means of the equations (47) and (48) of p. 27,

we find the values of the constants C, D, viz.

:

C = |7r7pi=e„a»+M0-I721),

-D = ^^if^(0'005519).

50. By the equations (43), (44), and (45) of p. 26 the functions

Q _ /^w>+s Q\^ p^ are expressed as the sums of terms containing the
"' dr

constants A, B, C, D and other terms. We may refer to the first sets of

terms as the " contributions of the constants." In the following table we

express the values* of these contributions for the four values of r{a,a — O'l t,

* In obtaining these it is best not to substitute for C and D the values found in § 49, but to

begin by eliminating them by means of (47) and (48) on p. 27.
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a — 02 1, a — 03 t) as the products of certain simple expressions and certain

numerical coefficients. The first column contains the function to which the

constants make a contribution. The second column gives the simple

expression. In the third, fourth, fifth and sixth columns are given the

numerical coefficients.

1 1

1
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1 /7

S„. Further n^^-'Fn, nr''0„, and —r; "T"
(»•="+' G„) are of the same order of

magnitude. In the table the terms of highest order of magnitude are alone

retained.
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By adopting the hypothesis of isostasy, in the special form that was given to

it in the last Chapter, we have found that such mountains as actually exist on

the earth may imply smaller stress-differences than those computed by

Darwin, and can therefore be supported by materials of a smaller degree of

tenacity. On the other hand it appears that much stronger materials are

required to support existing mountains than to support existing continents.

Sir G. Darwin also found that in his solution the stress-difference was

greatest at a depth of some 80 km. beneath the surface. In the above

solution the stress-difference is greatest at the surface and continually

diminishes as the depth increases.

It is worthy of note that, on the theory here worked out, the maximum
stress-difference for a harmonic inequality of the first degree is found at the

places where the gradient is steepest, not at the places of greatest elevation

and depression, and it is found at a depth equal to one-third of the thickness

of the layer of compensation. For harmonic inequalities of high degrees it

is found at the places of greatest elevation and depression, and near the

surface. For harmonics of low degrees, greater than unity, it is found at

places intermediate between those of greatest elevation or depression and

those where the gradient is steepest, and at depths which, according to the

approximate methods of calculation adopted in the last Chapter, are equal to

one-third of the thickness of the layer of compensation. It is probable that

the depth at which the maximum stress-difference occurs diminishes regularly

as the degree of the spherical harmonic inequality increases.



CHAPTER IV

GENERAL THEORY OF EARTH TIDES

54. The importance of corporeal (or bodily) tides in the earth arises

from the influence which investigations concerning them have had upon our
ideas about the internal constitution of the earth. Lord Kelvin appears to

have been the first to point out that, whatever the constitution of the earth
might be, it must as a whole yield to the tidal deforming attraction of the
sun and moon ; and he proposed to determine the rigidity of the earth by
observing the amount by which the oceanic tides are diminished in consequence
of the corporeal tides. In his classical investigation* the earth was regarded
as a homogeneous incompressible elastic solid body, and the problem was
treated as a statical one, or, in other words, the corporeal tide was calculated

from an equilibrium theory ; and it was shown that, if the rigidity were that

of glass, the oceanic tides, calculated also by an equilibrium theory, would be

reduced to two-fifths of their theoretical amount, and, if the rigidity were

that of steel, they would be reduced to two-thirds. Lord Kelvin also pointed

out that, for the purpose of observing the diminution of oceanic tides by
corporeal tides, the most appropriate oceanic tide would be the fortnightly

tide, because an argument due to Laplace went to show that it should obey

the equilibrium theory, while its eflfects, if observed over a long interval

of time, would not be liable to be disguised by meteorological causes.

Since the time when this investigation was published the problem has

been much discussed, various points in the theory have been elucidated, and

new methods of observing the corporeal tides have been devised. Two steps

were taken at about the same time: one, a reduction by G. H. Darwin f of

tidal observations with a view to determining the actual height of the

fortnightly oceanic tides; the other, an attempt by G. H. Darwin and

* W. Thomson, "Dynamical problems regarding elastic spheroidal shells" and "On the

rigidity of the earth," Phil. Trans. R. Soc, London, vol. 153 (1863). Subsequent versions of the

investigation will be found in Lord Kelvin's Math, and Phys. Papers, vol. iii. and in Thomson

and Tait's Natural Philosophy, Pt. ii.

t The investigation was published as § 848 of the second edition of Thomson and Tait's

Natural Philosophy (1883), and is reprinted in G. H. Darwin's Scientific Papers, vol. i. p. 340.

L. G. 4
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H. Darwin* to measure the lunar deflexion of gravity. It appeared from

G. H. Darwin's reduction of tidal observations that the actual height of the

fortnightly tide is about two-thirds of the theoretical equilibrium height.

The experiments for determining the lunar deflexion of gravity were, however,

inconclusive. Numerous observers, working with various instruments, also

attempted to measure the lunar deflexion of gravity, among them von Rebeur

Paschwitz, who advocated the use of a horizontal pendulum, and believed that

with his pendulum he could detect the influence of earth tides. G. H. Darwin's

conclusion in regard to the actual height of the fortnightly oceanic tides has

been confirmed recently by W. Schweydarf by a reduction of much more

numerous tidal observations, and Schweydar obtained at the same time

a confirmatory result by a fresh reduction of the best series of Paschwitz'

observations. But the most elaborate observations of the lunar deflexion of

gravity are those which have been made in recent years by 0. HeckerJ.

He has proved decisively that corporeal tides exist, and has furnished very

valuable numerical results by help of which the amounts of such tides may
be determined.

55. The theory of the corporeal tides has been developed in various

ways which may be described briefly by reference to Lord Kelvin's four

simplifying assumptions:—(1) That the corporeal tides can be calculated by
an equilibrium theory, (2) that the fortnightly oceanic tide may be calculated
by an equilibrium theory, (3) that the earth may be treated as homogeneous,

(4) that the earth may be treated as incompressible. In a general way we
may be fairly confident that an equilibrium theory of the corporeal tides
would be correct, whatever the rigidity of the earth might be, because the
period of free oscillation (of tidal type) of a fluid sphere of the size and
mass of the earth would be about 1 hr. 34 min.§. If the substance is as rigid
as steel, instead of being fluid, and if it is homogeneous and incompressible,
the period is about 1 hr. 6 min.|| These periods are very short compared
with any tidal period, and it is unlikely that they would be lengthened very
much by assuming any admissible constitution of the earth. Nevertheless,
for the sake of completeness, and for another reason which will appear later,'
It seemed to be desirable to work out a dynamical theory of the corporeal
tides. This will be given in Chapter V infra. A doubt may remain as to
the applicability of an equilibrium theory to corporeal tides if, as has been
suggested, the earth should consist of a solid nucleus covered with a solid
crust from which it is separated by a layer of fluid matter. But, as we shall

• ^t-BHt. A^soc, 1881, p. 93, or G. H. Darwin's Scientific Papers, vol. .. p. 389.
t W. Schweydar, "Ein Beitrag zur Bestimmung des Starrheitskoeffizienten der Erde,"

Beitrage zur Geophytik, Bd. 9 (1907).

I«t 190?.'"""'
"^°'""=^'"°^*" " Horizontalpendeln...," r.r»/r. d. kSnigl. premz. geoMt.

§ See the first of the papers by Lord Kelvin (W. Thomson) cited on p. 49
II H. Lamb, " The vibrations of an elastic sphere," London, Proc. Math. Soc. yol. «.i. (1882).
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see in the discussion of Becker's observations, this constitution is very
improbable.

56. The question of the applicability of an equilibrium theory to the
fortnightly oceanic tides was raised by G. H. Darwin* His investigation
appeared to show that the fortnightly tide calculated on a dynamical theory
would be decidedly less than (about two-thirds of) the theoretical equilibrium
amount, unless the friction of the ocean bed is much greater than it had
previously been supposed to be. The dynamical theory in question was
based, as is usual in the dynamical theory of the tides, on the supposition
that the displacement of the ocean is a function of latitude only, or, in other
words, it was assumed that the tides might be calculated as if the sea were
not interrupted by land barriers running north and south. Lord Rayleighf
afterwards showed that, if there were no such barriers, free steady motions,
consisting of currents running along parallels of latitude, would be generated,
and would cause the tides of long period, calculated on the dynamical theory,

to fall decidedly short of their theoretical equilibrium values. It seems
therefore that little doubt remains as to the correctness of calculating the
fortnightly tide by an equilibrium theory.

57. The known fact that the earth is not homogeneous, but of a mean
density about twice that of superficial rocks, suggests the question : Would
the estimate of the rigidity be much affected, and in what sense would it be
affected, if account could be taken of the heterogeneity ? This question was
first discussed by G. H. Darwin J by means of a probable hypothesis, from

which it was concluded that, if the density increases from surface to centre,

the planet as a whole yields rather less to tidal disturbances than it would

do if its density were uniform. Hence he inferred that the estimate of

rigidity should be diminished slightly on account of the heterogeneity. The

question has since been discussed by G. Herglotz§ by a more elaborate

analysis, with the result that Darwin's conclusion as to the sense of the

correction was confirmed, but that the diminution might be much greater

than he had made out.

A like enquiry may be made in regard to the effect of compressibility.

There is no more reason for assuming the material of which the earth is

composed to be absolutely incompressible than for assuming it to be absolutely

homogeneous. Several attempts have been made to answer this question,

but none of them is satisfactory. A new solution of the problem is offered in

Chapter VIII infra.

* "Dynamical Theory of the tides of long period," Proc. R. Soc. London, vol. 41 (1886), or

Scientific Papers, vol. i. p. 366.

t "Note on the theory of the fortnightly tide," Phil. Mag. (Ser. 6), vol. v. (1903).

J " Note on Thomson's theory of the tides of an elastic sphere," Nets, of Math. vol. viii.

(1879), or Scientific Papers, vol. ii. p. 33.

§ G. Herglotz, ZeiUchr.f. Math. u. Phys. Bd. 52 (1905).

4—2
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58. The statical, or equilibrium, theory of earth tides was much improved

when it was seen how to combine the results obtained by observations of

fortnightly tides, or experiments with horizontal pendulums, with those that

were found by observations of variations of latitude. No sooner had

S. C. Chandler made known his discovery that the variation of latitude is

roughly periodic in a period of about 427 days, instead of the period of

about 306 days which the movement would have if the earth were absolutely

rigid, than S. Newcomb* pointed out that the lengthening of the period was

due to the yielding of the earth, and that it should be possible to deduce

from the actual period an estimate of the rigidity of the earth. The hetero-

geneity of the earth's substance presented an unexpected difficulty in the

way of deducing such an estimate, and in the first investigation of the matter,

by S. S. Hough f, this difficulty was met by means of a " probable hypothesis."

At a later date the question was taken up by HerglotzJ, who showed, on the

basis of an assumed heterogeneous constitution, how Hough's hypothesis

could be avoided, and an improved estimate could be deduced. He assumed
that the earth could be treated as incompressible, and adopted Wiechert's law

of density, according to which the earth consists of a metal nucleus of density

8"206 enclosed in a rocky shell of density 3-2, the ratio of the radius of the

nucleus to the outer radius of the shell being 0'78 : 1§. It appeared that,

on the basis of this constitution, the rigidity deduced from the observed

height of the fortnightly tides was but little more than half that deduced
from variations of latitude. A method of combining the results of the two
kinds of observations was first proposed by W. Schweydar||. He adopted
Wiechert's law of density and Herglotz' assumption of incompressibility, but
supposed the rigidity of the nucleus to be different from that of the shell,

and he found the rigidities which must be attributed to both in order that
the results which are deduced from the two kinds of observations may be
reconciled.

59. A more general method has since been found H. This may be
described as follows:—The moon's tide-generating potential at any point
within or near to the earth can be expressed with sufficient approximation
by the formula

yMD-'r^q cos" ff-^) (1),

where 7 denotes the constant of gravitation, M the mass of the moon, £> the
distance between the earth's centre and the moon's centre, r, 6' the polar

* Mon. Not. li. Astr. Soc. 1892.

t S. S. Hough, " The rotation of an elastic spheroid," Phil. Trans. R. Soc. London, toI. 187 A
(1896).

t Loc. cit. ante, p. 51.

§ E. Wiechert, GSttingen Xachrichten, 1897. In the paper cited on p. 51 Herglotz worked
out the problem for a coutinuously varying density as well as for Wiechert's law.

II
Loc. cit. ante, p. 50.

t A. E. H. Love, "The yielding of the earth to disturbing forces," Proc. R. Soc. London.
Ser. A, vol. 82 (1909), p. 73.
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coordinates of the point, referred to the centre of the earth as origin and
the line of centres as polar axis. Let this expression, which is a spherical

solid harmonic of the second degree, be denoted by W,. Then W^jg expresses

the theoretical equilibrium height of the oceanic tide caused by the moon,

g being the mean value of gravity at the earth's surface. In order to

determine the height of the corporeal tide by an equilibrium theory, we
may begin by assuming that the distribution of mass is spherically sym-
metrical, and that the rigidity and incompressibility (or modulus of com-

pression) are constant over the same surfaces as the density. (If the rotation

were taken into account the spherical surfaces of equal density would have

to be replaced by ellipsoidal surfaces.) When this is the case, the radial

displacement U and the cubical dilatation A, which are produced at any

point by forces derived from the potential W^, are expressed by the products

of the solid harmonic W^ and certain functions of r ; thus we may write

U^H{T)WJg, A=f(r)W,/g (2),

where the functions H(r) and/(r) depend upon the densities and elasticities

answering to the various values of r. Now, whatever these functions may be,

the potential due to the increment, or decrement, of density that accompanies

the cubical dilatation, and to the superficial displacement of matter, is also

expressed by the product of the same harmonic W2 and some function of r

so that we may write for the potential V of the earth, deformed by the tidal

forces, an expression of the form

V= Vo + K{r) W, (3),

where Fj denotes the potential of the undisturbed earth. Now write

h = H(a), k=K{a) (4);

then h and k are two numbers which define the height of the earth tide at

the surface and the inequality of potential that is produced by the earth

tide. The potential of the earth at a point of the deformed surface is

expressed with sufficient approximation by the formula

^«('^)+^y(^"L+*^= (^)'

and, since (dV„/d7-)r^a = -g. this is V,{a) +{k-h)W2; so that the tide-

generating potential becomes {l+k-h)W2 instead of W^. On an equi-

librium theory the oceanic tides are diminished, in consequence of the

existence of corporeal tides, in the ratio

l + k-h:l.

According to the results (already cited) that have been obtained by obser-

vation of the fortnightly tide, this ratio is about ^, or we have approximately

h-k = ^ (6).
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As we shall see presently, experiments with horizontal pendulums also lead

to a numerical determination of the difference h — k, but they yield no new

relation between h and k.

60. Variations of latitude arise in consequence of the non-coincidence

of the earth's instantaneous axis and a principal axis of inertia. If no

changes took place in the distribution of the earth's mass, and if there were

no dissipative forces, the movement would be strictly periodic. If the earth

were rigid, the period, as determined by precession, would be about 306 days.

But a deformable body set in rotation about an axis which does not quite

coincide with a principal axis must be strained in the same way as if it were

subjected to certain body forces. These forces are derived from a potential

which is expressed by a spheiical solid harmonic of the second degree *-

The deformation of the earth by such forces can therefore be expressed

by the same three functions H (r), f(r), K (r) as occur in the solution of the

tidal problem. Now it has been shown that the period t of the movement
depends on the number A-, and is in other respects independent of the elastic

quality of the earth, so that from a knowledge of t we can deduce the value

of k

It has been shown f that approximately

k = ^ (7).

By combining the equations h—k = ^,k = -^, there results

^=f (8),

or, in words, the height of the earth tide is three-fifths of the theoretical

equilibrium value of the oceanic tide. This result is independent of any
hypothesis in regard to the compressibility of the material, and of any
special law of density such as Wiechert's.

61. Although the combination of the two kinds of observations enables
us to determine the actual height of the earth tides, provided, of course, that
they obey an equilibrium theory, yet it does not lead to a more exact estimate
of the earth's rigidity. There is not any one rigidity which is the " rigidity

of the earth," but, the material of which the earth is composed being hetero-
geneous, there are different rigidities at different depths. The investigation

• Cr. S. S. Hough, loc. cit., ante p. 52.

+ Tlie forimila giving k in terms of t is

'-©-')('-?).
where e denotes the ellipticity of the meridians, « the angular velocity of rotation, r„ the
peri,),l calculated from the precessional constant on the assumption of absolute rigidity See
A. K H. Love, loc. cit., ante p. 52, and J. Larmor, " The relation of the earth's free precessional
nutation to its resistance against tidal deformation," Proc. R. Soc. London. Ser A Vol 82
(1909), p. 8U. '
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of earth tides has proved decisively that the earth is not a fluid body coated
over by a thin solid cnist.

62. It remains to give some account of the results found in Hecker's
experimental investigation of earth tides by means of horizontal pendulums.
The theory of the experiment is simple. The force that is available for

deflecting a horizontal pendulum is derived from a potential which consists

effectively of three terms, viz.: the tide-generating potential of the moon,
the tide-generating potential of the sun, and the potential of the earth

(strained by the tidal forces) estimated at a point on the deformed surface.

If the deformation of the earth can be calculated by an equilibrium theory,

this potential is that which we before denoted by (1 + ^• - h) W^, the sun
being left out of account. If the earth were absolutely rigid, so that the

forces produced no deformation in it, the potential of the forces that would
act on the pendulum would be W^. We should expect therefore that the

deflexion of the pendulum would be less than the theoretical amount that it

would have if the earth were rigid in the ratio 1 + k — h:l. Now Hecker
set up two horizontal pendulums in azimuths nearly north-west and north-

east, recorded their deflexions by an automatic process for 882 days, and

Analysed the results so as to pick out the parts of the deflexions that were

periodic in particular periods. The most important period is half a lunar

day, the period of the principal lunar semi-diurnal tide, the tide denoted

by M-i*. At Potsdam, where his observatory was, the forces corresponding

to the tide M^ would, if they acted alone, produce deflexions of a vertical

pendulum in these two azimuths of amounts

0"'00922cos(2<-305°-5) and 0"00900 cos (2i - 48°-7),

where t denotes the lunar time that has elapsed since a certain epoch. The

parts of the observed deflexions which had the same period were found to

be equivalent to deflexions of a vertical pendulum of amounts

0"-00622 cos (2t - 285°-4) and 0"-00543 cos (2t - 63°-2).

* G. H. Darwin, Scientific Papers, vol. i. p. 20.
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These results can be exhibited graphically by tracing curves of which the

first and second of these expressions in each case are the ordinate and

abscissa. The result is shown in the diagram on p. 55, where the outer

curve represents the principal lunar semi-diurnal term of the deflexion

of gravity that would be due to the moon if the earth were absolutely rigid,

and the inner curve represents on the same scale the corresponding term of

the observed deflexion*.

63. The first inference from these results is that there is no doubt about

the yielding of the earth to the tidal forces ; the earth is not absolutely rigid.

The second inference is that the average amount of the yielding shown by

these observations is very nearly the same as that inferred from observations

of the fortnightly oceanic tide; corresponding central radii vectores of the

inner and outer curves are nearly in the ratio 2 : 3 on the average all round

the curve. On the assumption that the earth tide may be calculated by an

equilibrium theory, this statement is equivalent to the relation k — k=i,
which was used above. The third inference is that the use of an equilibrium

theory appears to be very well supported by the observations. The two

curves are ellipses with their principal axes so nearly coincident in direction

that the difference of direction cannot be shown in the diagram. We saw

above (p. 50) that the only condition under which such a theory might fail

would be if the earth consisted of a solid nucleus and a solid crust separated

by a fluid layer. If this were so, tides would be set up by the attractions of

the sun and moon in the nucleus and the layer and the crust, and it might
be impossible to calculate the tides in the layer by a statical theory. It

would be a very singular circumstance if, in spite of this constitution, the

tides in the crust were in phase with the tidal forces, as they are shown by
the observations to be.

64. Although the average value of the deflexions observed by Hecker,
being about two-thirds of the theoretical deflexions, affords a striking con-

firmation of the result obtained from observations of the fortnightly tides,

yet the fact that the inner curve in the diagram is much flatter than the
outer requires explanation. The ratio of the minor to the major axis of the
outer curve should be the sine of the latitude of the place of observation, for

Potsdam about f. If, as was explained above, the potential of the forces

acting on the pendulum were {l+k-h)W„ the inner curve should be
similar and similarly situated to the outer, but, as a matter of fact, the ratio

of the minor and major axes of the inner curve is less than ^. This result

indicates that the force acting on the pendulum is a larger fraction of the
moon's force when it acts towards the east or the west than when it acts

towards the north or the south, as if the earth at Potsdam were stiffer to

* Tlie above diagram was drawn afresh from the formulae, but might have been taken from
Becker's Tafel vii by omitting the diurnal curve.
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resist forces acting east or west than forces acting north or south. Various

explanations of this anomaly have been proposed, among them one, suggested

by Sir G. Darwin, is that it may be an effect of gyroscopic rigidity produced

in the earth by its rotation. This suggestion, put into other words, would

amount to proposing to take account of the rotation of the earth in calculating

its deformation by tidal forces. To investigate the correctness of this ex-

planation it is necessary to attempt a dynamical theory of earth tides.

Another explanation, proposed by Hecker, is that the observed effect may
be due to the situation of his observatory in Western Europe, with the

Atlantic Ocean to the west and the great mass of Asia to the east. The
investigation of the corporeal tides in a rotating spheroidal planet will throw

light on this suggestion also.



CHAPTER V

EFFECT OF INERTIA ON EARTH TIDES

65. In order to investigate the manner in which the rotation of the earth

afifects the theory of the corporeal tides, it will be sufficient to consider the

problem under certain simplifying assumptions. The sense of the correction

which should be made in the ordinary theory can hardly be dififerent from

that which may thus be found, and it is unlikely that the order of magnitude

can be very dififerent.

It will be assumed here that the earth may be treated as a homogeneous

incompressible elastic solid body of a finite degree of rigidity. The body

will be supposed to be in a state of initial stress by which its own gravity is

balanced throughout its volume. Further it will be supposed to rotate

uniformly, and the initial stress will be taken to be so adjusted that the

equations of motion of the body rotating steadily are satisfied. The initial

stress will be assumed to be hydrostatic pressure, and, when necessary, it will

be assumed that the undisturbed surface is an ellipsoid of revolution of small

ellipticity. Further the complete expression for the tide-generating potential

will be replaced by the potential corresponding to the principal lunar semi-

diurnal tide.

66. We shall use cartesian rectangular coordinates x, y, z, the origin

being at the centre of the undisturbed body, the axis of z being the axis of

rotation, and the axes of x and y rotating with the body. We shall denote

the density of the body by p, the angular velocity by o), the initial pressure

by p^, and the potential of the undisturbed body by F„. Then we have the

equations of motion of the undisturbed body, in the forms

.(1).

9F-„
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We shall suppose the body to be strained by the application of forces

derived from the potential W, and shall denote the displacement at a point

by (m, V, w). The potential of the body at a point will be Fo + V, where V
is the additional potential due to the deformation of the body. We shall

denote the rigidity of the body by /i. Then the stress at a point (jv, y, z) is

expressed by six components of stress, which may be taken to be

„ (dw dv\ „ (du dw\ „ fdv dti\

where p' denotes an additional pressure at the point (a;, y, z).

Then the equations of motion referred to the moving axes are

id'^ ^ dv ,, ,1 (dV, dV dW\ dp, dp'

^i
a=w . du ,, J (dV„ dV dW\ dp, dp

d'w (dV„dV' dW\ dp, dp' ^^

By means of equations (1) these may be simplified so as to become

fd'u . dv ^\ (dV dw\ dp' ^ ^,
PKdT^-^'^di-'-'V^PKd^^^j-Yx^''^'

(2).
(dPv _ 9(* „ \ (dV

_
dW\ dp

, „,

d-'w (dV dW\ dp ^ „,

Further we have the equation expressing the assumption of incompressibility

in the form
du dv 9w_
dx dy dz

Let /, m, n denote the direction cosines of the outward-drawn normal

to the undisturbed bounding surface. Then V is the potential of a dis-

tribution of mass on this surface with a superficial density

p {lu +mv + nw),

so that V satisfies the equation

V=F'=0 (4).

The system of equations (2), (3), (4) are five dififerential equations con-

necting the five unknowns, u, v, w, V, p with the known quantity W. The

surface characteristic equation for V, that is to say the equation by which its

normal derivative at the surface is connected with the superficial density, is
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one of the boundary conditions ; and the remaining boundary conditions must

express the fact that the deformed surface is free from traction.

67. In order to obtain solutions of this system of equations, in such

forms that the boundary conditions may be satisfied, it is convenient to

proceed by an approximate method. The first approximation is obtained by

ignoring the rotation and the ellipticity, and omitting the left-hand members

of equations (2). The problem so simplified is the purely statical problem of

a homogeneous incompressible sphere held strained by the forces derived

from the potential W. The solution is known from Lord Kelvin's investiga-

tion*. For a second approximation we substitute the values of u, v, w,

obtained from the first approximation in the left-hand members of equations

(2) and solve the equations again, retaining, however, the supposition that the

undisturbed surface is spherical. By a third approximation we may take

account of the ellipticity of the undisturbed surface. Thus we shall write

p' =Po +p, +p„ V = 7„' + F, + V,.

Then u^, ... are the quantities found in Lord Kelvin's solution, Mj, ... are the

quantities found by the second approximation above described, and u^, ... are

those found by the third approximation. The quantities it,, ... may be

referred to as the "correction for inertia," and the quantities Wj, ... as the
" correction for ellipticity." In connexion with the suggestion (p. 57) that

gyroscopic rigidity might account for the earth seeming to be stiffer to resist

forces that act east and west than forces that act north and south, it is

necessary to determine Mj, ... . In this Chapter we shall consider the

correction for inertia only, and we shall defer an investigation of the correction

for ellipticity to the following Chapter.

68. The equations satisfied by «„, ... are the vector equation

di' d'y' aJ(/'^-''
+ ^^-P»') + MV'(w..«..«'o) = o (5),

with the two equations

s+|-*'f =»• '"'•-» w-

The function W, as well as V^, satisfies Laplace's equation, and it appears at

once from the vector equation (5) that p^ also satisfies Laplace's equation.

To express the boundary conditions it is convenient to introduce a quantity

fo by the equation

lio= u„oD + v„y + WoZ (7),

so that, if r denotes distance from the centre, ^^jr denotes the radial dis-

placement. It is also convenient to introduce a quantity ( F„')o, which is the

* hoc. cit., ante p. 49.
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potential at external points of those masses of which F„' is the potential at

internal points. Then, if a denotes the radius of the unstrained sphere, the

surface characteristic equation for the potential takes the form

aov)o_ap_ Lo
(8).

dr dr r

and this equation holds at r = a. Now V^ may be expressed as a sum of

spherical solid harmonics, say

F„' = Sa„^>„ (9),

where <S„ is a spherical surface harmonic of positive integral degree n ; and

( F(,')|, is therefore given by the formula

Further the initial state is that of a homogeneous gravitating sphere in

which gravitation is balanced by hydrostatic pressure, so that we have

F„ = I iryp (3a» -r') = \g (3a» - r^)/a

Po = l-nP
.(10).

where g is written for ^-rrypa. Let i, m , n denote the direction cosines of

the outward-drawn normal at a point on the deformed surface. The equation

of this surface is of the form r = a-\- U, where U denotes the value of g'o/r at

r = a. The conditions that the deformed surface may be free from traction

are three equations of the type

i'(-p.-F0+2/.g^)+m;.^g^+g^j+«^(g-^-+g^) = ...(11).

These hold at the surface r = a-^U. We have to express them in an

approximate form, in which squares and products of quantities of the order

of the displacement are neglected. First we observe that ^„ vanishes at

r = a, and therefore, at r = « + D", we may write with sufficient approximation

instead of p^ the expression

''fa..-

Since all the quantities which are multiplied by l\ m or n are now small of

the order of the displacement we may replace V, ... by the direction cosines

of the normal to the unstrained sphere, that is by xjr, y/r, zjr, and then the

equation (11) takes the form

^.(«f--K)^?f|-'^-«.)-o (i«.

The three equations of this tjrpe hold at the surface r = a.
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69. The solution of this system of equations and conditions can now be

written down*. The function W being a spherical solid harmonic of the

second degree, we have

p,'-=-NpW{i-n/gpa)

y
(13).

where N is written for 1
\ 2gpaJ

70. The above solution is independent of the special form of W, provided

only that Tf is a spherical solid harmonic of the second degree. In what

follows we shall confine our attention to the principal lunar semi-diurnal

tide. Let 27r/cr be the period of this tide. Then W is proportional to the

surface harmonic
sin' cos (2^ + <7t),

where 6 and <^ are the co-latitude (measured from the North Pole) and the

longitude (measured eastwards from a chosen meridian) of a place on the

earth's surface. We shall take this to be the real part of

sin«ec*<2*+'«',

and shall proceed with the theory as if TT were proportional to this complex

expression. In the end we keep only the real part of our solution. All the

quantities such as Mj will then be proportional to e**^. When expressed in

terms of x and y, W will be a linear combination of the two real harmonics

td' — y^ and xy, but it is independent of z. This circumstance will be found

to simplify the problem. It is worth noting that

dW dW
oy dx

is a spherical solid harmonic of the second degree which is similar in its

properties to W. We shall write W for this harmonic, so that

.(14).
w SF dW
^=""37"^^

• The solution is easily verified. It might have been extracted from Lord Kelvin's paper.

With a view to the subsequent development of the theory it seemed to be worth while to indicate

in some detail the method of foirmation of the boundary conditions.
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71. To determine the quantities Wi, ... we put

Then in the left-hand members of equations (2) of p. 59 we omit the terms

containing u^, ... and we simplify the right-hand members by using equations

(5) of p. 60. Then the left-hand members contain only known quantities,

expressed in terms of Mo, ..., that is in terms of W. The right-hand members

do not contain W or any of the letters with suffix 0. Further, since all the

quantities that occur are proportional to e*"', the operator d/dt may be replaced

by the coefficient ia: Accordingly the simplified equations can be written

dp. dV, \

flV u^z= — p (o-'m„ -f- 2iwCT Do -h o>^ M„) -)- -^ - p -5—
dx '^ dx

/iV^Wj = — p (o-H'o — 2lO)0-M„ -f- to'Wo) +:^-p -~ y (15).

We have also the equations

dx+d^ + 'd^-^ ^^^>'

and V=r, = (17).

By differentiating the left-hand and right-hand members of the equations

(15) with respect to x, y and e respectively, adding the results, and using

equations (16) and (17) we find

Now p! +^ = -^-^=-N^,
dx ay oz ag

W being independent of z. Also

dvo _ 9"o __ vr 7 If'

dx dy 2ag

'

Thus V''^, is expressed as the sum of two spherical solid harmonics of the

second degree ; and therefore the most general possible expression for p^ is

given by the formula

'^'-"^vW^'l^'h^-" ('«>•

where 2i!r„ is a sum of spherical solid harmonics of positive integral degrees

indicated by the suffixes, and we have to include in the solution as many of

these harmonics as may be needed.

72. Again the radial displacement at the surface r = a may be expressed

as a sum of spherical surface harmonics, so that we may write

(^L-^?f-- W'

where ft stands for xui+yvi+zwi, and f„ is a spherical solid harmonic
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of the nth degree. The additional potential F, is due to mass distributed on

the surface r = a with a superficial density p (?,/?•),=„, and therefore we have

F, = 35r2
2n+l .(20).

73. We are now in a position to write down complete expressions for

the quantities which occur in the right-hand members of equations (15).

First we have the formulae

313, „ w^ir'/ldW .<7dW'\ (W .o- ,„A] „aiir„

dp, „ ay' \v^ f\dW .(7dW'\ (W .«r„A! ^cl^n

f =-^"^1-2(7 37^^«i7)^ny^^^)r^^'

oz "^ ag \i CO I oz

Next we have three such formulae as

dx ^ ~ 1n+\ dx'

In the third place we have, from the results given in § 69,

(<j' + w') M„ + 2ia)aVo = N a CO'

('-5){(-£:)w-:.-

-^•^l(^-£)f-s^

4aV dx ^a' \

a' Wo :

9 a?

By using these formulae in equations (15) we obtain the following equations

"'--^K— ^Ifif.

-Np aco'

~9
L

r' dW xW
CO V2a' dx

._...,„_.-_.-)

l4.'^'U/9 ^r'-\dW xW) C7 (/^ 5r^.,9Tf yW\l

;.V=., = 2g-(^„-2 ^9P
2n+l ?n

_j^T.^\jl_^.yW,.<r(r'dW' yW'\
P

g Ll4a» dy
"^

7a'
+'

co l2^'"af +"^j

(
+ 1 +

<r^ 5r^\dW+ yZ)
4>a'J dy ^ a' f ''' co\V &~d^

5r''\dW xW

^-- = ^f.(-2^1^")-^^${(^S)^^--:^^'}.
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The solutions of these equations consist of (1) particular integrals, which

are any functions by which the equations can be satisfied, and (2) comple-

mentary solutions of the equations to which the above would be reduced if

their right-hand members were 0. The complementary solutions are suras

of spherical solid harmonics of positive integral degrees, and we shall denote

them by Sa„, 2/3n, "Zyn- To obtain particular integrals we note the formulae

of the types

VM r^
dx

= 2(2n+ 1)
dx

'

^"^j=2«^'^''

V^ (r'xW- ^^) = 18a; Tf.

The most general possible solution (subject, of course, to the condition of

finiteness at the centre) is therefore given by the formulae

Wl = S ] o„ -t-

dlSTn 3gpr' Sf„

t^9

2{2n + l)iM dx 2(2n + iy/jidx

r* dW .
1

14 X 28a» dx 7xl8a»V 14 dx)

4 1 +
0)7

+ '«t56a» dx ^18aA 14 dx

d_W\

! dx /

r^ dW_ 5r*

5 9a; 4 X 28a'

+ 2i-\-^^--
a [o dy

9F 1 /

~' dx ^18aA
dW

r^xW-
r^dW-

14

4 X 28a» dy I8a' V ^ 14 Sy )}:

V. -Z lP»+2(2»! + l)/it dy

Zgpr^

-N paw* dW
+

2 (2» -t-
1)'

1

fig [14 X 28a^ d^y

.a f r*

<B (56a' dy

7 X 18a»

9F'

+
i^
+ ^=j i 5 a7 " 4 X 28a= dy ^ 18a= V ^ 1* ^V J

5r- dW
^'^ alBdx 4 X 28a= dx

r* dW
14 dx

«;i = 2| 7n + 2(2»-f-l)V9.3.2(2n-Hl)/i S^

1

xl8a» 18a'
r'zWV-

'18a'
j^^F

]

.(21).

L. G.
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74. At this point an apparent difficulty arises because the condition of

incompressibility, viz. equation (16) of p. 63, is not satisfied identically, and the

left-hand member of this equation does not present itself immediately as a

sum of spherical solid harmonics. If, however, we form the expression for

dUi Idx + 8«, /9y + Swj / dz,

we find, after some reduction, the formula

3m, 9«i 3wi

dx dy dz+^ +— = ^ife+"a7+87j+(2« + l)Mr" 2n + lH]

Now it is easy to verify that

V= !(6z= -af- y'') (ar* - y-)} =

and V« {{6z' -sd'-y^) xy\ = 0,

and it follows that (z'-jr*)W is a spherical solid harmonic, and its degree

is 4. Hence the condition of incompressibility becomes a relation connecting

a number of spherical solid harmonics of various degrees, viz.

:

where W" = {z'-\r^)W (23)

9a„ 9^„ 97,, ,„.-
^"•^ ^"-=9^ + -97 + -9J

^^^^

for all the values of n that occur. Of course the terms of the same degree

in the two members of equation (22) can be equated separately. In the

right-hand member there are terms of the second and fourth degrees only,

and therefore the terms of the left-hand member which are of degrees other

than 2 and 4 must vanish.

75. Before proceeding to form the equations which express the condition

that the deformed surface is fi^ee from traction, we note that another equation

connecting the spherical harmonics which have been introduced can be

obtained by forming an expression for fj, or v^x + v^y + WiZ, fi-om the results

expressed in equations (21), and equating its value at the surface r^a to

the value at the same surface of the expression a2f„, in accordance with (19)

of p. 63. The result can be simplified slightly if we first introduce a function

^_„_s by the equation

'^-'^'^di{^)^d^{^)^Fz\^) ^^^^-
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Then ^_„_2 is a spherical solid harmonic of negative degree — (» + 2), and

r^+' ^-n-2 is a spherical solid harmonic of positive degree (n + 1), and we

have the identity

1
(r=-^„_,-r^+3,^_„_,)

We now find, after slight reduction,

^' = ^ 12^'''" "2^ "^-"-^ + 2(2^+1)^ (''" " 2;^ ^")

^^r |_5 V 6)"/ 5 to \21 0)V

.(26).

19 . a^\r*W
24a=

*
o) 72a= 18a=

and thus we obtain the relation

"''

oir„+,^^r^+' ^-n-i\

.(27).

{r'^2^+l)>)^" 2(2ji + l)/i"" 2w + 3"^""2n+l

^5 72/ ft) 18

76. The condition that the deformed surface is free from traction gives,

as in § 68 supra, three equations of the type

'M-p-yh'^-""" <^'>'

which hold at the surface r = a. Now we have

dx 2^iT3 8a;
"^

(2n + 1 ) (2n + 3) | dx dx \r^+'J j

-2;^^('-'^''^—

)

8«r» j^r! 1?^ _ ^+1 i f:^U

a* \r^+\

"''

2(27i + l)/i. aa;
"^ (2n+ 1)> 1 dx ' dx \r^'+'J^

_ Sgpnr' d^„ _ Bgpnr' (3|n _^.+i 9. /^ ?n

2(2n + l)>aa; {2n + iyfi\dx

~
V2l

*
«V 24a»

i
3a; ^ 5 Vaa; aajr'/'j

2.<7( ,9TF' 2r»/3F' . d W'\\

5—2
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*
0) 72a' \ dx

'^
5 [da; da; r' )]

1

18a' r dx '^ 9 [dx dx r^ )
.(29).

in which a;->^„ has been replaced by

dx dx \r^+^
.j.M+iJll'J:".

•(30),
2re + l

and the other expressions of the same kind have been treated in the same

way. The corresponding formulae for 9?i/9y and d^i/dz can be written down

by cyclical interchange of the letters x, y, z, and dWjdz and dW'/dz can be

omitted wherever they would naturally occur.

From the results obtained in § 73 we can write down an expression for

rdui/dr — i^i by simply multipying each term of m, by its degree (as a homo-

geneous function of x, y, z) diminished by unity, and we can form in the same

way expressions for rdv^jdr — v^ and rdwijdr — Wi. We find, after slight

reduction,

9mi V (n-l)a„ +
9
=^ I On Jgp

2n ¥if-)l2{2ii + l)fidx

,j.g Ll4 X 9o» 9a;
*"

V
''' mV \ 5 36a'

"''

9 (7
"*" r "*"

«'jj 5^» ("9^
~ '"^

9a; 7^

,

7 9a;

2r* fdW
-r» 9^ W

dx

.air* dW 'ZV /I

"^ * w |l8^'~9^
"^

45a' I 9a;

. o-[/2r' lr*\dW 2t* fdW
^

ft) II 5 36aV dy ^ 450' \ dy

"r= )

+ 2i
^d_W

dy r" )}]
.(31),

l^^-v, = l\(n-l)^„+,
nr' sgp

)}2(2n + l)fidy

/x^ [14 X 9a' liT r a>V V 5 36aV 9?/

rnl r*_ /9F 9 Tf

('-S)f

2n+l
2^2 _7r*_\ 9]r

i^(--S)}
f r* dW

oa^ \dy dy r'

)

_2i^fr?r-_7r^\9F 2^/9Tr_ 9

2r^ /9W' 9 F'
45a' V dy dy r*

dx r*

^'-w, = s|(n-l)7„-|-

"* *
oj jlSa' 9y

7r*\9F 2r^ ..__

Kdi

•'\ _r»_ d_ W . a_ 2r^ d_ Wl
?) oa'dz r^ a) 45a' dz r' j

.(32),

pact)'

Tir'

2(2»n-l)/i9i'

1 2(7'

63
•"
9

.(33).
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Further we can write down the formula

.m+i A J^IL\.^ = _2f
fi \{2n + l)/j.{dx ' dx 7^+'-)

+

9P
fna

fig [yOa^ \dx dxr')^ to 10a' [ dx dx r' Jj-
•'-'**^'

and there are similar formulae for - ypjfi and - zpjfi. These can be written
down by cyclical interchange of the letters x, y, z, terms containing dWjdz
and 3 W'jdz being omitted, as before. Again at the surface r = a we have

and x^n can be transformed, for any value of r, in the manner indicated by
formula (30). Hence at the surface r = a we have

*" \{2n + \)fkdx (2n + l)/i Sa; r^+'j
^"*°^-

Expressions for gpy^Jfia and gpz^J/jui can be formed in the same way, or

they can be deduced from the above by cyclical interchange of the letters x, y, z.

11. The first of the three equations of the type (28) of p. 67, or as we
shall name it the a;-equation, is now to be formed by adding the right-hand

members of the equations (29), (31), (34), and (35) and equating the result

to zero. In forming the other two equations (the y- and ^-equations) we
must make the interchanges already indicated and use equation (32) or (33)

instead of (31). It is unnecessary to write down the equations. Each of

them has the form of a sum of terms equated to zero, and each term of the

sum is either a spherical solid harmonic or the product of such a function

and a power of 7-. The equations hold at the surface r=a, and therefore the

powers of r that occur may be replaced by the like powers of a, and so the

equations take the form of sums of spherical solid harmonics equated to zero.

If such sums vanish at r = a they vanish for all values of r, and those terms

of any such sum which are of the same degree vanish separately. We may
therefore pick out from each equation the terms which contain harmonics of

the first, second, or any higher degree, and equate them separately to zero.

An inspection of the formulae which have been given, including those in

equations (22) and (27), shows what degrees can be represented. The

functions of the type a that can occur have degrees 1, 3, or 5. The functions

of the types cr, f, -^ that can occur have degrees 2 or 4. The functions of

the type ^ that can occur have degrees — 3 and — 5. When we pick out the

terms that contain harmonics of the first degree the terms of (31), (32), and

(33) which contain «!, /8„ 7, explicitly have zero coefficients, and thus these

harmonics cannot be determined directly by any of our equations ; they can,

however, be determined indirectly, if desired, by the values found for the

functions f„ 0_s and the (zero) value assumed for i/r„.
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We now proceed to pick out from the a;-equation, formed by the method

described above, those terms which contain spherical solid harmonics of the

first degree. We thus obtain the equation

5fi dx 5/i, dx /jt,g \70 Bx to 10 dx J

^ b'd^ ^dx^ '*'-'' ^ibtL\dx 5 dx)^'b^\dx 5 dx)

+

. (7

CO

f 1

714/ <r»\ 3 /19 o-^) ^dW_

\\25 40^" 9a;
j

7O+4(^ +^0rV + ^^IO-9^ + 2^^4-97j=' ^^^^-

The equation like the above which comes from the y-equation is obtained

by interchanging x and y and changing the sign of the last term in the last

bracket ; and the corresponding equation that comes from the ^-equation is

obtained from the above by omitting all the terms that contain W or W and

substituting z for x in the remaining terms. By multiplying the left-hand

members of the three equations by x, y, z respectively, adding the results,

and omitting a factor |a^ we find the equation

I
5 r-

,
7 llffp ^

^ pa^^r/103_9 147a^N c-m 1

fjig LV280 + 40 0,^+0) 40 ^
J

^"^^^•

Now we go back to the a;-equation and pick out all the terms that

contain spherical harmonics of the third degree. We get

9fi dx 5fj, dx r* 9fi dx bfi dx r*

/j.g \yO dx r^ '^ ^
a> 10 dx r^

) '^ 9 dx 35 8^; r» 7 dx

22a= 8^ _ 22gpa' dj, _ 2r^ d^ ^ 6gpr' d^ ^ 2a' d^t _ ^gpa' 8^4

Hl/i dx 243/i dx 25fj. dx r" 125/t 8a! »•» 9/x 8a; 27^ dx

MS' L

_ j^
paw

25\ ^ a.V 30 V21 ^ w'/'j 8a; r* o) 450 8a; r»

_n 81^"

162 8«

A/'^ .
^'^ 7I Z_ -f: 2 , 8 w^' „.<7 2 , 8 F] - ,-_,

45 W a)V
*"

8a; »•» 'a, 45"" BiT^"'''^ is"" 8P^J~"
••^'*^^-
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The corresponding equation which comes from the y-equation is obtained by
interchanging x and y and changing the sign of the last term in the last

bracket ; and the corresponding equation which comes from the ^-equation is

obtained by substituting z for x in all the terms except those of the last line,

and writing for the terms of this line

45 V?
"^

a)»r a^ r» * o)

A 7IZ.'
45 dz ?-°

We now operate upon these equations as follows :—First we differentiate

the left-hand members with respect to x, y, z in order and add the results.

Then we multiply the three equations by x, y, z in order and add the results.

The first process yields a relation connecting spherical harmonics of the

second degree, and the second process a relation connecting harmonics of the

second degree and others of the fourth degree ; but the terms of this relation

which contain harmonics of the second degree vanish identically in virtue of

the relation obtained by the first process. The equation obtained by the

first process is

2 , 2 600 ^

5/1 25/x

t^9

"21 1 .^ .<t1,„, 4

14 to 2 5

*
a> 90

^'
9 (7

"•"

o)^ )^-<-A

1 +

w

t"-\ ,„ 1 /19
-J W" + S I ST +

6V21 or/

(D 45 45 (dx

Here
dx^

9ar r* / dy

^dy\ dy r-

as is easily verified,

becomes

63

dx

After omission

dy\ dy r^ ))

' ^)=-i6Tr,

= .(39).

of a factor ^, the equation (39)

16f,-
5/x

19 X 21 ^
2+ OK.. 9P5i

25/x

(f-fS'^-r^'^'J <«>

The next step, as was explained, is to multiply the three equations of the

type (38) by x, y, z in order and add. We observe that

xas + y^i+ «73 = yV^2 - y <^-5.

andthat ^ (.^i + ,|)J = -^.^Tf + 5Tr".

Hence all the terms containing spherical harmonics of the second degree
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are the same as the terms we had just now each multiplied by fr", and, after

omitting these terms and omitting also a factor ^a\ we obtain the equation

Now again we have recourse to the a;-equation, and pick out from it all

the terms that contain spherical harmonics of the fifth degree. We get

-it .11^ ^ ^•" 5 ^i 2r" a yjrt 4r" d cr,

"'
9/i

'"

dxr''^ 9fi dx r» 99 dx r» 81/i dx r»

'^
24,Bfidxr' fig 81a'' dx r» ^ -"

The y- and z- equations yield terms which can be written down by cyclical

interchange of the letters a, /3, 7 and of the letters x, y, z. We differentiate

the left-hand membei-s of the three equations in order with respect to x, y, z

and add the results, divide by 55/9 and obtain the equation

55^*+27;:f'~9;i''*-"^7^9^ ^*^^-

If we multiplied the three equations of the type (42) in order by x, y, z and

added the results we should not obtain any new equation.

78. From the equations which express the condition that the deformed

surface is free from traction we have obtained the four equations (37), (40),

(41), (43). Additional equations are to be found by picking out from the

equations (22) of p. 66 and (27) of p. 67 the terms that contain spherical

harmonics of any of the degrees that occur. We thus find

*-*l'--'^(—''^L^" («)
and

9/[t %lfi
'* ^ 9a'

i,_,j^3^J_„_/j^%pa>^^
7 3a» ^5fi^'~V^25^i)li

ti''^-i--{^*W)-:'-'"i^^'^' <">•

79. The unknown harmonics of the second degree 1^2, r°<^_3, ctj, fj are

connected by the equations (37), (40), (44), and (46). To find the corre-

sponding correction to the calculated height of earth tides and to the
potential of the forces that can act on a horizontal pendulum we require
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the value of ^j. On solving the equations we find a result which can be
written

gpa aw= ^8255 2765o^^^F^ . o- 7915 TT'

fc M ^ 9 I 36 "^ 12 «Vy"'"V"36"'y
fa
= •— 2 ^

1 + lV 665 + 70^^
2gpa IX

The unknown harmonics of the fourth degree 1^4, r°</)_s, istj, ^4 are con-

nected by the equations (41), (43), (45), and (47). On solving them we find

a result which can be written

gpa aat^ / „ 1
X —

J r~7^
^'^~ !"

19/.
""

^, Sgpa"" ^ ^*^^-

1 + 5-^ 34 + -|^ ^
2gpa S/i

Since W' = 2iW, we have iW — — 2W, and so the real part of fj, corre-

sponding to the real part of W, can be written down in the form

gpa a(f 8255 7915 a 2765 a'

^^^jlI^.'M ij_^1ji^w
1 + 29^ 665-h702^' ^

2gpa fi

In equations (48) and (49) W can be regarded as real and given by

equation (52) below.

80. The potential of the forces* that act on a horizontal pendulum

would be W if the earth were absolutely rigid. If the earth were a homo-

geneous incompressible elastic solid sphere at rest it would be

W+V,'-(g/a){^X, or W{l-N).

When the correction for inertia is taken into account it becomes

Wil-N)+Zg{U-2 + l^.)-gi^.+ ^*l

or Wil-N)-g{U^ + ^^,) (50).

To see the order of magnitude of fa we observe that, if the rigidity

denoted by fi is that of steel, the number gpa/fj, is about 5, also aio^/g is -^^-g.

Further a/co is nearly 2. It follows that ^2 is of the order ^^Wlg. Hence

the term of the above potential which depends upon fa yields a very small

correction to the calculated force acting on the pendulum, and this correction

is the same fraction of the force whatever the direction of the force may be.

Thus the correction for the height of the earth tide denoted by fj does not

tend to alter the shape of the diagram (p. 55 ante) by which the forces are

expressed.

* The principal lunar Bemi-diurnal term alone is considered.
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81. To investigate the effect of ^, we write

f.= -«<-^^^ <->•

W= rr' sin' d cos (24> + at) (52).

Hence the potential II of the additional forces acting on the pendulum is

given by

n = iQra' (008='^- 1) sin=^ cos (2(^ + 0-0 (53).

Denote the eastward and southward components of the additional force

by X and Y; then

i. • ^. K=l» (54).
a sm 0^ a off

Hence Z = - f Qra (cos= ^ - 1) sin 9 sin (2^ + at) \

Y= |QTa(cos»0-f)sin^cos^cos(2</> + (7(!)i (55).

— ^Qra ain'0 COS cos (2^ + at) j

The forces expressed by X and the first line of Y are, in any latitude,

constant multiples of the forces calculated without regard to inertia, and

therefore they have no effect in altering the shape of the diagram ; but the

force expressed by the second line of F is a force acting north or south and

always opposing the direct force of the moon. The effect of it is to make

the diagram narrower than it otherwise would be in the north-south direction,

without affecting its dimensions in the east-west direction. The occurrence

of this term in the expression for the force shows that gyroscopic rigidity

has the effect of flattening the diagram in the observed sense. Since,

however, Q is of the order gxjVu. when the rigidity is that of steel, the effect

so produced is quite outside the limits of error of the observations.



CHAPTEE VI

EFFECT OF THE SPHEROIDAL FIGURE OF THE EARTH ON EARTH TIDES

82. We proceed to investigate the correction for ellipticity. With the

notation introduced in § 67 the equations to be satisfied hy u., ... are three

equations of the type

We also have the two equations

9j^ 9?^2 9w2 _
da; dy dz

V^F2 =

From these we find at once V^^j= 0, and therefore we may put

Pj
= 2'!!J-„

where «„ denotes a spherical solid harmonic of the nth degree.

We shall also write F2 = 2C^„

where f/„ denotes a spherical solid harmonic of the nth degree.

83. We can now write down the general forms of Mj, z^s, Wo. We have

.(I)-

.(2),

.(3).

.(4),

(5).

w, = 2|7„ ^{^n- pUn)

.(6),

2(2»+ l)ijidz

where a„, ;S„, 7„ denote spherical solid harmonics of the nth degree.

We shall use the symbols y^n and </)_„_2 in the same senses as in equations

(24) and (25) on p. 66. We have at once from (2)

t» = (2k + 1) /i
{^n-pU„) (7).
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Also we find

It is convenient to write

©„.-(?«) <'>•

where f„ is a spherical solid harmonic of the ?ith degree. We find, on

eliminating («r„ — p Un),

"^" = - 2(2r» + 3) ^"-2^rri'^--
^10)-

The equation (10) holds for all the values of n that occur.

84. The problem immediately before us is that of forming the boundary

conditions by which the unknown harmonics such as f„ are to be determined.

We shall take the equation of the undisturbed surface to be

/, 2 2z^-sfi-y^\

or r- = a + H ^ (11).
6 a

This form affords a sufficient approximation. The direction cosines I, m, n

of the normal to this surface are given with sufficient approximation by the

formulae
e («» + y' - 2z') 2e\

\
,_xL, e{a^ + y'-2z') 2e\

"aX^ 3a»
~

3"

J

I:

»'=?^•-^^^6=^>-lu a^).3a= 3

£( e(^+y=-^) 46)
" ~ a t 3a^ +3"}

It is worth noting that these formulae give

/ sc^ A- v' ^z'\
lx + my-irnz = a{\-ire ^

^ ^ j (13).

We note also that -!= 1 +2e '^ + f ~ ^^'
(14)

All these formulae are correct to the first power of the ellipticity e.

85. The first boundary condition is the sur&ce characteristic equation

for the potential. The potential at any point within the undisturbed surface

can be expressed as the sum of three terms
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where V„ denotes the potential of the undisturbed spheroid, Vo' the potential

of the inequalities determined by the first approximation, and SC^„ the

expression already introduced for V,. The value of V„' was given in § 69.

The corresponding expression for the external potential may be written

(n)o + (F„')„ + S?7„^,,

where (F„)o is the potential of the undisturbed spheroid at external points,

and (F„')o is a function which (1) can be expressed as a sum of spherical solid

harmonics of negative degrees, and (2) is equal to Vo at the surface of the

spheroid. Since F,, and its normal derivative are continuous with ( Fo)o and

its normal derivative at the surface of the spheroid, it does not enter into the

characteristic equation in question.

Also, since F„' is a spherical solid harmonic of the second degree, and is

independent of z, it may be shown without difficulty that

(F„')o=(l+ge)^F;-5.f;^^F; (15),

for this is a sum of spherical solid harmonics of negative degrees, and, if e^ F,'

is neglected, it is equal to F„' when rja is given by equation (11).

The surface characteristic equation for the potential can now be written

2lVr= " ^ r» a'
^-^ + -^^ ,.»+.(0^ + ^1,-4) [{(^^-^^-^'-^^-^' ^'^^^'

-(F„' + Sf/„) = - 47r7p (hi +mv + nw)

.

. .(16),

where u, ... are written for Uo + u^, .... We have to express this equation as

an approximate equation in which terms of order euo are retained, but terms

of the orders ehi„ and eii, are neglected. The equation holds at the surface

of the undisturbed spheroid. We may re-write it in the form

l~ +m ;:- +n^]\V^
dx dy dzj \ r°

- S (2ft + 1)^ &„ = - ^rfp fowo + ^nv, + nw,) + S ^ ^„l . . .(17).

Now we find, after slight reduction,

Also we have F„' = %N W,

and we find, from the values given for m„, ... in § 69,

-./S 5 af + y^-2z\ W
lv, + mVo + nWo= J\\^-- € - ge ^^ 1

—
(19), .

where g is written for ^trypa, as before. In obtaining this expression some

reductions have been made, and terms of the order e- Wjg have been neglected.
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On substituting these results in equation (17) we find that the terms con-

taining W, and not containing e, cancel, as they should, and we obtain an

equation which can be written

^{<,(,-'^a.).N.{w-,^) m.
where W" stands, as before, for the spherical harmonic of the fourth degree

{z^-ir')W.

86. We have next to form, correctly to the same order of approximation,

the equations which express the condition that the deformed surface is free

from traction. In the previous problem we could take po and Fj to be the

pressure and potential in a homogeneous fluid sphere at rest under its own
gravitation. It will now be necessary to take pi, and V^ to be the pressure

and potential in a homogeneous fluid spheroid rotating steadily under its own
gravitation ; but it will be sufficient to use values for them which are correct

to the first order in e. These values can be written down, as follows

:

F. = ^(3a«-r^) + |i(^ + i/^-2z=) (21),

J(a'-r»)-^e(a=-r») + |(^+y'-2z0| (22).

In obtaining these formulae we utilize the relation

, 16 ige

It is easily verified that, if e= is neglected, these formulae satisfy equations (1)

of p. 58, and that po vanishes at the surface of the undisturbed spheroid.

87. Now let I', m', n' denote the direction cosines of the normal to the

deformed surface. The equations which express the condition that this

surface is free fi-om traction are three equations of the type

(23).

Here u, ... stand for Mo + Mj, .... This will be called the a;-equation. Just
as on p. 61, po vanishes at the undisturbed surface, and its value at the
disturbed surface is expressed with sufficient approximation by the formula

('" + -+-)(^'£ + -|+«|") (24),

and we may therefore ignore the distinction between I, ... and I', ... in all

the terms of equation (23). In evaluating lp„' we must use the value of I

given in equations (12) ; in evaluating Ip, we may replace I by x/a. Similar
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simplifications may be made in the remaining terms of equation (23). We
have to proceed by retaining terms of order e«o, but neglecting terms of

orders euj, MoMj, and m„^ From the value of p^ given in (22) we can obtain

the equation

,dp. dp. dpo /, 8 x'' + y''-2z'\ ,„_,

and then the formula (24) can be replaced by

^.^(-|.5..i."tt-)-,4. «.

In obtaining this we have used the result found in equation (19). Hence

the first term — l'p„ in the a;-equation (23) is given by the equation

-l'p„ = NpWl{l-^e-y-±^^)^c,pl^^l (27).

The corresponding term of the y-equation is found by interchanging x

and y in (27) ; but the corresponding term of the ^-equation will be found

by the same process to be given by the equation

,^ ,,,z /5 5 x'' + y'- — 2e^\ z ^^ ,„o\-n'p„=NpW-[^+e--^e-^, )+gp-^^l. ...(28).

Again, the second term — I'po of the x-equation (23) is given by

-'v=-^.^^(^,^)(l-i.-"i£^l w
The second term of the y-equation is found from this by interchanging x and

y. The corresponding term of the z-equation is given by

The terms of the type — 1% can all be written in such forms as

-l'p, = -^l^n (31)

by cyclical interchange of the letters x, y, z.

88. The terms of the a;-equation (23) which contain /i as a factor can be

written

"dy

and this is the same as

/,3m 3i* 3jt
,

,3m
.

9w
,

'iiw\

f'Vdx-^'''dy + ''dz + ^dx^"'d^^"d^)-

f
2 x' + y'- 2ii^\ /«3Mo,y9Mo,f3^,^^,y9^o_|_f ^\

[}
~ 3^"^^ 3^ / Ytdx a dy adz a dx a dx a dx J
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But we find fix)m the expressions for u^, ... given in § 69

-Ui^^-^-^^'S) <«'»

, du^ dwo 3N zdW
and we also nnd ^^+^^=— o 5— \^^)>

dz ox 2 g a ox

W being independent of z. Further we have

aa: " L2n + 3 a« (2ji + 1)(2« + 3) [Sa;dx \2n + 3 dx {2n + l){2n + B) \dx dx r^+^

2n+ldx^ ^'"-^' 2{2n + l)fjLdx

{2n + iy/i\\dx '^ dx J dx r«'+i jj

and r ^ — M2 = S
or

so that we have

9a: dr

{n i)«»+2(2„+l)^ a^ J'

-['{n l)«"+2n+l aa; (2ji + l)(2n + 3)9^r^^ 2^rTT9«^
'^

^

2n(n + l)T^ d(w„-pU„)
(2k + 1)V 9a; (2?i + 1)> 9a; r»+' J

"

"
"^ ^"

The other expressions of this type can be written down by cyclical interchange

of the letters a, /9, 7 and x, y, z. In particular, the corresponding terms of

the ^-equation can be written down in this way. We have still to express

the terms

\ ox dy dz dz dz dz j

which occur in the ^-equation. The coefficient of fi in this expression is

{\ ^c I t.

^ + y''-2^'
\ /^?w„ w9i«„ £9w, «9mo

, y d% zdw^
V 3 3a' iKadx'^ ady'^ a dz adz^ adz^ a dz)

+46^^".. .(36),

and we find (f^^-^-fj^ "-l-OT).

J 9w„ N Wand i^» = _ _ /oo\
dz g a ^^^>'

TT being independent of z.
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89. To form the boundary conditions of the type now under discussion

we have only to collect the terms. We shall write down the a;-equation and
the ^r-equation. The a;-equation is

Ik

'^ a\2 gpaj \. 3 3 a? 1 a

N e + ;

a- dx+ 3^ + 3e
a? dx

)

+ ^ |^(r» - l> a„ + 2„ + 1 -g^ - (2.„ + l)(2,i +
9 j^i

3) dm r"'+'

+
2n{n + \)r'd{Ts^- pUn) «r^"+^ 9 ^^-pUn
(2n+iyij. dx

and the ^-equation is

{2n+l)-fidx r"'+i
= .(39),

« /5 5 x-+y''-2z''\ z ^^NpWl[

'^ a V2 grpa/ V 3 3 a? 1 a

(^ aA 3^3 a=i /

+ 2|(n-l)7™ + ^^-fe'-['

2^+3 9 ^
2n + l 9^ (2n + l)(2n + 3)9^;r»'+^

1 9

2n + 19^
(r»"+' <^_„_,)

2n.(n+l)r=9(«r„--pf^) ,.211+3 9 5r„ —
7i#-"]=0 (40)-

"^
(2n + l)> 9^ (2n + l»90

The terms of these equations which contain W and are independent of

e cancel, as they should ; the remaining terms are either of the order f„ or of

the order € 'W\g, and therefore the equations may be taken to hold at the

spherical surface r = a, instead of the undisturbed spheroidal surface.

90. The terms of the a;-equation which contain Tf are

-^P-a^[r^r a^ j-'^^U+S a^ j'dx^

and those of the ^-equation are

L. G.
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Now W, (z=-|0 W,zW and («^-^r=)(9Tf/9a;) are spherical harmonics

of degrees 2, 4, 3, 3 respectively, W being independent of z. Also we have

8(a;2 + y2_2^2)^3^2=5^ + (^ll_52a) (41),

and ar'+2/^-22» = fr'-3(a''-|r=) (42).

Hence, by putting r = a where necessary, we reduce the terms of the

x-equation which contain W to

where W" stands, as before, for {z^-\r^) W ; and we also reduce the terms of

the ^-equation which contain W to

'^ a V 7 a? J g a'

91. On transforming all the terms such as xvn, in the usual way, and

substituting fi-om equation (7) of p. 75 for cr„-/3J7„, we find that the

a;-equation takes the form

271+iaa;^''^" '^"'' 2n + 18a; 7^+' J

+ ^2
a

-np,
5 aa; r* / 9 I 8a;

''H

7 V5 aa;

5 31^ r^-5z'dW

2n+iaa;
(r"'+»<^_„_,)

a^ 9x r«

3 aa;
+ 0. .(43).

g \6 dx a' dx

,

The 3/-equation can be written down by putting for a and y for a; ; and

the first three lines of the ^-equation can be written down in the same way

by putting 7 for o and z for x, but the last line of the left-hand member of

the ^-equation is

g a'
.(44).

This statement implies the occurrence of certain terms containing dW/dz.

These terms vanish identically, and it makes no difiference whether we
suppose them to occur or not.

The left-hand members of these equations are sums of terms each of

which is a spherical solid harmonic of some positive integral degree, and the

sum vanishes at r = a, and therefore vanishes for all values of r. It follows

that the sum of all the terms of any one degree vanishes. Just as in the

problem of Chapter V we see that the harmonics of the type a„ are of the

first, third, and fifth degrees, those of the types |„, i3-„, •^n are of the second

and fourth degrees, and those of the type ^ are of degrees - 3 and — 5.
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92. On picking out from the a;-equation all the terms which contain
spherical harmonics of the first degree, we find

i[f4«.-.)-.-^--f|(''«]-^(il^4:).-
dW

Zg) " dx
'

The y. an^ ^^-equations yield precisely similar results, W being independent
of z. Hence we find the equation

^"f— ^'*^-^^=^(y/'+ffJ^^ (45).

93. Now we go back to the a;-equation, and pick out all the terms
which contain spherical harmonics of the third degree. We find

a V35 dx 7^ 9 dx J g a' dx ^ '

The y-equation yields a similar result, but the last term of the ^-equation is

9 o?

We dififerentiate the left-hand members of the three equations of the

t3^e (46) with respect to a;, y, ^^ in order, and add the results, and thus find

the equation

^/'f— 2T'^^-^(¥/'-^f>^ (47).

Again, we multiply the left-hand members of the three equations of t37pe

(46) by X, y, z in order, and add the results, and thus find the equation

In obtaining this equation we have taken account of the relation

,,^,_,_7,,^,-|^!f^--iyr(fp-H28i^Jei:'...(48).

^as

+

y^3 + zy3 =
Y
(^"^^ ~ ^"A-s)-

We have also noted that the last terms of the three equations give

g \ a"g \ a" a'

J

which is the same as N-elfi-W+ lG—- ]

,

g \i a" a" J

6—2
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80 that, on putting r = a where necessary, we find that the terms of the

resulting equation which contain spherical harmonics of the second degree

are the same, except for a common factor, as those which occurred in the

equation found by differentiating.

94. We now go back to the a;-equation and pick out from it all the

terms which contain spherical harmonics of the fifth degree. We find

d W"r" S_-^~\ _l r" i gpg«-t^4 _2iP^g'^' = 0...(49).

The y- and ^-equations yield precisely similar results. We differentiate

the left-hand members of the three equations with respect to x,y, z in order,

add the results, and multiply by 9a/55, and thus find the equation

.(50).
9 W"

9P^i-^i-^fi-ft = -Np5e—

Just as in the corresponding problem of Chapter V, no new equation is

obtained by multiplying the left-hand members of the equations of type (49)

by x, y, z and adding the results.

95. The set of equations connecting the unknown harmonics of the

second degree with the known harmonics are now equations (45) and (47)
and three equations derived fi-om (7), (10), and (20). We write down the set

of five equations

:

p?7j-iirj--/ii^j = 0,

^ 5 , 1 r=rf)_, „

a + 14^» + 3-|-=0'

On solving these we find

t _y 282-H653/^/ffpa W
42 -I- S9yp,fgpa ^

g

^^,-Jg,-_iy 690-^2503W.gpa w .(51).

In like manner we may write down the set of five equations connecting
spherical harmonics of the fourth degree

:



EFFECT OF THE SPHEROIDAL FIGURE OF THE EARTH ON EARTH TIDES 85

9

a + 22^*+ 7-^=0.

W"
gp^t -BpU^ = - Np5e—J ,

^ ^ , 3 r'd)_i „/35 no/^\ TK

.(52).

9 W"
9P^t-'BTi-^fi.y}rt=-N5pe—.

On solving these we find

P __jn- 4060 + m^56/j.lgpa W"
fi- -"iiig^ 28917iJ./2gpa ^

a"

* ^^' ~ 2236 + 28917fx./gpa * a=

The quantities fj and ^4 give the correction to the calculated height of the

corporeal tides, and the quantities U^ — g^^ and U^ — g^^ are useful for deter-

mining corrections to the calculated potential of the forces that act upon

a horizontal pendulum.

96. To obtain expressions for the forces that act on a horizontal

pendulum we have to evaluate the potential

Fo + J«» (af'+ f) +V,' + V,+ W

at a point on the deformed surface, and form derivatives of it in the directions

of the meridians and parallels of the spheroid. Now the value of

at a point on the deformed surface is expressed with sufficient approximation

by the formula

const. + (lu + mv + nw) U g- + m g- + n g- j { F„ + ^ea'' (a? + y")}.

This is the same as the value of

const. + - (Zm + mt- + nw;) (i ^» +m^ + 71^)

at a point on the undisturbed surface, and the variable part of this is

^^[—2+r^ra^—j-^(?»+f.)-
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The potential to be differentiated is therefore

From the value of TV given in § 69 this is seen to be

We shall denote this expression by 12.

97. The equation to the surface can be written r = a + aeQ — cos" ff).

Let dsi, ds^ denote elements of arc of the meridian and parallel; then, if

a point moves on the surface from (r, 6, (j)) to (r + dr, d + dd,^ + d<f), we
have, correctly to the first order of e,

dr = 2a€sin^cos ^d^ \

\ (54),
ds, = a (1 + Je - e cos= ^) d^J

and therefore, correctly to the same order,

^-2.sin.c.3.y?+i(l-| + .oos..)f (5.,

Again, W is of the form tj-" sin" 6 cos (2<^ + at), and therefore

dr ~ r dd
'

Hence, correctly to the same order as before, we have

_ = -(l + -,_ecos"^)^ (56).

Wealsohave |1^= 1 fl_£ +ecos"0) J^ |E (57)
ds, a\ 3 J sine d<}) ^ ^'

These formulae must be used in differentiating the first term W(l-N) of 11.

In differentiating the remaining terms we may identify ds, with adff and
dsj with a sin 6d<j). We note the formulae

1 9 / ,,^ «" + u" - 2z^\ e S TT fie

arA'^ -^ =i(l-3cos»^)|^ + ?-%in^cos^r

= ^(4-6cos=^)|^ (58),

L4(^^) = ^-os".-«)|^ (59,

98. For brevity we shall now write

t^.-9^^ = Q.^W, U,-gS, = Q,e^ (60).
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Then we have

and
an
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we seem to be justified in concluding that the reason for the observed fact is

not to be sought in the rotation of the earth, or in the deviation irom the

spherical figure which is produced by the rotation. Without calculation we

should expect the correction for inertia to be small of the order aco''/g which

is ^^, and the correction for ellipticity to be small of the order e, which is

^ ; but these numbers might, from an a priori standpoint, be multiplied by

rather large coefficients. We have found that ato'/g is actually multiplied by

a rather small coefficient, while the coefficient by which € is multiplied differs

but little from unity. The same general argument, and a general survey

of the analysis in the present Chapter, suggest that any inequality of figure,

such as is involved in the distribution of land and water, would give rise to

a correction, but that it would be very small. For none of the spherical

harmonic inequalities of low degree that are concerned in the distribution

have maxima so great as the spheroidal inequality of the geoid.

101. If this argument is sound we must not look for the cause of the

observed discrepancy in either of the directions suggested by Dr Hecker and

Sir G. Darwin. A possible cause may perhaps be found in the attraction

of the tide-wave in the North Atlantic, and the accompanying excess pressure

on the sea-bottom. A rough calculation shows that the first of these may be

of about the right order of magnitude. The North Atlantic Ocean may be

likened to a circular segment of a sphere having a radius of about 2000 km.,

and having its centre at a distance nearly equal to the radius in a direct line

drawn through the earth from the place of observation. If the level of the

water in this area were raised one metre, the attraction of the extra water at

Potsdam would be a force acting nearly east and west of amount approxi-

mately equal to ———- of gravity. The maximum of the horizontal

component of the moon's tide-generating force is about ——r^ of gravity.

A periodic filling and emptying of the Atlantic basin, with a range of two

metres, would produce just such an extra east-west force as appears to exist.

Now the co-tidal lines of the North Atlantic* show that no such large area

as that described above is even approximately in the same phase. On the

other hand the co-tidal lines drawn for differences of one hour are very wide

apart in the region lying to the west of the Spanish Peninsula. Also the

range of the tide in the open ocean is almost certainly much larger than two

metres. These considerations go to show that there is a strong probability

that a horizontal pendulum at Potsdam would be influenced appreciably by
the attraction of the tide-wave. The deformation of the earth produced by
the pressure of the tide-wave on the sea-bottom

-f
would also have an influence,

which would probably be of the same order of magnitude.

See the chart drawn by 11. A. Harris, " Manual of tides," Part IV B, Appendices to Rep. of
U.S. Coast and Geod. Surrey, Washington, 1904.

t G. H. Darwin, Rep. Brit. Assoc. 1882, p. 95, or Scientific Papers, vol. i. p. 430.



CHAPTER VII

GENERAL THEORY OF A GRAVITATING COMPRESSIBLE PLANET

102. In many investigations of such problems of geodynamics as the
problem of corporeal tides and the question of the free vibrations of the
earth as a whole the simplifying assumption of absolute incompressibility is

introduced. If this assumption is discarded, the analysis of such problems
becomes much more complicated, because, as was first pointed out by
J. H. Jeans*, the material of the earth, when it is deformed by external

forces, or when it is vibrating, is compressed in some parts and expanded in

others, and the attraction due to the inequalities of density may give rise

to strains of the same order of magnitude as those that would be calculated

by the ordinary theory. A method for dealing with this complication was
devised by Lord Rayleighf. This method may be described as follows :

—

The earth ought to be regarded as a body in a state of initial stress ; this

initial stress may be regarded as a hydrostatic pressure balancing the self-

gravitation of the body in the initial state ; the stress in the body, when

disturbed, may be taken to consist of the initial stress compounded with an

additional stress ; the additional stress may be taken to be connected with

the strain, measured from the initial state as unstrained state, by the same

formulae as hold in an isotropic elastic solid body slightly strained from a

state of zero stress. The theory, as here described, is ambiguous in the

following sense:—The initial stress at a point of the body which is at {x,y,z)

in the strained state may be (1) the pressure at {x, y, z) in the initial state,

or it may be (2) the pressure in the initial state at that point which is dis-

placed to (x, y, z) when the body is strained. There can be little doubt that

the second alternative is the correct one
J.

A small element of the body is

moved from one place to another, and during the displacement it suffers

compression and distortion. It ought to be regarded as carrying its initial

pressure with it, and acquiring an additional state of stress depending upon

the compression and distortion.

* J. H. Jeans, "On the vibrations and stability of a gravitating planet," Phil. Trans. R. Soc.

London, A, Vol. 201 (1903), p. 157. See especially p. 160, ftn.

+ Loc. cit., ante p. 12.

J The first alternative was adopted in the paper by A. E. H. Love, " The gravitational

stability of the earth," Phil. Trans. R. Soc. London, A, vol. 207 (1907), p. 171.
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103. In the ordinary theory of elasticity the unstrained state of the

body is taken to be an unstressed state. The body passes from the un-

strained state to the strained state by a displacement, which is assumed to

be small. It is usual to take the coordinates of the point occupied by

a particle of the body in the unstrained state to be x, y, z, and the

coordinates of the point occupied by the same particle in the strained state

to be a; + M, y + v, z + iu; and then the strain is expressed by the six

components

du dv dw dw dv du dw dv du

dx' dy' dz ' dy dz ' dz dx' dx dy

'

But these expressions would be unaltered, the strain being small, if x, y, z

were the coordinates of the point occupied by a particle in the strained state

and X — u, y — V, z — w those of the point occupied by the same particle in

the unstrained state. The equations of equilibrium, and those of vibratory

motion, are formed, independently of any relation between stress and strain,

by considering the equilibrium, or the kinetic reaction, of a small portion of

the body in the position that it has when the body is strained*- In the

process of forming these equations x, y, z are certainly regarded as the co-

ordinates of a point occupied by a particle of the body in a strained state.

It is, therefore, most convenient, whenever it becomes important, to regard

(—w, —V, —w) as the displacement by which the body would pass from the

actual to the initial state. If this is done the ordinary stress-equations of

equilibrium, or vibratory motion, and the ordinary relations between strains

and displacements hold in problems involving initial stress.

Equations of vibratory motion.

104. We now proceed to an analytical formulation of the theory. The
body is supposed to be disturbed by external forces which are derived from a
potential. Under the action of the forces the shape of the body will be
changed, and the density about a particle in the disturbed state will be
different from the density about the same particle in the initial state. The
potential due to the self-gravitation of the body must be formed at any
mstant in accordance with the instantaneous distribution of the mass through-
out the volume bounded by the deformed surface. Let p denote the density of
the matter which is at the point (x,y, z) at time t, and V the potential at the
same point, and at the same time, of all the gravitational forces acting on
the body, whether due to the attraction of external bodies or to the attraction
of the body itself The state of stress existing at the same point, and at the
same time, may be specified by six components of stress, X^c,... and the

* See for example A. E. H. Love, Elasticity (2nd edition, 1906), Arts. 44, 54.
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coordinates of the point occupied, in the unstrained state, by the particle

which, in the strained state, is at the point {x, y, z), may be taken to be

x — u,y — v,z — w. Then the equations of vibratory motion are three equations

of the type

a»M dv dx^ dXy dz, ,,-PW = Pd^^^x+-di+^ ^i>

The equations of equilibrium are obtained by replacing the left-hand members

by zero. In the tidal problem the potential of the tide-generating forces

must be included in V. In the problem of free vibration V is the potential

due to the instantaneous distribution of mass throughout the volume instan-

taneously occupied by the body.

105. The undisturbed surface will be taken to be spherical and of

radius a, and the origin of coordinates will be taken to be at the centre

The density, denoted by p„, will be taken to be a constant, or a function of r

the distance of a point from the centre. The potential F„ will also be a

function of r. The initial pressure p,,, which will also be expressible as a

function of r, satisfies the three equations of the type

P'^-d^-^^ (2>-

106. Let U denote the radial component of the displacement (u, v, w),

and let A denote the cubical dilatation, so that

. _ 9u dv dw .

dx dy dz ^ ''

Then the equation of the deformed surface is of the form

r= a+Ua (4.),

where Ua denotes the value of U at the surface r = a. The density at the

point {x, y, z) in the strained state is expressed with sufficient approximation

by the equation

p = p„-t/|»-p„A.

The potential V is the sum of V„ and the potential due to the inequalities of

density. We shall write

V=V,+ W (5).

Then W is the potential due to external disturbing bodies, together with that

due to a volume distribution of density — f f/^ -j- A
J

, and that due to a

distribution of mass on the surface r=a with a superficial density p^{a) . Ua,

where /B„(a) denotes the value of po at r = a. The stress at the point {x, y, z)

consists of the initial stress (pressure) at the point (x-u, y-v, z- w).
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together with the additional stress connected with the strain by the ordinary

formulae, so that we have three equations of the type*

X. = -{p.-u'§yxA^2^'£ («)•

and three of the type

^.-"(l+s) <'>•

The quantity /a is the rigidity, and the quantity \ + §/i is the modulus of

compression of the material. In a general theory we ought to take them

to be functions of r, but, as we cannot make any progress with a theory

in which X, /x, and p^ are functions of r, we shall treat them henceforward

as constants. The density p at the point (x, y, z) is then given by the

equation

p=p,(l-A) (8),

and W is the potential of a volume distribution of density — po^, together

with the surface distribution previously specified, and the potential of external

disturbing bodies.

107. We shall now assume that u, v, w, as functions of (, are pro-

portional to e'^'- Then the equations of motion of the type (1) become

three equations of the type

-p,p'u = iX + ^}^+^V'u-^^(p,-U£) + p.{l-A)^+p.^,

or, by (2), they are of the type

On substituting for F„ its value given by the equation

Vo= i7ryp,{3a'-r'\

these equations become three equations of the t3rpe

(^ + M-)^^ + f''^'^' + PoP'^-i-^yPo'^JrU) + i-7ryp„'xA + p,^-^=^0 ...(9).

We have also the equations

. du dv dw /o I • \

^=8^+a-, + 8^
^^^^'

rll= xu + yv + 2W (10),

V^ir=47r7p„A (11).

* It in specifically in these equations that the effect of the ambiguity noted on p. 89, ante,

maken its appearance. If the first of the two alternatives there explained were adopted, the

term - Vcp^jor would be omitted. The method here adopted shoald in strictness be adopted

also when absolute incompressibility is assumed. When this assumption is made an additional

pressure is introduced, and this additional pressure is often taken to be equivalent to the limit of

the product - XA , as A tends to zero and X tends to become infinite. In strictness it should be

taken to be equivalent to - XA+ Vapjdr. The point here brought out does not affect any of the

ordinary solutions for a planet treated as composed of incompressible material.
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108. We have to obtain solutions of these equations in a form adapted

to satisfy certain boundary conditions. These are the surface characteristic

equation of the potential and the condition that the deformed surface is free

from traction. The first of these takes different forms according as the

problem is or is not concerned with the gravitation of external bodies. To
express the condition that the deformed surface, r = a+ Ua, is free from

traction, we observe that, according to what has been said, the initial stress,

specified by p^ — Udpo/dr, at a point on the deformed surface vanishes

;

therefore the traction, if any, across the deformed surface arises entirely

from the additional stress. But the additional stress at a point on the

deformed surface, r = a+ [/„, differs from that at the corresponding point of

the undisturbed surface, r = a, by a quantity of the order of the square of

the displacement. The condition in question can therefore be expressed

with sufificient approximation by equating to zero those parts of the com-

ponent tractions across the surface r = a, which are contributed by the

additional stress. The equations which are thus found are three of the

type

X.A +^r-^ + -5-;-4=0 (12),
(d(r

and they hold at the surface r = a. From the general formulae (6) and (7)

for the stress-components it is easy to verify that the traction across the

surface r = a is a pressure equal to the weight of the inequality, that is to

say, it is a pressure per unit of area equal to that due to a column of the

material whose height is Ua- This is what we should expect.

Solution of the equations.

109. We can obtain a typical solution of the system of equations (3),

(9), (10), and (11) by assuming that W is proportional to a spherical surface

harmonic ; and we can afterwards, if we wish, obtain a more general solution

by a synthesis of typical solutions containing diiferent surface harmonics.

We assume therefore that W is of the form

W=^Kn(r) Wn (13),

where W^ is a spherical solid harmonic of degree n, and K,i{r) is some

function of r, and we assume also that u, v, w are given by equations of the

type

u = F^ir)^-^+Gn{r)a;W„ (14),

where Fn (r) and Gn {r) are some functions of r. The expressions for v and

w are to be obtained by cyclical interchange of the letters as, y, z. We shall

find that the functions Kn, Fn, <?« can be determined, and that the assumed

form of solution is of sufficient generality to enable us to satisfy the boundary

conditions.
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110. The equations

W = Kn(r)Wn, V=Pr = 47r7p,A

give 4^pA=[-^ + --^) Wr.+ 2--^nW„

fd'Kn . 2(n + l)dg„\ ,„

~Wr» ^ r dr )
"'

We shall write this equation

A=/„(r)TF„ (15),

so that/„(r) is the function of r that is determined by the equation

1 (d'Kn
,

2 (« + 1) dK,A

when the function Kn (r) is known. We shall write also

^ = ^+2(n+l)^ (17),
dr' r dr

so that the above equation (16) is

' " 4nrypa

the argument r of the functions not being expressed.

The assumed form of solution gives

rU=(nFn + 7^Gr,) Tf„ (18),

and therefore U and A arc the products of functions of r and the spherical

harmonic Wn.

Again the assumed form of solution gives

and therefore the functions /„, Fn, Gn, K^ are connected by the two

equations

Now we have the formulae

aA_ a^, idA^w
dx ~-^" dx ^ r dr'"

'^"'

d{rU)

dx

a;A =/„a;>r„,

aj7^ ai^ i_d^
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Then the equations of motion are satisfied identically if the two

equations

,. ^ .Idfn
,

fd'Gn ,2{n+2)dGn\ ^ Ad,„ ,^ ,

+ f7r7p„%+p,-^ + p„p»ff„ = ...(21)

are satisfied. The four functions /„, Fn, Gn, K-n are therefore connected by

the four equations (19), (20) and (21). We may eliminate three of the

functions and form a differential equation for the remaining one, and when
this equation is solved we may seek the corresponding forms for the other

functions. The following procedure is effective for this purpose:

—

1 J

Operate with - -v- upon the left-hand member of (20) and subtract from

the left-hand member of (21). This process gives an equation in which
JTTt

Fn does not occur explicitly, but only through the occurrence of —r^ . Now

an equation obtained from (19), viz.

:

n dFn _ ^Kn _ ^,
dG„_(^,o\q

r dr 47r7po dr ^
' '*'

can be used to eliminate Fn from the equation so formed and also from (21).

The function/„ can always be eliminated by means of the equation

•^"~47r7p„'

and thus we can form two equations containing the functions K^, (?„ only.

From these we can eliminate Gn and obtain an equation for if,,.

111. In accordance with these remarks we form from the two equations

(20) and (21) the equation

Vd^ 2_{n^^dGn_ld^/d^_^2ndI\^^
^ \_dr' r dr r drydr' r dr J

+ ^p,'^Kn + Pof[Gn-l^)=0,

which, being simplified by means of the identity

ld_f^,^dJn\^ndFn\
rdrKdr' r dr ) [r dr J

'

becomes
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Next we proceed to write down the formulae

r dr n {'iiT'^p„ ar )

1 ^ {nF,, + r»G„) =^ - (n + 1) G„,
r dr^ 4!irypa

by the use of which the equation (22) becomes

and the equation (21) becomes

1 d^
+

1

Tryp-' (n + 1) G„ + ^p„^^„ + /'« 7 "dT + P'P" ^" = ^'

and these are

(23),

and

(X + M) - ^^ (^^„) + 4^p,» - ^" + 4.T.P0 JM(V + A-_^_
j

+ t(»i+l)7r7p„»G„ + pVo(?„|=0 (24).

These are the two equations connecting (?„ and ^„. To simplify the

second of them (24) we form from it the equation

dH^K,,) .d-K„_^, d\ { d'Gn^.. ^„,dG„
(^-^ '^> -di^ + *"'y''« -d;r+4'^7Po^|_M|r ^^ + 2(n+ 2) -^

+ ^ (n + 1) TTvpoVGn +p>„r-G'„
I

= 0,

we multiply the left-hand member of (24) hy 2(n + 1) and add, getting

(\-|-/.)a'Z„ + 47r7p„=^Z„

+ {i-^yp<i'(n + i)+p'po} r^ + (2n + 3)G„|J=0,
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we observe that

and we deduce the equation

+ 4>Typ, Ifi'^ + J7r7p„= (n + l) + f^p,} \r~ + (2n + 3) G„l = . . .(25).

Then this equation and (23), which is

(A +fpo - i-n-ypo'n) %K„ - i-^p, (^'^ + p>p^) \r^ + (2n + 3) g1 = 0,

give

{(A. + 2/x) a + p^p, - ^Tryp," {n - 3)} ^^„

+ 47r7Po i-n-ypo' (n + 1) |r^ + (2« + 3) (?„} = . . .(26).

It is now easy to eliminate Gn and obtain the equation

[(/i^ +P'p,) {(X + 2f£) ^ +p>„ - iTPypo' (n - 3)}

+ iTPypo' (w + 1) {m^ + PV. - I'H'Po' »}]^^» = 0,

which is

\p (X + 2/i) ^» + [ii-rryp^ /. + (X + 3/t)/)V„j ^

+ bVo' + ^-^P^'P'po -n(n + l) (|7r7p„0'}] ^J^n= . . .(27),

a linear differential equation of the sixth order to determine .£"„ as a

function of r.

112. Let — a" and y3° denote the roots of the equation

/x (X + 2/i) p + {ii-iryp,' ,i+{X + Bfi) fp,] ^

-{n{n + l)(^Tryp,'y - i^-iryp.^p'p, - p*p,'} = . . .(28),

supposed to have one negative and one positive root, as it obviously has if p
is small or zero. The equation (27) for K„ is then

(^ + a=)(&-/8')^^„ = 0,

and it is solved by solving separately the three equations

Complete primitives of these three linear equations, each containing two

arbitrary constants, are not required, because the relevant solutions must

satisfy certain conditions at the centre r = of the sphere. The function

^n (f) ^n is the potential due to external bodies together with that due to

a distribution of matter with a certain volume density throughout the sphere

r= a and that due to a distribution with a certain surface density on the

surface r = a, and therefore K^ (r) r" is finite when r = 0. This condition

h. o. 7
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will exclude in each case one of two forms of solution of the equation

for K.

The equation (^ + a') A" =

d'K 2 (n + 1) d/r
, „ J, „

and the relevant solution is

K=ylr„(ar) (29),

-h- ^"(^)=es"^' (^«>-

In like manner the relevant solution of the equation

is K = XniM (31)-

''^^"' '^"(^') = &^)"'^ ^^^^-

The relevant solution of the equation

is K= const.

We take therefore as a suflBcient solution of (28) the form

K„= ^„f„ («•) + BnXn (M + C„ (33),

where An, Bn, G^ are three undetermined constants.

113. A few properties of the functions i/r„ and -^^ are collected here.

The function i/r„(a;) can be expressed as a power series in the form

I / X
(-1)"

(t
«' '••'

1.3.5...(2?i + l)
i 2(2m + 3) 2.4.(27i + 3)(2n + 5) "

*"
2.4...2A;(2n + 3)(2»+5)...(2w+2/fc + l)

• " j
^^^^^

It satisfies the dififerential equation

d'Vr 2(« + l)dVr _
d^ +^^~" d^+'''»-^ (^^)'

and v^-functions with different suflSxes are connected by the equations

a; dx -Y»+i- - - -^ (36).

The function Xn {x') can be expressed as a power series in the form

^"^
^ 1.3.5...(2n+l)|^"^2(2n + 3)+274.(2n + 3)(2n + 5)+-}

(37).
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It satisfies the differential equation

^^ +^"- W ~^"=^ (^^)'

and ;^-fiinctions with different suffixes are connected by the equations

The ^-functions can, of course, be expressed as i^-functions of imaginary

argument with appropriate numerical coefficients, and the i^-fiinctions can

be expressed in terms of Bessel's functions of order integer + ^, but it is

more convenient to use the functions in the forms above set down.

114. To the three forms of solution of the equation for Kn there

answer three types of deformation of the sphere. To obtain these we have

to find the forms of Fn, (?«, /» which answer to the three terms in the

expression for Kn in the right-hand member of (33). In finding any one of

these sets of functions we proceed as if Kn consisted of a single term.

Let us first suppose that Kn = An ^n (a^)- Since ^Kn= — a^Kn, equation

(26) gives

r.
^^- ^('>r,^'^\r - -^'•"' {(^ + 2/.)a' + f7rypo'(n-3)-pVo}

Now the formula (36) shows that, if we put

Gn= A^ ^n+^{ar) (40),

the equation for ©„ is satisfied provided that

^ , ^ An^ (X + 2^) g' + |7ryp,' (n - 3) - joVq
_

" 47r7/3„ iTYPoHw+l)

Now equation (28) gives

{(\ + 2/t) oe + Ittypo' (n - 3) -fp,} (fia" - p'p,)

= {fjLor + I irypo" n -p^p,) iirypo'' (« + 1),

and therefore we may write

4„'=^(i+ip:?^) (41).

The form il„''^„+i(ar) is the relevant solution of the equation for ©„.

Now one of the equations in (19) is the same as

l^"=G„-q«^+rf-= + (2. + 3)(?4.
r dr n {^firyp^ dr ^ )

orwehave
,-f^

= ^n't»« (-)- J^(,^^-^„') t«(-).

7—2
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and from this by using (36) we obtain the relevant form of F^, viz.

A,
i^„_i (ar). .(42).^„ = ^>|^„(«r)+(^^-^^^^^

Since F^ is determined by an equation giving dF^jdr in terms of r, it seems

as if an arbitrary constant might be added to the right-hand member of (42);

but by substituting in (20) on p. 95 we could show that the constant must

vanish.

The relevant form of /„ is at once found to be

•^--^„^"(^'-) (*^>-

Again suppose that Kn — BnXnW'r)- We can then write down the

following forms

G„ = £„'x„+,()8r)

B,.

i-rrypo

.(44),

where

Fn=. .(46).

Finally suppose that K„=Gn. We have now

On

In using this form of solution it is generally convenient to write C„' for the
constant value of F^, and express the constant C„ in terms of 0,/ by means of

the equation

^"=^-^''»('^-i4)''"'
.(47).

Boundary conditions.

115. With a view to the formation of the boundary conditions, which
express the vanishing of the traction across the deformed surface, we require
the values of the three expressions of the type

answering to the three forms of Kn.
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Let us first suppose that K^ = il„i^„ (ar*). Then we have

47r7/)u

Also we have

^ \n^^ («r-) + Vr,.., (ar) + a»»- V^„+, (ar)j -
-^^^^

i|r„_, (ar)] Tf„

Hence

l^) = -|<»±i)-^^.(„,.,-i;^. ,...,.,,
9a;

a»^„- ](n + 1) 4„'Vr„+,(«-) + ^^V^„(ar)[ ,.Tf„.

Again, we have

= r^ |aVV^„+. (ar) + ^' ^n («•) + (7* - 2) V-„ (ar) + '-^ ^„-i (ar)

4«
{a-^j-^f„ (ar) + (« - 2) tn_, {ar)\

9^.
47r7po?i

+ ^„' {nVr„+, (ar) - (2tt + 3) f„+i (ar) - -«^„ (ar)j a;Tr„

^ 1^' t„ (a,-) - (n + 3) t« («»•) - \ ^»-. ("O

i^„ (ar) + ^n-i (a^)^„ faV- dWn
dx

- 4„' {(« + 3) t„+. («»•) + V^» («»')} *^«-

Accordingly the terms contributed to \x^+ ... by the term 4„>|r„(ar) of

^„ are

^'
J?!!!! ^„ (ar) - 2 (n + 2) >^„ (ar) - - ^n-. («r)

8a;
4Tr7(Oo I

«

- L^„' {2 (« + 2) t„+a (ar) + t» («»•)} + C^ + m) ^^ tn («'')
o?An xWn

(48).
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In like manner the terms contributed to XajA + • • • by the term Bn^n (/3r)

of K„ are

-B„ l/SV ,^. 2(n-l) /ox1l9^»

/.B„' (2 (n + 2) x,.+,{M - Xn {M] -i^ + H-) ^^^ X» (/S*-)] ^ Tr„

(49).

Finally the terms contributed to \a;A + . . . by the term (7„ of £"„

reduce to

2M(n-l)C„'^-^ (50).

116. The equation which expresses the condition that the ^-component

of the traction across the deformed surface vanishes is obtained by equating

to zero the sum of the three formulae (48), (49) and (50), in which r is

replaced by a. The corresponding conditions for the vanishing of the y- and

^-components are obtained by writing 9 Wnjdy and 3 Wnjdz in order instead of

9TF„/9a;, and yWn and zWn in order instead of xWn- To satisfy all three

equations it is necessary that the coefficients of dW^/dx and xWn in the sum
of (48), (49) and (50) should vanish when r = a. We thus obtain the two

equations

V {? '^'^ ^"''^- 2 (n + 2) Vr„ (aa) - ? V^„_, (aa)|

An foW
, , , 2(n-l)

. , J

- ^'fT ^» (^''> + 2 (« + 2) Xn (00,) - I Xn-^ (/8«)|

(51),

and

A„' {2 (n + 2) t„+. (eta) + 1^„ (aa)} + f
1 + -)^ -f„ (aa)

+ £„' {2 (n + 2) x„+. Oa) - Xn (/9a)] - (l +
^)
^- X» (/8«) = 0- • -(52).

117. It will be convenient to form the surface characteristic equation

for the potential in each special problem at the time when we require it;
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but, as we always need a formula for U in order to form this equation, we
record this formula here. We have

or

rU = ^" >/r„_.(«r)-''+/^„'t„(«r)

n J- 1

>F„...(53).+ 4^^ X»-i {^r) - '^^ B„'x»m + nC,:

In the next two Chapters we shall be occupied with special problems

which can be solved by means of the analysis developed in this Chapter.

Radial Displacement.

118. The typical solution found above could be adapted to the problem

of purely radial displacements, but it is simpler to proceed by a special

method. In equations (9) of p. 92 we put

u=U-, v=U^, w=U-,
r r r

where ?7 is a function of r, and observe that we have

, dU 211

dr r

3a;

'

r V dr' r dr r- J

ax r

Then these equations reduce to the single equation

rfA dW
(\+ 2/.)^ + (pVo + ^^^7^0=) t/- + p„ -^ = (54).

Also equation (11) of p. 92 reduces to

1 d I ^dW\ .

On eliminating W between these two equations we find the equation

(X + 2M)(^+?g) + (pVo + ¥7r7Po^)A = (55).

The relevant solution of this equation is

A = ^„i/r„(ar) = .4„--"-- (56),

where «= = (p=/3„ + J;f7r7/)„')/(\ + 2/t) (57);
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and the corresponding relevant form for V is

rr , sin or — or cos or . _o.U = A, -^— (58).

The condition that the traction across the bounding surface vanishes is

expressed by the equation

dr

which must hold at r= a. This gives the equation

(\ + 2/it)aW sin aa — ^fi (sin aa — aa cos aa) = 0,

or aacotoa= 1 r-—^ «'«' (59).
4/U

The general analysis in ^ 112—117 has been worked out for the case

where equation (28) on p. 97 has one negative root and one positive root.

When the frequency of vibration (p/2ir) is great enough both the roots are

negative, and the analysis requires some extension. The consideration of

this extension will be postponed to Chapter X.



CHAPTER VIII

EFFECT OF COMPRESSIBILITY ON EARTH TIDES

119. We shall now apply the analysis developed in the previous Chapter

to the problem of corporeal tides in the earth, regarded as a homogeneous

sphere composed of solid material which has a finite modulus of compression

and a finite rigidity. We shall assume that the problem is a statical one, so

that ^ = 0, and we shall take the spherical solid harmonic Wn to be the tide-

generating potential, and shall write it TTj, as it is of the second degree.

The disturbing potential W consists of (1) the tide-generating potential

Wj, (2) the potential due to the volume distribution of density — po A, (3) the

potential due to the surface distribution p^Ua', and we have

= A,yir,(ar) + £,X2Wr) + C. (1),

where - a^ and ^ are the roots of the equation

/i(X-|-2/i)r + ¥'r7poVf-6a7ryp„»y = (2).

From the general form of solution we find

A = -
47r7/)„

[a?A,ir„_ (ar) - ^'B,x. (M] W, (3)

and rU= — (34/
, (or)-(- yfr, (ar

>}4'7r7po

W,...ii),

where the six constants A.^, ...,C, are connected by the three equations

Ai-jrypi

Ca =§^7/30^2'

.(5).
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120. These constants are also connected by the equations furnished by

the boundary conditions. The first of these conditions is the surface

characteristic equation for the potential. At points within the sphere r= a,

the potential due to the volume distribution of density — po^ and the surface

distribution pjla is TT— W^, or it is

K,{r)W,-W,.

At points outside the surface r = a the potential due to the same volume and

surface distributions of matter is

Hence the sur&ce characteristic equation is

or it is aT-/rj(a)+5{irj(a)-l} = 47r7p„f^j

Since for all values of r

r^ K, (r) + 5K, (r) = - A,-^, {ar) + ^Xi iM + 50,.

the above equation becomes, by (53) of p. 103,

5(C,- l) = 47r7p, 1^20,'- 3 |^^,(aa) + ^'x,(/9a)|] (6).

121. The remaining boundary conditions are to be written down by
means of equations (51) and (52) on p. 102. We have

^'{(f -8)^.(aa)-^.(aa)) "4^{f )^. (-) + 1. (-)}

+ 2C,' = (7)

and A^ {8^3 (oa) + 1^, (aa)l + fl + -
)
^'- yjr, (aa)

\. ft J 47r7p, ^

+ B,' {8xd0a)-x.Wa)} " (l +
^) ^„X.(/3«)

= (8).

122. Now equation (2) gives

^ 3 X + 2/*'
«'=^-

3 /.(\ + 2/*)
^^^'

so that -l'^- = ^^IlPl '^ + 2M = _8a=^
a'-U' (I ' tL 3(a»-/3»)= ^ '•
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Hence the first two of equations (5) become

,_ a'A, 3a' + i8^ ,
^B, a' + 3/8'

' 47r7po3(a«-y9=)' =~ 4nryp,S(a'-^) *• ^

We may now re-write equation (6) in the form

A, Scfl +fi^ B, 3^ + 0." 5

where the arguments aa and /8a of the ^ and ^ functions need no longer be

expressed. On using (11) to eliminate Aa and B^' and (12) to eliminate (7/,

we obtain instead of equations (7) and (8) the two equations

. r 3o»-(-/3« /2o-oW
, ,

\ aW
, , ,

"1

o r a'' + 3/3= /25 +/8^a= ^ ./S"*' _. 1 15

-^'L3(«'-/3')
(~"2~X»-X.j+-2-X» + X.J-Y (13)

and

+ A/S^
3/8^ + 0"

^)te-8Xs)-(l + ^)x.}=0 (14).
(3(a^

Again we may simplify (14) by writing

it becomes

^»[^^)^^^^=+^^'-«^'^°^^>-^"''^'^']

which is the same as

A, [3^3^) i*H^ + 8t. - «=«'t«) + «=«=t. -^—^ «'«^t.J

=A [3^^) (40X. - 8X: + ^-^'X^) + ^«^X. -^ ^=«'X=
]

or, by the second of equations (10),

A, [(30= + /80 (40^2 + 8ti) - 4a»/3=a=Vr2 - 8-^, a'^^a^^r.

J

= 5, r(3/3= + a») (40x. - 8x0 + 4o'/8»a=x2 - 8^^, a^^^x.]

or ^, [(3a= + ^) (a= - /8») (lOf, + 2^,) - (3a» - ^) a^/J^a^f, J

= £, [(3/3=+ a»)(a=-y9=) (10^2 -2x0- (3/8= -a=)a=^a=x=] (15)

The two equations (13) and (15) determine Ai and £,.
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123. When A^ and B^ are known 0/ is known from (12), and then the

remaining constants are known from (5). The solution is therefore complete.

The numbers h and ifc introduced (p. 53) in the general theory of Chapter IV

are expressed by the equations

''=2-6a^/3^^^^=-3^^^'+6^^3^^^^-^ + 3^^^n (16).

By way of verification it seemed to be worth while to work out the

limiting case in which fi is finite and /i/X. tends to zero as a limit, that is to

say the case of incompressible material. The numbers a and /8 both tend

to zero, the quotient /3/a tends to unity, i^„ {aa) and Xn iP^) ^^^^ ^°

(-!>"
and ^

1.3.5...(2n + l) 1.3.5... (2n + l)'

also (a- — /3-)/o=/3^ tends to fj.l2irypo-. It can then be shown that h tends to

the limit

5 // 19 /J. \

2/1 2 |7r7p„^aV'

which is in accordance with Lord Kelvin's solution as recorded on p. 62 ante.

In this case (incompressibility) k = ^h for all values of
fj.,

the material being

homogeneous.

124. In order to discover the sense of the correction for compressibility,

and its order of magnitude, it seems to be best to work out two particular

numerical examples, chosen so as to simplify the values of aa and ^a. Now
from (2) we have

a'

a

X +

where g is written for ^iryp^a. To get simple values for aa and /3a the

expression under the square root should be a perfect square, and the ratio

of the two expressions in the square brackets should also be a perfect square.

To assimilate the properties of the material to those of known materials the

ratio \ : /t should lie between 1 and 2, the former value making Poisson's

ratio equal to J, and the latter making it equal to ^.

125. A first simple example of values which satisfy these conditions is

afforded by taking

aa = 3, /3a = 2.
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This makes - = ^^

,

fj.
25'

and 9P£^^
fj,

5

For a sphere of the size and mass of the earth this gives for /i the value

7"16 X 10" dynes* per square cm., which is a little less than the rigidity

of steel. The rigidity of the earth, as computed by Lord Kelvin, is given

by the equation 5'po«//f = -/> which would give for /x the value 7-23 x 10"

dynes per square cm.

The functions i/ti, ... are given by the formulae

yfti = («a cos aa — sin att)/a'a'

i^j = {(3 — a'a") sin aa — 3aa cos aa]/a.'a^

%, = (ySa cosh fia — sinh ^a)/0'a^

j^,= {(3 + /3»a») sinh j3a - 3/3a cosh ^a}/^a'

Hence we find*

,^,(3) = -01152,

1^,(3)= 00332,

X,(2)= 0-4872,

X,{2)= 0-0880;

and thence by equations (14) and (15)

^, = -10-37, B, = -6-21.

Hence we find the values of h and k to be

h= 0-932, A; = 0-513.

With the same value of fi we should find, on assuming incompressibility,

/i= 0-839, A = 0-503.

Thus if X is nearly equal to 2fi, the computed value of h is increased by

about 10 per cent, of itself on account of the compressibility, while the

computed value of k is but slightly increased.

126. A second fairly simple example of values for aa and ^a which

satisfy the conditions stated above is afforded by taking

aa = 3-3, ^a = 21.

\ _ 2041
This makes - - j^^ >

so that \/m is but slightly greater than unity. We then find for /* the value

* In computing the values of the functionB ^i,... I used the tables published by C. Burrau,

" Tables of cosines and sines of real and imaginary angles expressed in radians," Berlin, 1907.
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6"955 X 10" dynes per square cm., a slightly smaller rigidity than that found

in the previous example. In this case we find

^,(3-3) = -00863,

f,(3-3)= 0-0282,

X^ (21) = 0-5055,

X2(2-l)= 00904,

and thence by equations (14) and (15)

^j = - 15-24, £, = -6-82.

Hence we find the values of h and k to be

A = 1-044, 4 = 0-523.

With the same value of fi, we should find, on assuming incompressibility,

A = 0856, & = 0-513.

Thus if \ is nearly equal to /t, the computed value of h is increased by nearly

20 per cent, of itself on account of the compressibility, while the computed

value of k is but slightly increased.

127. We have seen in Chapter IV that the first attempts which were

made to estimate the height of earth tides were based on the simplifying

assumptions lof homogeneity and incompressibility, together with the observed

height of the fortnightly tide. We saw also how the yielding of the earth to

tidal forces could be expressed by the two numbers which we have denoted

by h and k. Further we found that the first estimates were in excess of the

true values, for we saw that both numbers could be determined very approxi-

mately by combining the results of two kinds of observations, viz. those of

the lunar deflexion of gravity and the periodic variation of latitude. We
noted also that it had been made out that heterogeneity of the material

would tend to diminish the computed values of the two numbers. In this

Chapter we have proved by two examples, which may fairly be regarded as

typical, that compressibility tends to increase the computed values of the

two numbers. Another way of expressing the result is to say that any

estimate of the rigidity of the earth, based on a theory in which the earth

is regarded as homogeneous, is likely to be too great, while any estimate,

based on a theory in which the earth is regarded as incompressible, is likely

to be too small. On a survey of the whole question it seems that the

correction for heterogeneity is rather more important than the correction

for compressibility.



CHAPTER IX

THE PROBLEM OF GRAVITATIONAL INSTABILITY

128. In an elastic solid body slightly strained by external forces, and
held by them in a state which differs but little from a state of zero stress,

there can be no question of instability. The solution of the equations of

equilibrium is, in fact, uniquely determinate. In particular if there are no
external forces there is no displacement*. All this is different for a large

gravitating body in a state of initial stress. If the resistance to compression

and the rigidity are small enough, the body may be capable of being held in

a strained state by the inequalities in the gravitational attraction that are

caused by the strain. Any change in the density at a point is accompanied

by changes of attraction. Now, as the body passes from a homogeneous

state of aggregation, or from a state in which the mass is distributed sym-

metrically round the centre, to some other state of aggregation, the

gravitational potential energy may be diminished, but a certain amount of

strain energy will be stored in the body. If the gravitational energy lost

exceeds the strain energy gained, the body in the unstrained state is

unstable. The critical condition separating stable from unstable states is

such that the gain of strain energy corresponding to the small displacement

is just equal to the loss of gravitational energy corresponding to the same

displacement. In order that this may be so, it is evidently necessary that

the equations of equilibrium under no external forces should be satisfied by

displacements which do not vanish, although the external forces vanish.

This comes to the same thing as saying that the body must admit of

vibrations the frequency of which is zero.

129. The chief interest of the problem arises from the theory propounded

by J. H. Jeansf to the effect that the earth was at one time in such a state,

as regards resistance to compression and rigidity, that it would have been

unstable if it had been homogeneous, or if its mass had been distributed

symmetrically about a centre. Traces of this past state were supposed to be

* A displacement vrhioh would be possible in a rigid body is, of course, disregarded, as there

is no strain answering to it.

t hoc. eit., ante p. 89.
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manifested in the existing distribution of land and water on the surface of

the globe. Jeans worked out the problem for a gravitating sphere in which,

in the homogeneous state, gravitation is supposed to be balanced by body-

forces of external origin. The problem for a body in a state of initial stress

was afterwards solved* by adopting the first of the two alternative h37pothese8

(as regards initial pressure) which have been explained at the beginning of

Chapter VII. The second alternative being more consonant with physical

reality, it seems to be appropriate to obtain a new solution by applying the

analysis developed in that Chapter.

In the formulae for the displacement and the inequality of potential we
have simply to put p = 0. Then the six constants An, B„, (7„, An, 5„', C„'

are connected by the equations (41) of p. 99, (45) of p. 100, (51) and (52) of

p. 102, and a sixth equation which results from the surface characteristic

equation for the potential.

130. The potential W, = Kn{r) F„, is due to the volume distribution of

density — PoA and the distribution of superficial density p^Va on the surface

r = a; and the potential at external points due to the same volume density

and surface density is

The surface characteristic equation for the potential is therefore

or it is a«^!^ + (2„ + l)^„(„) = 4,r7p,(^J^_^.

By equations (33), (36), (39) of pp. 98, 99 we have

dKn(a)
a -

da
* ^^" +'^'>^« ('^'> = - ^nir,^i (aa) + BnXn-i(M + (2n + 1) C„,

and hence, using the result (53) of p. 103, we find that the surface characteristic

equation for the potential becomes

or, by equation (47) of p. 100, it becomes

131. Now, p being zero, - a' and ^ are the roots of the equation

/. (X, + 2/i) p + -^TrypoV? -n(n + l) (^iryp^y = (2),

* A. E. H. Love, loc. cit., ante p. 89.
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SO that we have

and the equations (41) of p. 99 and (45) of p. 100 can be written

,1'
A„' =^\l +

.(4).

4T7P.1 in+iyia'-ff')

„,^£^f 4a^ 1

" 47r7p„| (n+l)Xa'-^)]j

When any particular value is assigned to n, the condition that the

initially homogeneous sphere may be gravitationally unstable for harmonic

disturbances of the nth degree is to be obtained by eliminating the undeter-

mined constants from the equations (51) and (52) of p. 102 and the equations

(1) and (4) above. The special value zero for n is best treated by a distinct

method, as was explained at the end of Chapter VII.

132. In the problem of purely radial displacements the condition of

gravitational instability is obtained from equations (57) and (59) of pp. 103,

104 by putting for p. If the ratio of A, to /i is taken to be given, a is to be

found from the equation

'^"-'/(i-'-^^"-) *^''

and then \ and ^ will be known from the equation

J.67rwL
3(X-|-2/x) ^

'

In the following table the numbers in the first row are selected values

for the ratio \//ti, the particular value in the last column being intended to

represent the case where the ratio is large, that is to say either the substance

is very incompressible or of very small rigidity. The results for this par-

ticular value have been worked out for the sake of comparison with the

results answering to spherical harmonics of the first degree, for which, as will

be seen later, the results can be worked out most easily by assuming certain

special values for the ratio \:fi, and 95918/441 is one of these special values.

In the second row are given the corresponding smallest roots of equation (5).

Some of these are adapted from the results given by H. Lamb*. In the

third row are given, as multiples of 10" dynes per square cm., the corre-

sponding values of \ -t- 2fi, as determined by equation (6). In the fourth row

are given, in km. per second, the corresponding values of V{(^ + 2/i)/po), the

velocity of compressional waves in the material. In the fifth row are given,

* Loc. cit., ante p. 50.

L. Q. 8
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as multiples of 10" djoies per square cm., the corresponding values of fi, the

rigidity. The values assumed for p„ and a are 5"5 grammes per cubic cm.

and 6-37 x 10« cm.

X/^
1

1

1
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134. We next take up the problem for harmonic disturbances of the

first degree. Equations (4) become

Equation (1) becomes

4jVi + ^'xi = (8),

where the arguments aa and /3a of the i^ and ^ functions are suppressed.

Equations (51) and (52) of p. 102 become

4l|(a«a-6),^.-2^-^^aWV^.

-|'|(^a' + 6):,.-2xo} + ^-^^a=X. = (9).

and A'(6V^.+ V'.)+(l+^)£:J;^.

.(10).+ A'(6x.-X.)-(l+^)^^X. =

The terms in C,' have disappeared through the vanishing of the factor n — 1

in the general formulae. In fact it is easy to see that the solution corre-

sponding to the constant term C, in the formula for Ki(r) represents a

displacement which would be possible in a rigid body, and is therefore

irrelevant. Equations (7), (8), (9), and (10) appear to be too many, but it

will be found that (10) is equivalent to a combination of (8) and (9)*-

On substituting from (7) in (8) we get

^it. = -B.Xi (11)-

On substituting from (7) in (9), and using (11), we get

+ "!
"^£ (/8"a» + 6 - 2 ^") + ^=a« = 0,

a — p \ Xi'

^"xra^ + yS^
(^^>-

On substituting from (7) in (10), and using (11) and the appropriate form of

(3) which gives

\ + 2^ ^ 8a''/y

• Some peculiarity was to be expected to occur when n=l. See the papers by Jeans and

Love cited on p. 89, ante.

8—2
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we find
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and, on simplifying this by means of the equations

^. = -

OL'a' ^a"

we find that it reduces to equation (12).

135. Now from equation (2) we have

.(13),

and equation (12) becomes

a^d' sin aa
+

^^a^ sinh /3a 2a'^a^

sin oo — aa cos aa fia cosh ySa — sinh fia a^ + H'^

sin aa
+

sinh ^a 2a=

0' sin aa — aa cos oa /3a cosh fia - sinh /9a a''+ /S"

= 0...(14),

where, as appears from (13), the ratio Xi/j, determines the ratio /3 : a, and,

when this ratio is known, (14) becomes an equation for determining aa.

When we have found the smallest value of aa by which this equation can be

satisfied, (13) gives us the greatest value of X, + 2/i for which the sphere can

be gravitationally unstable in respect of harmonic inequalities of the first

deg^ree.

We select values of \//i so as to make aa/$a, as given by (13), the ratio

of two small integers, and at the same time to be either between 1 and 2, or

very large. The first case is that where Poisson's ratio is between ^ and J,

the second that where the rigidity is small compared with the resistance to

compression. It is easiest to begin by selecting a value for aa/^a which shall

secure what is desired. In the following table the numbers in the first row

are the selected values of aa//3a, those in the second row the corresponding

values of \/fi. In the third row are given the smallest roots of the equation

(14) for aa which answer to these selected values of oa//8a. In the fourth

row are given, as multiples of 10" dynes per square cm., the corresponding

values of \+2fj,; these are obtained from the first of equations (13). In

the fifth row are given in km. per second the corresponding values of

V{(X. + 2/ii)/p„}, the velocity of waves of compression. In the sixth row



THE PROBLEM OF GRAVITATIONAL INSTABILITY 117

are given, as multiples of 10" dynes per square cm., the corresponding

values of fi, the rigidity.

aalfia
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determined by the theory of Chapter VII. The excess density in question

is represented by the expression — poA, and we have

- poA =^ [a'A .yjr, (ar) - ^B,x^ (.M] ^.,

and by equation (11) this is proportional to

[a»>/r, (ar)/^, («a) - yS^^iiMx^ ()8a)] r cos 0,

where 6 is the angle which the radius vector drawn from the centre makes

wth the axis of the harmonic. The way in which the excess density is

distributed along any diameter may be shown graphically by tracing the

curve whose equation is

for values of x between —a and a. Taking a/^ = I'l and aa = 4'14, 1 find

a curve resembling the arc of the sine curve y = sin x between x= — 3 and

x=3. From this figure we should conclude that, if the inequality of the

shape of the earth, which is manifested by the distinction between the

land and water hemispheres, is really a survival from a past state in which

a spherically symmetrical configuration would have been unstable, the

correlated inequalities of density would be likely to be deep-seated. The
hypothesis of isostasy, on the other hand, makes out that the inequalities of

density which are correlated with the continental elevations and oceanic

depressions are superficial. So far as it goes this discussion is rather

unfavourable to the view that the existing continents and oceans are

survivals of such a past state as has been described. It is possible that

new light could be thrown on the question if we could solve the problem

of gravitational instability for a heterogeneous sphere ; but even the simplest

example, that of a nucleus of greater density enclosed in a shell of smaller

density, has so far proved intractable.

138. We consider next disturbances which are expressed by harmonic
inequalities of the second degree. Equations (4) become

•(15),

and equation (1) becomes

^=' = -4(4^^» + f^) (!«)'

where the arguments aa and /8a of the ijr and x functions are suppressed.

Also, by putting n = 2 in equations (3), we find

X + 2/^ _ 8g'/3'

M ~3(a«-/8»)'-
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Further, equations (51) and (52) of p. 102 take the forms

^ Ki«W - 8) ^, - t.l -^^ iWa'ir, + f,)

-^ {(i^«= + 8) X« - X.1 +4^^ (4^^«=X. + X.) + 2C,' = . . .(17)

and

+ 5/(8x3-X.)-{3(|^^.-l}^X.. = 0...(18).

On eliminating C,' between equations (16) and (17), substituting from (15),

and substituting in (18) from the formulae

a»a«^, = - (5ifr, + yfr,), ^a'x^ = - (5^, - xO.

we obtain the equations

Aj [{4a»/8»a» - 25 (3a» + y8»)} i^^ - 4 (3a=' - ^) i^J

+ B, [{4a»^a» + 25 (3/3= + o»)} ^2 - 4 (3^^ - o^) Xi] = . . .(19)

and

^, l^jlO (3a' 4 /8») -^^ a=/3v| ^, + 2 (3a= + ^) ^i]

- 5, rjlO (3j8» + a=) - ^^' a=/3w| x. - 2 (3^8^ + «0 X,] = . . .(20).

Hence the condition of gravitational instability as regards disturbances

represented by spherical harmonics of the second degree is

jlO (3a» + (8") -^^ a«/8w| f,+ 2 (3a» + ^) ^i

{4o»/3»a» - 25 (Sa" + ^)] ir^-4> (3a»- /S^ V'l

|lO (3/3= + 0') - ^5r^' a»/3=aj x. - 2 (3^ + a^ x,

"*'
14a'^W + 25 (3y8» + a^)i x»

- 4 ( 3;8= - a') ^i "^ ^^^^'

139. Just as in the case where n = 1, when the ratio \//j, is assigned the

ratio oa//3a is known, and equation (21) becomes an equation to determine

aa. As in Chapter VIII we have

In order to approximate, by means of tables of circular and hyperbolic

functions, to the smallest root of equation (21), it is necessary to assign to
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the ratio \//i such a value as will make the ratio oa//3a rational. It is

desirable also that aaj&a should be the ratio of two small whole numbers.

The two cases of greatest interest are those in which Xjii either lies between

1 and 2, or is a large number. The first case can be illustrated by taking

ao//3o = 3:2, the second by taking aalfia = 18 : 17.

When aal^a = %, we find that

and equation (21) becomes

(
1550 -92«'a')Vr, + 310.fr. (350 - 9/3'a') x»- 70x- ^ q

( 802=rt= - 3875) "ts - 460^, ^ (60/3W + 875) ^2 - 20x,

The smallest value of «a by which this equation can be satisfied is found to

be about 4"56.

When aa//3a = |f , we find that

\ 247246 _
^= 122T-2^^^-'

and equation (21) becomes

(441350 - 197387aV) ^., + 8827 0i^i

(1156aW - 31525) -^^ - 2732>/r,

(41685 - 175932;e'a') x^ - 83370xi ^ ^"''

(1296/3W + 29775) Xi,-2172x,

The smallest value of ao by which this equation can be satisfied is found to

be about 5"45.

In the following table we record the two values of \//i, and the corre-

sponding values of X, + 2/i, as a multiple of 10" dynes per square cm., the

values of V!('^ + 2m)/po}. as a multiple of 1 km. per second, and those of /x,

as a multiple of 10" dynes per square cm.

X//1 X+2;i
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first. It would therefore appear that the critical rigidity answering to n = 2

is a little smaller than that answering to w = 1 even for large values of the

ratio \/fi.

140. We consider next disturbances which are expressed by harmonic

inequalities of the third degree. Equations (4) become

and equation (1) becomes

C3' = -(^>/r3 +f Xs) (23),

where the arguments aa and 0a of the -^ and y^ functions are suppressed.

Also, by putting ?i = 3 in equations (3), we find

M ~3(a-^-W

Further, equations (51) and (52) of p. 102 take the forms

-f (^' X. +10^ - sv.)n-4(t »+ s*) +''' -^ •w
and

On eliminating C,' between equations (23) and (24), substituting from (22),

and substituting in (25) from the formulae

a^a?^, = - (7Vr, + ^,), ^a=x. = - (7x3 - X^\

we obtain the equations

A 3 {(42 - ^W) a?^, + 2 (3a= - 2y8=) ^,]

- B, {(42 + aW) /3»X3
- 2 (S/S^ - 2a') x,} = (26)

and

AA

- B, 1(21 0/3= - a»^^^ )8»a") X3 - 30/8»x»} = . . .(27).

By substituting in (26) and (27) from the formulae

a»a*V^3 = - (5t> + to. ^o^X^ = - (^X^ " X.).
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we obtain the condition of gravitational instability, in regard to disturbances

expressed by spherical harmonics of the third degree, in the form

|(30a' + 5/3=^-f^) «W - 1050aj ^^ - (210a'-^^fj^ • aw) f,

j(30/3» - 5a^^^^-) ^a? + 1050^=| x.
- (ziO^^ - ««^^^° . ^a?) x,

"''

(42/3= + a' . /3»a») ^i - {(6/3= + a») ^ff'a' + 210^} ^2

(28).

141. As in previous cases we solve this equation for selected values of Xjfi.

When any value is assigned to this ratio, the ratio aajfia is known from the

formulae

=

a«a« = ._im.
\ + 2/i

and the equation (28) becomes an equation to determine oa. We require

the smallest root of this equation, and when this root is found either of the

above equations determines the greatest values of X + 2/x and fi for which
the homogeneous sphere can be unstable in respect of disturbance's expressed
by spherical harmonics of the third degree. As before, it is convenient to

begin by assigning to the ratio ao//8a a value which shall be the ratio of two
small whole numbers, and shall make the ratio X//i either lie between 1 and 2
or be rather large. The first condition is satisfied by taking aaj^a to be |,
the second by taking it to be f|.

When aa/y8a = |, we find that

Vm = 11 = 1-918...,

and equation (28) becomes

(479oW -7840) -fH: (51aV - 1568) i^,

(35a=a= - 1120) i^-^ + (Sa'^a" - 224) i/r,

{m^a^ + 6615) X2 + (24/3^0" - 1323) ;t, _
(8/9'a» + 189) X. - (35y8=a» + 945) X'^

~

The smallest value of oa by which this equation can be satisfied is found to
be approximately 5*47.

When aa//3a = ff , we find that

X.^1674394_

II 7803 -214-58...,
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=0.

and equation (28) becomes

[{20280 + 3125 x (2857/51)} aW - 709800] f^ + (625 x (2857/51) a'a' - 141960} -i/r.

(46810^ - 14.1960) -f, + (625aW - 28392) 1^,

[(18750-3380x(2347/51)}/g'ffl'+656250]x2+i676x(2347/51)j8'a'-131250}xi

(616^-a^ + 26250) x,
- (4426^a» + 131250) x^

The smallest value of aa by which this equation can be satisfied is found to

be approximately 672.

In the following table we record the two values of X/fi, and the corre-

sponding values of A, + 2fi, as a multiple of 10" dynes per square cm.,

the values of >^/{{X+2fi)jpo}, as a multiple of 1 km. per second, and those

of /I, as a multiple of 10" dynes per square cm.

X/,x
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The results which have been obtained in this Chapter show the importance

of the part played by rigidity in securing gravitational stability. A sphere

of homogeneous fluid, subject to its own gravitation, but free from surface

tension, would be gravitationally unstable, and therefore could not exist, for

the fluid could not be absolutely incompressible, and some degree of rigidity

would be necessary to stability if the sphere is to be homogeneous.

In those previous discussions of the problem of gravitational instability

to which reference has already been made it is taken as probable that, if a

homogeneous sphere with certain elastic constants is proved to be unstable

in regard to displacements specified by spherical harmonics of an assigned

degree, a sphere with a spherically symmetrical arrangement of the mass,

and average values of the elastic constants which differ but slightly from the

values found, would be unstable in respect of the same type of displacements.

If this argument is sound, we should seem to be justified in concluding from

the results which were found in § 135 that, if a large part of the earth's mass

were now in a fluid state, so that its average rigidity would be small, it

would exhibit a much more decided displacement of the centre of gravity

away from the centre of figure than it actually does.

143. The theory of gravitational instability derives its chief interest, as

has been explained above, from the speculation which suggested that the

existing distribution of continent and ocean might be a survival from a past

state in which the earth would have been gravitationally unstable if the

distribution of its mass had been spherically symmetrical. The present

investigation throws some light on this speculation. The result that, if

the rigidity were small enough in comparison with the incompressibility,

the instability would be first manifested in regard to hemispherical dis-

turbances, shows that it is quite possible that the inequality which we

recognise in the land and water hemispheres may have originated in the

way suggested. In previous solutions of the problem it seemed that in-

stability would always be first manifested in respect of radial disturbances.

The new result is favourable to the hypothesis. We have seen, however, that

the hemispherical distribution of density which an otherwise homogeneous

sphere would tend to take up, if, in the homogeneous state, it were unstable

in regard to hemispherical disturbances, would not be easily reconcilable

with the distribution that accords with the hypothesis of isostasy, and is

supported by geodetic observation. It is not easy to see why if the traces,

which undoubtedly exist, of a hemispherical distribution of density are

survivals from such a past state as has been described, they should be

confined to a superficial layer instead of being deep-seated. In the present

state of our knowledge we cannot assert that the existence of land and water

hemispheres is really a survival from such a past state.
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In Chapter I it was pointed out that harmonic inequalities of the third

degree are somewhat more prominent in the existing distribution of continent

and ocean than those of the first degree. The theory of gravitational in-

stability, as worked out here, does not suggest any origin for these inequalities,

unless they may arise through hemispherical disturbances existing in a

rotating body*. In Chapters V and VI we saw that, if a rotating spheroid

is subjected to forces derived from a potential which, at any distance from

the centre, is proportional to a spherical surface harmonic of the second

degree, the displacement which these forces would set up in a sphere at rest

must be supplemented by an additional displacement. The displacement

which would be set up in the sphere at rest is proportional to the spherical

surface harmonic of the second degree, and the supplementary displacement

would be compounded of two : one proportional to this surface harmonic, and

the other proportional to a surface harmonic of the fourth degree. Now in

a body having a hemispherical distribution of density, and a corresponding

harmonic inequality of the first degree in the equation of its surface, gravity

would be derived from a potential compounded of two : one spherically

symmetrical, the other proportional to a spherical surface harmonic of the

first degree. If the body were set in rotation, so that its figure approximated

to an oblate spheroid, the second of these terms in the expression for the

potential would give rise to a displacement, again compounded of two : one

proportional to this surface harmonic of the first degree and the other to

a surface harmonic of the third degree. Another way of expressing this

result is to say that, to the kind of unsymmetrical configuration which would

be stable in a body at rest, and so constituted that a spherically symmetrical

configuration would be unstable, there would correspond, in a rotating body,

a configuration expressed by means of harmonic inequalities of the first,

second and third degrees. This suggested explanation of the origin of the

harmonic inequality of the third degree may seem rather remote ; but the

fact that the inequality is prominent is undeniable, and, so far as I am aware,

no other explanation of it has ever been proposed.

* As suggested by Love, Joe. cit., ante p. 89.



CHAPTEK X

VIBRATIONS OF A GRAVITATING COMPRESSIBLE PLANET

144. The theory of the free vibrations of a homogeneous isotropic

eletstic solid sphere was studied very completely by H. Lamb* in 1882.

At that time very little was known about the propagation of seismic

waves, but, as observations concerning these were accumulated, it became

increasingly desirable to discover the modifications that should be made
in the theory in order to take into account the effects that might be

due to the mutual gravitation of the parts of the sphere and those that

might be due to the compressibility of its substance. The effects due

to mutual gravitation were first investigated by T. J. I'A. Bromwichf,

but his investigation was incomplete in the sense that he took the

material to be incompressible. Apart from their importance in connexion

with the propagation of earthquake shocks, the free vibrations of the

earth, considered as a deformable body, have a bearing on the theory of

earth tides. As we saw in Chapter IV, one of the reasons why a statical

theory of earth tides may be presumed to be adequate is that all the

tidal periods are very long compared with the periods of free vibration,

so far as these have been computed. From this point of view the most
important vibrations are such that the surface becomes an harmonic

spheroid of the second degree, and, among the modes of vibration which
have this character, the most important are those which have the longest

period. In this Chapter we shall first complete the general theory which
was partially developed in Chapter VII, and then discuss in detail the

period of the gravest mode of vibration which is such that the surface

becomes an harmonic spheroid of the second degree, reserving the appli-

cation of the theory to the propagation of seismic disturbances for the
following Chapter.

The necessity for a further development of the analysis in Chapter VII
arises from the circumstance that the equation (28) of p. 97 was there

assumed to have one positive root and one negative root, as it certainly

* Loc. cit., ante p. 60.

t T. J. I'A. Bromwich, " On the inflnence of gravity on elastic waves, and, in particular, on
the vibrations of an elastic globe," Proc. London Math. Soc, vol. xxx. 1898.
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has if the frequency (pl2w) is small enough. But, whatever the degree

of the spherical harmonic by which the surface inequality is specified

may be, there will be a series of modes of vibration which can be arranged

in order of increasing frequency, and there must be a place in the series

at which the frequency first becomes so great that the equation in question

has two negative roots. We must therefore add to what was done in

Chapter VII an investigation of the types of displacement that occur

when both the roots of the equation in question are negative. This is

quite simple ; but the possibility of a change from the conditions in which

the two roots have opposite signs to those in which they have the same

sign involves the possibility that one root of the equation may be zero.

The type of displacement which occurs when the equation has a zero

root requires an independent investigation.

145. In the notation of Chapter VII the equations of vibration are

three of the type

a \ d S TIT^

where p/2ir is the frequency, and we have also the equations

_3m dv dw „

dx dy dz

rU = xu + yv + zw (3),

V=Tf = 47r7/3oA (4).

The boundary conditions which hold at the surface r= a are the surface

characteristic equation for the potential and the stress-conditions. The

latter are three equations of the type

(d(rU) du \ ^ ,.,

We obtain a typical solution by putting

W = KAr)Wn, A=/„(r-)Tr„
)

dw^ ,., (6),

u = F„(r)^+Gn{r)uW„, v = ..., w = .

and then we have

r ndK dGn^ g
l^j^

(7),J^ r dr dr *Trypo

where ^ denotes the operator

^ 2 (« -f 1) d

dr' r dr'
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The equations (1) are then satisfied provided the fnnc<^ons y„, ... are

connected by the additional relations

and

. ,.^

r dr

d^F„
.
2n dF„

^ 2^^^ _ ^^^^^, ^^^^ _^ ^^^^

+ p,K„ + Pop'F„=0 (8),

dr' r dr

,^
,

,ld/„, (d'Gn 2(n+2)dO^\ ^ A d , „ ,^ ,

dr

+ ^"^IPofn + Pi

rdr

r dr
+ p,p'O^ = 0...{9).

(12),

From equations (7), (8) and (9) we find that if„ satisfies the equation

(^ + a^)(^_^)^/f„ = (10),

where — o" and /3* are the roots of the equation

/. (\ + 2/i) f» + {Jj^TTvpoV + (\ + 3/t)^>,} f - [n {n + 1) {^Tryp.J

- -^7r7p.« .;)>»- ;)Vo1 = 0. . .(11

)

supposed to have one negative root and one positive root. When this is

the case the solution takes the form

^„=4f-V»(-)-H(^'-^;->^.('..)

where An, ... are constants connected by the equations

A ' = ^''- (l + iiyPi±\ B '= ^^ A - t^P''" \
" 47r7p„V fitt'-p'pj' " 47r7p„V fHi' + p'pJ'

0„ = |.7P.(«-^4^JC„'...(13).

These constants are also connected by the three equations

"
n ^^ (""> - 2 (n + 2) V^„ (aa) - ? ^^. (aa)|

^n (tt'g'
, , , 2(n-l)

, ^
•
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-^ 1^' Xn i^a) + 2 (n + 2) x,. (/3a) - ^ x«-i (/8«)

+ 2(n-l)(7„' = (14),

^„' {2 (n + 2) Vr„+, (aa) + f^ (m)] + (l +
^)
^^ ^n ("a)

+ B„'{2{n+ 2) x„+, (0a) - Xn (/3a)J " (l +
^)
^'^ X» (/3«) = . . .(15).

2n + I

Cn-nCV= -(n + 1) ^^n{aa) + %xn{0a)\ (16),
0'-

where (14) and (15) are the stress-conditions formed like (51) and (52)

of p. 102, and (16) is the surface characteristic equation for the potential

formed like (1) of p. 112.

All this theory has been written down to save the reader trouble; it is

all included in the general theory of Chapter VII and in the special investi-

gation at the beginning of Chapter IX.

146. In the theory recapitulated above it is assumed that the equation

(11) has one negative root and one positive root. As has been pointed out

already, this is not necessarily the case, and the frequency may be so great

that both roots are negative. This happens if

p*^-4p^f7^7p„>n(n + l)(f7r7p„)= (17).

We shall now suppose that the inequality (17) is satisfied, and shall proceed

to obtain the corresponding form of solution. Equations (1) to (9) are

unaltered. Equation (10) becomes

(^ + a0(^ + 8')^.8'„ = (18),

where - o* and - 8^ are the roots of the equation (11), supposed to have two

negative roots. The solution takes the form

A'„ = ^„i/r„ {ar) + A.^f^„ (8r) + (7„

^„ = ^^„(,.) + (^-_^»JV^„_.(..)

^§V"(^'-) + (S-4-4^>»-<^'->+^'''

...(19),

L. G.
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where the constants A,,, are connected by the six equations

D„8

An )tt-'(t^
2

1 + ^'^l.Pl'"\
,

f I— ^„ (aa) - 2 (« + 2) ^„ (aa) - ^ f„-, («a)[

_ /iL j?!^ ^„ («a) + 2-i^^-l-^
V^„_. (aa)|

47r7/9„l n ^ "• ^ n ^ ]

+^ 1^' t„ (S«) - 2 (ft + 2) >fr„ (8a) - ? >/r„_, (Sa)|

Dn (S=a'
, /r N ,

2(w-l)
, /s^J

4:'7rypo { n ^ ^ ' n )

+ 2(n-l)(7„' = 0,

A^ {2 (n + 2) ,;r„+, («a) + r^„ (aa)} + (l +
^) 4^^ t« (««)

+ i)„' {2 (n + 2) t„^. (8a) + 1„ {Za)}

2n

fij 4777/),

±i C„ - »(7„' = - (n + 1) |4^ V'n («a) + %' t« (8«)}
j

+ {l+-]^^niBa) = 0,

•(20).

iwypi

We shall return hereafter to the method of determining the trequency

by means of this system of equations.

147. At this point we note that there is an intermediate case, which

arises if the equation (11) has a zero root. This happens if the frequency

satisfies the equation

p* + ip'.iTrypo-n{n + l)i^-7ryp„y = (21).

When this is so the equation (10) becomes

(^ + a»)^=ir„ = (22),

where a? is given by the formula

^(\ + 2/i)a^ = Jf7r7p„>+p='p„(\+3/i) (23).

The relevant solution of equation (22) is of the form

ir„=^„i|r„(ar) + (7„ + ^„r= (24).

Just as in Chapter VII, to the three terms in the expression for Jf„ there

correspond three forms for /„, .... The forms answering to the first two

terms have been already obtained, and we may find the forms answering
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to the third term by proceeding as if this term constituted the complete

expression for if,,. We have at once from (7) on p. 127

2(2« + 3)

Now equation (23) of p. 96 gives at once

Gn = ^H,

where E,i is a constant expressed in terms of E„ by the equation

E,:=(l-'^-^y''']-^^ (25).

To obtain the corresponding form for jP„ we have equation (7) in the form

^'^'=(2'^-^^>2^r^"-^'>^»'
and hence we find

['iwypon 2n )

where E," is a constant. This may be written

To determine the constant En" wc use equation (8), and find after slight

reduction by help of equation (21)

E\" = - (2,. + 3)k + 2m + ^(/- + 4)} „ , , f" .^ ... .(26).

148. We have next to find the contribution of this solution to the

expression
{d(rU) du ]

We can write down the formulae

A = 2 (2m + 3) -fi^ W„,

rU=(,nFn + r^Gn)Wn

+ [^^En-(n + l)EAxWn,

9-2
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in all of which those terms only are expressed which arise from the term

EnT' in Kn- The corresponding terms of Xa;A + ... are

j|^+^K - (« + 2) ^„'l r" + 2 (n - \)E,;'
.
1 27r7Po )

boundary r = a]

{gifji 2— ylr„ {aa) - 2 (?i + 2) f„ (m) - - yjrn-i (aa)
n n

_J ^„(aa)+ i/r„_, (aa)
4Tr7/3„

I
»!.

'^ n

+ 11^^ E„ - (71 + 2) E-,;} a' + 2 (« - 1) En" + 2 (« - 1) C„' = . . .(27)

Hence the stress-conditions at the boundary r = a become

An' faW

An (aW
, ^_, ,

2(n-l)

and

- J „' (2 (« + 2) Vr„+, (aa) + T|r„ (aa)j - fn- -)/^ V^„ (aa)

Again the terms contributed to

--^' + (1 + ^)1^ ^.-0-..W

"
(fa

+ (2n + 1) ir„ (a)

by the term ^„r= of iT,, (?•) amount to (2n + 3) £^„a=, and therefore the surface

characteristic equation for the potential becomes

2ji + 1 [ A '
1

^^^ (7„ - nC,/ = - (« + 1) j£^ ^„ (aa) + i£„'a'} + nE^'

,

and, on simplifying this by the third of (13), which is unaffected by the zero

root of (11), we find

(29).

149. The typical solution which holds in case ju= satisfies equation (21)
is therefore expressed by equations (6) and (24) and the equations

J. ^nO" 2?i + 3 „
'iTT'yp^

^
2vypo

G„ = An'yjrn+j (ar) + A',,'

...(30).
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The seven constants A^, An, G„, C,/, En, En, E^" are connected by the

following equations :—the first and third of (13), (25), (26), (27), (28) and

(29). From these equations the constants can be eliminated and there

results an equation to determine aa.

150. In order to obtain the equation in question it is convenient to

introduce the notation

q=p'/i^ypo (31).

Then q is the positive root of the quadratic

q^ + 4,q-n(n+l) = (32),

so that q is known when n is chosen. Then (29) becomes

On
An

(2ft+l)5'-2n(ft-l)

Also (23) gives /xa« = firvpo"- [q—^ +—

'

(« + 1) |-^ ^/r„ (a«) + \E,:a}\ - nE,i'

\ + 3ya

2^

4/:^

and we find by the first of (13)

Anti
An

2/i

n \ + lyi,

...(33).

...(34),

:/ ^ n X + 2^X

Jo\ 4 + 9- ^ /

Also (25) is

and this becomes, by (32),

47r7pi, V 4 + 9"

En

.(35).

E^ =
iirypo

1-^

^,^ En g-m + 3
"

27r7p„ n + 1

Further, on substituting for fi from (34), we find (26) taking the form

En
En" = m

where m is given by the equation

2m + 3/ \ + 3fi

q — n

2Tryp„a.^

4^^ ~r- , ,1+4 _!_
X + 2/X

\ + 2^ \ + 2/t/ \ n fi

(36).

.(37),

,(38),

so that m is known when n and \/^ are chosen.

When these substitutions are made in equations (27) and (28) and the

constants An, En are eliminated, there results the equation

1 +
X+2/x_n_\fja^

fi 4 + 9
-2(» + 2)+ ,„

, ,, „ \ niV^"-""*!^"-'^ ^ (2ft+ l)y-2n(>i-l)) ^ v^ -C^*- +2"-^*.-,

+

o ^o^» + 2^ ^QN
3(n-l)((/-n + 3) 2m(«-l)j

^" + ^ + >r:n^^"^'-''^^~(2n+l)v-2n(»-l)+"aV~i^"

a"a=

3?i

i-A+=^ + ^±ii(2„+ 3)
M+1 fJ-

(2» + l)y-2>i(w-l)) ^

where the argument na of the i/r-functions has been suppressed.

.(39),
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Equation (39) will be satisfied by a series of values of m, and to each of

these there corresponds, in accordance with equation (34), a value of fi.

Hence, when n and Xjft. are chosen, there are a certain series of values of

fi for each of which vibrations of the t3rpe here investigated can occur, but

such vibrations cannot occur for any value of /x which is not a member of the

series. The greatest of these special values of /i corresponds to the smallest

of the values of aa by which the equation (39) can be satisfied.

151. In addition to the types of vibration which have been investigated

in this Chapter, there are others which involve no dilatation and no radial

displacement. For these A, U, and W all vanish. These vibrations are

independent of gravity and initial stress, and are identical with those

vibrations of a solid homogeneous sphere free from gravitation which have

been described by Lamb* as "vibrations of the first class." The types of

vibration so far discussed in this Chapter are all analogues, under different

conditions, of vibrations which he described as being of the " second class."

The types investigated in § 145 and expressed by equations (12) may be

described as " slow," those investigated in § 146 and expressed by equations

(19) may be described as "quick," and those investigated in §§ 147—150 may

be described as " intermediate." If the degree n of the spherical harmonic

that is involved is given, and likewise the ratio X//t, vibrations of a slow

type cannot occur unless the rigidity /i is less than a certain critical value.

The method by which this critical value is to be determined has been

explained already ; it is the value of fx. which is determined by equation (34)

when aa has the smallest value by which equation (39) can be satisfied. If

IJL exceeds this critical value all the vibrations of the second class which

answer to the chosen values of n and X//i are of quick types.

Now let us suppose that n and \//a remain fixed, and that /x. continually

diminishes. After passing the critical value corresponding to the smallest

root of (39) the value of /x is such that vibrations of a slow type can occur,

provided the condition of gravitational stability is satisfied. At first only

one such type can occur, and this will be the type with the longest period

;

all the remaining types will be quick. The value of fi for which instability

sets in may or may not exceed that corresponding to the second root of

equation (39) ; if it is smaller than this value, then, as /a diminishes, it can

assume values for which there are two vibrations of slow types while the rest

are of quick types. In general it would be a question of some mathematical

interest to determine the number of roots of equation (39) which can occur

before the value of /x corresponding to the largest of them becomes less than

the value of /i at which instability sets in. The physical interest of the

question, however, seems to be but slight.

* Loc. cit., ante p. 50.



VIBRATIONS OF A GRAVITATING COMPRESSIBLE PLANET 135

152. We shall now form the frequency equation for vibrations of quick

types. Using q as before to denote p'/^Trypo, we find Irom the third and

sixth of equations (20)

^"'-
(2. + l)r-"Mn-l) {4^-^-("-)+f-^»M

•••(^«)-

Also, writing g for ^vyp^a, we find from the first and second of equations (20)

An •

Ana'

4nryp
- (l + ^^''-"^! -) . A/ =^ (l +-i^) ...(41).

Hence we can write down the fourth and fifth of equations (20) in the forms

An
4nrypo

i^n (aa)

+
A.

4!iryp„

^ fia?-p'po> \\n ^ ^ ' {2n + \)q- 2»i (« - 1)

- - ^n-^ (aa)l - j-^y" ^n («a) + 2^ Vr„_. (aa)|
J

- - tn-i (S«)} - f'"' t.. (S«) + 2"^ t„_, (S«)ll = .
. .(42)

and

4!iryp„

47r7p„

f
1 + T^°^" -) {t« (««) + 2 (» + 2) tn« («<0i + (l + ^) t» ('«)]

(l + - ^^] {fn (S«) + 2 (» + 2) ^/r„^, (8(0) + (l + ^) V^« (^«) =

.(43).

Before eliminating the constants it is convenient to transform the equations

by putting

T-f -, t» i«r) = ^„' (ar), .^„+, (57-) = - ^n («•).

a (or)
"^ ""

Then the two equations (42) and (43) can be written

Anyfrnicia) r ngpo/a {'^'^ _2'''-^ +v + -aa fli°^\
4>Trypo l_^a«-/)>o I

« « " f«(aa)j

4t7p„ LA'S'-^^'Po

+ 2(71-1)+ v + 2aa

{B'^a' o«'-l^ 2^^ Vr,/(Sa))

i^„(afi)

n

+ .(„-i) + . + 2a»Mgj =
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,
A„yfr„(aa) \ ngp,

-p'po] aa ^„(«a)J

/4 aa i/r„(aa)J

1 + 2
6a •</r„(6a)

^

X+2/^
^

o « + 2i/r„'(aa)1_Q

where v is written for 6(n=- l)/{(2n + 1) j- 2« (»i- 1)). The general

frequency equation can now be written down in the form

i/r„'(oa)

ngpJa L
_|_ g

« + 2 x^Vo))
_^
\ + 2/x.

_^ ^
» + 2 >f^»

(«a)

- p'Po { n n n -»/r„(aa)) V^«(oa) _,

•'-p'poi ' Sa ->/r„(6a)) p. Sa •<^„(Sa)J

.(44).

Here o' and B^ are the roots of the equation

^(X+2/.)p-|(\ + 3/.)p» + 42jp„f +L^ + 4'|p»-/i(« + l)gyip^» =

(45),

and we shall take a* to be the greater of the two roots.

153. We get a certain verification by treating gravity as very small,

and passing to the limit by allowing gp^ajp. to tend to zero. The limiting

values of o" and S' are respectively p^pajp- and p'p^jiX + 2/i), and we
find from equation (45) that fid'—p'p„ is small of the second order in g,

while /iS" —p^Po has a finite non-zero limit. Hence we shall have to take

;;

—

'-- to have the limit zero, but -— ^'^^°
„

to have a finite limit.
i-rrypo Aiiryp^ pa.- - p^p„

Also we have to take -.—^ to have a finite limit, but -.—— f^^'^"
47^7^0 47r7po P-o- — p^pit

to have the limit zero. Further v has the limit zero. Thus the frequency

equation becomes

_2
« W ifrn (tttt)

^ '
^JTn (Sg)

a'\l
I

o" + 2 V^«(«a)
| g,j

\ + 2/.
^ ^

n + 2 Vr„'(8a) l

I aa yfr„(aa)\ [p. Ba •«/r„(Sa)J

= 0...(46),
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and this can be identified without difficulty with the frequency equation

given by Lamb for a homogeneous sphere free from gravitation.

The above method of passing to a limit enables us to correlate with each

mode of vibration of a gravitating sphere a corresponding mode of vibration

of a sphere free from gravitation. As these modes have been very completely

discussed, a comprehensive discussion of the vibrations of a gravitating sphere

may be dispensed with.

154. The problem of determining the modes of vibration of a gravitating

incompressible sphere might also perhaps be treated as a limiting case of the

general problem, but it seems best to investigate it independently*- The

equations of motion can be written down at once from equations (1) of p. 127,

by taking A to vanish except when multiplied by \, and taking the product

\A to have a finite limit. We shall denote this limit by TI. Then the

equations of motion can be written in such forms as

^'+/tV»M+p„^=M + /3„^=0 (47),

where W = U - ^-^p^^rU (48),

and W is the potential due to the superficial distribution of density palla on

the surface r= a. The boundary conditions are the surface characteristic

equation for the potential and the conditions that the disturbed surface is

free from traction. The latter conditions can, just as in Chapter VII, be

expressed in such forms as

'n^''f-^'-S-'}=« («>

155. To obtain a typical solution we put

F=r„ (50),

where Wn denotes a spherical solid harmonic of the nth degree. Then we

observe that, since A = 0, it follows from the equations of type (47) that 11'

satisfies the equation

v=n'=o,

and we may put n' = a„H^„ (51),

where a,, denotes a constant which is at present undetermined. Nothing

would be gained by assuming a more complicated form for II'. Again, for

u, V, w, we assume such forms as

u = Fn{r)^-^+Gn{r)xWn (52).

* This has been done by Bromwich, loc. cit., ante p. 12G. The method in the text, whieli

differs from that used by him, is in accoi-dance with the general method of Chapter VII.
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Then to make A = we must have

r dr dr ^

.(53);

and the equations of motion become three equations of the type

and tliese are satisfied if G„ and F„ satisfy the two equations

d'G„
,
2{n + 2) dGn

. ,,,r _n

a?-' r dr u

.(55)

(56),and
a?" r a?"

where k" = p'p„jfx (57).

The relevant sohition of equation (55) is of the form

Gn = -A.n^n+^{Kr)

and the relevant solution of equation (56) is of the form

^„= ^V^„(«r) + ^„>„_,(«r)-"^''-»

and, to satisfy (53), we must have

pop'

.(58),

.(59),

.(60),

so that

From these forms we find

^« = ^'{>^«(-) + Jt»-.(-)}-^P (61).

156. The surface characteristic equation for the potential is

.(62).

and this gives

- (2« + 1) = 47rw„ 1^ („ + 1) V.„ («a) + ^^^^^^^H ,

or, as it may be written,

w(«„ + Po)+M„(n+l),^„(«a) = -^''-^p„5 ....

where q is written, as before, for p'/^ypo.

.(63),
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To form the conditions that the boundary is free from traction we note
the formulae

d{rU)

and

du
) u =
or

-p^>^--+.W + "-^.tfi-'}?5-(««)X.+.„(„,.H'.

A. (K^r' ''

^' (IT ''"" ^"^^ - (« + 3) fn (icr) - ^ yfr„_, (kv)

In obtaining these some reductions have been effected by using the relations

connecting i/r-functions with consecutive suffixes (p. 98 ante). Now equation

(49) can be written

:(^' + ^'^yp'rU) + ^.^-^ +
du

r^ u
or

= 0.

and there are three equations of this type which hold at r = a. On using

the above formulae, and equating separately to zero the coefficients oidWnjda:

and xWn, we find the two conditions

m4»
I*^ t» (««) - 2 (n + 2) t» {ica) -

^ fn-i (««)| - 2 (« - 1) (a„ + p„) =

(64)

and

«n (lin+Po) -~Anin+l) l/r,, (ica) - fiAn {'^n (««) + 2 (« + 2) l/r,,+i (ko)} =

(65).

On combining (63) and (65) we obtain the equation

^,An {-f„ (ku) + 2(n + 2) ^fr„+, («a)} - («„ + p„) = § (»i - 1) p„ . . .(66).

From this equation and the equations (63) and (64) we can eliminate 4„ and

a„, and thus obtain the frequency equation in the form

(M+l)^„ n {2n + l)q =0,

•2(»i + 2)-'^'U„+?V^„_, 2(n-l)

-{t„ + 2(w + 2)>/r„+,} 1 2(«-l)

where the argument xa of the i/r-functions has been suppressed. On substi-

tuting for q its value, which is equivalent to K-afi/gp^, and multiplying out,

we obtain the frequency equation in the form

K'a/j, . (2n + 1) {2-.^„_j - K^a-fn + 2« (2ji + 1) >|r„ + 4/; (n - 1) (?i + 2) f„+,}

-gpoa. 2n (« - 1) {2.^„_. - K^a^f,, + 2 (2n + 1) >/r„} = . . .(67),
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or, as it may be written,

2Vr„' («tt) (2>i + 1) + ngp,a/(2>i + 1) /t - K'a'/2 (n - 1) gg,

«:ai/r„ (/ca)
"^

»i (h + 2) + ngp,al{2n + l)/i- ic'a^l^ (n-1) ""^ ''

Equation (68) is the frequency equation found by Bromwich. If we suppose

/x to become very small, so that Ka becomes very great, the most important

terms in the coefficients that multiply K-a/i{2n + 1) and -gpoCi- 2w(n — 1) in

(67) are identical, and therefore, as Bromwich pointed out, the equation

passes over into the well-known frequency equation

p.= 2n(«-l^)£
^ 2n + l a ^ '

which was given in 1863 by Lord Kelvin as determining the periods for a

sphere of homogeneous incompressible fluid.

157. We shall now exemplify the theory of §§ 147—150 by working out

the rigidity which a homogeneous sphere of the same size and mass as the

earth must have in order that the gravest mode of those vibrations which

are specified by spherical harmonics of the second degree may be of inter-

mediate type. We shall take \ to be equal to fi.

Equation (32) gives q = VIO — 2,

and, with this value of q, equation (31) gives the period as 4697 seconds

nearl}', or about 1 hr. 18 mins. Again, equation (38) gives

14(g-H)(g-H0)
' 3(9-2) '

and equation (39), which gives aa, can be written

On introducing the value of q and replacing yjr^ by - (5i/rj -i- yfr,)/a''a-, we find

after some reductinn that the above equation for aa becomes

(33 VIO . a*a* - (3.570 -I- 1785 VIO) a^a^ + (72800 + 28000 VIO)) f, (m)

- [(122-H09 VIO) a=a»- (14560 -|- 5600 VIO)} ^fr, (oa) = ...(70).

The smallest positive root of this equation is found to lie between 4 and
4-1. The critical value of the rigidity is then found from (34) to lie

between 619 x 10" and 589 x 10" dynes per square cm. According to a
result given on p. 114 ante, the sphere with this rigidity would be unstable

as regards radial displacements. Hence it appears that all the vibrations

which a homogeneous body representing the earth can execute, if they are
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of types specified by spherical harmonics of the second degree, are of what we
have called quick types. In particular, the period of the gravest of them
is less than 4697 seconds.

158. It seems to be worth while to find this period more exactly.

According to the results obtained in Lamb's paper*, the period of the

gravest mode of this type which a homogeneous sphere of the same size and

mass as the earth can execute is 66 minutes, the rigidity being that of steel,

taken as 8'19 x 10" dynes per square cm. In this calculation gravity is

omitted, and the material treated as incompressible. Bromwichf found

that, if gravity is taken into account, but the material is still treated as

incompressible, the period is reduced to about 55 minutes. The effect of

compressibility must be to lengthen the period. We therefore proceed to

form the period equation for vibrations of quick types which are specified by

spherical harmonics of the second degree. We shall take X to be equal to /x.

In obtaining this equation it is most convenient to start from equations

(42) and (43) of p. 135, putting 2 for n, and putting X, equal to /i. Equation

(45) gives

na'a? = ^gp,a {2 (1 + g) + ^/{q' - 4g + 22)}
|

MS'a» = iflrp„al2(l + g)-V(9=-4g+22)}J
''

ngpo/a _ 6 ngpja _ 6
ananence

^^^.^p^p^- 2-q + E- ^8^ -p^p,~ 2-q-R'

where E = V(9' - 4? + 22) (72).

As before we replace i^, (aa) by

and ^3 (8a) by the corresponding expression in terms of Ba. Then equation

(42) becomes

47r7p„L2-g + -RlV2 5^-4 J
^'^

'
^'' ']

- 1^ <r-^
(aa) + ^1 (aa)M

= 0,

and equation (43) becomes

A^ ri2-3g + 3i? _
g8-9^ j5^^ ^^^^ ^ ^^ ^^^^j-

4Tr7po |_2 — 5 + ii i — q-^R J

A ri2-3g-3i? _ g8-^ j5^^ (g^^ ^ ^^
^g„))l ^ 0.

* H. Lamb, Voe. dt., anit p. 50.

t T, J. I'A. Bromwich, loc. cit., ante p. 126,
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Hence the frequency equation can be written

{Sa'a' -10(8- q + R){4-q-o)/(5q- 4.)] yfr^iaa)- (10 -2q + 2R)^frAaa)

{(12-3q+ SM) a'a= - 40 (8 - ^ + E)\ >/r, (aa) - S (H - q + M) -f, (aa)

(38'a°-10(8-y-J^)(4(?-5)/(57-4)|>/r,(8tt)-(10-29-2.R)i^,(gffi)

1(12 - 3^ - 3E) «^a^ - 40 (8 - g - iJ)J ^, (Ba) - 8 (8 - g' - i2) i/r. (Sa)

= (73).

We cannot solve this equation until some value is assigned to the ratio

aajBa; but, as soon as this ratio is assigned, equations (71) show that

q becomes determinate, that is to say the period becomes determinate,

before the equation (73) is solved for aa. If the ratio aa/Sa is assigned, and

the equation (73) solved for aa, or Sa, and the result substituted in equations

(71), there results a definite value for
fj,.

In order to determine the period of

the gravest mode for a sphere of given rigidity it seems to be best to find the

values of fi which correspond to a suitably chosen series of values of the ratio

aa/Sa. We have seen that periods between 3300 and 3960 seconds are the most

interesting. In the following table are given a series of values of the ratio

aa/Sa



VIBRATIONS OF A GHAVITATING COMPRESSIBLE PLANET 143

aa/Sa, the corresponding values of q and of the period in seconds, the smallest

values of aa by which in each case the equation (73) can be satisfied, and the

corresponding values of yn as multiples of 10" dynes per square cm.

It appears from the table that for a homogeneous sphere of the same size

and mass as the earth, having a rigidity equal to that of steel and a Poisson's

ratio equal to J, the period of the slowest vibration of the type in question

is almost exactly 60 min. We see that the period is diminished by gravity

but not so much as it would be if the substance were incompressible.



CHAPTER XI

THEORY OF THE PROPAGATION OF SEISMIC WAVES

159. We shall begin this Chapter with a statement of the leading

features of seismic records and of the most important steps that have been

taken in their interpretation.

As long ago as 1830 it was proved by Poisson* that a homogeneous

isotropic elastic solid body of unlimited extent can transmit two kinds of

waves with different velocities, and that, at a great distance from the source

of disturbance, the motion transmitted by the quicker wave is longitudinal,

that is to say the displacement is parallel to the direction of propagation,

and the motion transmitted by the slower wave is transverse, that is to say

the displacement is at right angles to the direction of propagation. It was

afterwards proved by Stokesf that the quicker wave is a wave of irrotational

dilatation, and the slower wave is a wave of equivoluminal distortion charac-

terized by differential rotation of the elements of the body, the velocities of

the two waves being \/{{X + 2/j.)lp\ and ^(fj,/p), where p denotes the density,

fj, the rigidity, and X + f /a the modulus of compression. These two velocities

will be denoted by a and b. Stokes proved also that, if any disturbance

takes place within a limited volume of the body, waves spread out from the

disturbed region in the following way :—At a distant point no movement
occurs until sufficient time has elapsed for the travelling of the disturbance

with velocity a from the nearest point of the initially disturbed region, and
again no movement occurs after a sufficient time has elapsed for the travelling

of the disturbance with velocity b from the furthest point of the initially

disturbed region. If the point is sufficiently distant for the a-disturbance,

travelling from the furthest point of the initially disturbed region, to reach

it before the b-disturbance, travelling from the nearest point of the initially

disturbed region, reaches it, the motion that takes place at the point has

three stages. In the first stage there is change of volume without any

* S. D. Poisson, " Memoire sur la propagation du mouvement dans les milieux elastiques,"

Paris, Mini, de VAcad., t. *. 1831.

t G. (i. Stokes, " On the dynamical theory of diffraction," Cambridge, Tram. Phil. Soc.,

yq\. n. 1849 ; reprinted in Stokes's Math, and Pbye. Papers, vol. n. p. 243,
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rotation, in the last stage there is rotation without any change of volume, in
the intermediate stage there is neither dilatation nor rotation, but the
substance moves like an incompressible fluid in which there are no vortices.

Thus at a sufficiently great distance from the initially disturbed region the
two waves are separated completely. At shorter distances they are super-
posed for part of the time.

Systematic records, made by self-registering instruments, of the disturb-
ances that are transmitted to distant stations when a great earthquake takes
place, began to be made about the year 1889. It was very soon noticed that
the records showed two very distinct stages, the first characterized by a very
feeble movement, the second by a much larger movement. These are the
so-called "preliminary tremor'' and "main shock*." The idea that these
might be dilatational and distortional waves, emerging at the surface, took
firm root among seismologists for a time. In the light of increasing knowledge
this idea had to be abandoned.

160. The theory of the dilatational and distortional waves takes no
account of the existence of a boundary. When the waves from a source of

disturbance within a body reach the boundary they are reflected, but in

general the dilatational wave gives rise on reflexion to both kinds of waves,

and the same is true of the distortional wave. Any subsequent state of the

body can, of course, be represented as the result of superposing waves of the

two kinds reflected one or more times at the boundary, with an allowance for

the motions that take place between the two waves, but this mode of

representation is very difficult to follow in detail. In particular it is not

easy to see without mathematical analysis how such waves can combine to

form a disturbance travelling with a definite velocity, less than either

a or b, over the surface. Yet such is the case. Lord Rayleighf showed in

1885 that an irrotational displacement involving dilatation and an equi-

voluminal displacement involving rotation can be such that (1) neither of

them penetrates far beneath the surface, (2) when they are combined the

surface is free from traction. Such displacements may take the form of

standing simple harmonic waves of a definite wave-length and period, or they

may take the form of progressive simple harmonic waves of a definite wave-

length and wave-velocity. In Lord Rayleigh's work the surface is regarded

as an unlimited plane, and the waves may be of any length. Gravity is

neglected, and it is found that the wave-velocity is independent of the wave-

length. Such waves have since been called " Rayleigh-waves."

* The part of the motion here culled the " main shook " is often described by the term " large

waves," sometimes as the "principal portion." For many details in regard to the observed

facts about earthqaake shocks, and their transmission to great distances, the author is indebted

to the treatise by C. G. Knott, "The physics of earthquake phenomena," Oxford, 1908.

t Lord Bayleigb, "On waves propagated along the plane surface of an elastic solid," London,

Proe. Math. Soc, vol. xvii., 1887 ; reprinted in Scientific Papers, vol. ii., p. 441.

L. G. 10
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Besides the features of Rayleigh-waves which have been mentioned

above, it is to be remarked that the displacement involved in them is

two-dimensional. If we think of the plane boundary as horizontal, the

components of displacement are a vertical component, and a horizontal

component, and it is important to notice that the horizontal component is

parallel to the direction of propagation. A second noteworthy feature is

that the vertical component at the surface is larger than the horizontal

component. The ratio of the two is nearly 2: 1, if the material is incom-

pressible; it is nearly 3:2, if the Poisson's ratio is \.

161. In the paper cited Lord Rayleigh suggested that waves of the type

in question might play an important part in earthquakes. Since they do not

penetrate far beneath the surface, they diverge practically in two dimensions

onl}', and so acquire a continually increasing preponderance at a great

distance from the source. This suggestion was not at first well received

by seismologists, mainly because the records did not show a preponderance

of vertical motion in the main shock. It was first systematically applied to

the interpretation of seismic records by R. D. Oldham* in 1900. He pointed

out that the preliminary tremors show two distinct phases, and that these

are received at distant stations at times which correspond to the passage

through the body of the earth of waves travelling with practically constant

velocities ; but the main shock is received at times which correspond to the

passage ove7- the surface of the earth of waves travelling with a different

nearly constant velocity. He therefore proposed to identify the first and

second phases of the preliminary tremors respectively with dilatational and

distortional waves, generated at the source of disturbance, travelling by

nearly straight paths through the body of the earth, and emerging at the

surface ; and he proposed to regard the main shock as propagated by Rayleigh-

waves. The suggestion that the first and second phases of the preliminary

tremors should be regarded as dilatational and distortional waves, transmitted

through the body of the earth, has been very generally accepted, but the

proposed identification of the main shock with Rayleigh-waves has been
less favourably received, partly on account of the diflSculty already mentioned
in regard to the relative magnitudes of the horizontal and vertical displace-

ments, and partly because observation has shown that a large part of the
motion transmitted in the main shock is a horizontal movement at right

angles to the direction of propagation.

162. Lord Rayleigh's investigation indicates the way in which waves of
a certain type travel over the surface when they have already arrived at such
a distance from the source that they can be treated as straight-crested, and
it also shows that this type of waves is the only one in which the motion is

* B. D. Oldham, " On the propagation of earthquake motion to great distances," London,
Phil. Tram. B. Soc, A, vol. 194 (1900).
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confined to the region near the surface, the body being homogeneous. The
propagation of an arbitrary disturbance setting out from a limited region of

a homogeneous body bounded by an infinite plane has been discussed very

fully by H. Lamb*. He considered in detail the waves produced by impulsive

pressure suddenly applied at a point of the surface. The motion received at

a distant point begins suddenly at a time corresponding to the advent of the

a-waves. The surface rises rather sharply, and then subsides very gradually

without oscillation. At a time corresponding to the advent of the b-waves

a slight jerk occurs ; and this is followed, at a time corresponding to the

advent of Rayleigh-waves, by a much larger jerk, after which the movement
gradually subsides without oscillation. The subsidence is indefinitely pro-

longed. This peculiarity of an indefinitely prolonged " tail " to the waves

has been shown by Lambf to be a characteristic feature of the propagation

of waves which diverge in two dimensions, even for the simplest imaginable

medium with a single wave-velocity independent of the wave-length. Lamb's

theory accounts easily for some of the most prominent features of seismic

records, viz. the first and second phases of the preliminary tremors and the

larger disturbance of the main shock, each with its appropriate velocity of

chordal or arcual transmission, as the case may be, and it also accounts

for the gradual subsidence of the movement. It does not account for the

existence of horizontal movements at right angles to the direction of the

propagation. Such movements are observed both in the second phase of the

preliminary tremors and in the main shock. The existence of such move-

ments in the second phase of the preliminary tremors could be accounted for

easily by assuming a different kind of initial disturbance, such, for example,

as would be caused by a couple applied locally, or by a sudden shearing

movement in a horizontal direction. But no assumption as to the nature of

the disturbance at the source will enable us to account for the relatively

large horizontal displacements, transverse to the direction of propagation,

which accompany the main shock ; for, in a homogeneous body, there are no

waves of transverse disturbance which are practically confined to the super-

ficial regions. Again, the theory does not account for the approximately

periodic oscillations which are a prominent feature in all seismic records, and

Lamb suggested that these might be due to a succession of primitive shocks.

A different explanation will be proposed presently.

163. It is now recognized that the large waves of the main shock, like

the preliminary tremors, show more than one phase. The first phase is

characterized by relatively long periods and a preponderance of transverse

movement, the second phase by shorter periods with again a preponderance

• H. littmb, "The propagation of tremors over the surlaee of an elastic solid," London,

Phil. Tram. R. Soc., A, vol. 203 (1904).

t H. Lamb, " On wave-propagation in two dimensions," London, Proc. Math. Soc, vol. xxxv.,

1903.
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of transverse movement ; the distinction between these two seems not to be

very important. In the third phase the horizontal movement is mainly in

the direction of propagation, the periods are shorter than those which occur

in the two preceding phases, and these periods gradually diminish. This

phase brings the largest movements, and, although various phases have been

recognized in the subsequent parts of the train of waves, these three appear

to be the most important. Observation has also shown that the first phase

of the preliminary tremors is characterized by shorter periods than the second

phase. C. G. Knott* and E. Wiechertf have both proposed to account for

the preponderant transverse movement in the earlier phases of the large waves,

by assuming that it is an effect of the transmission of waves through the

"crust of the earth." Knott supposes that these waves are produced by

successive reflexions of ordinary dilatational and distortional waves at the

inner and outer boundaries of the crust and at the bounding surfaces of the

various heterogeneous materials of which it is composed ; and he emphasizes

the results (1) that dilatational waves incident on a surface give rise on

reflexion to distortional waves as well as dilatational waves, and (2) that,

when the angle of incidence is high, the greater part of the energy is trans-

ferred to the distortional waves. Presumably, reflexions at oblique rock-faces

must be supposed to be involved ; for there is no such thing as a generation

by reflexion of waves with displacement at right angles to the plane of in-

cidence from waves with displacement parallel to the plane of incidence. But
there seems to be no reason why waves with horizontal displacement at right

angles to the direction of propagation should not travel through the crust,

even if it were homogeneous, without penetrating far into the subjacent

material, and this is, in fact, assumed to be the case by Wiechert, who supposes

the crust to rest upon a sheet of magma, in such a way as to be practically free

at the inner surface. I shall return presently to the discussion of these ideas.

Wiechert has also suggested that the existence of definite periods in the

seismic records may bo due to the setting up by the shock of the natural free

vibrations of tracts of country ; and Knott has pointed out, after Omori, that

the records of Japanese earthquakes always show a preponderance of vibrations

of period 4'6 seconds in the preliminary tremors, and that this period is

characteristic also of the minute pulsations of the ground which are constantly

observed at Tokyo. He suggests that this is a period of vibration natural to

the plain in which Tokyo lies.

164. Besides the method of investigating the transmission of movements
by determining the kinds of waves that can be propagated and their velocities,

there is another—the method of normal functions. The earth being a body
of limited extent, the movements which ensue upon any disturbance can be

* See especially p. 256 of Knott's treatise cited on p. 14S ante.

+ E. Wiechert and K. Zoppritz, "Ueber Erdbebenwellen," Gdttingen Nachrichten, 1907.
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analysed into simple harmonic vibrations in normal modes. Lord Rayleigh*

pointed out that his theory of the superficial waves must be included in

Lamb's theoryf of the vibrations of an elastic sphere ; and the deduction of

the equation giving the velocity of Rayleigh-waves from the period equation

for the vibrations of a sphere was afterwards effected by Bromwichif in the

case where the sphere is incompressible, and the modified equation in which

gravity is taken into account, the substance being still treated as incom-

pressible, was also obtained by him.

Just as all the movements that can take place may be regarded as the

result of dilatational and distortional waves, transmitted with the appropriate

velocities through the various materials of which the earth is composed, and

reflected at the bounding surface and at the interfaces between materials of

different properties (with a proper allowance for the motions that take place

between the two waves), so also all the movements that can take place may
be regarded as the result of superposed vibrations in normal modes. Some-

times one method yields results which are not easily obtained by the other.

We shall now consider a series of illustrative problems, with the object of

throwing fresh light upon some of the questions that have been raised in the

preceding statement ; and we shall avail ourselves sometimes of one method

and sometimes of another, as may appear most appropriate.

Transmission of waves through a gravitating

compressible body.

165. Our first problem will be to determine the laws of wave-propagation

in the interior of a gravitating compressible planet. The equations of wave-

propagation are to be formed in the same way as equations (9) of p. 92, but

without introducing the assumption that the components of displacement

are proportional to simple harmonic functions of the time. We shall assume

that the undisturbed body is homogeneous. The equations are three of

the type

. du dv dw .

^ith ^ = 8i + 3^+8^ (2^'

rU=xu + yv + zw (3),

V=Tf=47r7p„A (4).

* Loc. cit., ante p. 145. t Loc. cit., atite p. 50.

J Loc. cit., ante p. 126.
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By differentiating both members of the third of the equations of type (1)

with respect to y, and both members of the second with respect to z, and

subtracting the results, we obtain an equation which can be written

PO -g^ = /iV^ Wa, + llTfp,^ li^^)-liy^)\ (5).

""^^'^
"«=KI'"I"3

^^^-

There are three equations of the type (5), and they show that, if A vanishes,

waves of distortion involving rotation can be propagated in exactly the same

way as in an elastic solid medium supposed to be free from gravitation and

initial stress. This result is in accordance with the result noted in § 151,

viz. that the vibrations of the first class are unaffected by gravity and initial

stress.

The result would probably need to be modified if we could take proper

account of the heterogeneity of the materials within the earth and of the

inequalities of its figure. The modification would, in all likelihood, take the

form of a dependence of the wave-velocity of a train of distortional waves

upon the locality and the wave-length. Cf § 168 infra.

166. By differentiating both members of the three equations of type (1)

with respect to x, y, z in order, adding the results, and using (4) to

eliminate W, we obtain the equation

Po^ =(X-h 2/.) V»A-f7r7p/V=(rC^)+ iir^p.-r^— ^ S-rrypo'/ii (7).

By multiplying both members of the same three equations by x, y, z in order,

and adding the results, we obtain the equation

p.^P = (X^^)rf + ^{VHrU)-2A]-^.yp^^r'^

+ A7r7^„=7-=A-l-p„r-^ (8).

Now we have the formulae

d(rU)\ d
^}='-^^^('-^) + 2V=(rCr),

V- (r-A) = r°-V-'A +4r~ + 6A,
or

in the last of which use has been made of equation (4). On operating with
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V^ on both members of (8), and eliminating V^(i'U) by means of (7), we find

an equation which can be written

.'"^^ " P" ¥») {^^ + ^f"^ ^' - '"« ^» + '^""^P"] ^

+ (|,rw')=r-^(v=-|l-||-,)A=0...(9).

This equation gives the law according to which waves of dilatation are

propagated through the body. The equations of type (5) show that in

general the motion transmitted by such waves is not strictly irrotational, but

the dilatation must be accompanied by rotational strain. Thus the separate

existence of waves of irrotational dilatation and waves of equivoluminal dis-

tortion is not maintained when gravity is taken into account. In the case

of the earth ^ir'yp^jfi is {gp^ajn) a~^, where a is the radius of the earth ; and

therefore the rotation, which the equations of type (5) show must accompany

the dilatation, is very small, the quantity {gp^ajfji.) being comparable with

unity. The quantity (gpoa/fi) is about 5 if the rigidity is that of steel.

A similar argument can be used to deduce from equation (7) the result

that, to a first approximation, A satisfies the equation

It follows that the law of propagation of waves of dilatation is nearly the

same as it would be if gravity and initial stress were neglected, and the

effect due to these influences can be treated as a small correction.

167. To determine the nature of this correction we assume for A a

formula of the type

Acos{f{x-Vt)},

in which A,f, and V are constants, and substitute in the left-hand member

of equation (9). The result can be written

{f*{fi- FV„) (\ + 2^ - V'po) - |7r7/),r .
4/= (^ - Vy„)

- {i-rrrfp^Jf- ('' - •^')} ««« l/(^ - ^*>!

+ (fT7Po')^2/rsin{/(a;-FO) (10).

It is impossible to adjust V so that this expression shall vanish for all values

of X and t, and therefore simple harmonic plane waves of dilatation cannot

be propagated through the body without change of type. We observe, how-

ever, that, if the wave-length 27r// is small compared with the radius, the

quantity /a; is in general small compared with f°-
(r'-x-), while this quantity

is in general of the same order asf-fiji'rryp,\ Hence the sine term in the

above expression (10) is in general small compared with the cosine term.
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To make the cosine term vanish when the first power of a quantity of the

order {gp.ajii) x (l/a=/») is retained, but the second power is neglected,

we put

where 7,'= (\ + 2/u)/p„. Then we find after a little reduction

2^FSF---^^f4--2^!^—— ) (11).

This value of F is a function of y and z, though not of x, and therefore, in

strictness, differential coefficients of F should be introduced into the ex-

pression (10). It would, however, be found that the terms containing them

are small of a higher order than those here retained.

168. A first approximation to the law of propagation of dilatational

waves is expressed in the statement that such waves travel with the uniform

velocity Fj, ; this is the velocity denoted by a in § 159. A second approxi-

mation shows (1) that the velocity depends to some extent on the looxlity,

and (2) that it depends to some extent on the wave-length. The effect of

dependence on the locality would be shown in a curvature of the paths by

which the first phase of the preliminary tremors is propagated through the

earth. Even if the earth were homogeneous, gravity and initial stress would

cause these paths to deviate slightly from straightness.

According to what has been said here and in § 165, it might be expected

that the paths of the second phase tremors would be straighter, and their

rate of transmission more regular, than those of the first. Actually the

reverse holds. This discrepancy between theory and observation is, of

course, to be attributed to the heterogeneity of the materials composing the

earth.

169. Dependence of the rate of transmission upon the wave-length

indicates dispersion, analogous to optical dispersion*- The only example of

waves in a dispersive medium for which the effects produced by an initial

disturbance, confined to a limited region, have been worked out at all fully

is that of waves on deep waterf, treated as incompressible and free from

viscosity. In that example the wave-velocity of a simple harmonic wave-train

increases as the wave-length increases. Owing to the assumed incompressi-

* The result tliat in u gravitating compres.sible planet tlie velocity of waves i?hioh are

mainly dilatational shoald depend upon the locality and the wave-length was obtained by Love
in the paper cited on p. 89. On p. 251 of the treatise cited on p. 145 Enott suggests that the

wave-velocity of compressional wa.es may depend on the wave-length, although the theory of

elasticity, as ordinarily developed, does not admit the possibility of such dependence. He also

suggests that the longer periods associated with the second phase preliminary tremors may be
due to the intermingling of the distortional waves with the compiessional waves of longer

periods.

+ See the revision, in Lamb's Hydrodynamics (3rd edition), pp. 364—374, of Cauchy and
Poissou's investigations of this problem.
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bility, the motion received at a distant place begins at once. In the early

stages it is not even approximately periodic, but the surface rises and falls at

intervals which diminish rather rapidly. When the initial disturbance is

concentrated at a point the motion in its later stages becomes ranch more

nearly periodic, as if a regular simple harmonic wave-train were passing the

place. The wave-length of this wave-train, and therefore also the period of

the motion that is being executed at the place and time, is determined as

that to which there corresponds, as group-velocity (not wave-velocity), the

velocity required to travel from the initially disturbed spot to the place in

the time. In the problem of water-waves the period continually diminishes.

If the initially disturbed region is of finite extent, the motion in the later

sjsages exhibits phenomena of "interference," the superposed waves due to

different parts of the initially disturbed region alternately reinforcing each

other and opposing each other, so that the surface shows a series of bands of

disturbed water separated by bands of smooth water, and the bands appear

to pass a place with the group-velocity described above. In the earlier

stages of the motion the amplitudes of the alternate elevations and depressions

which occur at a place increase rather rapidly. In the later stages they

diminish gradually. In any other problem of wave-motion in a dispersive

medium we can do little more than argue by analogy to the special problem

of waves on deep water, allowing, so far as we can, for such modifications as

may be necessary if the wave- velocity of simple harmonic wave-trains

diminishes as the wave-length increases, and if these wave- velocities are

restricted to lie between particular limiting velocities, instead of being

capable of taking all positive values. We may expect, although we cannot

prove strictly, that the disturbance received at a place will be oscillatory,

though not strictly periodic, the intervals between successive maxima

changing from time to time. We may expect also that these intervals will

increase or diminish according as the wave-velocity of a simple harmonic

wave-train diminishes or increases as the wave-length increases.

Now we have seen that, apart from any effect of heterogeneity, gravity

and initial stress should cause dispersion of the dilatational waves, and we

should expect therefore that such waves would emerge at the surface in the

form of oscillatory disturbances. In equation (11) the wave-velocity of a

simple harmonic wave-train increases or diminishes as the wave-length in-

creases, according as the second factor in the right-hand member is negative

or positive. Now if the rigidity is taken to be that of steel, and if the Poisson's

ratio is taken to be J, the quantity gp^al{X + fi) is about |, and the factor in

question is certainly positive. We should expect, therefore, that the periods,

or rather the intervals between maxima, of the oscillatory displacement

that can be observed at the surface during the passage of the first phase

preliminary tremors, should gradually increase. These results are in accordance

with observation.
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170. The above theory of a local velocity of propagation, depending on

the wave-length, is a very rough approximation, and the particular law of

dependence of wave-velocity upon wave-length and locality which is expressed

by equation (11) can hardly be regarded as more than an indication of

possibilities. It certainly cannot be regarded as the true law by which this

dependence should be expressed in the case of the eixrth. One defect of the

theory is that it represents waves which are mainly dilatational as being

propagated with a definite velocity, which cannot exceed that of simple

a-waves in the material. In strictness there is no such finite velocity. This

can be seen without analysis. Let any disturbance involving a change of

density occur in the neighbourhood of a place A. The attraction of the

earth at any other place B is immediately altered by an amount depending

upon the change of density at A, and therefore a feeble motion with a very

small finite acceleration begins at once at B. This result would be expressed

in our equations (1)—(4) by observing that the potential due to the change

of density at A is included in the value of W at B. The theory may, how-

ever, be relied upon in so far as it shows that a much more important

disturbance should begin at a time corresponding approximately to that at

which simple a-waves would arrive, and it suggests an explanation of some

of the features by which the first phase preliminary tremors are found to be

characterized.

Transmission of waves over the surface of a sphere.

171. Our second problem will be to investigate the effect of gravity

on superficial waves. For this purpose we shall have recourse to the

frequency equations obtained in §§ 152 d,nd 156. Before proceeding, it

may be in place to give an illustration, taken from the theory of the

transverse vibrations of string."?, of the way in which standing vibrations

in normal modes niaj' combine to form progressive waves travelling with

a definite front*.

Let a uniform string of length I, fixed at both ends, be thrown into

transverse vibration by an impulse applied at its middle at the instant

i = 0. According to a result obtained in Lord Rayleigh's Theory of Sound,

§ 129, the displacement at a distance x from one end at any subsequent

time t is given by the formula

„."^=^(-l)» . (2ji-H)7ra; . (2n + l)7rVt

* The Caachy-Poisson problem for waves on deep water illustrates the combination of

standing simple harmonic waves to form progressive waves, but in that problem the period of a
simple harmonic wave may be any whatever. The object here in view is to illustrate the case
where oulj- certain delinite periods can occur.
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where 4 is a constant depending on the magnitude of the initial impulse,

and Y- is equal to Tjp, T denoting the tension, and p the mass per unit

of length. Now if we take i < ^ i/ F, and expand, in a Fourier's series of

sines of multiples of -n-xjl, a function which has the value

IwA when \l+Vt>x>ll- Vt,

and the value when l>x>^l + Vt,

and when J Z — F<> a; > 0,

we find that the series is precisely that which stands on the right-hand side

of (12). Hence, at any instant before the disturbance setting out from the

middle at the time t = 0, and travelling with the velocity V, reaches the

ends, the displacement is equal to ^ttA within a length Vt on either side

of the middle, and vanishes in the remaining parts of the string. The

awkwardness of a discontinuous displacement at the front of the wave could

be avoided, at the expense of greater complexity, by taking the initial

impulse to be diffused over a short length instead of being concentrated

at one point.

In the above example the normal functions are simple harmonic functions

of position. In the problem of the vibrations of a sphere they are pro-

portional to spherical surface harmonics. Combinations of such functions

suitable to express displacements in progressive "waves are more difficult to

work out in detail. But the facts (1) that zonal harmonics of high degrees

(near their equatorial plane) tend to a limiting form, which is a simple

harmonic function of the meridional arc, and (2) that sectorial harmonics

(at their equatorial plane) are actually simple harmonic functions of the

equatorial arc, suggest that the analytical principles on which the com-

bination of standing vibrations in normal modes to form progressive waves

depend, in the case of a string, could be adapted to give a formal proof

in the case of a sphere. They also suggest that, in the latter case, dis-

placements represented by spherical harmonics of high degrees would be

important elements in the combination, or, in other words, short waves

would be largely involved. For the purpose in hand a wave is to be

regarded as " short " if the wave-length is small compared with the radius

of the sphere.

172. As in Chapter X, let a denote the radius of the sphere, and n the

degree of the spherical harmonic to which any normal mode of vibration

corresponds. Then 2ira/n takes the place of the wave-length. We shall

denote it by 2'7r//, so that

/=7i/a (13).

Also let 2w/p denote the period corresponding to the same normal mode.
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Then pjf represents the wave-velocity for waves of length 27r//. We
shall put

V = plf (14).

We have to consider modes of vibration in which n and a are both large.

The frequency-equation obtained in § 152 passes over into a limiting form,

which is a relation between V and /.

In order that this equation may be applicable to the transmission of

superficial waves over the surface of the earth it is necessary that the

vibrations in question should be of types which were described in § 151

as "quick." According to (17) of p. 129 the condition for this is in the limit

or F>V(«///) (15).

Now the large waves of earthquakes are transmitted with a velocity of about

3 km. per second, and, if V has this value, the shortest wave-length for which

the inequality (15) is not satisfied is about 6000 km. We may therefore

conclude that all short waves which can be propagated with any such

velocity as this correspond to vibrations of quick types.

=

173. In order to find the limiting form to which equation (44) of p. 136

tends, we begin by re-writing this equation in the form

a'
2

I

^ r I

^« ^" («")
I

«'-«' />' [o 2
^

,/
^

2at„'(aa)]

«V nl <\r„{aa) k" gf[h' a\ n/-f„(oa)j_

_ -^a/f^ _ 2 ,
2

, »: . 2Sifr„^(Sa)) 2 .< 28^„'(5a)

K—S^p^ I 6 \ w/i/r„(Sa)J A" 6 \ nj <fr„{6a)

(16),

where, in accordance with a usual notation, we have put

K' = p'p,/^L, A.» = pV„/(\-i-2/i) (17);

and then we proceed to approximate to the various expressions which occur

on the understanding that 1/m tends to zero as a limit, while gf/p' is a small

quantity of which the square may be neglected.

Now the quantities o' and S' are the roots of the equation

M (X + 2/.) f^ - {(\ -F 3m);>' + 4/x
|| p,| + |p* H-

4 1 i^^
- "^^Li^U,= = 0,

or, as it may be written,

|._(«. + ,.+ 4A'^l)? + «^A'{l + 4^1-^'(l + l)|=0...(18);
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and we see that, to a first approximation, we may write k for o and h for 8,

as it has been understood all along in the theory which led to equation (16)
that a" is the greater root. For a second approximation, we substitute k^ + »;

for f in (18), and find, on neglecting tj',

\ p'n)^
{

p" n p'' \ n)\

or r,{K^-h?-^^^'^\ = A^£f^(\+-\.
V p'nl p* \ nJ

Hence, neglecting \jn, we have, correctly to the second order in gfjp-,

""- fiK.(!f)'
<'»'•

To the same order we should find

K--h'\p''J

We see that the corrections to the values k and h for a and S are of the order

which we propose to neglect, and therefore, in general, we may replace a by

K and 8 by h. The only expression in which these substitutions may not be

made is

a= - k' p'

and, from the value for a'' given in (19), we see that we may put

«' gf'i^'-h-'f ^
''

and this equation is correct to the first order in gfjp^, when l/n tends to zero

as a limit.

The equation defining v may be written

and therefore we have, correctly to the same order.

3a/

^=f
•(21),

so that vjn is a quantity of the order which we omit.

Again it has been proved by Bromwich* that, when n and xa are both

very great, the expression -<^„' (Ka)/->^n (««) tends asymptotically to the value

(^s-f)lK, in which f=\ixa..nla, and

s = V(/"-kO (22).

* Loc. eit., ante p. 126.
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We shall therefore take, as sufficient approximations,

^„' («ffl) ^ s-f V^»' (So) ^ r-f
•v^„(aa)~ K ' •</r„(8a) h

where r = >J{f--}i') (24).

When these substitutions are made in equation (16) it becomes

(23).

|--^A^g(^^^¥)
..,2/(.-/)+,T^p^l^;-2/(.-/)i

2+2^-^

K^ + 2/(r -/) -^, I"
JA=

+ 2/(r -/)}

= 0.

On multiplying up, and neglecting the square of g//p', we obtain the

equation

This equation gives k in terms of _/", and therefore the velocity of waves of

length 27r// in terms of /. If gfjj)^ is neglected, it passes over into the

equation

(^_2y_^ = (26).

which gives the velocity of Rayleigh-waves. The equation (25) therefore

gives the means of finding a correction to this velocity on account of gravity.

It may be noted that, if h vanishes, that is to say, if the material is

incompressible, equation (25) becomes

(i-r-^-ri^-'-D- ••(->•

Now in this case, if we neglected gflp' altogether, the equation giving the

velocity would be

(^-2j-y = (28);

and therefore, if the square of gfjp^ is neglected, equation (27) can be

written

{/.-j-y-f;.- (->

Equation (29) has been obtained by Bromwich by two distinct methods, one

of which consists in a passage to the limit from equation (68) on p. 140

ante.
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174 Now let V and F„ denote the wave-velocity and the value that itwould have if g were neglected, and let b stand for V(m/p), the velocity of
simple distortional waves. Then «// is the same as V/b, and equation (26)can be written ^ ^

(-W=Vl('-^')(-.-rv5')l <-).

from which It appears that F„ is independent of the wave-length. Equation
(30) IS the equation found, and solved, by Lord Rayleigh* Equation (25)
shows that, on account of gravity, V differs a little from V„ and it gives
approximately

b^ L U + 2m X+2f. b^)/[^-l^) ~[^--i^)

\ + 2fj. b"

U-^M x + fi b\i\/\
6^/J

••^'^^^

From (31) it appears that, to the first order in the small quantity ^//6^F is given by an equation of the form

F=F„ (1-1- ^^//6^),

where ^ is a number which depends upon the ratio n/X, since the value of

FoV^^ determined by (30) depends upon this ratio only. It is easy to see
that, when /i/\ tends to zero as a limit, yS is positive, that is to say, when the
material is incompressible the wave-velocity is increased by gravity. Again
it is not difficult to prove that, when \ = /i, /? vanishes, that is to say, when
the Poisson's ratio of the material is ^ the wave-velocity is not affected by
gravity. The Table placed below shows some corresponding values of u,/\,

Poisson's ratio a, V^'/b', and /3, those for incompressible material being the
values given by Bromwich. It appears that /3 is positive or negative according
as o- is greater or less than ^. Now in the application of the results to the
transmission of waves over the surface of the earth the values of a that come
into consideration are such as belong to rocks near the surface. In the

experimental research of Adams and Cokerf eighteen different kinds of rocks

were examined, and for all of them o- was found to lie between 1-9 and 2-9.

For twelve of them it was found to be greater than I and for the remaining

six less. We may conclude that the wave-velocity of simple harmonic waves
of the type under discussion is but little affected by gravity, but, on the whole,

is likely to be increased slightly, the small increment being proportional to

the wave-length. The result indicates a slight dispersion, and suggests that

* Loc. cit., ante p. 145.

t F. D. Adams and E. G. Coker, "An investigation into the elastic constants of rocks "

Washington (Carnegie Institution), 1906.
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the disturbance received at a place should be oscillatory, with gradually

diminishing intervals between successive maxima.

mA
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transmission of transverse waves in a superficial layer, on the understanding
that such waves do not penetrate deeply into the subjacent material.

177 We shall take an origin on the lower boundary of the layer, and
draw the axis of ^ vertically upwards. Then the lower boundary is the plane
z - 0, and the upper boundary will be taken to be the plane « = T, so that T
denotes the thickness of the layer. Waves of the type we are seeking are
not affected by gravity. We shall suppose the waves to travel in the negative
direction of the axis of x, and shall take the displacement ,; to be parallel to
the axis of y. We shall denote by /* and p the rigidity and density of the
layer, and by /.' and p' those of the subjacent material. We shall take the
wave-length and period to be 27r// and 2,r/p. In both regions v is proportional
to a simple harmonic function of

pt +fx.

Since t only occurs in simple harmonic functions of period 27r/p, the equations
of motion of the layer reduce to the single equation

(V=-|-a;«)d=0
(32),

^^^""^
«'=i''p/^ (33).

We shall now suppose that k >/. Then in the layer v is of the form

v = (A cos sz + B sin sz) cos (pt+fa +e) (34),

^here s^ = «'-/^
(35).

It should be noted that s is here used in a dififerent sense from that in § 173.

In like manner the equations of motion of the subjacent material reduce to

the single equation

{V'> + k'')v = (36),

where K'^=p'p'/p,' (37),

and V must have the form

V =06'" cos (pt+fx + e) (38),

where 5''=/" — «''
(39)

and, in order that the disturbance may not penetrate to a great depth, it is

necessary that the quantity s' should be positive.

The conditions which hold at the lower boundary z = are that the

displacement and the tangential traction must be continuous. Apart from
the initial stress, which does not affect the problem, there is no normal

traction. These conditions give the two equations

A = C, fisB = ^t's'C.

The condition that the upper boundary z=T is free from traction is

-A8insT+BcoasT=0.

L. G. 11
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On eliminating the constants A, B, C we obtain the equation

ta.n sT=ijl's'Ifis (40).

Now from equations (33), (35), (37) and (39) we find

«'-/^(i-S-4^ ^^i>-

where b'^f^lp. &'"=/// (^2),

so that b and b' denote the velocities of simple distortional waves in the two

substances. In order that s' may be real, it is necessary that the right-hand

member of (41) should be positive. If this is so, equation (40) becomes an

equation connecting s andy, viz.

---=^'{$(-r.)-pf <«)•

and then it is necessary that the value of s which corresponds to any value of

/ should be such as to make tan sT positive. The condition of reality cannot

be satisfied unless b' > b, but, if this inequality holds, there is always a value

of s cori-esponding to any given value of /, as may be seen by writing

equation (43) in the form

^^=*^{6^^ + ^=6-^^*-^«^f
(^*>-

We see that, as sT increases from to ^-r./T increases from to oo .

When the value of s corresponding to any given / is known, the corre-

sponding value of K given by equation (35) is real, and equation (41) shows
that the corresponding real positive value of s' is less than /, so that the
value of K given by equation (39) is also real.

178. In order that the solutions expressed by equations (34) and (38)
may represent a motion which does not penetrate deeply into the material
beneath the layer, the quantity denoted by s'T must be rather large. In
passing downwards from the under surface of the layer to a depth equal to
the thickness of the layer, the amplitude of the motion diminishes in the
ratio e"*^: 1. If this ratio is very small for any given wave-length, waves
of that length are practically confined to the layer, otherwise they penetrate
deeply into the subjacent material, and do not appear to diverge in two
dimensions from the source. It can be seen beforehand that the conditions
which are favourable for securing the smallness of e''"^ are (1) that the ratio
b'/b'' should be decidedly less than unity, (2) that the wave-length should
be short compared with the thickness of the layer. These conditions are
illustrated in the following table, in which approximate values of e-»'^are
given for the three values 4, 1 and i of the ratio of the wave-length L to
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the thickness T, and the three values ^, ^ and J of the ratio ^|^>,', the ratio

pIp being taken to be unity :

—

\z/r
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waves on deep water is a safe guide, there should not be, at least in the

earlier stages of the main shock, a movement resembling the passage, over the

surface, of a long train of approximately simple harmonic waves, having a

nearly constant wave-length and period. The actual motion may, of course, be

analysed into an aggregate of co-existent standing simple harmonic waves,

or, what comes to the same thing, an aggregate of simple harmonic wave-

trains, each travelling with the wave-velocity appropriate to its wave-length,

but these wave-trains have no separate physical existence. The "periods

observed at different stages are simply intervals of time separating successive

instants at which the motion in some definite direction attains a maximum.

Further, the main shock being transmitted by means of waves which diverge

practically in two dimensions from the initially disturbed region, we should

expect that the disturbance would not terminate after the time required

to travel from the furthest part of the region with the minimum value of

the wave-velocity, if the wave-velocities corresponding to waves of different

lengths have such a minimum, but that it would be indefinitely prolonged,

the amounts of the maxima gradually diminishing, and the intervals of time

between successive maxima gradually changing. All this is quite in ac-

cordance with observation. In particular, Omori's diagram of the earlier

phases of a typical seismic record* is strikingly like Lamb's figuref of the

first few waves received at a place on the surface of deep water, over which

waves are travelling from an initially disturbed region.

181. We have worked out the problem of § 177 on the supposition

that K>f. It is necessary also to consider the alternative supposition,

viz. K<f. If this inequality holds, equations (34) and (35) must be
replaced by

v = {A cosh s^ + £ sinh s«) cos (p< -!-/« -I- e) (45)

and g2=y2_^j
^4g^^

while equations (38) and (39) are unaltered. Just as before we find the
equations

A=G, iisB^fjfa'O

and 4sinhsr-|-£coshsT= 0,

from which it follows that

lis tanh sT+ fi's' = 0.

Since it is necessary that s' should be positive, there is no relevant solution
of this equation. From this result, and that found in § 177, it follows that
it is not possible for transverse waves to be transmitted through the layer
without penetrating far into the subjacent material, unless b' > b.

* See p. 200 of Knott's treatise already cited.

t H. Lamb, Hydrodynamics (3rd edition), p. 367.
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This result has some bearing on Wiechert's suggestion (p. 148 ante) that

the crust of the earth may rest on a sheet of magma in such a way as to be
practically free. Apparently, the purpose for which the hypothetical sheet

of magma is introduced is to furnish a reason why the waves should not

penetrate deeply into the material beneath the layer, or, what comes to

the same thing, to secure that the waves shall diverge practically in two
dimensions. The simplest way of investigating the effects produced by such

a sheet would seem to be to regard it as having a smaller rigidity than the

crust. We have seen that, if it can be treated in this way, it must be

ineffective for the purpose of confining the waves to the crust.

Effect of a superficial layer on Rayleigh-waves.

182. The hypothesis of a discontinuity of structure in the earth, at

a depth which is small compared with the radius, has been shown to lead

to important results in regard to the earlier phases of the main shock—the

phases which are characterized by a preponderance of horizontal movement

at right angles to the direction of propagation. We have now to consider

the effect of such a layer upon the transmission of superficial waves which

involve at the same time vertical displacement and horizontal displace-

ment parallel to the direction of propagation. Our fourth problem will

therefore be to investigate the transmission of waves analogous to Rayleigh-

waves over the surface of a body which is covered by a superficial layer.

It will be sufficient to consider the problem under the simplifying assump-

tion of incompressibility, and to neglect gravity*.

183. Just as before we shall take the origin on the under surface of

the layer, and draw the axis of z vertically upwards, and the axis of x in

the direction of propagation of the waves. We shall denote by u, w the

components of displacement in the directions of the axes of x and z, and we

shall retain the notations T, f, p, fi, p, /, p, k, k, s' of § 177, but we shall

use s in a different sense, as in § 173. The condition of incompressibility is

^^ + ^^ = (47).
dx oz

The equations of vibratory motion of the layer are

.(48),

a»« an
,

„„ \

• The problem was discussed by Bromwich, loc. cit, ante p. 126, in the case where the

thickness of the layer is small compared with the wave-length; but the case where the wave-

length is comparable with, or small compared wilh, the thickness seems to be more important.
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where 11 denotes a hydrostatic pressure. The equations of vibratory motion

of the subjacent material are obtained by replacing p and /x by p and p.'.

We seek a solution in which IT, u and w, as functions of x and t, are

simple harmonic functions oi pt+fx. We see that, if we put

"-g-|. -t-t "=-^^ w.
equations (47) and (48) are satisfied, provided ^ and j^ satisfy the equations

^-/•*-o. g-^.o.

where ^=p-K' (50).

Also n is given by the equation

U=pf4> = p,K'^ (51).

Similar formulae hold in the subjacent material.

The solutions of the equations are of the form

(/) = (P cosh,fz + Q sinh fz) cos {pt +fx+ e)

X = {-^ cosh sz + B sinh sz) sin (p< ^fx ::;)
*-'

where P, Q, A, B, e are constants. This solution holds for the layer. In

the material beneath the layer we should find in the same way

«/) =PV^ cos {pt +fx + e) 1

e)/
^'^^'

+ e)j

X = A'e^^sm {pt +fx + e

where «' is given by (39) of p. 161. Then by (49) we have in the layer

w = {—/(P cosh fz + Q sinh fz) + s {A sinh sz + B cosh sz)] sin {pt +fx + e)

w= {/(P sinh fz + Q cosh Z^) —f{A cosh sz + jB sinh sz)) cos {pt +fx

(54),

and in the subjacent material we have

u = {-fP'e-f' + s'AV) sin {pt +fx + e)\

w= {fP'ef' -fAY') cos {pt+fx + e)}

Now the normal and tangential components of the traction across any

plane ? = const, in the layer are expressed by the formulae

dw / „ , „ dvj\^..-n.2.g..(-^,.2g),

^ /du
,
dw\
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and we find

Z^ = (i {(2/» - «") (P cosh/ar + Q sinh/^)

— 2s/'(A sinh sz-\-B cosh sz)] cos {pt +fx + e),

X^ = ^[- 2/» (P sinh/« + Q cosh/^)

+ (2/2 - «*) (il cosh s^ + 5 sinh sz)] sin (p« +/« + e),

in the second of which use has been made of (50). In like manner we find

in the subjacent material

Z^ =
fj! {(2/2 - /c'2) P'e/* - 2s/AV^} cos (p( +/a; + e),

Z, = / 1- 2/2P'e/^ + (2/2 - «'0 4V'^j sin {pt +fx + e).

We can now write down the conditions of continuity of stress at the lower

boundary of the layer. They are

/. {(2/2 - «2)P - 2sfB] = / {(2/'- «'2)P - 2s'fA'],

M {(2/2 - «2) ^ _ 2/2Q) = ^' {(2/2_ «'0 4' - 2/2P'}.

The conditions of continuity of displacement are

-/P + 5P=-/P' + s'4',

Q-A=P'-A'.

On solving these equations we find

!^^P = XF + -,WA'
r f

^Q^YF + ZA'

A=WF + XA'

f

/C2

"^B^ZF^'-.YA'

.(56)

(57).

where, for shortness, the following notation has been introduced :

—

The conditions that the plane z^T may be free fi-om traction are

U _ !f\ UxF +
J
WA^ coshfT + (VF + ZA') sinh/fj

- 2 -M(ZF + jYA') cosh sT + ( FP' + XA') sinh stI = 0.. .(58),
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XP' + ^ W4') sinhyr+ (FF + ZA') coshfT

+ (2-f^
U(ZP' +

J
FA') sinh sT + (WP' + XA') cosh 8t\ = 0.. .(59).

If we write for shortness

f = ^2 -
^) (Z cosh/T + Fsinh/T) -ifz cosh sT + jW sinh sT)

^ = (2 - ^') (Z sinh sT + ^ F cosh sT) - 2 ^(Z sinh/T + F cosh/T)

f = (2 - ^)
(^ sinh/T + ^ TT cosh/r) - 2(

^X sinh sr+ ^ F cosh sf)

^' = ('2 -
^) (

^Z cosh sT + jT sinh sT) " 2 ^(^ cosh/T +jW sinh/r)

.(60),

(61),

equations (58) and (59) become

^P' + ^'A' = 0, 7,P' + v'A'==0

and, on eliminating P' and A', we oblain the equation

^'-^'V = (62).

By this equation the wave-velocity is determined in terms of the wave-

length.

184. To interpret this equation we begin by supposing that fT and sT

are very great. Then we have approximately

2?= (2 - f^{X+ Y)e^- 2 [z+j W^C^,

2'7 = (2 -f)
(z+~ W) ^^ -

2
j.(Z + F) e^^.

2f = (2 -
^;)

(Z-h i Tf) e/^ - 2 (J.Z +^ f) e-r,

2V= (2 -^ (^Z + t y) C^- 2}(^+ jTt) ef^,

and equation (62) becomes

e..V,r|(2-^J-4^}[(Z-l-F)(^Z-H^F)-(^+i»r)(^-H^Tr)]=0

(63).

Equation (63) is satisfied if either the factor in
( } or the factor in [ ]

vanishes. The first factor is the same as the left-hand member of equation

(28) on p. 158, so that the wave-velocity given by equating this factor to
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zero is the velocity of simple Rayleigh-waves. We shall omit for the present

the consideration of the second factor, and attend to the results that can be

obtained by retaining the equation (62), and supposing the wave-velocity to

vary continuously with the wave-length in such a way that, for very short

waves, it approaches the velocity of simple Rayleigh-waves as a limit.

185. The first step is to determine the sense of the variation of «//" when

e^^ is large. We re-write equations (60) in the forms

2^6--^ = (2 - j>j
{{X + Y) + {X-7) e-^rr]

-2j{{X+Y)-{X-Y)e-^rr]

2^'e-fT = (2 -p {(Z-H^ w)-(Z-'jW) e-/-}

_ 2e-t^->^ [iAx+jY^-{jX-'-Y) ^A

2Ve--^=(2-^)e-'/-)-|(j.Z-f^y)-H(^X-*^F)e-»^

.(64).

Now when fT is very great, s'//' approximates to the value 0-08738*, so

that e~^ is much smaller than e~'^, and therefore a second approximation to

the complete form of (62) gives

|(2_;5^-}[(z.r)(z^.r^)-(.-.|^)(..^Tr)

(2-^V^^}[(X + r)(z)-F^)-H(^-)Tr)(z..^^l^)]e- =

(65).

Now we observe that

(.--)-.»=(..p--.) = (l-})(l-3!-;.-^)...W

Let s/f=s„/f+B{s/f), where So corresponds to simple Rayleigh-waves, so

that

(l+s„V/')'-4s„//=0.

* A Blight correction, made by Bromwich, ol Lord Eayleigh's value 0-08725 is here introduced.

11—5
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then

and so equation (65) becomes with sufficient approximation

= 2| [(Z + Y)(Xj- Yjj + (Z-'j W) (z+j Tr)j e-"^..(67),

where all the quantities in the square brackets are to have the same values

as they would have if the waves were simple Rayleigh-waves. With the

value of So// stated above the first factor of the left-hand member of (67) is

positive. Owing to the number of quantities involved, it seems to be rather

difficult to give a perfectly general determination of the signs of the factors

in square brackets in the two members; but this can be effected in two

classes of cases, which, taken together, seem to include all that are of much
interest.

186. In the first of these classes of cases /*' >
fj.,

while p' = p. We have

then

and so we find

flic' = /ik",

x = .-^--2g-i). r.i-^:.2g-.).So;

r-

-Z=W=2[f^-l);

wehavealso 1 -^^' = ^' = ^^ =
^

(l _^) ,

where s,' is the value of s' that corresponds to the value s, of s. We use

the last relation to express pf/fi in terms of «„ and So'. We find

(x+ f)(z|+fJ;) - (z+i w) (z+'j w)

=2(i-^;y(^+*"

1-so'v/' \ p)[f~f)~^\ i-s,'v/' )V~f)v~7r
The sum of the two last terms is positive if

which is the case ; and therefore the whole expression is positive. Again we
find
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(x + r}(xj-r'j) + (z-iw)[z+iw]

The sum of the last two terms is negative if

(l.f)(l-S)>5'_|,

that is to say if SoSo </',

which is true. Hence the whole expression is negative, and the value of

S(s/f) given by (67) is negative.

In the second class of cases referred to at the end of § 185, /i' > fi, and
p' > p, but pf/fi = p'/p. In these cases «' = «, and s' = s. Then, remembering
equation (28), we find

^''{'-u% ^<i-'j% ^=-(^V)'
and W is the same as before. Hence we find

which is positive ; and we also find

which is negative. Here again the value of S (s//) given by (67) is

negative.

187. We shall now take it for granted that, as fT diminishes from very

great values, sjf diminishes. This being so, tcjf increases. This means that

the wave-velocity increases as the wave-length increases. It seems to be

rather difficult to determine the wave-velocity which corresponds to a par-

ticular wave-length when p,'jp. and p jp are given. It is easier to assume

some smaller value than «„// for sjf and to deduce corresponding values for

pfjp., or p jp. Now the value of Sojf, corresponding to the case wherefT tends

to 00, is 0'2956*; and we may illustrate the theory by working out a

numerical example in which

/T=6, s//=0-25, p=p.
The corresponding value of the wave-velocity is (0'9682)6, where h stands,

as usual, for n/{fj,/p), so that it is a little greater than the value (0"9553)6 of

simple Rayleigh-waves. Then we have

X = 0-9375 -W. Y= 0-9375 + W, Z = -W.
* Here again use has been made of Bromwich's correction noted on p. 169 ante.
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We have also to put

sT=l-5, s''lp = (W+ 0-125)l(W+2).

When these substitutions are made in f, f', tj, t]', as given by equations (60),

equation (62) becomes an equation for W, which is found to be approxi-

mately

46-6 - (48-7) W + (15-3) W' + - {18-2 + (21-5) W - (15-3) W] = 0,

and the single positive root is approximately 2'65, so that we find

//^ = 2-325.

In our special numerical example, therefore, the rigidity of the lower medium
is a little more than twice that of the superficial layer, and the wave-length

is a little greater than the thickness of the layer. The wave-velocity is

greater than that of simple Rayleigh-waves by about 1 per cent.

188. It is a matter of some interest to determine the ratio of amplitudes

of the horizontal and vertical displacements in a wave of the type now under

discussion. Going back to the formulae (54) of p. 166 and substituting from

(56), we find that the displacement can be expressed by the formulae

u = u(jz) sin (pt +fx + e),

tv = w {z) cos (pt +fx + e),

where u (z) and w (z) are functions of z expressed by the equations

u(z)=-^, fp' \(X cosh fz + Ysinh/z) - (z cosh sz +-W sinh sz)\

+ A' \(Z sinhfz +
J
If cosh/^) - (^^ sinh sz^- Fcosh «^]l

tli («) =^ Vp'U (X sinh/^ -I- Y coahfz) - (z sinh sz +yW cosh sz)
j

+ ^'\j{z cosh/«+jW sinh/^) -(^jX cosh sz +jY sinh sz^

\

(68).

On substituting from equations (58) and (59) we find

^ « (T) =^ |P' (X cosh/T + Fsinh/r)

+ A'(Z sinhfT+jW cosh fT^l

,

ji'^{T)=^ 2^' j-^' (^ ^^""^f^ + Y coshfT)

+ A' {Z cosh/y+jW sinh/r)l

.

}



THEORY OF THE PROPAGATION OF SEISMIC WAVES l73

Even if/r is as small as 6, coshfT diflfers from amhfT by less than one part

in 100,000, and both of them are over 200. We see therefore that the

absolute value of the ratio w (T)lu(T) is nearly equal to 2/7(2/» - «'). In
all the waves that we have been considering k"//" differs but little from

unity, and therefore the ratio of amplitudes of the vertical and horizontal

displacements is nearly equal to 2 as Lord Rayleigh found.

189. The motion consequent on any displacement and velocity, initially

confined to a limited region, is to be obtained by superposing systems of

standing simple harmonic waves, as in Cauchy and Poisson's solution of the

problem of waves on deep water. The components of displacement in a

standing simple harmonic wave are expressed by formulae of the type

M = w (z) cos pt cos (fa + e'),

w= — w(z) cos pt sin (fa + e'),

and the corresponding formulae for the displacement in an aggregate of such

waves would appear to be

M =
I

u (z) COS ptdf
I
F (a) cos/(a;— a) da

Jo .' - 00

/•CO ^.00

+ 1 u(z) cos ptdf ( G (a) sinf(x — a) da.,

Jo J -m

w = — I w(z) cosptdf I F(a) siny(a: — a) da
Jo J -00

,.00 .X

+ i w (z) cos ptdf i G(a)cosf(x — a)da,
Jo J -00

where F and G denote functions determined by the values of the initial dis-

placement at various points ; and we could add to these expressions similar

ones containing sin^i, instead of cos pt, and two functions determined by the

values of the initial velocity at various points. Now it by no means follows

ii-om the result that —w(T) is about twice as great as tt(T) that the

maximum of w is nearly twice that of u. It may very well happen that the

amplitudes of the simple harmonic constituents of the vertical displacement

at z=T are larger than the amplitudes of the corresponding constituents

of the horizontal displacement, and yet that the maxima of an aggregate of

the former are less than those of an aggregate of the latter. This can happen

because p is a, function of/.

190. In §§ 185—187 we traced some of the consequences of supposing

that the wave-velocity for very short waves is to be found by equating to

zero the factor placed in
{ } in the left-hand member of equation (63)

on p. 168. The equation can also be satisfied if there is any pair of
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corresponding values of s and s' which make the factor placed in [ j vanish.

We have, therefore, to consider the possibility of satisfying the equation

This equation is

.(69).

Before attempting any general discussion of this equation we consider

the particular class of cases in which p' = p. Then

fl K —flK
, j;i~ '

u! f^' f^~ /"'

'

and equation (69) becomes, after omission of the factor (1 — sjf),

u! sWe write for shortness — = 1 + a, -i.
= x,

A* /
arrange the equation in the form

[{\+x) (l-a^)+ 2a (l+a;)+ 2d?\ 1 = - a; (1 + x) (1 - x=) + 2olx (!+«;) + 2a\

and rationalize it by squaring both members. We get

[(\+x)(\-a?)+ 2a (\+x) + 2a»}» (1 - (1 - a?)l{\ + o)}

= {«(!+ x) {\-a?)- 2oa! (!+«)- 2a«}«,

or

(a + a:=) {(1 + a;) (1 - 46=) + 2a (1 + x) + 2a'}»

- (a + 1) [x (1 + a;) (1 _ a^) _ 2aa; (1 + x) - 2ti?Y = 0.

Clearly o and (1 - a?) are factors of the left-hand member, and, on removing
them, we find the equation

4o» + {8a= + 4a(l +xy] (1 + a; + a:») + (l +ar)' (1 + 6«» + a:*) = ...(70).

Hence, if a is positive, or p.' > p., the equation cannot be satisfied by any
value of X between and 1. It follows that, if p,' > p. and p =p, there
cannot be any simple harmonic waves of which the wave- velocities are given
by equation (69).
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191. Again we consider the particular class of cases in which /t'/M = p'IP-

In these cases s' = s, «' = k, and the equation becomes

(a + 2fx{l - a^y - a^ (1 - x)* = 0.

On remo^dng the factor (1 — a;)" this becomes

a" (a^ + x' + 3x - 1) + 4>cuE (1 + xf + 4>x(l+xy = (71).

This equation has a root between and 1, and, in fact, the root is less than

the positive root of the equation

a;' + ir' + 3a:-l=0.

Hence if the rigidities and densities are different in the two media, but

the velocities of simple distortional waves are the same, there can be a

wave-motion with a wave-velocity intermediate between that of simple

Rayleigh-waves and that of simple distortional waves. This discussion

applies, of course, only to waves of a length very short compared with the

thickness of the superficial layer, for the equation (69) was obtained on this

supposition as to the wave-length.

192. For a more general discussion of equation (69) we put

fi'lfi = l + a, p'/p = l + ^, s/f=x, s'lf=x'.

The equation becomes

(/3 -1- 2) (1 -a^) [{2« + (1 - a^)} x' - (2a - (/3 4- 1) (1 - a-')} x]

- {2a (1 -«)- y3 (1 -«.»)} (2a (1 -«')- /S (1 - ar^)} = 0.

Removing the factor (1 — x), and rearranging the equation, we find

x' [2a {2a -^{l+x)] + {2a + {1- a^)} (/3 + 2) (1 -h x)]

= {2a- ^{1+x)} {2a- fi (I -ar')} + {2a-(0 +!){! -x')} {^ + 2)x(l +x).

Now we have ie^= —^ ,

a-1-

1

and therefore the rationalized equation becomes

{a + x^-fiil-x')} {4>a- + ia{l + x) + {0 +2) {1+x) {I -x')]^

- t,a -I- 1) {4o= + 4>ax{l+x)- 4«iS (1 - a^) - (3/S + 2)x{l+x) (1 -«»)

On removing the factor (1 — of), we find, after some reduction, that the

equation becomes

16a= {o(a+ 1 + x')-^ia + l + xy]

+ {a + af-l3(l-x')}{8ai^ + 2)(a+l+x){l+x) + (^+2y(l+xy0.-af'y)

+ (a + l)[8a{a + x(l-\-x)}{4a^+(S^ + 2)x(l + x)-^{l-af)}

-{ia^ + (30 + 2)x{l + x)-^(l-ar')}'(l-a^y] = O (72).
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If in the left-hand member we substitute for x, it becomes

(a - y8) {4a (a + 1) + (yS + 2)}' - (a + 1) (2a - /3)«,

but, if we substitute 1 for x, it becomes

16a (a + 2) (a»y8 + 0?+ 4a/3 + 4a + 4^8 + 2).

In all interesting cases a and /8 are positive, and we see that, if (a — /8) is

sufficiently small, the equation has a root between and 1. The condition

stated in the form that (a — ;8) must be small is the same as the condition

that the velocities of simple distortional waves in the two media should be

nearly equal. We see that, when this condition holds, there exists a wave-

motion such that the velocity of short waves is given by equation (69),

provided, as was shown in § 190, that the densities in the two media are

different.

193. It is a result of some theoretical interest that, under suitable

conditions, there can exist a type of superficial waves differing from that

investigated by Lord Rayleigh, but having in common with it the property

that the tangential displacement is parallel to the direction of propagation.

The suitable conditions are (1) that the body must be covered over by a

superficial layer of different density and rigidity from those of the rest

of the body, (2) that the velocity of simple distortional waves in the layer

must be nearly equal to that of such waves in the rest of the body. It

seems however to be unlikely that this result can be of any practical

importance in relation to the transmission of seismic waves. Whether the

large waves of the main shock are identified with Rayleigh-waves or not,

their velocities cannot differ much from the velocity of simple distortional

waves in the superficial portions of the earth, and it is probable that there is

a decided difference between this velocity and the velocity of simple dis-

tortional waves in the subjacent material. The velocity of the large waves

is variously estimated at from 3 to 3^ km. per second, while the velocity of

the second phase preliminary tremors is generally estimated at from 5 to

6 km. per second. In order that the second phase preliminary tremors may
be transmitted with a velocity practically identical with that of distortional

waves in the material beneath the crust, it is necessary that their paths

should be mainly beneath the crust, so that observations made at stations

very near to the source of disturbance are not available for determining this

velocity. It is probable that the velocity of distortional waves which pass

below the crust is different at different depths, and several investigations

have been made of the law of variation. According to the memoir by
Wiechert and Zoppritz cited on p. 148, the velocity in question increases

uniformly from 4 km. per second at relatively small depths to more than
6^ km. per second at a depth of 1500 km. It seems, therefore, to be agreed
that the velocity of distortional waves in the crust is decidedly smaller than
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that of such waves in the material beneath the crust. Further we found

that such a decided difference was necessary for the development of transverse

waves propagated over the surface of the layer, and we saw that such waves
are shown in seismic records. It seems therefore that we are justified in

concluding that the actual conditions exclude the development of waves of

the special type examined in §§ 190—192. It may be observed that, if waves

of this type are developed, they have in common with Rayleigh-waves the

property that the vertical displacement of any simple harmonic constituent

is larger than the horizontal displacement, for in the investigation given in

§ 188 no use is made of any property of Rayleigh-waves other than that

expressed by the statement that K^lp is nearly equal to unity, and this

property belongs also to the waves considered in §§ 190—192.

194. We have now to combine the results obtained in the solutions of

our second, third and fourth problems. We have seen that, if the earth is

covered over with a superficial layer of moderate thickness, and if the velocity

of simple distortional waves in the layer is decidedly less than that in the

subjacent material, two classes of waves can be transmitted over the surface

without penetrating far beneath the layer. The first class are chai-acterized

by a horizontal displacement at right angles to the direction of propagation,

the second class by a vertical displacement combined with a horizontal

displacement parallel to the direction of propagation. The wave-velocity of

any simple harmonic constituent of the waves of the first class exceeds the

velocity of simple distortional waves in the layer, but is less than the velocity

of such waves in the subjacent material ; and, since, as we have seen, short

waves must predominate, the important wave-velocities, although they do

exceed the velocity of simple distortional waves in the layer, do not exceed it

very much. The wave-velocity of any simple harmonic constituent of the

waves of the second class is less than the velocity of simple distortional waves

in the layer, although it does not fall far short of this velocity. These simple

harmonic constituents of the waves of the second class can be nothing but

Rayleigh-waves, modified by gravity and by the discontinuity of structure

which occurs at the under surface of the layer. Both classes of waves are

subject to dispersion, and the wave-velocity increases with the wave-length.

Both diverge practically in two dimensions from a source of disturbance, and

therefore both may be expected to be indefinitely prolonged with gradually

diminishing amplitudes. In both classes we should expect the observed

motion to be oscillatory, with intervals between successive maxima which

gradually diminish as time goes on. We should also expect that a decided

change of type should occur after the time required to travel over the surface

from the source to the place of observation with the velocity of simple

distortional waves in the superficial layer. Observation shows that there is

a very definite change of type in the main shock, that the transverse waves
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arrive first, that the intervals between their maxima diminish, that when

these waves become less prominent, and waves with horizontal displacement

parallel to the direction of propagation begin to predominate, the intervals

between successive maxima again diminish, and that the disturbance is

prolonged in a gradual oscillatory subsidence. All the general features of the

large waves of earthquakes are represented in the theory suggested by the

analogous theory of waves on deep water, except the observed comparative

smallness of the vertical motion. Now if the oscillatory waves which appear

to be transmitted over the surface were physically existing simple harmonic

wave-trains, this difficulty could only be met by the supposition that adequate

instruments for separating the vertical motion from the horizontal, and

recording it faithfully, have not so far been devised*. But the suggestion

which has been made already (p. 173 ante) tha.t these observed oscillations are

the result of superposing an infinite number of standing simple harmonic

waves, may perhaps furnish a different explanation. Such waves can combine

to form progressive oscillatory waves, but we have seen that there is no

reason why the ratio of amplitudes of the vertical and horizontal component

displacements which is characteristic of the constituent standing waves

should be maintained in the maxima of the aggregates. The difficulty may
therefore perhaps be regarded as less serious than it has been thought to be.

* In regard to this snggestion reference may be made to the discussion in chapter Y of

Knott's treatise already cited.
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