Cyclopedia of American Horticulture

L.H. Bailey

R-Z
To Mr. George B. Biggs
April 17, 1918
Cyclopedia of American Horticulture
Cyclopedia of American Horticulture

Comprising suggestions for cultivation of horticultural plants, descriptions of the species of fruits, vegetables, flowers and ornamental plants sold in the United States and Canada, together with geographical and biographical sketches

By

L. H. Bailey
Professor of Horticulture in Cornell University

Assisted by

Wilhelm Miller, Ph.D.
Associate Editor

and many expert cultivators and botanists

Illustrated with over
Two Thousand Original Engravings

In Four Volumes

R-Z

Boston College Library
Chestnut Hill, Mass.

New York

The Macmillan Company
London: Macmillan & Co., Ltd.

1902

The rights of reproduction and translation are strictly reserved
NOW THAT THE CYCLOPEDIA OF AMERICAN HORTICULTURE is completed, it is due the reader that some information be given him of the methods by which it has been made and of the resources that have been at command. It is due to the Editor that he be allowed to state his own point of view in respect to the meaning of the work. These remarks are made in no feeling of personal pride, for the writer is keenly aware of the many shortcomings of the book; but they may acquaint the reader with some of the difficulties with which such work is attended, and they may be suggestive to those who may desire to prosecute similar studies.

RETROSPECT

I. THE PROJECT

The most difficult part of the making of a cyclopedia is to project it. Its scope and point of view must be determined before a stroke of actual work is done. This much done, the remainder is labor rather than difficulty. The lay-out of the enterprise cannot be made in a day. It is a matter of slow growth. One must have a mental picture of the entire field and must calculate the resources. The plan once perfected, it remains only to work out detail after detail, taking up the tasks as they come, not caring nor even daring to look forward to the work that piles mountain high farther down the alphabet.

So far as the Cyclopedia of American Horticulture is concerned, the Editor had resolved and reviewed the enterprise for more than ten years. The first suggestion was a vague idea that a comprehensive work was needed. There were several hundred special works on American horticulture. Some subjects were well worked; others were untouched. There was no means of determining the extent of our wealth in cultivated plants. There were no suggestions, even, as to what that wealth might be. No survey had been made. Only a full inventory can tell us whether we are rich or poor; it gives us a scale by which to measure progress.

The first tangible result of this desire for some comprehensive view of American horticulture was the publication of "Annals of Horticulture for 1889." Some years before this time an endeavor had been made to interest a publisher in the project, but without success. This annual volume was designed to be "a witness of passing events and a record of progress." Five years these annual volumes were issued, the last one containing a summary sketch of horticulture at the World’s Fair, at which was made the greatest single effort to display our horticultural achievements and possibilities. In these annual volumes all the new plants and tools and movements of the year were intended to be recorded. Special investigations were made for some of the volumes. The issue for 1889 contained a list of all the kitchen-garden vegetables sold in North America in that year; that for 1891 contained a census of all the native plants which had been introduced into cultivation, showing that 2,416 species had become known to the horticulturist in Europe or America, although
many of these probably were not then in cultivation; that for 1892 made an annotated inventory of the varieties of apples that had been and were in cultivation in North America, showing that 878 varieties were actually offered for sale by American nurserymen in that year. But these volumes were isolated; they picked up the work piece by piece. An inventory of the whole field, critically and laboriously made, was needed before mere annals of yearly progress could signify much. We needed to know our status; thereafter chronicles would have a meaning.

From 1893, attention was given to the larger and comprehensive effort. A garden herbarium had to be made, for there was none in the country. The first plant had been put into this herbarium in 1889; it was a mere sprig of the greenhouse shrub *Boronia megastigma*. There are difficulties in making a garden herbarium: there are no professional collectors and one cannot buy specimens; many cultivated plants are too valuable to allow of specimens to be made. This herbarium now has more than 12,000 mounted specimens. Although small, nevertheless it has been invaluable. If it does not show nearly all the species, it shows the range of variation in some, and thereby suggests what may take place in all. It also shows what is actually cultivated under a given name, whether that name be correct or not.

Trial excursions were made into the evolution of various perplexed garden plants. Some of these essays have been published. Out of these efforts grew the volume, "Sketch of the Evolution of Our Native Fruits." The study of garden plants is a different subject from the study of wild plants. Mere descriptions are often of little value. The plant may have been bred away from the description within a decade. Specific descriptions of many of the common garden plants do not exist in books: the plants are not species in the book sense.

American horticultural books must be collected, for the comprehensive work, if it came, must contain American advice. One must know the range of New World experience and the occidental point of view. It has been the misfortune of many American writings that they have drawn too heavily from the experience of the Old World. Once this was necessary, but now it is time to break away. Fifty authors have written on viticulture in America, yet scarcely one has caught the spirit of the American grape-growing. Nearly twenty years of collecting by the Editor has brought together the completest library of American horticultural books.

The details entering into any comprehensive cyclopaedia of horticulture are astonishing in number and variety. Consider some of the items: More than 10,000 species of plants in cultivation; almost every important species phenomenally variable, sometimes running into thousands of forms; every species requiring its own soil and treatment, and sometimes even minor varieties differing in these requirements; limitless differences in soils and climates in our great domain, every difference modifying the plants or their requirements; a different ideal in plant-growing and plant-breeding in the mind of every good plant-grower; as many different kinds of experience as there are men; many of these men not facile with the pen, although full of wholesome fact and experience; the species described in books which deal with the four corners of the earth; very few botanists who have given much attention to the domestic flora.

It was desired that the Cyclopaedia be new—brand-new from start to finish. The illustrations were to be newly made; the cultural suggestions written directly for the occasion from American experience, and often presented from more than one point of view; few of the precedents of former cyclopedias to be followed; all matters to be worked up by experts and from sources as nearly as possible original. Of course it
has been impossible to reach the ideals. There are limitations of expense and time as well as of capability: for it is yet a question whether our new country is ready for such a laborious work.

In America there has been but one cyclopedic work on horticulture, Henderson's "Handbook of Plants," 1881; second edition, 1890. This is in one volume. The most complete similar recent work in the English language is Nicholson's "Illustrated Dictionary of Gardening," four volumes, 1884-87. It is the work of the talented ex-Curator of the Royal Botanic Gardens at Kew, England. Mottet's French edition of Nicholson, five volumes, 1892-99, is the largest modern cyclopeda of horticulture, and the only one which excels in size the present American venture. Another popular English work in one volume is Wright & Dewar's revision of "Johnson's Gardener's Dictionary," 1894. Another recent French work, also in one volume, is Bois' "Dictionnaire d'Horticulture," 1893-99, with colored pictures printed in the text. In German is Rümpler's "Illustriertes Gartenbau-Lexikon," in one volume, with a recent new edition; also Siebert & Voss' "Vilmoriün's Blumengärtnerle," one volume of text and one of plates, 1896, the most critical of all similar works. In judging the American work, the reader must bear in mind that there is really no critical horticultural-botanical writing in this country back of the present decade. The present Cyclopeda reflects the imperfection of our literature as well as the shortcomings of the Editor.

II. THE OFFICE DETAILS

Before the actual writing was begun, other cyclopédias were searched for suggestions of subjects to be inserted. Also, a card index was made to portraits of plants in the leading horticultural and botanical serials, to descriptions of plants in current publications, to monographs, and to the names of leading horticultural varieties in some of the larger groups. This card index grew during the progress of the work, and it now comprises about 35,000 cards.

The "trade lists" were also made. These lists were intended to afford a record of the plants actually in cultivation in North America north of Mexico. Catalogues of more than one hundred leading seedmen, florists, and nurseriesmen were cut up, and all the information respecting the various genera pasted on yellow sheets of standard letter-paper size. Thus, on one sheet, or one set of sheets, would be all the entries on Abies, Bocconia, Saxifraga, and the like. On these "trade lists" were made notes respecting persons who are skilled in the culture of the particular plants, together with extracts from letters, items of experience, and other incidental information. The name of the catalogue from which the cuttings were made was preserved, in order that doubtful questions might be traced. In special groups, it has been impossible to determine just what species are in cultivation because they are not all recorded in printed catalogues and they are known chiefly to a few fanciers or collectors. This limitation is particularly apparent in orchids; also in such large special genera as Acaea and Eucalyptus. In such cases it is practically impossible to make complete lists, and it is probably scarcely worth while to make the effort; but all the species that are generally known are almost sure to have been recorded. Since the Cyclopeda is designed as a permanent work of reference, mere horticultural varieties have been omitted, as a rule; but an effort has been made to indicate the dominant types or races, the evolution of garden favorites, the good and bad "points" of important variations, and to suggest possible lines of progress.
These trade lists were "standardized" in order to determine the proper nomenclature for the various entries; for Virginidia had to be brought forward to Cladrastis and Amianthium placed with Zygaenus. This preliminary work had to be done with care. It necessitated, also, the adoption of some one work as a standard; and the only work which covered the field and answered other requirements is Index Kewensis. This work has been followed in the main, although every contributor has been free to express his own ideas of genera and species, and the recent monographs have been followed for special groups.

The work for a whole letter—as the letter A—was laid out in advance. The general theory was to assign every article to an authoritative writer. Articles that could not be assigned, or for which no person would hold himself responsible, fell to the editors. It therefore happened that many of the most critical puzzles fell to the office. On very important subjects, two to six persons were asked to contribute. If these persons wrote from experience, no effort was made to cause their statements to be uniform, although it was desired that they should harmonize whenever possible. It was desired that the work have personality, for this is vitality. In horticultural matters there is no final opinion.

The articles have been written by busy men. Serious delays have resulted in securing the manuscripts; and yet the Editor must express his gratification with the general promptness of the contributors. With scarcely an exception, the collaborators have seemed to feel a personal responsibility in the success of the undertaking. The manuscripts have been much edited, yet they have not been copied. Not a single parcel is known to have been lost in the express or mails. The Cyclopediha has had a patient printer. On all kinds and sizes of paper, and in every style of script, with cabalistic editorial marks in pencil and inks of various colors, these manuscripts have gone to the compositor. Returning from the printer, they have been sorted and filed, and finally tied in bundles, in which condition they now constitute a part of the archives of the Cyclopediha.

Usually the printer received copy for one letter at a time. In large letters, as C, P, S, one section—as Cu, Po, St—comprised one sending, for it has been impossible to keep far ahead of the compositors. When all the manuscript was received from the various writers, cyclopedic works were consulted to see that no entries were omitted. The titles of all entries were copied when the manuscripts went to the printer, and the entries were checked off when they appeared in galleys and pages. Failure to check up entries in the letter A resulted in the loss of the article "Aubrietia," and the plate had to be recast in order to insert it.

The type-matter was first seen in "galleys" on green paper, with the cuts separate, known in the office as "the long green." Six proofs were received by the Editor, who sent four or five of them to specialists on the various subjects. Every line in the work has been read in the proof by experts. It requires from a week to ten days to get back the proofs from the various readers. The matter is then made up into pages, and read again. It is then cast, and the final proofs are placed on file. The galleys proofs are gone over several times by the Editor, aside from the regular reading, each time for a specific purpose: once for alphabetic order of the entries; once for spelling of names; once for accent marks; once for signatures to the articles; once for references to the cuts; once for legends to the cuts; once for general style. A full page of the Cyclopedia contains 14,000 pieces of metal. The reader will be lenient when he finds a misplaced letter. A clerk was employed to verify all references by hunting up the references themselves.
In the "make-up" it is an inviolable rule that wherever the book opens, an engraving will be seen. Adherence to this rule has made trouble in some cases. In one instance it was necessary to have a new cut made after the forms were made up, and to renumber the legends of more than one hundred pictures. The mechanical make-up was in the hands of I. B. Kraybill, foreman of the composing-room of the Mt. Pleasant Press, who gave the work loving and thoughtful care until, in the letter T, he was called to lay down his labors. The Editor hopes that the reader will regard his memory whenever the arrangement of the pictures is a source of satisfaction and pleasure.

The Cyclopaedia has been edited in a room eighteen feet square, kindly allowed for this use by Cornell University. In this room were two long tables, which allowed of the disposition of manuscripts and pictures in delightful abandon; the garden herbarium of Cornell University; and a large collection of books, mostly loaned from the Library of Cornell University. Aside from monographs, botanical manuals, local floras, horticultural handbooks, dictionaries, the following works were on the shelves: Index Kewensis (intended to contain all species of flowering plants down to 1885—about 125,000 names); Bentham and Hooker's Genera Plantarum; Eugler and Prantl's Naturlichen Pflanzenfamilien; DeCandolle's Prodromus (17 volumes), and his Monographie Phanerogamarum (9 volumes thus far); the Kew List of new species introduced into cultivation between 1876 and 1896. Next in importance were the periodicals, containing perhaps 50,000 pictures of plants, many of them colored and mostly authentic. First rank must be accorded the peerless Curtis' Botanical Magazine, with its 125 volumes, containing over 7,600 colored plates. Edwards' Botanical Register, Loddiges' Botanical Cabinet, L'Illustration Horticole, Flore des Serres, Paxton's Magazine, Revue Horticole and The Garden are extensive works provided with colored plates, for details of which the reader may consult Vol. I, pp. xvii and xviii. Less extended periodicals containing colored plates have been used, as The Botanist by Mann, The Florist and Pomologist, Knowles & Westcott's Floral Cabinet, Meehan's Monthly and an incomplete set of Gartenflora and Revue d'Horticulture Belge. Of horticultural periodicals not containing colored plates, the Gardeners' Chronicle is a great store of botanical knowledge, being published since 1841. It is full of botanical monographs of garden genera, and is a rich repository of description of new species. A complete set of the Journal of Horticulture has been available and all the pictures in its third series have been indexed. Of American periodicals, Garden and Forest, American Gardening, American Florist, Florists' Exchange, Florists' Review and Gardening have been very helpful.

The three most useful bibliographical works on botany have been Pritzel's Thesaurus, Jackson's Guide to the Literature of Botany, and the Catalogue of the Kew Library. About two dozen cyclopedic works were thoroughly examined and kept at hand for various periods, as those of Nicholson, Mottet, Siebert and Voss; the Bois' Dictionnaire d'Horticulture, Johnson's Gardener's Dictionary, Paxton's Botanical Dictionary, Rümpler's Illustriertes Gartenbau-Lexikon, London's Encyclopaedia of Gardening, Liudley and Moore's Treasury of Botany and various editions of the prototype of all such undertakings.—Philip Miller's Gardener's Dictionary. The floras of foreign countries have been as indispensable as those of America. Flora Capensis (4 vols. thus far), Flora Australiensis (7 vols.) and the Flora of British India (7 vols.), have been used the most. On European plants, Koch's Synopsis Flore Germaniae et Helvetica, Grenier & Gordon's Flore de France, Ledebour's Flora Rossica, and Bentham's Illustrated Handbook of the British Flora, and others, have been constantly at hand.

The office force consisted of the Editor and Associate Editor, the latter giving all his time to the work for four years. For a time, Alfred Rehder was employed at the Arnold Arboretum, near Boston, to work on the hardy trees and shrubs. For two months F. W. Barclay, a former student at the Massachusetts Agricultural College and now gardener for C. A. Griscom, Haverford, Pennsylvania, joined the office at Ithaca, giving most of his attention to herbaceous plants. Heinrich Hasselbring, graduate of Cornell University and trained as a florist, joined the office force for a time, devoting his attention mostly to orchids. No other writers have been employed otherwise than as contributors. The Associate Editor has had particular charge of indexes, trade lists, bibliographical matters, and editing of manuscripts. Aside from constructive and administrative matters, the Editor has had special charge of illustrations, proof-reading, arrangements with contributors and the make-up of the galleys into pages. He has read every line of the work, much of it several times over. The Editor desires to express his appreciation of the aid which the Associate Editor, Wilhelm Miller, has rendered to him and to the Cyclopedia. With unbounded zeal, persistent industry and painstaking thoroughness, he has given his best effort to the work from start to finish.

The pictures have been made by a score and more of artists. With the exception of the fifty half-tone full-page plates, they are all line drawings. The greater part of these drawings have been made from the living plants or other objects. Many have been drawn from photographs, of which a large collection was made. Some have been composed from combined suggestions of authoritative prints, botanical specimens, and other information. Some of the pictures are from the American Garden, having been made for that journal in the years 1890 to 1893, under the supervision of the present Editor. These engravings passed into the hands of the J. Horace McFarland Company, and by this company have been used for the present publishers. A number of the cuts have been borrowed from the Cornell University Experiment Station. Some of the illustrations are those used in the books in which the Editor is interested and which are published by The Macmillan Company. The pictures are intended to represent the average excellence of the plants, and, therefore, they are not idealized. The artists who have made the largest number of illustrations directly for the Cyclopedia are: Charles W. Furlong and W. C. Baker, Instructors in Drawing in Cornell University; E. N. Fischer and C. H. L. Gebertz, Jamaica Plain, Mass., who had access to the Arnold Arboretum; Miss H. A. Wood, Kingston, Jamaica, West Indies, who has drawn tropical economic plants; G. R. Chamberlain, who has drawn many plants, particularly annuals, in the gardens of Cornell University; Miss R. M. Huntington, who had access to the gardens at Smith College, Northampton, Mass.; Mrs. K. C. Davis and Miss Marie L. Robertson (now Mrs. B. M. Duggar), then at Ithaca, N. Y. The artistic work has been aided at almost every point by the personal interest of J. Horace McFarland, proprietor of the Mt. Pleasant Press, Harrisburg, Pa., where the type-setting and presswork have been done. Himself an expert photographer.
Mr. McFarland has given freely of photographs and advice; and he has also overseen the mechanical construction of the Cyclopaedia with rare devotion and skill.

III. HOW A GENUS IS WRITTEN UP

The method of writing up a genus differs with the various writers. The Editor can speak only for himself, but the frequency with which persons ask for a specific method of procedure suggests that a brief narrative may be useful to students.

The first question that arises when a new genus is to be written up is the number of species to be accounted for. The "trade list" and the card index are consulted, and a list is made of all the species that are to be included in the account. The writer first standardizes the names with Index Kewensis as a working basis, and then consults some analytic account of the genus itself, as Bentham and Hooker's Genera Plantarum, and Engler and Prantl's Natiirlichen Pflanzenfamilien. Herbarium specimens are examined. A characterization is made of the genus. All available works are consulted for suggestions as to its horticultural and economic importance.

Then follows the really important part of the undertaking—the accounting for all the species. All monographs of the genus are consulted; herbarium specimens are studied in detail; horticultural cyclopedias and handbooks are searched for descriptive notes of the species. Every effort is made to understand the species as a whole before any one species is actually described, for in this cyclopaedia the species are compared and contrasted, not arranged alphabetically. A key to all the species must be outlined before the work of description can be undertaken. This means that every species must be studied and properly classified. This making of the key or classification comprises more than half the average work of writing up the various genera. Cultivated plants come from many parts of the world. In many cases no single account of the genus contains all the species. One or two species from outlying regions may not fit into any scheme of classification made in the books. The descriptions of them may be inadequate. Often a whole day will be spent in the endeavor to find characters that will allow these outlying species to be included in a common key. Moreover, botanical keys are often too minute and technical to be used in a horticultural work. The key-scheme once made, the description of the species is drawn from every available source;—from specimens and personal experience when possible; from authoritative monographs; from horticultural journals and treatises; from notes sent by correspondents; from the information contained in trade catalogues. On doubtful points correspondence is opened with persons who know the plants, particularly with those who advertise the given kinds. The fulness of the descriptions will depend on how difficult the plants are to distinguish and how important the group is to the cultivator. It has been the custom with the Editor to work mostly with bare outlines at first, afterwards filling in the matters of secondary and incidentlal importance from subsequent reading and investigation. It has been the custom of the Associate Editor to devour and digest all the incidentals, as well as the fundamentals, before beginning the writing.

In the editing of manuscripts, the first effort is to determine whether the author has accounted for all the names in the trade. Too often the troublesome names have been omitted, although he worked from lists sent from the Cyclopaedia office. These omitted names must be inserted, often necessitating the entire reconstruction of the classificatory scheme. The second attention is given to the scheme itself, to see that it
is properly coördinated or balanced; for a scheme is of no value unless the coördinate parts are contrasts of similar characters. Yet the failure to coördinate the keys was common, particularly in the earlier part of the work. For example, there is no service in the key that runs

A. Lvs. long-lanceolate, entire
AA. Fls. blue, in long racemes

and yet it has been constantly necessary to eliminate examples of this type. The third effort in the editing of manuscripts is the revision of nomenclature, for uniformity in this matter is of the utmost editorial importance. The fourth effort is to look up and insert all references to portraits of the plants. Beyond these efforts, the editing of the manuscripts had to do chiefly with matters of literary form.

To the looker-on, the actual writing of the articles may appear to be the larger part of the work. As a matter of fact, however, it has required more labor to secure articles from correspondents than it would have required to have written them ourselves. This is not because correspondents have been negligent, but because of the inherent difficulties of doing work at long range. The value of the material, however, is vastly improved and broadened because of the number of persons who have been engaged in preparing it. It is probable that two-thirds of the labor in preparing the Cyclopedia has been of a character that is not directly productive of written articles,—as correspondence, keeping of accounts, filing of material, securing illustrations, proof-reading.

PROSPECT

The Editor hopes that this Cyclopedia will never be revised. If new issues are called for, mere errors should be corrected; but beyond this, the plates should be left as they are, for it is the purpose of the book to make a record of North American horticulture as it exists at the opening of the twentieth century. It is hoped that subsequent progress may be recorded in annual supplemental volumes. It is planned to issue each year a supplement of say 75 to 100 pages, in the same size of page as the present book, with cumulative index, in paper covers; every five years these supplements may be completed into a volume. They should record the introductions of new plants and methods, contain revisions of important genera, encourage historical studies, and make reviews of the tendencies of plant culture in North America. The manuscript for the first two proposed supplements is already prepared. The first is a complete key to all the families and genera in the Cyclopedia, designed to enable the student to run down any species that he may have in hand. It was hoped that this key could be printed as a supplement to Volume IV, but the size of the volume forbids it. The second manuscript is a bibliography of the North American book writings on horticulture. These supplements are not definitely promised, but they will be made if there is sufficient demand for them.

It may not be out of place for the Editor to indicate what he conceives to be the most important features of the general plan of the Cyclopedia.

(1) The book represents a living horticulture. It has attempted to account for the species that are actually in cultivation in the country, rather than those that chance to have been described or pictured in other encyclopedias or in periodical publications. The best way of determining what plants are actually in cultivation is to make a list of
those that are offered for sale within a space of ten or fifteen years, supplemented with lists submitted by actual cultivators. It is not the fact that these plants are bought and sold that is important, but the fact that they are in cultivation at the present time in this country. These lists give us a census of our horticultural resources. A species-name which occurs in trade lists must be run down and inserted. Not knowingly has any been omitted.

(2) The species are compared and contrasted, as well as described. In all genera containing several species, keys or classificatory schemes have been devised. This makes it incumbent upon the writer that he understand each species, not merely copy a description of it. It enables the reader to name the species he has in hand. It is an analytic rather than a compilatory method. The reader will be surprised to know how much labor the mere introduction of keys has added to the making of the book. It has certainly more than doubled the labor. The Editor believes that he could make the entire Cyclopdedia in two years’ time if all the species were to be arranged alphabetically under the genus and without introductory keys.

(3) The leading articles are signed with the name of the writer. Thereby is responsibility fixed and due credit given. The chief value of the signed article, however, is the fact that it gives personality to the writings and presents a wide range of experience and achievement. It is singularly gratifying that horticulturists and botanists have responded with the greatest good will to the repeated calls for help. Their inspiration has saved the book. The botany of large and difficult groups has been placed bodily in the hands of specialists. The number of contributors is large and has grown with each volume. More than 450 persons have aided in the making of the Cyclopdedia. The great number of signed articles gives the work a somewhat heterogeneous character, and this may be considered by some persons to be a disadvantage; but the Editor has not accepted the current idea that a cyclopdedia must necessarily be uniform and consistent in its treatment of various and unlike subjects.

(4) The book is primarily a cyclopdedia of horticulture, rather than of gardening. It has endeavored to catch the large-area and commercial spirit of North American plant culture, while still holding to the many and varied amateur interests. Not all the entries are names of plants.

(5) It has attempted to represent plants as living and growing things that are still undergoing evolution. It has tried to indicate the range and extent of variation, rather than to treat plant-names as representing entities in nature. Whenever possible it has been the purpose to suggest the general lines of evolution in the important groups. This has introduced the historical method of treatment. Of course only the merest touch can be had with these subjects, because knowledge of them is yet to come; but it is hoped that the sympathetic reader will feel the drift of an evolutionary motive.

Other points of view that seem to the Editor to be important are: The effort to present a new set of horticultural pictures; to give biographies of persons who have had an important influence on the trend of American horticulture; to present geographical and historical subjects; to give special attention to tropical and subtropical economic plants; to cite freely references to literature.

It must be admitted that the foregoing categories are ideals. At all points, it is feared, the accomplishment has fallen far short of the purpose. The Editor would like to do the work all over again, so many are the improvements that might be made. One must make a book in order to learn how to make it. The work has grown as it
has progressed. At first it was intended to make a three-volume cyclopedia, but before the first volume was half written it was found that a fourth volume must be added in order to present the subject adequately. The observant reader will discover that the letter A is treated on the three-volume basis. The article “Apple” is wholly inadequate, but partial penance is done under “Pomology.” The article “Asparagus” is the first that began to feel the fuller and larger treatment. Whatever usefulness the Cyclopedia may have has been rendered possible by the liberal policy of the publishers with whom it has been a joy and an inspiration to work.

The actual writing on the Cyclopedia was begun in January, 1899. A year had then been spent in making indexes and collecting data. The proof of the letter Z was received December 31, 1901. On the 8th of January, 1902, the Cyclopedia office was vacated. It was a sad parting. The pleasantest associations of a pleasant life had come to a finish. We knew that it was a turning-point. Hundreds of books had become familiar friends. We would never see them all together again. Like a child, the Cyclopedia had grown. Like the mature youth, it had left us. It was no longer ours.

Ithaca, New York,

January 11, 1902.

L. H. BAILEY.
STATISTICS

I. THE NUMBER OF ARTICLES.

Total number of entries or articles, including cross-references:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1270</td>
</tr>
<tr>
<td>II</td>
<td>1263</td>
</tr>
<tr>
<td>III</td>
<td>659</td>
</tr>
<tr>
<td>IV</td>
<td>1165</td>
</tr>
</tbody>
</table>

Total number of 4357

II. THE NUMBER OF PLANTS.

The number of genera described:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>820</td>
</tr>
<tr>
<td>II</td>
<td>623</td>
</tr>
<tr>
<td>III</td>
<td>351</td>
</tr>
<tr>
<td>IV</td>
<td>461</td>
</tr>
</tbody>
</table>

Total number of 2255 genera

Total number of species fully described (in black-faced type):

<table>
<thead>
<tr>
<th>Volume</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2224</td>
</tr>
<tr>
<td>II</td>
<td>2675</td>
</tr>
<tr>
<td>III</td>
<td>1465</td>
</tr>
<tr>
<td>IV</td>
<td>1789</td>
</tr>
</tbody>
</table>

Total number of 8793 species

Total number of varieties (of species) of all grades:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1187</td>
</tr>
<tr>
<td>II</td>
<td>982</td>
</tr>
<tr>
<td>III</td>
<td>628</td>
</tr>
<tr>
<td>IV</td>
<td>838</td>
</tr>
</tbody>
</table>

Total number of 3655 varieties

Total number of synonyms (in italic type):

<table>
<thead>
<tr>
<th>Volume</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2446</td>
</tr>
<tr>
<td>II</td>
<td>2164</td>
</tr>
<tr>
<td>III</td>
<td>1243</td>
</tr>
<tr>
<td>IV</td>
<td>1689</td>
</tr>
</tbody>
</table>

7482 total number of synonyms

Total number of species in supplementary lists (in italic type):

<table>
<thead>
<tr>
<th>Volume</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2351</td>
</tr>
<tr>
<td>II</td>
<td>864</td>
</tr>
<tr>
<td>III</td>
<td>576</td>
</tr>
<tr>
<td>IV</td>
<td>733</td>
</tr>
</tbody>
</table>

4524 total number of species in supplementary lists

Total number of Latin binomial and trinomial plant names accounted for (approximate) 24434

III. THE NUMBER OF SPECIES (IN BLACK-FACED TYPE) NATIVE TO NORTH AMERICA NORTH OF MEXICO:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>668</td>
</tr>
<tr>
<td>II</td>
<td>621</td>
</tr>
<tr>
<td>III</td>
<td>416</td>
</tr>
<tr>
<td>IV</td>
<td>704</td>
</tr>
</tbody>
</table>

2419 total number of species native to North America north of Mexico

IV. THE DATES OF PUBLICATION:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>February 14, 1900</td>
</tr>
<tr>
<td>II</td>
<td>July 18, 1900</td>
</tr>
<tr>
<td>III</td>
<td>April 23, 1901</td>
</tr>
<tr>
<td>IV</td>
<td>February 26, 1902</td>
</tr>
</tbody>
</table>

(xv)
COLLABORATORS

I. LIST OF CONTRIBUTORS TO THE CYCLOPEDIA

*The asterisk designates the contributors to the fourth volume. Many of the contributors have also assisted in reading proofs and in other ways.

*ADAMS, J. W., Nurseryman, Springfield, Mass. (Stephanandra. Viburnum.)

*ALLEN, C. L., Author of "Bulbs and Tuberous-rooted Plants," Floral Park, N. Y. (Tulipa.)

AMES, OAKES, Asst. Dir. Botanic Garden, and Instructor in Botany in Harvard Univ., Cambridge, Mass. (Several genera of orchids.)

ARCHDEACON & Co., Commission merchants, New York, N. Y. (Mushroom.)

ARNOLD, Jr., Geo., Gardener (formerly grower of aster seed), Rochester, N. Y. (China Aster.)

ATKINS, F. L., Florist, Rutherford, N. J. (Platycerium.)

ATKINSON, Geo. F., Prof. of Botany, Cornell Univ., Ithaca, N. Y. (Mushroom.)

*BALE, Prof. J. A., formerly Horticulturist, Wash. Exp. Sta. (Washington.)

*BARCLAY, F. W., Gardener, Haverford, Pa. (Herbaceous Perennials, Rheum, Sanguinaria, Silphium, Sisyphhus, Smilacina, Stachys, and many others, mostly hardy herbs.)

*BAKER, MICHAEL, Editor of "Gardening" and "American Florist," Chicago, Ill. (Stemmadrella. Vallota. Many suggestions.)

*BARNES, CHARLES R., Prof. of Plant Physiology, Univ. of Chicago, Chicago, Ill. (Fertilization. Flower. Teratology. Has read proofs of physiological subjects.)

*BARNES, WILLIAM H., Secretary Kans. State Hort. Soc., Topeka, Kans. (Kans.)

*BARRY, LEONARD, Editor "American Gardening," New York, N. Y. (Rose.)

BAYERSDORFER, H., Dealer in florists' supplies, Philadelphia, Pa. (Everlasting Flowers.)

*BEECH, Prof. S. A., Horticulturist, N. Y. Exp. Sta., Geneva, N. Y. (Coca. Thinning Fruit.)

BEADLE, C. D., Botanist and horticulturist, Baltimore, N. C. (Bamboo.)

BECKERT, THEO. F., Florist, Allegheny City, Pa. (Bougainvillea.)

*Bessey, CHARLES E., Prof. of Botany, Univ. of Nebr., Lincoln, Nebr. (Plant. Trees for the Plains. Has read several articles on grasses and native plants.)

BLAIR, Prof. J. C., Horticulturist, Ill. Exp. Sta., Champaign, Ill. (Greenhouse Glass. Illinois.)

*BRANDGEES, MRS. KATHARINE, Botanist, editor of Aloe, San Diego, Calif. (Several genera of cacti, as Mammillaria, Melocactus, Pelecyphora, Pereskia, Phyllocactus, Pilocereus, Rhipsalis.)

BRANDGEES, T. S., Botanist, San Diego, Calif. (Nolua.)

*BRANTON, ERNEST, Landscape gardener, and editor of "California Floriculturist," Los Angeles, Calif. (Nerium, Palms, Phlox, Pittosporum, Richardia, Rose, Schinus, Trees, Vines, and other plants cultivated in southern California.)

*BRUCKNER, NICHOL N., Dreer's Nursery, River ton, N. J. (The article "Fern." Many groups of tender ferns. Selaginella.)

*BUDGE, J. L., Prof. Emeritus of Horticulture, Iowa Agric. Coll., Ames, la. (Roses for the Prairie States. Has read proof of Iowa and of articles on important fruits.)

*BUFFUM, Prof. B. C., Horticulturist, Wyo. Exp. Sta., Laramie, Wyo. (Wyoming.)

BURBANK, LUTHER, Plant-breeder, Santa Rosa, Calif. (Nicotiana. Has read proofs of Gladiolus, etc.)

BURNETTE, Prof. F. H., Horticulturist, La. Exp. Sta., Baton Rouge, La. (Louisiana.)

BURLING, T. J., Prof. of Botany and Horticulture, Univ. of Ill., Urbana, Ill. (Protoplast.)
COLLABORATORS

*Cameron, Robert, Gardener, Botanic Garden of Harvard Univ., Cambridge, Mass. (Various articles and much help on rare plants. Alpinia, Campanula, Echinocactus, Nemophila, Primula, Ramonda, Urechelina, etc.)

*Card, Prof. Fred W., Horticulturist, R. I. Exp. Sta. Kingston, R. I. (Nebraska. Botany and culture of bush-fruits, as Amelanchier, Berberis, Blackberry, Buffalo Berry, Currant, Loganberry, Raspberry, Ribes.)

Clinkaberry, Henry T., Gardener, Trenton, N. J. (Certain orchids, as Laelia.)

*Close, C. P., Horticulturist, Del. Exp. Sta. (formerly Horticulturist Utah Exp. Sta.), Newark, Del. (Utah.)

Coates, Leonard, Fruit-grower, Napa, Calif. (Olive. Orange. Has helped on other fruits.)

Cokerell, T. D. A., Entomologist, East Las Vegas, N. M. (New Mexico.)

Collins, John S., Fruit-grower, Moorstown, N. J. (Pear.)

*Cuord, Henry S., Senior Fellow in Botany, Univ. of Pa., Philadelphia, Pa. (Nymphaea. Victoria.)

*Coulston, M. W., Formerly assistant editor of "Garden and Forest," Ithaca, N. Y. (Various native plants. Stiles.)

Coultier, John M., Professor and Head of the Dept. of Botany, Univ. of Chicago, Chicago, Ill. (Echinocactus.)

*Cowles, J. H., formerly Assistant in Horticulture, Colo. Exp. Sta., died 1900. (Certain Colorado plants, as Lepimys, Lemuriana. Verbena.) See personal note under "Verbena."

Craig, W. N., Gardener, North Easton, Mass. (Mushroom.)

Cropp, Carl, Seedsman, Vaughn's Seed Store, Chicago, Ill. (Stocks.)

Culbertson, H., El Cajon Pucking Company, El Cajon, Calif. (Peach.)

Cushman, E. H., Gladiolus specialist, Sylvania, Ohio. (Gladiolus.)

Darlington, E. D., Superintendent of Trials, Fordhook Experimental Farm, Doylestown, Pa. (Sect. Pea. Helped on Pea.)

*Day, J. Buttt, Asst. Botanist, Univ. of Calif. Exp. Sta., Berkeley, Calif. (Trees and Vines of California, various Myrtaceae, and many important subtropical subjects, as Acacia, Callistemon, Eugenia, Eucalyptus, Myrtus, Pittosporum, Podocarpus, Romneya, Schinus, Soliga, Streptosolen, Tristania, Umbellularia, Washingtonia, Wind-breaks, and others.)

*Dawson, Jackson, Gardener, Arnold Arboretum, Jamaica Plain, Mass. (Rose.)

Dean, James, Florist, Bay Ridge, N. Y. (Nephrolepis.)

Deane, Walter, Botanist, Cambridge, Mass. (Herbarium. Has read many proofs and helped on various botanical problems.)

Dorner, Fred, Carnation specialist, Lafayette, Ind. (Carnation.)

*Dossett, P. H., Associate Physiologist and Pathologist, U. S. Dept. Agric., Washington, D. C. (Finet.)

Drew, E. P., Manager Rocky River Nursery, Clifton, Park, O. (Picea.)

DUNNING, D. M., Amateur, Auburn, N. Y. (Grapes under Glass.)

DUFUY, Louis, Wholesale florist and specialist in hard-wooded plants, Whitestone, N. Y. (Eriica. Has read other articles on heath-like plants.)

*Earele, Prof. F. S., Botanist at N. Y., Botanical Garden, Bronx Park, N. Y., formerly Horticulturist, Ala. Polytechnic Institute, Auburn, Ala. (Alabama. Packing. Storage.)

Earele, Parker, Horticulturist, Roswell, N. M. (New Mexico.)

*Eisele, Jacob D., Manager of Dreer’s Nursery, Riverton, N. J. (Corydalis. Pandanus. Has read proofs of several important subjects.)

Emery, S. M., Dir. Mont. Exp. Sta., Manhattan, Mont. (Montana.)

Endcott, John, Bulb-grower, Canton, Mass. (Litonia.)

*Evans, J. C., Pres. Oiden Fruit Co., Kansas City, Mo. (Storage.)

*Fawcett, Wm., Director Dept. Public Gardens and Plantations, Kingston, Jamaica. (The article “Tropical Fruits;” also Cherimoya, Citronella, Marmalade Plum, Egg Fruit, Mango, Mangosteen, and others.)

Fernow, Prof. E. B., Director College of Forestry, Cornell Univ., Ithaca, N. Y. (Conifers. Forestry. Pune.)

Finlayson, Kenneth, Gardener, Brookline, Mass. (Diosma.)

Foord, J. A., Asst. in Dairy Husbandry, Cornell Univ., Ithaca, N. Y. (New Hampshire.)

Francisci, Dr. F., Manager S. Calif. Acclimatizing Ass’n, Santa Barbara, Calif. (Rare plants grown in S. Calif., as Dasylirion, Flavocurta, Fouquieria, Farouca, Hazzardia, Parkinsonia, etc. Has corrected many proofs.)

Galloway, B. T., Dir. of Bureau of Plant Industry, U. S. Dept. Agric., Washington, D. C. (Floriculture. Has read various important articles, including Violet.)

Gannett, Frank E., Editor, “The News,” Ithaca, N. Y.; formerly Secretary of the U. S. Philippine Commission. (Philippine Islands.)

Garcia, Prof. Fabian, Horticulturist New Mexico Exp. Sta., Mesilla Park, N. M. (New Mexico.)

Garfield, Chas. W., Horticulturist, Grand Rapids, Mich. (Michigan.)

Gerard, J. N., Amateur, Elizabeth, N. J. (Various articles, especially on bulbous plants, as Crocus, Iris, Muscari, Narcissus.)

Gillett, Edward, Nurseryman, Southwick, Mass. (Hardy Ferns. Liparis. Has read numerous proofs on native plants, especially hardy orchids.)

*Goff, Prof. E. S., Horticulturist, Wis. Exp. Sta., Madison, Wis. (Wisconsin.)

*Good, Jessie M., Organizer, American League for Civic Improvement, Springfield, O. (Village Improvement.)

Gould, Mrs. Theos., Petunia specialist, Ventura, Calif. (Petunia.)

Green, Prof. S. B., Horticulturist, Minnesota Exp. Sta., St. Anthony Park, Minn. (Minnesota.)

Green, Wm. J., Horticulturist, Ohio Exp. Sta., Wooster, Ohio. (Ohio. Greenhouse sub-irrigation.)

Greene, Edward L., Prof. of Botany, Catholic Univ. of America, Washington, D. C. (Dodonaea. Help on Viola.)

Greenlee, Miss Lennie, Bulb-grower, Garden City, N. C. (Zitia.)

Greiner, T., Specialist in Vegetables, La Salle, N. Y. (Garden vegetables, as Artichoke, Asparagus, Bean, Cress, Corn Salad, Kohlrabi, Lettuce, Onion, Parsley, Parsnip, Rhubarb.)

Grey, Robert M., Gardener, North Easton, Mass. (Numerous important orchid groups, as Cypripedium, Epipactis, Lycaste, Maxillaria, Musella, Odontoglossum, Oceifrum, Orchid, Phalaenopsis, Saccobium, Stanhopea, Zygopetalum.)

Groff, H. H., Gladiolus specialist, Simcoe, Ont. (Gladiolus.)

Gurney, James, Gardener, Mo. Botanical Garden, St. Louis, Mo. (Cacti.)

*Hale, J. H., Nurseryman and pomologist, South Glastonbury, Conn. (Connecticut. Peach. Storage.)

Halsted, Prof. B. D., N. J. Exp. Sta., New Brunswick, N. J. (Diseases. Fungus.)
HANSEN, Geo., Landscape Architect and botanist, Berkeley, Calif. (Epipedium.)

*HANSEN, Prof. N. E., Horticulturist, S. Dak. Exp. Sta., Brookings, S. Dak. (South Dakota.)

HARRIS, Frederick L., Gardener, Wellesley, Mass. (Lisanthus. Medinilla.)

*HARRIS, W., Supt. of Hope Gardens, Kingston, Jamaica. (Certain tropical fruits, as Manmuce Apple, Persica, Pomelo, Tamarind, etc.)

HARRIS, W. K., Florist, Philadelphia, Pa. (Ficus elastica. Help on Lilium Harrisii.)

HARRISON, C. S., Pres. Park and Forest Soc. of Neb., York, Neb. (Pseudotsuga.)

*HART, J. H., Supt. Botanical Department, Trinidad, W. I. (Theobroma. Tropical Fruits.)

HASSELBERG, Heinrich, Asst. Pathologist, Ill. Exp. Sta., Urbana, Ill. (Iris. The article "Orchids," and botany of most orchid genera from Goyora to Zygopetalum. Several acahanads, as Schenecia and Thunbergia. Also Rust, and has helped on plant diseases.)

HASTINGS, G. T., formerly Asst. in Botany, Cornell Univ., Ithaca, N. Y.; now Science Teacher, Santiago, Chile. (Some tropical plants, as Berria, Bertholletia. A few grasses, as Hierochloe, Holcus, Hordeum.)

HATFIELD, T. D., Gardener, Wellesley, Mass. (Numeros and varied contributions, as Genera, Gloxinia, Lachenalia, Leca, Macrozania, Gesothera, Oxalis, Pelargonium, Rauwolfa, Rhezia, Richardia, Rondeletia. Has read many proofs.)

*Heinz Co., H. J., Manufacturers of pickles and canned foods, Pittsburg, Pa. (Tomato.)

HENDERSON, Prof. L. F., Botanist, Idaho Exp. Sta., Moscow, Idaho. (Phaeidia.)

HERRINGTON, A., Gardener, Florham Farms, Madison, N. J. (Chrysanthemum cocineum. Hollyhock.)

Hews, A. H., Manufacturer of earthenware, North Cambridge, Mass. (Pots.)

*Hexamer, Dr. F. M., "American Agiculturist," New York, N. Y. (Several biographical sketches, as Fuller, Harris, Thurber.)

*Hicks, G. H., late of U. S. Dept. Agric., Washington, D. C. (deceased). (Seed-testing.)

*Hicks, Henry, Nurseryman, Westport, L. I. (Ligustrum. Transplanting.)

HIGGINS, J. E., Horticulturist and teacher, Honolulu, H. T. (Hawaiian Islands.)

HILL, E. G., Florist, Richmond, Ind. (Regonia.)

HOLLISTER, E. J., Celery cultivator, Holley, Colo. (Celery.)

HOOPES, Josiah, Nurseryman, West Chester, Pa. (Hedges.)

HORSFORD, Fred H., Nurseryman, and specialist in filies, Charlotte, Vt. (Alpine Gardens. Lilium. Has read proof of many articles on native plants and hardy herbaceous perennials.)

*Huey, Robert, Amateur rosarian, Philadelphia, Pa. (Rose.)

HUNTLEY, Prof. F. A., Horticulturist, Idaho Exp. Sta., Moscow, Idaho. (Idaho.)

*Hutchins, Rev. W. T., Sweet Pea specialist, Springfield, Mass. (Sweet Pea.)

*Irish, H. C., Horticulturist, Mo. Botanical Garden, St. Louis, Mo. (Capsicum. Lactuca. Pepper. Tetragonia.)

*Jacob Cus., W., & Allison, Importers, New York, N. Y. (Raffia.)

*Jackson & Perkins Co., Nurserymen and specialists in Clematis, Newark, N. Y. (Clematis. Rose.)

Jaenicke, Adolph, Manager propagating dept., J. L. Childs, Floral Park, N. Y. (Primula.)

Jeffers, A., Editor "Cornucopia," Norfolk, Va. (Kale. Potato.)

*Junghannis, R. L., San Juan, Porto Rico. (Reseda. Help on Mignonette.)

*Kains, M. G., Horticulturist, School of Practical Agric. and Hort., Briar Cliff Manor, N. Y. (Minor vegetables, as Horse-Radish, Okra and Roquette. The article Sweet Herbs, also Sage, Scoury, Scoury Grass, Tansy, and other sweet, pot or medicinal herbs. Also Chives, Ginseng and Gypycrhiza.)

*Keller, J. U., Florist, Rochester, N. Y. (Many groups of hardy herbaceous perennials. Article on Herbaceous Perennials.)

Kelsey, Harlan P., Nurseryman, Boston, Mass. (North Dakota plants, as Galar, Loechothead and Paronychium. Help on proofs.)

KERR, J. W., Nurseryman, Denton, Md. (Maryland. Help on Pines.)

KiFT, ROBERT, Florist, Philadelphia, Pa. (Cut-flowers.)

KINNEY, L. F., Horticulturist, Kingston, R. I. (Cyclery.)

KNAPP, S. A., Special commissioner U. S. Dept. Agric., Lake Charles, La. (Philippine Islands.)

LAGER & HURRELL, Orchid cultivators, Summit, N. J. (Cattleya.)

LAGER, JOHN E., Orchid specialist, Summit, N. J. (Oncidium.)

LAKE, Prof. E. R., Horticulturist, Ore. Exp. Sta., Corvallis, Ore. (Oregon.)

LANDRETH, BURNET, Seedsman, Philadelphia, Pa. (David Landreth.)

LAUMAN, G. N., Instructor in Hort., Cornell Univ., Ithaca, N. Y. (Geranium, Impatiens.)

*LE MOYNE, F. J., Amateur in orchids, Chicago, Ill. (Sobralia.)

LEWERS, ROSS, Fruit-grower, Franktown, Nev. (Nevada.)

*LINTON, S. H., Nurseryman, Des Moines, Ia. (Rhubarb.)

LONSDALE, EDWIN, Florist, Wyndmoor, Chesteram Hill, Philadelphia, Pa. (Conservatory.)

LORD & BURNHAM CO., Horticultural architects and builders, Irvington-on-Hudson, N. Y. (Greenhouse Construction.)

LOTHROP & HIGGINS, Dahlia specialists, East Bridgewater, Mass. (Dahlias.)

LYON, T. T., Pomologist, South Haven, Mich. (Died 1900.) (Pears.)

*MACDOUGAL, B. T., Dir. of the Laboratories, N. Y. Botanical Garden, Bronx Park, N. Y. (Sep. Transpiration.)

MACOMBER, J. T., Fruit-grower, Grand Isle, Vt. (Peach.)

MACPHERSON, JAMES, Landscape gardener, Trenton, N. J. (Euphorbia. Has read proofs of several orchid genera.)

McKAY, Prof. A. B., Horticulturist, Miss. Exp. Sta., Agricultural College, Miss. (Potato. Strawberry.)

MCIMMEL, ROBERT, Wholesale grower of mignonette, Pearl River, N. Y. (Mignonette.)

MCWILLIAMS, GEO., Gardener, Whitinsville, Mass. (Dipladenia. Lucilia.)

*MANNING, WARREN H., Landscape Architect, Boston, Mass. (Herbaceous Perennials. Rock Gardens.)

MASON, Prof. S. C., Dept. of Horticulture and Forestry, Berea College, Berea, Ky. (Labeling. Layering.)

MASEY, Prof. W. F., Horticulturist, N. C. Exp. Sta., Raleigh, N. C. (Fig. North Carolina.)

MATHERS, P. W., Horticulturist, Ky. Exp. Sta., Lexington, Ky. (Kentucky.)

MATHERS, F. SCHUYLER, Artist, Boston, Mass. (Color.)

*MATHERS, WM., Florist and orchid grower, Utica, N. Y. (Various orchids, as Gongora, Grammatophyllum, Ionopsis, Limnolace, Miltonia, Pholidota, Selenipedium, Sophronitis. Has read many proofs on orchids.)

*May, JOHN N., Wholesale florist, Summit, N. J. (Rose. Help on florists' flowers.)

MAYNARD, Prof. S. T., Horticulturist, Mass. Hatch. Exp. Sta., Amherst, Mass. (Massachusetts.)

MEAD, T. L., Horticulturist, Oviedo, Fla. (Crim. Orange. Has helped in matters of southern horticulture.)

*MEEHAN, JOSEPH, Nurseryman, Germantown, Philadelphia, Pa. (Ilesia. Toscly.)

MEREDITH, A. P., Gardener, South Lancaster, Mass. (Hamea.)

*MILLS, REV. EDWARD M., Amateur rosarian, Elmira, N. Y. (Rose.)

*MISCHE, EMIL, Asst. to Olmsted Bros., Landscape Architects, Brookline, Mass. (Quiscalis. Toscly.)

MOON, SAMUEL C., Nurseryman, Morrisville, Pa. (Oak.)

MORRILL, ROLAND, Fruit-grower, Benton Harbor, Mich. (Peach.)

MORRIS, O. M., Horticulturist, Okla. Exp. Sta., Stillwater, Okla. (Indian Territory. Oklahoma.)

*MOTT, JR., SAMUEL R., Manager of Genesee Fruit Co.'s Freezing and Cold Storage Dept., Rochester, N. Y. (Storage.)

*MONSON, T. V., Nurseryman and grape hybridist, Denison, Tex. (Grape culture in the South. Texas.)

*MONSON, Prof. W. M., Horticulturist, Me. Exp. Sta., Orono, Me. (Maine. Vaccinium.)

*MURRELL, GEO. E., Fruit-grower, Fontella, Va. (Virginia.)

*NEHRING, H., Milwaukee, Wis. (Phenis, Salal, Serenaca, Tabernanthona, Tecomia, Thunbergia, and other plants cultivated in his garden at Gosh, Fla.)

NEWBURY, H. E., Specialist in tuberose culture, Magnolia, N. C. (Poliolones.)
NEWELL, A. J., Gardener, Wellesley, Mass. (Certain orchids, e.g., Odontoglossum.)

*NEWMAN, J. S., Vice Dir. S. C. Exp. Sta., Clemson College, S. C. (South Carolina.)

*NORTON, Prof. J. B. S., Pathologist Md. Exp. Sta., College Park, Md. (Genera of Euphorbiaeae. Phyllanthus. Numerous botanical puzzles.)

OSTON, COLIN, Gardener, Kimball orchid collection, Rochester, N. Y. (Dendrobium.)

O'MARA, PATRICK, of Peter Henderson & Co., New York, N. Y. (Potting. Has read various important articles, suggested contributors and given other aid.)

OEPET, EDWARD O., Gardener, So. Lancaster, Mass. (Border. Cyclamen. Dianthus, and certain orchids.)

PARBON, J.R., SAMUEL, Landscape architect, New York, N. Y. (Lawns. Help on Park.)

PEACOCK, LAWRENCE E., Dahlia specialist, Ateo, N. J. (Dahlia.)

PENNOCK, F. M., Horticulturist, San Juan, Porto Rico. (Porto Rico.)

*PETTERSON, WM. A., of the firm of P. S. Peterson & Son, Nurseriesmen, Chicago, Ill. (Peonia. Transplanting of large trees.)

*PFAEFE, NEWTON E., Pathologist Pacific Coast Laboratory, Div. of Veg. Phys. and Path., U. S. Dept. Agric., Santa Ana, Calif. (Walnut.)

POWELL, GEORGE T., Dir. School of Practical Agriculture and Horticulture, Briar Cliff Manor, N. Y. (Pear. Has read proofs of other important fruits.)

PRINCE, Prof. R. H., Horticulturist, Texas Exp. Sta., College Station, Texas. (Texas.)

PRINCE, L. B., Pres. Board of Regents, New Mexico Agric. College, Santa Fe, N. M. (The article "Prince.")

*PURDY, CARL, Specialist in California bulbs, Ukiah, Calif. (California native plants, as Brodiaea, Cabbage, Erythronium, Fritillaria, Sparophily. Help on Lilium.)

RANE, F. W., Horticultrist and Prof. of Horticulture, N. H. College, Durham, N. H. (New Hampshire.)

RAWSON, GROVE P., Florist, Elmira, N. Y. (Lantana.)

RAWSON, W. W., Seedsman and market-gardener, Boston, Mass. (Cucumber. Lettuce.)

REDEDE, ALFRED, Asst. at the Arnold Arboretum, Jamaica Plain, Mass. (Botany and culture of most of the hardy trees and shrubs. The article "Trees.")

ROSE, N. JOHNSON, Landscape Gardener, Dept. of Parks, New York, N. Y. (Various exotics.)

ROTH, FILIBERT, Chief of Div. of Forestry, Department of the Interior, Washington, D. C. (Fagus.)

ROWLEE, Prof. W. W., Asst. Prof. of Botany, Cornell Univ., Ithaca, N. Y. (Liatrie. Salix.)

*SANDSTEN, Prof. E. P., Horticulturist Md. Exp. Sta., College Park, Md. (Self-sterility.)

SARGENT, Prof. C. S., Dir. Arnold Arboretum, Jamaica Plain, Mass. (Abies. Has read proofs of Picea. Prunus, etc.)

*SCOTT, WM., Florist, Buffalo, N. Y. (Important florists' plants and flowers, as Acacia, Convolvulus, Cyclamen, Cytisus, Smilax, Metrosideros, Pepperonia, Perilla, Piqueria, Stephanotis, Syringa, Verbena, etc. Also Packing Flowers.)

SCOTT, WM., Gardener, Tarrytown, N. Y. (Bertolonia and other tender foliage plants.)

*SEARS, Prof. F. C., Dir. Nova Scotia School of Horticulture, Wolfville, N. S., formerly Horticulturist Utah Exp. Sta. (Utah. Help on Canada.)

*SEAVY, MRS. FRANCES COPLE, Landscape Gardener, Chicago, Ill. (Railroad Gardening.)
SEMPLE, James, Specialist in China asters, Bellevue, Pa. (Aster.)

SEXTON, Joseph, Founder of the pampas grass industry, Goleta, Calif. (Festuca.)

SHEPARD, Charles U., Special agent U. S. Dept. Agric. in charge of experiments in tea culture, Summerville, S. C. (Tea.)

SHINN, Charles H., Inspector of Experiment Stations, Univ. of Calif., Berkeley, Calif. (California, Fig, Loganberry, Sequoia, etc.)

SHORE, Robert, Gardener, Botanical Dept., Cornell Univ., Ithaca, N. Y. (Various articles, as Acalypha, Bedding, Dichovisandra, Epicaceae, Ficus, Hymenophyllum, Thysananthus, Trachelospermum, Vases.)

SIMMONS, O. C., Landscape Gardener, Buena Ave., Chicago, Ill. (Landscaping Cemeteries. Shrubbery.)

SLINGERLAND, Prof. M. V., Entomologist Cornell Exp. Sta., Ithaca, N. Y. (Insecticides: Insects.)

SMITH, A. W., Grower of cosmos and moonflower seed, Americans, Ga. (Cosmos.)

SMITH, Elmer D., Chrysanthemum specialist, Adrian, Mich. (Chrysanthemum.)

SMITH, Irving C., Market-gardener, Green Bay, Wis. (Onion. Help on Kohl-Rabi and Strawberry.)

SMITH, Jared G., Dir. Hawaii Exp. Sta., Honolulu, H. Terr. (Nearly all palms, some aroids and various other genera, as Centaurium, Cerastium, Cotyledon.)

SMITH, J. M. (deceased), Fruit-grower and market-gardener, Green Bay, Wis. (Strawberry.)

SPENCER, John W., Fruit-grower, Westfield, Chautauqua Co., N. Y. (Grapes in the North. Help on important fruits.)

STALEY, Arthur, Walnut-grower, Fullerton, Calif. (Walnut.)

STARNES, Hugh N., Prof. of Agriculture and Horticulture, Univ. of Georgia, Athens, Ga. (Georgia. Sweet Potato. Tomato. Watermelon.)

STEELE, W. C., Fruit-grower, Switzerland, Fla. (Tulipam. Help on floriculture in Florida.)

STINSON, Prof. John T., Dir. Mo. Fruit Exp. Sta., Mountain Grove, Mo. (Arkansas.)

STRONG, Wm. C., Nurseryman, Woban, Mass. (Kenrick.)

STUBBS, W. C., Dir. La. Exp. Sta., Baton Rouge, La. (Orange.)

STUHNEAUCH, Arnold V., Instructor in Hort., Univ. of Ill., Urbana, Ill., formerly Calif. Exp. Sta. (Oler, Plan and Raising in Calif. Ficus, Fuchsia, Puya, Sequoia, Tulipa.)

TABER, G. L., Nurseryman, Glen St. Mary, Fla. (Persimmon.)

TAPLIN, W. H., Specialist in palms and ferns, Holmesburg, Philadelphia, Pa. (Culture of many palms, ferns and foliage plants.)

TAYLOR, Frederic W., Dir. Dept. of Horticulture, Pan-American Exposition, Buffalo, N. Y. (Nebraska.)

THOMPSON, C. H., formerly Asst. Botanist, Mo. Botanical Garden, St. Louis, Mo. (Some genera of eacti, as Echinocereus, Epiphyllum.)

THORNBURK & CO., J. M., Seedsmen, New York, N. Y. (Hyacinth. Seed Trade. Have read many proofs of bulbs, annuals, vegetables, herbs, etc.)

TOOMEY, Prof. J. W., Yale Forestry School, New Haven, Mass. (Arizona. Date, Opuntia. Root-Galls.)

TRACT, S. M., Horticulturist, Biloxi, Miss. (Mississippi.)

TREBLE, Dr. Wm., Dir. Mo. Botanical Garden, St. Louis, Mo. (Certain desert plants of the lily family, as Aloe, Aporia, Gasteria, Harrothia, Yucca. Shaw. Sturtevant. Oxalis.)

TRICKE, Wm., Specialist in aquatics, Dreer's Nursery, Riverton, N. J. (Aquarium. Aquatics. Most aquatics, as Liriothamnium, Limnocharis, Nymphas, Nelumbo, Oenorrinda, Victoria.)

TROOP, Prof. James, Horticulturist, Ind. Exp. Sta., Lafayette, Ind. (Indiana. Persimmon.)

TUCKER, Gilbert M., Publisher and editor of "The Country Gentleman," Albany, N. Y. (J. J. Thomas. Luther Tucker.)

TURNER, Wm., Gardener, Oceanic, N. J. (Forcing of Fruits. Mushroom.)

TUTTLE, H. B., Cranberry-grower, Valley Junction, Wis. (Cranberry.)

UNDERWOOD, Prof. L. M., Columbia University, New York, N. Y. (Botany of all ferns. Selaginella and some other flowerless plants.)

VAN DEMAN, H. E., Pomologist, Parksley, Va. (Date. Nut Culture. Strawberry.)
VAUGHAN, J. C., Seedsman and florist, Chicago and New York. (Christmas Greens.)

Vick, James, D. Landreth's Son, Philadelphia, Pa. (Malvaecissae, Melothria.)

VOORHEES, Prof. Edward B., Dir. N. J. Exp. Stn., New Brunswick, N. J. (Fertilizers.)

WALDRON, Prof. C. B., Horticulturist, N. Dak. Exp. Stn., Fargo, N. Dak. (North Dakota.)

WARD, C. W., Wholesale florist, Queens, L. I. (Pelargonium. Help on Carnation.)

*WARDER, R. H., Supt. Lincoln Park, Chicago, Ill. (Warder.)

*WATROUS, C. L., Nurseryman and pomologist, Des Moines, Io. (Iowa. Pear. Trees on Plains.)

*WATTS, R. L., formerly Horticulturist of Tennessee Exp. Sta., Sculp Level, Pa. (Tennessee.)

WELCH, FRED, Fruit-grower, Fairmount, Kans. (Kansas.)

WHEELER, C. F., Asst. Prof. of Botany, Michigan Agric. College, Mich. (Pyrota.)

WHITTEN, Prof. J. C., Horticulturist, Mo. Exp. Sta., Columbia, Mo. (Missouri.)

WYTHE, R. E., Amateur, Ottawa, Ont. (Hemerocallis. Lilium. Narcissus. Papaver. Help on Tagetes, Tulipa, Zinnia, etc.)

*WICKSON, EDWARD J., Prof. of Agricultural Practice, Univ. of Calif., and Horticulturist, Calif. Exp. Sta., Berkeley, Calif. (Almond, Apricot, Cherry, Grape, Lemon, Lime, Nectarine, Pear, Strawberry, Walnut and Vegetable Gardening in California.)

WOOLSON, G. C., Nurseryman, Specialist in hardy herbaceous perennials, Passaic, N. J. (Mertensia. Has read numerous proofs.)

WORTMAN, S. W., Mushroom-grower, Iselin, N. J. (Mushroom.)

WRIGHT, CHARLES, Fruit-grower, Seaford, Del. (Peach. Help on Delaware.)

ZIRNGIEBEL, DENYS, Florist, Needham, Mass. (Pansy.)

II. LIST OF THOSE WHO HAVE ASSISTED BY READING PROOF, AND IN OTHER WAYS

ABRAHAM, CHARLES, Nurseryman, San Francisco, Calif. (Trees in Calif.)

ALLEN, R. C., Fruit-grower, Bonita, Calif. (Olive.)

ALVORD, A. H., Grower of caeti, San Bernardino, Calif. (Caeti.)

AGAR, AUSTIN C., Prof. of Botany, N. J. State Normal School, author of "Trees of the Northern U. S.," Trenton, N. J. (Trees.)

BAILEY, W. W., Prof. of Botany, Brown Univ., Providence, R. I. (Rhode Island.)

BALL, C. D., Wholesale florist, Holmeneg, Philadelphia, Pa. (Palm and decorative plants.)

BARKER, CHARLES, Fruit-grower, Milford, Del. (Peach.)

BASS & SON, Wm. F., Nurserymen, Hammon ton, N. J. (Native plants, as Hibiscus.)

BERGER & CO., H. H. Importers, New York, N. Y. (Japanese and California plants.)

BETSCHER, C., Florist, nurseryman and seedsman, Canal Dover, Ohio. (Gladiolus.)

BOARDMAN, S. L., Sec. Maine Hort. Soc., Augusta, Me. (Maine.)

BRECK & SONS, JOSEPH (Corporation), Seedsmen, Boston, Mass. (Portrait of Joseph Breck.)

BRESEE, J. S., Nurseryman, Fayetteville, N. C. (North Carolina.)

BROWN, O. H., Amateur, Bordentown, N. J. (Aquatics.)

BURpee, W. ATLEE, Seedman, Philadelphia, Pa. (Seed Testing.)

BUSH & SONS, Viticulturists, Bushberg, Mo. (Grapes.)

CALDWELL, GEO. C., Prof. of Agric. Chemistry, Cornell Univ., Ithaca, N. Y. (Fertility. Fertilizers. Lime.)

CRAAMBER, JOHN, Journalist, Buffalo, N. Y. (Native plants. Kalmia.)

CLARK,_MISS JOSEPHINE A., Librarian, U. S. Dept. Agric., and author of a card index of new species of North American plants, Washington, D. C. (Information as to species after the date of Index Kewensis.)

CLARK, J. C., Dreer’s nursery, Riverton, N. J. (Pansy.)

COVILLE, FREDERICK V., Botanist, Dept. of Agric. Washington, D. C. (Juniperus. Suggestions on various matters.)

CRANEFIELD, FREDERIC, Asst. Horticulturist, Wisconsin Exp. Sta., Madison, Wis. (Irrigation.)

DAILLEDUOZ BROS., Wholesale florists, Flatbush, Brooklyn, N. Y. (Magnolia.)

DALEY, CHARLES L., Fruit-grower, Salem, Ore. (Prune.)

DANLEY, CHARLES E., Prune-grower, Salem, Ore. (Prune.)

DANDRIDGE, MRS. DANSE, Amateur, Shepherdstown, W. Va. (Hardy plants.)

DAVENPORT, GEO. E., Botanist, specialist in ferns, Medford, Mass. (Several genera of ferns.)

DAY, MISS MARY A., Librarian, Gray Herbarium of Harvard Univ., Cambridge, Mass. (Rare books.)

DEVOL, W. S., Editor and agriculturist, Redlands, Calif. (Vegetables in California.)

DEVON, DR. G., Amateur of bamboos, New Orleans, La. (Bamboo.)

DOCK, MISS M. L., Lecturer on plant life, forestry and village improvement, Harrisburg, Pa. (Bartram. Village Improvement.)

DOUCH, H. E., See’y. State Board of Hort., Hillsdale, Ore. (Oregon.)

DOWNER’S SONS, J. S., Fruit-growers, Fairport, Ky. (Kentucky.)

DREER, HENRY A. (Inc.), Seedsmen and Plantsmen, Philadelphia, Pa. (Many and varied services, especially in aquatics, ferns, foliage plants and rare annuals.)

EISEN, GUSTAV, Author of Gov’t. bulletin on figs and raisins, San Francisco, Calif. (Fig. Raisin.)

ELLIOT, J. WILKINSON, Landscape Architect, Pittsburg, Pa. (Kochia, Oak, and some herbaceous perennials.)

ELLWANGER & BARRY, Nurseryman, Rochester, N. Y. (Hardy plants.)

EMERSON, Prof. R. H., Horticulturist, Neb. Exp. Sta., Lincoln, Neb. (Nebraska.)

FARNHAM, J. E. C., Ex-Prof. R. I. Hort. Soc., Providence, R. I. (Rhode Island.)

FERNALE, M. L., Asst. in Gray Herbarium, Cambridge, Mass. (Savila.)

FIELDS, JOHN, Dir. Agr. Exp. Sta., Stillwater, Okla. (Oklahoma.)

FISHER, DR. JABEZ, Fruit-grower, Fitchburg, Mass. (Massachusetts.)

GANOUG, W. F., Prof. of Botany, Smith College, Northampton, Mass. (Cacti, and many proofs of physiological subjects.)

GIFFORD, JOHN C., Asst. Prof. of Forestry, College of Forestry, Cornell Univ., Ithaca, N. Y. (Poinciana.)

GOODMAN, L. A., Fruit-grower, Kansas City, Mo. (Missouri.)

GREENMAN, J. M., University Museum, Cambridge, Mass. (Zinnia.)

HALLIDAY, ROET. J., Florist, Baltimore, Md. (Azalea. Camellia.)

HARRIS, J. S., Fruit-grower, La Crescent, Minn. (Minnesota.)

HAYS, WILLET M., Prof. of Agric., Univ. of Minn., Minneapolis, Minn. (Plant-Breeding.)

HEIGES, S. B., Pomologist, York, Pa. (Pennsylvania.)

HEISS, J. B., Florist, Dayton, Ohio. (Palm.)

HELLER, A. A., Botanist, Lancaster, Pa. (Porto Rico.)

HERBST, J. L., Fruit-grower, Sparta, Wis. (Strawberry.)

HEWSON, W. M., Orchid-grower for Wm. Scott, Buffalo, N. Y. (Oxalidaceae. Oxalidaceae.)

HICKS, D. C., Fruit-grower, No. Clarendon, Vt. (Vermont.)

HOSMER, A. W., Botanist, Concord, Mass. (Polypogon, and some other native plants.)
COLLABORATORS

HOWARD, A. B., Seed-grower, Belchertown, Mass. (Verbena. Zinnia.)

HUTT, H. L., Prof. of Horticulture, Ont. Agric. College, Guelph, Ont. (Kale. Kohlrabi.)

JACK, Mrs. ANNIE L., Chateauguay Basin, Prov. Que. (Native Plants.)

JEPSON, WILLIS L., Botanical Dept., Univ. Calif., Berkeley, Calif. (A few Californian subjects.)

JENNINGS, E. B., Specialist in paeonies, Southport, Conn. (Paeony.)

JONES, Rev. C. J. K., Los Angeles, Calif. (Various Californian plants.)

JORDAN, W. H., Dir. N. Y. Exp. Sta., Geneva, N. Y. (Fertility. Fertilizers.)

KATZENSTEIN, OTTO, Manager Pinchurh Nursery, Pinchurh, N. C. (Stillingia.)

KEEN, Dr. R. C., Prof. of Chemistry, Mich. Agric. College, Agricultural College, Mich. (Fertility. Fertilizers. Lime.)

KELLOGG, GEO. J., Pomologist, Lake Mills, Wis. (Wisconsin.)

KERMAN, JOHN, Market-gardener, Grimsby, Ont. (Tomato.)

KINNEY, T. L., Fruit-grower, South Hero, Vt. (Tomato.)

LADD, E. F., Prof. of Chemistry, N. D. Agric. Coll., Agricultural College, N. D. (North Dakota.)

LAKE, D. S., Nurseryman, Shenandoah, Iowa. (Trees on Plains.)

LATHAM, A. W., Soc. Minn. Hort. Soc., Minneapolis, Minn. (Minnesota.)

LEIB, S. F., Prune-grower, San Jose, Calif. (Pine.)

LINDLEY, J. VAN, Nurseryman, Pomona, N. C. (North Carolina.)

LUKE, FRED K., Gardener, Mo. Botanical Garden, St. Louis, Mo. (South Dakota.)

LUPPEN, J. M., Market-gardener, Gregory, L. I. (Cabbage.)

LYON, W. S., Census Bureau, Washington, D. C. (Palms.)

MACDOWELL, J. A., Nurseryman, City of Mexico, Mex. (Cacti.)

MACKENZIE, R. E., Sec. J. M. Thorburn & Co., New York, N. Y. (Many important bulbs.)

MAKEPEACE, A. D., Cranberry-grower, West Brimstable, Mass. (Cranberry.)

MANDA, W. A., Horticultural expert, South Orange, N. J. (Orchid pictures.)

MANNING, C. H., Sheridan, Wyo. (Wyoming.)

MANNING, JACOB W., Nurseryman, Reading, Mass. (Dried specimens of herbaceous perennial plants.)

MAXWELL BROS., Fruit-growers, Geneva, N. Y. (Quince.)

McDOWELL, Prof. R. H., Agriculturist and horticulturist, Nev. Exp. Sta., Reno, Nev. (Nevada.)

MCLEAN, JOHN, Gardner, Montecito, Calif. (Some plants cult. in Calif.)

MEAD, Prof. ELWOOD, Cheyenne, Wyoming. (Wyoming.)

MEEHAN, THOS., Nurseryman, Germantown, Pa. (deceased). (The article "Horticulture.")

MERIAN, DR. HORATIO C., Salem, Mass. (Paeonia. Papaver.)

MERRILL, L. H., Prof. of Chemistry, Me. Agric. Coll., Orono, Me. (Maine.)

MILLER, E. S., Specialist in Bulbs, Floral Park, L. I. (Many articles on bulbs.)

MILLER, H. H., Paw Paw, W. Va. (West Virginia.)

MOON, WM. H., Nurseryman, Morrisville, Pa. (Pennsylvania.)

MOOREHEAD, JAMES R., Grower of Cacti, Cactus Farm, Moorhead, Texas. (Cacti.)

Moses, WALLACE R., Fruit-grower, West Palm Beach, Fla. (Orange. Pineapple.)

MUDGE, W. S., Fruit-grower and melon raiser, Hartland, N. Y. (Muskmelon.)

NANZ & NEUNER, Florists, seedsmen, and nurserymen, Louisville, Ky. (Kentucky.)

NASH, GEO. V., Gardener, N. Y. Bot. Garden, Bronx Park, N. Y. (Genera of grasses.)

NICKELS, Miss ANNA B., Grower of Cacti, Laredo, Texas. (Certain genera of Cacti.)

O'MEAR, NICHOLAS, Fruit-grower, Dayton, Ohio. (Ohio.)

OSTERHOUT, W. J. V., Botanical Dept., Univ. of Calif., Berkeley, Calif. (Variation.)

PASONS, SAMUEL B., Nurseryman, Flushing, L. I. (The articles "Horticulture" and "Pomology.")

PENDLEBAST, W. W., Pres. Minn. Hort. Soc., Hutchinson, Minn. (Minnesota.)

PENNOCK, C. J., Florist and Gardener, Kennebunk, Me. (Kennebunk.)

PERICAT, ALPHONSE, Gardener, West Philadelphia, Pa. (Lathyrus. Lathyrus.)

PIERSON, F. R., Nurseryman, Tarrytown-on-Hudson, N. Y. (Bulbs.)

RAMSEY, F. T., Nurseryman, Austin, Tex. (Texas.)

REA, FREDERICK J., Nurseryman, Norwood, Mass. (Polemonium.)
COLLABORATORS

REMBANN, JEREMIAH, Lincoln, Neb. (Philippine Islands.)

RICHARDSON, E. A., Landscape gardener, Boston and Albany, 40 Austin St., Newtonville, Mass. (Railroad Gardening.)

RIDER, Prof. A. J., Philadelphia, Pa. (Craberry.)

ROBINSON, Prof. R. L., Curator, Gray Herbarium of Harvard Univ., Cambridge, Mass. (Various articles on native plants.)

ROBINSON, CHARLES MILFORD, Author of "The Improvement of Towns and Cities" Rochester, N. Y. (Village Improvement.)

ROBINSON, John, Author of "Ferns in their Homes and Ours," Salem, Mass. (several articles on ferns.)

Rocks, John, Fruit-grower and nurseryman, Niles, Calif. (Plum. Prune.)

ROHEN, WALDO, Specialist in sweet peas, Sargent, Calif. (Sweet Pea.)

ROOT, A. I., Dealer in bee-keepers' supplies, Medina, Ohio. (Tomato.)

ROSS, J. J., Fruit-grower, Sea ford, Del. (Peach.)

ROTHROCK, J. T., Commissioner of Forestry, West Chester, Pa. (Rothrockia.)

RYALS, G. M., Market-gardener, Savannah, Ga. (Tomato.)

SALTZ, WM. G., Florist and specialist in violets, Poughkeepsie, N. Y. (Violet.)

SANDER & Co., Nurserymen of St. Albans, Eng. (A. Dimmock, New York agent). (Recent importations, particularly orchids and palms.)

SANDIFORD, ROBERT, Specialist in pelargoniums, Mansfield, Ohio. (Pelargonium.)

SCHNEEK, JACOB, Amateur botanist, Mt. Carmel, Ill. (Frits.)

SCHULTHEIS, ANTON, Florist, College Point, N. Y. (Woody plants from Australia and the Cape, as Erioc.)

SCOON, C. K., Fruit-grower, Geneva, N. Y. (Cherry.)

SCOTT, ALEX. B., of Robert Scott & Son, Sharon Hill, Pa. (Rose.)

SHADY HILL NURSERY Co., Boston, Mass. (Herbaconous perennials.)

SHAW, THOS., Prof. of Animal Husbandry, Univ. of Minn., St. Anthony Park, Minn. (Medicago, Melilotus.)

SHINN, J. C., Fruit-grower, Niles, Calif. (Pear.)

SIEVERS, JOHN H., Specialist in pelargoniums, San Francisco, Calif. (Pelargonium.)

SIMPSON, J. H., Botanist, Braidentown, Fla. (Frits, Zamia and some Florida subjects.)

SLAYMAKER, A. W., Fruit-grower, Camden, Del. (Delacare.)

SMALL, JOHN K., N. Y. Botanical Garden, Bronx Park, N. Y. (Polygonum.)

SMITH, ARCHIBALD, Manager Joseph Breck & Sons Corporation, Boston, Mass. (Seeds.)

STEWART, W. J., Sec. Soc. American Florists, Boston, Mass. (Springa.)

SOLDA, CHRIS, Grower of pansy seed, Jersey City, N. J. (Pansy.)

STANTON, Geo., Ginseng specialist, Apulia Station, N. Y. (Ginseng.)

STOCKBRIDGE, Prof. H. E., Dir. Fla. Exp. Sta., Lake City, Fla. (Tomato.)

STORES & HARRISON, Nurserymen, Painesville, Ohio. (Various plants.)

STURTEVANT, EDMUND D., Specialist in aquatics, Station E., Los Angeles, Calif. (Victoria and other aquatics.)

SUZUKI & IGA, Yokohama Nursery Co., New York, N. Y. (Japanese plants.)

THOMPSON, Mrs. J. S. R., Spartanburg, S. C. (Perfumery Gardening.)

THERLOW, T. C., Nurseryman and specialist in peonies, West Newbury, Mass. (Paeonia.)

TODD, FREDERICK G., Landscape Architect, Montreal, P. Q. (Hardy trees and shrubs.)

TROTH, HENRY, Photographer of plants and landscapes, Philadelphia, Pa. (Photography.)

VICK'S SONS, JAMES, Seedsmen, Rochester, N. Y. (Various plants.)

WATSON, H. D., Farmer and fruit-grower, Kearney, Neb. (Trees for the Plains.)

WEBB, PROF. WESLEY, DOVER, Del. (Delaware.)

WEDGE, CLARENCE, Fruit-grower, Albert Lea, Minn. (Minnesota.)

WHILDDIN POTTERY Co., Philadelphia, Pa. (Pots.)

WHITE, J. J., Cranberry-grower, New Lisbon, N. J. (Cranberry.)

WILLARD, S. D., Nurseryman, Geneva, N. Y. (Important fruits, as Cherry.)

YOUNG, B. M., Specialist in nut culture, Morgan City, La. (Pecan.)
ABBREVIATIONS

I. OF GENERAL EXPRESSIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cult.</td>
<td>cultivated, etc.</td>
</tr>
<tr>
<td>diam.</td>
<td>diameter</td>
</tr>
<tr>
<td>E.</td>
<td>east.</td>
</tr>
<tr>
<td>ft.</td>
<td>feet.</td>
</tr>
<tr>
<td>in.</td>
<td>inches</td>
</tr>
<tr>
<td>N.</td>
<td>north.</td>
</tr>
<tr>
<td>S.</td>
<td>south.</td>
</tr>
<tr>
<td>trop.</td>
<td>tropics, tropical.</td>
</tr>
<tr>
<td>W.</td>
<td>west.</td>
</tr>
</tbody>
</table>

II. OF BOTANICAL TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fl.</td>
<td>flower.</td>
</tr>
<tr>
<td>fls.</td>
<td>flowers.</td>
</tr>
<tr>
<td>flw.</td>
<td>flowered.</td>
</tr>
<tr>
<td>fr.</td>
<td>fruit.</td>
</tr>
<tr>
<td>h.</td>
<td>height.</td>
</tr>
<tr>
<td>lf.</td>
<td>leaf.</td>
</tr>
<tr>
<td>lft.</td>
<td>leaflet.</td>
</tr>
<tr>
<td>ls.</td>
<td>leaves.</td>
</tr>
<tr>
<td>sts.</td>
<td>stems.</td>
</tr>
<tr>
<td>syn.</td>
<td>synonym.</td>
</tr>
<tr>
<td>var.</td>
<td>variety.</td>
</tr>
</tbody>
</table>

III. OF BOOKS AND PERIODICALS

To aid the student in the verification of the work, and to introduce him to the literature of the various subjects, citations are made to the portraits of plants in the leading periodicals to which the American is most likely to have access. These references to pictures have been verified as far as possible, both in the MS. and in the proof. A uniform method of citation is much to be desired, but is extremely difficult, because periodicals rarely agree in methods. With great reluctance it was decided to omit the year in most cases, because of the pressure for space, but the student who lacks access to the original volumes may generally ascertain the year by consulting the bibliographical notes below.

An arbitrary and brief method of citation has been chosen. At the outset it seemed best to indicate whether the cited picture is colored or not. This accounts for the two ways of citing certain publications containing both kinds of pictures, as The Garden, Revue Horticole, and Gartenflora.

The figures given below explain the method of citation, and incidentally give some hints as to the number of volumes to date, and of the number of pages or plates in one of the latest volumes.

A few works of the greatest importance are mentioned elsewhere by way of acknowledgment (p. xv). The standard works on the bibliography of botany are Pritzel’s Thesaurus and Jackson’s Guide to the Literature of Botany; also, Jackson’s Catalogue of the Library of the Royal Botanic Gardens, Kew.

B.F. . . . See F.

B.H. . . . La Belgique Horticole. Ghent. 35 vols. (1851-1885.)

B.R. . . . Botanical Register (1815-1847). Vols. 1-14 edited by Edwards; vols. 15-23 by Lindley. In vols. 1-23 the plates are numbered from 1-2014. In vols. 24-33 they are numbered independently in each vol. There are 685 plates in vols. 24-33. "An Appendix to the First Twenty-three Volumes" (bound separately or with the 23rd vol.) contains an index to the first 23 vols. An index to vols. 24-33 may be found in vol. 31. (33:70=vol. and col. plate.)

ABBREVIATIONS

F.J. . . . See F.
F.P. . . . See F.
F.S. . . . Flore des Serres. Ghent. (1845-1889.) Inconsistent in numbering, but the plate numbers are always found on the plate itself or on the page opposite. Valuable but perplexing indexes in vols. 15 and 19. (23:2418=vol. and col. page.)
I.H. . . . L'Illustration Horticole. Ghent. (1854-1896.) (43:72=vol. and col. plate.) The volumes were numbered continuously, but there were six series. Series I. = 1854-63. Series II. = 1864-69. Series III. = 1870-75. Series IV. = 1881-86. Series V. = 1887-89. Series VI. = 1894-96. The plates were numbered continuously in the first 16 vols. from 1 to 614: in vols. 17-33 they ran from 1 to 469: in series V. from 1 to 190; in series VI. they began anew with each vol. Valuable indexes in vols. 10 and 29. Series V. in 4to, the rest svo.
K.W. . . . See F.C.
L. . . . In vol. 1 of this work, sometimes means Lindenia, sometimes Lowe's Beautiful Leaved Plants. See "Lind." and "Lowe."
R.B. . . . Revue de l'Horticulture Belge et Etrangère. Ghent. Founded 1875 (23:288=vol. and page opposite col. plate.) In the first vol. of the Cyclopaedia "R.B." sometimes means Belgique Horticole, but the confusion is corrected in later vols., where Belgique Horticole is abbreviated to "B.H."
R.H. . . . Revue Horticole. Dates from 1824, but is now considered to have been founded in 1829. (1899:596=year and page opposite col. plate. 1899, p. 596=year and page opposite black figure.)
S.H. . . . Semaine Horticole. Ghent. Founded 1897. (3:34=year and page.)
S.M. . . . Semaine Horticole. Erroneously cited in this fashion a few times in first vol.

* Additional abbreviations and explanations will be found in the introductory pages of Vol. I.
RADISH (Raphanus sativus). Plate XXXI. The Radish is one of the most popular of garden vegetables. It is of quick growth, and the product is secured at the time of the year when fresh vegetables are in demand. In order that Radishes may be of the best quality, they should have made a rapid growth. The soil should be rich, light and loose,—one that drains readily and does not bake with heavy rains. Radishes fit for the table may be had in three to six weeks from the sowing, depending on the variety and the "quickness" of the soil. They are often grown as a catch-crop with other vegetables. They may be sown in the rows with early beets, peas or other crops, and they are usually mature enough for use before they seriously interfere with the main crop. Sometimes seeds of Radishes are sown in the rows of slow-germinating things, like carrots and parsnips, in order that the seedlings may mark the row and thereby facilitate tillage. Many of the Radishes may be allowed to remain long enough to produce an edible tuber. Aside from the root-maggot, the Radish is relatively free from insects and diseases. When the root-maggot appears in any place, it is usually best to discontinue the growing of Radishes in that area for two or three years, until the insects have been starved out. The maggots may be killed by an injection of bisulfide of carbon into the earth about the plants; but this is usually more expensive than the product is worth. Early Radishes may be grown in hotbeds or coldframes with the greatest ease, and in these places they are usually less subject to the attacks of the cabbage maggot, since the crop is matured in advance of the maggot season.

Radishes are readily forced in the winter months. It is necessary that the house be light. The soil should be a sandy loam, free from silt and clay. It is best to grow Radishes in solid beds rather than on benches. They thrive best in a low temperature. The temperature during the day should not exceed 65° to 75° in the shade, and at night it may drop to 45° to 50°. If the temperature is too high, and particularly if the plants are given bottom heat, the plants tend to run to top rather than to root. The seed is usually sown in rows from 3-8 inches apart, and the young radishes are thinned to stand 2 or 3 inches apart. In order that the crop shall be uniform and mature simultaneously, it is advisable either to sift the seed or to transplant the young Radishes. Galloway has found by experiment that Radish seeds two-twenty-fifths of an inch in diameter are too small to give a satisfactory and uniform crop. He therefore advises that seeds be run through sieves with a mesh of that diameter in order to separate the small specimens. In a certain experiment, he secured from two pounds of commercial seed 19½ ounces of large seed, 10⅞ ounces small seed, the remainder being bits of gravel, sticks and other impurities. The chief value of this sorting lies in the greater uniformity of the crop.

Almost every plant can then be relied upon to reach maturity. It is the practice in some houses to transplant the young Radishes. The seed may be sown in flats or in beds at one end of the house, and when the Radishes have made two or three leaves, they are transplanted into permanent quarters. In this operation, all the small and weak plants are discarded and the crop of Radishes. It is supposed by some growers, also, that the breaking of the tap-root in the process of transplanting tends to make the tuber shorter and thicker and to induce an earlier maturity. By means of transplanting, the use of the house may be economized. Whilst one crop is growing, another may be started in a seed-bed or in flats. As soon as the first crop is removed, the ground may be thoroughly raked, fertilized, and the new plants put in. In some cases the new crop is transplanted between the rows of the old crop a few days before the latter is removed; but, unless the soil is rich and in good condition, it is better to wait until the crop is removed in order that the land may be thoroughly fitted for the new plants. Radishes are often forced in connection with lettuce, and they thrive well in the same temperature. The varieties most used for forcing, as also for the early spring crop in the garden, are the globular or half-long kinds. With these varieties, a depth of soil of 4 inches is sufficient for good results.

The Radish is variable in size, shape, color and consistency of root and in season of maturity. Varieties may be classified as spring, summer and winter Radishes; or as globular, half-long and long Radishes; or as red, white, gray and black Radishes. Figs. 2600–2602 show some of the forms.

The origin and nativity of the Radish are questions of dispute. For geographical reasons, it is supposed that the Radish is wild in temperate Asia, probably in the oriental part, although truly indigenous Radishes are not yet known. Not infrequently the Radish runs wild about gardens, and in

2601. A dainty bunch of Radishes (X 1/2).
that case the root soon deteriorates into a small, slender, woody and more or less fibrous member. It has been thought by some that the Radish is only a modified form of the wild charlock, or *Raphanus Raphanistrum*. In fact, experiments were made on the charlock by Carriére, who was able in a few years to produce edible Radishes from the wild plant. While these investigations seem to be conclusive that the Radish can be produced from the charlock, they nevertheless do not prove that such was the actual origin of the garden Radish. De Carriére, whilst accepting Carrière's experiments, was unable to understand how the Radishes of India, China and Japan could have originated from the charlock, since that plant is unknown in those countries and the Radish has been grown there for centuries. It is possible that the Radish was carried eastward from western Asia and Europe, but such has not been the general course of the migration of plants. It is possible that the Radishes of the Orient are a different species from those in Europe, although they are generally regarded as the same species, *Raphanus*.

The experiments of E. A. Carriére with the wild Radish (Journ. d'Agric. Prat., 1869, also separately printed) form a classical example of the possibilities of plant-breeding. In five years by means of cultivation and selection alone he was able to produce from a troublesome weed practically all the important types and varieties of Radish in cultivation. Carriére began by gathering seeds of the wild *Raphanus Raphanistrum* (Fig. 2060), which he collected as far as possible away from all cultivated plants of the same family. Duplicate sowings were made in light, dry soil at Paris and in strong clay soil in the country. The roots at Paris were mostly white or rose and the long form dominant; in the country all the colors and all possible forms were obtained. The roots of the wild plants were very slender, dry, fibrous, always the same shape, always white, hard, woody and inedible. The roots of the same species after four generations of seed were large, various in form and color, flabby, the flesh white, yellowish, red or violet, succulent, and good to eat. Figs. 2064, 2065.

Carriére gives three pictures of the wild type with which he began, and eight pictures of various types produced after five years of intelligent cultivation and selection. The original root was about 7 inches long, but it was half an inch thick for a distance of barely an inch and a half. Taking extreme cases, the length of root was increased from 15 to 10 inches, the thickness from 1/2 to 5 inches, the weight from 22 to 631 grams. In terms of percentage the length was increased 660 per cent, the thickness 1,400 per cent, the weight 525 per cent. Among the forms pictured by Carriére were the common long, the carrot shape, the turnip shape, the beet shape and others. — In all 8 types, the length and diameter of which are given in every instance. All these roots had the characteristic flavor of the Radish well developed. There were others which in flavor approached turnips and other root crops of the mustard family.

The Rat-tail Radish, Fig. 2066, is grown for its much-developed soft pods, which may be used as Radishes and in the making of pickles. It is rarely grown in American gardens, although it is well worth raising as a curiosity. It is annual, and its cultivation presents no difficulties.

GARDEN NOTES ON RADISHES.—A very small area will furnish an abundance of Radishes for a family. Radishes are of easy culture, and as they are at their best when not more than an hour out of the ground they make one of the most desirable vegetables for the home garden. In order to secure high quality it is essential to use well-bred seed, secure a quick growth, and use the product when in prime condition.

Spring Radishes.—The earlier quick-growing sorts will reach a usable size in 20-10 days from planting, and become pithy and worthless within 10-12 days later. Therefore repeated sowings are necessary to insure a continuous supply. The plant is very hardy, and the first sowing should be made as soon as the ground can be worked. The richer and more friable the soil can be made the better, and there is little danger of over-moisture. When the plants are 3-4 inches high and better decomposed it is the more satisfactory will be the results. Having mixed the fertilizer with the soil and made it as fine and smooth as possible, form drills about 1 in. deep and 10-18 in. apart, and drop 15-20 seeds to the foot, covering with about \(\frac{1}{2} \) in. of soil well firmed down with the hand or hoe. From 2 to 4 feet of drill will furnish an abundant supply for one person during the time those from a single sowing are usable, and sowings should be repeated once in 10 or 12 days.

Early Radishes are often ruined by "maggots." We know of no certain preventive other than covering the soil just after planting with a heavy dressing of un-leached wood ashes. A still thicker dressing of tobacco dust will often enable one to get good roots when otherwise the crop would be a failure. Market-gardeners often scatter a few seeds of early Radish in their rows of onions and beets. The Radishes start quickly and ch in clumps of Radish cultivate the Radishes. The
RAILROAD GARDENING

RAFFIA is the Malagasy name of a palm which furnishes a staple article of commerce called raffia fiber. It is indigenous to Madagascar, where it grows without cultivation or attention of any kind. One palm leaf, or frond, produces 30-100 ft. of raffia fiber, 5'-10' in length, like the leaves of the sugar cane, but of a dark glossy green color and thicker and stiffer. The lower part of the frond is a dark green color, and after the leaves have been pulled. Weeds are never seen in a Petite Côte Radish garden. The only tools used are a spading fork, a spade, and a rake, made by fixing a row of pegs ½-3 in. in diameter and 3½-1½ in. long, 1 in. apart in the rounded edge of a narrow board, and a standing board 2-12 in. wide and as long as the beds are wide. Having made the soil as fine and smooth as possible, they lay the board across the bed and, standing on it, they make a row of holes by pressing the marker into the soil along its inner edge. They then place the seedlings in each hole, covering them with soil. In the middle of the standing board, they turn it over and repeat the process. Only a small part of the garden is planted at once, but sowings are made every week throughout the season, so that there is a constant succession of roots in prime condition. The variety used is the Long Scarlet. There is a large list of varieties of these spring or forcing Radishes, all of them tracing back to the Scarlet Turnip, Scarlet Half Long or Long Scarlet type.

Summer Radishes. These are a little slower in growth than the preceding but remain longer in condition. The Long Scarlet type appears in both summer and winter Radishes, but the Chartier, Celestial, Stuttgart, etc., are used only for summer or late fall supply. The culture of the summer radish is the same as that of the spring sorts, except that they should be given more room.

Winter Radishes. These are of still slower growth and firmer flesh and can be held in good condition almost as readily as turnips. The seed may be sown from the last of July till the middle of September, and at the approach of severe freezing weather the roots should be gathered, packed in sandy soil and either buried out of doors or stored in a cool, damp cellar, where they will remain in good condition all winter.

Seed-Growing. In growing seed the roots are treated as annuals. The seeds are sown in early spring, and as soon as the plants reach usable size they are taken up, topped, carefully sorted and the best ones reset, whereupon they will quickly take root and throw up seed-stalks. Sometimes the seed is grown without transplanting the roots, but as there can be no selection nor even roguing, the seed so grown is necessarily unreliable. The seed requires a long time to mature, and is not thoroughly ripe until long after the pods have turned brown, and growers are in the habit of cutting and partially drying the stalks and allowing them to stand in the stack or meadow for some time before threshing. The later sorts are treated as biennials, the roots being stored during the winter. Much of the Radish seed used in this country is imported, though there is no reason, unless it be the question of cheap labor, to prevent its being grown to advantage here.

W. W. TRACY.
It may be well to begin an account of railroad gardening with an historical sketch.

The Movement in England.—Planting has been done on the station-grounds of some English railways for many years, but it is almost exclusively limited to purely ornamental gardening. The corporations do little beyond offering prizes to station-masters and their assistants. This system has been in operation for about twenty-five years on the Great Eastern, since 1885 on the Midland, and for a shorter time on the Great Western railway. The prizes range from 5s. to £5, and in 1899 aggregated £200 on the Midland railway. The little planting that is done by the railway companies themselves is confined to a few trees of low growth near stations, to a background of shrubs for some of the so-called "platform gardens," and to sowing broom and gorse on certain slopes of the permanent way between stations. The "allotment gardens" that attract attention on English roads are small tracts near stations that are rented to employees of the roads, who use them as vegetable, fruit, and, to some extent, as flower gardens.

The Railway Banks Floral Association is a new and interesting factor in the improvement of English railway rights of way. Lord Grey was the originator of the novel and excellent scheme. The society is an organization for interesting owners of adjacent property, and for collecting money and materials for sowing and planting railway "banks" (downward slopes) and "cuttings" (upward slopes) of the permanent way, to the end of making them more attractive. The results have been eminently satisfactory.

Denmark's Progress.—In Denmark the railways belong almost without exception to the government, and improvements are begun when the roads are constructed. These consist of five classes of work: (1) planting of station-grounds; (2) hedges as a substitute for fences; (3) snow shelters; (4) vegetation on embankments as a protection against erosion; (5) allotment gardens near block signal stations. Planting on station-grounds is purely for aesthetic purposes; the other features, while possessing some attractions, are maintained chiefly for their economic advantages. The materials for planting are obtained from nurseries ("planteskoler") owned by the roads and consist for the most part of shrubs, largely coniferous. These nurseries, as well as the entire planting, are under the supervision of a "plantot," i.e., a chief botanical instructor. The allotment gardens, like their English namesakes, are tracts near the block signal stations where railway employees conduct vegetable and fruit gardens for their own use, and sometimes care for a few flowering plants.

Conditions in Sweden.—Ornamental planting has been universal on government railways, as well as on the majority of private railways in Sweden since 1882. According to the Royal Administration of the Swedish State Railways, the following distinctions are made: (1) decorative and fire protective plantings on station-grounds; (2) mixed plantings (decorative and economic) on "habitation grounds"; (3) plantings along the railway lines as hedges or for protection against snow. Station planting consists of trees selected to suit the climate of various parts of the country, of shrubs, and of perennials and annuals (flowering as well as bedding plants). At the largest stations (only about 75) annuals are exclusively used for "modern and elegant combinations."

The planting at habitation grounds consists of fruit trees, small fruits, a few ornamental shrubs, some flowering plants, and a small kitchen-garden. The state railways yearly plant out about 40,000 hard-wooded plants (trees and shrubs), and 400,000 soft-wooded plants (perennials and annuals), which are nearly all grown at five greenhouses, hotbeds and nurseries situated in different parts of the country. About 20,000 fruit trees and 500,000 gooseberries and currants are at present planted out on the habitation grounds. On private railways the same scheme is followed on a smaller scale. (See (table) for further facts regarding railway planting in Sweden.)

In various other countries there are scattered instances of ornamental, economic and protective planting on railways, including the cultivation of fruits along the rights of way of certain railways of Germany and of France.

The Canadian Pacific Railway Company has planted a considerable part of its right of way to tamarack and other suitable trees to supply the tie material of the future. The director of the association called Het National Belang, at Utrecht, says that the association has contracts with the State Railway Company and the Holland Railway to plant the dykes of their roads. Different kinds of willows, low apple and pear trees (half-stam apple and peerenbloezen) and wild prune trees are used, the fruit of the last being "used for jams."

The common quince is used to a limited extent in Uruguay for binding earth on embankments, and the Paradise tree for shading station platforms. "The Ombui is the national tree of Uruguay,—useless as fuel or as timber, useless as food, but as welcome as Jonah's gourd at midday at certain seasons."

The Royal Railway Department of Siam reports through M. Kloe, acting Director General of Railways, that efforts have formerly been made to establish protective Tamarind hedges along embankments in the Korat section, which were destroyed by cattle. Eucalyptus trees grown from seed received from Australia have developed quickly into "stately trees;" and good success has also resulted from the introduction of a tree from Manila which is said to 'strongly resemble the cherry

2065. Ameliorated Radishes, fourth generation (X 1/2). After Carrier. (See Radish, page 188.)

2066. Rat-tailed Radish (X 1/2). Grown for its enormous pods. (See Radish, page 188.)
RAILROAD GARDENING

used in protective plantings. The fruit trees include mandarin, orange, lemon, medlars from Japan, pomegranate, apricot and almond. This information comes through Daniel S. Kidder, U. S. Consul at Algiers.

In Mexico some companies, notably the Mexican Central, maintain flower gardens and parks at larger stations.

RAILROAD GARDENING in the United States.—The first traceable indications of the approach of the movement in this country date back to about 1870. It was not until several years later that inrequent allusions to the work crept into print. From the year 1886, however, the movement gained in favor so rapidly that the late W. A. Stiles said of it in Garden and Forest, Mar. 13, 1889: "Railroad gardening has come to be considered a necessary part of construction and maintenance among prosperous and progressive companies seeking to develop local passenger business."

Leading Spirits.—As nearly as can be determined with certainty, the first railroad garden made in this country occupied the triangular plot of ground formed by the main line and the "Y" of the Baltimore & Ohio railway, at Relay Station, where the through line from Washington joins the main line from Baltimore to the west. Frank Bramhall, of the passenger department of the Michigan Central R. R., says of this plot: "I first saw it just before the Civil War." "Harper’s Magazine" for April, 1857, gives a wood-cut of this station and its surroundings, but makes no mention of the planting.

The first example of gardening known to have been made by official order, as far as can be learned, was to be seen in 1869, on the line of the Central railroad of New Jersey, on the stretch between Elizabeth and Bound Brook. The credit for this was directly due to the late president of the road, T. Johnston. That gentleman was therefore one of the pioneers, if not actually the first American railroad official to recognize the advantages, and to encourage the development of such improvement of station-grounds.

Another early example, also on the Baltimore & Ohio road, is a little flower garden which has been maintained for fifteen years or more, by Hooker’s Point, on a narrow strip of ground between the tracks and the edge of a precipitous height overlooking the valley of the Chas river.

In 1880, the Boston & Albany Company built a new station at Newtonville, Mass., and a baggage-master (name unknown) who took charge at that point in 1881 evinced an interest in the care of the grounds that attracted the favorable attention of the assistant engineer, who sent him men and material for grading and sodding. This so encouraged the baggage-master that he solicited the townspeople for money to buy seeds and plants, and with such success that he maintained for three years a flower garden that favorably impressed the higher officials of the road, and led to the establishment of similar gardens at other points, and eventually to the adoption of a system of planting which has, under intelligent, artistic supervision, been radically changed in style till it now stands as the nearest approach to a comprehensive and consistent example of railroad gardening known in this or in any other country.

Among the first railway companies to improve their station-grounds by planting were the Central of New Jersey (1869), the Baltimore & Ohio (date uncertain), the Boston & Albany (1880), the New York Central & Hudson River (1886), the Erie (1881), the Southern Pacific (1885), the Pennsylvania (1886), and the Austin & Northwestern of Texas (1887).

Summary of Present Condition.—At the present time one or two of the pioneer roads in this work have abandoned it, while others have greatly increased its extent and improved its style, and many new ones have taken it up. Prominent among the latter are the Michigan Central, the Chicago & Northwestern, the Illinois Central, the Delaware & Hudson, the Philadelphia & Reading, the Lake Shore & Michigan Southern, the Chicago, Burlington & Quincy, the Atchison, Topeka & Santa Fe with its San Francisco & San Joaquin Valley line, the Cleveland, Cincinnati, Chicago & St. Louis, the Boston & Maine, the Long Island, the Union Pacific, and the Northern Pacific railways, all of which have planted more or less tender material, with the use of an increasing proportion of permanent planting. A number of others have reserved plots for future improvement, and some have turfed such spaces. Several prominent companies do no direct planting, but seek to secure the embellishment of station-grounds by offering annual prizes to certain employees. This plan has proved fairly satisfactory and should become far more so under a uniform, well-defined system of improvement and with competent supervision.

The planting so far done consists largely of strictly ornamental gardening, that is, of formal grouping, carpet-bedding, and of similar planting composed of tender material, but it is encouraging to note evidences of growing dissatisfaction with this ephemeral style of horticultural improvement. The most brilliant and progressive railroad men are quick to recognize its limitations and defects, once their attention is directed to the matter, and, seeing its radically inept results, to look for something better. Examples of increasing knowledge in this direction are seen in the action of
RAILROAD GARDENING

RAILROAD GARDENING

therefore had from the point of view of the public. They are enormously expensive and difficult to maintain, therefore had from the point of view of the railroad.

"If railroad gardening is ever to become a potent and permanent feature of the landscape, it must be based upon a more economical basis, and with more regard to the laws of good taste and good business. This subject has already occupied the attention of a few thoughtful men, and we are confident that some progress has at last been made."

Mr. Stiles goes on to commend the plans of the then new station grounds of the Boston & Albany railway for "convenience, neatness and simplicity. No beds, no brilliant flowers, no startling effects. They rely for attractiveness on convenient, well-kept roads, neat turf, a few good trees, and masses of well-selected and well-planted shrubs, among which herbaceous and bulbous plants are allowed to grow. The plan is simple, and when thoroughly carried out in the beginning it is easy to improve."

In 1852 and 1854 several new and exceptionally artistic stations had been built for the Boston & Albany Railway Company after designs by the late eminent architect, H. H. Richardson, and the latter date marks the adoption of a consistent scheme of permanent planting, aiming at nature-like simplicity, and the abbreviation of the necessity of planting out and taking up the plants each season.

Thus, by one train of reasoning or another, progressive railroad men are gradually sifting out the chaff and retaining the good grain of correct methods and artistic results in their gardening. But it would seem that, as a class, they are not reaching the pitch of the subject as directly as is their custom in the more practical features of railroad business.

From Mr. Stiles' editorial (previously mentioned) we further hear that he has been made a feature at certain stations is being limited to those points, while permanent planting is used for any additional grounds that are improved. Similarly the Boston & Maine, the Philadelphia & Reading, the Pennsylvania, the Lake Shore & Michigan Southern and several others are constantly increasing the amount of hardy material used, while an official of the Chicago & Northwestern says: "The tendency on our line is to replace flower beds with hardy flowering shrubs and plants to the greatest extent possible, partly because the greater part of our planting is seen by passengers while traveling at a high rate of speed, and shrubbery and hardy plants attract more attention than small, low flower beds; and partly because the use of shrubs entails very much less labor in the care of the plantings, and avoids the necessity of planting out and taking up the plants each season."

Thus, by one train of reasoning or another, progressive railroad men are gradually sifting out the chaff and retaining the good grain of correct methods and artistic results in their gardening. But it would seem that, as a class, they are not reaching the pitch of the subject as directly as is their custom in the more practical features of railroad business.

From Mr. Stiles' editorial (previously mentioned) we further hear that he has been made a feature at certain stations is being limited to those points, while permanent planting is used for any additional grounds that are improved. Similarly the Boston & Maine, the Philadelphia & Reading, the Pennsylvania, the Lake Shore & Michigan Southern and several others are constantly increasing the amount of hardy material used, while an official of the Chicago & Northwestern says: "The tendency on our line is to replace flower beds with hardy flowering shrubs and plants to the greatest extent possible, partly because the greater part of our planting is seen by passengers while traveling at a high rate of speed, and shrubbery and hardy plants attract more attention than small, low flower beds; and partly because the use of shrubs entails very much less labor in the care of the plantings, and avoids the necessity of planting out and taking up the plants each season."

Thus, by one train of reasoning or another, progressive railroad men are gradually sifting out the chaff and retaining the good grain of correct methods and artistic results in their gardening. But it would seem that, as a class, they are not reaching the pitch of the subject as directly as is their custom in the more practical features of railroad business.

From Mr. Stiles' editorial (previously mentioned) we further hear that he has been made a feature at certain stations is being limited to those points, while permanent planting is used for any additional grounds that are improved. Similarly the Boston & Maine, the Philadelphia & Reading, the Pennsylvania, the Lake Shore & Michigan Southern and several others are constantly increasing the amount of hardy material used, while an official of the Chicago & Northwestern says: "The tendency on our line is to replace flower beds with hardy flowering shrubs and plants to the greatest extent possible, partly because the greater part of our planting is seen by passengers while traveling at a high rate of speed, and shrubbery and hardy plants attract more attention than small, low flower beds; and partly because the use of shrubs entails very much less labor in the care of the plantings, and avoids the necessity of planting out and taking up the plants each season."

Thus, by one train of reasoning or another, progressive railroad men are gradually sifting out the chaff and retaining the good grain of correct methods and artistic results in their gardening. But it would seem that, as a class, they are not reaching the pitch of the subject as directly as is their custom in the more practical features of railroad business.

From Mr. Stiles' editorial (previously mentioned) we further hear that he has been made a feature at certain stations is being limited to those points, while permanent planting is used for any additional grounds that are improved. Similarly the Boston & Maine, the Philadelphia & Reading, the Pennsylvania, the Lake Shore & Michigan Southern and several others are constantly increasing the amount of hardy material used, while an official of the Chicago & Northwestern says: "The tendency on our line is to replace flower beds with hardy flowering shrubs and plants to the greatest extent possible, partly because the greater part of our planting is seen by passengers while traveling at a high rate of speed, and shrubbery and hardy plants attract more attention than small, low flower beds; and partly because the use of shrubs entails very much less labor in the care of the plantings, and avoids the necessity of planting out and taking up the plants each season."

Thus, by one train of reasoning or another, progressive railroad men are gradually sifting out the chaff and retaining the good grain of correct methods and artistic results in their gardening. But it would seem that, as a class, they are not reaching the pitch of the subject as directly as is their custom in the more practical features of railroad business.

From Mr. Stiles' editorial (previously mentioned) we further hear that he has been made a feature at certain stations is being limited to those points, while permanent planting is used for any additional grounds that are improved. Similarly the Boston & Maine, the Philadelphia & Reading, the Pennsylvania, the Lake Shore & Michigan Southern and several others are constantly increasing the amount of hardy material used, while an official of the Chicago & Northwestern says: "The tendency on our line is to replace flower beds with hardy flowering shrubs and plants to the greatest extent possible, partly because the greater part of our planting is seen by passengers while traveling at a high rate of speed, and shrubbery and hardy plants attract more attention than small, low flower beds; and partly because the use of shrubs entails very much less labor in the care of the plantings, and avoids the necessity of planting out and taking up the plants each season."

Thus, by one train of reasoning or another, progressive railroad men are gradually sifting out the chaff and retaining the good grain of correct methods and artistic results in their gardening. But it would seem that, as a class, they are not reaching the pitch of the subject as directly as is their custom in the more practical features of railroad business.

From Mr. Stiles' editorial (previously mentioned) we further hear that he has been made a feature at certain stations is being limited to those points, while permanent planting is used for any additional grounds that are improved. Similarly the Boston & Main...
pared to the possibilities, for roses and half-hardy shrubs thrive throughout the state, while south of the 37th parallel semi-tropical plants make fine growth and bloom profusely.

Possibilities in California.—California offers limitless opportunities for railway horticultural development ranging from the semi-tropical growths of the citrus belt to the alpine plants on the verge of the everlasting snow that clings to mountains. A few examples of railroad gardening that existed in the southern part of the state about 1850 were maintained wholly by private enterprise as a means of advancing real estate interests. Some years later, however, extensive grounds aggregating a goodly number existed. But these were scattered, the state being so large that no railway company could afford to establish gardens throughout the extent of its lines at once, and the most progressive communities secured the first improvements of this class. The Southern Pacific Railway Company was the originator of the work and has expended large sums in beautifying choice spots along its route, as at Merced, Fresno, Santa Monica, Pomona, Pasadena, Riverside. The range of soil and climate is wide. At Los Angeles there are palms dating from the Spanish occupation, a collection of semi-tropical shrubs, and a display of yuccas, cacti and other curious vegetation from the Arizona desert.

2668. One method of treating a railway ground.

2669. A better method of treating the area.

Roses in bloom all winter are the special attraction at several points. Along the ocean, where difficult horticultural problems are met, the use of mesembryanthemums, eucalypti and other succulents is general. Where water is available, passifloras, ipomeas and the tropical hibiscuses make a wonderful show. In some places acres of boulevards, planted closely in shifting sands, are of great value. (Water is essential) for their establishment.) Some of the best railway gardens are on the Monterey line from San Francisco past San José to the ancient capital of the state. At Castroville there is a picturesque “wilderness” garden overlying at all seasons with fragrance and bloom, and the little railroad gardens along the “peninsula” (San Mateo county) have a more finished aspect than any others in the state.

Johannes Reimers, landscape gardener of the San Francisco & San Joaquin Valley Branch of the Santa Fe road, furnishes the following information: “For lawns, we use exclusively a mixture of Australian rye grass 90 per cent and white clover 10 per cent. We find that this mixture gives a lawn better able to withstand the heat, drought and poor soil usually furnished for filling than any other. The grass retains its dark, rich color even when almost dying from thirst, and makes a strong turf that is not likely to burn even when watered in the heat of a cloudless summer day and it also requires less water and less fertilizer than either blue grass or timothy. We make much use of a regular form of the Pride of China tree (Med. pinicola), known as the Texas umbrella tree, for shade around buildings and for avenues. Its low, spreading form makes it harmonize with the broad-roofed Spanish style of architecture used for our buildings. It is a small grower and is not deformed by the continuous northwest trade-winds.”

Other trees and plants mentioned include the pantanilla, pepper, catalpa, amibberly, fig, the brachiobiton (Sterculia) and casuarina, which latter does exceptionally well, eucalypti, acacia in all except the most tender varieties, grevillea, ligustrum, magnolia. *Fuchsia Californicus* and *F. coccinea* where water is available, crape myrtle, *sibereua* and *granate* (both the last do magnificently), olive and carob which do finely, and roses, which are inclined to burn and to stop flowering during the heat of mid-summer away from the coast. Vines used are passifloras, which thrive in the heated valleys, bigonopias and wistarias, also jasmines, which incline to burn when used in the interior of the state, as do also maple trees. Of palms, Prickhardia and Washingtonia are as easily grown as onions; *Phorchos Canariensis* does well, and *Chamaerops* grows slowly. A long list of plants, tender in the east, are mentioned, among them geraniums, which are spoken of as being “killed to the ground away from the coast some winters.” The plants that have proved best adapted to alkali soils are: Phoenix, Prickardia and Washingtonia among palms, the European sycamore, cottonwood, olive, crape myrtle and some eucalypti. Mr. Reimers is of the opinion that: “The gardens of California should be given a classic Mediterranean aspect. It has the climate, the coloring of rock, of soil and of sky, together with the warm blue sea of Italy, Spain and Greece. The state-
wires and poles be interfered with, nor the view of the line obstructed. The danger to planting from fire can never be entirely eliminated until some non-spark-producing fuel is substituted for coal.

Can the agricultural department of a railroad be made partly self-supporting? There seems little doubt that by one means or another this department might be made at least partly self-supporting, but the consensus of opinion among railroad men is distinctly against the advisability of making it so, except indirectly.

It is conceivable that railroad nurseries and greenhouses might supply planting stock to individuals to their advantage; and possibly railway rights of way aggregating immense areas might be planted to crops, perhaps to fruit trees as is done to some extent in European countries (a project which has also been recently suggested for the roads of India), but the opinion is general that legitimate railroad business is limited to the transportation of people and of freight. Even if this is true, it is still certain that the department may legitimately be made to yield substantial financial returns. This feature of the department work is as yet in a preliminary stage that makes definite conclusions as to the extent of its benefits impossible, but enough has already been done to demonstrate the usefulness of a well-conceived and correctly developed policy of protective and economic planting.

Planting for Protection.—Planting for protection, as practiced so far, includes: (1) covering banks with vegetation to prevent erosion, and (2) planting for protection from wind and snow, and from landslides. All this has been successfully done in various parts of the world. Snow hedges are comparatively common at home and abroad. A notable example of confidence in the advantage of belts of trees for this purpose is seen in the groves planted recently by the Northern Pacific Railway Company. About 600,000 trees were set out in 1900, and the chief engineer of the road says: "This experiment has been undertaken to determine the possibility of substituting groves for snow fences. It is necessary to protect all railway cuts in these prairie regions in some manner, as the strong winds across the treeless prairies cause the snow to drift badly. A strip 100 feet wide is cultivated to keep down weeds and overcome danger from fire, and through the middle of it runs a groove 60 feet wide, the inner edge being 1 1/2 feet from the center line and parallel with the tracks through the cuts. The trees are planted in parallel rows spaced 6 feet apart at right angles with and 3 feet apart parallel with the track. The two outer rows on each side are golden Russian and barbel-leaved willows; the third row from the outer margins, box elder and ash; and the five central rows, cottonwood. This arrangement is expected to produce a dense grove, increasing in height from both sides to the center, which will furnish an effective wind-break."

The feasibility of planting for protection against the

emergence of shifting sand on the seacoast, along rivers and on so-called desert lands, has been demonstrated by the researches and experiments of the Division of Agrostology of the United States Department of Agriculture. The advantages are sure to be eventually recognized and utilized by railroad companies whose lines are exposed to this danger.

Planting for Economic Purposes.—Possibilities are considered great in the direction of using timber for furnishing cross-ties, poles and posts. It is asserted that under competent supervision this branch can be made not only to pay the entire expenses of the department involved, but also to become a source of revenue. This branch of the work appeals to practical railway men as perhaps no other phase can be expected to, and to what extent the fortunes of various groves of beech, catalpa and tamarack influence the happiness of dignified chief engineers it would be difficult to learn, but that numbers of them are turning otherwise unoccupied railroad lands to this use is certain. In the state of Indiana some railway companies have planted a part of their holdings with 10th trees for the purpose of growing timber for economic uses and to secure the resulting reduction in taxes, which is a feature of the state forestry law.

Protection of Natural Scenery.—Notwithstanding the prominence given in railway advertising to fine natural scenery, little credit seems due to railway companies in general for protecting such scenery. That they might, indeed, play some useful role as conservators of nature, is a position in which they are entitled to be placed, but the true rôle is not yet discovered.

Disagreeable Features and their Suppression.—There are two important classes of disfigurement: defacement by signs and defacement by abuse and neglected grounds adjoining railway rights of way. The more noticeable of these is the display of hideous sign-boards that disfigure railway rights of way and, indeed, seem to have the right of way on highways of every description. These must be a public nuisance that should be legally controlled, but as they are placed on adjacent land or buildings instead of on railway property, their direct suppression by railway officials is out of the question. These eyesores have a double and cogent reason for massing plantations of small trees, shrubs and vines at certain points along rights of way where the topography of adjacent land invites such disfigurement. These gaudy signs not only blot out or mar most fine landscape views (being admirably placed to that direct end), but are allowed to distort otherwise unobjectionable farm buildings, while the approach to villages and towns is announced in screaming colors by the crowding together of these frightful adjuncts of civilization.

While railway companies are not strictly responsible for these conditions, it is certain that they might sway public opinion and effect a much needed reform by consistent, systematic work in the way of "plating out" the disagreeable features, and making every effort to reduce defacements wherever possible. This policy is likely to result in a reformation in the direction of the second source of unpleasant views from trains; viz., the unkempt, sordid and often wrenching alienized appearance of grounds adjoining rights of way through villages, towns and small cities. If a park is maintained on the station-grounds, nearly every resident is likely to enjoy and improve the looks of neighboring back yards. To this end, a rule against dumping on railway ground should be strictly enforced. The objectionable features in the way of obtrusiveness of structures that obstruct the view of the good parts of the landscape may be in large measure utterly and completely eradicated by the efforts of municipal art and social service leagues.

Attractive Ideals.—Railway companies can do no
Shall be shown in the two views of the hill and do not extend into the upper right-hand picture and the adjoining one.

Show the park in the position of the hill-like landscape farther may be applied to nation-grounds.

Plate XXXI. Railroad gardener.
RAILROAD GARDENING

RAISIN. Fig. 2071. Up to about 30 years ago, practically the entire Raisin industry of the world was confined to the Mediterranean districts of Europe and Asia. While it is true that Raisin vines were planted in other widely distant countries at a much earlier date, e.g.—Chile, and that they have variously developed there, it was not until the early 70's that the Chilcan Raisins, as well as those of the newer districts of California and Arizona, made their appearance in the markets of the world. Since that time, however, the development of the industry in these new districts has been most rapid, and it has been shown that even higher quality and flavor are possible.

In California the growth of the Raisin industry has been enormous, the output now reaching about 100,000,-000 pounds annually, or more than the entire yearly consumption of the United States a few years ago. In 1894, the growers found themselves face to face with what was then thought to be a serious problem of over-production. The price of Raisins fell below the cost of production. Lack of system in marketing has since been shown to have been the cause, for by cooperative methods in grading, packing and marketing, the industry has again been placed on a sound and fairly remunerative basis. The first importation and planting of the vines were made in 1834, but it was not until 1863 that the first California cluster Raisins were exhibited at the San Francisco Fair, and it was not until 10 years later that the first large-scale vineyards (one at Davisville, Solano county, and the other at Woodland, Yolo county) came into full bearing. One hundred and twenty thousand pounds were produced that year, nearly all by these two vineyards.

Planting in various parts of the state followed, Fresno, Riverside, El Cajon valley in San Diego county, Los Angeles and Orange counties soon became important centers of the industry; but the production of citrons has now largely superseded Raisin-growing in all the last mentioned except the Fresno district, where at present three-fourths of the entire output of the state is produced. The acreage is now about 50,000, with nearly 15,000 of these in the Fresno district, including Tulare, Merced and Kern counties. The climate of this region is eminently suitable for Raisin culture. The summers are hot and dry and the winter rains scanty and late, thus insuring a high saccharine content of the grapes and ample opportunity for sun-curing, by which means alone, it is thought, Raisins of high quality can be produced. As the system in vogue in all districts is essentially the same as that in Fresno, a short résumé of the practices of that region will suffice.

Alluvial soils and deep, loose layers of the plains are considered the best. Irrigation is absolutely necessary. At first flooding and furrow irrigation were practiced, but since the placing of the ditches the water has escaped into and completely filled the loose soils (in some cases originally 60 ft. deep) from below, thus producing a system of "subirrigation," as it is called there; and it is in this way that most of the vineyards are supplied with water at present. Indeed, in some localities, it is no longer a question of how to bring the water to the land, but how to keep it out. Serious danger has resulted in some of the lesser vineyards, where the superficial water has completely swamped the land. "Tight" canals and ditches at the start would have avoided this trouble, but it was not realized until too late. The vines are all headed low, six inches being the favorite height for the stump. With the exception of the "Seedless Sultanas" and the "Thompson Seedless," which require long pruning, the canes are cut back to 2 or 3 eyes; the number of canes left varies from 5 to 15, according to the age and size of the stump. Summer pruning is seldom practiced. Clean, thorough tillage is maintained until the vines cover the ground and obstruct operations. The grapes ripen about September 1, and are allowed to become thoroughly ripe before they are gathered. When the sugar percentage has reached 23 or 24 per cent, berries are considered ripe. The bunches are then cut with small shears (care being taken not to rub off the bloom), placed on wooden trays and exposed to the sun. The time required for full curing ranges from 10-12 days for the earlier grapes to as long as three weeks for the later ones. When the juice has reached about the consistency of jelly the Raisins are placed in "sweatboxes" to undergo the "sweating" process, in order to equalize the moisture-content throughout the whole mass. The Raisins are then ready for grading and packing. A great many brands and grades have been packed, designated at first much the same as the imported ones, but lately, the Association has endeavored to establish and maintain distinctly Californian brands, "5-Crown Imperial Clusters," "5-Crown Dewberries," "4-Crown Clusters," "3-Crown" and "2-Crown London Layers" are some of the principal brands. The loose or detached berries are, of course, always marketed separately as distinct grades. A great many have lately been "seeded" by means of a specially designed machine, put up in 1-pound and 5-pound packages, and marketed for cook-
RAISIN-PLANTED

RAISIN-TREE, JAPANESE
Hovenia dulcis

RAMONDA (L. F. E. von Ramond de Carbonnières, French botanist and traveler, 1753-1827). Often spelled Ramonida, but originally written Ramonda. Gesneriaceae. Ramonda Pyrenaica is one of the choicest and most popular alpine plants. Few, if any, inhabitants of rock gardens have been so often pictured. It is a small, tufted herb, like perennial herbs, and its seeds bear one or few fls. in spring. These are an inch or so across, and normally purple or violet, but there is a pure white variety in which it is grown. The ramondas vary in the number of their petals, or rather corolla-lobes. For example, P. Nathalie has 4-lobed and 5-lobed fls. on the same plant. The floral parts in the genus are in 4's, 5's or 6's. These plants are rare and local in Europe and are interesting as being among the few alpine survivors of a family that is now essentially tropical.

A genus of about 3 species; corolla with scarcely any tube, corolla broadly bell-shaped; petals and sepals many as the corolla-lobes, affixed at the base of the corolla; ovary superior; capsule oblong; seeds minus. Ramondas are woolly or villous plants with soft, wrinkled leaves. The plants require perfect drainage.

Although three Ramondas are in the trade, only one is well known. This is R. Pyrenaica, which is hardy in the eastern states. It is a beautiful, dwarf, alpine plant well adapted for the rock garden. It is rather hard to establish but can be easily grown from seed. If seeds are sown in the spring, and the small plants grown along in pots for the first two or three years, they will be successful in the cool shady position, they will make neat little plants by the end of autumn. They should be kept in a coldframe for the winter. These one-year-old plants grown in pots are much harder to establish than the larger plants. They can be planted in small pockets in the rockery in a slightly shaded and elevated position, and given good, deep, peaty soil. When the plants get established they will blossom freely, and if allowed to ripen their seed they will sow themselves freely amongst the rocks. Old plants can also be increased by division. They ought to

be covered in winter with some hay or dry leaves so that they will not be heaved out of the ground by the alternate thawing and freezing.

A. Color of fls. purple or white.
B. Corolla 5-parted, rotate.

Serbia, Panic. This is said to be distinguished by its blue anthers; also the fls. are said to be normally 5-lobed. Serba.—R. Nathalie seems to be a variety that is more commonly 4-lobed than the type. S.H. 1: 161.

ROBERT CAMERON AND W. M. RAMONDIA. See Ramonda, above.

RAMPION (Campanula Rapunculacea) is a vegetable sometimes cultivated for winter salads. The roots are chiefly used, generally in a raw state, but the leaves may also be used as a salad. The roots are white, a foot or so long, and spindle-shaped, like a long radish. They are ready for use in Oct. or Nov., and may be used all through the winter. According to Vilmorin’s “Vegetable Garden,” the seeds of Rampion are the smallest of all kitchen-garden seeds, and their germinating power lasts five years. The seed may be sown in the open ground, either broadcast or in drills. The precautions usually taken with minute seeds must be observed. In order not to sow the seed too thickly it is well to mix it with sand. The seed should not be covered, merely firmed into the soil. Frequent and careful waterings are necessary until the plants become established. Thinning is an important operation. Every plant allowed to remain should have at least 4 inches each way for development. The plants like a light, rich soil, partial shade and water during the hot season. Although Rampion is a biennial plant it sometimes runs to seed the first year, especially if the seed be given early. It is therefore sometimes advisable to postpone seed-sowing until June. For botanical description, see Campanula.
RANUNCULUS

RAMPION.

RANUNCULUS.

RAM'S HEAD.

Cyprisella articulata.

RAMSTED.

Linaria vulgaris.

RANDA (Isaak Rand, author of an index of plants cult. at Botanical Gardens of the Society of Apothecaries at Chelsea, published 1730 and 1735). Ruibacter

A genus of about 100 species of tropical shrubs, trees, and woody climbers. Plants often spiny; 1vs. opposite, alternate—oblong to lanceolate, frequently coriaceous, stipules between the petioles and stem, short, and usually joined together; fls. white, yellow or reddish, small or large, axillary or rarely terminal, solitary, coriaceous, or fascicled; fr. a berry, globose or ovoid, 3-seeded, many-seeded. For distinctions from Mitrostigma and Gardinia, see Gardinia.

a. Shrubs having spines.

...Rambouillet, D.C. (Gardinia Stenoloba, Hook.). A new shrub with glossy leafy spines, 3-4 in. high; fl. elliptical or obvate-oblong, 1½ in. long, ¾-1¾ in. wide, chartaceous, acuminate, narrow at base; petiole usually with glands near its union with the midrib; fls. usually white, often with white lobes, solitary, terminal or at ends of short lateral branches, sessile; fl. ovate, globose or ovoid, pointed, 1¾-3 in. long, Tropical Africa. R.H. 1894:60. B.R. 11:44. B.M. 4185. Gn. 25:773.

b. Corolla-tube 1-4 in. long.

c. Lobes of corolla obtuse.

Ruiziana, D.C. A tender shrub with dark green, lanceolate, acute 1vs., at white or white yellow fls., terminal, solitary, sessile; corolla-tube somewhat hairy; lobes spreading; fl. cylin- drical, yellow, 10-nerved. Brazil, Peru.

E. W. BARCLAY.

RANVEYA (anagram of Ranveya, and now first published). Ranveya of Boche, Palmaceae. One species of palm allied to the Hopea-oblong, distantly dentate, among other things, in its dwarfer habit, usually deciduous flowers, and in the flowers being arranged alternately on the short branches of the spadix. Boche's generic name Ranveya dates from 1878. It appears in Bentham & Hooker (3:883) as Ranveya. In spelling it is so similar to Runveya of Vellozo, 1823, that the two cannot be distinguished by pronounlee. In the interest of personality, therefore, the name is here changed to Ranveya, since both this plant and Runveya occur in the American trade.

Hilobranctii (Ranveya Hilobranctii, Boche). Becoming 8-12 ft. high, but flowering under cultivation when half that height, spineless, erect; fls. elliptic-oblong, 3-seeded, ovate-oblong or ovate-oblong in outline, long-stalked, pinnate, the pinnae 20 or more pairs and narrow-lanceolate-acute; spadix long-stalked, the staminal row recurved and with short densely flowered spreading branches, the pistillate erect with filiform strict branches thickened at the base, the 4-5 stamens, pale straw-color, the only 3-lobed, the petals 6 and joined at the base; the black and white striped fruits, 6-12 in. diameter, a natural species of America in Minnesota Botanical Studies, series 2, part 4, pages 483-508 (1900). The cultivated forms of R. Asiaticus are constantly increasing in number. (1) The florists' section, called Persian Ranunculus, or true R. Asiaticus. These require more care than the others. They are quite variable in form and color, and are the most highly cultivated members of the genus. (2) The gardeners' section, called Turban Ranunculus, or var. Africatus. Compared with the first section, these have larger, broader, sparser petiole, more flat and spreading but erect and curved inward, forming a spherical flower, as in the double peonies. See No. 7.

K. C. DAVIS.

CULTURE OF THE ASIATIC RANUNCULAE.-The culture of Ranunculus in gardens and by florists has been confined chiefly to the Persian and Turkoman Ranunculus, R. Asiaticus, since the Asiatic species is far more attractive than the palms from China and other European gardens. R. Asiaticus has been in cultivation a very long time. Parkinson mentions it in his Paradisus, published in 1629. He termed it "the double-red crownfoot of Asia." Since his time R. Asiaticus and its varieties have been greatly improved, both in size of flowers and variety of colors. The flowers are very double, almost globular in outline, and often exceed 2 inches in diameter, while the many crisp petals, not flat and spreading but erect and curved inward, forming a spherical flower, as in the double peonies. See No. 7.

K. C. DAVIS.

2073. Flower of Buttercup

Ranunculus acris.

Natural size.
They are not hardy, at least not in any of the northern states. The tubers should be carefully lifted after the foliage has all "ripened off" (which occurs usually toward the end of August), and stored until the follow-

ing spring in some cool shed where they will not freeze. They should be planted as soon as the frost is well out of the ground in spring, about 2 inches in depth and about 6 inches apart, making the soil very sandy on top so that the leaves will push through readily without bearing the soil. Like their congeners the European Ranunculi, they like plenty of moisture at the roots during the growing season, and if they can be shaded from the sun when in flower their blossoming period will be materially lengthened. They may also be grown for flowering in the greenhouse. The writer usually grows a few pans each year, planting the roots in pans of light soil towards the end of January and placing them in the coolest greenhouse, where they will blossom towards the middle of April. The writer also prefers the Tur- ban varieties, since they are stronger-growing and rather larger than the Persian. The species may be propagated by seeds, but this process is not worth while for most people because the bulbs may be procured so cheaply.

Of the native and European species of Ranunculus, those of the Batrachium section, such as *R. aquatilis* and its varieties, are interesting aquatic plants, while *R. repens*, var. *florus pleno*, and *R. amplexicaulis* are useful as subjects for the bog garden. For herbaceous borders or moist corners in the rock garden *R. aconitifolius*, var. *florus pleno*, *R. cortusafolius*, *R. aconitoides*, *R. pernasifolius* and *R. Ficaria* are the only species worth growing. These are readily propagated from seeds or by division of the plants in spring.

Edward J. Canning.

INDEX.

(See also the supplementary list.)

aconitifolius, 12.
acris, 7.
adoneus, 2.
amplexicaulis, 1.
asiaticus, 7.
balbosus, 5.
californicus, 10.
Carpaticus, 4.
cortusafolius, 9.
dentatus, 4.
divisus, 11, 12.
florus pleno, 11, 12.
Ficaria, 3.
formosus, 8.
RANUNCULUS

RANUNCULUS

RANUNCULUS

glabrous or at first with hairy edges soon becoming glabrous, glaucous: fls. 3-6, either terminal or axillary, pure white, with yellow stamens; sepals pointed; petals much larger, oblong; Mts. of Colo., B.M. 106 (poor). L.B.C. 16:1530. J.H. III. 35:345. G.C. II. 19:788.

2. adoneus, Gray. Plant shaggy-hairy, 4-12 in. high, sometimes becoming decumbent; root slender-fibrous; fls. usually 2-3-times 3-petalled and lobed; lobes all narrow-linear, acute; primary divisions of lvs. sessile or nearly so; pistil of basal lvs. membranous in lower part; stem-lvs. sessile or on a sheathing base, usually borne opposite, resembling an involucre; petals 5 (or 6 to 8), large, yellow, rounded outwardly, cuneate at base, much exceeding the lanceolate sepals which are hairy beneath; achenes somewhat compressed, acutish: style long, straight, subulate; head globular to oblong. Summer. Rockyrs of Colo., altitude 10,000 ft. - Int. 1881. procurable from dealers in Colorado plants.

3. repens, Linn. Plant more or less hairy, spreading by runners; roots fibrous; fl-stems often ascending 6-12 in.; lvs. petiolated, 3-divided; middle lft. or all lfts. stalked, often again 3-lobed or cleft, and somewhat coarse-toothed, bases cuneate or truncate; petals obovate, 3-4 lines long; sepals much shorter, spreading hairy below; achenes compressed, margined; short, stout, slightly bent; head globose. May-July. Low places, from Nova Scotia and Newfoundland to Va. and westward; also Eu. and Asia. - A double-flowered form (var. flava plena). Fig. 2092, is not uncommon in gardens.

4. montanus, Willd. MOUNTAIN BUTTERCUP. Plant 6 in. high, pubescent, with short appressed or spreading hairs, especially toward the top; rootstock creeping. 1-3 in. high, 1/2 in. thick: radical lvs. few, petiolate, smooth, orbicular in outline, 3-petalled, and lobed into blunt-toothed segments; stem-lvs. sessile or nearly so, clasping the stem, 3-3-petalled into narrow somewhat toothed or entire lobes; fls. solitary, terminating the simple or once-branched stem, 1 in. across or larger; sepals cuneate, acute, yellowish green, slightly hairy; petals 5, large, broadly obovate, bright yellow, with small scale and pore at base; achenes turbid, glabrous; beak strongly hooked, puberulent. May-July. Eu. B.M. 35:323. L.B.C. 17:1610.

5. bulbosus, Linn. (R. speciosus, Hort.). Plant from a true bulb, erect, about 1 ft. high, hairy: lvs. petiolate, 3-5-parted, the divisions sometimes stalked; segments lobed: fls. terminating the branches, bright yellow, large; petals large, obote, shining above; sepals much smaller, often reflexed, achenes compressed, with short beak, and borne in a globose head. Spring and summer. Persia, Eu. N. Africa. - The double form is perhaps best suited for cultivation.

6. Sisyrinchium, Gray. Roots fibrous; stems slender, 3-6 in. high, glabrous, radical and lowest stem-lvs. small, about 6-8 lines long, subreniform to broadly flabelliform, with truncate base, deeply 3-5-cleft or parted; divisions cuneate, again 2-3-cleft and or incrassate, upper stem-lvs. with linear divisions: fls. 1-3, deep yellow; petals round-obovate, retuse: achenes turbid-lenticular, sharp-edged, glabrous; style persistent for a time, slender, 34 line long, equaling the abane body: head of fruit globular. July, Aug. Dump places, 6,000-8,000 ft. altitude; Mt's of Wash., Ore. and Mont. - This rare species was offered by F. H. HorSeford in 1888.

7. Asiaticus, Linn. Fig. 2077. Plant erect, either simple or branched, 1-2 ft. high: roots fleshy; lvs. petiolate, becoming sessile upwardly, ternate or binate: segments toothed or deeply 3-lobed; fls. terminating the stems and branches, variable in color among the cultivated forms: calyx spreading, becoming reflexed; petals large, obovate, blunt: fr. in a spike. May, June, Asiatic Minor. Brit. 16:1679 (fl. pl.). Int. 16:153 (var. superbus). - Highly bred double fls. of many kinds are in cult. Roots are sold as "bulbs." The Persian and Turban Ranunculuses belong here.

8. archthorhynchus, Hook. Plant 18-18 in. high, erect, branched, binate to nearly glabrous: root thick, fibrous: lvs. oblong in outline, pinnately compound: fls. 5-7, cleft and incised, quite variable; upper lfts. often confluent and sessile or nearly so, lower ones well stalked: petals 7-16, yellow, rarely purple beneath, obvate; sepals much shorter, pubescent beneath, reflexed, deciduous: achenes glabrous, obliquely ovoid, compressed, margined: style of same length, straight, rigid, persist-
10. *Californicus*, Bentth. Plant rather weak, ½-2 ft. high, usually pubescent or hisurate, branching and without leaves in upper part; roots fibrous: lvs. ternately divided or parted, or palmately 5-divided into linear or narrow, often 2-3-parted divisions: petals 6-15, glossy yellow, oblong or narrowly obovate: akenes flat, slightly margined, break very short. Rather dry places, W. Calif. and adjacent Ore.

11. *acris*, Linn. Figs. 1874, 1924, 1925, 1926. Plant hairy up to the sepals, erect, ½-3 ft. high, often branched; radical lvs. on long, slender petioles; others with shorter petioles sheathing the stem or nearly sessile; lvs. 3-parted nearly to the base, the divisions ovate-elliptic, 2-3-lobed and coarsely toothed or cut: bracts linear, lobed or entire: fls. yellow, 9-12 lines across, several, on rather short peduncles; sepals hairy beneath, ovate, shorter than the petals; petals 5, glabrous, obvoid, obtuse, bearing a prominent scale at base: akenes compressed, coriaceous on margins: style very short; head globose, May-Sept. Newfoundland, Canada, eastern states. Said to be naturalized from Europe. — Var. *flore-pleno*, Hort., is more common in cult. The best forms are deep, glossy, golden yellow and very double. Called *Bachelor's Button*. B.M. 215.

12. *conifolius*, Linn. Plant pubescent, ½-3 ft. high, branched; lvs. palmately 3-5-parted, parts cut-toothed, upper ones sessile and with oblong to lanceolate lobes: fls. white, several on a stem; sepals flat, pubescent; petals ovate-elliptic to oblanceolate. May-June. Mountains of middle Europe. — Var. *flore-pleno*, Hort. (var. *plena*), called *White Bachelor's Button* and *Flax Mains of France*, has very ornamental, double, white, globose flowers. Gm. 45, p. 29, and 48, p. 506. Var. *luteus-pennis*, Hort. Fls. much doubled but of a golden yellow color. The type and varieties are suited to borders and half wild places.

2679. Dwarf Essex Rape (X 1½).
Plate XXXIII. Raspberries.

Center, commercial Raspberry field in New York; top left, *Rubus strigosus*, the Wild Red Raspberry; top right, *Rubus occidentalis*, the Wild Black Raspberry; lower left, *Rubus occidentalis*, improved, of same relative size as the picture of the wild; lower center, *Rubus neglectus*, hybrid of the Red and Black.
RAPANUS

long cylindrical, fleshy, or soft-corky, siliques, wrophy tissue between the globose seeds, indescent. The genus is divided into two natural groups, one (Raphanistrum) with the pod longitudinally grooved and contracted between the seeds, the other (Raphanus proper) with the pod not grooved nor prominently constricted. To the former group belongs R. Raphanistrum, Linn., the Jointed or White Charlton (sometimes, but erroneously, called Rapae). It is an Old World annual weed, now naturalized in fields and waste places in the easternmost states. It is an erect, sparsely hairy, herb, with slender, tapering and radish-like fibs., growing 2-3 ft. high, its rather showy, yellowish, turning white or purplish, siliques 1-3 in. long, few-seeded, with a long beak. It is from this species that Carrière produced Radishes by means of plant-breeding (see Radish). To the second section belongs R. sativus, Linn., the Radish, generally considered to be native to Europe and Asia, but unknown in an aboriginal wild state. It is usually an annual, although commonly spoken of as biennial, because the roots can be kept over winter and planted the following spring. The winter Radishes are truly biennial in northern climates. Radish has pinkish or white fibs., and short, thick, spongy, taper-pointed pods. Sometimes it runs wild in waste places, and then bears a long, hard tap-root like that of R. Raphanistrum. The Radish is exceptionally cultivated for its thick roots, which have been developed into many shapes and colors. There are Chinese types of Radish that have a hard root little more than 1 in. in diameter becoming nearly 1 ft. long. Some forms are scarcely distinguishable from short turnips. The Madras Radish (India) is grown for its soft, tender pods, which are eaten raw or in pickles. The Rad-tailed or Serpent Radish, var. caudatum (R. caudatum, Linn.), has enormously long pods (see Fig. 2666), which are eaten either pickled, or raw as Radish roots are. Frequently the pods are 1 ft. long. The root is slender and hard. This is a cultural variety, coming true from seed.

L. H. B.

RAPHIA. See Raffia.

RAPHIOLEPIS (Greek, paphis, needle, and lepis, scale; referring to the subulate bracts). Sometimes spelled Raphirolepis. Decorative evergreen shrubs, with alternate or obscurely whorled, usually serrate fibs., white or slightly pinkish fibs. in terminal racemes or panicles and small purplish black fruits. None of the species are hardy north, but all are handsome broad-leaved evergreens, excellent for cultivation in the southern states and California. They will thrive in any good, well-drained soil, and if cultivated in pots, a compost of sandy loam and leaf mold or peat will suit them. Prop. by seeds or by cuttings of ripened wood under glass late in summer; also by layers, and sometimes grafted on Hawthorn. Two species in southern Japan and China, allied to Raphiolepis and Phyllostis, but fibs. in racemes or panicles, with deciduous calyx; stamens 15-20; styles 2-3, connate below; fr. small, bluish or purplish black, glossy, with one globular seed.

JAPONICA, Sieb. & Zucc. (R. obtusa, Brf.). Shrub, to 12 ft., with stout, upright branches: fibs. short-petioled, broadly oval or oblong-ovate, obtuse or acutish, narrowed at the base, crenate-serrate, dark green and lustrous above, pale beneath, floccose-tomentose; when young, thick, 1/4-1/2 in. long; fibs. white, 3/8 in. or more, fragrant in dense, tomentose panicles or racemes; petals obolate, obtuse; fr. to 3/4 in. across. May, June. S. Japan and adjacent islands. S. Z. 128. R. H. 1876, p. 294. Gr. 22.

RAPIDICUS (Greek, raphis, needle, and kaphia, hard). To show habit of fruit bearing.

RAPIDICUS (Greek, raphis, needle, and kaphia, hard). To show habit of fruit bearing.

RASPBERRY (R. prostrata, Fr.). To show habit of fruit bearing.

Raspberry (X 1/2). To show habit of fruit bearing.

Little permanent value. The fruit is of superior quality and continues to ripen through a long period, but the plants are deficient in hardiness and productiveness. Rubus strigosus, the American Red Raspberry, is very like its European congener. Though slightly inferior in quality of fruit, its greater hardiness and productiveness have sufficed to confine the commercial growing of red Raspberries in America almost wholly to this species. It has been under domestication only within the last half of the century. Cultibert, the leading variety, is shown in Figs. 2890, 2891. Rubus occidentalis, the black Raspberry, is commercially the most important Raspberry in the United States at the present time. It lends itself readily to cultural methods, the plant is hardy and productive and the fruit is better able to meet the exigencies of market demands, though relished less by most persons, than that of the reds. The growing of black caps in field culture for evaporating has added greatly to the importance of the species. This can be done where

RASPBERRY 501

p. 43; 72, p. 29; 34, p. 158.—Var. integriflora. Hook. Lvs. entire or nearly so, to 3/4 in. long. B. M. 5526. Indica, Lindl. (K. rhiba, Lindl. Catalogue Indica, Linn.). INDIAN HAWTHORN. Shrub, to 5 ft., with slender, spreading branches: fibs. oborate to oblong-lanceolate, acute or acuminate, gradually narrowed at the base, serrate, glabrous or slightly pubescent when unfolding, 1/4-2/5 in. long; fibs. white or pinkish, about 3/4 in. across, in globose or somewhat tumescent, rather loose panicles; petals lanceolate, acute, usually red like the filaments; petals acute: fr. 5/4-5 in. across. May, June. S. China. B. M. 1726. B. R. 6:486. 17:1400. A. very variable species; several forms have been described as distinct species, as R. Phenostemon, rubra and salicifolia, Lindl. The last named, which is var. salicifolia, Nichols, is the most ornamental: fibs. oblong-lanceolate, acuminate; panicles rather large and many-flowered white or purplish, shorter than sepals. B. R. 5:632. R. H. 1874:276. Gr. 9:26. R. rubra, advertised by the S. Calif. Avicult. Assoc., is Pyrocarpa crenulata, which see. A hybrid between the two species is R. Delucii, André, forming a compact shrub with rather large panicles of blushed fibs., and the foliage intermediate between the two parents. B. H. 1900:168.

ALFRED REID.
RASPBERRY

conditions would not warrant the growing of fruit to be sold fresh. Hybrids of *R. strigosus* and *R. occidentalis*, known as *R. neglectus*, have given the purple-cane class, of which Shuttle (Fig. 2061) is a leading example. For further notes on species of Raspberry, see Rubus.

Raspberries are extensively grown in the northeastern states. They thrive best in deep, moist soil. The lighter loams are preferable for reds and the heavier loams for blacks. The prime essential is that the land shall be able to withstand drought well but it must not be over-wet. Much may be done to improve the drought-resisting quality of soils. If the subsoil is hard and impervious it may be improved by underdraining or subsoiling. This will provide a deeper reservoir for the storage of moisture. Still more important is the proportion of vegetable matter. A soil rich in humus admits water more readily and in larger quantities, retains it longer

and therefore resists drought better than one that is deficient in humus. Humus may be increased by the application of stable manure and by plowing under green crops, but the process must be gradual. Undecayed vegetable matter is not humus, and its addition in large quantities may augment the difficulty which the increase in humus is designed to correct. Thorough soil preparation must therefore begin several years previous to planting, if the land has been improperly handled theretofore. Other important offices of humus are the holding of nitrogen to prevent its loss, and the unkilling of mineral elements from the soil. The well-known fact that brambles thrive so well in virgin soil, is, no doubt, largely due to the abundance of humus which such soil contains.

Stable manure is permissible as a fertilizer, except for red Raspberries when growing on moist, rich soil, in which case it forces growth too much. Leguminous crops may furnish all the nitrogen needed. Floats, ground bone or basic slag will supply phosphoric acid, and potash may be obtained from wood ashes or muriate of potash. Upon the soil of the Rhode Island Experimental Station, which is a light sandy loam with gravelly subsoil, the addition of nitrogen does not increase the yield, although the soil is not naturally fertile and nitrogen has been applied annually for a series of years. Other crops have been upon the land until recently. Even plots from which mineral elements have also been omitted do not fall far behind those which have been liberally dressed with the three essential fertilizing ele-

ments for a series of years, judging from the first crop only. No one can tell the grower how to fertilize his plants; the question must be settled upon his own farm. Cover-crops have not been extensively used and are likely to receive more attention. Where crimson clover will thrive it is well adapted to the purpose, although somewhat difficult to uproot in spring.

Planting may be done in fall or spring, but spring is to be preferred for black-caps. Plants secured from young plantations are preferable, since they possess greater vigor and are less likely to carry disease. The individuality of the parent-plant, which is so highly regarded, may be a determining factor in the profitability of the offspring. Black-cap plants are obtained by burying the tips of the growing canes, late in summer, when they begin to thicken and throve out rooting; the thrones thoroughly layered, the layer is severed and the "tip" (Fig. 2063) is used for planting. Reds throw up numerous suckers from the roots and these are oftentimes used in planting, though root-cuttings are available. For near-by planting the young suckers, moved in early summer, may be used. Plants are preferably set in check-rows, six or seven feet apart with plants four to six feet apart in the row. Cross-cultivation in early spring and after fruiting will materially aid in keeping a plantation in good condition. Without the reds quickly form thick hedge-rows. With intensive methodsoord crops may be grown between the rows the year of planting; with common farm methods they are better omitted.

Thorough tillage should be given till midsummer, when a cover-crop should be sown. In especially dry climates, as upon the Plains, tillage should be continued throughout the season. Plowing between the rows in spring is undesirable and unnecessary if tillage has been good the previous year. With reds some form of cultivator with square-pointed teeth or cutting-blades is advantageous in destroying suckers.

Tender varieties may be protected in winter by laying them down and covering them with earth. To do this loosen the soil at one side of the root and bend the plant in that direction. The plants are usually bent in the direction of the row so that the tops will lap over the crowns.

The young shoots of black-caps should be nipped off as soon as they reach a height of eight to twenty-four inches, that a well-branched self-supporting bush may be obtained. In spring following, the branches should be shortened to one to two feet. This spring pruning is the fruit-bearing process of the year and should be done with judgment. The poorer the soil or the less able it is to withstand drought, and the less intensive the culture, the more severe should the pruning be. As a result of this the castle plantation will last longer, without summer pinching, but the yield will be much lower. With reds summer pinching is undesirable after the year of planting, unless with exceptionally vigorous varieties on strong soil. The older canes are best removed as soon as fruiting is over. They are more easily cut then and their removal gives a good opportunity for cross-cultivation (in case the check-row system is used) and a thorough cleaning-up before the season's tillage is abandoned. Early removal may also help to check the spread of certain enemies. Plantations may be kept in bearing many years if desired, but it is seldom profitable to do so.

The fruit demands care in picking and in handling thereafter. It should never be picked when wet. Red raspberries are especially difficult to ship and are usually marketed in pint baskets rather than quarts. Red yield less than blacks and usually sell at a higher price.

Enemies are numerous. Crown-and cane-borers must be controlled by cutting out and destroying the infested canes. Red rust may sometimes attack the fruit, but it may be controlled when recognized. Black-caps. A plant once attacked can never be cured and should be rooted out and burned at once. Anthracnose is especially troublesome. Only plants free from it should be set, and the plantation should be aban-
RAVENALA

undertaken before it becomes badly diseased. Spraying will reduce it and is not entirely satisfactory. Crown-gall, due to the growth of a specific organism of a very low order, belonging to the slime-molds, is often serious, particularly with the slune-shrubs. Neither affected plants nor

donated before it becomes badly diseased. Spraying will reduce it and is not entirely satisfactory. Crown-gall, due to the growth of a specific organism of a very low order, belonging to the slime-molds, is often serious, particularly with the slune-shrubs. Neither affected plants nor

apparently healthy ones from a diseased lot should be planted, as the trouble is readily communicated to other plants and trees. Fred W. Card.

RAT-TAIL CACTUS. Cereus flagelliformis.

RATTAN. See Calamus.

RATTLE-BOX. The species of Crotalaria; also Ludwigia alterifolia.

RATTLE-BOAT PLANT. Goodyera.

RATTLE-BOAT PLANT. Goodyera.

RATTLE-BOX. The species of Crotalaria; also Ludwigia alterifolia.

RAUWÖLFSIA (Leonhart Rauwolf, physician of Augsburg, published a book in 1583 on his travels in the orient; often erroneously stated to be of the eighteenth century). Apocynaceae. About 40 species of tropical trees and shrubs with Lvs. in whorls of 3 or 4, rarely opposite, and small Ils. often borne in dichotomous or trichotomous clusters. Calyx 5-cleft or 5-parted; lobes obtuse or acute; ovolla funnel-shaped; tube cylindrical, dilated at the insertion of the stamens, usually constricted at the throat, devoid of scales; lobes 5; disk cupshaped or ring-shaped; carpels of the ovary 2, distinct or considerably grown together; style short or long; ovules in each carpel 2; drupes 2, distinct or connate into a 2-stoned fruit, the stones 2-grooved or 2-cut; stones 1-seeded; seeds ovate; albumen fleshy, smooth, not ruminate, rarely wrinkled. These plants are little known horticulturally. The only species in the American trade, apparently, is R. Chinensis, Hert. Several years ago the

undersigned received from the Botanical Garden at Hong Kong a few seeds of this small evergreen shrub. The seeds germinated well and the plants grew rapidly, attaining a height of about a foot in a year. During the summer of the second year the rather bushy plants flowered well and bore a crop of shining red berries which were very conspicuous throughout the winter. When well grown and bushy the plant is quite ornamental, its habit being dense and the color of its leaves dark green. The flowers are white, and are borne in dense trusses at the extremity of each shoot. Though an individual flower does not make much show, the plant is very ornamental when covered with masses of blossoms. The plant needs a rich, light soil, much water when in full growth and protection against the fierce rains of the sun. Every spring the old soil should be shaken out and replaced by a rich compost. In the writer's garden at Gotham, Orange county, Florida, the Rauwolfia flourishes with great luxuriance in the shade of other shrubs in rather moist spots. Although it is easily winter-killed, it sprouts readily in spring from the roots, when covered with numerous trusses of shining red berries the plant is an object of beauty.

H. Neffling.

RAVENALA (the name of the plant in Madagascar), Sollarkamandra. A genus of 2 species, 1 from Brazil and Guiana and 1 from Madagascar. Musa-like plants becoming 2-30 ft. high, with a palm-like trunk; Ils. exceedingly large, crowded in 2 ranks, thus forming a fan-shaped head of foliage; petals long, with concave bases scarcely sheathed; scapes or peduncles in the upper axis longer or shorter than the leaves; bracts spathe-like, many, boat-shaped, connate; Ils. many, large, in a spathe or bract; petals long-exserted; sepals free; fr. a 3-valved capsule.

A. Ils. shorter than petals.

2083. "Tip" or layer of Raspberry.

2084. Travellers' Tree—Ravenala Madagascariensis.
Ravenala

20 ft. - Cult. in Fla. and S. Calif.; also rarely under glass in the northern states.

, lvs. as long as the petals.

Guianae, Steud. Becoming 15 ft. high; lvs. oval-
deltate; lvs. white, spatulate 1-1/2 ft. long. Offered 1895 in S. Fla.

F. W. BARCLAY.

RAVÉNIA. See Reuneea.

RAVÉNIA **(name not explained).** *Radácea.* A genus of 2 species of tender shrubs from Cuba and Brazil; lvs. opposite, 1-3-foliolate; lfts. red or white; borne on rather long axillary peduncles; sepal unequal, the 2 outer being somewhat foliaceous; corolla-tube straight, rather long; the limb nearly regular.

spectabilis, Engl. *Lemonia spectabilis, Linn.* Tender shrub: lfts. 3; fts. purplish red, about 1 inch across, solitary or in open, few-fl. clusters on axillary peduncles as long as the lvs. Cuba. B. R. 26:30. R. H. 1844:25. - The plant offered in Fla. as *Lemonia spectabilis* apparently belongs to some other genus.

RAY GRASS. *Lotus perenne.*

REANA. Consult Teosinte.

REED. See Arundo and Bamoo. Reed Canary Grass is *Phalaris arundinacea.* Reed Mace or Cat-tail is *Typha.*

REED, INDIAN. See Canna.

REEVESIA (John Reeves, English botanist, who resided for a time at Canton). *Stenellaceae.* A genus of 3 species of trees from tropical Asia, with cornicous, entire leaves and terminal corymbose panicles of white fts. Calyx club-shaped or campanulate, irregularly 3-lobed; petals 5, yellow, furnished with a saw; staminal column long, adnate to the gynophore; anthers 15, sessile, in a globular head: ovary 5-loculed, usually 10-seeded; capsule woody; seeds winged.

thysoidea, Linn. A small, glabrous tree: lvs. ever
green, 2-6 in. long, petioled, ovate-lanceolate to lanceolate, entire, rounded at base: lvs. white, in terminal, sessile corymbs shorter than the lvs.; calyx 3 lines long; petals somewhat longer: capsule oblong-pear-shaped, 1 in. long, 5-angled. China. B. M. 4199. B. R. 15:1236. - Cult. in S. Calif.

F. W. BARCLAY.

REINECKIA (J. Reineck, a German gardener). *Liliaceae.* A genus of a single species from China and Japan, a tender perennial herb, with attractive foliage in tufts 1-1/2 ft. high from a thick, creeping rootstock. Lvs. rather long, channelled; scapeless leafless: fts. sessile, in a loose spike; perianth-tube cylindrical; lobes recurved, spreading; ovary 3-loculed, with a few seeds to each cell: berry globular, usually with one seed to each cell. The following is procurable from Dutch bulb-growers.

REIN ORCHIS. *Habenaria.*

REINWÄRTDIA (Kasper Georg Karl Reinwardt, 1773-1823, scientist of Leyden; traveled in East Indies 1815-1822). *Lindáoear.* A genus of two species of subshubs from India with handsome yellow, 5-petaled fts. borne in midwinter. They are old favorites in conservatories. They require greenhouse treatment. The genus is closely allied to the *flax* (Linum), and *Reinwardtia trigyna* is known to this day as *Linum trigynum* by the gardeners, who usually accent trigyna on the second syllable instead of the first. Reinwardtia is distinguished from Linum by the yellow fts., 3-4 styles and unequal or deficient glands; Linum has mostly blue, rose or white fts., 3 styles, and equal glands. Other generic characters: sepal 5; petals 5, centored, fugacious; stamens 5, alternating with as many staminodes; glands 2-3, adnate to the staminal ring; ovary 3-5-loculed.

Reinwardtia are showy subshubs about a foot high with bright yellow flowers. They are useful for the decoration of the conservatory in winter time, at a season when yellow is scarce. To have presentable plants, it is necessary to give them a good deal of attention. It is difficult sometimes to get suitable cuttings; the strong growths which start away from the base when the plants are cut down make the best plants. Top-shoots will grow, but seldom make good plants, as they are liable to go to bloom prematurely. Sandy loam is the best compost. Plants that have been grown in pots for a season may be planted out in the early summer, and these will make good plants and furnish cuttings. They will have to be topped frequently and carefully lifted. Young stock is better kept in pots, as the plants do not lift well. Sunshine is essential during the winter season to get the best development of Reinwardtias. They thrive best in a temperature of 55°-60°.

a. Lvs. entire: styles 3.

trigyna, Planch. Fig. 2865. Lvs. elliptic-obovate, entire or minutely toothed, tip rounded or subacute. B. M. 1100. Gn. 29, p. 279. - Grows 2-3 ft. high in the wild.

aa. Lvs. toothed: styles 4 or 5.

D. H. Hatfield and W. M.

2865. Reinwardtia trigyna (X 1/2).

BENANTHERA **(named from the reiniform anther).** *Orchidaceae.* Tall, climbing epiphytes, with branched stems sometimes 12-14 ft. high; lvs. distichous on the stem: lvs. in large, drooping racemes or panicles; sepals and petals spreading, similar or the lateral sepals often larger and of a different color; labellum small, movably joined to the column, spurred or spurred, often with small, erect, lateral lobes. Culture is similar to that of *Eri-kezas and Vanda.*

coccinea, Lour. Stems 8-10 ft. high, branched, climbing by means of white fleshy roots: lvs. in 2 rows, oblong, notched at the end, 4-5 in. long: lvs. open, 2-3 in. across, in loose, branching racemes 2-3 ft. long, very brilliant; petals and dorsal sepals linear-spatulate, deep red, blotched with orange; lateral sepals larger, oblong, broader toward the apex, undulate, deep crimson, with similar transverse lines; labellum small. Autumn. Cochín China. B. M. 2997, 2998. B. R. 14:1131. P. M. 4:49. F. S. 7, p. 163. G. C. 1845:491. - Does not flower readily in cultivation, but is very showy.
RENAHTERA

Sturis, Reinb. f. Stem slender, climbing, 10-12 ft. high; lvs. alternate, oblong to linear-oblong, panicled about 1 ft. long and nearly as broad: fls. 3/4-3 in. long; petals and dorsal sepal erect, linear-spatulate, orange-red, mottled with crimson; lateral sepals pendulous, oblong-spatulate, undulate, crimson with large blood-red blotches; labelium very small. Philippines. B.M. 7337. G.n. 53. p. 119. G.M. 39:639.

HEINRICH HASSELBLOM.

RESEDA (from the Latin to calm; said to allude to supposed sedative properties), Resedaceae. Mignonette. The family Resedaceae includes between 60 and 70 species of small, not showy plants, mostly herbs, widely distributed in warm-temperate regions. These species fall into 6 genera, of which only Reseda is cultivated to any extent. This genus contains 52 species (Muller, DC. Prodr. 16, p. 2), most of which are native to the Mediterranean basin, Arabia and Persia. They are herbs (sometimes partially woody at the base) with alternate, simple or compound lvs., and terminal spikes of inconspicuous perfect flowers. The flowers have 4-7 small greenish toothed or cleft petals and 4-8 small stamens; plant 1, ripening into a 2-6-haired capsule that opens at the top at maturity (Fig. 2867), and contains several to many seeds. Only one species, the common Mignonette (R. odorata), is generally known, but two or three species are sometimes grown. Two other species are occasional weeds in the East,—R. Lutathia, Linn., the Dyer's Weed, 1-2 ft. tall, with entire lvs., 4 or 5 greenish petals of which the lowest one is entire; and R. hirta, Linn., with pinnatifid lvs. and petals usually 6.

A. Lvs. entire or only notched.

odorata, Linn. Common Mignonette. Figs. 1401, Vol. 11. 1857. Branching annual herb, at first upright but becoming wide-spreading and more or less decumbent, to about 6 ft. high; lvs. obtuse or entire, or 2-toothed near the base; petals 5 or 6, the upper ones 3-lobe; stamens about 12; anthers yellow; fruit a linear capsule, opening at the top; usually about 3 in. long; seed bright yellow. A. M. 29. G. N. 55. p. 409.—Much grown for its strong and agreeable fragrance. It has been greatly modified under domestication. The following garden names seem to belong to this species: amurensis, compacta, czomia, gigantea, grandiflora, multiflora, pulchra. Var. sufruticosa, Edu., is woody at the base. B. R. 3:237. Forty to 50 named varieties of R. odorata are in the trade. See Mignonette.

glauca, Linn. Glabrous and somewhat glaucous perennial, less than 1 ft. tall, with many spreading stems: lvs. narrow-linear, entire, or 2-toothed near the base: petals 5 or 6, the upper ones 3-lobe; stamens about 12; anthers yellow; fruit a linear capsule, opening at the top; usually about 3 in. long; seed bright yellow. A. M. 29. G. N. 55. p. 737.

AA. Lvs. usually prominently lobed or pinnatifid.

alba, Linn. (R. sufruticosa, Loef.). White Dutch Mignonette. Figs. 1401, 2868. Straight—growing erect glabrous annual or biennial plant, 1-3 ft. Weedy; lvs. numerous, linear—spatulate, undulate, entire—amplely and irregularly pinnatifid; the segments usually linear and sometimes toothed: fls. white, in a very long, slender spike. S. En. G. C. III. 26:45.—A good plant for growing as an ornamental sub—ject in the flower border with other plants. It bears many spikes on tall branches, making it a conspicuous plant. Treated as a half-hardy annual. Odor not pleasing.

crystallina. Webb. Glabrous, sparingly branched, somewhat glaucous annual: lvs. usually 3-parted, or the lowest ones entire: fls. deep yellow, in racemes. Canary Islands. —Has been offered as a garden annual.

L. H. B.

Notes on Reseda odorata.—In the improvement of the Mignonette less attention has been paid to the individual flower than to the spike as a whole. What the florist has desired is a large spike as possible. The color and form of the flower and habit of the plant were secondary in importance when compared to size and abundance of spikes. Under such circumstances we can expect comparatively little change to have taken place in the individual flower. In fact, we find that all the floral parts, with the exception of the color and size of the anthers, have changed little. In the double—flowering varieties, the character of the flower has been changed by the replacement of the stamen with petal—like organs. In some cases traces of the anthers still remain. These double varieties are usually characterized by the smallness of their spikes, the pungency of their odor (being in some cases even unpleasant), and the tendency of the flowers to produce monstrosities. In the more improved varieties, and especially in those plants that have been highly bred, the size of the flowers is sometimes considerably larger than in the average specimens. The average size of the individual flowers is undoubtedly larger in improved varieties than in the unimproved varieties; this increase in size is no peculiarity of the petals alone, but is shared by all parts of the plant alike.

The peculiar and characteristic fragrance for which the Mignonette is chiefly cultivated has undergone marked changes during the improvement. It is stated by some writers that the odor of the old garden form was sweeter, than that of the more improved forms. This seems to be true. All questions of odor, however, must be left to the discrimination of the individual observer. The old garden form has a sweet, pleasant odor, which is not so strong as that of the improved varieties but has a more penetrating and yet a light and agreeable quality. It reminds one somewhat of the wild sweet—scented blue violets, Philip Miller compared it to the odor of ripe raspberries. The odor of such improved varieties as Allen Defiance, White Diamond, Urania, etc., is heavy, strong and less delicate than
that of the old forms. It reminds one, when the flowers are fresh, more of the fragrance of ripe nectarines or apricots than of violets. It is only after the spikes have been picked and brought to still that one recognizes the sweet violet-like scent. The modern improved varieties are likely to have very little scent when forced or fed high, and in cases of excessive forcing they become nearly or quite scentless. But if let them sit slightly, or on sunny days after the moisture has dried up, the powerful odor becomes very apparent. The old forms seem to have the power of volatilizing the ethereal oils freely under normal conditions, while the more highly bred only attain this power, to its fullest extent, when the root pressure is reduced.

Gardeners frequently assert that Mignonette if grown in given kinds of soil will be less fragrant than when grown in certain other soils. Thus Henderson, in his "Handbook of Plants," states that "Mignonette should always be grown in light, sandy soils, more possible; as when grown in a rich loam it loses its fragrance. To test this matter, a number of plots of the same variety (Improved Victoria) were grown in soils varying in proportion of sand, clay and amount of manure as follows: Soil 1, 1 part sand, ½ loam; Soil 2, ½ sand, ½ loam; Soil 3, 1 sand, 2 loam; Soil 4, 1 sand, 1 loam, 1 mortar, 1 dung; Soil 5, 2 loam, 1 mortar, ½ dund; Soil 6. Clay loam with some dissolved bone, NaNO3 and charcoal; Soil 7. Leach, clay and K2SO4 (NH4)2SO4, P2O5, and charcoal. The plants varied considerably in the rapidity and amount of their growth. The difference in fragrance was difficult to estimate on account of the difference in the state of maturity of the various spikes. By making independent estimates on different days as long as all the plants were in bloom and trying to strike an average, the conclusion was reached that the plants grown in the lighter soils had a stronger and more pronounced fragrance than those grown in the heavy clay soils. The amount of fragrance given by wilting flowers on the heavy clay soils is very imperceptibly less than that given off by flowers from the lighter soils. In plants grown in a heavy clay loam richly manured, the fragrance was hardly perceptible and very faint even on wilting. The influence of the different proportions of manure and soil used was not measurable, as the difference, if any, in the strength of the odor given off by the different spikes was too slight to measure.

Heavy manuring seems to have a deleterious effect on the fragrance of Mignonette. Two plots of the same number of plants growing in a solid bed were taken. One was manured weekly with liquid manure; the other was left unmanured. The unmanured plants made more growth and produced less but larger flowers than the unmanured plants. As long as the manuring was continued, the unmanured plants were the most fragrant. After discontinuing manuring for two weeks, the difference became imperceptible and ultimately the plot which had been manured became more fragrant than the unmanured plot. The plants in the unmanured plot were first to bloom.

It has been asserted that Mignonette is most fragrant when grown at a low temperature, it being a plant which loves a cool atmosphere. But it is a plant that cannot thrive in a cool house, being grown in a greenhouse in places of 75° or more. When grown with flowers wintered with a temperature of 50°, those in flower were grown in flats and benches, while those in the other two houses were grown in 5-inch pots. All were sown November 16. When germing it was noted that one recognized the fragrant scent of those in house of 65° and three days ahead of house of 50°. In relative amounts of growth the plants stood as follows (May 15): House, first; cold house, second; medium, third; therefore, cool as follows: Medium house, first; hot, second; cold, third,— until the outside temperature became high enough to the temperature influence is considerable; those flowers of medium house, the cool house became equal if not surpass those of the medium house in fragrance. At certain stages of the spike-development, the fragrance seemed stronger in the hot house than in the medium house, but did not last nearly as long as in the medium house. The cool house surpassed both in lasting power of the fragrance, volatilization, when once set up, is probably not less easily checked or accelerated above a normal rate, whatever that rate may be; hence the tardiness of the plants to react with the cooler temperature.

R. L. JUNGHANNS.

REST HABROW. Oenosis rotundifolia.

RESTREPIA (Joseph Emmanuel Restrepo, a student of natural history in the tropics). *Oreochilium.* A genus of very interesting little plants allied to *Masdevallia* and not unlike that genus in habit and appearance. The stems are tufted on creeping rhizomes, each bearing a single leaf and clothed below with scales. The lower flower-stems appear from the axil of the leaves. They are perennial, producing flowers for several years in succession. Dorsal sepal free, ending in a bilobed, ciliate tail; lateral sepals united into a broad blade, bifid only at the apex; petals like the dorsal sepal, but smaller; labellum oblong or ovate, often with 2 small teeth near the base. About 12 species, few of which are cultivated for their curious flowers. They are easily grown at a temperature suitied for cool Odontoglossums (40°-55°). They thrive well planted in a mixture of peat and sphagnum in baskets, which are usually set near the glass. They have no definite resting period, but do not require as large a quantity of water in winter as during their most active growth. Pot moderately firm, and rest in a cool house.

antenueria, HBK. Stems slender, clustered, 1-6 in. high, clothed with imbricated scales, and bearing one (rarely more) ovate cordate petiolated leaf: peduncle from the axil of the leaf, slender, 1-6 in.; dorsal sepal 1½ in. long, lanceolate, tapering into a slender tail; lateral sepals yellowish, in order to the effect of temperature on the fragrance of *Mignonette,* plants of the same variety were grown in houses whose mean temperature was 50° F., 65° F., and 75° F. The plants had the same soil. Those in the house whose temperature was 50° were grown in flats and benches, while those in the other two houses were grown in 5-inch pots. All were sown November 16. When germing it was noted that one recognized the fragrant scent of those in house of 65° and three days ahead of house of 50°. In relative amounts of growth the plants stood as follows (May 15): House, first; cold house, second; medium, third; therefore, cool as follows: Medium house, first; hot, second; cold, third,— until the outside temperature became high enough to the temperature influence is considerable; those flowers of medium house, the cool house became equal if not surpass those of the medium house in fragrance. At certain stages of the spike-development, the fragrance seemed stronger in the hot house than in the medium house, but did not last nearly as long as in the medium house. The cool house surpassed both in lasting power of the fragrance, volatilization, when once set up, is probably not less easily checked or accelerated above a normal rate, whatever that rate may be; hence the tardiness of the plants to react with the cooler temperature.

R. L. JUNGHANNS.
Dayana, Reichb. f. A small plant growing in dense tufts; lvs. roundish, acute, cordate; dorsal sepal and petals fimbriate, clawed. There is a partition below sepals united into a broad, bifid blade, yellow and brown. Costa Rica.

Elegans, Karst. Tufted, epiphytic, 2-3 in. high; lvs. 1-½ in. long, elliptic; peduncles usually in pairs and ½-2 in. long; dorsal sepal erect, lanceolate, white, streaked purple, with a tail as long as itself, which is clubbed at the tip and yellow; lateral sepal connate into an oblong, emarginate, concave blade, yellow, spotted purple; petals like the dorsal sepal, but spreading and only half the size; lip half the size of the connate lateral sepals and of the same color but edged with red. Venezuela. B.M. 5066. J.S. 7:743.

Heinrich Hasselbalch.

RESURRECTION PLANTS are great curiosities, because they seem to "come to life" after being apparently dead. The commonest ones, shown in Figs. 2089-92, are members of the mustard family and the club moss family. Others are Arcturus, a composite, and Mesembryanthemum, of the fig-marigold family. These are described below.

1. The Rose of Jericho is properly Anastatica Hierochuntica. Linn., which name means "Resurrection Plant from Jericho." The plant is native of the sandy deserts from Arabia and Syria to Algeria. It is an annual and grows about 6 inches high. Soon after flowering the leaves fall off and the branches become woody and roll up into a ball, resembling one of wicker-work or lattice. Inside the ball are the seeds. or, in botanical language, the fruits, which are borne in a protected position near the tips of the unrolled branches. The plants are then uprooted by the winds and are blown about on the deserts. These balls were thought by many to be "the rolling thing before the whirlwind" mentioned in Isaiah, and were brought to Europe by the crusaders. The shape of these balls might be fancifully compared to that of an unopened rose. When the winter rains descend or when the balls are blown into the Mediterranean the branches at once open back and stretch out straight, the fruits open, and the seeds germinate very quickly, "often in the fruit," according to Waring. The dead plants do not, of course, "come to life," but they retain their hygroscopic properties for many years. They may be dried and wetted alternately many times. The vitality of the seed is doubtless considerable, but it is a question whether there is any good scientific record on this point. The balls are often sold by fakers and dealers in novelties and attempts are often made to grow the plants at home.

Botanically, Anastatica is highly distinct by reason of its short and broad fruit or silique, which has 2 ear-like appendages at the top. The silique is divided by a transverse partition into 2 cells, each of which contains a seed. There is only one species. The genus belongs to the Arabis tribe of the Cruciferae, but is exceptional in not having a long, slender silique. The growing plant has obovate lvs., the lower ones entire, upper ones

2091. Bird's Nest Moss dried into a tight ball.

Many Selaginellas will curl up if allowed to dry, and several of the Mexican species do so in their native places during the dry season, but this species is said to make a tighter mass than any other. When placed in lukewarm water the fronds loosen and roll back into a flat position. The plant may become green and grow, and it is also said that it may be dried and revived an indefinite number of times. Selaginellas are beautiful moss-like plants. What appears to be the leaves are really the branches, and the true leaves are scale-like. See Gm. 17, p. 400. F. 1871, p. 144.

3. Asterocephus pygmaeus, a member of the composite family, is also called Rose of Jericho, has the same range as No. 1, and was also brought to Europe by the crusaders. The branches do not roll up, but the

2092. Bird's Nest Moss as it opens out flat soon after being moistened.

volume closes over the head of fruit during the dry season, and is loosened by moisture when the seeds escape. The genus is referred by Bentham and Hooker to Odonatospermum. See Fig. 2062.

4. Several species of Mesembryanthemum are known to be hygroscopic. According to Kerner and Oliver, "the capsular fruits of these plants remain closed in dry weather; but the moment they are moistened the valves covering the ventral sutures of the fruit-loculi open back, decohesion takes place along the ventral sutures, and the seeds, hitherto retained in a double shroud, are washed out of the loculi by the rain." It is doubtful whether these capsules are offered in the trade.

W. M.

Anastatica is occasionally grown for curiosity or for botanical purposes, but the plant is anything but ornamental. The undersigned has often grown it for classes in botany, sowing the seed in February in pots and keeping the plants in pots all summer. Bottom heat is not necessary at any stage, at least in America.
plant could be grown in a window-garden. For its special purpose the writer has been accustomed to sow seeds in Feb., in 4-inch pots, using a light, sandy soil, in a house with a temp. of 60° F. As soon as the seedlings are large enough they are transplanted into other 4-inch pots, 3 plants to a pot. As to the vitality of the seed the writer can only say that the seeds of Cruciferce, being mealy, not oily, often retain their vitality for five years or more.

Selaginella tetraptera is a perennial plant. It is rarely cultivated in greenhouses for ornament, like the evergreen kinds. It is chiefly cultivated in botanic gardens or by fanciers of ferns and selaginelas, as it is by no means the most beautiful member of the genus. The writer grew a plant of it for four years, and once saw at one of the botanical gardens a plant which through long cultivation had developed a stem almost a foot high. It looked like a miniature tree-form, except of course that the fronds were arranged in a dense rosette, which gave the fronds a flat rather than a pendulous appearance. Whether the plants received directly from Texas have a crop of spores on them is a question. The spores do not discharge when the plants are wetted. Many extravagant statements are made about the Bird's-nest Moss. The dried plants offered for the trade will turn green and grow unless they are too old or have been kept dry too long. They would probably not grow if kept over more than one season. They cannot be dried and again used.

If a plant has been grown in a pot for three or four years and is then dried off it will die. Most people who grow these plants as curiosities place them in a bowl of water with perhaps a little sand and a few pebbles. The water causes them to turn green and they will grow for a time. Then if taken out of the water they may be kept dry for a time and the process repeated, but each time the plants lose their lower or outer circles of fronds much faster than new ones are made and at about the third time the plant is used up.

The writer has a fern with which he has been growing and which can be propagated by making cuttings from seedlings which have been retained their primordial foliage, and he also published cases in which larger plants of these seedlings had been observed accidentally to develop branches with the foliage of the typical form. See also, Gt. 1579, pp. 109 and 127; 1583, pp. 210 and 299, and 1882, p. 152.

There are 4 to 6 species of the genus, all easily propagated by making cuttings from seedlings which have been retained their primordial foliage, and he also published cases in which larger plants of these seedlings had been observed accidentally to develop branches with the foliage of the typical form. See also, Gt. 1579, pp. 109 and 127; 1583, pp. 210 and 299, and 1882, p. 152.

2093. Another "Rose of Jericho"—Asteriscus.

The bracts roll out and make a flat, star-shaped figure.

It seems that Selaginella tetraptera is a little outside the region in which Selaginelas are most at home and that it has learned to adapt itself to different conditions. In warm, dry countries there are ferns of various genera that dry up and then are resurrected quickly when wet weather comes.

EDWARD J. CANNING.

RETRORIAL is the opposite of forcing, and consists in keeping plants in cold storage, thereby preventing them from growing during their natural season. Its object is to supplement natural methods and forcing in order to produce the same thing by the year round. The chief plant of the first importance which is retracted in commercial establishments, there is sufficient demand for these flowers all the year round to cover the expense of cold storage. Lily-of-the-valley "pips" may be taken from cold storage and forced into bloom in three weeks. Plants that have been retracted need very little heat when they are allowed to grow; they are encouraged to grow 45° to 50° is sufficient. Lillium speciosum, longiflorum, and auratum will bloom in 10-12 weeks from cold storage; Azaela mollis in 3-4 weeks; spires in about 4 weeks. Scale leaves and flowers have also been retracted with profit. Goldenrod has been kept in an ice-house all summer and flowered for Christmas with happy results. The art of retraining plants is making great progress, and they are used at present for a light, sandy boat. For flowers the list of retrained plants may be greatly extended in the future. See A.P. 16.654, 635 (1900).

RETRINISPOR.A. Often but not originally spelled Retinisp or a. A genus of conifers originally spelled by Siebold and Zuccarini on the two Japanese species of Chamaecyparis, chiefly distinguished from the American species by the resinous canals of the seeds (from Greek retina, resin, and spora, seed). Afterwards the genus was united with Chamaecyparis, but in horticultural nomenclature the name was given to a number of juvenile forms of Thuya and Chamaecyparis chiefly introduced from Japan. As these juvenile forms all resemble each other very much, it is not a good plan always to do the typical forms to which they belong, it is not strange that they should have been considered to be distinct species and even to belong to a separate genus. Even botanists failed to recognize the true relation of these forms and went as far as to place one of them in the genus Juniperus. With the exception of RETINISPOR.A, which is RETINISPOR.A, cneoides, which C. Koch recognized as the juvenile form of Thuya occidentalis, the origin of these juvenile forms remained doubtful until L. Beissner, after having carefully studied the subject for years, disclosed the relationship of the various forms. He then showed that it is possible to raise the same form by making cuttings from seedlings which have been retained their primordial foliage, and he also published cases in which larger plants of these seedlings had been observed accidentally to develop branches with the foliage of the typical form. See also, Gt. 1579, pp. 109 and 127; 1583, pp. 210 and 299, and 1882, p. 152.

There are 4 to 6 species of the genus, all easily propagated by making cuttings from seedlings which have been retained their primordial foliage, and he also published cases in which larger plants of these seedlings had been observed accidentally to develop branches with the foliage of the typical form. See also, Gt. 1579, pp. 109 and 127; 1583, pp. 210 and 299, and 1882, p. 152.

2093. Another "Rose of Jericho"—Asteriscus.

The bracts roll out and make a flat, star-shaped figure.

It seems that Selaginella tetraptera is a little outside the region in which Selaginelas are most at home and that it has learned to adapt itself to different conditions. In warm, dry countries there are ferns of various genera that dry up and then are resurrected quickly when wet weather comes.

EDWARD J. CANNING.

RETRORIAL is the opposite of forcing, and consists in keeping plants in cold storage, thereby preventing them from growing during their natural season. Its object is to supplement natural methods and forcing in order to produce the same thing by the year round. The chief plant of the first importance which is retracted in commercial establishments, there is sufficient demand for these flowers all the year round to cover the expense of cold storage. Lily-of-the-valley "pips" may be taken from cold storage and forced into bloom in three weeks. Plants that have been retracted need very little heat when they are allowed to grow; they are encouraged to grow 45° to 50° is sufficient. Lillium speciosum, longiflorum, and auratum will bloom in 10-12 weeks from cold storage; Azaela mollis in 3-4 weeks; spires in about 4 weeks. Scale leaves and flowers have also been retracted with profit. Goldenrod has been kept in an ice-house all summer and flowered for Christmas with happy results. The art of retraining plants is making great progress, and they are used at present for a light, sandy boat. For flowers the list of retrained plants may be greatly extended in the future. See A.P. 16.654, 635 (1900).

RETRINISPOR.A. Often but not originally spelled Retinisp or a. A genus of conifers originally spelled by Siebold and Zuccarini on the two Japanese species of Chamaecyparis, chiefly distinguished from the American species by the resinous canals of the seeds (from Greek retina, resin, and spora, seed). Afterwards the genus was united with Chamaecyparis, but in horticultural nomenclature the name was given to a number of juvenile forms of Thuya and Chamaecyparis chiefly introduced from Japan. As these juvenile forms all resemble each other very much, it is not a good plan always to do the typical forms to which they belong, it is not strange that they should have been considered to be distinct species and even to belong to a separate genus. Even botanists failed to recognize the true relation of these forms and went as far as to place one of them in the genus Juniperus. With the exception of RETINISPOR.A, which is RETINISPOR.A, cneoides, which C. Koch recognized as the juvenile form of Thuya occidentalis, the origin of these juvenile forms remained doubtful until L. Beissner, after having carefully studied the subject for years, disclosed the relationship of the various forms. He then showed that it is possible to raise the same form by making cuttings from seedlings which have been retained their primordial foliage, and he also published cases in which larger plants of these seedlings had been observed accidentally to develop branches with the foliage of the typical form. See also, Gt. 1579, pp. 109 and 127; 1583, pp. 210 and 299, and 1882, p. 152.
RETYNSIA (Dr. Alvaro Reynoso, 1830-1885, Cuban agricultural chemist and inventor of a machine for in-
crementing lands. Arid to semi-arid belt of tender shrubs or small trees, all native to the
West Indies. One of them is also native to Miami and the
Florida Keys, and was observed by Reasoner Bros.,
presumably for its edible fruits. The fls. are minute
and devoid of petals, but the berries are half an inch
long, oval and purple or nearly black in color. Generic
characters: fls. perfect; calyx dehiscent; 5-lobed;
avery 2-loculed; ovaries solitary, erect: fr. a
seeded drupe, with runimate albumen. This genus is
not in Bentham and Hooker's Genera Plantarum, but
technical accounts may be found in the Synopsis
of North America, Sargent's Silva and Chapman's
Flora of the Southern United States.

LATIFOLIA, Griseb. RED IRONWOOD. DARLING PLUM. Stender
tree, 20-25 ft. high; lvs. oval, oblong or subro-
tund, usually emarginate, 1-1½ in. long, leathery;
margins revolute: fls. in axillary umbels, borne in May:
fr. ripens in November or the following spring. S.S. 2:366.
W. M.

RHAMNUS (its ancient Greek name). Including
Frangula, Rhamnus, Buckthorn. Ornamental de-
icious or evergreen, sometimes spiny shrubs or rarely
small trees, with alternate or opposite simple lvs.,
conspicuous greenish fls. in axillary clusters appearing
in spring shortly after the lvs., and berry-like usually
black, rarely red, fruits. The Buckthorns, except R.
cathartica, are but rarely cult., and the hardness of
several of the species is therefore not yet fully estab-
lished; but R. cathartica, Daurica, alpina, Frangula
and alnifolia can be depended upon as hardy, while the
northern deciduous forms of R. Parshiana and R. laneco-
late are hardly at least as far north as Mass. R. Liberalo-
tica and Caroliniana are somewhat more tender. The hand-
some foliage is bright green, often almost evergreen;
these species are propagated by seeds, seeds may be
sown in autumn, or cuttings, which are the most
practical method. The young shoots of R. cathartica
are often used in the manufacture of gunpowder.
INDEX.

Alaternus, 8.
amiolus, 5.
*, 3.
anguina, 8.
amosifolia, 9.
axtilefolia, 11.
atiolus, 9.

1. Alaternus, Caroliniana, 10.
2. catatarhica, 3.
3. catatarhica, 1.
4. catatarhica, 7.
5. catatarhica, 11.
6. catatarhica, 9.
7. catatarhica, 12.
8. catatarhica, 9.
9. catatarhica, 12.
10. catatarhica, 11.
11. catatarhica, 12.
12. catatarhica, 11.

A. Winter-buds oval: petals usually 4, sometimes 5 or wanting: seeds not (the outer coating of the nutlet) acute or concave on the back, with thin tegimientos recurved at the margins: fls. imperfectly dioecious.

B. Lem., opposite: plants usually spiny shrubs.

C. Foliage deciduous.

D. Dors. of veins 10-30.

E. Dors. of veins 4-9.

F. Foliage evergreen.

G. Foliage deciduous.

H. Flowers: petals 5; seeds on the back, not protected, with flat and thick tegimientos: unarmed shrubs with alternate leaves.

I. F. in peduncled umbels.

J. F. in 2-5-fl. clusters.

K. F. in 2-5-fl. clusters.

L. F. in 2-5-fl. clusters.

M. F. in 2-5-fl. clusters.

N. F. in 2-5-fl. clusters.

O. F. in 2-5-fl. clusters.

P. F. in 2-5-fl. clusters.

Q. F. in 2-5-fl. clusters.

R. F. in 2-5-fl. clusters.

S. F. in 2-5-fl. clusters.

T. F. in 2-5-fl. clusters.

U. F. in 2-5-fl. clusters.

V. F. in 2-5-fl. clusters.

W. F. in 2-5-fl. clusters.

X. F. in 2-5-fl. clusters.

Y. F. in 2-5-fl. clusters.

Z. F. in 2-5-fl. clusters.

1. catatarhica, Linn. (R. catatarhica, Hort.). Buckthorn. HART'S-THORN. WATTHORN. WATTHORN. RHINEBERG. Fig. 2095. Shrub or small tree, attaining 12 ft., usually thorny: lvs. oval, elliptic or ovate, usually narrowed at the base or cordate, obtuse or acute, crenulate-serrate, glabrous or pubescent beneath, 1½ to 2½ in. long; fls. in 2-5-fl. clusters, with 4 petals: fr. black, nearly ½ in. across. Europe, W. Asia and N. Asia; often escaped from cult. in the eastern U.S. B.B. 2:406. Gg. 9:2.

2. Alaternus, Linn. Shrub, attaining 6 ft., with stout, upright, glabrous branches: lvs. oval to elliptic-ovate, cordate or rounded at the base, abruptly acuminated, crenulate-serrate, dark green above, pale green below, and nearly so beneath, 2½ to 3½ in. long; fls. in few-fl. clusters; petals 4: fr. globose, black, ½ in. across or less. Mountains of S. and M. E. B. C. 11:677. - Alps and the following species are the handmost of the deciduous-leaved buckthorns.

3. alpinus, Linn. Low, wide-spreading shrub, attaining 1 ft., with pubescent branches: lvs. ovate to ovate-oblong, obtuse or acuminate, usually narrowed at the base, crenulate-serrate, glabrous, 1½ to 4 in. long; fls. in few-fl. clusters, few-petalled, without petals; fr. globose, black, with 3 nutlets. New Brunswick and N. J. to British Columbia and Calif. B.B. 2:406.

5. alpinus, Linn. Low, wide-spreading shrub, attaining 1 ft., with pubescent branches: lvs. ovate to ovate-oblong, obtuse or acuminate, usually narrowed at the base, crenulate-serrate, glabrous, 1½ to 4 in. long; fls. in few-fl. clusters, with 4 petals: fr. with 2 nutlets. Pa. to Al., Tex. and Neb. B.B. 2:406.

6. lanceolata, Pursh. Tall, upright shrub, with pubescent branches: lvs. ovate-lanceolate to oblong-lanceolate, acuminate or obtusely crenulate, glabrous or somewhat pubescent beneath, 1½ to 3½ in. long; fls. in few-fl. clusters, with 4 petals: fr. with 2 nutlets. Pa. to Al., Tex. and Neb. B.B. 2:406.

7. crenata, Nutt. Shrubs or small trees, attaining 20 ft., with pubescent young branches: lvs. orbicular to oblong-obovate, dentate-serrate, dark green and intransis above, bronze or copper-colored and glabrous or slightly pubescent beneath, 3½ to 8½ in. long: fls. in few-fl. clusters, 4-merous, apetalous: fr. bright red, about ½ in. across, edible. Calif. B.B. 2:59; 60.

8. Alaternus, Linn. Shrub or small tree, attaining 20 ft., with glabrous branches: lvs. oval or ovate to ovate-lanceolate, acute, serrate or almost entire, glossy and dark green above, pale or yellowish green beneath, glabrous, ½ to 2 in. long; fls. in short racemes, with 5 petals: fr. bluish black. S. E. A. - var. angustifolia, DC. (R. angustifolia, Hort.), has narrower, oblong lanceolate lvs. There are also varieties with variegated foliage.

9. Purshiana, DC. Tall shrub to medium-sized tree, occasionally attaining 40 ft.; young branches pubescent or tomentose: lvs. elliptic to oblong-obovate, acute or obtuse, usually denticulate, with often wavy margin, dark green above, glabrous or pubescent beneath, 1½ to 2½ in. long; peduncles longer than pedioles: fr. globose, changing from red to black, about ½ in. across, with 2 or 3 nutlets. Brit. Col. to Mex., west to Mont. and Texas. S.S. 8:2; 62, 63. - A very variable species. DC. Callophillya, Redel. (R. Callophillya, Eschsch. R. obovata, Hook.). Usually shrubby, evergreen or half-evergreen; lvs. smaller and narrower, 1¼ to 1½ in. long, often almost entire. Calif. to Ariz. and New Mex. R.H. 1874, p. 354. Var. laevifolia, Sarg. (Var. Callipogon Callophillya, var. laevifolia, Gray.). Allied to the preceding var., but lvs. densely white-tomentose beneath. R.H. 1867, p. 658; 1872, p. 194 (as R. bucchar). R. angustifolia, Pursh, and R. angustifolia, Greene, and R. occidentalis, Howell (see G. F. 10:285) also belong here.

10. Caroliniana, W. Indian Cherry. Shrub or small tree, attaining 30 ft.; young branches puberulous: lvs. elliptic to oblong, acute or acuminate, usually sericeously scaly or almost entire, lustrous and dark green above, glabrous or nearly so, somewhat leathery at length, 2½ to 4 inches long; peduncles shorter than pedioles: fr. globose, about ½ in. across, red changing to black, sweet, with 3 nutlets. N. Y. to Fla., west to Neb. and Tex. S.S. 8:2; 61. B.B. 2:406.

11. Frangula, Linn. (Frangula Alnus, Mill.). Shrub or small tree, attaining 12 ft.; lvs. broadly ovate to oblong-oval, acute, entire, dark green above, glabrous, 1½ to 2½ in. long; fr. red, changing to black, sweet, with 3 nutlets. N. Y. to Fla., west to Neb. and Tex. S.S. 8:2; 61. B.B. 2:406. - Var. asplenifolia, Dipp. Lvs. linear, un-
RHAMNUS

RAPHIS

Rhipidophyllum Hiswric, the Blue Palmetto or Needle Palmatto, is the most beautiful and elegant of our native dwarf palms, it is very local in its distribution, being found in rich, low soil both in Georgia and Florida, but it is everywhere rare and scarce. Its most striking characteristics are the long, sharp, black spines projecting in every direction from the dark fibers which cover the trunk. These spikes, which are often a foot long, seem to protect the inflorescence, which before opening resembles a large white egg and which is quite distinctive of the spikes. This palm bears staminate and pistillate flowers on separate plants. The wooly clusters of fruit or seeds are borne on short stems, easily arrostrated by the sharp spines. This palmetto is easily transplanted. The lvs. are dark shiny green, relieved by a pale silvery gray on the under surface. It is a very beautiful plant, and groups of it are striking. The stem is 2 to 3 feet high and the leaves rise to a height of 3 to 4 feet.

H. NEURING.

RHAPIOLEPSIS. See Raphirolepis.

RHAPS (Greek, needle; alluding to the shape of the lvs., or perhaps the axils of the corolla), Palmaceae. A genus of 3 species of fan-palms of very distinct habit, natives of China and Japan. They are among the few palms that produce suckers at the base, thereby forming bushy clumps. Low palms, with leaves densely cespitose redy stems clothed with remains of the rachis leaves; lvs. alternate and terminal, sub-membranaceous, connate or semi- orbicular, irregularly and digitately 3- to many-parted; segments linear, lanceolate, or elliptical truncate, thick, brown at the base. The genus resembles Lianea, and the leaves are borne in a very beautiful plant, and groups of it are striking. The stem is 2 to 3 feet high and the leaves rise to a height of 3 to 4 feet.

296. Young leaf of Blue Palmetto, not yet unfolded (X3).

H. NEERING.

RHAPSIS. See Raphirolepis.

FIABELLIFORMIS, I'Herit. (R. Kweninwir,

H. Wendl.,) Fig. 1623, Vol. III.

Var. intermedia, Hort., according to Siebrecht, has lvs. horizontal instead of somewhat erect. Var. variegata, Hort., has been offered.

297. Leaves with 7-10 or more segments.

HUMILIS, Blume, Fig. 2997. Lvs. semi-circular; basal lobe directed backward; segments rarely more than 10, spreading; petioles unarmed. China. A.F. 7:405.

AS. Stems becoming 8 ft. high.

COCHINCHINENSIS, Mart. (Chamnipes Cochinchinensis, Lour.). Leaf-segments much palleted; petioles short, straight and prickly. Cochlin China, Int. by Francesco, 1900.

JARED G. SMITH and W. M.
petioles: fls. perfect, small, greenish or whitish, pedicelated, in numerous panicled fascicles or racemes; the inflorescence elevated above the lvs. on stout, mostly hollow scape-like stems, which are provided with sheathing stipules or oxeae (Fig. 2098); the perianth 6-parted and spreading; stamens 9 or 6, ovary 3-angled and bearing 3 styles, ripening into a winged or sometimes nearly sessile achene.

Aside from the common Rubarb, Rheum Rhabonticum, which is grown for the edible leaf-stalks, the species are little known in general cultivation. Few plants are more useful, however, for bold and striking foliage effects; and these effects are heightened by the towering flower-panicles. Most of the species are hardy and easy to grow, but they profit by a liberal winter mulch. Rheums are usually seen to best advantage against a heavy background of foliage or rock (Fig. 1015, p. 733). Even the common Rubarb is a useful ornamental subject when well placed. In order to secure large and fine foliage, the soil should be rich and moist. The species are propagated by dividing the roots, preferably in spring, leaving as much root as possible with each strong bud. The dried rhizomes of Rubarb are used medicinally. Several species afford the official product. It is now believed, however, that the larger part of the dried Rhubarb imported from the Orient is made from the crown or short stem (not the flower-stem) of R. officinale. R. Rhaponticum is sometimes grown for its roots.

A. Foliation undivided, the margins of the lvs. nearly or quite entire.

B. Lvs. (at least on the flower stalks) acute or acuminate.

Rhaponticum, Linn. (i.e. Pontic Rha, "Rhubarb of Pontus," a province of Asia Minor). Rubarb. Petti-Plant (in the U. S.). Wine-Plant. Fig 2098. Strong perennial, with thick enclosed roots: pedoes semi-cylindrical, plane above: R. -blades suborbicular, deeply cordate at base, undulate, about 5-ribbed, glabrous and shining above, pubescent on the veins beneath: panicles tall and narrow, somewhat leafy, densely flowered, the pedicles jointed below the middle: akene oblong-ovate. In deserts and subalpine parts of southern Siberia.—Nearly everywhere grown in this country for the succulent acid petioles, which are used in early spring for pies and sauces. Wine is sometimes made from the juice. In France, known usually as an ornamental plant. There are several garden varieties. See Rhubarb.

undulatum, Linn. Petioles semi-terete, lightly channelled above, the leaf-blades ovate-cordate and strongly undulate (basal sinuses not so deep as in the last), 5-7-ribbed, glabrous above and puberulent beneath, the upper ones long; panicle narrow and leafy below, the pedicels jointed near the base: akene ovate or oval. Siberia.—Small plant, earlier than R. Rhaponticum.—

Polage has a coppery hue.

AA. Foliation more or less lobed, the margins of the lvs. or segments usually toothed or notched.

bb. Lvs. shallowly or obscurely lobed.

compactum, Linn. Stem tall and leafy: petioles sulcate, plane above: leaf-blades thickish, broad-ovate, cordate, undulate and obscurely lobed, very obtuse, glabrous and shining above, the margin strongly toothed; the veins very prominent: pedicle with drooping branches: akene large, dark-colored. Siberia to China.

bb. Lvs. deeply lobed or eveny divided.

palmatum, Linn. (R. songnianum, Hort.). Stem tall and leafy: petioles subcylindrical, the margin rounded: leaf-blades broad, suborbicular and cordate, 3-5-ribbed, scabrous, deeply palmately lobed; the lobes ovate-oblong or lanceolate, acute, entire, dentate or pinnatifid: pedicle leafy, with pubescent branches, the pedicels scarcely longer than the fls.: akene oblong-ovat and subcordate. Northeastern Asia.

Var. Tangkhiticum, Hort. (R. Tangkhiticum, Hort.). Lvs. more elongated and not so deeply lobed.

hybridum, Murr. Petiole long, cannelulate above and sulcate beneath: leaf-blades ovate, 3-5-ribbed, the base cuneate or scarcely cordate, indente-dentate, puberulent beneath; panicle lax, leafy: akene large, ovate.—Seems to be unknown wild. Perhaps a hybrid series between R. palmatum and R. Rhaponticum. Perhaps R. officinale is concerned in it. This name does not occur in the American trade, but it is not unlikely that the plant is in cult. in this country.

Collinum, Bal. Probably one of the R. hybridum series, with much-cleaved branches that extend half the depth of the leaf-blade: fls. red. China.

officinale, Bal. Figs. 1015, 2099. R. robust, with a short branching stem or crown 4-10 in. high: lvs. very large, 1-3 ft. across, round-oval, more or less pointed or acuminate, hairy 3-7-lobed, the lobes extending one-third or one-half the depth of the blade and sharply angled-notched: flower-stems 3-5 ft., much branched,
bearing numerous greenish flowers, that give a feathery effect to the panicle: acene red, winged. Thibet and W. China, on high table-lands. B. M. 6125. R. H. 1874, p. 95. On 25, p. 243; 48, pp. 159, 285. — Probably the best plant of the genus for general cultivation, making a most striking foliage plant. It is from the short, thick, branching stem or caudex of this plant that most of the true official Rhubarb is derived. Although known to the Chinese for centuries and the product long imported into Europe, the plant was not described botanically until 1872. Fig. 2998 is adapted from The Garden.

R. acuminatum, Hook, f. & Thou. "Probably only a small form of R. Eunoldi, with acuminate Ivs., but the fls. are considerably larger, and though long under cultivation it does not attain half the size of that plant, or vary in its character." Hooker, Himalayas. B. M. 4677. — R. nobile, Hook, f. & Thou. Stem simple and densely clothed with incrusted downward-pointing bracts that conceal the short axillary peduncles: Ivs. ovate-oblong or rounded, entire. When the fruit is ripe, the shingled bracts are torn away by the winds, leaving the long panicle-exposed. 3 ft. Himalayas. R. H. 1876, p. 236. I.H. 22:299. G. C. H. 15:533. A remarkable alpine plant.—R. Rhicx, Linn. 3-5 ft.: Ivs. 1 ft. across, cordate to reniform, the margins crisped or undulate, the blade puckered or blistered: Ivs. green, drooping: fls. about 1 in. long, oblong-ovate, narrow-winged, blood-red, showy. Asia Minor to Persia. B. M. 7451. "Ricas" or "Riles" is its Arabic name.—R. spiciflorum, Royle. Dwarf: Ivs. thick, indaecum or broadly ovate: Ivs. white, in a dense spike rising about 2 ft. Western Himalaya. L. H. B.

RHEUMATISM ROOT. Jeffersonia binata.

RHEUM (Greek, rupture; referring to its supposed properties of healing). Melanthaceae. Meadow Beauty. A genus of about 10 species of N. American perennial herbs, with opposite sessile or short-petioled, 3-5-lobed Ivs., and showy flowers borne in late summer. Fls. terminal, solitary or in cymes; calyx tube urn-shaped, narrowed at the neck, 4-lobed; petals 4, ovate; stamens 8, equal, the connecting being thickened at the base, with or without a spur at the back.

Rhœzia Virginica is found wild in company with side-saddle plants (Sarracenia purpurea) and cranberries in the low meadows of Massachusetts. It is what we should call a bog plant. It is a pretty, low-growing, tuberous-rooted plant blooming in summer and chiefly interesting as being one of few species of a genus belonging to a family almost wholly composed of tropical countries, such as Centradenia, Pteronia and Medinella. It increases by means of tubers and seeds, and under suitable condi-

2998. Rheum officinale.

ations soon makes large clumps. Tubers potted in the spring and kept in a coldframe force nicely in springtime.

A. Stem cylindric.

B. The branches of two kinds

RHEUMATISMS.

RHEUMATISM. Jeffersonia binata.

RHEUMATISM. Jeffersonia binata.

RHEUMATISM. Jeffersonia binata.

RHEUMATISM. Jeffersonia binata.
3. mesembrianthemoides, Haw. (Hariota mesembrianthemoides, Lem.). Upright, the ends drooping, richly branched: long branches 4-8 in. long, 1 line in diam.; fruiting branches 3-5 lines long, not more than 2 lines in diam., spirally attached, thickly crowded; areoles sparsely woolly, with 1-2 bristles which project from the ends of the branches: fls. near the top of the joint, about 5 lines in diam., formed of 10 white with yellow midstriped leaves: berry white. Brazil. B.M. 3067.—Hardly more than a slender variety of the preceding.

4. grandiflora, Haw. (R. grandiflora, Salm.). Branching, cylindrical, rather stout, the branches reaching a height of 3 ft., with a diameter of more than ½ in.; ultimate branchlets short, often verticilète: areoles depressed, bordered by a red line, sometimes in old branches bearing a bristle: fls. wheel-shaped, lateral on the branches, nearly 1 in. in diam. Brazil. B.M. 2740.

5. Cassytha, Gaertn. Richly branching, pendulous, sometimes 10 ft. long; branches rarely 2 ft. long, 1½ lines in diam., pale green; ultimate branchlets spirally attached; areoles with sparse woolly hairs and frequently 1-3 minute bristles: fls. lateral on the terminal joints, 2-3 lines in diam.: berry like that of the mistletoe, 1-2 lines in diam. Widely dispersed in Central and South America, West Indies, Mex., Mauritius, Ceylon and Africa. B.M. 3050.

6. virginata, Web. Richly branching, pendulous, becoming a yard long; terminal branchlets hardly more than a line thick, spirally attached: areoles bearing long sparse woolly hairs, with an occasional bristle: fls. lateral, 3-4 lines in diam.: berry only 1½ lines in diam. Brazil.—Very much like the preceding.

7. ianthothéle, Web. (Pfeiff. lampionthéle, Web. R. cecrotéronea, Forst. Pfeiff. cecrotéronea, Salm.). Stems pendent, 1-2 ft. long, branching, less than 1 in. in diam., 4-5, rarely 3-angled; ribs tuberculate; areoles at summit of tubercles short-woolly, soon naked, bearing 6-7 short bristles: fls. with very short tube, but the fl. bell-shaped, purple-red without, white within, nearly 1 in. long, little more than half as much wide: fr. the size of a cherry, rose-red, with bristles like those of the stem. Argentina.

8. trigonà, Pfeiff. Richly branched, becoming a yard long: branches ½ to nearly 1 in. in diam., 3-angled; areoles sparsely woolly and briskly, the blooming areoles much more copiously so: fls. greenish outside, white within, 4 or 5 lines long. Brazil.

9. paradóξa, Salm. Sparingly branched, 1-2 ft. long; branchlets 1-2 in. long and ½-1 in. in diam., twisted at the joints, so that the angles alternate with the sides: fls. ½ in. long, white. Brazil.

10. parapietæra, Pfeiff. B.M. 3078. Richly branched, 1-2 ft. long, 4-5 lines in diam.: branchlets 2-5 in. long, 5-6-anzled or almost winged: areoles in crevatures of the angles with scanty wool and an occasional bristle: fls. greenish white, 3-4 lines long: fr. white, bright rosette above crowned by the withered flower. South Brazil, Uruguay, Argentina.
RHODE ISLAND, HORTICULTURE IN. Figs. 2102, 2103. Rhode Island, the most thickly populated state in the Union, is distinctly a manufacturing center. This condition of things, which brings the larger portion of the population together into the cities and villages, together with the steadily increasing popularity of its famous summer resorts and the rapid transportation both by rail and water which place the New York and Boston markets within easy reach, affords opportunities for horticultural developments which are equalled by few and excelled by none of the eastern states. At present the growing of vegetables, both in the field and under glass, is the most highly developed horticultural industry. The towns of Cranston and Warwick are the center of this industry, where the soils are light sandy loams which are capable, under the skilful management they receive, of producing large crops of excellent quality. The following figures, which are taken from the State Census for 1895, give some idea as to the extent of the market-garden industry for that year: Green corn, 1,158,961 doz.; tomatoes, 106,299 bushels; cucumbers, 65,338 bushels; lettuce, 2,882,584 heads; beans, string, 46,706 bushels; peas, green, 53,438 bushels; celery, 579,016 heads; melons, 624,960. The greater proportion of the lettuce grown is of the hard-heading type, which is produced during the months of October to May. Over 300,000 are invested in glass for the production of this crop within a radius of five miles of the city of Providence. The greater portion of the musclemen crop is produced upon the sandy plains of Warwick. The early crop is grown from plants which are either started in pots in the glass-houses and transplanted to the field or planted in the open ground. The early varieties used for the crop are of the small Gem type, which always finds a ready sale at fancy prices. After the main crop, which is planted the last of May, is largely shipped in ear-lots to Boston. For the main crop the large oblong type of melon is the most popular. Besides the large market-gardeners who are located near the cities, many of the farmers who live within a short distance of the manufacturing villages find there a ready and profitable market for the many vegetables which they produce, as the people found in the villages are good buyers who purchase large quantities of vegetables when they have work.

During the past decade the horticulture of the state has been developing rapidly, not so much, however, in the number of establishments as in the area of glass. Where ten years ago the figures were given in hundreds, today they are increased to thousands of square feet. This development is particularly noticeable in the towns which have a population of from 2,000 to 3,000. The carnation is still the most popular flower, although many fine roses are grown, with a steadily increasing demand for rare flowers, as orchids and forced stock, during the winter months.

There are in the state nine local nurseries. The greater part of the business is the growing of specimen plants for use in localities where immediate effects are desired, rather than the propagation and sale of young nursery stock.

The fruit-growing industry is but poorly developed, only a very small proportion of the fruit consumed being produced within the state limits. Apples are grown more than any other fruit, the largest orchards being located in the northern part of the state, the fruit being more highly colored than that grown in the orchards along the coast. Baldwin, Rhode Island Greening, Roxbury Russet and Spy are planted more than other varieties. Many of the old orchards are past their prime, and there are excellent opportunities offered for the planting of profitable orchards upon the hilly and deserted farms. Among the enemies of fruit, the following are the most troublesome: apple scab, codlin-moth, ear-lice and maggot. The original Rhode Island Greening apple tree, still standing in the town of Foster, is shown in Fig. 2103, as it looked in 1900.

Peaches are receiving much attention at present. Demand for rare flowers and orchids has increased in the state, and it is expected that this demand will continue.

RHODANTHE. See Helipterum.

RHODEA. See Rhodea.

RHIZOPOURA is discussed under Mangrove. The plant is now offered for sale in S. Calif.

RHODES. See Rhodes.
having curious, distinct purplish red fs., over 2 in. long on red peduncle; lvs. about 3 in. long. B. M. 3867. B.R. 21:1755. L.H. 42:23. Blooms the first season from seed and may be treated as a tender annual.

RHODODENDRON

(Rh. rhodun and dendron, rose-tree; alluding to the beautiful flowers and the habit; the Rhododendron of the ancient writers is Nerium). Evergreen. Highly ornamental evergreen shrubs, with alternate petioled, entire lvs. and terminal clusters of large, showy fs., varying in all shades of purple, scarlet, pink orange, yellow and white. None of the evergreen shrubs suitable for cultivation in colder climates are more effective in bloom than the Rhododendrons. The large clusters of showy flowers often nearly cover the entire plant, while the handsome foliage is attractive at every season (Fig. 2104).

Hardiness of the Various Species.—Although most of the species are hardy only in warm temperate regions, there are many which are hardy at least as far north as Massachusetts. They are _Rh. catawbiense_, _Caucasicum_, _brochycarpum_, _Melleri*-, _Sherbowi*, _macronolatum_, _Dahuricum_, _Lapponicum_, _ferrugineum_, _bistatum_, _parvifolium_, and probably also to _chrysanthum_, _Przewalski*, _campionatum*, _Californicum_, _Usneacea*, and _Carpathicum_. Somewhat more tender are _R. Ponticum*, _niveum_, _Hodgsoni*, _Thomsenii*, _Anthophylleum_. South of Philadelphia such species as _R. cinnabarinum_, _sanguineum*, _R. tiliaceum*, _Fortuni*, _tippetioides*, _Colletiavum*, and the _Yunnan* species, as _R. decorum*, _irregularum* and _vireocostum* are probably hard; also _R. arborescent*, _bellatum*, _Palceroni*, _Kagi*, _tillorii*, and _R. kurzii* are tenderer positions. Species like _R. Dalhousiae*, _Edgeworthi*, _Girffithianum*, _tornosum*, _Malddeni*, _Nuttalli*, and _pendulum* stand only a few degrees of frost. The Japanese species, as _R. japonica*, _Zucc.*_, _Brookeanum* and _Lobii* grow and bloom continually and have no frost at all.

Variation in Height.—Most of the species are shrubby; a few only, and these mostly Himalayan species, grow into small or medium-sized trees, attaining 60 ft. in the case of _R. barbatum*, 40 ft. in _R. grande* and _arborescent*, 30 ft. in _Palceroni* and _maximun*. A number of northern and alpine species always remain dwarf, as _R. turgidium*, _bistatum*, _Lapponicum*, _vireocostum*, _lepidotum*, _vireosum*, and others. A few Himalayan and Malayan species are often epiphyte and grow on branches of large trees like orchids; e.g., _R. Dalhousiae*, _pendulum*, _Nuttalli* and most of the Malayan species.

Their Place in Ornamental Planting.—Rhododendrons are equally effective and desirable for single specimens on the lawn or when massed in large groups, and are especially showy when backed by the green foliage of conifers, which at the same time afford a most advantageous shelter. The dwarf species, which are mostly small-leaved and flower at a different time, should not be grouped with the large-leaved ones, as they do not harmonize with them; however, they are exceedingly charming plants for rockeries or in groups with other smaller evergreens. It is certainly true that the Rhododendrons have not yet received the attention they deserve. They are still far from being as popular as they are in England. The beautiful Himalayan species and their numerous hybrids, especially are still almost unknown in this country, although without doubt they could be grown as well outdoors in the middle and southern Atlantic States as they are in England. If the right situation were selected. Formally it is considered impossible to grow the beautiful hardy hybrids in the New England states, but now it has been shown by such splendid collections as those of Mr. H. H. Hunnewell at Wellesley, Mass. (see A. F. C. 1894, Gp. 3:375-577), that, even in a trying climate, they can be grown to perfection if the right situations are selected and the right method of cultivation followed.

Outdoor Cultivation.—The selection of a suitable situation is of foremost importance. If possible the beds should be sheltered against drying winds and the surrounding sun by tall conifers, such as the shelter in New England should be always light and natural, as too much shelter by dense hedges or walls close to the plants is worse than no shelter at all. Any open, well-drained soil which does
RHODODENDRON

They become frost-proof and small, especially in the first year or two, if the plants have been kept in greenhouses and have been hardened off by gradual exposure to frost. This muleh should be allowed to remain during the summer, especially where the plants are not large enough to shade the ground. An occasional top-dressing of well-decayed stable or cow manure will prove of much advantage. The ground should never be disturbed, as the roots are very near the surface. After flowering, the young seed-vessels should be removed.

The Rhododendrons are easily transplanted either in spring or in full, especially if they grow in peat or turfy loam, and a good ball of earth can be preserved in moving them. They should be planted only, especially in porous, peaty soil, and thoroughly watered after planting. If they are carefully handled they are not much affected by transplanting, and tender kinds may be dug up by the roots in spring, or the plant-root taken out in full and planted again in spring. Potted and well-budded plants transferred in January into a temperature not exceeding 60° will develop in about six to eight weeks into very attractive young specimens for display.

Hardy Varieties.—The following varieties have proved hardy in the vicinity of Boston and may be recommended for planting in similar climates and for experimental trial farther north. They are mostly hybrids of *R. Catawbiense* with *R. maximum*, *Fontainea*, *Carnicaeum* and with some infusion of *R. arboreum* and perhaps a few other species. As in most of the parentage, *R. Catawbiense* is the most predominant, they are all usually called "Catawbiense Hybrids." Choice kinds are: *Alba elegans*, blush, changing to white; *Alba grandiflora*, white, changing to white. *Alexandra*, bright rose, paler in center; *Atroroseum*, rich blood-red; *August Van Geert*, bright carmine, spotted dark purple; *Bachus*, crimson, large pink; *Bellidiorum*, pink; *Blissolor*, purplish pink, spotted; *Blushum*, rose crimson; *Corneosum*, deep crimson; *Charles Bagley*, cherry-red; *Charles Dickens*, dark red, spotted burned orange, one of the most striking red ones; *Carmine*, pale rose; *Carmine*, white, spotted yellow, dwarf and free-blooming; *Crown Prince*, carmine spotted greenish yellow; *Delicatissimum*, blush, edged pink, changing to white later; *Erectiflorum*, rose lilac with crisped edges, excellent habit and very free-flowering; *E. L. Ames*, white center, edged pink; *Giganteum*, bright rose, large clusters; *Grandiflorum*, clear rose; *Hannah*, rose carmine; *Henry W. Sargent*, crimson, large clusters; *H. H. Hunnewell*, rich crimson; *John Waterer*, dark crimson; *J. D. Godman*, carmine, distinctly spotted; *Kettledrum*, rich crimson; *King of Colors*, purple, spotted dark brown; *Lady Armstrong*, rose-red, paler in center, distinctly spotted; *Lady Gray Egerton*, delicate lilac, spotted greenish brown; *Mrs. C. S. Sargent*, similar to *Erectiflorum*, but pink; *Mrs. Mitner*, rich crimson; *Old Port*, plum-color; *Porphyrum crisum*, lilac-purple, spotted greenish; *Porphyrum grandiflorum*, purple, large clusters; *Roseum elegans*, rose lilac, dwarf; *Seaton*, deep maroon, large clusters; *Velvetwaxum*, blush, changing to white.

Greenhouse Culture.—The most successful way, especially with the taller-growing species, like *R. arboreum*, *Carmine*, *Mrs. Mitner*, *Porphyrum crisum*, *Porphyrum grandiflorum*, *Roseum elegans*, and other species, is to keep them out in a porous peaty soil provided with good drainage. If grown in pots a sandy compost of leaf-soil and sand to one part of fibrous loam can be used. A very dry soil will not suit them. The pots, which should never be too large, must be well drained and the plants freely watered during the summer, while during the winter water must be withheld to prevent freezing. The flowers of the hybrids will do well in a cool greenhouse, where the temperature is kept a few degrees above freezing point during the winter. The Japanese species and hybrids, however, on account of their continual growing and blooming, require a warmer greenhouse to be grown satisfactorily, or heavy clay prevails, beds must be specially prepared and filled with suitable soil. They should be at least 2 to 3 ft. deep, or deeper where the subsoil is not porous, and in this case the bottom should be filled in with broken stone 1-2 ft. high with gravel or broken stones for drainage. A mixture of leaf-mold or peat and sandy loam will make a suitable soil. The Rhododendrons must be watered carefully during the winter because if the subsoil is not very moist; it is most essential that the soil never become really dry. In the fall the ground should be covered with leaves or hay or other materials, including a mixture of peat, loam, and charcoal. During the winter, some gravel or pebbles should be placed in the base of the plants, which will help to keep them warm.

RHODODENDRON

The Javanese Rhododendrons are especially valuable for their continual blooming during the winter and the brilliant color of their flowers. A large number of beautiful hybrids have been raised; the following are a small selection of them: *Bakeriinum-florum*, with double white, yellow or pink fls. *C. J. 57, p. 265; G. C. II. 18:328; III. 13:799; Brilliant, brilliant scarlet; *Ceres*, tawny yellow. Gn. 41:845; *Dudum*, orange-scarlet; *Duchess of Connaught*, vermilion-red; *Duchess of Edinburgh*, scarlet with orange-crimson. F. 1874:115; *Eos*, scarlet-carmine. G. C. III. 19:327; *Exquisite*, large light fawn-yellow fls. Gn. 56:1232; *Favory*, satiny rose; *Jasminiflorum cardinalium*, deep carmine. Gn. 41:532; *Little Beauty*, fls. small, but bright carmine-scarlet. Gn. 56:1241; *Lord Wolseley*, bright orange-yellow, tinted with rose at the margins; *Maiden's Blush*, blush with yellowish eye. Gn. 46:294; *Joan Plumeria*, a warmer, grander hue and more brilliant, *Frederica*, yellow, faintly edged rose; *Princess Royal*, pink; *Rose Morn*, bright pink. Gn. 42:571; *Taylori*, bright pink with white tube. F. M. 1877:232; *Triumph*, crimson-scarlet.

Propagation.—All Rhododendrons are easily prop. by seeds, which are very small and are sown in spring in pots or boxes well drained and filled with sandy peat. Pots should be well watered previous to sowing. The seeds should be covered only a very little with fine sand or finely cut sphagnum, or merely pressed in and not covered at all. To prevent drying a glass plate may be placed over the pan or some moss spread over the surface; this, however, must be taken off as soon as the seeds begin to germinate. The seeds also germinate very readily if sown in fresh sphagnum, but in this case they must be pricked off as soon as they can be handled. In any case, it is of advantage to prick off the young seedlings as soon as possible, but if they are not sown too thickly they may remain in the seed-boxes until the following spring. The seedlings of hardy Rhododendrons should be placed in coolframes and gradually hardened off; those of greenhouse species remain under glass.

Rhododendrons are also sometimes increased under glass by cuttings of half-ripe wood taken with a heel.
and if gentle bottom heat can be given after callusing it will be of advantage. They root, however, but slowly, except those of the Javanese kinds, which are mostly propagated in this way, since they grow very readily from cuttings.

Layering is sometimes practiced, especially with the dwarf and small-leaved species, but the layers usually cannot be separated until the second year.

For the propagation of the numerous varieties and hybrids of hardy and half-hardy Rhododendrons, being most extensively employed, *Rhododendron* Cataractae or seedlings of any of its hardy hybrids may be used as stock; *R. maxima* is also probably as good. In English and Belgian nurseries *R. Ponticum*, which is inferior in hardness, is mostly employed as a stock, but this often proves fatal if the grafted plants are transferred to colder climates. *R. arboreum* may be used for strong-growing varieties intended for cultivation in the greenhouse or south. Vencer- or side-grafting is mostly practiced, and sometimes cleft- and saddle-grafting (see C.G. III. 24-252). The leaves should be removed only partly and the stock not headed back until the following year. The grafting is usually done late in summer or early in spring in the greenhouse on potted stock without using grafting wax, and the grafted plants kept close and shaded until the union has been completed. If large quantities are to be handled the plants are sometimes not potted, but taken with a sufficient ball of earth, packed close together and covered with moss. Covering with moss to keep the atmosphere moist is also of much advantage if the plants are potted. See Figs. 2105, 2106.

Distribution of Species. About 200 species are known, distributed through the colder and temperate regions of the northern hemisphere; in tropical Asia they occur in the mountains and extend as far south as New Guinea and Australia, the greatest segregation being in the Himalayas and E. Asia; several species closely allied to those of the Malay Archipelago are found in the Philippine Islands, but are not yet introduced; 7 species occur in N. America. The species, with few exceptions, are evergreen.

Genetic Description.—Lvs. lepido, sometimes lepidote and pilose, or quite glabrous or tomentose beneath; fls. pedicelled, in terminal umbel-like racemes, rarely lateral in 1- to few-fl. clusters; calyx 5-parted, often very small; corolla rotate-campanulate to funnel-shaped or sometimes tubular, with 5-10 lobed limb; stamens 5-20, usually 10; ovary glabrous, glandular, tomentose or lepidote, 5-10 loculed; capsule separating into 5 valves containing numerous seeds. The Rhododendrons possess but few economic properties. The hardy close-grained wood of the arborecent species is used for fuel; also for construction and for turnery work; the leaves of some species are sometimes used for wads, and those of *R. arboreum* are believed to be poisonous to cattle. The flowers of various species are sometimes made into a subacid jelly. Some authors unite Azalea with Rhododendron, but the two groups are very distinct horticulturally, however closely they may be allied botanically. Azaleas are chiefly deciduous plants (*A. ilicifolia* mostly evergreen), usually with 5 exserted stamens. Fig. 2105, *Azalea Siensis,* also known as *Rhododendron Siense,* shows the difference in looks between the two groups.

Hybrid Rhododendrons. Many hybrids have been raised and they are now more extensively cultivated than the original species. The first hybrid was probably the one raised from *R. Ponticum,* fertilized by a hardy Azalea, probably *A. nudiflora*; the temperature about 1880, in the nursery of Mr. Thompson, at Milcud, near London, and was first described and figured as *R. Ponticum,* var. deciduum (Andrews, Bot. Rep. 6: 379). Many hybrids of similar origin were afterwards raised. The first hybrid between true Rhododendrons was probably a cross between *R. Cataractae* and *R. Ponticum,* but it seems not to have attracted much attention. It was by hybridizing the product of this cross with the Himalayan *R. arboreum* introduced about 1820 that the first plant was raised which became the fore-runner of a countless number of hybrids. From the appearance of this cross obtained about 1826, at Highclere, in England, and therefore called *R. Altaclarensis,* the era of Rhododendron hybrids is to be dated. Figs. 2104 and 2106 are common hybrid forms. A second era in the history of the Rhododendron may be dated from the introduction of a large number of the beautiful Sikkim Rhododendrons about 1850 and of a few of the Javanese species shortly afterwards. A third era will perhaps be traced from the recent introduction of the Yunnan Rhododendrons. A. Reede.

Hardy Rhododendrons. Rhododendrons, in this article, mean the evergreen sorts, more particularly *R. maxima* and the hybrid varieties of *R. Cataractae,* in the main, however, the directions for the various operations apply to the Azalea group and to many other members of the heath family.

Propagation.—Rhododendrons are increased by seeds, layers and grafts, and occasionally by cuttings. Seeds should be sown under glass between January 1 and March 15, in soil one-half peat, one-half pure fine sand, with good drainage. The seeds are small and require no covering; the usual watering after sowing being quite sufficient. A thin layer of sphagnum, or in the surface of the seed-pan is good protection from the sun and keeps the soil evenly moist; it should be removed when germination begins. Seeds may also be sown on growing sphagnum, a thin layer being compacted spread above the seed soil and drainage, and an even surface being secured by clipping. Seed-pan or flats of convenient size are used and they should be plunged in sphagnum still further to insure even moisture of the house should be 45°-50° F. Seedlings are prone to damp-off and should be pricked-off into fresh soil as soon as they are big enough to handle; wooden pitters made from a barrel hoop, are handy for this work. They are slow growers and must be tended carefully. Keep under glass, well shaded until the weather is settled. Frames with lath screen make good growth under glass, make good growth. Winter in pits and plant out in frames in peaty soil when large enough. Never let them suffer from dryness, it has been suggested that the seed of *R. maxima* might be planted on living moss under high-branched trees in swamps where the water does not collect in winter. See Jackson Dawson, on the "Propagation of Trees and Shrubs from Seeds," Trans. Mass. Hort. Soc., 1885, part 1, p. 145.

Layers probably make the best plants, and in the best English nurseries layering is the common method.
RHODODENDRON

of propagation. With its layering in spring is preferable, but about it is practiced in both spring and autumn. It is a slow process, but desirable for the hardy hybrids of *R. Catawbiense*. Roots form on wood of almost any age; when removed the layers should be treated as rooted cuttings and carefully grown in well-prepared soil where water and shade are easily furnished. See Layering. See also, G.F. 5:63 (1863) for an interesting account of layering large plants by burying them to the top.

Grafting is the common method of propagation, and is employed almost universally in commercial nurseries. *R. Ponticum* is the usual stock, a tree grower and readily obtained from seeds. Attempts have been made to use *R. maximum* in American nurseries, because of the tenacious of *R. Ponticum*, but no great progress has been made. It is asserted that the rate of growth is somewhat slower than that of the hybrids; this seems hardly possible, and it is to be hoped that further experiments will be made. *R. Ponticum* should be established in pots in spring and grafted under glass in autumn and early winter, using the veneer-graft (see Graftage, p. 684, Vol. 11). Graft near the root as possible and plant the worked parts below the surface when planting in the nursery or permanently. With these precautions, and an extra covering of leaves until the plant is established on its own roots, the defect of ten- derness in this stock can be overcome. Nursery carefully the young grafted plants in frames until of sufficient size to be planted in the nursery rows, Figs. 2107 and 2108 illustrate two common methods of grafting Rhododendrons and other woody plants. The details of the unions are shown in Fig. 2107, and the completed work in Fig. 2108.

Statements are made that cuttings of half-ripened wood will strike, but it is not likely that this will ever prove a practical method of propagating *R. maximum* or the Catawbiense hybrids; it might be worth while to experiment with wood grown under glass, particularly with some of the smaller-leaved evergreen kinds.

Cultivation.—The point upon which the successful American growers of *Rhododendron* base their work is that the soil supply shall be sufficient. See H. H. Hunnewell, in G. F. 3:201 (1899). To effect this: 1 make the soil deep and fine, using materials like peat, leaf-mold, well-rotted manure, yellow loam, all of which are retentive of moisture; 2 plant in masses, at any rate while young, so that they may protect each other and prevent evaporation; 3 give the bed a northern exposure or a situation where the force of the midday sun is broken; 4 do not plant under or near trees like elm, oak or maple which make undue inroads on the natural water supply, nor so near buildings that the border is sheltered from rain or overstrained by cellar walls; 5 mulch with leaves summer and winter, protect from wind and sun with evergreen boughs in winter and in summer give heavy watering whenever the weather is excessively hot or dry.

Soils.—The bed should be prepared by excavating to the desired dimensions and at least three feet deep. The poor material should be discarded, but the good soil can be replaced, adding enough peat, etc. (see above) to make good that which was rejected; all should be thoroughly and carefully mixed. Peat, although excellent, is not necessary. Yellow loam or hazel loam, if not too sandy, is equally good and is improved by additions of humus. To nearly pure peat an admixture of sand is beneficial; the essential point is that all soils for these plants must be fine. The beds should be prepared in autumn and left to settle all winter, due allowance being made for shrinking. In spring level off to the grade of the adjacent land and do not leave "rounded up." A bed higher at the center than at the sides perhaps makes a better display of the plants, but it is more likely to dry up and does not catch all the water possible from occasional showers. It is generally conceded that lime soils and manures containing lime, e.g., wood ashes and bone meal, are injurious to Rhododendrons; in limestone regions it is undoubtedly advisable to substitute, for the natural soil, others which are free from this objectionable element.

Planting.—Plant in spring when the weather is settled and the March winds have passed. If the ball of roots is dry, soak well before setting. Plant closely, so that the tops are only 6–12 in. apart and pay particular attention to facing them, i.e., see that the best side is facing the most important point of view and that all are faced alike. Grafted plants should, if possible, have the worked portion below the surface. Do not plant in autumn. Plants grown on the premises may be transplanted in favorable weather in summer if great care is taken to prevent the roots suffering from dryness. In planning the original border it is well to leave room for extension; when planted, as described above, the beds can be enlarged at intervals of four or five years, or new beds made from the old stock. Place the beds so that the glare of the midday sun is screened both summer and winter, and avoid situations where there is any interference, owing to trees or buildings, with a naturally good condition of the soil in respect to moisture. If permanent protection is desired, use conifers, particularly the hemlock, in preference to deciduous trees. Good positions for beds may be found along the edges of ponds and streams, and in reclaimed meadows, with their cool moist soil, but keep aloof from any ground where the water collects in summer or winter. Beds, or even single plants, if sizable, may be introduced into open spaces in woodlands if the precautions noted above are observed and plenty of air and light are obtainable. It is somewhat difficult to combine Rhodo-

2107. Grafting of Rhododendron. Saddle-graft at A; veneer-graft at B.
RHODODENDRON

Rhododendrons and many deciduous shrubs, among which are the Azaleas, their near relatives. A background of dark green conifers seems most appropriate. Mountain Laursels, Pieris floribunda, Leucothoe Catalabot and Drupae Cucorum are proper companions, but at times these seem better apart. Our native lies, L. supertexta and L. Canadensis, are good associates and thrive under the same conditions.

In hot, dry weather water should be given, not daily in dribslets, as leaves are sprinkled, but in quantity, enough at one time to soak the border to the depth of the soil, but at comparatively infrequent intervals, once a week or so. The bed should also be mulched with leaves, or other material, to prevent evaporation; grass clippings are serviceable, but should not be used in large quantities at any one time or else they will heat. Leaves make good winter protection, which should be given just before cold weather,—here, in eastern Massachusetts, between Thanksgiving and Christmas. Let the bed be covered to the depth of 10–12 in., well worked in beneath the foliage but not over it. In spring dig as much as possible of this material into the ground, reserving a part for the summer mulch. Shelter the tops with evergreen boughs, the boughs driven into the earth a foot or more deep; in very windy positions a temporary board fence is useful. Neither boughs nor fence should be removed until all danger from high winds has passed.

Rhododendrons require no pruning unless injured or when ill-grown plants must be made shapely; they break easily when cut back, even if the wood be aged. As yet no insect pest or fungous disease of importance has appeared.

Varieties.—The following Hardy Rhododendrons, hybrids of K. Catawbiense, were sent to the Arnold Arboretum in 1881 by Mr. Anthony Waterer, Knapp Hill Nursery, Woking, Surrey, England. Their hardiness has been proved by a ten years' test. In flower, foliage and growth they leave nothing to be desired; it is impossible to give them too great praise. For additional lists, see Garden and Forest as quoted above and in other articles in the same journal. The brief descriptions are taken from Mr. Waterer's catalogue, from which further details can be obtained, almost all these varieties originated in his establishment.

108. Saddle-graft at A; veneer-graft at B.
For comparison with Fig. 297.

Album elegans, blush changing to white, one of the best; Album grandiflorum, blush, fine trash; Alex. Doug. bright rose; Atrosanguineum, intense blood-red; Bicolor; Bicolor, purple; Caractacus, purple-crimson; Catawbiense album.

white; Chas. Bagley, cherry-red; Chas. Diekens, dark scarlet; C. S. Sargent, bright scarlet; Chein, fine trash; Corinna, white; Denticellum, white, pink edge; E. S. Rand, scarlet; Everestianum, rosy blue, fringed, one of the best; F. J. Goodhue, crimson, fine trash; H. H. Hunnewell, dark crimson, fine trash; H. W. Sargent, crimson, white; James Rateman, rosy scarlet; Jel. Macfie, rosy scarlet; Kettle-drum, purplish crimson; King of the Alps, dark crimson; Lady Armstrong, pale rose, beautiful; Lady Grev. Eptor, silvery blush—plumed trash, extra; Marion; M. S. Sargent, scarlet, fine; Maximilian, blood-red, late; M. T. Masters, very crimson; Melton, rich purple; Miss Mary Ames, fine habit, crimson; Mrs. A. Hunnewell, apricot pink; Mrs. H. Ingersoll, rosy blue; Mrs. Miller, crimson, dark; Mrs. Purpureum elegans; Purpureum grandiflorum; Ralph Sander, purple-crimson; Roseum elegans; E. S. Field, scarlet; Seton, dark maroon, extra.

RHODODENDRONS NEAR BOSTON.—In the vicinity of Boston there are many notable instances of the successful use of Rhododendrons in greater or less quantity. The estate of the late Francis B. Hayes, of Lexington, Mass., and that of H. H. Hunnewell, at Wellesley, Mass., are perhaps as notable examples as any, although other examples could be cited by the score of fine estates in which plantings of Rhododendrons have been prominent features. The success that has attended these plantings has been brought about very largely through most expensive experiment whereby a great number of named varieties have been originally imported or the basis of experiment with a view to proving what the hardy kinds might be. The hybrids of Rhododendron Catawbiense and R. Ponticum are the principal varieties that have been planted, and extensive trials with their consequent numerous failures have established the fact that the following eighteen varieties can well be stated to be the hardy varieties for the climatic conditions peculiar to this vicinity: Album elegans, Album grandiflorum, Atrosanguineum, Caractacus, Charles Bagley, Charles Diekens, Denticellum, Everestianum, Giganteum, Hambell, H. H. Hunnewell, James Rateman, Lady Armstrong, Lee's Purple, Old Port, Purpureum, Purpureum grandiflorum, Roseum elegans.

The list noted above constitutes the iron-clad varieties for the vicinity of Boston. The expression "iron-clad" does not, however, indicate that these varieties can be promiscuously planted without proper attention to their requirements. That Rhododendrons do succeed under conditions of comparatively poor soil and exposure is not an indication that they are happy under such conditions. Rhododendrons must have the proper conditions of soil, exposure and moisture in order to give the most satisfactory returns in growth and flower. Soil conditions do not necessarily involve an extended outlay in preparation, as those provided the original ground has a good, ordinary composition such as would maintain common garden products to good advantage, but it is desirable to add 25 per cent of well-rotted leaf-mould, thus providing that peculiar humus that the Rhododendron seems best to thrive in. On the other hand, care must be taken that this percentage is not largely increased, as frequent additions when the soil has been prepared with too large a percentage of leaf-mold, with the result that where the beds have once dried out the texture of the soil becomes like that of a very dry broom. In such the soil is impossible to wet it down artificially in a satisfactory manner.

The exposure need not necessarily be confined to shel-
tered locations, provided soil conditions are sufficiently favorable. Fertilizers can be applied to Rhododendrons to increase the after-growth, although it is not desirable that they be applied directly to the roots. Stable manure should preferably be used. If not, then a balanced fertilizer can be used around the base of the plant. It is important to avoid allowing water to stand on the ground around the plants, as this can lead to root rot.

Foliation and root growth are greatly improved when a mulch is applied. Mulches such as peat moss, leaf mold, or bark are effective. The mulch should be applied to a depth of 4-6 inches and should be kept in place throughout the winter months. This practice helps to retain moisture in the soil and also protects the roots from frost damage.

Experiments have shown that mulches are most effective when applied in the fall, just before the ground freezes. This allows the mulch to settle and become well established, providing a protective layer for the roots during the winter months.

Mulches help to improve soil structure, increase soil moisture-holding capacity, and reduce soil erosion. They also help to suppress weed growth and improve the soil's overall health.

Mulches can be applied in a variety of forms, including straw, hay, tree bark, and shredded wood. It is important to choose a mulch that is suitable for the specific conditions of the garden, such as soil type, climate, and plant types.

In conclusion, mulching is an effective method for improving soil conditions and promoting healthy plant growth. It is a simple and cost-effective practice that can be easily incorporated into garden management plans. By applying mulch regularly, gardeners can expect to see improved plant growth and reduced maintenance requirements.

J. WOODWARD MANNING.
RHODODENDRON

AA. Foliage leathery or glandular, rarely more than 3 in. long; ovary leathery. Lepidothallum.

B. Corolla with cylindrical tube, or longer than lobes. C. Long-stalked, with ovary leathery, c. 11. jasminiflorum

BB. Corolla campanulate or funnel-form; lobes as long or twice as long as tube.
C. Les. persistent; corolla lepidote outside.
D. Style hardly twice as long as ovary, shorter than stamens: lvs. often slightly crenate.
E. The lvs. without hairs. 12. ferrugineum
EE. The lvs. ciliate. ... 13. hirsutum
DD. Style at least three times as long as ovary.
E. Fls. pink or white. ... 14. punctatum
EE. Fls. pale yellow. ... 17. Keiskei

1. Californicum, Hook. Shrub, 8 ft. high, sometimes to 20 ft., glabrous; lvs. oblong, shortly acuminate, pale green beneath, 3-6 in. long, sometimes crowded beneath; the fls.: clusters many-fl.; calyx minute; corolla broadly campanulate, with oval crisped lobes, rose purplish or pink, paler towards the center, spotted yellow within, about 2 in. across, rich carmine in bud; stamens 10, with purple anthers: ovary with appressed silky hairs. May, June. Calif. to Ore. B.M. 6365. — Var. Washingtoniannum, Zabel (R. Washingtonianum and probably R. Californicum, var. maximum, Hort.), is not much different, but has yellow anthers; it has proved as hardy as R. Catawbiense.

3. maximum, Linnaeus. GREAT LAUREL. Fig. 2111. Shrub or small tree, attaining 35 ft.; lvs. mostly acute at base, narrow-oblong or lanceolate-oblong, acute or shortly acuminate, whitish beneath, 4-10 in. long: clusters many-fl.; pedicels viscid: calyx-lobes oval, as long as ovary; corolla campanulate, deeply 5-lobed with ovate lobes, usually rose-colored, spotted greenish within, about 1½ in. across; ovary glaucous. June, July. N. S. and Out. to Ga. B.M. 551. Em. 2:455. Mn. 1:13 and 3. p. 22. D. 16. —This is one of the hardiest species, being hardy as far north as Quebec and Ontario. Three var. have been distinguished: var. Pursh (R. Purshii, Don), with white fls.; var. purpureum, Pursh (R. purpureum, Don), with purple fls.; and var. roseum, Pursh, with pink flowers. This species and the former are now often extensively used in park-planting and taken by the car-load from the woods. If properly handled and taken from a sandy soil with a sufficient ball of earth around the roots, they are usually successfully transplanted.

4. Pratense, Linnaeus. Shrub, 10 ft. high; lvs. elliptic to oblong, acute, pale green beneath, 3-5 in. long; clusters many-fl.; pedicels longer than fls.: calyx-lobes as long as ovary, the lower ones half as long; corolla campanulate with oval lobes, purple, spotted brownish within, about 2 in. long; clusters 7-10-fl.; pedicels short; calyx minute; corolla funnel-form-campanulate, with emarginate rounded lobes, pink to yellowish white, spotted greenish within, 1½ in. across. June, July. Canescens. B.M. 1145. —A dwarf, quite hardy species; late-blooming. Var. Davidium, Regel. Fls. straw-col.

2109. Flower-bud of Rhododendron Catawbiense (X 3). These buds are full-formed in the fall. Unless these large terminal buds are produced, the bush will not bloom the following spring.

R. ferrugineum, Don.
rhododendron

Orch, spotted greenish within. Gt. 16:560. Var. straminum, Hook., is similar, but with fulvous spots. B.M. 3422. Var. roseo-album, Briti, with blush lvs., changing to rose, var. variegatum, with deep pink lvs., are said to bloom very early and may be hybrids. K.J. 1868:311.

8. brachycarpum, Don. Shrub, 4 ft. high, sometimes 10 ft. lvs. oval to oblong, rounded at both ends, narrowly ovate to oblong, rounded at both ends, narrowly ovate at the apex, bright green above, whitish or ferrugineous-tomentose beneath. 2½-6 in. long; fls. in dense clusters, short-pediciled; calyx-loses short; corolla campanulate, white, spotted greenish within, ½-2 in. across. June-July. Japan. G.F. 1:250.—Has proved quite hardy, but is yet rare in cultivation.

9. Metternichii, Sieb. & Zucc. Shrub, 4 ft. high; lvs. oblong or oblong-lanceolate, narrowed at both ends, acute or obtuse, ferrugineous-tomentose beneath, 3-6 in. long; clusters 8-15-fl.; calyx minute; corolla campanulate, 5-7-lobed, rose-colored, spotted purple within, 1½-2 in. across; stamens 10-11. May-June. Japan. S.Z. 1:9.—Like the preceding hardy, but rare in cultivation.

10. campanulatum, Don. Shrub, attaining 16 ft.; lvs. elliptio to elliptic-oblong, usually rounded at both ends, ferrugineous-tomentose beneath, 3-6 in. long; clusters many-fl.; pedicels short; calyx minute; corolla almost salver-shaped, with the tube 2 in. long and spreading limb, fragrant, white, blushed outside below the limb, the anthers forming a red eye; style shorter than stamens. Distributed. Oregon, Green. M.B. 4392. L.H. 6:203.—A distinct species, very unlike other Rhododendrons; it requires a warm greenhouse.

12. ferrugineum, Lindl. Shrub, 2 ft. high, glabrous; lvs. elliptio to oblong-lanceolate, acute, densely lepidote beneath, 1-2 in. long; clusters many-fl.; pedicels short: calyx minute; corolla almost salver-shaped, with the tube 2 in. long and spreading limb, fragrant, white, blushed outside below the limb, the anthers forming a red eye; style shorter than stamens. Winter. Java, Malacca. M.B. 1834. L.H. 6:203.—A distinct species, very unlike other Rhododendrons; it requires a warm greenhouse.

13. Hirsutum, Lindl. Shrub, 3 ft. high, with hirsute branches: lvs. oval to oblong, ciliate, light green and glandular-lepidote beneath, ¼-1 in. long; clusters many-fl.; calyx-loses as long as ovary; corolla similar to that of the preceding, lobes shorter. June, July Alps. B.M. 5:470. B.M. 1853.—Much like the preceding, but usually thrives better in cultivation and does not dislike lime soil.

14. punctatum, Andr. (R. minus, Michx.). Shrub, 6 ft. high, with slender spreading or recurving branches; lvs. oval- or ovate-lanceolate, acute at both ends, glabrous above, glandular-lepidote beneath, 2½-5 in. long; clusters rather few-fl.; calyx short; corolla broadly funnelform, with obovate rounded and slightly undulate lobes, usually pale rose and spotted greenish within, about 1 in. across. June-Aug. N. C. to Ga. B.M. 2205. B.R. 1:37. Hardy.—Var. album, Hort. Fls. white.

2110. Rhododendron catawbiense (L.) D.C.

17. Kolenci, Miq. Low, sometimes procumbent shrub; lvs. elliptio to lanceolate, acute, dull green above, lepidote beneath, ½-3 in. long; clusters 2-5-fl.; calyx minute; corolla broadly funnelform, divided to the middle into rounded lobes, pale yellow, ½ in. across; stamens much exserted. May-June. Japan.—Hardiness not yet determined.

18. mesonutatum, Turez. (R. Dahuricum, var. mesureonutatum, Maxim.). Upright shrub attaining 6 ft.; lvs. elliptio to oblong,acute at both ends, slightly ciliate, sparingly lepidote on both sides, bright green above, pale beneath; fls. 3-6, short-pedicilled; corolla funneliform, almost without tube, divided to the middle into oval rounded lobes, rose-colored, 1½ in. across. March-April. Dahuria, N. China. G.F. 9:65.—Hardy shrub valuable for its very early fls. (it is the earliest of all hardy Rhododendrons), and for its handsome scarlet fall coloring.

Great numbers of names of Rhododendrons are to be found in current literature, but the plants may be unknown in the American trade. The following list will explain most of these names. Some of them belong to Azalea, although they may not be accounted for under that genus in this work. R. Afghameum, not Aitch. & Hemsl. = R. Coaleffianum. = R. Affolterianum, Hook. = Azalea afghanica = R. afghanica, Blume. Small shrub: lvs. oblong-lanceolate, ferrugineous-lepidote beneath, 3-4 in. long; fls. rather small, campanulate, yellowish white. Java, B.M. 4672. Teodor.—R. Afholteriense, Lindl. Hybrid of R. arboreum with R. Catawbiense X Ponticum. Fls.
Rhododendron

1524 RHODODENDRON

atrophy of 2 carpels united at base; capsule several-seeded.

Champion. Hook. A tender shrub: **i**vs. shining, coriaceous, usually ovate, 4½-5 in. long; pedicels 1½-2 in. long, more or less bright pink or white, each surrounded by several rows of imbricate bracts; petals 15-20 to each fl.-head. **B.M.** 4599.- **Cult. in S. Calif.**

F. W. BACkLEY.
berries. The color of the berries is dark purple and the flesh is sweet and aromatic. The fruits are produced in quantity and ripen for weeks, beginning in late summer. They are eaten raw or made into jam. The Downy Myrtle is recommended as a fruit-plant for Florida by the American Pomological Society and it is being tried in S. Calif. In the South it is generally known as *Myrtus tomentosa*. The distinction between Rhodomyrtus and Myrtus rests in the number of locules of the ovary. *Myrtus* is normally 2-3-loculed, with many ovules in each; *Rhodomyrtus* has 1-3 locules with spurious partitions, making the ovary appear 2-6-loculed, or it is divided into numerous 1-ovuled, superposed locules. *Myrtus* have feather-reined foliage; the *Downy Myrtle* has 3-ovuled lvs. The Downy Myrtle is a native of India, Malaya and China; the four other species of *Rhodomyrtus* are Australian and not in cult. Other generic characters: lvs. opposite, 5- or 3-nerved; fls. axillary; calyx-lobes persistent; petals 5; rarely 4; stamens numerous, free; berry globose or ovoid, with few or many seeds.

tomentosa, Wight (*Myrtus tomentosa*, Ait.). *Downy Myrtle*. Branches downy above; lvs. elliptic or obovate, short-stalked, hairy below; peduncles shorter than the lvs., 1-3-fl.; berry 3-celled; seeds compressed, forming 2 rows in each cell. B.M. 230.

E. N. REASONER and W. M.

RHODÔRA. See Azalea Canadensis.

RHODÔRÎZA (Greek, rose root; the root and wood furnish the fragrant powder known as bois de rose). *Convulvulaceae*. *R. floridana* is a tender subshrub, 6-9 ft. high, which bears white fls, something like a morning glory. The blossoms are about an inch across and last only a day, but a succession is maintained (in southern France) from early June till August. A striking feature of the plant is its terminal, paned foliaceous. These panicles are often a foot high, 10 inches wide at the base and contain at one time as many as 20 full-blown flowers and buds. It is a native of Florida, and has been introduced into southern California in 1901.

Rhodertihia is a group of about 7 species, all from the Canary Islands, which Bentham and Hooker regard as a section of the genus *Convulvulus*. The Convulvulaceae differ from typical *Convulvus* in having the capsule by abortion usually 1-seeded, and rupturing irregularly at the base instead of dehiscing by 4 valves. They are prostrate or climbing herbs or creeping shrubs, sometimes spinescent; lvs. entire, dentate, undulate or lobed; corolla broadly or narrowly bell-shaped; limb 5-angled or 5-lobed; ovary 2-loculed, 4-ovulate.

florida, Webb. (Perhaps more properly *Convulvulus floridana*, Linn.). Erect subshrub; lvs. persistent, alternate, lanceolate, stalked, entire; fls. long-peduncled, funnel-shaped, white, sometimes pinkish white. R.H. 1892:156.

W. M.

RHÔDÔTHAMNUS (Greek, rhodon, rose, and thamnos, shrub; small shrub, with rose-colored flowers). *Ericaceae*. Dwarf evergreen shrub, with alternate, small, entire lvs. and rather large pink fls., usually solitary at the ends of the branchlets. Charming little alpine shrub, hardy in the North, but somewhat difficult to cultivate. It thrives best in peaty, porous soil of constant, moderate moisture in a partly shaded situation, and is best suited for rockeries. Prop. by seeds or layers, also by cuttings of ripened wood under glass. Monotypic genus, allied to *Kalmia*, but differs in not having in pouches: lvs. alternate; sepals 5, half as long as corolla; corolla rotate, deeply 5-lobed; stamens 10, slightly longer than corolla; fr. 5-celled, many-seeded dehiscent capsule.

Chamaecrista, Reichb. (*Rhododendron Chamaecrista*, Linn. *Adenandra Chamæcrista*, O. Kuntze). Densely branched shrub, to 1 ft.; lvs. cuneate-oblong, acute, sessile or ciliate, 1/2-1/2 in; fls. on slender, glandular-bistate pedicels, solitary, rarely 2 or 3 at the end of the branchlets, light purplish pink, to 1 in. across. May, Alps of Eastern Eu. B.M. 488. L.B.C.

ALFRED REHDER.

RHÔDOTYPOS (Greek, rhodon, rose, and typos, type; alluding to the resemblance of the flowers to those of a single rose). *Rosaceae*. Ornamental deciduous shrub, with opposite serrate lvs. and large white fls. solitary at the end of branchlets, followed by black and shining berry-like drupes persistent throughout the winter. A handsome and distinct shrub, barely as far north as Mass., with bright green foliage, conspicuous by its white fls. in spring and by its shining black fr. in autumn and winter. It thrives well in any good soil. Prop. by seeds and by Greenwood cuttings under glass early in summer, also by hardwood cuttings. Monotypic genus, allied to *Kerria*: lvs. stipulate, opposite; fls. solitary, short-pedicelled; sepals large, half as long as petals, outside with 4 small alternate bracts; petals 4, orbicular; stamens numerous; carpels usually 4, developing into black, dry, one-seeded drupes, surrounded by the large persistent calyx.

ALFRED REHDER.

RHÔE (name unexplained). *Convulvulaceae*. One species, from Mexico and the West Indies. *R. discolor*, Hance, known also as *Tradescentia discolor*, *T. spatulacea*, Sprent, and *Kalphcmum bicurto*, Moench. B.M. 1192. From *Tradescentia* the genus is distinguished by having 1 ovule (rather than 2) in each locule.
of the ovary. *R. discolor* is a short-stemmed erect-growing long-leaved plant, not unlike a broad-leaved small Pandanas in habit. F1s. white, small and many in a boat-shaped spathe-like structure arising from the axil of the leaves; in *R. arborescens* is scarlet, spiny, 3, free, more or less petal-like: petals 3, soon withering; stamens 6. Var. *vittata*. Hook. (Tradescantia discolor, var. *vittata*. Miq. *T. discolor*, var. *vittata*. Hook. var. *vittata*. Hort.) is the common form in cult. The Ivs. are 8-12 in. long, dark purple beneath and longitudinally striped above with pale yellow. A striking plant for the greenhouse, or for the open in the South. B.M. 5079. F.S. 11:1109-70. Cult. as for warmhouse Tradescantia.

RHUBARB. See *Rheum.*

RHOPALOSTYLOS (name refers to the club-shaped spadix). *Palmarinon.* Two species of pinnae pinnate, both of which are favorite conservatory plants and nearly always sold as species of Areca or Koutia. However, Rhopalostylos belongs to the large group in which the ovule is borne on the side and is more or less pendulous, while in Areca and Koutia the ovule is at the base and erect. From the 5 cultivated genera listed under *Hedycepe* (which see) Rhopalostylos differs as follows: *R. arborescens* is a spreading shrub with to leaflets, not imbricated: stamens 6-12: pistillate fs. with short petals, valvate at the apex. The two species are spineless pinnate with medium sized canes: Ivs. terminal: segments ovate; segments small, narrowly sword-shaped, acuminate, the margins not thickened, recurved at the base, the midveins prominent, with 4-6 nerves on each side; rachis concave above, scarcely petiole very short: sheaths elongated: spathes short, spreading, with a very short, thick peduncle, and fringed, rather thick, densely-fld. branches: spathes 2, symmetrically placed, the lower 2-winged: bracts adnate to the flower-bearing areas, subulate at the apex: bractlets scaly; fs. medium: fr. small or medium, ellipsoidal, smooth.

RHUBARB, or Pie-plant (see Rheum), is commonly grown in division of the roots, and this is the only method by which a particular type can be increased. Propagation from seed, however, often proves satisfactory, and always interesting, as the seedlings vary greatly. The seed germinates easily, and if started early the plants become fairly large and strong the same season. Although the crop is so easily produced, and so certain and regular after a plantation has once been started, it is one of the most profitable of market-garden crops, even in small places and neighborhoods. A large number of home gardeners are still without it on their premises, although everybody seems to want Rhubarb pie as soon as spring opens, this plant giving the first available material in the year for pies. Rhubarb delights in extremely rich soil. Very large and abundant crops and which is handsome and neatly rounded. The soil that is really “filled with manure to overflowing.” The seedlings, however, may be started in any good clean garden soil. Some are set in early spring, in rows a foot apart and not over an inch deep. They promptly to stand a few inches apart in the rows, and give the same thorough cultivation allowed to other garden crops. The following spring take the seedlings up, and set them in the well-prepared permanent patch, not less than four feet apart each way, and cultivate frequently during the entire season. Ten to twenty plants will supply the demands of one householder, possibly with some to spare for the neighbors. In spring of the next year the stalks may be pulled freely. When soil fertility forces a rampant growth, the stalks will be large and brittle enough without the aid of boxes or legs (bottomless) placed over the plants. The beds should be renewed every 4 or 5 years at the least, as the clumps of roots grow so large, and have so many eyes, that the stalks soon become more numerous than desirable, and run down in size. Take up the entire roots and cut them to pieces, leaving only one strong eye to the piece, and plant the pieces in a newly-prepared bed (or even in the old bed if properly enriched and prepared) four feet apart each way as before. Seed-stalks are produced freely during the entire season. These should be promptly pulled up, unless seed is wanted. A few may be left to mature the seed crop.

Rhubarb can be forced in coldframes, under the greenhouse benches, or even in a small house or cellar. The plants need warmth (even that of a lantern set among them will do), but require no light. Take up good strong roots (2-year seedlings being best) in autumn; leave them out until after exposure to freezing, then crowd them together in boxes with a little soil between and under them, and set them under the greenhouse benches, or wherever wanted, or plant them out on the cellar bottom.

Rhubarb is a hardy plant and will withstand considerable neglect, but, like most cultivated vegetables, it responds readily to proper care and good treatment. The large dusty stems of the rhubarb plants produced in part by the great store of plant-food held in reserve by the many big roots of the vegetable. Everything should be done to increase this supply of reserve food. Tillage and manuring, therefore, are the fundamental. In the selection of a site the writer prefers a southern exposure, with sufficient slope to the south to give good drainage. Plow the ground 6-8 in. deep, draw furrows 5 ft. apart, set the plants 3 ft. apart, with the buds one inch below the level of the ground. If the soil lacks in fertility mix compost with the dirt that is placed about the roots; never put fresh manure next to the roots. As soon after planting as possible start the cultivator, and give a thorough stirring at intervals of 6-8 days up to the middle or last of August. After the ground is frozen cover the rows 3-4 in. deep with manure that is as free as possible from weed and grass seed. As early in the spring as the ground can be worked to advantage, start the cultivator and work the manure into the soil. Each alternate season the top surface of the soil should have a good dressing of manure. The third or fourth year after planting the hills should be divided. Remove the earth from the cut of the stalks, and with a sharp spade cut through the crown, leaving 3-4 buds in the hill undisturbed. This work should be done in the fall or early in the spring.

As a forced vegetable, Rhubarb is growing in popularity. The plant has no choice as to whether it is grown in light or darkness. Blanching improves the flavor and reduces the acid, lessening the quantity of sugar needed in cooking. Divided roots, with 3-5 buds, which have been grown in highly fertilized, well-tilled soil will give the best results. Plow out the plants any time after killing frosts, divide the roots and place them in single layers on top of the ground, covering with earth sufficiently to protect the roots from the air. Leave them in this condition until the roots have been slightly frozen, then take them, the roots either in a root cellar, a frame heated by pipes, a hotbed, mushroom house or under benches in a greenhouse. Pack the roots close together, filling in and packing closely, and the crown should be covered 4-6 in. Keep the soil moist and maintain a genial temperature of 55-60°. Avoid over-watering. The roots may be packed in a family cellar or unheated root cellar, but to have an effect on other things in the cellar, there is no odor from the plants. Judgment must be exercised in pulling the stems. The work should always be done by an experienced person.

The grower has grown seedlings for ten successive years. Fully 75 per cent of all the seedlings showed a tendency to degenerate, and 25 per cent were almost as coarse as burdock in appearance. Half of one seed-
lings are likely to be of weak vitality. Not more than 15 per cent can be counted on to be fairly true to the varietal type. In the writer’s experiments 2 ounces of seed were sown each season. The seed was selected from ideal plants that had been propagated by division. As to varieties, the writer has had best results with Limmas and Victoria.

FORCING OF RHUBARB.—The forcing of Rhubarb has now become quite a profitable industry in the vicinity of many of the large cities. It may be forced either in the field where the roots are growing or lifted and placed in hotbeds, under greenhouse benches or in a dark cellar. See Fig. 2113. Much the larger part of the Rhubarb which is offered for sale during the winter months is grown in rough forcing houses which are built over the plants in the field, but not, however, completely. These houses are simply and cheaply constructed, the sides usually being about five feet high, of rough boards, which are covered with cheap building paper. The roof is formed of hotbed sash. These buildings are usually from 24 to 36 feet in width and of any desired length. Artificial heat is generally provided, steam being the most popular, although the sun is at times employed to give the required heat. The soil moisture is usually sufficient, so that no water is given. Plants for forcing should be set not more than two by three feet apart and should be fertilized annually with liberal dressings of compost that made from cow and hog manure being considered the best. The sash should be placed upon the house during the first part of February, and may be removed for use on hotbeds and coldframes in from four to six weeks. The stalks are usually pulled twice, the returns being from $1.25 to $2 per sash, depending upon the season at which it is placed upon the market. The cost of production is often greatly reduced by growing a crop of spinach or dandelions between the rows, the price obtained for these fillas usually being sufficient to pay for all cost of labor and maintenance.

2113. Stalks of forced Rhubarb. The leaf-blades do not develop.

2114. House for the forcing of Rhubarb, covered with movable sash.

Roots for forcing under greenhouse benches and in hotbeds should be from beds at least three or four years old, as the larger and more vigorous the roots the better the results. Satisfactory results cannot be obtained from inferior roots. The roots should be dug early in the fall before the ground freezes and allowed to remain exposed to the weather until they are frozen solid, when it is best either to remove them to a shed or cover them with litter in the field to prevent alternate freezing and thawing. Care should be taken to leave as much dirt upon the roots as possible when they are dug. As soon as the roots are placed in position under the benches, all spaces between them should be filled with soil to prevent evaporation. When the plants start into growth they should be given an abundance of moisture. When forced in this manner light is not necessary; therefore any convenient place may be used, provided the proper amount of heat and moisture is supplied. If grown in the dark, the development of leaf is much less than in the light, while the color, instead of being green, is usually a dark cherry-red, which gives to the product a very attractive appearance. The temperature may range from 45° to 55°, although the closer the temperature the larger the yield and higher the quality of the product. The time required for bringing a crop to maturity under the benches is about the same as that required for forcing in the field.

The method which is to be followed in the growing of this crop for the winter market will depend largely upon local conditions. When grown by any method which requires the lifting of the roots, it must be remembered that they are worthless after having produced a crop; therefore this method cannot be practiced with economy except where land and labor are cheap, so that the roots may be produced at a slight expense, or where roots may be secured which would otherwise be destroyed. By the method which is given above, the roots to be forced should be well developed and allowed to freeze before forcing is attempted, otherwise failure to secure a profitable crop is certain. G. E. Adams.

RHUS [ancient Greek name]. Anacardiaceae. Sumach. Trees or shrubs with alternate, usually odd-pinnate leaves, and no stipules: fls. in axillary or terminal panicles, small, whitish, greenish or brownish; calyx 5-13 parted; petals 5 or sometimes 4 to 6; stamens 4-10: fr. a small dry drupe or berry, usually 1-seeded. Plants with resinos or milky juice, wood often yellow; bark and foliage abounding in tannin, and for this reason used in dressing leather.

All the species are beautiful and have been apparently much neglected by gardeners. Any one who has observed our native Sumaches covering rocky billies or barren railway banks with their rich fern-like verdure during summer or when autumn has given them colors of fire, should appreciate their value as subjects for ornamental planting. Some species, too, retain their crimson fruit throughout the year, and help to make bright spots amid the snows of our northern winters. Some of the stronger-growing species answer very well in sub-tropical planting and may be cut to the ground every year to encourage the strong young shoots which give the most ample foliage. Some are admirable as single specimens, having a picturesque character that is quite refreshing. When grown as standards, however, they are likely to be short-lived, and so the succession must be provided for. The heaviest varieties of two of our native species seem to give more leafage than the types and are very useful in mass-planting. All the species are easily propagated by seed, layers, root-cuttings and some of them by top-cuttings. The tendency of them to spread by suckerings is a disadvantage where they are used in fine lawns.

Of over one hundred known species only about sixteen have been in cultivation, and these all species of temperate regions; none of the tropical
ones having appeared in the trade, so far as the writer knows.

In the following enumeration, two species of Cotinus (Nos. 3 and 4) are included.

INDEX.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rhus glabra</td>
</tr>
<tr>
<td>2</td>
<td>Rhus ovata</td>
</tr>
<tr>
<td>3</td>
<td>Rhus cotinus</td>
</tr>
<tr>
<td>4</td>
<td>Rhus cotinusoides</td>
</tr>
<tr>
<td>5</td>
<td>Rhus diversiloba</td>
</tr>
<tr>
<td>6</td>
<td>Rhus toxicoedendorum</td>
</tr>
</tbody>
</table>

A. Foliage simple.

1. integrifolia, Benth. & Hook. Shrub, 2-8 ft. high; lvs. ovate, entire, or occasionally long-petioled, with 3 lfts.; panicles and new growths puberulent; fls. white or rose-colored; fr. very large. California. S.S. 3:109.

B. Foliage compound.

1. Cotinus, Linn. Smoke Bush. Venise Sumach. A bush 10-12 ft. high, with simple obovate lvs. and brown

- An evergreen species.

2. ovata, Watson. Another Californian species resembling the last, but with larger and smoother leaves.

3. Cotinus, Linn. Smoke Bush. Venise Sumach. A bush 10-12 ft. high, with simple obovate lvs. and brown

4. cotinusoides, Nutt. A small tree, 20-40 ft. high; lvs. undivided, oval or obovate, smooth, thin; fls. greenish yellow, in large panicles; pedicels becoming plumose as they develop. Flowers in spring, and the foliage assumes most brilliant autumn tints. Mississippi Valley. S.S. 3:38-9. Known also as Cotinus americanus, Nutt. Sometimes called "Chittenwood."

5. Canadensis, Marsh. (R. arundatica, Ait.). Spreading shrub, 3-8 ft. high, with 3-foliate, crenate, pubescent, petiolate, aromatic lvs.; fls. yellow, small, in clusters or short spikes, either axillary or sometimes terminal; fr. globular, coral-red, sparsely hairy, and comparatively large. Flowers in spring before the lvs. appear. Rocky woods, eastern N. Amer. Var. trilobata has the lfts. deeply cut or 3-lobed. This is one of our best cover plants or under-shrubs and spreads naturally by layers. Will flourish in any soil and is especially adapted to dry, rocky banks.

6. Toxicoedendron, Linn. Poison Oak. Poison Ivy. A scalding or climbing plant; lvs. smooth or often pubescent on veins, ovate, sinuate, or lobed, petiolate; panicles short-stalked; fr. ribbed when dry. June, July, N. Amer. V. 10:163. Care should be taken in planting this species, as it is very poisonous to many, and for this reason it should be extirpated from our ornamental plantations, rather than added to them. The autumn color is attractive. As here understood, it includes R. radicans, Linn.

7. diversiloba, Terr. & Gray. A Californian species closely allied to the preceding, equally poisonous, and therefore not to be recommended for planting.

8. glabra, Linn. Smooth Sumach. Fig. 2115. Smooth, glaucous, 10-15 ft. high; lfts. many, green above, white beneath, narrowly oblong, with serrated edges; fls. in terminal panicles; fr. crimson, hairy. July, N. Amer. One of the best species for mass or other planting. Var. laciniata, Carr., has the lfts. deeply cut, giving the lvs. a very fern-like appearance. Like the type, it colors in autumn. R.H. 1865, p. 7. V. 10:101.

9. venenata, DC. Dogwood. Poison Sumach. Usually taking the form of a tree, 10-20 ft. high; lfts. 7-13 on a red pedicle and milky, smooth, shining green above, pale beneath; fls. in a narrow panicle, drooping; fr. small, flattened, white. June. Moist ground, eastern N. Amer.—One of the most beautiful, but unfortunately
Rhus

the most poisonous of the Sumachs. The name *Rhus* Verniz, Linn., is used by some authors for this species and by others for *R. vernicifera*: in order to avoid confusion, it seems best to drop the name and to substitute those proposed by De Candolle.

11. *tupina*, Linn. *Staghorn Sumach*. A densely velvety-hairy species growing to a height of 30 ft. in favor of situations. Ifts. many, oblong-lanceolate, serrate: ft's. in a dense, terminal panicle: fr. red, with crimson hairs. June, July. Eastern N. Amer. S. 183. — Var. "laciniata", Hort., in which the Ifts. are deeply cut, is the most distinct form. Fig. 2116. Trained in tree form this species is decided picturesquely.

In mass-planting, which dense foliage is

required it should be cut over occasionally to provide young vigorous shoots, which produce the largest leaves. Its brilliant fall coloring and the persistence of its crimson fruit-clusters render this plant of great value where a warm color effect is desired. It will grow in the driest soils.

13. vernicifera, DC. *Varnish Tree. Lacquer Tree*. Tree-like, 20-30 ft. high: Ivs. ample; Ifts. 11-15, smooth above, pubescent beneath, nodrib more or less broadly margined: young growth also pubescent. This is the plant from which the Japanese obtain the lacquer for the finely polished ware. It is poisonous, and it is said that people have been poisoned by handling the articles coated with the lacquer. Ga. 54, p. 545.— Cult. in S. Calif.

14. *Coriaria*, Linn. Height 15-20 ft.: Ivs. large, with 11-15 elliptical coarsely toothed Ifts.; petiole margined; villous: ft's. greenish, in a large, loose, terminal panicle: fr. red. July. S. Eu. — This is the Mediterranean species, much used in that district for preparing the finer grades of leather.

15. *capillaris*, Linn. *Black Sumach. Shining Sumach*. A shrub or small tree, sometimes growing to the height of 25 or 30 ft.: Ifts. numerous, entire or sometimes indented or cut near the apex, smooth above, usually pubescent beneath; shoots also pubescent: midrib winged between the Ifts.; ft's. small, greenish, in dense panicles at the end of the branches: fr. slightly flattened, hairy, crimson. July, Aug. Eastern N. Amer. S. 7:107.-8. —This beautiful Rhus is the latest of our species to bloom. It makes a fine specimen plant and is also useful in masses.

RHYNCHOSPERMUM jasmodes, a fine shrub of the dogbane family, is referred to *Trachelospermum*. There is, however, a good botanical genus named *Rhynchospermum*, but it belongs to the composite family. It has only one species, *R. verticillatum*, a plant not in cultivation.

RHYNCHOSTYLA (Greek, beaked column). Orchidaceae. This genus includes a few species closely related to *Sceaclesium* and usually sold under that name. Epiphiphyte herbs with monopodial stems and 2-ranked, crowded, leathery or fleshy Ifts.: Ifts. in dense racemes from the axis of the Ivs., medium-sized; dorsal sepal and petals sub-similar, lateral sepals broader, decurrent on the foot of the column; labellum firmly joined to the base of the column, obvolute, inflected at the apex, not 3-lobed, spurred, the spur straight or curved backwards. For culture, see *Sceaclesium retusum*.

violacea, Reichbl. f. (Sceaclesium violaceum, Reichbl. f.). Ivs. 10-12 in. long: racemes 1 ft. or more; ft's. 1 in. across, white, spotted with pale mauve; labellum dark violet. Jan. Philippines. B.M. 23:26. — The flowers are said to have a disagreeable odor. Var. *Harrisonianum*, Hort. (Sceaclesium Harrisonianum, Hook.). Ivs. distichous, oblong, obliquely bifid at the apex; raceme dense, cylindrical, pendulous; ft's. white, fragrant; sepal ovate-oblong, somewhat incurved; petals narrow, oblong-spatulate; labellum oblong-ovate, with a thick blue apical, sacuate toward the apex; spur blunt; disk with a single thickened line. Malay Islands. B.M. 543. F.S. 23:2412. The racemes grow to a length of 2 feet.

RIBBON GRASS. *Phalaris arundinacea*, var. variegata.

RIBBON TREE. *Plagianthus*.

RIBES (said to have come from the German riibs, a vernacular name for currant). *Saxifragaceae*. *Currant and Gooseberry*. Shrubs, often spiny and prickly, with simple, alternate, pulmonately veined leaves, 5—7 rarely 4-parted, borne singly or in racemes; calyx-tube coherent with ovary; lobes commonly colored petals; usually 3-lobed, borne on throat of calyx, alternating with stamens: fr. a berry, tipped with remains of calyx. Fig. 2118. Largely North American, although well represented in Europe, Asia and South America.
Species 60 to 70. For culture, see *Currant* and *Gooseberry*. Cuttings of hard wood in autumn or spring; mound-layers in summer; new varieties by seeds. See Thory, *Manuchope ou Histoire Naturelle du Genre Grossellier*: Card, "Bush-Fruits" (from which Figs. 2119, 2122, 2124-6 are taken).

Aside from domestic *Currants* and *Gooseberries* (which see in Vols. I and II), *Ribes* contains few plants that are generally prized for cultivation. The most popular ornamental species is the *Buffalo Currant*, *Ribes aureum*, which is hardy and productive everywhere. The hybrid *R. Goldoniun* is also popular for its long clusters of bright pink flowers, its vigorous habit and its hardiness. *R. sauvigniun* is also fairly well known, and is hardy in the northeastern states. There are horticultural forms with white, very dark red, and purple flowers. Some of the species are useful in shrubbery masses for their foliage and habit.

INDEX TO SPECIES IN AMERICAN TRADE.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>albidum</td>
<td>16. Rubidum</td>
</tr>
<tr>
<td>album</td>
<td>16. Albulum</td>
</tr>
<tr>
<td>alpinum</td>
<td>11. Alpiniun</td>
</tr>
<tr>
<td>Americanum</td>
<td>15. Americana</td>
</tr>
<tr>
<td>atrosanguineum</td>
<td>16. Atrosanguineum</td>
</tr>
<tr>
<td>aureum</td>
<td>11. Aureum</td>
</tr>
<tr>
<td>Cynoathil</td>
<td>5. Cynoathil</td>
</tr>
</tbody>
</table>

Stems bearing thorns above the leaf-clusters: branches often with numerous scattered prickles: berry sometimes prickly. *(Gooseberries.)*

Fils. red and showy, 4-parted: stamens long, ciliate on margins and veins: calyx-lobes narrow or oblong, greenish or dull purplish, shorter than the stamens; berry small, agreeable. Along the Alleghany mountains. *B. B. C. II* 1004 (as *R. triflorum*).—Sometimes offered by dealers in native plants.

3. **oxygenanthoides**, Linn. Fig. 2120: also 926-9, Vol. II. Branches slender, reclinum, but often crooked: thorns single or triple, slender, very finely pointed, ½-3 in.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxygenanthoides</td>
<td>1/3. Oxygenanthoides</td>
</tr>
</tbody>
</table>

Parent of the American garden Gooseberries.

long, sometimes nearly wanting: lvs. thin, roundish, cuneate to cordate, finely pubescent, glossy when growing; calyx greenish white, smooth or pubescent without; lobes oblong or obovate, thin and petal-like, equaling or exceeding the stamens; petals broadly ovate or spatulate, reaching half way to the anthers; ovary glabrous; berry round, perfectly smooth, but with delicate bloom, small or medium, red. Swamps and low grounds, eastern United States. B.M. 6892. B.R. 15:1257 (as *R. sellosum*).—Parent of the representative American Gooseberries of gardens.

cc. Berry rough-hairy or prickly.

4. **Grossularia**, Linn. *(R. C. cyncaips, Linn.)*. EUROPEAN GOOSEBERRY. Figs. 922-9, Vol. II. Bush stocky, rigid: branches thick: thorns mostly triple, heavy and thick at base, the central one ½-3 in. long: lvs. thick, very glossy, pubescent: calyx strongly pubescent: lobes broadly ovate, thickish, leaf-like, longer than the stamens: petals obovate, reaching to base of anthers: ovary pubescent or glandular: berry generally oval, large, green, yellowish green or red, minutely but roughly pubescent, often with glandular hairs or prickles. Eu., northern Africa and western Asia.

5. **Cynoathil**, Linn. Fig. 2121. **THORNS commonly single, slender, fine-pointed:** petals and peduncles pubescent and glandular; peduncles long, filiform; calyx-lobes narrow, oblong, acute, half as long as tube; ovary glandular-hispid; berry large, prickly or rarely smooth, reddish purple. **Eastern North America.**—Fruit edible, variable; sometimes cult. for its fruit, and worthy the attention of the plant-bredor.

6. **lacustre**, Poir. **SWAMP GOOSEBERRY.** Upright shrub, with many slender and straight prickles, and weak solitary or whorled thorns: lvs. cordate, with 3-5

7. **Lobbi**, Gray. Fig. 2122. Upright shrub, to 5 ft., the young shoots glandular-pubescent, without prickles, but provided with slender, mostly triple thorns: lvs. small (rarely 1 in. across), round-cordate, 5-7-cleft and notched, glandular on both surfaces; peduncles drooping, 1-2-fld.: fls. showy, with purple tube and reflexed lobes, the small, erect petals white, the anthers exserted: berry glandular-hairy. N. Calif. to B.C. B.M. 4931 (as *R. subvestitum*). G.C. II. 19:11. Showy.

aa. Stems thornless and prickleless. (Currents.)

b. Fls. small, wide open, greenish white or yellowish.

c. Lvs. without resinosus dots: fr. red.

9. **prostratum**, L'Her. **Fetid Currant.** Stems trailing and rooting, bearing erect branches: lvs. cordate, 5-7 lobed, the stalks long and slender: racemes erect, bearing flattish greenish white or greenish purple fls.: fr. glandular hispid, red, fetid. Cold swamps, eastern United States and Canada. Offered as a bog and rock-work plant. Lvs. bright colored in the fall.

10. **rubrum**, Linn. **Garden Currant.** Fig. 2133; also Fig. 619, Vol. I. Branches thick and stocky: lvs. pubescent when young, becoming glabrous: racemes drooping: fls. small, yellowish green or purplish; calyx lance-shaped: fr. thin-skinned, shining, bright red, yellowish white or striped. Eu., Asia and N. Amer. R.H. 1631: 191. Parent of all the domestic red and white Currents.

c. Lvs. bearing resinosus dots on the under surface: fr. black.

12. **fasciculatum**, Sieb. & Zucc. Very like *R. alpinum*. Plant reaching 4 ft.: fls. all green, often imperfect, the male fls. somewhat larger than the female by reason of the longer sepals: lvs. firmer than those of *R. alpinum*, bright green, the lobes and serratures more obtuse, the younger ones pubescent below and on the nerves but becoming glabrate: fr. sweetish musky, scarlet. Japan. Var. Chinense, Maxim., from N. China, with lvs. soft-pubescent, is offered by Franceschi. S. Calif. M.D.G. 1898:573.

13. **bracteatum**, Doug. **California Black Currant.** Strong, erect bush, often several feet high, glabrous or nearly so, the young growths resinosus-dotted: lvs. large (sometimes 9 in. across), 5-7-cleft, coarsely and doubly serrate, hairy and resinosus: racemes erect or ascending, 4-8 in. long, many-fld.: fls. small, greenish or purplish: berry ½ in. in diam., black and resinosus-dotted, edible. N. Calif. to Alaska. B.M. 7419.

16. sanguineum, Pursh. Red-flowered Currant. Fig. 2124. Branches red, smooth; young parts pubescent or glandular-hairy; lvs. 2-4 in. broad, round-cordate; racemes long, pendulous; bracts obovate, membranous, as long as the pedicel; fls. purple-red or rose-colored; calyx, ovary and pedicels beset with short, glandular-tipped hairs; fr. bluish black, rough, glandular-hairy, dry and bitterish. British Columbia, through California and Mexico to South America. B.M. 3235. B.R. 16:1348; G.N. 51:1110.

18. aureum, Pursh. Missouri, Flowering, Golden or Buffalo Currant. Fig. 2125; also Fig. 613, Vol. I. Plant free-growing, sprouting from root: lvs. cuneate or truncate, smooth, shining, when very young densely covered with brown or yellow resinous beads, which disappear with age; peduncles short, few-fl.; bracts large, leaf-like; fls. spicy-scented, yellow and showy; calyx-tube 3/4-3 1/2 in. long; petals red: fr. dark brown or black, with bluish bloom. Mississippi valley to Rocky Mts. B.R. 2:125.—Much grown for its yellow fragrant flowers. It has given rise to the Cran-dali and other fruit-bearing sorts.

19. cereum, Doug. Fig. 2126. Upright branching shrub, reaching 3-4 ft., the young parts minutely pubescent and more or less glintious: lvs. nearly orbicular to reniform, rather small (less than 1 in. across), 3-5-lobed and crenate-toothed, wavy-dotted; racemes short and drooping, glandular-hairy: fls. 1/2 in. or less long, narrow tubular, white or pinkish: fr. bright red, rather small, sometimes glandular, sweet but mawkish. Rocky Mts. and west. B.M. 3008. B.R. 15:1263; 17:1417 (as R. itebrium).—Sometimes grown for ornament.

20. viscosissimum, Pursh. Branchy; upright, to 6 ft., the young growths viscid: lvs. round-cordate, 3 in. or less wide, 3-5-lobed with obtuse doubly crenate somewhat out divisions; racemes erect, viscid: fls. large, fragrant, yellowish or whitish green, the calyx-lobes not reflexed, the petals small and white: berry black, mostly glandular-hairy, scarcely edible. Rocky Mts. and west.

The text is a natural representation of the document. It contains information on various botanical topics, including Ribes, Eichardia, and Richardia, with descriptions of their characteristics, cultivation, and classification. The text is clear and does not require any additional processing.
2127. Blade about twice as long as wide, cupulately at the apex, cuneate-sagittate at the base, both leaves and spathes varying greatly in size: spathe 3-10 in. long, white, creamy inside at the base, flaring outwards and narrowing to a cupulately tip. S. Africa. B. M. 882. Gn. 35:454. — Fragrant. Sports with double and triple spathes often occur. A. F. 5:31. Gn. 40, p. 447. See Fig. 2129.

Var. nana compacta, Hort. (R. nana compacta, Hort.). Little Gem. Fig. 2130. Like the type, but only 12-16 in. high; spathes 3-4 in. long. Var. Devoniensis, Hort. (R. Devoniensis, Hort.) Dwarf; freer bloomer than Little Gem, and more fragrant. There are many forms of the Calla Lily in cultivation, a number of which have received Latin names. Some of these horticultural names are: candidissima, spathe large, pure white; gigantea, plant very large; Godfreyana, dwarf, white; grandiflora, spatha large.

Pentlandii, Whyte. Erect perennial: lvs. ovate-cordate, acuminate-bladed, with an open sinus; basal lobes rounded; midrib thick; spathe golden yellow, broadly trumpet-shaped, its lower margins convolute one third. Flaring above, the subulate tip abruptly recurved, margins recurved, slightly warty with a black-purple blotch at the base within. Basal leaf, S. Afr. B. M. 7397. — Hooker writes (in B. M. 7397) that "R. Pentlandii is much the largest-leaved species, and is the only one with a deeply gambose yellow spathe within, which is much the largest and broadest of any." First flowered in 1892 by R. Whyte, Pentland House (Lee, England).

cc. Of the leaf-blade hastate.

Hastata, Hook. f. (R. Luteoviridi, N. E. Br.). Pride of the Congo. Yellow Calla. Petioles briefly below: blades dull green, hastate-ovate, twice longer than wide, rather falcate, 8-16 in. long, cupulately at the apex, basal lobes separated by a narrow sinus; spathe cup-shaped, 5 in. long (with a tail 1 in. long), greenish yellow, the

tip erect, black-purple at the base within, the lateral nerves usually rather prominent above. B. M. 5176. Gn. 18:292.

R. Alstonii, Hort. Leichtlin. Strong growing, with lvs. sagit.

2129. Calla with double spathe (X ½).

2128. Richardia albo-maculata (X 1/5).

Fourth the length of the apical one, 29 in. long, 3 in. wide at the base; peduncle 4-8 ft. long. Angola. — R. aurata, Hort., said to be a hybrid of hastata and albo-maculata, but better regarded as a variety of hastata; leaves spotted; spathe large, yellow. Said to be a hybrid of R. albo-maculata and R. hastata. — R. affinis. A distinct dwarf-habit plant with a creamy white spathe, the base in the inside of a rich violet-purple shade. It is apparently a plant of good constitution." Gn. 55, p. 317.

JARED G. SMITH.

Culture of Callas. — Richardia Africana has been known for generations as the Calla Lily. Though often grown as a window plant, it is very unsuitable and seldom blooms under house treatment. When grown for winter flowers, it is customary to give the roots a rest during summer time. They may be dried and stored if necessary. It is in this condition that we get Californian Callas. It is the opinion of the writer that summer-resting would be the best treatment for those grown as house plants, as well grown dried roots are more likely to bloom. But rest must be enforced, for Callas will grow all the year round, increasing in size and numbers when planted out. We always get the largest blooms from summer-grown plants. They are taken up in the autumn, given good loam and plenty of root-room, with a liberal allowance of liquid fertilizer when well established. They thrive best under good light, and a minimum temperature of 55°.

There are several varieties, all differing only in size, from those which grow six feet to "Little Gem"—one foot. Some are said to be more odorous than others, though all are fragrant. Besides being invaluable pot-plants, they can be used with good effect in outdoor winter gardens, growing luxuriously when partly submerged; and also in "bog" gardens, and on the margins of ponds, to give subtropical effects.

R. Elliottiana, although introduced to cultivation about ten years ago, is yet rare. It is undoubtedly an acquisition. It is a South African species, about which we know comparatively little. From what scraps of information we have gathered regarding it from time to time, we conclude it is rather an upland species, and our experience with it would indicate that frost may occasionally visit its habitat, or at least that it will endure a lower temperature than Richardia Africana and succeed. When introduced, we thought it difficult to grow. It was first grown in this country by William Robinson, gardener to P. L. Ames, North Easton, Mass., Mr. Harris, gardener to H. H. Hunnewell, Wellesley, Mass., and Mr. Joseph Taibby, of Wellesley. The last named is a commercial grower, who looked upon his importation as an investment. The bulbs (corms or roots) were expensive,—a guinea
or thereabouts—and about as big as marbles. Mr. Tailby now has bushels of them, and some as large as turnips,—anyway, four inches in diameter. Tailby's expert report is interesting and may be valuable to the reader. He came near losing his whole stock by cutting out the eyes, with the object of getting separate plants. It had been no sign of natural division, nor has there been since; though Mr. Tailby is still of the opinion that by proper manipulation they may be increased by division, as we now do potatoes, but their unions must be given time to heal over. The roots are kept over in a cellar at a temperature of 45° F., or thereabouts, until April, when they show signs of starting. They should be potted then, but kept rather near the door until the roots develop. The pots will be fairly well filled with roots before much growth shows, and we can keep them under benches in a cool house, or even in the cellar, for two weeks after potting. With the roots well started, they come along quickly, coming into bloom in 10-12 weeks. A good bright, intermediate house suits them best, and some liquid fertilizer will help them when the flower-stems appear. The blooms last a long time, opening greenish-yellow, turning to pure orange-yellow, and finally green when aging. Seeds are formed plentifully though slowly, and are the quickest method of propagation. During the ripening period of seeds, they must have the very best attention. They usually do not become thoroughly ripened until August. Pot-grown seed plants are better stored in pots. The whole culture is easy when we know how.

Seeds germinate quickly. Those sown in November come up strongly, but the plants are difficult to handle and liable to go off when very young. It is the safest way to let them stay in the seed-boxes, ripen there, and plant them farther apart next season. This is what we have been doing and we cannot complain of the results. Tailby has sown seeds outdoors with very gratifying results. Almost a year is gained in this way, as the roots (or bulbs) are considerably larger than those sown from seedlings. Of course, the plants hold over until settled weather, and, planted like potatoes, bloomed freely all summer, making fine roots; they were green when cut by frost in October, but hardly ripening seeds. To do this takes a longer season, and the plants must be started indoors.

T. D. Hatfield.

The Richardia in California.—In considering the Calla in California, it is necessary to treat it under two general heads: first, as an ornamental; and second, as an article of commerce. The popular and growing demand for Calla bulbs (or tubers) speaks much for the plant as an ornamental. Many, indeed, are the uses to which it is put. It is, perhaps, most commonly used as a belt along fences, and not frequently as a hedge between two properties; or nearly as often is found along one side of a house in a long, narrow bed. For effective planting it is much in demand for grouping around hydrants and unsightly objects in damp places, at watersides; sometimes as a border around a fish or lily pond, oftentimes growing in bunches or masses in the water itself; or massed on a slope near water; mixed with other tropical vegetation; or as a border to tropical jungles; and very effective also, indeed, is it in the lower tiers of basins around a large fountain with Myriophyllum hanging down from the base of the Callas. For all of these purposes the foliage is of even more importance than the day of bloom development. Invariably here in almost any location, it is very seldom seen as a pot-plant either in the dwelling or on sale at the nurseries. In the most favored places only is it entirely secure from the cold. Tailby's expert report is interesting and may be valuable from this source is not serious in or around Los Angeles. Though doing fairly well in the full sun, our summer climate is too dry for it to attain its greatest beauty and luxuriance wholly without protection, and it would therefore only be seen in perfection when grown in partial shade. A good supply of water and munire is also an important factor in its development.

The spathes are subject to many variations in form, both in size and shape, some being long, rather narrow, and pointed, ending in a decidedly recurved arm, while others are nearly circular with the sharp point almost wanting and standing upright the same as the balance of spathe. It frequently happens that the spathes are double and even triple, sometimes in its entirety but often only partially so. In the latter case it often shows some very strange forms. The spadix is not so variable and seldom departs from the type, though an occasional double of normal calyx is found. Other species or varieties than R. Africana are found, but sparingly in California gardens, the most common ones being the spotted-leaved and the dwarf form known as the Little Gem.

Commercially, the growing of the bulbs for eastern and foreign markets is a sure source of revenue, and is carried on extensively throughout southern California. The local market for the bulbs is, of course, limited, but if grown in a practically frostless belt, the blooms will more than pay for the cultivation of the winter field, as in that season of the year there are few competitors. Many varieties are available, all in fair prices. The market value for the bulb is at present (January, 1901), $25 to $60 per 1,000, according to size, the market calling for tubers 1% to 2% inches in diameter. Larger sizes are quoted as "fancy" and command almost twice this. Though they can be grown in almost any soil with some success, a free, cool, blackish loam is best, and they do not thrive in a hot, gravelly or stony soil. The lands on the coast, though being sandy, are productive of the best results, both in bloom and tuber. Land containing sufficient alkali to prevent the growth of many common weeds will produce good Callas if other requirements are present. In field planting it is much better to put in small bulbs about 4 inches apart than to sow the offsets promiscuously in the row; when the sets are thus sown, they should be taken up the following year and the small bulbs properly planted. Offsets sown as above and left 4-6 years (the usual time for a good crop) have never produced satisfactory results. The common sow-bug eats into the tubers very seriously and receives considerable assistance from millipedes. Both these pests are quite a nuisance to the California nurseryman and gardener. The much-photographed "Aeris of Callas in Bloom," so familiar to visitors and much used to illustrate articles on California, fancy stationery, etc., was grown by Capt. M. E. Walker, of Los Angeles, to whom the writer is indebted for many of the leading facts in this article regarding the culture of the Calla for the general market.

Ernest Braunton.

RICINUS (Latin name, from the resemblance of the seeds to certain insects). Euphorbiaceae

Herbaceous or becoming tree-like in the tropics, glabrous: leaves large, alternate, peltate, polynately 7- to many-lobed, the lobes serrate, monoeious; fls. without petals or disk; inf. terminal, or axillary, in the sharp pointed axils of the leaves; calyx 3-3-parted, vexillum and stamens many, erect in the bud.

Natural size.
filaments much branched, each with very many anthers; rudiment of pistil none; the lower fs. longer pedicelled, pistillate; sepals very deciduous; styles 5, plumose; capsule 3-loculed, 3-seeded, explosively separating into 2-valved cocci when ripe; seeds ovoid, with a large ca-

stems nearly black. Var. Gibsoni, Hort. Dwarf, 5 ft., lvs. bronzy purplish. Var. livida, Jacq. (R. sanguin-

us, Hort. R. Obscurior, Hort.) Slender; stem and fruit blood-red, 8 ft. R.H. 7:182, 183. Var. Borboni-

RIGIDELLA (Latin, somewhat rigid; referring to the pedicels, which after the petals fall become erect and stiff.) Irregular. A genus of 3 species of shrubs and perennials allied to the well-known Rigidia and distinguished from it by the inner perianth-segments and spathules. These are inconspicuous in Rigidella, being very small, ovate and erect, while in Rigidia they are larger, filiform-shaped and spreading. Lvs. broad, plicate, with channeled petiole; fls. minute, bright red, pedicelled; peri-

anth-tube none; segments very unequal, outer oblong-elliptic in a cup in the lower third, then spreading or reflexed; inner very small, erect, ovate, with a narrow claw. Baker's Fridace, Baker, p. 70.

P. W. BARCLAY.

RIVINA (A. Q. Rivinus, professor of botany, etc., at Leipzig, 1691–1725.) Phytolaccaceae. A genus of 2 or 3 species of shrubs with herbaceous branches bearing usually axillary racemes of small flowers, followed by red berries the size of peas. Lvs. ovate, ovate-lanceolate or cordate-ovate; perianth-segments 4, small, equal; stamens 4–5; style short; stigma capitulate. The species are natives of tropical America. The following makes a good pot-plant for a warm greenhouse, and it is also useful for growing as a summer open in the open.

humilis, Linn. ROSE PLANT. Fig. 2134. Stem with spreading branches, ½–2 ft. high; lvs. 1–3 in. long; racemes slender, peduncles, many-fl., as long as the lvs.; fls. white, 1–1½ lines long; calyx pale rose: fr. 1–1½ lines long; S. Florida. B.M. 171. V. 5:73. S.H. 2:11. Gt. 22, p. 68 (as R. feria).

F. W. BARCLAY.

ROAN or ROWAN. Sorbus Aucuparia.

ROBINIA (in honor of the two early French botanists Robin). Leguminosae. Trees or shrubs, with odd-pinnate leaves and often spines for stipules; fls. stipel-

late; fls. in drooping axillary racemes; fr. a 2-valved pod or legume, with several bean-like seeds. A genus of plants of much merit for ornamental planting, and in one case for its edible timber. All are deciduous. The growth is rapid when young, reaching effective stages in a short time. The facility with which they increase, both by seed and by suckers, is sometimes a disadvantage. Va-

rieties are propagated by cuttings or by grafting. The
beauty of *R. pseudacacia* was early recognized and it was extensively planted, but the attacks of the borer have caused great loss and checked the planting of a beautiful tree.

2134. *Rivina humilis* (× 3)]. (See page 1537.)

Pseudacacia, Linn. Locust. False Acacia. Black Locust. Fig. 2135. This species is the largest of the genus, growing to a height of 80 ft. Stems, short-stalked, 9-19, 1-2 in. long, oval or ovate, smooth, often emarginate or mucronate: bark brown on young wood and glabrous; stipules glabrous, enlarging with age and becoming strong thorns on the 2-year-old wood: fls. white and fragrant, in drooping racemes: fr. a broad, brown, many-seeded pod or legume. May, June. Eastern N. A.—Wood very lasting, and adapted to many uses. Many varieties of this species are in cultivation, the following being sold in this country: *aborea*, Hort., has pale yellow fls.; *bella-rosea*, Hort., rose-colored fls., and is probably a hybrid of *R. pseudacacia* and *R. sieboldiana*; var. *inermis*, DC., is a thornless variety, with large dark foliage; *bullata*, Hort., is much like *Bessoniana* (below), but more compact; *Decaisneana*, Carr., is a form with handsome rose-tinted fls. R. H. 1863:151. F.S. 19:2997. L.H. 12:127. Gn. 34. p. 174: *spectabilis*, Du Mont Cour., is a strong-growing thornless var.; *monophylla*, Pelz. & Kirchn., is the Single-leaf Locust, and of this there is a slightly pendulous sub-var.; *pimelia*, Loud., is a form with broad, spreading, somewhat drooping branches; *semperflorens*, Hort., is said to flower throughout the summer; var. *globula, striata* and *minosa* are cortical forms, which are sufficiently described by their names; *pyramidalis*, Pelz. & Kirchn., is a distinct narrow-growing form; *umbra-culata*, DC. Umbrella Locust. Thornless, the glabrous branches densely crowded: fls. ovate. Vars. *vulba, striata* and *Bessoniana* are forms of this. Very distinct.

hiapiida, Linn. Rose Acacia. Fig. 2136. A shrub 2-8 ft. high, all parts of the plant except the fls. bristly or hairy: fls. 9-13: racemes loose: fls. on long pedicels, rose color. May, June. Va. to Ga., in mountains. B.M. 311. Gn. 34. p. 175.—Like the next species, it spreads from the root and should be planted where it will not interfere with other plants. seldom matures seed.

Neomexicana, Gray. A shrub 5 or 6 ft. high, with stout stipular prickles: peduncle, raceme and calyx glandular-hairy: fls. in drooping axillary racemes, rose color. Southwestern N. Amer. S.S. 3:114. Gn. 41:1058.

R. kitaeffii is "a new species discovered and introduced in 1901, by Harlan P. Kelsoy. The bark much resembles *R. pseudacacia* and the plant is sparingly pubescent. It is a compact shrub of distinct habit."—John F. Cowell.

2135. *Robinia pseudacacia* (× 3).
ROCHEA

place to induce perfect and early maturity. During winter the plants may be kept in a sunny frame or cool, light greenhouse, with only sufficient water to prevent shriveling.

1. Clusters usually 2-flowered.

jasminea, DC. (Crisiuna jasminea, Ker-Gawl). Stems herbaceous, 4-12 in. high, decumbent, branched, flowering part erect; lvs. fleshy, oblong-oval, 1/2-3 in. long.

2136. Rosea Acacia—Robinia hispida.

1-2 lines wide: fls. white, tinted with crimson, sessile, not fragrant, 1 1/2 in. long. B.M. 2178. —Hybrids with R. coccinea are figured in A.F. 5:433.

AA. Clusters many-flowered.

coccinea, DC. (Kaleosanthus coccinea, Haw. Crisiana coccinea, Link.). Plant robust, shrubby, 1-2 ft. high; lvs. very closely imbricated, 1-1 1/2 in. x 3/4-1 in.; fls. bright scarlet, 1 1/2-2 in. long, fragrant, borne in summer. Cape. Gm. 46, p. 560. B.M. 485.

R. falcon, DC. See Crassula falcon. F. W. BARCLAY.

ROCK-BRAKE. See Cryptogramma.

ROCK-CRESS. Arabis.

ROCK GARDENS. Figs. 2137-40. Nature in time will make a garden even on the unbroken surface of a rock, by clothing it with lichens, algae and mosses of many exquisite forms having much variety and often striking brilliancy in coloring. If there are soil-filled cracks and pockets then ferns and flowering plants will find a place. At low elevations, however, these flowering rock-plants are comparatively few, for soil accumulates rapidly and strong-growing herbs, shrubs and trees, aided by favorable climatic conditions, soon cover the rock surface or furnish so dense a shade that only mosses, lichens and ferns will thrive.

The ideal rock or alpine gardens are within that region on mountain summits between the limits of tree growth and the edge of perpetual snow, and in the corresponding regions toward the poles, where the plants are protected from the rigors of a long winter by blankets of snow and are quickened into a short period of rapid growth by a comparatively low summer temperature. Here, where there are deep, cool, moist rock crevices and pockets filled with fragments of broken stone and porous decayed vegetable matter, are the favorable conditions wherein the real alpine plants can multiply their neat and dainty cushions, tufts and rosettes of dense and matted foliage and their abundance of exquisitely formed and brilliantly colored flowers. A successfully grown collection of these plants in contrast with ordinary garden flowers would be like a collection of cut gems as compared with one of rough minerals and rocks, for they have an exquisiteness of finish and depth of coloring that gives them as unique a place in the vegetable kingdom as they have in the plan of nature. Surely there are men and women who, if they knew these plants well, would be fired with an ambition to excel in their cultivation; and in so doing they may enter a comparatively untrodden path if they will limit their work chiefly to the alpines of this continent. They are represented in the New England mountain region by such species as Arctostaphylos uva-ursi, Vaccinium cirtisolum, Saxifraga cava, Saxifraga amethystina, and in the Rocky Mountains and Pacific Coast Ranges by Erigeron uniflorus, lamatia and urinaria, Actinella Brunedgei and grandiflora, Artemisia bovallis, scoparium and alpina, Senecio Soldanella, Erwamis, pschynum, uniformis and vecerencifolius, Crepis alpina, Campanula uniflora, Prunella Parryi, and affluens, Anemone Chamisso and septentrionalis, Gentiana prostrata, frigida, Neuberryi, Parryi and simplex, Phlox brevifolia and crepifolia, Polemonium concolor, Cassiope Hortensiana, Bryanthus Beveri, Draba stenopetala, Piloty and nudicaulis, Aralia Lyciilii and platysperma, Smolswskia calegiana, Lychnis montana and Kingii, Carludlavia pygmaea, Chionanthus megarectus, Stearnsia umbellata, Dryas octopetala, Genl Rossii, Saxifraga chrysantho and brachyophyllum, Cynoglossum alpinum, Aplopappus pygmaeus, Lyciilii and nudicaulis, Omphalodes nana, var. crevicolle, Chloanthus Jamesii, etc. (Not all of these names are accounted for in this work. They may be found in the Current Manuals of North American Plants.)

The uncultivated American plants in this class are quite as numerous and attractive as are the European species that have been long cultivated there. Here alpines have been but little cultivated. A very few easily grown European kinds, like Aumbrea delfoiden, Achillea tomentosa, Campanula Carpatica and Arabis albidus, are offered by American nurseriesmen and cultivated in the open border. On a few private places small rock gardens have been established, or advantage has been taken of favorable local conditions to cultivate some additional species, and in one or more botanic gardens considerable collections have been at times maintained, chiefly in frames. Generally what have passed for rock gardens have been rockeries—mere piles of cobbles raised from the surface of turf or piled against dry banks in such a manner as rapidly to disperse instead of slowly conserve all soil moisture. Even the most

2137. A rockery bordering a lawn.

self-assertive weed fails to thrive in such a garden. A little better than this was the rock garden at the World's Fair, in which was the alpine plant exhibit of the Royal Botanic Garden of Berlin, comprising 103 species, of which only 23 were alive in August. In general, we have a smaller rainfall, less humidity and a larger proportion of sunny days than in England, to which we must look for the best instruction in the cultivation of alpine plants. This must be regarded in
the arrangement of our rock gardens. Every precaution should be taken to secure the full advantage of rainfall and any natural water supply, and there should also be a liberal and constant artificial water supply. It must be kept in mind, too, that at low elevations the long, hot summers do not allow the period of rest that such plants require. This condition must be met by devices, methods and locations that will retard the growth in spring, check it at an early period in autumn, and keep the plants fully dormant in winter, such as shade, mulching, and, in the case of particularly difficult plants, the protection of frames. It is essential that conditions be provided that will enable the roots to extend for a long distance, often many feet, in narrow crevices and pockets between rocks to depths where there is a uniform temperature and uniform moisture supplied by moving water, for frequent freezing and thawing and stagnant water are fatal. These cavities should be filled with such loose material as fragments of rock mixed with decayed vegetable matter, without manure, and arranged to provide for the free passage of hair-like roots, for perfect drainage and the free access of air. To provide these unusual conditions on the average private place in a large way would be so difficult and so expensive that it is not to be recommended. A small collection comprising a few easily cultivated alpines and the similar rock plants referred to in a later paragraph may, however, be successfully grown on reconstructed stone walls, on ledges, in small rock gardens and in the open borders of almost any country or city place. Persons who desire to cultivate a large collection of true alpines should seek a situation where favorable natural or existing conditions can be taken advantage of. Such locations are likely to be found at the seashore and in rocky and hilly regions—such regions, for example, as are selected by many people for summer homes. A ledge, a natural mass of boulders or an abandoned quarry will often provide them. Pockets and crevices of ledges can be cleared of unsuitable material, and if they are not deep enough to hold moisture and have an equable temperature their depth may be increased by the judicious use of wedges, bars and explosives. Boulders can be arranged in such a manner as to secure suitable deep pockets and crevices of soil, springs can be diverted to supply a constant flow of water, underground pipes can be carried from an artificial source of supply to various points where conditions require them. However favorable the conditions are, it will be found that much can be done to advantage in different localities to meet the special requirements of different groups of plants. In such work, however, it should be kept constantly in mind that there are plants that will grow in all sorts of surroundings, and that it will often be much better to seek such as are adapted to existing conditions than to go to the expense of raising them to suit special conditions.

If an artificial rockery is to be constructed, it should be borne in mind that it is not for the purpose of displaying a collection of various rocks fantastically arranged, but that the rock is only a frame for the planting of plants that cannot be as well grown elsewhere. It would be better never to think of securing mountain, valley and rock effects by the use of the material to be used, but only to think of providing many various conditions and situations as regards exposure to sun and shade, depth of pockets and crevices, the character and depth of soil, and surface conditions, and whether it be permanent or fluctuating. In selecting and arranging the rocks freshly broken raw faces should not be exposed, but rather such faces as are already covered with a growth of lichens for many places and with mosses for shady spots. To take full advantage of surface water, pockets and crevices should have a decided downward action from the surface and not be sheltered by overhanging rock. That this does not apply in all cases, those who are familiar with the habitats of rock-plants know full well. The natural habitat of Peloria gracilis in the upper Mississippi bluffs is in horizontal crevices at the edge of the overhanging rock, where it is absolutely protected from all surface water. It finds sufficient moisture in the horizontal seams. Peloria paludosa will grow in narrow cracks and small pockets on the face of dry limestone ledges, where there is the possible internal supply of moisture. These instances go to show that the general principles that will apply to such plants as a class will not apply to all, and it simply gives emphasis to the importance of trying a plant under all sorts of conditions before assuming that it cannot be grown. The writer remembers with an attempt to grow that most exquisite alpine flower, Gentiana verna, in the open border on a little pile of rock to give it suitable drainage. It was transplanted a number of times to places where its environment appeared to be about the same, and finally a situation was secured, where, instead of barely holding its own, it increased and produced a number of its great deep blue flower-cups.

The importance of protection from drying and cold winds and of securing shade in many situations must not be overestimated, nor should it be neglected that an existing deciduous or evergreen tree or shrub growth, or rapid-growing varieties can be planted to make a screen. While shelters of this character are of value about the outer limits of a rock garden, they can hardly be used for separating its smaller compartments. For this purpose slow-growing, densely-foliated evergreens with a restricted root range are best. This would include the Yuccas, a few of the dwarf forms of Thuya, Juniperus, Picea, Retinaispora and practically all the broad-leaved evergreens. The latter, especially the Rhododendrons (of which Rhododendron maximum can be secured in large plants at low cost), are particularly useful owing to their habit of growth, restricted root area, and the facility with which they can be moved from place to place as desired. As these shelter-belts and groups form the background and setting of the rock garden and are the dominating landscape feature in views from a distance, their composition and disposition is a matter of much importance. The dispositions may be governed, however, by the general arrangement of the grounds, but in this arrangement an agreeably varied sky-line can be secured, and a variety of shades of green should be sought for. In the composition of the background, and in the planting of the rock garden as well, a decided character should be given to the whole and to each distinct compartment by using some few effective plants in quantity rather than a great number of varieties in small quantities. Variegated and distorted garden fuchsias should be excluded, for
ROCK GARDENS

they would only distract the attention from the rock garden, the primary object. Even more inappropriate are stationary fountains and vases.

For more specific instructions as to the construction of rock gardens and the care and planting of rock-plants (for European conditions) see Robinson’s "Alpine Flowers," London, 1875, and Sutherland’s "Hardy Herbarious and Alpine Flowers," Edinburgh and London, 1871.

Up to this point reference has been made for the most part to distinctly alpine plants; that is, plants that are confined exclusively to the region on mountains above the tree and shrub line. These are the ones that will test the skill of the cultivator. There are, however, many rock-plants; that is, plants that grow naturally on rocks, or plants having root-systems adapted to life on rocks; these are the ones that can be used with them in less favorable positions in the rock garden or in the open border. Many of such plants can be readily procured from American nurserymen and collectors. They are easy of cultivation and attractive in habit and flower. The writer would include also low growing bulbous plants, especially such as have inconspicuous foliage. They can be planted with the low ground-covering plants to push up through them. From this list are omitted such plants as belong more properly in the wild garden, especially such as spread rapidly by underground shoots and are likely to become a pest. (In a rockery conditions are such that it is almost impossible to extricate deep-rooting, weedy plants, and they above all others should be rigidly excludcd.) Among desirable rock-plants the writer would include Geranium sanguinum, Androsace and Robertiana, Gypsophila paniculata, Helianthemum vulgare, Hatschboras niger, Leptopodium alpinum, Liriope Cymbalaria, Lotos corniculatus, Lychnis Viscaria, Papaver alpinum and nudicaule, Cerasalpina Leucophaea, Saponaria ocymoides, Veronica Persicaria and reptida, Arabis alpina, Campycomia fragilis, Daphne Cheeseman, species of Alyssum, Bellis, Cerastium, Arenaria, Draba, Epimedium, Iberis, Tansy, Arabis, Anemia, Ajuga, Diandria, Sedum, Sagina, Frigida, Admira, Saxifraga, Corydalis, Myosotis, Sempervivum, Parnassia, Viola, Hepatica, Ophioga, Houstonia, Anemone patens, var. Nattalloana, dwarf and creeping Campsanus, Coronilla, Campycomia, Decandra cerasina, Gallery cerasina, Iris cristata, verna and pumila, Leptosiphon buzzolland, Thalictrum alatum, amurens, reptida, Saxifraga Virginica, Silene Pumiliana and Virginica, Anemone thalicroides, Waldsteinia fragarioides, Galium oxythum, Asperula odorata, low-growing ferns, mosses, etc.

WARREN H. MANNING.

A rock garden or rockery is, or should be, an imitation (though of necessity in a limited and smaller way) of a natural rocky slope such as is often seen on mountain sides, but made more interesting and attractive by the planting of a large variety of alpine and other plants. The meaningless mounds of stones too often seen in gardens, planted with summer-blooming plants or vines, do not represent the true conception of a rockery. A rockery must of necessity often contain a natural bank or slope, the position or aspect of which may not be an ideal one. A southern slope, unless within the shade of tall trees, is not as good an aspect as a northern one, owing to the soil becoming too hot and dry, just the opposite conditions for true alpine plants. Some of the best rockeries are what are known as underground rockeries; for instance, the one in the Royal Botanic Gardens, Kew, London, England, is an underground rockery. Before this rockery was constructed the ground was perfectly level. A cutting was begun at one entrance, at first shallow, but gradually deepening till a depth of some 6 or 7 feet was reached, and an average width of about 10 feet at the bottom. All the soil taken out was placed on the top of the slopes, thus still further increasing the height. The cutting was made in a winding manner, not formal or zigzag, but in such a manner that when completed, not only would a variety of aspects be secured to suit the requirements of different plants, but each turn should seem to possess a peculiar charm of its own. The whole cutting is perhaps some 200 yards in length. The rocks are placed in the banks in as natural a manner as it would seem possible to place them; now they stand out boldly, almost perpendicular with the edge of the path, then again they recede into hollow recesses. There are not too many rocks, nor yet too few. In one place a cascade falls over the rocks into a small pool which not only provides a habitat for aquatic and bog plants, but also adds greatly to the beauty of the rockery. For the convenience of the public a broad gravel path runs through the whole rockery. Rhodo- dendrons and other shrubs are planted on top of the banks in groups, and not in straight lines, while behind these for protection and shade are planted pines and other conifers, as well as some deciduous trees. The rocks are placed in most cases so as to form "pockets" of good size into which the plants could be planted, and the soil made in the pocket to suit the requirements of the different plants. With such a variety of aspects and conditions this rockery is able to accommodate one of the largest collections of alpine and rock plants in the world. As this rockery was for a time the special charge of the writer while a student at Kew, well does he remember the deep carpets of mossy Saxifraga, Aubrieta, Arabis, Cerastium, Sedum, etc., which hung over the projecting ledges of rocks, while in fissures and holes in the rocks were growing those dainty rosette-making saxifragas, S. bourjoliana, S. Cotyledon, S. crustacea and S. coccineus, as well as the charming androsaces. In the deeper recesses of the rockery were to be found the
ROCK GARDENS

large-leaved saxifrages, such as S. cressifolia, S. illy-ryanii and S. pumilio. Quite at home in the rockery and in suitable positions were alpine primulas, auriculas, and cyclamen. There were Iceland poppies, Himalayan poppies (Meconopsis Wallichii and Nupharulis); gentians from the genus Gentiana, mainly to the tall G. grandiflora, and many kinds of Funkia, Fritillaria, Erica, Epipedium, Cypripedium, Orchis, Lilium, Erythronium, Allium, Alyssum, Ajuga, Achillea, Armeria, Sagina, Saxifraga, and creeping thyme. Besides other plants too numerous to mention. Particularly prominent positions, as on top of the rocks or at a turning point on the path, were occupied by some scantly plants such as Rheno alliariaea, Aconitum napellus, Glaumeria montana, or sebar, while foxgloves, ver- bascums and such like plants would fill up the recesses in the shrubs on the top of the rockery. One end of the rockery beneath the shade of overhanging trees was devoted to hardy ferns, which grew with wonderful luxuriance. With the variety of rare and interesting plants, together with the artistic yet natural appearance of the whole rockery, a more beautiful place it would be difficult to conceive.

With these pleasant remembrances in mind the writer built a rockery in 1889, in the Botanic Garden of Smith College, Northampton, Mass., somewhat after the pattern of the one at Kew, but at present on a very much more limited scale. The position chosen (the only one outside the garden is near the lake) was proper, on what was formerly a grassy southern slope. A cutting was made through the slope in much the same way as at the one at Kew, but to secure the northern aspects the soil was banked on the southern side. The path, which is quite level, varies in width from 3 to 6 feet. The height of the banks in which the rocks are placed ranges from 2 feet at the entrance to some 8 or 10 feet at the highest point. For rocks we used large, water-worn boulders collected in the vicinity. One shaded recess, with a northern aspect, is devoted to nite- nite plants, and another at the present time, 1901, mix- som species. The whole rockery outside is banked with flowering shrubs, and on the southern bank outside are planted some trees, chiefly catalpas, for the purpose of shading the southern aspect of the rockery, as well as for ornament. Water is laid on so that the plants might not suffer in dry weather. The writer has not been successful with alpine primulas, mossy saxifrages, tufted gentians, and many other subjects which delight in a cool, moist climate, perhaps from his not having provided the ideal conditions for such plants. It is due to the extremes of climate. Still there is a large variety which does well here. The writer has found most of the low-growing veronicas, sedums, sempervivums, arabisces, alyssums, achilleas, aquilegas, campanulas, drab- stellas, pachysandras, the beautiful shrubby little Daphne Cneorum, and many others, do very well in the more sunny or southern aspects of the rockery, while on the northern aspects eutrochiums, ajugas, Ice- land poppies, rosette and large-leaved saxifrages, moss pinks, epimediums, hermarias, Cardamines, armerias, drab-ighbours, or cypripediums and many other plants do well. On the top of the rockery, to fill in recesses in the shrubbery, are planted fox-
po, verbas cums and tall veronicas, while at conspicuous points are planted clumps of Hebe Sumatrensis, Teufelis scoposa, Armeria Sylvester, or any herbaceous plant which looks well as an isolated specimen. In among the plants in irregular colonies are planted hardy bulbs, such as crocuses, scillas, and other plants, eul- elis, snowdrops, chionodoxas, and grape hyacinths; these come up the first thing in the spring and blossom before the trees get well started into growth, and are a decided acquisition to a rockery.

Almost all alpine plants may be readily propagated by seed, cuttings or division of the plants. The writer raises a large seed one year to fill up any vacant spaces in the spring. His plan is to sow the seeds in 4-inch pots early in February in a finely-prepared light soil, and place the pots in a moderately warm greenhouse; here they germinate, and as soon as large enough to handle they are transplanted either into other pots similarly prepared, or into small, shallow boxes. They grow vigorously through the early spring months, and by the time they are large enough to transplant permanently. Seeds may also be sown in some shaded frame in spring and the plants transferred to the rockery in the fall. All the plants in the rockery should have a light covering of leaves or light mulch, and should be covered with a light mulch. They protect them from excessive freezing and thawing during the winter, especially those planted on the southern exposure, or they may be protected with a few heathen branches laid lightly over them. These should be removed as soon as the weather will permit in early spring. In planting a newly made rockery it is a mistake to plant too thick. Each plant should be allowed room to develop so as to show its true character, and the plant should then be limited in a measure to that space, especially if a much more rampant grower than its neighbors. In such cases it may be necessary to thin them, in order to limit them to their own space. This will insinuate themselves wherever they can gain a foothold. These must be removed as soon as they appear, and the whole rockery should be gone over at least once in ten days to keep each plant from encroaching on its neighbors, and to keep all in good order.

ROCKET. See Hesperis.

ROCKET CANDYTUFT. See Iberis coronaaria.

ROCKET, YELLOW. Barbarea vulgaris.

ROCK ROSE. See Cistus; also Helianthemum.

ROCKY MOUNTAIN BEAN PLANT. Cieoma integrifolia.

RODGERSIA (Commodore Rodgers, U. S. Navy). Saxifragaceae. A genus of one species, a hardy herba- ceous perennial for which the following names have been proposed: Rodgersia Leighti, Bronze Leaf, Bronze Leaf of Japan and Stately Five-Leaf. It grows 3-4 ft. high, and the leaves are finger-shaped, the 5 lobes being bold in outline, angiled and serrate. In the spring the foliage is light green; in summer it is pur- hme. The plant is a vigorous grower, and under favorable circumstances has been known to make a clump 9 ft. in diameter, the largest I've seen, being a yard across and borne on stalks 3 ft. long. The fls. are borne in mid-summer on stalks 4-5 ft. high. The general style of inflorescence is that of the species of Astilbe, to which it is closely allied. The fls. are very small, but make a feathery spray of fluffy white bloom. The panicle is a foot or more long and as wide at the base. Technically the fls. have no petals; what seem to be petals are the white calyx-segments. As an ornamental plant it has been said by enthusiasts to be superior to Astilbe, but the bloom is scantier, rather greenish at first, and perhaps does not last as long. It is a native of China, and is a very fine species for a rockery.

Rodergesia is a native of the subalpine regions of Japan and is presumably hardy in our northern states. It is offered by importers of Japanese plants. The plant is highly esteemed by English connoisseurs, but seems to be nearly unknown to American gardens. Although a deep, rich garden soil will do, it is said to prefer a moist peaty soil. It should be planted in a sunny position, with plenty of room, where high winds cannot damage the foliage. Easily propagated.

Botanically Rodgersia is close to certain species of Astilbe, having 10 stamens and no petals; it differs in having comate carpels, scorioid inflorescence and 3-5-loculed rather than three ternate foliage. Other generic characters are: calyx-lobes 3; ovary 2-3-loculed; styles 2 or 3; stigma 3-lobed; ovules 1-2; ovary-lobes connate.

RODRIGUEZIA (Emanuel Rodriguez, Spanish botanist and apothecary). Orchideae. A small genus of South American orchids, a few of which are cultivated for their graceful flowers, and, as soon as large enough, for their fragrance. The flowers are nearly always fragrant. The plants vary somewhat in habit. Some species form neat, compact
tufts, while others, like R. decorum, have long, staggering rhizomes difficult to keep within the limits of a block or a basket. Pseudobulbs small, compressed, 1-2-lvs., and bearing a single spike at the base; racemes erect or pendulous; dorsal sepal and petals similar, free; erect; lateral sepals united, concave, but scarcely saddle-like; leaves rounded or ovate, with a long claw parallel to the column, and a spreading blade usually exceeding the sepals; column slender. Robert Brown's genus Gomesa (sometimes written Gouame), found on G. recurvum, is now referred to Rodriguezia. G. recurvum is R. phalaenopsis.

Grow Rodriguezias in very shallow pots filled with tough peat, and well drained. Rest them in a temperature of 30° giving little water. The growing season should be from 65-75°. Give plenty of moisture and shade from direct sunshine. The stronger-growing kinds will need thicker potting material in baskets; this in turn reduces the risk of rotting. During season of growth, syringing is necessary.

A. Fls. large, white, spotted or rose.
B. Raceme erect
 1. fragrans
 2. decorum
 3. venusta
 4. candida
 5. pubescens
 6. crispa
 7. planifolia

1. **fragrans**, Reichb. f. (Burlingtonia fragrans, Lindl.). Lvs. tufted; fls. pure white, except the middle of the label, which is stained with yellow, very fragrant; lower sepals united, entire; dorsal sepal acute; labelum cuneiform, with a 2-parted, subdorsal appendage on the disk. April, May. Brazil. G.C. III. 4:575 (the plant is here figured with a pendulous raceme).

2. **decorum**, Reichb. f. (Burlingtonia decorum, Lem.). Plant with a long, slender rhizome, with oval, fleshy, pseudobulbs; scape nearly erect, 9 in. high, bearing 5-10 blossoms in a loose raceme; sepals and petals ovate, acute, connivent, white or pale rose spotted with red; labelum twice as long as the petals, white; middle lobe rounded, bifid, contracted into a broad claw which has several fringed lamellae; column with falcate hairy ears. May, June. Brazil. B.M. 4834. F.S. 7:716. Var. picta. Hort. (Burlingtonia decorum, var. picta, Hook.). Pseudobulbs orbicular, compressed; fls. short, acute; sepals and petals spotted with deep purple-red. B.M. 3419.

3. **venusta**, Reichb. f. (Burlingtonia venusta, Lindl.). Lvs. lanceolate-bulbous: fls. drooping racemes, large, white or tinged with pink and having a yellow star on the lip; dorsal sepal acute, the lateral pair entire; labelum transversely plicate near the middle. Flowers at various seasons. Brazil. I.H. 5:188. —Very near R. candida.

4. **candida**, Batem. (Burlingtonia candida, Lindl.). Lvs. oblanceolate, fleshy, robust: fls. drooping racemes, large, white or tinged with pink and having a yellow star on the lip; dorsal sepal acute, the lateral pair entire; labelum transversely plicate near the middle. Flowers at various seasons. Brazil. I.H. 5:188. —Very near R. candida.

5. **pubescens**, Reichb. f. (Burlingtonia pubescens, Lindl.). Lvs. tufted, dark green, keeled; racemes many, pendulous, from the tuft of lvs.; fls. pure white; labelum 2-lobed, hastate; lateral lobes erect, furnished with lamellae, almost pubescent, in which it differs from the other species.

6. **secunda**, HBK. Fig. 2411. Pseudobulbs bearing several thick, linear-oblong lvs.; raceme erect, secund, 6 in. high; fls. deep rose; sepals erect, ovate, convex, the lower pair keeled; petals obtuse; labelum 2-labiate; labelum oblong, 2-dentate, basi-fuse, laterally lobes erect, furnished with lamellae, rather pubescent, in which it differs from the other species.

Rollinia

Rollea. See Rolleletia.

Rohdea. (Miller, Rohde, physician and botanist of Bremen). *Liliflorae*. A monotypic genus from Japan, essentially a tender foliage plant with luxuriant radical lvs. 1-2 ft. long. The fls. are borne among the lvs. in short, thick, dense spikes a few inches high; perianth globe-shaped; anthers sessile; stigma peltate; style nearly wanting; fr. a globular, usually 1-seeded berry. Rohdeas are excellent plants for dwelling-house decoration, doing well in the cooler positions. They are perfectly hardy at Washington, the foliage being but slightly browned during the coldest weather.

Japonica, Roth. Root a long, nearly cylindrical rootstock with fleshy fibers; lvs. typically green, 9-12 in a rosette, erect, oblong-lanceolate: berry about the size of a small olive, with a red pulp, B.M. 886. Gn. 20. p. 51. —The following varieties, which differ in shape and color of the lvs., are offered by Dutch bulb growers: Vars. aurostriata, falcata, falcata var., latimaiculata macrophylla, margarita minor, pygmaea, zehnta.

G. W. Oliver and F. W. Barclay.

Rollinia (Charles Rollin, of Paris, 1601-1741, aided Tournefort). *Amaryllidaceae*. About 20 trees and shrubs of tropical America, differing from Anona in having the petals united into a 3-6 lobed tube, the exterior lobes wing-appendaged, the interior small or none; fr. sometimes of separate carpels; fls. 1-5 on peduncles that are terminal or opposite the lvs. The general remarks under Anona will apply to these plants.

Sieberi, A. DC. (Anona musacea, Jacq.). Low tree, the young growth nearly or quite smooth; lvs. oblong, taper pointed; smooth; exterior petals oblong and blunt (1/2-1 in. long), greenish, the inferior smaller but prominent, reddish; fr. about 4 in. in diameter, greenish, somewhat globose, the surface bearing tubercles. Native in the islands of Guadeloupe and Martinique, and in Guiana; probably in various West Indies islands. Introduced into southern Florida as a fruit plant, but it is yet very little known within our limits. L. H. B.
ROMNEYA (after the astronomer T. Romney Robinson, friend of T. Coulter, who discovered it about 1845). *Papaveraceae.* The California Tree Poppy (Fig. 2142) is a somewhat shrubby plant with splendid 6-petalled white fls., measuring 6 in. or more across. Botanically, the genus is unique, having only one species and being distinguished from the other members of the poppy family by the fact that the numerous stigmas are connate at the base into a little ring, and are divergent at the apex. It is one of the few long-lived plants that has acquired no synonym. Genera characters: sepals 3, with a broad, membranous, dorsal wing; petals 6, all alike; stamens very numerous; free; filaments filiform but thickened above; stigmas free: capsule 7-11-locular, dehiscing to the middle, the valves separating by their margins from the firm persistent placenta.

—Ever since 1889 and 1890, when it was one of the leading novelties, the California Tree Poppy has been a much-talked-of plant, owing to its extraordinary beauty and the difficulties of cultivation. It has the largest flowers of any member of the poppy family, except possibly *Papaver orientale.* Though not considered hardy in the eastern states, it has been successfully grown in the open in northern New Jersey.

Romneya grows wild in California from San Diego to Santa Barbara county; also in Mexico. In the wild it blooms chiefly during June and July, but in cultivation from May to August. It is one of the characteristic features of California floriculture. Ernest Branson writes from Los Angeles: "It should be grown here on dry, rocky soil; it will positively not grow in a wet or heavy soil. It needs no water here except the winter rains. It is very hard to grow either from seed or divisions."

W. M.

![2142. Top view of Romneya Coulteri (× 1/2).](image)

Romneya is difficult to transplant, due to the scarcity of fibrous roots; in middle California we transplant suckers (which are produced in great abundance) without any loss, provided a good, firm ball of earth is kept around the stout, thick roots in transit, and if the stems are cut well back, almost to the base. At San Francisco it grows luxuriantly in a heavy adobe soil, producing immense quantities. A species named *Matilija Poppy* (pronounced Mat-till-ya) is the favorite in California. It comes from the Matilija canyon, Ventura county, where the plant grows in particular abundance. Miss Parsons writes: "Many people have the mistaken idea that it grows only in that region. It is not common by any means; but it is found in scattered localities from Santa Barbara southward into Mexico. It is a very abundant near Riverside, and also upon the southern boundary and below in Lower California, where the plants cover large areas. It not only grows in fertile valleys, but seeks the sedi-

RONDELETTIA (Rondelet, 1507-1566)., physician and naturalist of Montpellier, France. *Rubiaceae.* About 60 species of tropical American shrubs and trees, with small leaf, salver-shaped fls., of red, yellow or white, generally borne in showy terminal cymes, the whole family is noted as furnishing numerous desirable stove plants, and Rondelettia is a highly esteemed genus. The following species are shrubs growing 4 ft. or more high. The flowers are generally fragrant, and the cluster 4 in. or more across. In the favorite species (*R. odorata*) the flowers number 10-20 in a cluster, each flower being fully an inch across; in the other species the flowers may number 150-200 to a cluster, each flower being less than 3/4 in. across. Known also as *Regiera.*

Generic characters: calyx-lobes short or long; equal; corolla-tube usually slender and rose in color, with a yellow throat; petals as many or more than the stamens; stamens united in the throat; ovary 2-loculed; capsule loculicidal.

R. aurea is the only species described below that does not have opposite lvs. *R. coriacea* is often said to have a 4-looped flower, a mistake that dates back half a century to a typographical error.

W. M.

Rondeletia is a half-shrubby plant, tending out when given room, but when confined to a pot it makes a compact mass of shoots, about two feet high, which bloom in the winter time, in terminal, flat-topped clusters of rose-purple flowers that profuse at any time, but continues in bloom for two or three months. An additional good feature is handsome foliage, so that it is always presentable. Cuttings root

IONATION of remote canyons, and nothing more magnificent could be imagined than a steep-canyon-side covered with the great bushy plants, thickly covered with the enormous white fls. The blossoms remain open for many days.

J. BURT DAVY.

The Romneya can be transplanted safely if cut to the ground before lifting and the transplanting is done during its dormant season and soon before growth commences. The writer has transplanted it—and that without cutting it all back—twice a year; in fall into a cold pit, and in April back from the pit to the bed in the garden, and with perfect success. There is no difficulty in growing it from seed; any careful person can do it. Get fresh seed— that is the only secret: most of the per perative in all papaveraceae plants. But under artificial conditions in localities where the Romneya is not hardy, it requires a few years between the germination of the seeds and the cutting out of the seedlings—usually in two or three years, and the cluster the people will not bother with raising it in this way.

WILLIAM FALCONER.

ROMULEA (Romulus, fabled as one of the founders of Rome). *Blandis.* A genus of about 35 species of crocus-like bulbs from the Mediterranean region of Europe, the Cape and tropical Africa. They are small and slender plants with fls., an inch or so across, varying from crimson and purple through a yellowish and orange and also yellow. They are closely allied to Crocuses, but differ in being less hardy, and in having a long peduncle and short flower-tube. Generic characters: lvs. linear, radiate, with a few similar to the young leaves, and a scarious or sterilized tubular fl.; stamens 6, filaments with a yellow throat; fls. solitary in a spathe, on a simple or branchy peduncle; petals very broad, oblong, much exceeding the short tube; spathe valves herbaceous. These bulbs seem to be unknown to the American trade.

A. Fta. rosy or crimson.

Rosa, Eckl. (Trionōmia rosea, Ker.). Cora globose, 3/4-5 in. thick; lvs. 3-4 ft. long, setaceous; peduncle 1-6 in. long, 1-3-6 fl.; outer spathe 3/4 in. long; perianth with a short fanned-shaped tube, with a yellow throat and a red-iliac limb, about 1 in. long, the outer segments with 3 faint purple stripes outside. S. Africa. B.M. 1225 (as *r. roseum*). F.S. 8/39 (as *R. Celsii*), Var. speciosa, Baker (T. speciosa, Ker.).

A. Fta. yellow or white.

Chusanga, Baker (Trionēmia Chusanga, Langle). Fls. bright yellow, tipped with lilac. S. Africa. A white var. has been int. by Barr, of England. F. W. BARCLAY.
easily at any time, and these may be grown in pots for a season. Barring the tendency to stooling, they do well planted out. Sandy loam and leaf-soil is the best compost, and a warm greenhouse, with sunshine, furnishes the best conditions.

T. D. Hatfield.

A. Fls. red.

b. Less opposite.

colorata, Jacq. (Rondeletia speciosa, Lodde.). Lvs. ovate, nearly sessile; clusters 10-20-fl.; fls. crimson to brick-red, with a conspicuous yellow throat; lobes, which are pink. B.M. 6290—R. Parodi, Hook., a beautiful pale yellow fl., species from Colombia, has a great pyramidal cluster 5 in. across and 4 in. deep, with an astonishing number of fls., perhaps 130-200 in B.M. 5939. R. versicolor, Hook., is referred to R. amica by Index Kewensis but seems distinct. The fls. are said to be "remarkable for their play of color; the tube is yellow, the limb in bad deep rose-color, changing when they expand to pale rose and then to white, with a yellow disk; and having a two-lobed green spot in the center from the color of the stigmas, which protrudes a little beyond the mouth." B.M. 4579.

W. M.

ROOT CELLARS. See Storage.

ROOT-GALLS. Abnormal enlargements often appear on the roots of plants. These enlargements are much more frequent than is generally supposed, but from their position under ground are rarely observed. From an ecological standpoint they have not received the attention that they merit.

Although the term root-gall is usually applied to the abnormal enlargement of roots due to insects and other animal organisms, it has a much wider application as used by most plant-growers. The presence of nodules or local enlargements on the roots of plants has been discussed by different authors under the names root-galls, root-knots, root-swellings, etc. In cases in which the cause of the nodules of hypertrophied tissue is known, special names have been assigned to the enlargements. Thus the gall formed by the eel-worm (Heterodera radicicola) is known as the nematode root-gall (Fig. 2141); the enlargement on the roots of cabbage and related plants by the myxomycete (Pseudosclerotinia Brassicae) is called club-root; the swellings on the roots of the peach, apricot and many other plants, which are of characteristic appearance and usually appear at the crown of the plant, are known as crown-gall. Root tubercles are small gall-like bodies found on the roots of many leguminous plants. They are symbionic in nature, the organism causing them being helpful to the plant. See Legumes.

Abnormal root enlargements are due to the following causes: (1) animal parasites, as in the nematode root-gall (Fig. 2141), the galls formed on the roots of the grape by the phylloxera, and the galls frequently observed on the roots of our indigenous ceanoth; (2) vegetable parasites, as in the club-root and the crown-gall (Fig. 2145); (3) mechanical injury, causing excessive callous development, root-lucy's, etc.

In addition to the above, the causes of these enlargements are oftentimes obscure or unknown. The form of crown-gall on the apple, blackberry and a large number of other plants is as yet unknown so far as cause is concerned. It may be caused by a similar organism as that causing the crown-gall on the peach.
and apricot in the Southwest, but as yet it remains to be investigated.

Swellings on the roots of the mulberry are said to be due to the hypertrophy of the lenticels. Some investigators have attributed gall-like root-growth in some instances to the hypertrophy of adventitious buds. The root-galls caused by the root-eating nematode (H. radicicola) may usually be readily recognized from other forms of hypertrophied tissue by the numerous knotty enlargements on the smaller roots infected by the worms. By careful search, in most instances, the distended female worms may be found in the infested tissue where they appear as small, nearly spherical, pearl-like bodies, readily seen with the unaided eye. This minute worm, commonly called elm-worm, feeds upon the roots of a great variety of cultivated plants and is particularly destructive in the South. It is only injurious in the northern states to plants growing under glass. The most effective remedy in the case of field crops is the removal of all rubbish that would harbor the worms during the winter. In greenhouses steam can be forced through the infested soil. When potting plants are badly affected they may be severely root-pruned and repotted in soil free from worms. They are not troublesome in soil that has been frozen since an infested crop was grown in it.

The root-swellings caused by the grape vine gall-louse (Phylloxera vastatrix) may be readily recognized from other root-galls by the presence of the insects. The young insects, by puncturing the epidermis of the roots and sucking the sap, cause the galls to develop. The insects are found on the diseased roots in all stages of development during the summer.

The most effective method of holding the insect in check appears to be in the use of resistant roots, i.e., the grafting of the more tender varieties on roots of those that are stronger and better able to resist the attack of the insect. Blasulid bodies in some instances has proved effective in killing the lice.

The crown-gall appears to be the most harmful of root diseases affecting cultivated plants in this country. These galls have been reported upon the roots of the peach, apricot, almond, prune, plum, apple, pear, walnut, grape, raspberry, blackberry, cherry, poplar and chestnut, and without doubt further investigation will find it upon other plants as well.

As yet it is not known whether the crown-gall as at present known always arises from the same cause, as the galls vary considerably on different plants and the cause has been definitely ascertained only in a few instances. The deshay outgrowths so abundant in the Southwest on the roots of the peach, apricot and allied plants, known under the name of crown-gall, are caused by a slime-fungus (Dematophagopus glabrosus), which is parasitic in the infested roots.

Seedlings from one to six months old appear to be most susceptible to this disease, hence it is particularly destructive to nursery stock. When the galls appear on young trees they usually always occur on the side of the main root a few inches below the surface of the soil, or in the region of the crown. With more mature trees they are likely to occur at greater depth on lateral roots. At first the galls have a uniform outer appearance, but later it becomes warty from unequal growth. The tissue of the developing gall is soft and succulent, with nodules of woody tissue scattered through it. The galls vary much in size and may reach a diameter of ten inches.

But little is known as to remedies for crown-gall. As the disease is primarily a nursery disease, the most effective method of control is to destroy infested nursery stock.

ROQUETTE or ROCKET-SALAD (Eruca sativa, Mill.), a low-growing hardy annual from southern Europe, whose leaves resemble those of radish and turnip, is much used by the French as a spring and autumn salad and pot-herb. The flavor of the young, tender leaves, which are the parts used, bears a strong resemblance to that of horse-radish. In America it is but little grown.

The first sowing may be made in early spring, the seed being dropped thinly in shallow drills a foot apart, with successive plantings each second or third week through the season. The soil must be rich and well supplied with moisture, else the leaves will probably be tough and acrid. Inter-culture is essential as the plant is a pot-herb, lettuce and similar crops. Frequent watering and tillage in hot, dry weather to insure rapid, vigorous growth should result in succulent, mild-flavored leaves. In summer the plants run rapidly to seed; in spring and autumn they will produce abundantly after being cut. The pale citron-yellow flowers emit a perfume resembling that of orange blossoms. - M. G. Kains.

ROSA (ancient Latin name). Rosaceae. Rose. Ornamental deciduous shrubs, upright or climbing or creeping, usually with prickly stems, alternate, stipulate, flowers, simple, leaves, small, opposite, petiolate, flowers, white, pink, or red; fruits, orange, red, yellow, or black; fragrance of the blossoms is the most characteristic feature of the Rose. The flowers are used to flavor wines and other beverages, and their petals are used in salads and desserts. The rose hip is a popular ingredient in the making of jellies and jams.

ROSAE (ancient Roman name). Rosuleum. Rose. Ornamental deciduous shrubs, upright or climbing or creeping, usually with prickly stems, alternate, stipulate, flowers, simple, leaves, small, opposite, petiolate, flowers, white, pink, or red; fruits, orange, red, yellow, or black; fragrance of the blossoms is the most characteristic feature of the Rose. The flowers are used to flavor wines and other beverages, and their petals are used in salads and desserts. The rose hip is a popular ingredient in the making of jellies and jams.
regard to the foliage the handsomest of the hardy Roses, with its dark green leathery and glossy leaves.

Most of the species are hardy or almost hardy north, as _R._ _rugosa_, _setigerca_, _Corallia_, _Crepiniana_, _hederifolia_, _varia_, _rubiginosa_, _spiniosissima_, _alpina_, _arvensis_ and _multiflora_. Some species, as _R._ _Vigilante_, _sempervirens_, _suffruticosa_, _microphylla_, _Chinensis_ and _Equilatera_, require protection north. Others, as _R._ _Baukia_, _bracteata_, _laxiflora_ and _gigantea_, are hardly only south.

With few exceptions the Roses are of easy cultivation and grow in almost any kind of soil, except in a loose and very sandy one. They are readily transplanted. The Wild Roses need little pruning; they should only be thinned out and the weak and old wood be removed; long and vigorous shoots should not be shortened, especially in the climbing varieties, as these shoots are the most floriferous.

All true species can be propagated by seeds. The hips should be gathered as soon as ripe, the seeds washed out and sown at once or stratified and sown in spring. They germinate the first year, but if kept in the hips during the winter and allowed to become dry, they usually do not germinate until the second year. Mice are very fond of the seeds. Almost all species grow readily from cuttings of nearly ripe wood in summer under glass. Many species, especially the climbing Roses, can be propagated by hardwood cuttings taken in fall and planted in spring. Layering is less often practiced, except with a few species, like _R._ _lutea_ and _R._ _hemispharica_, which do not grow readily from cuttings. Some species, especially those of the groups of Cinnamomeae, Caroliniae and Gallicae, can be increased by root-cuttings; the roots are taken up in fall, stored during the winter in sphagnum or sand in a frost-proof room, and sown in spring in drills and covered about 2 inches deep. The species of the last-named groups and some others are also often increased by suckers and division. Budding and grafting is less often done with the Wild Roses and should be avoided for Roses in shrubbery where the individual plants cannot be carefully watched; the stock usually throws up suckers and outgrows the clim, often in a short time.

The French botanist Gandoger actually describes from Europe and western Asia alone 4,200 species. The majority of botanists recognize over 100 species. The Roses are almost equally distributed through the colder and temperate regions of the northern hemisphere, in America extending to North Mexico, in Africa to Abyssinia, and in Asia to India. They are all shrubs of upright habit, or climbing or ramose, with usually prickly stems; _fr._ stipulate, alternate, odd-pinnate, with 3 to many _lfts._ (Figs. 2146, 2147), rarely simple; the _fls._ are mostly large and showy, pink, purple, white or yellow, and appear usually solitary or corymbose at the end of short branchlets; _petals_ and _sepals_ 5, rarely 4; _stamina_ numerous; _pistils_ numerous, rarely few, inclosed in an urn-shaped receptacle, which becomes fleshy and berry-like at maturity, containing several or many _bony_ _aëres_, usually erroneously called seeds; the _fr._ itself is called a "hip." (Fig. 2145, 2146). The _fls._ show a remarkable tendency to become double, and such forms have been known and cultivated from time immemorial. These innumerable garden forms, increasing every year, are almost exclusively of hybrid origin and are therefore omitted in the botanical classification of the genus.

Many attempts have been made to subdivide the genus with more or less satisfactory results; the more important are those by A. DeCandolle, Lindley, Regel and Baker. Nowadays the arrangement proposed by Crénin is considered the most natural and satisfactory and has been followed in the account given below. No good general monograph has been published since Lindley’s Monographia Rosarum (1820), except a rather short one by Regel in 1877. Of the more recent publications the most important are those of Crénin, especially his _Primitiae Monographiae Rosarum._ In consulting his publications one has to bear in mind that the author changed his opinion somewhat respecting the value of the species during his studies of the genus. In his later publications he takes a broader view in regard to the specific value of the Rose forms and unites under one species many forms which he formerly considered as distinct species. An illustrated monograph valuable for the knowledge of the older garden forms and species is Thory and Rédent’s "Les

2146. A 5-foliate Rose leaf.

Rosa is a widespread genus, easily distinguished by well-marked characters from allied genera, but in the limits of the genus itself the characters are exceedingly variable and it is very difficult to group into sections and species the innumerable forms which often pass gradually into each other. In no other genus, perhaps, are the opinions of botanists so much at variance in regard to the number of species. While some, as Bentham and Hooker, estimate the number at about 30.
Rosa, with 160 colored plates (1817-1820). It is quoted below as Red. Ros. As the first edition in folio is found in only very few libraries, the smaller edition is cited. In parentheses by volume, groups and the sequence of the plates, neither pages nor plates being numbered continuously in this edition.

The economic properties of the Rose are of little importance. The most valuable product is that of Rosa, a highly fragrant essential oil. It is chiefly manufactured in southeastern Europe and western Asia from Rosa alba and R. Damascena, and of late this industry has been successfully transplanted to Germany. See Pomery's Gardening, Vol. III. The fruits of some species, especially of R. villosa and R. canina, are made into preserves.

For general notes on culture, see Rosa.

INDEX.

Alyssinae, 8.
Aciaria, 40.
Agaila, 36.
Abae, 18, 41.
Alba, 14, 41.
Alba plena, 13, 41.
Alba, 36.
Alata, 42.
Alpina, 42.
Andr., 41.
Arkan., 39.
Arven., 7.
Arru., 16.
Bang., 34.
Berbelida, 33.
Bic., 17.
Blanc., 39, 39.
Blanca setacea, 39.
Boum., 13.
Bourr., 49.
Burg., 16.
Cal., 17.
Calif., 33.
Calyc., 41.
Caul., 45.
Canina, 22.
Capr., 7, 16.
Carm., 2, 2.
Carolina, 24.
Centif., 16.
Chero., 49.
Chel., 11.
Cnum., 35.
Cory., 24.
Crist., 16.
Dag., 17.
Daw., 2.
Dev., 24.
Djo., 16.
Eug., 21, 43.
Eng., 49.
Fend., 31.
Ferox, 16.
Ferr., 41.
Frag., 11.
Franch., 19.
Frax., 38.

pinnaria, 36.

Rosa

It

Germany.

highly

horticultural

Fls.

Stems

usually

(see

48.

chiefly

Altaica,

Frctnfofurtana,

ferox,

Arkansana,

alpina,

alba-plena,

alba.

AA.

Engelm.,

Califoruica,

Burgundiaca,

Kvlanda,

lucida,

Engelmania,

Cattleya,

1548.

For

than

17.

...>

Vs.

has

is

CaTnelli,

1548

notes

Fig.'2150

38.

11.

29.

41.

42.

17.

19.

20.

19.

19.

26.

11.

25.

2.

12.

11.

36.

42.

16.

25.

12.

16.

16.

12.

16.

16.

16.

23.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.

41.
2149. A spray of Rose hips.

SUBGENUS EUREOBA. A group of about 13 species (one of them American), well marked by the styles being connate into a slender exerted column. Stems scented or climbing, with hooked prickles; fls. in corymbs, few or many; outer sepals pilose, rarely entire, reflexed after flowering, caducous.

KEY TO SPECIES OF SECTION I.

A. Stipules pectinate; prickles usually in pairs

B. Stipules entire; prickles scabrous

C. Sepals ovate, abruptly acuminate

D. Sepals orbiculate, usually 9, glabrous

E. Sepals ovate, usually 5, small, glabrous

S. Watsoniana

S. setigera

S. Wichuraiana

S. sempervirens

S. arvensis

SECTION II. Multiflora, (R. polyantha, Sieb. & Zucc.)

Deciduous shrub, with vigorous, long, recumbent or climbing branches: fls. numerous, yellow, somewhat scented, with short stalks, solitary, or in small clusters, usually 5-8 per branch. Styles and filaments usually caducous.

SECTION III. Simplex. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION IV. Simplex, var. Cinnamomeus. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION V. Simplex, var. rugosa. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION VI. Simplex, var. arvensis. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION VII. Simplex, var. moschata. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION VIII. Simplex, var. ramosa. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION IX. Simplex, var. rugosa. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION X. Simplex, var. arvensis. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XI. Simplex, var. moschata. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XII. Simplex, var. ramosa. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XIII. Simplex, var. rugosa. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XIV. Simplex, var. arvensis. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XV. Simplex, var. moschata. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XVI. Simplex, var. ramosa. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XVII. Simplex, var. rugosa. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XVIII. Simplex, var. arvensis. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XIX. Simplex, var. moschata. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XX. Simplex, var. ramosa. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XXI. Simplex, var. rugosa. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.

SECTION XXII. Simplex, var. arvensis. A group of about 10 species, with the styles usually 5-7-flowered, with a longer style than the filaments. Sepals usually 5, obtuse, pubescent.
crimson ffs. A.G. 16:233. Hybrids with *R. setigera* and *R. Wichuraiana* have also been raised.

3. *Watsoniana*, Crép. Deciduous shrub, with serrated or recurved branches: ffs. 3-5, linear-lanceolate, with entire wavy margin, pubescent beneath, 1-2½ in. long; ffs. in many-fld. pyramidal corymb, ½ in. across or less, white; style glabrous; fr. small, June, July. R.H. 14, p. 153. G.F. 3:147.—A very curious Rose of unknown origin, supposed to have been introduced from Japan, but not known in a wild state. Not quite hardy north.

Var. *capreolata*, Neill. Attractive Rose. Lfs. usually 5; ffs. double, white to deep pink. It may be a hybrid with *R. gallica*, Hardy.

2152. *Rosa setigera* (X nearly ¼). See No. 4.

2151. Crimson Rambler Rose. See No. 2.
9. stylbosa, Dev. Shrub, with long, arching branches, prickly: lvs. ovate-oblong, acute, serrate, pubescent-beneath, 5-12 in. long; fls. in few-fld. corymbs, white or light pink, 1½-2 in. across; styles glabrous. June, July. W. Europe. Red Ros. (11:5, 21).—Of little ornamamental value.

SECTION 11. INDICA. Few Asiatic species with upright or procumbent stems; prickly.

11. Chinensis, Jacq. (R. Indica, Lindl., not Linn.). China Rose. Bengal Rose. Low, upright shrub, with slender branches, sometimes almost unarmed: lts. 3-5, sometimes 7, ovate to oblong, acute, finely serrate, coriaceous, shining and dark green above, pale beneath, glabrous, 1-2½ in. long; lfts. usually few or solitary, corymbs, pink, white or yellowish, sometimes 3 in. across, fragrant; fr. usually obovate. Flowering all summer and fall.

China. From this species and R. Gallica and its forms most of the Garden Roses have originated. Several vars. are known.

Var. Devoniensis, Hort., is probably a hybrid: it is of vigorous growth, almost climbing, and has large, yellowish white, double flowers. P.M. 8:169.

Var. fragrans, Thory (R. Indica, var. odoradissima, Linn.). Tea-scented or Tea Rose. Similar to the following but fls. more fragrant, salmon-pink or light rose: fr. ovate. B.R. 10:804. More tender than the other vars.

Var. minima, Curt. (R. Lawrenceana, Hort. R. Indica, var. minima, Thory.). Dwarf shrub, usually not over 1 ft. high, with small rose-colored fls. about 1½ in. across; petals often pointed. There are single- and double-flowered forms. The Fairy Roses belong to this variety. B.M. 1702. Red Ros. (3:25, 6, 7).

Var. sempervirens, Nichols. (R. sempervirens, Curt. R. Bourbonis, Poir.). Cushion Chinese Rose. Low shrub, with slender, prickly or almost unarmed, dark green branches: lts. rather thin, mostly stained with purple: fls. usually solitary on slender pedicels, crimson or deep pink. B.M. 284.

Var. vitellifera, Dipp. (Green Rose. With monstrous green fls., the petals are transformed into small, narrow green lvs. F.S. 11:136.

Var. Manetti, Dipp. (R. Manetti, Hort.). Fig. 2156. Of vigorous growth, upright; pedicels hispid-glandular: fls. deep pink, single or semi-double. This variety has been recommended as a stock for forcing Roses; grows readily from cuttings, but is not quite hardy.

12. Noisettiana, Thory. Noisette Rose. Champney Rose. Supposed hybrid of R. Chinensis and R. moschata. Stems upright to 6 ft., with hooked reddish prickers: lts. 5-7, usually oblong-lanceolate or oblong-ovate, glabrous: fls. usually in corymbs, light pink to red, sometimes yellow; styles glabrous. Blooms in summer and fall.—Numerous garden forms. The Noisette Rose was raised about 1817 by John Champney, of Charleston, S. C., from seed of the Musk Rose fertilized by a bluish China Rose. From the seed of this hybrid Philipppe Noisette, a florist at Charleston, obtained a Rose which was afterwards distributed as Blush Noisette by his brother Louis Noisette, of Paris.

13. Borbonica, Morren. Bourbon Rose. Supposed hybrid of R. Chinensis and R. Gallica. Upright shrub, with prickly and often glandular-blotched branches: lvs. usually 7, ovate or ovate-lanceolate, acute, shining; fls. double or semi-double, usually purple, blooming in summer and fall. The Bourbon Roses are harder than the Noisette, China and Tea-scented Roses, but require protection north. R. Chinensis and its varieties and hybrids (hybridizing with the hardier Roses of the Gallica group) have given rise to the Hybrid Perpetual or ReRMontant class. See Nos. 11 and 16.

SECTION IV. BANKSIA. Contains one Chinese species with climbing, sparingly prickly or unarmed stems: stipules quite free, subulate, caduceous; sepals entire, reflexed after flowering, caduceous.

SECTION V. GALICIA. Contains only one very variable species, native of Europe and W. Asia. Low, upright shrub; the stems with usually hooked prickles mixed with bristles: lfts. free and often with narrow bracts or saliary on a usually leafless peduncle; sepals reflexed after flowering, caduceous, the outer ones pinnate: upper stipules not dilated.

Var. pamila, Jacq. (R. austriaca, Crantz). Dwarf form, with creeping rootstock: lfts. red, single. Red. Ros. (2:17, 2). Var. centifolia, Regel (R. centifolia, Linn.). Cabbage Rose. Lfts. usually 5, pubescent on both sides or only beneath, larger and thinner; racemis not prickly: lfts. on longer and more slender pedicels, nodding, fragrant; petals reflexed. June, July. This Rose has been usually considered as a distinct species, but is without doubt only a form of R. Gallica, originated in cultivation. It has not been found wild, except with double lfts., possibly escaped from gardens. The following are forms of the Cabbage Rose: Var. muscosa, Sér. (R. muscosa, Ait.). Moss Rose. Fig. 2157. Fls. rose or white, with peduncles and calyx glandular-mossy. B.R. 2:102. B.M. 109. Gn. 18:222. Var. cristata, Curt., is similar, but the sepals are doubly and loosely lobed; lfts. rose-colored, large. B.M. 3475. Var. pomponia, Now. Dub. (R. pomponia, DC.). Dwarf form, with small lfts. and small double fls., about 1-1/2 in. across, varying from white to red. R. Bungundulae, Pers. R. Diplocladus, Roessig. R. pulchella, Willh., and R. partitifolia, Ehrh., belong here. From R. Gallica, with its varieties, and R. Damascena, the Hybrid Perpetual or Remontant Roses have originated by hybridizing with R. Chinensis and its forms.

17. Damascena, Mill. (R. biloba, Pers. R. calendula, Borkh.). Damask Rose. Attaining 5 ft.: stems usually with numerous stout and huddled prickles, sometimes mixed with glandular bristles: lfts. usually 5, sometimes 7, ovate-oblong, serrate, or less pubescent beneath, 1-2 in. long; stipules sometimes pectinate: pedicels prickly: lfts. usually coriaceous, double, red, pink or white, sometimes striped; pedicels and receptacle glandular-hispid: fr. obovate, June, July, and again in autumn. Origin unknown; introduced to Europe from Asia Minor in the sixteenth century.—Var. trigintipetala, Dieck, with semi-double red lfts., is considered to be the Rose chiefly cultivated in southeast Europe for the manufacturing of attar. Gn. 38, p. 129. G.C. III. 7:45.

18. alba
19. turbinata

2155. Rosa Wichuraiana (X 1/2). See No. 5.

2156. Rosa Buchholzianæ (X 1/2). See No. 5.
fls. single or double, solitary or several, white or blush, fragrant; pedicels glandular-hispid; receptacle usually smooth; fr. oblong, scarlet. June. Probably hybrid of *R. Gallica* and *R. canina*.

19. turbinata, Ait. (R. Fianceiifolia, Borkh.). Upright shrub, attaining 6 ft.; stems with straight or hooked prickles; flowering branches almost unarmed; fls. 5–7, oval, serrate, pubescent beneath; upper stipules much dilated; pedicels usually many–fidi; with dilated bracts; outer sepals pinnate, reflexed after flowering and caducous or erect and persistent.

SECTION VI. CAUDEA. Many species in Europe, N. Africa and W. Asia. Upright shrubs, with scattered usually hooked and numerous prickles; upper stipules dilated; corolla usually many–fidi; with dilated bracts; outer sepals pinnate, reflexed after flowering and caducous or erect and persistent.

A. Foliage pubescent on both sides or densely glandular.

AA. Foliage glabrous or nearly so.

20. villosa, Linn. (R. Pomifera, Herrm.). Upright shrub, attaining 8 ft., with almost straight spikes; fls. 5–7, oval to ovate-oblong, acute or obtuse, doubly glandular-serrate, grayish green, pubescent above, tomentose beneath. 1–2 in. long; fls. 1–3, pink, 1½–2 in. across on prickly pedicels; fr. scarlet, ovoid or subglobose, to 1 inch across, hispid, with persistent erect sepals. June, July. Eu. W. Asia.—Hardy Rose, with large ornamental fruit. Var. mollisima, Roth (R. mollis, Sm.). Lower, with shorter prickles, smaller, silky-pubescent fls.: fr. smaller, less hispid.

21. rubiginosa, Linn. (R. Euclanthesis, Mill., not Linn.). Sweetbrier. Eglantine. Dense shrub, attaining 6 ft., with hooked prickles often mixed with bristles; fls. 5–7, oval to ovate-oblong, acute or obtuse, doubly glandular-serrate, grayish green above and glabrescent, pale beneath and often pubescent, glandular on both sides, ½–1 in. long; fls. 1–3, on hispid short pedicels, bright pink, 1½–2 in. across; receptacle usually glandular-hispid; fr. subglobose or ovoid, orange-red to scarlet, with upright-spreading, usually caducous sepals. June. Europe; naturalized in some localities in the East. E.B. 2:222.—A handsome hardy Rose of compact habit, with bright green foliage exalting a very agreeable aromatic odor. There are some double forms and hybrids with other species.

22. canina, Linn. Dog Rose. Upright shrub, attaining 10 ft., with often recurving branches; prickles stout, hooked; fls. 5–7, oval or elliptic, doubly serrate,

2157. Moss Rose. See No. 16.

23. ferruginea, Vill. (R. rubriflora, Vill.). Upright shrub, attaining 6 ft., with slender, purplish branches covered with glaucous bloom; prickles few, hooked or straight; fls. 7–9, elliptic to ovate-lanceolate, simply serrate, bluish green and more or less tinged with red, ½–1½ in. long: fls. 1–3 or more, pink, 1½ in. across, on usually hispid-glandular pedicels; sepals long, on dilated apex, upright spreading, tardily caducous; fr. subglobose, scarlet. June. Mountains of M. and S. Eu. B.R. 5:439.—Effective by its reddish foliage; fls. less conspicuous. Hardy.

SECTION VII. CAROLINA. Contains only American species. Upright, mostly low shrubs; stems slender, with usually straight prickles, placed in pairs and often mixed with bristles; upper stipules usually narrow; corolla generally few–fidi; sepals spreading after flowering, caducous, the outer ones entire or with few erect lobes: achenes inserted exclusively at the bottom of the usually depressed-globose receptacle.

A. Pedicels rather long: fls. 5–9

B. Pedicels, finely many–toothed: prickle hooks usually hooked; stipules convolute. 24. Carolina

BR. Pedicels, coarsely toothed: prickles usually straight and slender; stipules flat.

25. lucida

26. humilis

27. nitida

AA. Pedicels very short: fls. 7–11, small and narrow.

28. foliolosa

24. Carolina, Linn. (R. palustris, Marsh. *R. coromandulina, Ehrh. R. Pennsylvanica, Michx.). Fig. 2155. Upright shrub, attaining 8 ft., with slender stems: fls. usually 7, elliptic to narrow-oblong, acute at both ends, usually pubescent beneath, ½–2 in. long; stipules narrow; fls. usually corimbos, pink, about 2 in. across; fr. depressed-globose, glandular-hispid, about ½ in. high, like those of the following species. June–Aug. Nova Scotia to Minn., south to Fla. and Miss., preferring swampy and moist ground. G.W.F. 35. Em. 2:488. Mn. 1, p. 86.—Var. Nutalliana, Hort., has larger fls. appearing later and continuing until September.
25. *lucida*, Ehrh. (*R. hümílis*, var. *lucida*, Best). Shrub, 6 ft. high, with few or no suckers; prickles sometimes hooked; leaflets 7-9, elliptic to obovate-elliptic, dark green and shining above, thickish, often slightly pubescent beneath, ½-1½ in. long; stipules somewhat dilated: leaflets, usually few or solitary, about 2 in. across; sepals usually entire: fr. like that of the preceding. June, July. Newfoundland to N. Y. and Pa. B.B. 2:231. G. 55, p. 428.—Well adapted for borders of shrubberies, handsome in summer with its shining foliage and bright pink flowers; ornamental in winter with the brownish red stems and red fruits, remaining plump until the following spring. Var. alba, Hort., has white leaflets and green stems. A.F. 12:1098. G. 5:506. Var. plena, Hort. With double leaflets, *R. hümílis* 'Rose', is also supposed to be a double-flowered var. or perhaps hybrid of this species.

26. *hümílis*, Marsh. (*R. parvifílosum*, Ehrh. *R. Lígni*, Pursh.) Fig. 2188 c. Shrub, 3 ft. or sometimes 6 ft. high, spreading by means of numerous suckers, with slender prickles and usually numerous bristles: leaflets 5-7, resembling those of the former but narrower, thinner, not shining, usually pubescent beneath: leaflets, often solitary; outer sepals lobed. June, Maine to Ga., west to Wis. and Ind. Terr. Much resembling the preceding, which is often considered a var. of this species. Var. villósum, Best. Lvs. villósum-pubescent beneath, thickish.

A. Prickles in pairs at the base of pedioles: branches glabrous.
B. Sepals deciduous: fr. about ½ in. across, with very few achenes... 25. *gymnocárpa*.
BB. Sepals persistent, erect after flowering.
C. Sepalss flat.
D. Fls. in usually many-flowered corymbs, usually ½ in. across (larger and sometimes solitary in Nos. 31 and 32): fr. about ½ in. across; stipules usually entire and narrow.
E. Flor. glabrous, with no or very short neck, about ½ in. high (sometimes acute in No. 31).
F. Sepals quite entire... 30. *pisocárpa*.
31. *Fendleri*.

FR. Sepals with few lobes on the outer margins... 32. *Woodsii*.

EE. Fr. glabrous, with prominent neck, ½ in. high... 33. *Californica*.

DD. Fls. usually solitary, 2 in. across or more: fr. ½ in. across; stipules dilated, glandular-ciliolate... 34. *Nuttalliana*.
CC. Stipules concolorous, dilated, 35. *cinnaoméne*
AA. Prickles scattered, sometimes in pairs in No. 41.

B. Stems and branches almost unarmed, without bristles... 36. *pendulin*a.
37. *reclinata*.
38. *Virginiana*.

BB. Stems and branches with numerous prickles and bristles.

C. Branches and prickles glabrous.

D. Fls. corymbose: fr. with spreading sepals... 39. *Arkansana*.

DD. Fls. solitary: fr. with erect sepals... 40. *acicularis*.
CC. Branches and prickles bowing or pubescent... 41. *rugosa*.

31. *Fendleri*, Crèp. Stems 8 ft. high, with slender or recurved prickles, sometimes unarmed: leaflets 5-7, oblong to oblong-obovate, cuneate at the base, simply serrate, usually glabrous, finely pubescent beneath or glabrous, sometimes glandular, ½-1½ in. long; leaflets, sometimes solitary, pink; pedicels short, smooth; fr. glabrous, sometimes ovate, bright red, with little or no neck. June, July. Brit. Col. to W. Tex. and New Mex. B.B. 2:230 (as *R. Woodsii*).—Very decorative in fruit, which remains during the whole winter.

32. *Woodsii*, Lindl. Stems 3 ft. high, with slender, straight or recurved prickles, often bristly; leaflets 5-7, obovate to oblong, simply or doubly glandular-serrate, pubescent or glabrous beneath, ½-1½ in. long; leaflets, often solitary, pink, ½-2 in. across, on very short smooth pedicels: fr. glabrous, with short neck. June, July. Saskatchewan to Colo. and 36. D.B. 12:756.—The two preceding species may be only vars. of *R. Woodsii*.

33. *Californica*, Cham. & Schl. Steins 8 ft. high, with stout, hooked or straight prickles, often bristly; leaflets 5-7, broadly elliptic to oblong-obovate, simply or
ROSA
doubly glandular-serrate, pubescent beneath or on both
sides, often glandular, rarely glabrous, \(\frac{1}{2}-\frac{3}{4} \) in. long;
fls. on slender, usually smooth pedicels, over 1 in. across.

2159. Rosa cinnamomea (\(\times \frac{1}{2} \)).
One of the old-fashioned hardy Roses. No. 33.

34. Nutkana, Presl. Stems stout, 5 ft. high, with
usually straight prickles and sometimes bristly:
fls. 3-7, broadly elliptic to oblong-lanceolate, generally
rounded at the base, usually doubly glandular-serrate,
almost glabrous, often glandular beneath, \(\frac{1}{2}-2 \) in. long.
June, July, Alaska to Ore. and Utah. J. F. 1:448.—Has
the largest fls. of the western species. Var. hirsuta,
Fernald, has the receptacle glandular-hispid.

35. cinnamomea, Linn. Cinnamon Rose. Figs. 2159,
2160. Stems slender, 6 ft. high, with hooked prickles,
flowering branches sometimes unarmed: fls. 5-7, sometimes
3 on lvs. of flowering branchlets, oblong, simply
serrate, dull green, densely pubescent beneath, \(\frac{1}{2}-\frac{3}{4} \) in. long;
solitary or few, purple, about 2 in. across, on short,
naked pedicels: fr. depressed-globular, scarlet.
—Var. fuscundissima, Voss (R. fuscundissima, Muech.)
With double fls. Sometimes escaped from cultivation
in the East.

36. pendulina, Linn. (R. alpina, Linn.). Fig. 2149.
Stems slender, 3 ft. high: fls. 7-9, oblong-ovate or ob-
long-elliptic, obtuse, doubly glandular-serrate, usually
glabrous, \(\frac{1}{2}-\frac{3}{4} \) in. long; fls. pink, usually solitary or 2-5,
to 2 in. across; pedicels and receptacle usually smooth;
fr. usually nodding, oblong or ovate, with elongated
—Handsome free-flowering shrub. Var. Pyrenaica, W.
D. Koch (R. Pyrenaica, Gouan.). Dwarf, with the
pedicels and usually also the receptacle glandular-hispid.
B. M. 6724. Gn. 27:196.

37. reclinata, Thory (R. Boursaulti, Hort.). Sup-
posed hybrid of R. pendulina and R. Chinensis.
Climbing to 12 ft., with slender, sparingly prickly
branches: fls. 3-7, oblong-ovate, glabrous: fls. in
corymbose, rarely solitary, pink, sometimes white, \(\frac{1}{2}-2 \) in.
across; outer sepals with one or few lobes. June,
Mu. 3:116.—Adapted for covering dry slopes and barren
places. According to E. L. Greene, the true R. Arkansa-
sana is restricted to Colorado and perhaps New Mexico,
while the form common in the region north and west
of these localities is a different species, for which he
proposes the name R. prattii; this form is described
above. The true R. Arkansana, Porter, differs by its
glabrous foliage, glandular and bristly stipules and re-
duced sepals. At the same place (Pittonia, 4:10-14)
Greene describes four other new species belonging to
this section.

40. acicularis, Lindl. Stems low, densely prickly:
fls. 3-7, broadly elliptic to narrowly oblong, rounded
at base, simply or doubly serrate, pubescent beneath,
\(\frac{1}{2}-2 \) in. long; fls. solitary, deep rose, \(\frac{1}{2}-2 \) in. across,
fragrant; sepals entire and nearly glabrous: fr. globu-
lar to oblong, \(\frac{3}{4}-4 \) in. long. May, June. Alaska to Oti-
ario and Colo., N. Eu., N. Asia, Jap.—A very variable
species.

Var. Sayi, Relch. (R. acicularis, var. Bourgeantiana,
Crép., var.), Fig. 2161, Lfts. glandular and pubescent
beneath, usually somewhat doubly glandular-serrate:
fls. larger, often 2(\(\frac{3}{4} \)) in. across; fr. usually glabular.
Ontario to Brit. Col. and Colo. B. B. 3:1867. Var. Engel-
maani, Crép. in herb. (R. Engelmaani, Wats.). Similar
to the preceding: fls. distinctly doubly glandular-serrate:
fr. oblong, to 1 in. long. Colo. to Brit. Col. G. F.
long; pedicels bristly; branchlets and pedicels glandu-

41. rugosa, Thumb. Figs. 2148a, 2162-4. Upright shrub,
attaining 6 ft., with stout stems densely beset with
prickles and bristles; fls. 3-9, oval to obovate-oval,
rugose, shining and dark green above, glaucous and
rubescent beneath, thick and firm. ½-2 in. long; petals tomentose and bristly; stipules dilated; flo. solitary or few, purple or white, 2½-3½ in. across; bracts large; pedicels prickly; receptacle smooth; flo. depressed-globose, brick red, to 1 in. across. May-Sept., N. China, Corea, Jap.—Very variable species. Var. ferox, C. A. Mey. (var. Thunbergiana, C. A. Mey. R. ferox, Lour. R. Regelliana, André & Lind. R. Andvver, Lange). Stout and densely armed; flo. thick, very rugose and shining; flo. large, 3½ in. across; fr. 1 in. across. S.Z. 1:28; B.R. 5:429. Gt. 30:1649; 42, p. 537. G.C. H. 14:572. Gn. 46, p. 324; 52:1144; 55, p. 634. I.H. 18:147. Gm. 1:75. 5:509. A.G. 15:392, 544; 18:567. Var. Kamtschatic, Regel (R. Kamtschatlica, Vent.). Less densely armed: flo. thinner, less rugose; flo. and fr. smaller. B.R. 5:419. B.M. 2149. Besides these the following forms are often cultivated: Var. alba, with large white flo. Gn. 9:39; var. alba plena, with double white flo.; var. rosea, with pink flo.; var. rubra, with purple flo.; var. rubra plena, with double purple flo. Gt. 24:646. R. rugosa is one of the most ornamental Single Roses, especially for shrubberies; it is very handsome on account of its dark green shining foliage, large flo. appearing during the whole summer, bright red conical fruits, and its beautiful orange and scarlet fall coloring. It is also attractive in winter by reason of its stout, densely armed stems. Large numbers of hybrids have been raised. By crossing with double-fld. Garden Roses R. rugosa has given rise to a new race of hybrid Roses remarkable for their hardiness and long blooming season; one of the best known is Mme. George Brunet (Fig. 2165), with double white flo., a cross of R. rugosa and the Tea Rose Sombreuil. Another cross with a form of R. Chinensis in R. rugosa, var. elongatum, Brunet, with single rose-colored flo. and handsome fr. produced very abundantly. Gn. 46, p. 548; 52, p. 384. B.H. 1895, p. 446, 447. I.H. 12, p. 15. Hybrids are also known with R. multiflora, R. cinnamomea, R. microphylla, R. spinosissima, R. Wichurana and R. humilis, and there are probably others.

SECTION IX. Pimpinellifolia. Few Old World species.
Upright shrubs, usually low; prickles straight, scattered, usually numerous and mixed with bristles; leaflets very small, usually 2; stipules narrow, with divergent and dilated auricles; flo. solitary, without bracts; sepals entire, erect and persistent.
32. spinosissima, Linn. (R. pimpinellifolia, Linn.). Scotch Rose. Low shrub, with upright recurving or
spreading branches, 3 or 4 ft. high, usually densely beset with slender prickles and bristles; fls. 5-11, usually 9, orbicular to obovate, usually or doubly serrate, glabrous, sometimes glandular beneath, ½-3½ in. long; fls. solitary, but usually very numerous among the stems, pink, white or yellowish, ⅔-2 in. across; pedicels smooth or glandular-hispid; fr. globular, black. May, June. Eu, W. Asia to China. Gn. 55, p. 425.—Very variable. Var. altaica, Thory (R. altaica, Willd. R. glanduliflora, Lindl.). More vigorous; fls. large, white; pedicels smooth. B.R. 11:888. Gn. 53:1189. A.F. 12:1999. Gag. 5:397.

Var. myricanthes, W. D. Koch (R. myricanthes, DC.). Branches very prickly; fls. doubly glandular-serrate, very small; fls. small, white, bluish. Tied, Ros. (1:67). There are also vars. with double or semi-double, pink, white or yellow fls. (Gn. 29:554). Several hybrids are known. R. Hibérensis, Smith, a low shrub with glaucous green foliage and small pale pink fls., is a hybrid with R. canina. R. rubella, Smith, with dark green foliage, red fls. and scarlet, pendulous oval-oblong fruits, is a hybrid with R. pendulina. R. revina, Waldst. & Kit., is similar and probably of the same parentage.

SECTION X. LUTEA. Two Asiatic species. Upright or somewhat sarmentose shrubs, with scattered, straight or hooked prickles; stipules usually narrow, with divergent and dilated auricles; fls. yellow, without bracts; sepals entire, persistent, upright.

43. Eglanteria, Linn., not Mill. (R. lobia, Mill.). Shrubs with long, slender, often sarmentose or climbing stems, becoming 10 ft. high, usually with straight prickles; fls. 5-9, broadly obovate to oval, doubly glandular-serrate, dark green above, often glandular, ½-2 in. long; stipules glandular-serrate; fls. sometimes several, but without bracts to the main pedicel, bright yellow, 2-2½ in. across, of unpleasant odor; fr. globular. June, W. Asia. B.M. 1677. Gn. 53, p. 23; 55, p. 425. Var. pléna, Hort. With double fls. Gn. 53:1132. See No. 41.

44. hemisphärica, Herrm. (R. glaucescens, Ehrb. R. salpárense, Ait. R. Rosifólia, B. & B.). Closely allied to the preceding; stems slender, with hooked prickles; fls. obovate, cuneate at the base, simply serrate, bluish green; fls. usually solitary, scentless, light yellow; pedicels glandular-hispid. June. W. Asia.—

2146. Semi-double Rosa rugosa.

(× ¾). No. 41.

Var. Harrisoni, Hort., Harrison's Yellow Rose, is of paler color and a little less double than Persian Yellow, but it blooms more freely, is more vigorous, harder and easier to grow. It is of American origin and may be a hybrid of Persian Yellow with Rosa spinosissima.

SECTION XI. SERICEA. One Asiatic species. Erect shrubs, with the prickles in pairs; stipules narrow, with erect dilated auricles; fls. solitary, without bracts; sepals entire, persistent and upright.

44. sericea, Lindl. (R. tetrapétala, Royle). Attaining 12 ft., with prickly and often bristly branches; fls. 7-9, oval or obovate, serrate, glandular or silky pubescent beneath, ½-3½ in. long; fls. white, ⅔-2 in. across; petals usually 4, sometimes 5; fr. globose or turbinate. May, June. Himal. B.M. 5200. R.I. 1897, p. 444, 445.

SECTION XII. MUNIFICOLAE. Two American species. Low shrubs with slender, scattered prickles; fls. small, incurved-serrate; stipules with dilated and divergent auricles; fls. solitary, without bracts; sepals erect, persistent, the outer ones glaucous.

46. munificola, Engelm. Dense spreading shrub, 4 ft. high; fls. 5-7, ovate to oblong, incised dentate, puberulous, ½-3½ in. long; fls. short-pedicelled, pink or white, about 1 in. across; fr. hispid. April, May. Calif. G.F. 1:102.
47. _stellata_, Wooton. Similar to the preceding: fls. 3-5, broadly euneate-obovate; fls. 11/4-2 in. across, deep rose-purple. New Mex. Bull. Torrey Bot. Club 25:333. - This and the preceding would be handsome shrubs for rockeries, especially the latter, on account of its larger fls. Both are probably tender and probably are not yet in cult.

Section XIII. Bracteata. Two Asiatic species. Shrubs with erect or sarmentose and tomentose or pubescent stems; prickles in pairs; stipules large and persistent; inflorescence with large flowers; sepals reflexed after flowering, entire; receptacle tomentose.

48. _bracteata_, Wendl. (R. Macfieana, Dunn.) Macartney Rose. Stems usually procumbent or sarmentose, villous-tomentose, with stout hooked prickles; fls. 5-9, oval to obovate, crenately serrulate, bright green above and somewhat shining, almost glabrous beneath, 1/2-2 in. long; fls. one or few, short-stalked, white, 2-2 1/2 in. across; sepals and receptacle densely tomentose. June-Oct. S. China, Formosa; naturalized in Fla. and La. B.M. 1577. - Handsome half-evergreen climber, not hardy north.

Section XIV. Levigata. One Asiatic species. Climbing shrub, with scattered hooked prickles; fls. generally 4; stipules absent; fls. solitary, without bract, large, white; sepals erect, entire, persistent.

50. _microphylla_, Roxb. Much-branched spreading shrub 6 ft. high, with straight or ascending prickles; fls. 11-15, elliptic to obtuse-elliptic, acute, sharply serrate, glabrous or pubescent beneath, fls. pale pink, often solitary, 2-2 1/2 in. across, short-peduncled; sepals and receptacle prickly: fr. depressed-globose, 1 1/4-2 in. across, very prickly. June, July, China, Japan. B.M. 6548. - Var. plena, Hort. With double fls. B.M. 3490. B.R. 11:299. Not quite hardy north. Sometimes hybrids with _R. Chilensis_ and with _R. rugosa_ are cult. under the name of _R. microphylla_. The hybrid with _R. rugosa_ has large single purple fls., handsome bright green foliage and very prickly branches; it is a vigorous grower and will probably make a good hedge plant.
BOSCOEA

Supplementary List.

(The Roman figure indicates the group to which the species belongs.)

bless, Hance.—R. microcarpa. Fls. (I). Half-evergreen climbing shrub; fls. 5-5, dark green, glabrous and shining; fls. few, deep crimson, double China. Half-

hardy.—R. anemonioides, Boiss., is a variety of R. Begeriana, with silky pubescent trtts. —R. Begeriana, Schrank (VIII). Dense bush, to 3 ft.; prickles in pairs; fls. very small and bluish green; fls. ecorseous, white, calyx and apex of fr. falling off, leaving the small, globular fr. at the tip. N. Persia to Amla and S. Song. —R. cineraria, Thory (XIII). Closely allied to R. breviflora. Branches silky pubes-

n.—R. Ljelli, Lindl. Probably hybrid of R. moschata and R. echiophyllum. Upright shrub, with straight spines in pairs; fls. to 8 in. long, 5-7-foliate, dull green; pubescent beneath; fls. 1 or few, large, pink; fr. pyriform, Hinnal. Not hardly north.—R. microcarpa, Smith (VI). Allied to R. rubiginosa. With hooked prickles, without bristles; fls. slightly pubescent beneath; fls. pale pink, small; styles slightly exerted, glabrous. En., N. Afr. W. Asia.—R. microcarpa, Lindl. (R. Indica, Linn., not Linn.) (I). Branches slender, with scattered, hooked spines; fls. 2-7, ovate-lanceolate; stipules almost free; fls. ecorseous, white; fr. small, glabrous; sepals deciduous. China.—R. microcarpa. Hort. = multifrons.—R. moschata, Chaix. (VI). Allied to R. canina. Of vigorous growth, with strong spines; fls. broader, tinged red-

dish; fls. pink; pedicels and receptacle glandular-hispid. S. En., N. Afr.—R. sambucifolia, Desv. (VI). Allied to R. rubiginosa. Dwarf; prickles slender, subulate; fls. 5-7, simply serrate, pubescent on both sides; fls. pink, solitary, short-pedicelled. W. Asia.—R. Phacelis, Boiss. (I). Allied to R. moschata. Lfts. usually 5, oblate or acute; corollas usually many-flowered, pyramidal; styles glabrous. Asia Minor.—R. platycarpa, Schrank.—R. saxifraga, Hort. = R. saxifraga, Thory.—R. agrestis.—R. Scouiniana, Greene (VIII). Allied to R. Californica. Low shrub, to 1 ft.; with straight prickles; fls. broadly ovate, doubly glandular-serrate; fls. small, in dense corollas. Calif.—R. spithamaea, Wats. (VIII). Allied to R. Californica. Stems usually not over 1½ ft. high, sparingly branched; fls. doubly glandular-serrate; fls. usually solitary. Calif.—R. tomentosa, Smith (VI). Allied to R. villosa. Stems slender, often arching; prickles often slightly curved; fls. smaller, grayish green; fls. pale rose, longer pedicel; fr. smaller, with the sepals upright-spread, corolla at maturity. En.—R. Weihmanni, Wall. (VIII). Erect shrub, with prickly stems; fls. 5-9, very small, orbicular or oblong, usually glabrous; fls. mostly solita-

alfred rehder.

ROSA

Supplementary List.

(Rosaceae) See Sinningia.

ROSCHEMIA (name unexplained). Palûlæaceae. A genus of one species, a palm from Seychelles allied to

Hyophorbe, which see for differences. It is slender, erect, spiny at the nodes: lvs. terminal, long-petioled, at first 2-fld., later unequally pinnaulate; segments numerous, linear-lanceolate, 2-fld. at the apex, the numerous nerves scaley beneath; petiole spineless, somewhat 3-sided, concave above; sheath long, prickly; spadix 2-6 ft. long; peduncle long, slender, compressed; branches slender, rather rigid, many, entire, narrowed, compressed, naked, the lower ones persistent, the upper deciduous: fls. pale: fr. fusio-

form, small, black.

melanochôtes. Wendl. (Verschaffeltia melanochôtes, Wendl.). Trunk 15-25 ft. high, 2-3 in. in diam., with many aerial roots, and when young with a ring of spines below each leaf scar: lvs. 4½-7 ft. long; petiole 1½-2½ ft. long, smooth, with a pale band running from the top of the sheath down the back of the petiole; sheath 1½-2½ ft. long, with a few fine black spines; leaf blade pale green, 3½ ft. long, 2½ ft. broad, entire when young, unequally pinnate; segments 1½ ft. long, 2½ ft. at the apex, clothed beneath with peltate scale leaves. Seychelles. L.H. 1834.

Jared G. Smith.

ROSCEWA (Wm. Roscoe, founder of the Liverpool Botanic Garden). Sotirînacæae. A genus of 6 species of half-hardy perennial herbs from the Himalayas, with

2107. ROSA LEVIGATA. Run wild in the South and known as Cherokee Rose. No. 49.
purple, blue or yellow fls., terminating the leafy stems. Lvs. lanceolate or oblong: fls. in terminal, usually few-flowered corymbos of persistent, tubular bracts, set down side; corolla-tube slender, as long as calyx or longer; lateral segments spreading; lateral staminodes oblanceolate, petaloid; lip large, euneate, deflexed, cleft or emarginate.

purposes. Sm. Stem 2-4 ft. tall, with 5-6 sessile, lanceolate, sheathing lvs. about 6 in. long; fls. few, purplish, rarely lilac or white, in a sessile spike, appearing one season below the old lvs. B.R. 27:61. B. 4690. L.B.C. 15:1484. G.C. III. 8:191. The most hardy species of the genus. Var. **Sikkimensis**, Hort. Elwes (R. Sikkimensis, Van Tubergen), is said to differ in having the epiphytic habit and more numerous fls. of a different shade. Consul. G.C. III. 8:221.

ROSE (see also *Rosa*). The article Rose will probably be consulted oftener than any other in this Cyclopaedia. Therefore, the subject is presented from many points of view, even at the risk of repetition. Every pains has been taken to procure reliable information and advice from specialists in the different parts of the subject. There has been said that the garden Rose does not thrive in North America as it does in Europe; but however true this may have been, it scarcely holds to-day. The success of the Rose in this country is very largely a question of the selection of adaptable varieties. These varieties are mostly the compounds of various types and species. In most garden Roses it is now impossible to trace the original species with accuracy. For horticultural purposes, a purely botanical classification is of minor consequence, although, in the main, the leading garden-groups follow old specific lines. For a garden classification that follows botanical lines closely, see Baker in Gardener's Chronicle, II. 24, p. 199 (1885).

Following are the equivalents of some of the common names of Roses:

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayrshire</td>
<td>R. arvensis, var. capreolata</td>
</tr>
<tr>
<td>Banks Rose</td>
<td>R. banksii</td>
</tr>
<tr>
<td>Bengal</td>
<td>R. chinensis</td>
</tr>
<tr>
<td>Bourbon</td>
<td>R. borbonica</td>
</tr>
<tr>
<td>Champaign</td>
<td>R. noisettiana</td>
</tr>
<tr>
<td>Cherokee</td>
<td>R. lavigata</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>R. cinnamonosa</td>
</tr>
<tr>
<td>Damascus</td>
<td>R. damascena</td>
</tr>
<tr>
<td>Dog</td>
<td>R. canina</td>
</tr>
<tr>
<td>Egbertine</td>
<td>R. rubiginosa</td>
</tr>
<tr>
<td>Memorial</td>
<td>R. wickstramine</td>
</tr>
<tr>
<td>Moe</td>
<td>*R. griffith, var. moschata</td>
</tr>
<tr>
<td>Musk</td>
<td>R. moschata</td>
</tr>
<tr>
<td>Noisette</td>
<td>R. noisettiana</td>
</tr>
<tr>
<td>Prairie</td>
<td>R. setiger</td>
</tr>
<tr>
<td>Provence</td>
<td>R. griffith</td>
</tr>
<tr>
<td>Scotch</td>
<td>R. spinosissima</td>
</tr>
<tr>
<td>Sweetbrier</td>
<td>R. rubiginosa</td>
</tr>
<tr>
<td>Tea</td>
<td>R. chinensis, var. fragrans</td>
</tr>
</tbody>
</table>

Horticultural Classification of Roses.—The garden classification of Roses presents considerable difficulty, as the several groups have been so much mixed that the original characteristics of each overlap at nearly all points. This is particularly true of the Perpetuals, of which any close classification is impossible. The difficulties increase as one advances. Certain clear-cut characters may be taken to mark certain distinct groups in the summer Roses, with which the horticulturist has not busied himself so much. Nearly all of these characters are reproduced in the Perpetuals, and, being blended together, give rise to endless confusion; thus the following scheme is merely suggestive and should be studied in connection with the botanical classification (see page 1549).

American Rose culture, so far as garden varieties are concerned, can hardly be said to have found itself as yet. Our growers are to-day striving to overcome the short-lived character of the blooms, so as to import into our gardens something of the Rose beauty of Europe. The Wichuraiana, Rigoosa, and Multiflora Roses, combined with our native species and blended again with the best representatives of the garden groups already grown, seems to offer the solution. The beginning has already been made. The hot sun and trying climatic conditions of our summers are fatal to the full beauties of the Roses of France and England. The flower is developed so quickly that it has no opportunity to "build" itself; and once developed it fades as rapidly. What has been done for other florists' flowers remains yet to be accomplished for the Rose, and the American Rose of the future will have to be developed to suit the circumstances in the same way that the American carnation has been produced. A special society has been formed to foster this work and is now in its third year of existence.

Class I. Summer-flowering Roses, blooming once only.

<table>
<thead>
<tr>
<th>Group</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Large-flowered (double).</td>
</tr>
<tr>
<td>B.</td>
<td>Growth branching pendulous; leaf wrinkled.</td>
</tr>
</tbody>
</table>

A.

1. **Provenet Moss**
2. **Pompon Sulphurea**

B.

1. **Hybrid French**
2. **Hybrid Bourbon**
3. **Hybrid China**

Class II. Summer- and autumn-flowering Roses, blooming more or less continuously.

<table>
<thead>
<tr>
<th>Group</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Large-flowered.</td>
</tr>
<tr>
<td>B.</td>
<td>Foliage very rough.</td>
</tr>
</tbody>
</table>

A.

1. **Hybrid Perpetual**
2. **Hybrid Tea**
3. **Bourbon Perpetual**
4. **China Perpetual**
5. **Lawrenceana (Fairy)**
Plate XXXV. A Tea Rose.—Bridesmaid.
Habit Sulphurea, moderate light-colored excessive Fragrant 1561 Prune Provence. Very more moderately) Hybrid makes perfume and cultivation. growing smaller green, Roses size: Flowering; generally flat. Very hardly, growing in any soil; petals bleach in strong sunlight; makes abundance of wood, which should be thinned out; perfume develops in the dried petals.

Hybrid French or Hybrid Provence, a less robust group with smoother, short-jointed wood and generally light-colored flowers. Type Princess Clementine. Other subdivisions include hybrids with nearly all of the Perpetual group, Madame Plantier is a Hybrid Noisette. Coupe d'Hebe is a Hybrid Bourbon.

Hybrid China (China x French and Provence, partaking more of those parents). Growth more diffuse than the French Rose; foliage smooth, shining and remains on the bush late in the year; thorns numerous and strong. Vigorous of growth; very hardy, and generally well adapted to poor soil; requires but little pruning.

Garden-group 3. Alba, or White Roses. A very distinct group; all light-colored flowers of moderate size: leaf whitish above, deep green below; spineless (some hybrids with other groups are very thorny), of free growth; prune closely. Type, Felicite Parmentier and Maiden's Blush.

2165. American Beauty Rose (× 3/4). Probably the most famous Rose now cultivated in America. One of the Hybrid Perpetual class.

Garden-group 4. Ayrshire. Climbing Roses; very hardy; slender shoots suitable for trellises and trunks of trees; fls. produced singly. Useful for pot cultivation when trained over a frame; fls. vary from white to deep crimson. Type, Queen of the Belgians, Dundee Rambler. Riga is a hybrid between this group and one of the Teas; fragrant.

Garden-group 5. Briers. Under this heading may be grouped most of the well-defined types of garden Roses, mostly small-flowered and which do not readily respond to high cultivation. They are more useful as flowering shrubs in the garden than for cut-flowers. The blooms are generally short-lived.

Austrian or Yellow Briers. Small leaflets; solitary flowers: bark chocolate-brown. Very hardy, but require pure air and dry soil; will stand very little pruning, producing flowers from the upper ends of the old wood. Types, Harisonii, Austrian Copper and Persian Yellow.

Scotch or Spiny. This group is well recognized by its excessive spininess; the spines are also very sharp; compact, low bushes, flowering abundantly and early; flowers small, double. Multiply by underground suckers; fragrant. One hybrid of this group, Stonewall, is a Perpetual.

Sweetbrier. Distinguished by the fracture of its leaves: the fruits are also decorative; foliage small; flowers light-colored generally and not held of much account.

Lord Penzance Briers. This is a group of hybrids of R. rubiginosus (the Sweetbrier), and the older large-flowered varieties, especially Bourbon and Damask. The results are hardly distributed in America as yet; a few are to be found in select collections. Generally speaking they may be described as very greatly improved Sweetbriers. Brenda is particularly desirable for its fruit.

Prairie Rose (R. setigerum). A native species; promises under cultivation to develop some valuable ac-
quisitions, especially in hybridization with other groups: Type, Baltimore Belle. Fig. 2154. Alpine or Boursault. Native of the Swiss Alps; semi-pendulous, long pedicels, smooth shoots; flowers in large clusters: mostly purple or crimson flowers. Good for pillars, very hardy, especially suitable for shady places; should be well thinned in pruning, but the flowering wood left alone: type Amazunis. Produced by crossing Teas and R. alpina.

Garden-group 6. Multiflora. The Multiflora group divides itself naturally into the Multiflora true and Polyantha. R. multiflora, the parent type, is characteristic of the varieties here, the flowers being produced in large corymbs and continuing over a comparatively long time. This group is particularly well adapted to the wild garden. There are many hybrids, which are

hybrids have been raised from Hybrid Perpetual and Tea varieties giving large flowers, scented; such are Gardenia and Jersey Beauty. Several hybridists are now working on this species and there are few others that promise remarkable developments. W. A. Manda in New Jersey, M. H. Walsh in Massachusetts and J. Herrath in Ohio are thus engaged.

Cherokee (R. laevigata) of the southern states can be grown satisfactorily away from its native regions only in a greenhouse. Figs. 2152-4.

The Bunkhan (R. Iankisii). Two varieties of this are known, the yellow and the purple. Requires greenhouse treatment: evergreen; needs very little pruning, merely shortening the shoots that have bloomed. Yellow variety scentless, white variety possessing the odor of violets: flowers are produced in graceful drooping clusters.

Garden-group 9. Hybrid Perpetual, or Hybrid Remontant. A large and comprehensive group of muchmore "mixed origin. The mixture with other groups has become so involved as to render separation practically impossible. The characteristics may be described as still, upright growth, sometimes inclined to pendulous: ils. of all types; foliage dull green, wrinkled, not shiny: embrace generally the characteristics of the Provence Damask, French and the Chinese groups: ils. large, inclined to flat, generally of dark colors. By far the largest and most comprehensive division. Figs. 2168-9.

Garden-group 10. Hybrid Teas form a section of the Hybrid Perpetual group crossed back on to the Teased China, gradually losing all identity. They differ from the pure Hybrid Perpetuals by having foliage of a deeper green and less wrinkled. Some of the best forcing roses are in this group, which promises the greatest development for American rosarians; Robert Scott is a type of this class and is raised from Meribus de Lyon, H. P., and Belle Siebrecht Hybrid Tea. The La France type belongs here. Fig. 2176.

Garden-group 11. Moss. A perpetual flowering group of the Provence. See Summer Roses and Fig. 2157.

Garden-group 12. Bourbon. Dwarf and compact growth, with rounded, more or less shining leaflets: very floriferous; brilliant colors; good outline: in perfection late in the season: requires close pruning. Type, Hermosa (or Armoosa).

The Tea-scented China or Tea Rose. Fig. 2171. Large, thick petals, with the characteristic tea scent: flowers generally light colored, pink and creamy yellow; growth free; the best for forcing. The group has been hybridized with all other sections and the Tea influence is seen throughout the Rose family. Some of the varieties are climbimg. Type, Bon Silene and Homer.

Lawrenciana. Dwarf forms, requiring the same treatment as the Teas. Commonly known as the Fairy Rose.

Garden group 15. The Musk. Very fragrant; rather tender: derived from Rosa moschata: ils. of pale color. This group has been much hybridized with others, and its identity is lost as a garden plant in that of its derivatives, especially the Noisette. The flower buds are elongated and the flowers produced in clusters.

Noisette. Fig. 2172. Larger flowered than the true Musk Roses: flowering very late; free growth; more hardy. The group bears a certain superficial resemblance to the Teas and requires moderate pruning; will grow in any soil. This sub-group has been largely blended with the Teas and with a loss of hardiness. In consequence it has fallen into disuse.

Garden-group 17. Polyantha. Perpetual-flowering varieties of the Multiflora group. The term in garden classification is taken to include a large number of small-cluster-flowered, climbing Roses, and is particularly important in American Rose culture, as the basis of a new section of hybrids with the Teas and Bermudas and including hybrids of Wichurianna and Teas. M. H. Walsh in Massachusetts, M. Horvats in Ohio, and Jackson Dawson in Massachusetts have accomplished much work in this field. Some of Walsh's recent introductions, as Debutante and Sweetheart, not as yet fully tried, and the Dawson Rose may be chased here. They are valuable as trellis and pillar Roses for garden decoration.

Garden-group 18. Perpetual Briers. Of this group there are about five important types.

Rugosa is a Japanese Rose, a low-growing bush; hardy: useful as a hedge plant, and specially adapted for exposed situations near the seaside. Figs. 15-21-2. Hybrids have been made with other Perpetual groups, especially Teas and H. P's. Mme. Georges Brauns is a type. The Rugosa blood is strongly seen in all cases.

Lucida, a small insignificant group, having some connection with the former. Microphylla has minute leaflets. Berberisidia has leaves somewhat resembling barberry.

Perpetual Scotch, a perpetual-flowering form of *Rosa spinosissima*, probably a hybrid from the Damask.

Wichurianna. The Wichurianna hybrids already referred to in the Polyantha group may doubtfully be included here. They have not yet been sufficiently tested.

LEONARD BARRON.

Rose Gardens for Rose Lovers.—The Hybrid Perpetual or Hybrid Remontant Rose (hybrids of *Rosa Damascena*, *Borbonica*, etc.) is the largest and most important group of Hardy Roses. The common varieties are crosses of Provence and Damask Roses upon Bourbons, Bengals and Teas, and vice versa. Of all Roses, Hybrid Perpetuals, in regions of severe winters, offer the amateur the greatest promise of success.

A warm sunny spot shielded from strong or bleak winds should be chosen for the Rose garden. A piece of woods or a hedge offer good protection if they are far enough away from the bushes so that they do not shade them or rob them of nourishment. Dean Hole says, "The Rose garden must not be in an exposed situation. It must have shelter, but it must not be shaded. No boughs may darké, no drip may saturate, no roots may rob the Rose." A hillside is less exposed to late frosts than valley and is therefore better. The ground must be well drained. If nature has not provided such a spot the Rose-grower must make one.

The ideal soil for the Hybrid Perpetual Rose is a strong rich clay or loam. Though Tea Roses sometimes do well in gravel or sandy soil, Hybrid Perpetuals never do. The ground should be spaded up to a good depth and all stones, grass and roots carefully removed.

Late autumn is the best time for setting out hardy Roses. The writer has set out over a hundred Hybrid Perpetuals and Hybrid Teas when he was compelled to shovel away several inches of snow and break up the frozen crust of the earth with the pick before he could dig the trench in which he planted them, and yet he did not lose one of them. Put out late in the fall with the earth well formed around them and properly protected, hardy and half-hardy Roses are almost sure to come through the winter all right and make a good bloom the first summer. In no other way can you guarantee a success. If you plant them with the root into which the bush has been budded the best fertilizer for Roses is rotted cow manure. The next in value is the manure from the pig sty.

Nearly all of the Hybrid Perpetuals and Mosses will stand the severest winters in the northern states without protection, but it is best to protect them. Al Bourbons, Hybrid Noisettes, Hybrid China and Hybrid Teas in the northern, and in some of the middle states, must be protected: "exceller" tied around the bushes to the height of 12 or 15 inches gives sufficient protection.

When the leaves are out and the buds well formed a mixture composed of three parts of wheat flour and one of white heliobore sprinkled on the foliage when wet after a rain or dew disperses the most dangerous foes of the Hybrid Perpetual. The dew and flour make a paste that holds the heliobore on till its work is done. A tea made of tobacco stems will destroy the insects most troublesome in July and August. Trimming should be done in the spring before the sap begins to flow.

The following embrace the best of the Hybrid Perpetuals: Alfred Colombe, Anne de Diesbach, Baron de Bonsteinen, Baroness Rothschild, Cho, Earl of Duferin.
leaves and single flowers of a coppery yellow color. It is so hardy that it can brave the most rigorous climate where man till the soil. Persian Yellow, Harisonii and Copper are the most valuable varieties. They should be pruned sparingly.

Hybrid Climbing Roses. These are especially useful as pillar Roses. The most valuable are Climbing Jules Margottin (See Fig. 217a), page 1567) and Glory of Cheshire.

The Prairie Rose (Rosa setigera) is the hardest of the climbers. This quality, with the rapidity and vigor of growth, has given them a wider popularity than any other climbers. The Gem of the Prairie is the only fragrant Prairie Rose, Baltimore Belle (Fig. 2154) is the least hardy but most beautiful. Other valuable varieties are Queen Hybrid Prairie, Anna Marie and Triumph.

The pruning knife should be used sparingly.

Hybrid China Rose (Rosa Chinensis forma): Many Roses catalogued as Hybrid Perpetuals properly belong to this class. (See Fig. 193) as a result of the suggestion that all French, Provence, Damask and Hybrid Bourbon be grouped under the Hybrid Chinas is adopted. Rose classification will be much simplified and little will be lost in accuracy. Much of Prickett is the best known and most valuable of all the group.

Half-hardy Roses: Bourbon Rose (Rosa Bourbonica): The group for the most part is composed of autumnal bloomers. They are popular as garden Roses. Hermosa is the first bloomer. Appoline is the most beautiful. George Peabody and Mailmunson are also deservedly popular. The moderate growers of this group should be closely pruned.

The Hybrid Noisette (Rosa Noisettiana var. hybridia) has made several contributions to the rosarian. The least hardy but the most beautiful members of this group are Madame Nonnan, Mlle. Bonnaire and Eliza Boelle. Rivals in beauty and more hardy are Coquette des Alpes, Coquette des Blanches. The pruning knife should not be spared with this class.

The Hybrid Tea Rose (Rosa Chinensis, various forms) is more hardy than the Tea Rose and less hardy than the Hybrid Remontants. It is a group destined to have many additions in the not distant future. La France, Captain Christy, Kaiserin Auguste Victoria, Caroline Testout and Liberty are the best of this class.

Some persons like to train Roses to a few canes and tie them to stakes (Fig. 2175). Another practice is to bend them high on brick stands and to grow them as standards. Most Americans prefer the free-growing bush, blooming from near the ground (Fig. 2174).

EDMUND M. MILLS.

Another View of Garden Rose Growing. Roses may be successfully grown in any soil that will produce fair crops of grain, vegetables or grass. Certainly the best results will be obtained in the more favorable soils and situations, but every one who loves a Rose and possesses a few feet of ground with plenty of sunshine can have his own Rose garden and find pleasure and health in cultivating the queen of flowers. Of course the ideal soil is a rich, deep loam, but a good Rose bed can be made in clay, sand or gravel at little expense and labor. Even the city resident, whose house has been erected on the site of an exhausted brick-yard, can at a small expense secure sufficient good soil from the outskirts and manure from the adjacent stables to make a Rose garden that will grow as good plants and flowers as those of his more favored friends who have acres at their disposal, provided always that the sunlight can reach the beds for at least half of the day.

The preparation of the ground is the first step of importance. Roses abhor wet feet, and if the soil is wet it must be thoroughly drained. This can be accomplished by digging out the bed to a depth of three feet and filling in one foot with broken stone, bricks, cinders or anything that will allow a free passage of the water through the soil. If this is not sufficient and the water is not carried away, provision must be made for this by tile-draining; but, except in very extreme cases, the drainage before mentioned will be found amply sufficient. The composition of the soil should depend on the class of Roses to be grown, for the Hybrid Remontants do best in a heavy soil containing clay, while those having Tea blood prefer a lighter, warmer soil.

The beds may be made of any desired shape, but a width of 4 ft. will usually be found the most satisfactory, as a double row can be planted at intervals of 2½ ft., which will be all that is necessary for the strongest growing varieties, and the blooms can be gathered from each side without the necessity of trampling on the soil. Space may be economized by planting as in the following diagram:

```
 x x x x x x x
```

The plants will then be 1 ft. from the edge and 30 in. apart, and each plant will be fully exposed to the light and air and will not interfere with its neighbors.

In preparing a bed on a lawn, the sod and soil should first be removed and placed apart; then the best of the subsoil may be taken out and placed on the other side of the trench, and, lastly, the portion to be discarded, making in all a depth of at least 2 feet. The floor is then loosened to the full depth of a pick-head, the good subsoil replaced and mixed with a generous dressing of well-decomposed manure. Lastly the surface soil and sod well broken up and also thoroughly enriched, with manure, and the bed filled to the level of the adjoining surface with enough good soil added to replace the discarded earth. When the bed has settled the surface should be at least one inch below that of the adjoining soil, in order that all the rainfall be retained. The writer believes it to be a serious mistake to make any flower bed higher than the adjacent surface, as in hot weather the soil dries out and the plants suffer for want of moisture.

If the bed is intended for the hardy Hybrid Perpetual or Remontant class, it should contain a fair proportion of clay well mixed with the soil. A sufficient amount is always present in what is known as a heavy loam.
the soil does not contain this naturally, it should be added and thoroughly incorporated with the other ingredients. If the bed is intended for Hybrid Teas, Teas, Bourbons or Noisettes, the soil should be lighter, and if naturally heavy should have added to it a proper amount of sand or leaf-mold, and be thoroughly mixed as before. Roses are rank feeders; therefore be liberal with manure for every class.

Garden Roses can be obtained from the dealers grown in two ways: on their own roots, and budded on the Manetti or brier stock. Figs. 2175, 2176. There is much difference of opinion as to the relative value of the two sorts, and it must be admitted that some of the stronger varieties will do equally well either way; but the opinion of the writer, based upon the experience of nearly a quarter of a century,

The remaining soil should then be packed in firmly, the surface leveled and covered with about 3 inches of coarse litter and manure, and the long wood cut back to about 18 inches to prevent the plant being whipped and loosened by high winds. This extra wood is left to encourage root action in the spring and should be cut back to three or four eyes as soon as they can be detected when pushing out. Always cut above and close to a strong outside bud, without injuring it, to develop an open and free head, thus admitting light and air. If the uppermost bud is on the inside surface of the shoot, the new growth will be directed inward, dwarfing and hampering the plant and preventing proper development. The deep planting above described is necessary to prevent suckers from being thrown out by the roots, as these will speedily choke and kill the less vigorous wood which we are endeavoring to develop. From the writer's point of view the only objection to budded plants is this danger of suckering from the roots; therefore no one should attempt to cultivate budded Roses who cannot distinguish the brier should it appear, or who is too careless or indifferent to dig down at once and cut the wild shoot clean off at the root, rubbing it smooth to prevent its starting again. Do this just as soon as you discover it.

A very little experience will enable any one to distinguish the brier. The canes are covered with minute thorns and bear seven leaflets, instead of the usual number of five. Should any doubt remain, follow the shoot down through the ground and if it starts below the collar, it is a brier. Remove it. These wild shoots usually appear a few inches outside of the regular growth, rarely inside; consequently there is little difficulty in detecting and removing them.

Planting Budded Roses. — Holes at least 1 ft. in depth and 15 in. wide should be made for each plant, the collar or point where the bud was inserted and from which the new growth starts placed 2 in. beneath the surface of the soil, the roots spread out and downwards (care being taken that no roots cross or entangle) and all roots covered with fine soil free from lumps of manure. Fig. 2175. Manure should never be placed in actual contact with the roots, but near at hand, where the new feeding roots can easily reach when growth begins.
grown plants will always require staking if the varieties are of upright growth.

Tea Roses.—Where the climate is too cold to winter out Tea Roses successfully, a charming effect can be obtained by planting in a bed 6 ft. in width, the rows one foot from the edge and 2 ft. apart, and the bed of any desired length or any multiple of 3 ft. A sectional frame made from tongued and grooved white pine fencing, 2½ ft. in height at the back and 2 ft. in front, facing east or southeast and fastened together with hooks and eyes or screws, the whole covered with ordinary coldframe sash (6 x 3 ft.), will preserve the tender varieties through a severe winter. The sash should be freely opened when the temperature is above 30° F. and air admitted during the day when it is 10 or 15° lower. Always close before sunset and open as soon as the sun shines each morning. Opening the sash to keep the plants cool and prevent growth is just as essential as covering to protect from cold, if abundance of flowers is desired. A few days' neglect in opening the sash when the temperature is above 30° will destroy most of the buds for the coming June, as they will be forced out, and one cold night will kill them. Protect from rains or splashes, and do not water. Sufficient moisture reaches the roots from the outside to keep the plants in a healthy condition.

The writer has a number of Teas that have been grown successfully in such a bed for many years. They give hundreds of fine blooms from May until November and remain so vigorous that many of the new shoots are half an inch in diameter.

Plants of Climbing Roses.—These make a very effective background, and if trained on a high wire fence give a beautiful display. The strong-growing varieties should be planted 8 ft. apart and will each easily fill a trellis 9 ft. high. They also look well trained on the house porch, but are much more likely to be attacked by insect enemies there than when planted in the open, where the birds have free access to them, with no fear of disturbance. The birds will not do good work where they are in constant danger of interruption, so if grown on porches they are usually attacked by aphides and slugs, the leaves becoming riddled and skeletonized, which rarely occurs when they are planted in the open.

If Roses are planted around porches the Microphyllae, white and pink, and the Crimson Rambler can be safely planted, as they are not attacked by the slug, but the blooms do not compare favorably with many other Roses of their habit. The other varieties can also be grown around porches, provided that they can be planted where the drippings from the roof will not fall upon them and they are kept free from slugs. This can be accomplished by free spraying with the hellebore infusion to be described later on.

Only a few of the climbing Teas can be grown successfully in the latitude of Philadelphia. Many of the finer varieties are worthless here, in spite of all the protection that can be given them, unless they are covered with glass. Lamarnue, Bouquet d'Or, Cloth of Gold, Triomphe de Reuves, Marchal Niel and Rêve d'Or have, in the writer's experience, all perished in the first winter, but Reine Marie Henriette, Gloire de Dijon, William Allen Richardson and Celine Forestier will do well and yield satisfactory results. The finest climbing Tea for this latitude is Reine Marie Henriette. It blooms finely and makes a magnificent growth, as may be seen in Fig. 217. The trellis is 19 ft. wide and 9 ft. high.

These varieties should be pruned sparingly by simply shortening-in the too vigorous shoots and cutting the laterals back to two eyes. Tie all to the trellis in a fan shape, dividing the space as evenly as possible. Fig. 217 shows the same Reine Marie Henriette pruned and trained on trellis. These continue in flower until November, the early bloom in June being the finest, but many good Roses may be gathered throughout the summer and autumn. With the hardy June-flowering varieties the writer has not had much experience and can only recommend growth, the trellis being 10 feet wide and 9 feet high.

1977. Reine Marie Henriette, the finest climbing Tea Rose for the latitude of Philadelphia.

This shows the vigorous growth, the trellis being 10 feet wide and 9 feet high.

1978. Illustrating the pruning of the Rose shown in Fig. 217.

After the first season's growth, there may be about three canes to be retained, but with good care and utilization the number will increase yearly, until after 15 or 20 years there will be at least 25 canes to be utilized. The writer has a bed over 20 years old from planting in which each plant, after close pruning, will measure from 15-18 inches in diameter, each cane throwing up from four to six shoots 1 or 2 ft. in length and sufficiently vigorous in most varieties to hold up the largest flowers and to give magnificent specimen flowers for cutting. Roses grown in this way do not
need stakes. They are sufficiently strong and vigorous to hold erect any weight they may be called upon to bear; but late in the autumn, before the high gates of November, their height should be cut back, to prevent their being whipped by the winds, for this would lessen the plant and break the newly-formed feeding roots. The plant should not be cut back to the pebbles, for this would, as in the too hot climate of summer the upper eyes will surely be forced out and the promised blooms for the ensuing season destroyed; so that if it be necessary to trim them, only enough wood should be left to avoid all danger of the lower buds being forced out. The upper buds always develop earliest. Some varieties will not produce large foliage under any method of treatment, notably Prince Camille de Rohan, La Rosari and Roseriste Jacobs; but almost all the other kinds do better under this method than any other, if quality is desired.

Pruning Dwarf-groving Tea Rosas.—Tea Rosas will not endure such vigorous cutting back as the Hybrid Remontants. All good strong shoots should be retained unless they form a very close head, when it is better to remove a few from the center. The canes should be shortened about one-third of their length, the branches cut back to 1 or 2 eyes, and after each period of bloom the weak shoots should be trimmed back sparingly. Bourbons need even less trimming. Souvenir de Malmaison, Mrs. Paul and others of this class should have only the weak ends of each shoot removed, and no more wood than necessary permitted to the weak, unhealthy portions; otherwise very few flowers will be produced.

Cultivation.—Just before growth commences in the spring, the surplus rough manure should be removed from the beds and all the remaining fine particles forked in. Deep cultivation is not desirable, as the roots are likely to be injured or broken. Three inches in depth is quite sufficient to cultivate a bed that has not been trampled upon, and this should be done with a 4-tined digging-fork, which is less likely to cause injury to roots than a spade. The beds should then be well edged and the surface raked off smooth and even. Frequent stirring of the surface with a sharp rake is all that is necessary afterwards, until the buds begin to develop. Then half a gallon of weak liquid manure applied around the roots of each plant just before a shower will be eagerly appreciated and assimilated. The manure water should be prepared beforehand, and as soon as a good promise of rain appears, all hands should be called into service and every plant given a full ration. One person should dig a shallow trench with a garden spade around each plant, the next follow and fill with the liquid manure, being careful to avoid bruising the leaves; afterwards the bed can be raked over level and the rain will wash the dirty food to the eager roots, and thirst and glory will result. This feeding may be repeated with benefit every week until the season of bloom is over, after which stimulation should cease and the plants be permitted to perfect the new wood for the next season’s growth. Little pruning is necessary with “cut-backs.” So much wood has been removed in gathering the blooms that but little more is left than is needed to keep the plants vigorous and healthy. There is another advantage from the system of close pruning: all growths are so strong and vigorous that they are better able to resist any intrudes either of insects or disease. The greely scleros appears, but when detected may be readily kept down by repeated syringing with tobacco-water or Quassia infusion.

The belief that Roses exhaust the soil in a few years and require to be changed into new ground is generally accepted, and is true in most cases; but when beds are formed as previously described and budded Roses planted, the vigorous feeding roots find sufficient nutrient in their for-reaching growth to support a healthy development of wood and flowers for many years, especially if a generous top-dressing of manure be applied each autumn and liquid manure supplied liberally during the development of the buds. A top-dressing of wood ashes after the first spring syringing will restore the potash to the soil and materially increase the vigor of the wood and flowers.

Insect Enemies.—The most formidable is the Rose beetle, which revels in the petals and buds of our choicest plants, usually selecting the light-colored varieties and working havoc and ruin wherever it appears. Hand-picking is the only effective remedy, and a quart can half filled with kerosene oil is a good place into which to drop the offender. He is easily caught when discovered, as he may readily be upon examination of each bud and flower.

The aphis or greenfly is found on the extreme ends of the shoots and young buds. This is the cow of the ants and is tended and milked by them. The aphis increases with enormous rapidity, and unless destroyed robs the plant of its vitality by sucking out the sap. A decoction of tobacco stems is made by half filling a barrel with refuse stems from a tobacco factory and filling the barrel with water. After this has been macerated, syringe the plants every day with the decoction until the enemy is defeated. In extreme cases, where the aphis has become firmly established, the remedy proposed by Mr. B. R. Cant, an English rosarian, may be required. He says: “Take four ounces of Quassia chips and boil them ten minutes in a gallon of soft water; strain it and while cooling dissolve in it four ounces of soft soap (or whale-oil soap). To this may be added another gallon or two of water. The plants should be syringed with this and all badly infested shoots dipped into it. Pure water should follow the next day to cleanse the shoots.” If, at the first appearance of two nests the fines and then wherever it is necessary to rub them off and destroy them, much subsequent trouble will be saved.

Slugs are usually found on the under side of the leaves and may be discovered by the skeletonized appearance of the leaf. To destroy them, make a decoction of powdered white hellicbore, with one heaping tablespoonful to a pail (about four gallons) of boiling water. After cooling, apply with a syringe or, better, with a whisk broom. Push the top of the plant away with the left hand and, with the broom dipped in the solution, throw the drug up and against the leaves. One thorough application will usually suffice, but if the slug has appeared in previous years, anticipate his coming.

One of the Hybrid Climbing Roses. See p. 1594.
ing and apply the hellebore solution before any mischief has been done and repeat later, should any evidence of his presence be detected. This aggressive offender is the larva of a small winged moth, and the presence of any insect of this sort in the vicinity of a Rose should always be regarded with suspicion.

The bark lose, or white scale, survives the winters and is usually found on old wood. It can best be treated before the growth begins in the spring. A solution of fifteen grains of corrosive sublimate to one pint of water, brushed over the stalks wherever the lice harbor, will speedily destroy all. As corrosive sublimate is a very powerful poison, great care should be taken in its use.

List of Roses that have been tested by the writer and can be recommended for gardens:

| Hybrid Perpetuals | Alfred Colomb, Alfred K. Williams, Annie Wood, Baroness Rothschild, Captain Hayward, Caroline d’Arden, Charles Lefebvre, Clio, Countess of Oxford, Dismore, Dr. Andry, Duke of Edinburgh, Duke of Teck, Etienne Levett, Eugenie Verdier, Fisher Holmes, François Michelon, General Jaquemont, Giant of Battles, Heinrich Schulteis, Her Majesty, James Brown, Jeannie Dickson, John Hopper, James D. Paul, Lady Helen Stewart, Mabel Morrison, Madame Gabriel Luiet, Magna Charta, Marchionsess of Lorne, Margaret Dickson, Marie Baumann, Marie Verdier, Merrielle de Lyon, Mrs. John Leing, Mrs. K. G. Sharan Crawford, Paul Neyron (Fig. 2169), Pride of Waltham, Prince Arthur, Prince Camille de Rohan, Rosslyn, Rev. J. B. M. Cairns, Suzanne Marie Rodocanachi, Ulrich Brunner, Xavier Ollo.

Hybrid Tea—Augustine Guinnoiseau, Captain Christy, Caroline Testout, Gloire Lyonnaise, Kaiserin Augusta Victoria, Madame Joseph Combet, Miss Ethel Richards, Missou—Le President Carnot, Souvenir de Madame Eugenie Verdier, Viscountess Folkstone.

Mr. Alexander B. Scott recommends the following additional H. T. varieties: Antoine Rivoire, Baldwin, Bessie Brown, Grass on Teplits, Killarney, Lady Channorris, Madame Jules Grodz.

Tea-scented Roses—Alphonse Kerr, Contessa Riza du Parc, Contessa de Bruat, Etoile de Lyon, Francois Kruger, Innocente Pirolo, Isabella Sprunt, Madame Lambard, Madame Moreau, Manon Cochet, Madame Catherine, Madame de Monts, Madame van Houtte, Papa Grétry, Sarafran, Souvenir d’un Ami, The Queen, White Manon Cochet.

Moss Roses—Contessa de Murmans, Blanche Moreau, Crimson Globe, Lanier, Princess Adelaide.

Climbing Roses—Crinmon Rambler, Cheshunt Hybrid, Gloire de Dijon, Celine Forestier, Reine Marie Pendant.

2181. Rosa rugosa (×3½).

However, for a beginning, and any one who has the time, energy and means may add to it, if he can bear disappointment cheerfully. If one in a dozen of the highly valued varieties in the dealers’ catalogues prove satisfactory, the experimenter should be well satisfied. He can dig out and throw away the other eleven and try it again, in the hope that he may find a new queen worthy of his homage.

Much of the charm of growing Roses is derived from the accurate knowledge of each variety by name. Yet few amateurs ever accomplish this, chiefly because the labels have been lost or misplaced, and not infrequently a plant becomes known to the cultivator by a name belonging to a neighboring specimen whose label has been misplaced, and replaced on the wrong plant. To obviate this a record should be made in a book kept for the purpose, with a chart for each bed. This should be done at once after the plants are set out and before the labels have become detached. Many vexations mistakes might be prevented by some such plan as the following:

<table>
<thead>
<tr>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

1 to 6. Her Majesty. 8 to 15. Gloire Lyonnaise. 7 to 12. Margaret Dickson. 16 to 20. White Baronesse.

Robert Huy.

Garden Roses near Chicago.—Climatic conditions surrounding the bluff lands bordering Lake Michigan, some twenty miles north of Chicago, are not congenial to the successful cultivation of outdoor Roses as a class, and only those possessing the most robust constitution among the Hybrid Perpetuals should be grown. Ample winter protection must be given along the lines indicated in the article in this work entitled Winter Protection. The soil is all that could be desired, being a rich yellow clay loam. The trouble seems to be in the severity of the winters, where heavy falls of snow are infrequent, and the springs late and fickle, warm winds from the southwestern prairies alternating with chilling moisture-laden breezes from the lake.

The beds are excavated to a depth of 2 ft., good drainage given, and then filled with a compost of rotted

2190. The old-fashioned yellow upright Rose (× 3½). Henriette, Pink Microphylla, White Microphylla, Madame Alfred Carrere.

The Hybrid Wichuraianas look promising, but have not been tested by the writer.

It is not intended that this list is by any means complete. There must be many good Roses that will do well under favorable conditions of which the writer has no personal knowledge. The collection is sufficiently large,
Plate XXXVI. Rose, American Beauty.
sod and cow manure. Each spring following, some manure and bone meal is forked into the surface. Liquid manure is given in June when the Roses are in full bloom, and a few times thereafter. The Roses are thoroughly sprayed with Bordeaux mixture when the leafage is fairly out, and once every three or four weeks afterwards. Hand-picking seems the best method of destroying the worms affecting the buds, and frequent drenchings with the hose abolish the other enemies. In the fall the canes are bent down and fastened to the base of their neighbors, and remain procumbent until the spring cutting-in, which is delayed as late as possible in order not to incite too early a start and to force the buds to "break" low down. After the leaves used in the winter protection have been removed, and the board roof also, the sides of the box are allowed to remain a short time in order to shield from the winds. The winter of 1898-9 was unusually severe and did more damage to the Roses and other material than any other winter which the writer has experienced at Highland Park. Following is a list of the so-called Hybrid Remontants (H. R.) that wintered then—under protection—and came out in good condition. These varieties may therefore be considered the most suitable for this and kindred climates: Prince Camille de Rosan, H. R.; Mme. Charta, H. Ch.; Mrs. R. G. Sharnan Crawford, H. R.; General Jacqueminot (Rousselle), H. R.; Captain Christy, H. T. (Hybrid Tea); La Rosiere, H. R.; Captain Hayward, H. R.; Mrs. Paul, Bour.; Garden Favorite, H. R.; Louis Van Houtte, H. R.; Paul Neyron, H. R. (Fig. 2109); John Hopper, H. R.

The following dozen were in fair condition after the winter and recovered their form during the season: Mme. Victor Verdier, H. R.; Pierre Notting, H. R.; Anne de Diesbach, H. R.; Uriehe Brunner, H. R.; Baronne Prevost, H. R.; Eugene Furst, H. R.; Prince of Wales, H. R.; Alfred Colomb, H. R.; Lyonnoise, H. R.; Mme. Gabriel Luizet, H. R.; Countess of Oxford, H. R.

The list of those that wintered is too numerous to give, but it is a singular fact that the first list contains forms classed among the Teas and Bourbons. Of the climbing forms that were unprotected, Rosa setigera and its offspring Prairie Queen, were somewhat injured; but Greville (Seven Sisters), Crimson Rambler, Thalia, Paul's Carmine Pillar, Multiflora and the Dawson Rose were in fairly good condition when wintered under protection. The failures even when protected were Aglaia, Alister Stella Gray, Euphrosyne, Russell's Cottage, Baltimore Belle, Tennessee Belle. The typical Sweethearts proved hardly unprotected, but the hybrids of them were killed. Protected R. Wichuraiana and its hybrids killed back to the roots; R. rugosa and most of its hybrids, especially those of Jackson Dawson and Prof. J. L. Budd, unprotected, were all right; Mme. Georges Branta (Fig. 2105), protected, was killed. Most of the Moss Roses stood well unprotected, especially Crowned Moss.

Clothilde Sempert and Hermosta are the best holders for permanent planting when protected, and the so-called Fairy Roses stand fairly well, especially Mme. Cecile Brunner. Papa Gouttiere and Kaiserin Augusta Victoria are among the best of the more tender class that require the protection of a pit in winter. They seem to stand the biennial root disturbance well. La France grows in the bud under our sun, and, strange to relate, the writer cannot grow that splendid Rose Mrs. John Ling successfully, either on its own roots or budded, R. rubrifolia or terravincae, R. spinosissima, var. Altaica, R. nitida, R. lucida and R. helenita were hardy without protection.

W. C. EGAN.

Future Roses for the Prairie States. — West of Lake Michigan, and north of the 43d parallel, the fine Roses grown in the open air in the eastern and southern states can be grown only by systematic pruning and winter covering. Of well-known old varieties hardly hardy enough to winter without protection, the list is short. Madame Plantier, White Horizon, and Rosa rugosa with some of its hybrids, are hardy between the 40th and 44th parallel, and still farther north the East European R. rugosa and such of its hybrids as Snow-light Empress of the North and R. rugosa pl. are grown successfully. Figs. 2181 and 2182 show forms of Rosa rugosa also Figs. 2184-94.

Of the newer hybrids of R. rugosa now quite widely tested, the most desirable are I. A. C. (Fig. 2183), Ames, Madame Georges Bruant (Fig. 2184), Madame Charles Frederick Wirth, and Thusnelde. Kaiserin (Fig. 2185) is also to be commended. It is suggestive that these have come from crossed seeds of what is known in Europe as Rosa rugosa, var. Regeliana (p. 1556), and which we know as the Russian Rosa rugosa. The first two named came from seeds of Rosa Regeliana introduced by the writer in 1883 crossed with pollen of General Jacqueminot, and the last three were developed from seeds of R. Regeliana in Germany as stated by L. Späth, of Rixdorf near Berlin. They are all fine double Roses of the class shown in Fig. 2183, of the two produced at Ames, and all have retained to a large extent the foliage and habit of blooming of R. rugosa. The Russian R. rugosa as introduced from Russia by the writer is divided into two very distinct classes. The one from the Amur valley in

North Central Asia is a very strong, upright grower with lighter colored bark, stronger thorns, thicker and more rugose leaves, and larger flowers than the Japan type, but his hips are smaller. The one from Russia in Europe is spreading and pendent in habit. When 4 ft. in height it has a spread of top of fully 6 ft. Its leaves

2182. Russian form of Rosa rugosa (X 3/4).

2183. The I. A. C. Rose (X 3/4).

One of the best hybrids of Rosa rugosa for the prairie states. (I. A. C.—Iowa Agricultural College.)
KOSE usually ROSE garden. C, bush it the except quite possible be also Rose can the variety result to profitably hybrids developed. The work of crossing the Russian R. rugosa began at the Iowa Agricultural College in June, 1892. The pollen of over a dozen of the best garden varieties was used, but the General Jacqueminot, which was the only one of the very best developed, was used most exclusively, as it produces pollen most freely. The final result was quite unexpected, as no double variety with rugosa leaves was produced when the pollen of any variety was used except that of General Jacqueminot. From 497 flowers of R. rugosa fertilized with pollen from General Jacqueminot, we grew 250 plants. From these we were able to select over 20 varieties with double flowers ranging in number of petals from 15 to 150, with handsome rugosa foliage and surprising vigor of growth. Nearly all showed the crimson color of petals and a double parent.

At the same time we pollinated the blossoms of our native species Rosa blanda and Rosa Arkansana with pollen of General Jacqueminot and other Hybrid Perpetuals that wholly without results, as the crosses seemed too violaceous. Most of the hybrids showed modified foliage and habit of growth, but all except those with single flowers. The few double varieties developed blossom-buds freely, but in no cases have the blossoms expanded into perfect flowers. When apparently ready to expand they began to turn black in the center and drop off. It is also the pollen of White and Yellow Harison used on Rosa rugosa, var. Regeliana, developed remarkably vigorous hybrids which gave clusters of promising buds, but up to the present not a single flower bud has fully expanded. The late E. S. Carnan, however, reported better results with this cross of Harison's Yellow and rugosa (A. G. 1889, p. 650), and a picture of one of his hybrids is shown in Fig. 255. His marked success has been with the pollen of General Jacqueminot, which seems to show a near affinity to all the types of R. rugosa.

With increased experience other cultivated varieties will be discovered that will cross in a profitable way with R. rugosa, and still others will be found that will cross profitably with our native species. At present, however, the east European R. rugosa seems to be the most promising progenitor of the future Roses of the Northwest. We already have fine double varieties with 60 petals each as the L. A. C. 4651, with the rich coloring of General Jacqueminot and the fine leaves of R. rugosa. The main trouble at present is in propagation. As with the true Hybrids of R. rugosa are difficult to grow from cuttings. We find that they can be had readily on strong seedlings of our native species.

It may be in the near future that the seeds of the large-growing Wild Roses of the Black Hills will be used by propagators for stock-growing. When that time comes we already have varieties hardy enough for the North that compare favorably with the best varieties of more equable climates. Strong-growing stocks are advised, as the vigor of some of the hybrids is remarkable. On the writer's lawn is a bush of the Ames variety three years old that stands 7 ft. high, with several stems three-fourths of an inch in diameter. J. L. Budd.

Roses in Southern California.—In many localities in southern California the Queen of Flowers attains a perfection probably found nowhere else. That this perfection is not general throughout southern California is partially owing to adverse conditions, such as a great range of temperature during each twenty-four hours, high winds at critical period, faultiness in whole or in part is due to the lack of intelligent treatment. The chief obstacle to successful culture is the attempt to produce bloom year round. Although this practice is quite an impossibility with any Rose, the evil is still persisted in by ninety-nine in every hundred possessors of a garden. While Roses are grown in great profusion in Los Angeles, few, if any, do as well here as in Pasadena, which, although only nine miles distant, has the advantage of being several hundred feet higher than Los Angeles, and therefore less subject to the great range in daily temperature. In some places a certain few Roses will produce an astonishingly fine crop of bloom, when but a mile or two distant, with no change of soil and very slight difference in altitude, there will be as little growth, as a like number of other varieties will give as good returns as those first mentioned. Consequently the common inquiry at a nursery is as to "What are the best dozen Roses you grow?" and the equally pertinent query: "In what part of the city do you live?"

Many Roses do fairly well everywhere, and among these Duchesse de Brabant more nearly produces a continuous crop of blossoms than any other. For this reason it stands in a class by itself and is not considered in the appended list of the best dozen Roses for southern California, though every one should grow at least one bush of this variety. Along with the Duchesse might well be placed the Polyantha Madame Cecil B. Rhodes, or Madame Francisca Ophire (or Gold of Ophir), Beauty of Glazenwood or Fortune's Double Yellow. All these produce most wonderful crops, but none more so than the last mentioned, which in favored localities is a sight and a spectacle dazzling to behold. Many well-known Californian writers assert that Gold of Ophir and Beauty of Glazenwood are the best roses in the world. This means the case and the writer can furnish satisfactory ocular proof to any who choose to doubt this statement. Gold of Ophir was here for many years before the other made its appearance, and some of the original plants are still growing on many of the old homesteads of Los Angeles and vicinity.

All the Roses named thus far are worthy of a place in any garden. One of the chief causes of failure by the average amateur is the lack of an intelligent knowledge of the plant's first requirement—which is a complete period of absolute rest. These necessary resting periods are best secured by the withholding of the water supply. Most amateurs, and a majority of self-styled "gardeners," persist, against all rules of common sense, in planting Roses either in the lawn or in mixed borders with other plants. In either case, all but the Roses require a constant watering. Having planted in this fashion, the grower has cast away all chances of first-class results. Rose beds should never be made a feature in landscape gardening, as the plants when dormant and judiciously pruned are unsightly objects at best. The most obscure spot obtainable with the proper exposure is the place to grow flowers that require certain growing conditions. This requires about the same amount of rest here that it secures where the winter season leaves the grower no alternative. But the same amount of rest may here be given semi-annually, with equally good and perhaps better results than is possible with one long annual period of inactivity.

The writer firmly believes that with a proper exercise of intelligence in the selection of varieties and subsequent care of plants, better results can be obtained in California than in any other state in the Union. Though some few localities must be excepted, they form but a very small area and may be gauged by a more mention of their existence. Climate is the all-important feature of Rose culture in this section, and if that be satisfactory the remainder of the season makes little difference. Our dry summer air is a serious drawback to the growth of many Roses, there being few places where Moss Roses thrive, and these must be grown in whole or partial shade. Many of the best examples of Roses requiring partial shade if good results are desired. Many localities cannot grow the two last mentioned, or as Perle des Jardins, Meteor, Catherine de Medicis, etc., but as a rule, few, if any, are grown in Profitable water supply. The growing of Roses is more largely to blame for these unfavorable conditions than any other agency. Laurette is a Rose which often produces the only perfect flowers to be
found among a hundred varieties, and this is particularly the case in places visited by heavy frosts, Laurette remaining unsatisfied, while all others are more or less blasted. The great Rose of the eastern United States, American Beauty, is almost a complete failure here and is not worth growing except in a very few, well-favored gardens, and even there it is far from being perfect.

Many Roses, too, are of little value here unless budded or grafted. Of this class Marechal Niel is the most striking example. Instances may be found where this Rose has thrived unusually on its own roots, but such cases are marked exceptions. Some few people maintain that all Roses are best on their own roots, but such opinions are easily refuted by consulting any of our veteran rosarians. The undersigned does not advise the purchase of any such stock, no matter how much is claimed for it, or how widely advertised it may be. The best Roses he has ever seen were root-grafted, but of course this procedure is too expensive for the general nurseryman, and the bulk of our local stock is budded on Manetti or Maiden's Blush, though the Dog Rose (Rosa canina) and even the Banksia are often used. Those Roses grown on their own roots are usually propagated from hardwood cuttings, grown out of doors, and December is usually the best month, though the writer has successfully rooted them from October to March, according to the variety.

Rust bothers us but little; likewise scale, though in many neglected gardens the bush and climbers alike may be found covered with both the rose scale and the red scale of the orange. Fuller's rose beetle is a nuisance only in small areas, but green spits is quite a pest in winter and spring. La France for many years was the leading Rose in California and grew well, budded or on its own roots, in almost any locality, but is now rapidly becoming a thing of the past, though it can never be wholly discarded, for it is still, in a few gardens, the queen of the family. Its involuntary retirement from our Rose gardens is due entirely to a "die back" (anthracnose), which affects many other plants than the Rose, but seems to have a special liking for La France. Thus far no cure has been found.

Below will be found a list of the best dozen bush and half dozen climbing Roses for southern California, compiled from lists furnished the writer by the best six nurserymen and growers in Los Angeles. An increasing demand for Maman Cochet is quite marked, and the few White Maman Cochet yet grown here seem to mark it as the coming white Rose for this section.

The following lists place the varieties in the order of their desirability for either florist or fancier, when grown out of doors:

Climbers.—Lamarque, Marechal Niel, Climbing Souvenir de Wooton, Rve d'Or, Roine Marie Henriette, Claire de Dijon. This list will be found to be the best for Los Angeles and vicinity in general. The intelligent nurseryman or careful purchaser should be able to make the slight changes required by peculiar conditions.

To Mr. Frank Huston, nurseryman of Los Angeles, the writer is indebted for many valuable points contained in this article; also to Mr. Wm. S. Lyon, whose little booklet, "Gardening in California," contains the best practical treatise on Rose-growing ever published on this coast.

Ernest Brainton.
Some Recent Rose Hybrids (Rosa multiflora, R. rugosa and R. Wichurana crossed with various types).—It is now about sixteen years since the undersigned became interested in hybridizing Roses, especially

R. multiflora (the Japanese type), R. rugosa and R. Wichurana. The earliest experiments were made with R. multiflora, the object being first to obtain colored flowers and afterwards to get double ones, but always to keep the hardiness and habits of growth of R. multiflora. There are few pillar or half-pillar Roses that will stand our New England climate without protection, and therefore this type was chosen as the hardest, and effort was made to retain its strong constitution and later to get other improvements. How far the writer has been successful may be judged by his exhibits at the Massachusetts Horticultural shows and by a visit to the Arboretum. This work, started by some others as well as the undersigned, has been the means of having these new types of Roses taken up by the growers, and there are many possibilities for improvement. There seems to be no reason why they should not be as fine for use in the garden as the Hybrid Perpetuals are for flowers.

The first cross made by the writer was with General Jacqueminot, R. multiflora being the female parent, and the result was anything but satisfactory. At last a break was made. All sorts of forms were secured, some resembling both parents in flower and foliage, but most of them were worthless. Two were saved, one with large clusters of double purplish Roses, fully as large as Jacqueminot, with a big stem closely set with heavy spines, a long, rampant growth unlike either parent, the foliage of a Hybrid Perpetual and flowers in clusters of 10 to 20. The other, the widely known Dawson Rose (silver medal Mass. Hort. Soc. 1894) has large clusters of bright rose flowers, 20 to 40 on a stem, bright shiny foliage and a strong growth, sometimes running up 15 feet or more in height. The writer again crossed R. multiflora with Madame G. Lauzet and obtained a half-climbing plant with large, single white flowers in clusters. An attempt was then made to cross these three crosses with other choice Roses for still further improvement, but no perfect seeds were made except on the Dawson. By crossing the Dawson with other Roses several fine forms have been secured, beautiful types of cluster Roses, single, semi-double and double, all more or less with the habit of R. multiflora in the truss and with white, pink, salmon, red and purple flowers. Attempts have been made in crossing the Yellow Harrison Rose with the Dawson and R. multiflora, but so far with no encouraging results. The writer now has about 500 hybrids, three years old, made with differing varieties of Hybrid Teas and Yellow Harrison on the Dawson, with results still to be determined. All these were crossed out of doors with every precaution possible, but the results are not so likely to be as good as when the work is done under the more perfect control of the greenhouse. A cross between the Dawson and Crimson Rambler has so far resulted in a single deep pink flower borne in clusters.

In crossing R. rugosa with Jacqueminot every conceivable form was obtained, some with narrow pointed petals, some semi-double and others single, dark and light colors. One had a deep rich crimson flower, darker if anything than Jacqueminot, very fragrant, with strong, heavy foliage, showing the influence of both parents. This seemed like a promising foundation for a fine race of hardy Roses, but for five years all efforts to get a single hip to mature when fertilized with others have been in vain. This is the Arnold Rose and received the silver medal of the Massachusetts Horticultural Society in 1896. In this batch of seedlings was one that was very double and in color like M. Chatera, but unfortunately some one else wanted it and one day it disappeared from the nursery. The writer has also crossed R. rugosa with Yellow Harrison, but as yet has obtained no yellow Roses of the Rugosa type. On the contrary, they are the biggest lot of mongrels one ever saw, in both foliage and flower. The Rugosa foliage is completely obliterated, and the Harrison retained, while the flowers are small and generally a dirty salmon color. The writer was so disgusted with the lot that he threw them all away after working more than four years on them.

Attention was next given to R. Wichurana. The possibilities of crossing this seem to be unlimited. No Rose that the undersigned has ever tried yields so readily to hybridizing. The first attempt was with Jacqueminot, always using R. Wichurana as the mother plant. The results were excellent. While some plants were nearly R. Wichurana they were entirely different in shape and color; they had the clusters,

2185. Rosa rugosa, var. Kaiserin (X 1/2).

2186. A Rugosa hybrid—Harrison’s Yellow × R. rugosa (X 1/2).
rose also the this reasonable good are but resembling the Bour- buns, and with the genus which are in large clusters and very double, of a delicate flesh color, resembling Souvenir de la Malmaison almost exactly, but somewhat smaller; the foliage is also like Malmais-son but brighter. It is perfectly hardy in the nursery and elsewhere without protection.

Next R. Wichuraiana was fertilized with pollen from R. setigera, and while decided crosses were obtained the results were not altogether satisfactory. One of the best was saved for future use. The flowers are in color near R. setigera, and the growth prostrate as in R. Wichuraiana, but shorter jointed. The plant is very hardy. R. Wichuraiana was next crossed with R. rugosa, with more than pleasant results; Lady Duncan, silver medal from the Massachusetts Horticultural Society, 1899, having the upright growth of the mother, while the Rugosa blood shows in the foliage spines and flowers, these last being a warm, lively pink and making a delightful contrast to the yel- low leaf. It is some years before it will come true. From R. Wichuraiana impregnated by Cris- son Rambler has been obtained thus far only single, pale pink bloom and foliage intermediate between the two, but with the creeping habit of the Wichuraiana fertilized by Belle Siebrecth loses its character except to a slight degree in the foliage; the habit is erect, strong, and with stout spines; the flowers are pink. If this were a pure strain, may produce an entirely new strain. R. Wichuraiana crossed with Clothilde Sonpet makes plants less vigorous than itself; the foliage recalls both parents and the double flowers are in color like Sonpet. R. Wichuraiana crossed with R. Indica var. carnea has produced one with rich crimson flowers, single, with foli- age neither as glossy nor as strong as its mother but with the same creeping habit: unmann silver medal, Massachusetts Horticultural Society, 1899; this kids fair to be the forerunner of a fine race. R. Wichuraiana crossed with R. chinensis de Leliethe has given several distinct forms, one with double rose-purple flowers in clusters and creeping habit; another is of the double white with short stems. R. Wichuraiana crossed by Bardon Job has given a single-clus- ter Rose similar to Carmine Pillar, and the writer has many other crosses between R. Wichuraiana and differ- ent Ten Roses and R. veplas (arenaria) with double and single flowers ranging in color from white to rose pink and salmon; there are few of these seedlings which do not have some merit, and all can probably be improved. The crosses between R. Wichuraiana, Jacqueminot, R. rugosa and Belle Siebrecth will not bear seeds, but those with varieties of R. Indica bear seeds freely. Attempts will now be made to cross those of satisfactory color with the Hybrid Perpetuals and Hybrid Teas.

Several seedlings of crossings between Crissom Rambler and R. Wichuraiana are now seedling. In one the result was extraordinary, no two being alike and each individual was a different shade of color, ranging from a pale rose to a deep rose violet and from single to double. The habit is very vigorous, like R. rugosa, and large red in Crissom Rambler. Compared with the carnations Melba and Marquis, the fresh flowers are nearer to Melba, and this covering at once to that of Chrysanthemum. They are so near the color of these two carnations that put in the midst of the two flowers it is almost impos- sible to tell the difference between the two carnations and the Rose. The habit is of Wichuraiana, and the foliage is more brilliant. The plant grows 5 to 6 feet

in a season, lying close to the ground. There is no doubt that this is one of the best hybrids of Wichuraiana yet known regarding color, foliage and flower.

In summing up the experiments of these hybrids, it is well to say that possibly it might have been produced, but it would have been at the expense of their hardiness.

In making these crosses the writer has always care- fully removed the standards before there were any signs of anthers opening, cutting through the petals while in bud. A gauze covering was placed over the flowers both before and after impregnation, to guard against dust. To keep the record, names and date on a small wooden tally were attached to the cluster. Sometimes the yield in seeds is poor enough, only one in a drop and many times none. The writer is always doubtful of the cross when the fruit is too full of seeds. As R. Wichuraiana opens after the other Roses have passed, it is a good plan to put up a few and bring them into the green- house in March; they will then bloom at the same time the Hybrids, and others, are in flower out of doors. All Roses can be prepared and pollinated in the greenhouse more easily and with better results than in the open air. When the plants are protected from bad weather there is less danger that rain or dew will interfere with one's labors. A sharp knife, a pair of forceps, some fine gauze and a good head-lamp are sufficient tools for the work. Always examine the stigma to see if it is ripe, and, after applying the pollen, look again to see that there is plenty and in the right place. If the flowers which are to furnish the pollen are gathered in the morning and then placed on a pane of glass in a warm greenhouse, the anthers can be opened much easier than if let left overnight. Moreover there is less risk of the pollen having been contaminated by insects.

JACKSON DAWSON.

Propagation of Roses.—The Rose is propagated by seeds, cuttings, grafting or budding, by layers and by division. The genus is so large and diversified and our requirements are so many that the whole art of the propagator is needed to satisfy the claims of the Queen of Flowers.

Seeds.—Roses are grown from seeds not only to ob- tain new varieties but also because many true species are economically procured in this way, e. g., R. canina, R. multilora, R. ferruginea, R. rugosa, R. rubiginosa, etc. The seeds should be gathered in autumn and at once stratified with moist sand or allowed to ferment in tubs, with a little water and kept in a fairly warm place. When well rotted they can be easily rubbed and washed clean and should be sown at once, either in carefully prepared and well-manured beds, or in pans or flats in a cool greenhouse. It is sometimes advised that the hips should first be drier and then rubbed clean, but this method often causes, germination, a matter sufficiently troublesome without additional complications. Whether they are planted un- der glass or in the garden it is difficult to forecast their coming up. It may be within a few weeks, e. g., R. multilora under glass; or at the beginning of the sec- ond growing season after planting, e. g., Sweetbrier seed, planted out of doors in November, 1898, may be expected to germinate in the spring of 1900, while R. rugosa sown at the same time may come up the follow- ing spring, i. e., in 1899, or, a season intervening, it will appear with the Sweetbrier in 1900. Stratifying or fermenting the seeds tend to secure uniform germina- tion within a reasonable time. It has also been sug- gested, and many things confirm the idea, that early scarification helps to hasten germination; in other words, do not wait for excessive ripeness, but pick the hips as soon as the seeds harden, some time before the fruit is deep red. Until these matters are better understood, all are agreed that the larger hips, whether in autumn or spring, should be munched 2 in. deep with pine needles or other litter. Frequent examinations should be made in spring, and the covering at once removed when the seedling appears; if they do not appear let the muck remain to keep down weeds and retain moisture in the seed-bed. Pans or flats in which seed has been planted should be kept at least 18 months before discarding, with the soil always moist. Notwithstanding the difficulties of ger-
mination, the young seedlings make most satisfactory growth and can generally be transplanted into nursery rows when one year old. When two years old they are fit for permanent planting. A winter protection of pine boughs is helpful to the young plants. Some seedling Roses are extremely precocious, blooming before they are one year old, e.g., some Hybrid Perpetuals and Polynutha Roses. The first flowers of seedling Roses do not always indicate their real character; in hybridizing it is well to wait for the second or third season before drawing conclusions.

Cuttings.—These are a common means of propagation, both under glass and out of doors. Under glass short cuttings 2-3 in. long can be made in November and December from wood of the current year’s growth. They should be planted in sand, in flats or pans, and kept in a cool greenhouse. They root in February or March, and can either be potted in thumb-pots or kept on in flats until May or June, when they should be planted out in rich beds; saleable plants are obtained in October. This is a good way to strike R. setigera and its varieties, Crimson Rambler and its allies, R. multiflora, R. polyantha, and their offspring, R. Wichraiiana, Madame Plantier and doubtless many others. Rosa Indica, in all its forms, all tender species and many Hybrid Perpetuals are propagated by cuttings of hardened wood grown under glass; Peter Henderson says the wood is in the best condition when the buds are “just open enough to show color.” Blind eyes can also be used, and the smaller wood is better than the strong rampant growths. Plant in sand in a warm house; bottom heat and a close frame are often used but are not necessary. The cuttings are from 1½-2 in. long; single eyes strike readily.

In the open air cuttings of ripened wood can be planted in spring in V-shaped trenches in carefully prepared and well-manured ground. They make strong plants in autumn. Wood of the season’s growth is gathered before severe frost, cut into 6-in. lengths, tied in bundles, and stored through the winter by burying in sand. When planted, one eye only should show above ground. This method is recommended for the hardy varieties named above for propagating from short cuttings under glass, for standard, R. Moutetii for dwarf stocks. Under glass Roses are budded also, with a shield-bud, at any season when the bark slips, using for stock a vigorous variety. About Boston and Yellowwood with Bankeri Roses once had high local repute for stock for Tea and other tender kinds.

Grafting Roses in the open air in this country is not often employed, but in the south Hybrid Perpetuals and other hardy Roses are said to be root-grafted in winter (very much as apples are root-grafted), tied in bundles, stored in sand and planted out in the spring; the worked portion being set well below the surface. Root-grafting is an easy and convenient method of propagation under glass. Jackson Dawson’s practice is to use the whip- or splice-graft, but the veneer graft is also employed, with bits of R. multiflora root 2-3 in. long for the stock, the cion being somewhat longer but of equal diameter. They are firmly tied with raffia and wax; may also be set in the last year’s ground moss in an open frame in a coldhouse and left until united. They are then potted off and grown on until they can be hardened off and planted out in May or June, the point of union being well below the surface. A specimen of Mr. Dawson’s work is shown in Fig. 2188, the stock being a bit of R. multiflora root; its age. R. multiflora is an excellent stock for garden Roses, since it does not sucker; this great advantage, too, is obtained by using the root-graft as above described. Some of the commercial florists use Multifora planted 2 ft. back to the root, this is splice-grafted and kept in a warm, close frame until united; they are afterwards grown on in pots until large enough to plant out in the beds, in which they will flower well the first season.

There is some difference of opinion among gardeners as to the respective merits of own-root and grafted plants; just now many of the foremost growers prefer the latter for forcing; it is a perplexing question and could only be settled by a series of exact experiments costing much time and money. It is also quite possible that matters of texture, soil, moisture and food are equally important factors.

Layering.—This method is employed only when few plants are required; it is cumbersome and wasteful. Layer in spring a long ways of the last year’s growth where possible; the bark of the buried portion should be abraded.

Division.—This is an easy means of increasing R. indica, R. nitida, R. Carolina, R. spinosissima, Crimson Moss and many other varieties which sucker. Plant thickly in good soil, allow them to grow from three to four years apart. It will be found that the increase is large and that plants so obtained are saleable after one year’s growth in the nursery. The year in the nursery may be omitted with some kinds which are to form new plantations on the same estate.

Buddied Roses vs. Roses on their own Roots.—For the average amateur Rose planter, we cannot too strongly recommend the desirability of own-root plants. Scarcely one planter in a thousand is observing enough to notice the difference between ”snakers” or sprouts from the stock of a budded Rose and the variety that is buddied in. Indeed, upon some varieties the growth is so similar as not to be readily noticed even by those familiar with Rose-growing. In consequence many purchasers of budded Roses allow these suckers or sprouts from the roots to grow up and, being usually of much more vigorous habit than the variety buddied in, they in a short time quite run out the bud, and the purchaser is left with nothing upon his hands but a natural Rose of whatever variety the stock may have been. For florists’ use in forcing and also for the use of planters, who are thoroughly familiar with such things, budded Roses answer equally well and in some varieties are perhaps superior; in that they will produce a larger quantity of flowers and force more easily. The stock most used in western New Roses is bud-grafted R. multiflora “Old Grafted,” and that seems to be about the best adapted for the purpose. Rosa multiflora de la Giffardie is also used more or less, but is generally considered not so desir-
able, since it is not as hardy as the Manetti and is still more likely to throw up suckers from the roots, in which respect the Manetti is hardiest. The Rosa canina (Dog Rose) and Rosa palustris are largely used in Europe as stocks upon which to graft Roses. They have never been largely used in this country, and does not seem to be the favorite here. All of these stocks are grown more extensively in France than anywhere else. The Rosa Mancetti and Rosa multiflora are grown extensively in France, and are shipped from there at the end of the first season; when received here they are trimmed back closely, both to the roots and the branches, and planted the following spring. They are budded the following summer, usually the latter part of June or early part of July, whenever the stocks are in such condition that the bark peels readily. The bud, of course, remains dormant during that season, but the spring following the top of the stock is cut off just above the bud, and it is allowed to grow. With a good season, the buds usually make sufficient growth to be salable the following fall. The foregoing is written solely in connection with the outdoor growing of Roses. Except to provide good rich deep soil of fairly heavy quality, there are no special cultural directions that the writer cares to insist upon.

Roses plants are not often attacked by any fungous disease, save perhaps mildew, which occasionally makes its appearance consequent to sudden climatic changes, such as occur toward fall, when the temperature may be at 80-90°F one day and 40-45°F the next. An application of Bordeaux mixture is of value in checking mildew.

The greater proportion of Roses handled by the undersigned are propagated from cuttings, and consequently are on their own roots. In growing cuttings in this way, it is customary to take into the greenhouses about the first of December the best and strongest plants that are in stock; then cut them back so as to leave only two or three eyes upon each shoot, pot them and place them in a cool house, where they are allowed to stand two or three weeks without a great deal of heat. They soon begin to make roots; and when the white roots show through the soil about the edge of the pot, they are given a little more heat and brought on more rapidly. They are then forced until just ready to flower, and before the wood has become too hard the plants are cut back and the severed wood made up into one-eye cuttings, which are placed in propagating beds of sand and given gentle bottom heat, where they take root in the course of two or four weeks, according to variety and the condition of the wood. After thoroughly rooted, they are potted into 2- or 2 1/2-inch pots and grown on until late in the spring or early summer, when it is safe to plant them out in the fields. There they will remain two seasons, usually, and by that time attain sufficient size to be dug and marketed.

Jackson & Perkins Co.

Rose Forcing.—There is no branch of floriculture in this country that in any way approaches Rose forcing in importance, when commercial and private practice are considered. The large number of private greenhouses erected for the cultivation of the Rose by wealthy people in this country within the last decade cannot be accurately estimated. But the great demand for choice Roses among all classes of buyers throughout the country has produced an enormous increase in commercial greenhouses specially erected for growing and forcing Roses, and each year sees some improvement in the style of construction as well as in methods of cultivation. The general principles of Rose-growing are practically the same now as they were twenty years ago, but the details or small items of which we term them, are constantly being improved. To make the method of successful cultivation quite plain to every one, the undersigned will endeavor to detail closely each operation, starting from the cuttings to the forcing of the Roses. Types of forcing Roses are shown in Figs. 2189 and 2190.

We shall presume that a propagating house is to be prepared for starting the young stock. This is a greenhouse in which a bottom heat of not less than 60°F can be maintained as long as the cuttings are in the sand during the winter; the mean temperature of such a house should be about 55 or 56°. The style or position of the house is of but little consequence if the above temperature can be maintained. Start, then, by making a bench having space for sand 2 1/2-3 inches deep. Take a clean, sharp, gritty sand, without any coarse stones in it, spread it evenly all over the bench, then beat it with a brick or block of wood until it is firm; water it with a fine rose watering pot, and all will be ready for the cuttings. The best time to start propagating for the coming season's planting is about the middle to end of January. Having the above all ready, select good, clean, healthy shoots of 2 or 3 eyes in length, preferably those just below where a bud has been cut; cut the bottom leaf clean off close to the eye; make a clean cut diagonally across the shoot just below the bottom eye. If the leaves are large and heavy, remove the end or fifth leaflet. Then, with a lath about 2 inches wide laid straight across the bench and held firm by the left hand, and with a thin knife in the right hand, draw a line about 1 1/2 inches deep in the sand; in this place the cutting, pressing each down to the bottom of the opening, leaving just enough room between each cutting so that the leaves do not overlap each other. As soon as the row is full, press the sand as firmly as possible around each cutting; then give a good watering with a fine rose watering pot. Repeat the same operation on each successive row till the whole are put in. Shade from bright sun and never allow the cutting to suffer for want of water. If the weather should be at all warm, a light syringing overhead daily will greatly benefit the cuttings; never use very cold water on them, but water of about the same temperature as that of the air. Treated as above, the cuttings should be nicely rooted in about 30 days; and as soon as they have made roots about 1/2 in. long they should be carefully lifted from the sand with a flat stick to avoid breaking their roots, and potted in 2 or 2 1/2-inch pots, using a good forcing soil with only a little manure added, not more than 1 part manure to 8 of soil. As fast as potted they should be placed in a
greenhouse having a temperature of about 56° at night and shaded with sheets of newspaper or similar material from bright sun for a few days till they show some indication of starting into growth. The actual time that shading will be required will depend largely upon the weather and the season of the year. Do not over-water the young plants at any stage, but give just enough to moisten the whole soil nicely when first potted and then as required afterward. Do not put them in the shade of other plants, but place them where they will get the full benefit of all the sunlight and plenty of air as soon as shading can be dispensed with; such treatment will produce a clean, healthy, stocky plant, which means a good constitution. Should greenly appear on them, fanigate with tobacco stems immediately. Syringle overhead on all bright days. In about five to six weeks from the time of first potting, the plants will be ready for a shift into a larger size pot, 3-inch size will be large enough. The same class of soil can be used as for the first potting, be ready for benching out, or, in other words, to be put into their winter quarters. The benches should hold 4-5 inches of soil and the bottom slats of said benches should be placed not less than 1/2-3/4 in. apart to allow ample drainage. If pots have been grown in the benches previously, the benches should be thoroughly cleaned and scrubbed out so as to get all insects, eggs, etc., away. Also, all the soil or surface of the house beneath should be set and dusted out clean, and practically all the inside of the house thoroughly cleaned. When this is done, take two or three lumps of stone and put them in the house, preferably in the afternoon while the sun is still hot. As soon as the sulfur is set on fire and burning sufficiently, shut up the house as tight as possible and keep it till the next morning. After the plant benches should be thoroughly washed with hot lime over the entire inside surface. The house is then ready for the new soil to be put in. This should be composed of good fresh loamy soil, preferably of a rather heavy texture, to each part of manure add 3 or not more than 4 parts of soil, the whole thoroughly fined and all lumps broken up. This compost should be prepared some time in advance and be turned over several times before it is wanted for the greenhouse. If this has been done, all that is necessary now is to bring in sufficient soil to fill the benches. Level it all over without treading or trampling in any form; then start to fill the house with plants. For the ordinary varieties such as Bride, Bridesmaid, in fact nearly all the Tea varieties, an average of 14-15 inches will be apart from plant to plant each way to about 3 inches apart. When planting press the soil firmly around the ball of each plant and when the whole house is planted water the plants sufficiently to soak the soil to the bottom of the bench, but do not saturate the whole of the soil. It is far better to direct the water straight to each individual plant and syringe the whole; this will moisten the other soil on the surface without making it unduly wet. Give all air possible to the plants day and night during hot weather. Syringe in very hot weather twice a day if it is necessary to keep humidity in the house and get the plants started into clean, vigorous growth. This treatment can be followed for four or five weeks until the plants begin to start their roots into the new soil; then go over the whole of the benches and press the soil as firmly as possible. Be careful not to break the plants in doing so, but it is absolutely necessary that the soil should be thoroughly settled and firm. After this, rake the whole surface over with a blower-general rake so as to make it level, water as before and as soon as the plants recover from this; in other words, as soon as they show they are starting new growths mulch the soil with a little manure, but in putting on the mulch never exceed half an inch at a time, as the plants need air at the roots as they do at the tops.

If the flowers are not wanted early, it is better to pinch all the buds off the plants as fast as they appear up to the end of September. This gives the plants an opportunity to make strong, sturdy growth and build up a constitution equal to withstand the pressure of winter forcing.

As the fall approaches and cooler nights come on, the air should be reduced proportionately at night, although it is better to maintain a little night ventilation as long as possible, even if it is necessary to use a little fire heat to expel the damp. After the plants begin to bloom they will need careful watching, as the days will be getting shorter and somewhat cloudy. It is important to avoid overwatering, but, at the same time, they should never be allowed to suffer for the want of moisture. Syringing should be done more carefully at this time, or black-spot, and various other diseases may appear.

To obtain the best class of flowers during the entire winter the average night temperature should be allowed to exceed 56° on bright warm days. Of course, with an abundance of air on, the temperature can be allowed to run up to 75°, 80° or even 85° on some very light warm days.

Mildew, which is one of the worst pests of greenhouse-grown Roses in the fall of the year, can be largely avoided by an abundance of air at all times. Should it

2189. American Beauty, now the most popular florist's Rose in America (X 3/4).

The picture shows a specimen grown in the open.

or if the plants are to be put into their season quarters, i.e., planted into benches from this size, a little more manure can be added; but if they are to be grown in pots, some growers will prefer to give them a third shift, namely into 4-inch pots. The plants, if properly cared for, should be ready for this last shift in about six to eight weeks from the time they are planted into 4-inch pots. In this last shift soil considerably richer can be used. Keep the pots up all the buds so as to have the plants sturdy, strong and vigorous.

Presuming that this method has been followed through until the end of May or beginning of June, the plants will...
make its appearance, sulfur on the heating pipes is the best remedy that can be applied. Red spider also will become troublesome if the plants are allowed to get dry in any spots, or too high a temperature is carried. This can be avoided by liberal spraying on all bright days, thoroughly soaking the under side of all the foliage.

If the greenhouses are constructed to grow plants on the solid bed instead of raised benches, the same method of cultivation should be followed and not more than 2 or 3 inches of soil should be used on the surface; have a thoroughly drained border; in all other respects cultivation would be the same as for bench system. After the plants get into vigorous growth and producing abundance of flowers, say from Christmas onwards, a mulching of well-decomposed manure every five or six weeks in very limited quantities will be beneficial, and if the plants have made extra strong growth and all the soil is occupied with roots in the benches towards the end of February, liquid manure can be applied once in every three or four weeks with considerable benefit. This treatment should carry the plants successfully through to the end of their blooming season.

If the plants are kept in good, healthy, vigorous condition they could be carried through for a second season's work if necessary. To do this it would be necessary to dry them off somewhat, say through July and part of August for four to six weeks, so as to ripen the wood thoroughly without wilting the leaves completely. Then they could be pruned back to good, sound, plump eyes at the base of the strong shoots and all the small spray growth cut out. Then the plants can be lifted with a good ball of earth, so as to save as much of the roots as possible, replanted into new soil, and practically treated the same as young stock.

If grafted stock is preferred instead of own- root cuttings as above described, they can be treated according to instructions given by many authorities on grafting. Cultivation of these is in all respects identical with the above, except as to the rooting of the cuttings.

JOHN N. MAY.

ROSE ACACIA. Robinia hispida.
ROSE APPLE. Eugenia Jambos.
ROSEBAY. Same as Oleander. See Nerium. Epilobium angustifolium is sometimes called Rosebay.
ROSE CAMPION. Lychnis Coronaria.
ROSE, CHRISTMAS. Helleboreus niger.
ROSE, JAPANESE. Kerria japonica.
ROSE MALLOW. Hibiscus.
ROSEMARY or OLD MAN. See Rosmarinus.
ROSE OF CHINA. Hibiscus Rosa-Sinensis.
ROSE OF HEAVEN. Lychnia Cali-rosa.
ROSE OF JERICHO in Anastatica Hierochuntica. See Resurrection Plants.
ROSE OF SHARON. Hibiscus Syriacus.
ROSE, ROCK. Cistus and Helianthemum.
ROSE, SUN. Helianthemum.
ROSEMARY. Rosmarinus.
ROSE, SWEET. Silphium.
5-petaled; stigma abruptly produced from the top into a column having a 3-crested apex. *Syn. Flora N. Amer.*, vol. 2, part 1, p. 463.

cordifolia, A. Gray. Lvs. opposite, slender-petioled, ovate, acuminate; fls. white or white tinged in raceemose corollas; lobes 3-4 lines long. Along water-courses near the borders of Arizona. Cult. in S. Calif.

ROUGIE PLANT. *Ricinia humilis*.

ROUPALA (probably a native name in Guiana). Also spelled *Rupolia*, *Rohalpha*, etc. *Proteaceae*. A genus of about 40 species of the tropical regions of S. America. They are mostly woody plants, with handsome evergreen lvs., either simple or pinnate; fls. usually inconspicuous, in axillary or lateral raceemes, pedicelled in pairs, hermaphrodite, regular; perianth cylindrical, rather straight, but little dilated at the base; the limb somewhat globular: ovary sessile; ovules 2, pendulous, orthotropous.

A. *Hearts rust-colored.*

Pohlii, Meisn. (E. Corcovadoensis, Hort.). A tree, with branches clothed with rusty colored woolly tomentose 1 to 2 ft. or more long leaves, with 5-8 pairs of fls. which are 3½ in. long, on stout pedicelles 1 in. or less long, ovate or obliquely ovate, acuminate, acutely serrate; fls. ½ in. long, white or yellowish, in nearly sessile axillary raceemes 3-5 in. long. B.M. 6955.

AA. *Hearts golden.*

aurea, Lindl. According to Belg. Hort. 1866:202, this species was named for the golden hearts covering the upper parts of the stem and pedicelles. Brazil.—Rare and imperfectly known, but still offered in America.

R. angustifolia, Hort., is a plant offered by Siebreeht which does not appear in botanical works.

F. W. BARCLAY.

ROWAN. *Sorbus Aucuparia*.

ROYAL CROWN. *Eucomis*.

ROYAL FERN. *Osmunda regalis*.

ROYAL PALM. *Oreodoxa regia*.

ROYAL PEACOCK FLOWER. *Psittacina regia*.

ROYENA (Adrian van Royen, professor of botany in Univ. of Leyden; died 1751). *Eucomis*. *Royena lucida* is one of the old-time Cape shrubs formerly cult. under glass for ornament in England and lately offered in S. California. It has small white fls. about ¼ in. across, with 5 more or less reflexed lobes. *Royena* is a genus of about 13 species of evergreen shrubs or small trees, 2 of which are native to tropical Africa and the rest to the Cape. The genus is distinguished from the 4 or 5 other genera of the echin family by the flowers being hermaphrodite instead of dioecious and the stamens in a single series. Other generic characters (taken from the *Flora of Tropical Africa*): calyx often accrescent in fruit; lobes 5, rarely 4; corolla bell- or urn-shaped, 5-cleft; lobes reflexed; stamina 10, inserted at the base of the corolla-tube; ovary conical; styles or style-branches 2-4; fr. globose to oblong, leathery, indehiscent.

lucida, Lindl. Tender shrub: lvs. ovate, the younger ones silky; peduncles about a third as long as the lvs.; corolla bell-shaped. *S. Afr.* B.R. 32:40.

RUBUS

RUBUS PLANTS. Various plants furnish Rubber. The best gutta percha is said to be produced by *Isouandra Guttata* (which see), a native of India. For the Rubber Tree of South America see *Hevea*, A. Gray, vol. 7:41. The Rubber Tree of Tropical Africa is *Landolphia Florida*; see B.M. 6963. The Rubber Plant of horticulturists is *Ficus elastica*.

RUBIA (Latin, red: referring to the color of the dye extracted from the root). *Rubidocoe*, *R. tinctorum* is the dye plant called for in the long, fleshy roots of which are ground to powder. According to Thorburn, Madler furnishes a good green folder if cut the second year when in flower. The genus consists of about 30 species of searious, hispid or prickly herbs widely scattered about the world, mostly in the temperate regions. Lvs. in whorls of 4-8 or rarely opposite: lvs. small to minute, in axillary or terminal cymes, 5-merous; involucre none; calyx 5-lobed wanting; corolla rotate or rotate-bellished, 5-lobed; ovary 2-lobed or monocarpous.

tinctorum, Linn. (R. tinctoria, Salisb.). Madler. A scented herbaaceous perennial; lvs. 2-4 in. long, sessile or very short-petioled, mostly lanceolate, not cordate, in whorls of 4-5: cymes terminal, panicled, spreading, leafy.

F. W. BARCLAY.

RUBUS (Latin name, ultimately connected with ruber, red). *Rosa, Rubus*. *Bramble*. *Blackberries and Raspberries*. A very variable and puzzling genus, containing perhaps 200 fairly well-marked species and numberless intermediate forms. As many as 1,500 species have been described. The genus is particularly strong in Europe, where the greatest number of specific names have been made (see Welke & Nees, "Rubus Germanicus," 1822-7; Foëe, "Synopsis Ruborum Germanicorum," 1857; Babington, "British Rubi," 1869; W. M. Rogers, "Key to the British Rubi," Journ. Botany, 1862). Foëe describes 72 species inhabiting Germany. There is also a large extension of the genus in the Himalayan region, about 50 species being recognized (J. D. Hooker admits 41 species in the "Flora of British India"). The species extend eastward into China and Japan. Hemsl., in his "Flora of China," admits 41 species. In Japan, Fanchet and Savatier admit 23 species. In North America, about 40 species are now recognized, but they have not been studied critically, and it is probable that many more specific types will be recognized in the near future. No end of mistakes could be avoided if it were doubtful whether a great multiplication of specific names would contribute anything more than confusion to the literature and knowledge of the group. It is easy to see in the little monograph of the American species. The species that are valuable for their fruits are reviewed by Card in "Bush-Fruits" and by the present writer in "Sketch of the Evolution of our Native Fruits," 1898. Rubus is widely distributed in the northern hemisphere, particularly in temperate and warm-temperate parts. Some of them are alpine and arctic. In tropical countries the genus is relatively poorly represented. Oliver admits only 4 in the "Flora of Tropical Africa." Only 2 species are described in Gрисbach's "Flora of the British West Indies." Baker admits 3 in the "Flora of Mauritius and the Seychelles." Hilliard describes 3 species in "Flora of the Hawaiian Islands." The southern hemisphere has few species. Bentham's "Flora Australiensis," has but 6 species. Kirby's "New Zealand" mentions only 4 indigenous species. There are also 5 species described in Harvey and Sonder's work ("Flora Capensis") on the flora of the Cape of Good Hope region.

Rubus is closely allied to Rosa, from which it differs chiefly in the structure of the flower. In Rosa, the torus is hollow (formerly said that the calyx is hollow or urn-shaped) and is made up by the dry fruits. In Rubus the torus is convex, conical or elongated, and bears the mostly soft or pulpy fruits on its surface. Rubi are chiefly shrubs with stems (canes) that die
after one or two years, but some of them have herba
ceous tops. Most of them are more or less prickly.
Many of the species are creeping, decumbent or half-
climbing. Leaves simple or compound, alternate, the
compounding on the pinnate order and the leaflets
mostly 3 (several in some of the tropical and oriental
species). The flowers are mostly white or rose-colored,
usually in corymbs, racemes but sometimes solitary;
calyx 5-parted, the lobes persistent; petals 5, usually obsolete; stamens
many, inserted on the calyx-rim or torus rim; pistils many, closely
packed on the torus, usually becoming
drupelets but sometimes dry when ripe. The drupelets are
usually more or less coherent at maturity, the collective body forming the
"fruit" or "berry" of horticulturists. In the Raspberries, the co-
herent drupelets separate from the torus at maturity, causing the berry
to be hollow or concave on the underside.
In the Blackberries, the co-
herent drupelets also adhere to the torus, which separates at maturity and forms the
"core" of the berry.
Relatively few of the Rubi have horticultural
merit, although some of them are of great
importance. As pomological subjects they are
more important in North America than elsewhere in the
world. Here we grow not only Raspberries, which are
popular elsewhere, but also great quantities of
improved Blackberries, a fruit that is little known
as a cultivated product in other countries. These
Blackberries are the product of our native species,
Rubus *rigorosus* being the chief. Closely allied to
them are the Dewberries or the trailing Blackberries,
which also have been developed from indigenous
species, chiefly from *R. vulgaria* and *R. idaeus*.
Although the European Raspberry, *R. idaeus*, is
grown in some parts of North America, it is mostly unreliable,
and the leading commercial sorts are produced from
the native *R. occidentalis* and *R. strigosus* and from hybrids of the two. Various Japanese
species have recently introduced, also produce fruits of
value.
A number of the species are useful as orna-
tmental subjects, particularly the Rocky Mountain
R. deliciosus, the old-fashioned Brier Rose (*R.
roseolatus*), Wineberry (*R. phoenicolasia*), and
R. corymbosus. For its gracefully, finely cut foli-
ge, and sometimes for its fruits, *R. laciniatus* is
occasionally grown. Some of the unimproved native species are offered by dealers in native
plants as worthy subjects for wild borders and
rock gardens. The beauty of most shrubby Rubi
depends largely on the removal of the canes after they
have bloomed once. After flowering, the cane becomes
weak or may die outright. It should be removed to the
ground. In the meantime other canes have arisen from the
root, and these will bloom the following year. That
is, the stems of Rubi are usually more or less perfectly
biennial; the first year they make their growth in
stature; the second year they throw out side branches
on which the flowers are borne; after fruiting, the en-
tire cane becomes weak or dies (Fig. 2191). Removing
these canes not only contributes to conserve the vigor of
the plant, but it also adds to its appearance of tid-
iness. These remarks apply with particular force to the
cultivation of Raspberries, Blackberries and Dewberries.
For other accounts of Rubi, see Blackberry, Dewberry,
Loganberry, Raspberry.

Poole (Engler & Prantl, "Die natürlichen Pflanzen-
familien") divides the genus into 11 sections, seven of which are concerned with the species to be
described in this work. These seven are as follows:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dalibarda</td>
<td>Stamens about 5: fr. scarcely juicy: fls. perfect, on creeping leafy stems: lvs. simple, not lobed. The present writer prefers to consider Dalibarda as a distinct genus, and it is so treated on p. 363 of this work.</td>
</tr>
</tbody>
</table>
2193. Rubus delicious, from the Rocky Mountains.

prickles, glabrous or nearly so; lvs. thin and soft, light green, with 3 or 5 ovate or oblong-ovate, coarsely serrate lfts.; fls. 1-3 on each peduncle, small and white, the calyx reflexed; fr. small, reddish. Cold swamps, N, J., west and north.—Offered as a rock garden plant for moist places.

3. *tanscorticus*, Bur. & Franchet (*R. Potaninii*, Regel). Trailing, the stems dying back every year, the stems pilose and weak-spiny; lvs. phyllotactic 3-foliolate, the leaflets ovate, acute or obtuse, strongly and unequally dentate, the terminal one twice larger than the others; fls. solitary or twin in the axils of the upper lvs., the peduncle and calyx weak-prickly, the petals white; fr. large, ovate, bright yellow, fragrant and palatable, the calyx persistent.—China; discovered in 1855 in the Province of Kansu, 40° north latitude, and later found in provinces Sze-Chuan and Yen-nan.—Firstly into the U. S. in 1898 by the Dept. of Agric. through Professor N. E. Hansen, to be tried for its edible raspberry-like fruit. At Brookings, S. Dakota, the plants suffered from the phenomenal winter of 1898-9, but unched plants have subsequently endured the winters well.

SECTION 3. ANOPLOBATTS.

A. *Les. mostly 7-lobed.*

4. *trifidus*, Thunb. *Fire Raspberry.* Strong-growing and erect, 7-10 ft. tall: lvs. large, palmately ribbed, 3-5- or even 7-eleft, serrate; fls. subsolitary, the peduncles villous; berry of medium size, scarlet, with pointed druplets. Japan.—Successfully introduced, and prized for its bright autumn foliage (whence the name "Fire Raspberry").

AA. *Lvs. 5- or less lobed.*

b. *Peduncles mostly 1-fld.*

bb. *Peduncles several to many-fld.*

6. *odoratus*, Linna. *Flowering Raspberry. Mulberry* (erroneously). Fig. 2194. Strong-growing plant, with the shaggy canes reaching 3-6 ft.; lvs. very large, pubescent beneath, 3-5-lobed, the lobes pointed, margin serrate; fls. 1-2 in. across, rose-purple, several to many in the cluster, the sepals with a long point, the pedicels and pedicels glandular-pubescent; berry flatish and broad (3½ in. across), rather dry, light red, edible but not valued. Nova Scotia to Mich. and Georgia (Fla.). Gn. 34, p. 230. B. M. 323. J. H. H. 31:133.—Prefers rich shady woods and banks. It makes a bold subject in a foliage mass, and its fls. are nearly as large as single roses, although the color is less bright. It spreads rapidly from the root and overtops weaker plants.

SECTION 4. BATOTHAMNUS.

A. *Les. simple, but more or less lobed.*

8. *microphyllus*, Linna. (R. palmatus, Thunb.). Spreading, often slender-stemmed plant growing 4 or 5 ft. tall, with many short, but stout nearly straight spines: lvs. rather small, 2-3 in. long as a rule, narrow-ovate-acuminate or sometimes nearly triangular-ovate-acuminate, rather deeply 3-5-lobed and the middle lobe long and acuminate, the margins very sharp-serrate: fls. white, nearly or quite 3 in. across, with broadly ovate petals; fr. small (red), of little value. Japan.—Sparingly introduced as an ornamental plant, but little known here. The "Mayberry," introd. by Luther Burbank, is said to be a hybrid between this species and the Cuhibet Raspberry (*R. strigosus*). The Mayberry is described as producing a large yellow edible berry, ripening in advance of the Strawberry.

9. *crataegifolius*, Bunge. Fig. 2195 (after Carl.). Strong, erect or diffuse much-spreadiig plant (3-5 ft.), with terete reddish glabrous canes that bear few and small straight spines: lvs. oblong-ovate to cordate-ovate, acuminate, 3-5-lobed, and the margin coarsely serrate and notched; fls. white, in small clusters terminating slender leafy shoots, about ¾ in. across, fr. small, orange-red, of no value. Japan.—An excellent plant for holding banks and for covering waste places, and giving fine deep reds in the fall. Perfectly hardy in central New York. Burbank's "Primus" is hybrid of this and *R. vitellinus*, the latter furnishing the seed.

times indistinctly lobed, long-stalked, thin, glabrous or becoming so beneath: fls. solitary or in 2's, large, red or purple: fr. large, somewhat conical, salmon-color or wine-red, edible, the druplets bearing the persistent styles. Calif. to Alaska. B. R. 17:1424. L. B. C. 17:3602.

SECTION 5. IDEORATUS, or Raspberries.

A. Lvs. long-pinnate, with 2 or more pairs of narrow leaflets.

12. rosæfolius, Smith (R. floribunda and R. Sibiricus, Hort. R. rosæthron, Roxbg.). STRAWBERRY-RASPBERRY, Figs. 2196, 2197. Erect and tall-growing, evergreen in warm countries, glabrous or somewhat pubescent-hirsute; lvs. odd-pinnate, the lateral leaflets 2-7 pairs, all the fls. ovate-lanceolate or lance-oblong, acuminate, strongly many-veined and very sharp-serrate, more or less silky-hairy beneath; fls. solitary or in few-fld. clusters, white, 1½-2 in. across, showy: fr. erect, bright red, long thimble-shaped, usually about 1-1½ in. high, very showy, edible but insipid. Var. sorbofolius (R. sorbofolius, Maxim.) is a very hairy and rigid form. Var. coronarius, Sims (R. grandiflorus, Hort.), is a double form, sometimes cult. as the "Brier Rose" and "Bridal Rose" (B. M. 1733. G. C. H. II:277). - Widely distributed in tropical countries, but native to the Himalayan region and eastward to China and Japan. B. M. 6570. P. S. 17:1714. A. G. 20:82, 87. A beautiful plant and worthy of general culture. In the North it usually kills to the ground each winter, but it throws up shoots 2-4 ft., and these bloom from summer until frost, usually ripening fruit at the same time. The fruit has some value for eating, but it is probable that it will never be greatly developed in this direction. The double-flowered form is often grown under glass and in pots.

Aa. Lvs. pedately 3-5-foliolate.

b. Plant profusely red-hairy.

13. phænæcolius, Maxim. WINEBERRY. Fig. 2198. Canes long and recurring, furnished with straight, weak prickles and densely clothed with red-brown glandular hairs, propagating by "tips": fls. usually 3, broad-ovate to rounded-ovate, acute or acuminate, deciduous, sometimes indistinctly lobed at top, white-tomentose beneath: lvs. in dense, small shaggy-haired clusters which spring from the uppermost axils and form a large, loose, leafy panicle; petals shorter than the long, bristly calyx lobes, the latter enlarging after flowering and enclosing the growing fruits in a bur but spreading apart as the

2198. Rubus rosæfolius.

One of the best of the flowering Rubusese.

In the North it often kills to the ground, but the strong young recurring canes and white-bottomed foliage make it a handsome plant.

14. ellipticus, Smith (R. Íðæus, Ham.). Fig. 2199. Tall and erect or nearly so (6-10 ft.), the canes stout and densely beset with straight red-brown hairs and bearing a few stout, short, nearly straight prickles: fls. 3, the terminal one much the largest, ovate to orbicular-ovate, not lobed, evenly doubly serrate, thickish, soft pubescent and strongly veined and prickly on the midrib beneath: fls. white, ½ in. or less across, in small, many-fld. clusters: berry the size of a common Raspberry, yellow, of good quality. Himalayas. - Grown in southern Fla., where it is said to be the only Raspberry that perfects its fruit.

BB. Plant not red-hairy all over.

c. Red Raspberries.

15. Íðæus, Lind. EUROPEAN RASPBERRY. An erect, mostly stiff grower, propagating by suckers, the canes light-colored and bearing nearly straight slender prickles: fls. ovate, white beneath, irregularly toothed and notched, usually somewhat plicate or wrinkled; flower-clusters mostly long and interrupted, most of the pedicels dividing into two or three pedicles, the pedicels, as also the flowering shoots, pedioles and calyxes, finely pubescent, but not glandular, and sparsely furnished with firm recurved prickles: fls. small, white; calyx pubescent: fruit oblong or conical, dark red, yellow or whitish, produced more or less continuously throughout the season. Europe and Asia. - Named for Mt. Ída, in Greece. Early introduced into this country, but now nearly driven from cultivation by the harder native species. The Antwerp, Fontenay, and Fastolfs belong here. Rubus Íðæus itself is not known to be native to N. Amer., but a most interesting form of it (var. auwaldi, Arr. H.) has been discovered recently in Vermont. See Fernald, Rhodora, 2, p. 195, with figure.
16. *strigosus*, Michx. (R. *Idæus*, Linn., var. *strigosus*, Maxim.). Red Raspberry. Fig. 2606. Much like the last, but distinguished by a more slender and open habit, stiff prickles on the bearing bristy canes, which are brown and somewhat glaucous, thinner leaves, and gland-tipped hairs or bristles upon the flowering shoots, petals and calyx, the latter less pubescent or hirsute: flower-clusters more open or scattered; fr. bright light red, or rarely yellow or whitish, not produced continuously. Widely spread in the northern states as far west as Missouri, also in the mountains to Arizona and northward to Alaska, extending farther north than the Blackcap; also in Asia. — Under cultivation the glandular hairs usually disappear. The light red garden berries, like Curtibert, belong here. Var. *albus*, Fuller, has amber-white fr. *islack* Var. *Eubatus*, scattered in Common Raspberry *Rubus* west tinuously. flower-clusters prickles: below.

17. *neglectus*, Peek. Purple-Cane Raspberries. Figs. 2682, 2290. A large and variable race of hybrids between *R. strigosus* and *R. occidentalis* occurs both naturally (*Rubus neglectus*, Peek, 229 Rep. Heg. N. Y. State Univ. 55, 1859) and in the garden (Bailey, Amer. Gard. 215, 1890). These plants propagate either by "tips" or suckers, usually by the latter. The flower-clusters are open and struggling, and the fruit ranges in color from yellow to purple. As a rule, the fruit is aggregated at the end of the cluster but is scattering below. The Purple-Cane type of Raspberry belongs here. Prominent varieties are Shaffer, Philadelphia (now nearly out of cultivation), Gladstone, and probably Caroline. *cc. Black Raspberries (yellow-fruited forms are known).*

18. *occidentalis*, Linn. Common Blackcap. Figs. 2204, 2202. Strong, erect bush, the canes finally recurving and rooting at the tips, furnished with straight spines, glaucous, not bristly; frs. broadly obovate, dull green above and white beneath, finely and sharply serrate, and notched, the petals usually bearing short prickles: fr. in small, dense, prickly clusters with sometimes a few scattering pedicels, the petals shorter, than the long-pointed whitish woody sepals: fr. rather small, semispherical, firm or even hard, black or occasionally amber-white, dry and sweet. Plentiful in fields and clearings in the northern-eastern states to Oregon and Brit. Columbia and southward to Ga. in the mountains, and to Mo. — In cultivation, known in many forms, as Ohio, Gregg, etc. Var. *pallidus* has amber-yellow fr.; sometimes found in the wild.

Var. *leuconoebris*, Card (R. *leuconoebris* Doug.). Frs. more coarse dentate-serrate, sometimes nearly incise-serrate, the prickles strong and more hooked: fr. reddish black or black. Rocky Mts. and W.

SECTION 6. EUBATUS, or Blackberries and Dewberries.

The botany of the American Blackberries and Dewberries is interminably confusing. If the kind of species-making that has been applied to the European Rubi were applied to the American, the number of species would straightway be quadrupled or trebled at the least. There is no difficulty in finding forms that are distinct enough to be described as species. The difficulty lies in the endless series of intermediate forms, that confound all efforts at limitation and make printed descriptions of no avail. This difficulty is greatly increased from the fact that the foliage often differs widely between the verdurous and flowering shoots of the same plant. There seems to be little utility in separating forms that cannot be distinguished in at least a fair proportion of the specimens that come to one's hand, however well marked they may be in their extremes. It is to be expected, however, that long-sustained studies in the field, as well as in the herbarium, will discover means of separating some of the forms that are now confused, but it is doubtful if there are any species in this section of Rubus, as the term species is commonly understood. The best one can do is to throw them into groups. For a history of nomenclatorial difficulties in American Rubi, see "Evolution of Our Native Fruits."

A. Blackberries: Plant usually erect or essentially so (strong canes often recurring).

Group 1. Exotic Blackberries, with mostly perennial canes and flowers usually borne on the ends of the main shoots.

19. fruticosus, Linn. European Bramble. Strong-growing, mostly pubescent or hairy on the young parts, usually with strong recurved prickles, the canes often
many feet long and recurring or half climbing but sometimes erect; fls. 3-5, ovate or rhomb-ovate, coarsely toothed, thickish, pubescent to white-downy beneath; pedicels and usually the midribs beneath bearing prickles; fls. in terminal panicles, white or pink, showy, the buds white-pubescent: fr. black or dull red.

2199. Rubus ellipticus (X ½).
A yellow-fruited species from the Himalayas.
No. 14.

the calyx reflexed, edible but little prized. Europe, where it is common in fields and hedges. As a cult plant, known chiefly in the double-fld. form (as R. pom-potulus), Gr. 34, p. 234. Sometimes known as R. spec-tabilis in gardens.

20. rhamnus, Wildl. (R. fruticosus, var. rhamnus, Hort.). CUT-LEAVED or EVERGREEN BLACKBERRY. Fig. 2200. A tall, straggling bush with permanent or perennial canes in mild climates, and leaves more or less evergreen, the stems provided with recurved prickles; fls. 5, broadly ovate in general outline, cut into several or many oblong or almost linear sharply toothed divisions, the ribs prickly below and the pedicels strongly apparently only a cut-leaved form of the common European Rubus fruticosus. It is now widely scattered, and seems to thrive particularly well in Hawaii and other Pacific islands and on the Pacific slope. By some it is supposed to be native to the South Sea Islands (see Bull, 64, Utah Exp. Sta.). It is probable that the plant has been introduced into the West from those sources, but such fact does not prove its original nativity. It has aroused considerable attention in Oregon and other parts of the West, and is often known as the Oregon Everbearing Blackberry. In mild climates the lower parts of the canes often live from year to year until they become as thick as one's wrist; and in such climates the leaves persist for the greater part of the winter. The plant has long been grown for ornament in the eastern states, but it has not attracted attention as a fruit-plant in this region. The fruits are of fair size and quality, and ripen from midsummer or late summer to October. The plant is a good ornamental subject, although it is likely to cause trouble by sprouting at the root.

Group 2. Thornless Blackber- ries, with tall, nearly un-armed furrowed biennial canes, and long, open flower-clusters.

Group 3. Glandular Blackberries, with stout, thorny biennial canes and prominently glandular-pubescent inflorescence.

22. nigrobacca, Bailey (R. villosus. Authors, not Ait.). COMMON HIGH-BUSH BLACKBERRY of the North. Figs. 2204-6. Canes tall, recurring at the ends, furrowed, the young parts prominently glandular-pubescent, the spines usually large and more or less hooked: fls. 3-5, ovate-acuminate or sometimes lance-ovate, long-stalked (at least in the largest fls.), the terminal one often heart-shaped at base, the margins nearly regularly strong-serrate, the under surface glandular-pubescent: fls. white, showy, the petals narrow, borne in a long, open raceme-like cluster of which the terminal flower is usually the only one in each pedicel standing at nearly right angles to the rachis: fr. black, oblong (variable to nearly globose), usually not very juicy, sweet and aromatic. Everywhere in old fields and clearings in the northeastern states, at common elevations, extending south to North Carolina and west to Iowa, Kansas and Missouri.—Known in cultivation in the "Long-cluster Blackberry" as Taylor and Anche in the Pacific Volume, Bailey the "White Blackberry." is a state in which the fruits are amber-colored and the bark yellowish green; occasionally as far west as Michigan, and probably farther.
Var. sativus, Bailey (R. sativus, Brainerd). Fig. 2207; also Fig. 277, Vol. I. Generally lower and the canes more erect: frs. broader (or at least shorter) and less prominently pointed: fl.-clusters shorter (usually from the elongation of the lower pedicels or the upper ones remaining short); fr. rounder, and the drupelets usually relatively larger and juicier. Dry, open fields.

—Distinct in its extreme forms, but running into the species by all manner of intermediate gradations. From this plant the common "Short-cluster Blackberries" of the garden appear to be derived, as Snyder, Kettitanny, Erie, etc.

23. Allegheniensis, Porter (R. villosus, var. montanus and R. montanus, Porter, not Wirt.). Very like R. nigroacutus, and perhaps only a mountain state of a cosmopolitan type: plant smaller, usually less prickly; branches and leaf-stalks usually reddish, and all young growths very glandular-pubescent: frs. mostly smaller, very long-pointed, closer-toothed: fl.-clusters usually smaller: fr. small, long and narrow, tapering towards the top, the drupelets many and small, not very juicy but of good flavor. In mountains and highlands, Ontario to Virginia. —Common on the higher elevations, affording much edible fruit. In its typical form, as seen in the wild, it is very distinct from R. nigroacutus, particularly in its fruit.

24. heterophyllus, Wild. Fig. 238, Vol. I. R. nigroacutus R. villosus, in many forms both wild and cultivated. In cultivation this hybrid class is represented by the "Loose-cluster Blackberries," as Wilson, Wilson Jr., and Rathbun. The plants are usually half-erect, thorny, mostly more or less glandular-pubescent on the young growths: frs. broad and jagged: fl.-clusters small and usually forking, with long pedicels: fr. rather loose-grained, with large drupelets. The plant is not infrequent in regions in which both R. nigroacutus and R. villosus grow. It is usually easily distinguished by the half-erect habit and irregularly toothed and jagged frs. which are not long-acheneum. In some cases, the bushes naturally stand 3-4 ft. high.

Group 4. Leaty-cluster Blackberries, with little or no glandular pubescence and short flower-clusters that have more or less small levs. intermixed.

25. argutus, Link (R. frondosus, Bigel. R. villosus, var. frondosus, Torr. R. suberetum, Hook.). Fig. 2208. Very like R. nigroacutus in habit, but usually stiffer in growth, the young parts and under surfaces of frs. only rarely glandular though usually pubescent, the canes generally very thorny: frs. often smaller and stiffer, the frs. short-pointed, the pedioles and midribs conspicuously thorny: fl.-clusters short and leafy: fr. globular or short-oblong, black, usually good. Mostly in open places, from New Brunswick to Lake Superior and south to the Gulf. —Our most cosmopolitan Blackberry, and presenting innumerable forms. The plants described by Link and Bigelow had rather few and straightish spines, but some forms bear very strong hooked spines, and between these two forms there are all gradations. The species is much in need of critical study. In cultivation it is represented in Early Harvest and a few other varieties.

26. floridus, Tratt. (R. argutus, var. floridus, Bailey). Canes armed with hooked prickles: pedicels and calyx pubescent, sometimes glandular: floral frs. small, mostly wedge-obovate and obtuse: fl.-cluster small, with short (often very short) slender pedicels: fl.-buds small and globular, white-pubescent (particularly on the edges of the sepals): frs. large, with broad mostly overlapping petals. Evol. Native Fruits, Fig. 91.—What the writer takes to be this species seems to be common in southern Mississippi, and perhaps also in Alabama. How distinct it may be is only to be determined by careful studies in the field; but in its typical forms it is readily separated from R. argutus. It seems to be less erect (often climbing?) than R. argutus.

27. Rándii (R. argutus, var. Rándii, Bailey). Fig. 2209. Low and wide-spreading (usually less than 3 ft.), sometimes becoming procumbent, with few or almost no prickles, the canes often almost herbaceous: frs. very thin, usually becoming nearly or quite glabrous beneath, the teeth coarse, sharp and unequal, the frs. on the young canes acuminate: fl.-cluster small and simple, nigroacutus and nearly so: fr. small, usually rather dry, but sometimes juicy and good. Study places, as in woods and thickets, New Brunswick to Lake Superior; to be looked for in the mountains of Carolina.—It impresses one as a weak wood form, sometimes seeming nearest R. Canadensis but oftenest suggesting R. nigroacutus; but it seems to hold its characters better than most Blackberries.
RUBUS

SECTION 5. Sand Blackberries, with stiff, erect, lax and very thorny growths, small fl.-clusters, and less white-tomentose beneath.

28. canescens, Pursh (R. acclinissimus, Reasnor). Sand Blackberry. Fig. 2204. Fig. 2209. Plant stiff and thorny, usually not over 3-4 ft. tall, the prickles very many, hooked, and very strong, the young growths white-tomentose: flts, on bearing canes mostly small and thick, wedge-oblong to wedge-ovate, obuse or nearly so, densely white-tomentose beneath, the margins sharp-toothed; flts. on the sterile canes drupelets, red to red-black, sour. Swarms or low sandy soils, Nova Scotia to Ga., and Kans.—Of no value for the fruit, but sometimes offered by dealers as a subject for covering the ground in moist places. The leaves usually persist through the winter, and in sunny places they assume a fine bronze hue.

Group 3. Soft-caned Blackberries, with the stems thin and little woody or even almost herbaceous and the peduncles 1-2-fld.

31. Easiensii, Tratt. (R. villosus, var. humilis, Torr. & Gray. R. Baileyanus, Britt.). Plant weak, with slender canes lying on the ground, the prickles small and relatively few or even none, the flowering canes sometimes almost herbaceous although having survived the winter: flts. small and thin, oval-pointed to nearly ovate, irregularly and sharply serrate, nearly glabrous (or hairy on the margins and the veins): fls. and fruits of good size, white, solitary (sometimes in 2's) on short, leafy peduncles; fr. small and nearly globular, black, often good. Sandy places, New York and Mich. to Miss. Evol. Native Fruits, Figs. 77 and 87.—Has been confounded with R. villosus, but, as Rubuses go, it seems to be well distinguished. Probably not in cultivation.

Group 3. The common Northern Blackberries, with strong, prickly, often half-tomentose canes and 3-7-fld. peduncles.

32. villosus, Ait. (R. Canadensis, Authors, not Linn.). Figs. 2211, 2212. Canes strong, often several feet long and usually armed with strong recurved prickles, not standing alone when full grown but often rising 2 ft. from the ground, the shoots mostly glabrous or becoming so: fls. of medium size or becoming very large on strong plants, firm and thick, the 3-7 leaflets oval or ovate pointed or acuminate and sharply double-toothed: fls. white, few to several on the ends of short, leafy shoots of the season: fls. usually globose or short-oblong, shining black, the drupelets usually large. Fields and roadsides, Ont., Mich., and Newfoundlands! to Fla. and Arizona.—The common Dewberry of the North, occurring in many forms in old fields, and often a troublesome pest. There are varieties cult. for the fruit. This is the plant named Rubus villosus by Aiton in 1789, although it has been supposed that he had the High-bush Blackberry (R. nigrobaccus). When

2205. Rubus nigrobaccus (x 1/2) No. 22.

Rubus nigrobaccus (x 1/3) No. 22.

Rubus nigrobaccus, a wild High-bush Blackberry (x 1/2). No. 22.
it was determined, in 1898, that Alton had the Dewberry, rather than the Blackberry, when he made the name *R. vitifolius*, it became necessary to revise our nomenclature. It was supposed until that time, also, that Linnaeus meant to designate the Dewberry by his *R. canadensis*, but he really had the Thornless Blackberry.

Var. *toribiacus*, Bailey. *Lucretia Dewberry*. Figs. 697, 698, Vol. I. Very robust form, with large, wedge-obovate, deep-cut leaflets, very long pedicels, very large fls. (sometimes 2 in. across) and leafy-tipped calyx-lobes; fr. large. West Virginia, and in cultivation as the Lucretia Dewberry, which is the most popular current variety.

33. *invitus*, Bailey (R. canadensis, var. invitus, Bailey). Figs. 2213, 2214. Canes strong, terete, somewhat ascending, not very prickly (the prickles straightish); leaflets large and rather thin, light green, those on the verdurous shoots coarsely and simply toothed and the teeth usually abruptly pointed; fl. cluster forking, with 2-6 long, slender, usually hispid pedicels; fls. large, with leaf-like sepals. Not uncommon from New York to Kansas and the Gulf. — In cultivation as Bartel and other Dewberries. When once understood, this species is generally easy to recognize. The best single diagnostic character is the large simple toothed of the leaflets on the sterile shoots.

Group 4. The Southern Dewberries, with very long, prickly and often hispid canes, narrow persistent leaflets, and mostly 1-fl. pedicels.

34. *trivialis*, Michx. *Southern Dewberry*. Fig. 2215. A most variable and perplexing species, the difficulties being increased by the fact that the same plant may bear three kinds of leaves: the large, broad Blackberry-like leaflets on the young verdurous sterile shoots; the smaller leaflets on the canes that are to bear fruit and which often persist over winter and remain at flowering time; the small leaflets that appear with or somewhat before the flowers. It is seldom that the leaves of sterile and flowering shoots of the same plant are preserved in herbaria. Canes very long, usually wholly prostrate (sometimes 10-15 ft.), thickly armed with prickles and sometimes bearing redish bristles; leaflets usually 3, narrow-ovate to oblong, short-pointed, rather shallow and sometimes bluntly toothed, the petiole and midrib usually prickly; fls. of medium size, mostly on simple, more or less prickly pedicels; fr. usually oblong, sometimes excellent but often dry and seedy. From Virginia to Florida and Texas, and in cult. in two or three forms for its fruit. — This is the common Dewberry of the southern states. It is often a serious pest in old fields. Some of the forms are very distinct, but it seems to be impossible to discover characters by means of which they can be distinguished with even a fair degree of uniformity. Some of these forms have fls. 2 in. across. Fig. 2215 is a drawing of one of the specimens (there are two similar specimens on the sheet) on which Michaux founded *R. trivialis*. Botanically, this species is probably the most perplexing of American Rubus. Some of the kinds in the extreme South are remarkably robust. Forms have been found with canes 40-50 ft. long and nearly an inch in diameter.

Group 5. The Western Dewberries, with pubescent leaflets, and fls. often imperfect.

35. *vitisina*, Cham. & Schlecht. (R. vexillus, Cham. & Schlecht. R. macrophyllus, Doug.). *Pacific Coast Dewberry*. Widely trailing, with slender, more or less pubescent canes which are provided with long but weak, straight or slightly recurved prickles; leaflets various, usually thicker and more woolly upon the stamine plants, composed of three ovate, doubly crenate-toothed leaflets, or sometimes only 3-lobed, the long pedicel and usually the midrib prickly; fls. perfect, stamine or pistillate on different plants, borne on shoots 6-12 in. high, which bear 1- to 2-flowered prickly or hispid and generally pubescent peduncles, the petals of the stamine forms large and showy, those of the pistillate forms usually small, the calyx-lobes either short and entire or somewhat prolonged and indistinctly toothed: fr. of fair size, blackish, mostly round-oblong,
sweet. In the mountains, particularly in the Coast Ranges, of the Pacific slope; also in Idaho.—It has come into some prominence as a fruit plant within the last dozen years. Named varieties are Anghinabugh, Skagit Chief, Belle of Washington and Washington Climbing Blackberry. The species is perversely variable, and well-marked characters seem to be associated with the different sexual forms. The Loganberry (which see, p. 937) is said to be a hybrid between this species and *R. floripes*. *R. vitifolius* is recorded as having crossed with *R. crataegifolius* by Luther Burbank. The Mammoth Blackberry of California is said to be a cross between *R. vitifolius* and the Wild Blackberry of Texas (*R. argutissima*). See Pacific Rural Press, Sept. 4, 1897, for description and portrait. The account says that the Mammoth "produces berries of immense size, supposed to be the largest Blackberry ever grown, berries 3 1/2 inches in length being frequently found. **The canes of the Mammoth are very peculiar, being very large and thickly covered with small, short spines. The canes start early in March, grow thick and stout until about 5 ft. high; they then take on a running habit and grow from 25 to 30 ft. in a season. Late in the fall the tips or stolons seek the ground and take root." The variety is partially evergreen in California. The fruit is said to be more acid than the old Lawton Blackberry, but "when perfectly ripe is sweet and of superior flavor."

Group 6. Exotic Dewberries, with very long, prickly, glaucous canes and large very sharp-toothed leaves.

36. dumetorum, Weih. Fig. 2216. Canes long and slender, terete, often 10-25 ft. long, trailing or half-erect, glaucous, thickly beset with rather small somewhat curved spines; fls. usually 3, mostly broadly ovate, pointed to acuminate, irregularly sharp-toothed, becoming brony and brown in autumn: fr. small, white, the calyx white-tomentose; on short pedicels in a cluster terminating leafy growths of the season; fr. of a few large black drupae. Europe.—Lately introduced for the covering of banks and stony places, for which it is highly recommended. Its autumn color is attractive. Hardy in New England.

R. fruticosus, Ham. Raspberry, apparently allied to *R. occidentalis*, and prized in cult. for its glaucous-white canes: reaches 8-20 ft., with strong arching canes that bear strong, recurved prickles: fls. ovate or oval, incise-seriate, whitish beneath: fr. large and white, 1-3 on drooping pedicels; berry unbercolored, size of the common Raspberry, the calyx at first erect but finally spreading. Temperate Himalaya. B.M. 4678. R.H. 1523. Gouan, p. 455—R. Capranica, Burbank. Under this name Luther Burbank describes a bramble that came to him by way of New Zealand from South Africa, and is probably the one that Stanley speaks so highly of as growing in places on the Dark Continent. The canes grow to a height of 6-10 ft., bending over and rooting from tips like blackcap raspberries. The whole plant is covered with a short, rusty down.

2211. Small form of Rubus villosus, the northern Dewberry. Generally known as *R. Canadensis.* No. 62.

and few short scattered prickles; the fruit is fully as large or larger than Shafter's Colossal Raspberry, of a purplish wine or mulberry color, and of excellent quality, though the berries do not separate from the receptacle as freely as they should; it is a very promising berry plant." See Burbank's "New Creations in Fruits and Flowers," June, 1894; also Gn. 48, p. 150. The picture represents a very rugose leaf with 5 shallow nearly rounded lobes and very irregularly serrate margins; stems with curved prickles, and a small cluster with large, globose short pedicelled fruits. It is probably *R. Moluccana*—*R. Japonicus*, Veitch. Known to horticulturists in its variegated form (*R. Japonicus tricolor*): slender trailer, with rose-colored stems and pedicels; frs. ovate, nearly indistinctly 3-lobed, very sharply toothed, the youngest ones pinkish white and the mature ones blotted green and white. Not known to be in cult. in this country. It would probably not be hardy north. The botanical position of the plant is not designated. C.G. III. 16:85. J.R.H. III. 29:40. G.M. 27:142.—*R. Moluccana*, Lind. A large Raspberry, common in India and Malaya, and to be expected as an introduced plant in many warm countries. Very robust, the canes and branches red-biary and spiny; fr. very variable, large, usually hairy, dull-pubescent beneath, shallowly 3-5-lobed, irregularly serrate; frs. white, in contracted terminal clusters: frs. in shades of red, scarlet. P.R. 6:401.—*R. stellatus*, Smith, produces an edible fruit, prized in Alaska; stem simple and herbaceous, only a few inches long, 1-fld.: frs. cordate, 3-lobed or 3-parted: fr. red. Northwestern Arctic America.

L. H. P.

2212. Rubus villosus, the northern Dewberry. (X 35.) No. 32.
RUDBECKIA (after the two Professors Rudbeck, father and son, predecessors of Linnaeus at Upsala).

Conspicuous. Cone-flower. As defined by Gray (Syn. Flora N. Amer., 1886), Rudbeckia is a genus of 21 species of North American herbs, many of which are hardy and perennial, bearing in summer showy f1s, which usu-

ally have yellow rays, though in one species (R. atropurpurea) the rays are all dark crimson, and in the other species the rays are occasionally more or less covered with purple-brown towards the base. Under Rudbeckia are often included in nursery catalogues certain plants which Gray refers to Echinacea and Lepachys. These three genera form an interesting floricultural group. Rudbeckia and Lepachys are typically yellow-flowered genera, while Echinacea contains a few forms with fls. ranging from flesh color and rose-purple to crimson. The chaff of the receptacle is usually persistent in Rudbeckia and deciduous in Lepachys.

Among the hardly herbaceous species, there are several with striking habit and distinct foliage. There is a wide range of color among wild plants of the same species, and specimens with the brown-purple color at the base should be sought for. The rays may be few or many, short and broad or long and narrow, toothed in various ways, star-like or making a continuous limb, drooping or horizontal, and always set off by the disk, which may be purple, black or yellowish, high and columnar or low and roundish. The season of bloom could be extended. The flowers of many of the kinds are excellent for cutting.

The only full double form, apparently, is Rudbeckia Golden Glow, which has had great popularity since 1886. The origin of this great favorite seems to be unknown. About 1824 John Lewis Childs found it among some plants sent by correspondents. See Fig. 829, Vol. II. W. M.

The Cone-flowers are of easy cultivation in almost any soil and situation, from a semi-shady position to one in full sun. Most of the species are found inhabiting moist locations, but thrive well in the garden under the ordinary methods of cultivation, although R. laciniata and its double form, Golden Glow, do much better if abundantly supplied with moisture. R. hirta, our Black-eyed Susan,—sometimes called by the children out west "Nigger-heads,"—will thrive in the driest, hottest situation, where many others would fail. The best known as a garden plant, and probably the showiest, is Golden Glow, which the undersigned considers the best perennial of recent introduction. If cut back severely when through blooming and well watered, it often produces a second crop of flowers. Autumn Glory will be well liked when better known. It is fine for massing and has a much longer blooming period than Golden Glow, commencing earlier and continuing until frost. It resembles R. wilsonia, but is taller and blooms longer.

R. triloba is one of the very best, and, while a biennial, perpetuates itself through self-sown plants. It forms a dense twiggy bush somewhere over three feet high and nearly as broad if kept moderately well watered, and much smaller if in a dry situation. These plants may be used with effect as a border to a large bed of hybrid delphiniums, as the latter will tower above them and bloom in their young state. By the time the delphiniums are cut down for their second flowering the Rudbeckias hide their untidiness and are in their prime, but later on may be pulled up to again expose the delphiniums. As effective fall-flowering group may be formed by using the lighter-colored flower forms of Hibiscus Syriacus—such as Totus albus, Lady Stanley, and Elegantissima—for a center or background, and interspersing groups of the taller Rudbeckias (except Golden Glow, which is too tall and spreading) and boltonias next to them. In front of these place R. spectosa and R. triloba, with the blue form of Aconitum Napellus, and for a border use R. bicolor, var. superba, placed well to the front to be pulled up when its bloom is past. This group will give color from July until frost. The allied plant Echinacea purpurea and E. angustifolia are well adapted for grouping in open bays in shrubby borders, as their flowers are ex-
RUELLIA

1589

8. nitida, Nutt. This and the next are southern perennials, with lvs. entire or barely dentate: rays drooping, pure yellow, several or numerous; disk finally columnar, 1-2 in. long. Wet ground, Ga. to Fla. and Tex. Ga. 37:1096.

R. angustifolia, Lind., is Helianthus angustifolius.—R. pinifolia, Vent., is Lepuchus pinifolia.—R. purpurea, Lind., is Echinacea purpurea.

W. M.

RUE. See Ruta graveolens.

RUE ANEMONE. See Sympiesmen.

RUE, GOAT’S. Galega officinalis.

RUÉLLIA (after Jean de la Rueelle, a French botanist). A genus of about 150 species of herbs or shrubs, mostly American, pubescent, villous or rarely glabrous: lvs. opposite, mostly entire: fls. violet, blue, white, red or rarely yellow. The fls. are sessile or nearly so in axils of lvs. or bracts; they are solitary, fascicled, or in spreading, paniculate cymes. Bracts herm. loose or imbricated, usually small and narrow, rarely oblong or lanceolate. Corolla-limb 5-lobed, equal, or with the upper lobes connate at the base; stamens 1: capsule oblong or club-shaped, terete or compressed, 6-20 seeded: seeds compressed.

A. Blossoms sessile or nearly so.

b. Lvs. green.

c. Fls. blue, 1½-2 in. long.

ciliosa, Pursh. A hardy perennial herb, about 1½ ft. high, erect or prostrate, biplicate or pubescent: lvs. hairy, ciliate, usually oblong, sessile or short-petioled, 1½-3 in. long; fls. solitary or clustered, axillary, blue, 1½-2 in. long. Ark. Sept. In dry, light soil. N. J., south and west. B.B. 3: 203. Prop. by seeds or division.

cc. Fls. rose, 2-6 in. long.

macrantha, Mart. It forms a compact, many-stemmed...
RUDELLIA

A shrub, 1-6 ft. high, with ovate-lanceolate lvs. 4-6 in. long; fls. large, bell-shaped, with tubular base, purplish rose with purple veins, solitary in leaf-axils. Brazil.

2215. Rudbeckia laciniata, var. Golden Glow (X ½).

See p. 1590.

G.C. III. 17:45.

R. H. 1881:410. - G. W. Oliver says in "his "Plant Culture" that R. macrourthus is of easy cultivation and is one of the best greenhouse flowering plants for amateurs. Cuttings rooted in September furnish fair-sized flowering plants in January. These, if desired, may be planted out in late spring, when they will have formed large specimens, which may be lifted and potted.

bb. Lvs. marked with white.

c. Fls. white, often veined with lilac.

Devosiana, Hort. A low-growing tender Brazilian species, with lanceolate lvs. marked on the upper surface with white along the nerves and having the lower surface entirely purple; fls. rather small, usually white, with blue stripe, axillary; corolla-tube suddenly dilated and bent at the middle.

c. Fls. cornine or rose.

Nakoyana, Hort. A compact, bushy plant resembling R. Devosiana, Hort., in foliage, but differing in the color of the fls. (bright Carmine) and by their somewhat larger size. Brazil. R.B. 21:169. R.H. 1896:576. — Prefers shade. It is said that the color of the foliage is better when roots are mixed with the soil.

aa. Blossoms on long peduncles.

b. Fls. blue or purple.

tuberosa, Linn. A perennial herb, 2-3 ft. high, with oval or ovate lvs. 2-3 in. long and blue fls. 1½-2 in. long, in terminal, nearly naked panicles: stigma single: capsule 12-16-seeded. Southwestern U. S.; cult. in Fls.

BB. Fls. red.

c. Peduncles much branched.

amena, Nees (Stephanotis longifolia, Pohl). A half-hardy perennial, about 1½ ft. high; lvs. oblong-lanceolate or oblong, narrowed at both ends; margins repand-denticulate or simply repand; fls. bright red, in axillary sprays in summer. Brazil. F.M. 1880:149.

cc. Peduncles but little branched.

formosa, Andr. Fig. 2219. A low-growing, tender, herbaceous perennial; lvs. ovate, rounded at the base, hairy on both sides; fls. on straight, axillary peduncles; corolla scarlet, showy; 1½ in. long, the upper 2 lobes joined for half their length. Summer. Brazil. B.M. 1400.—Cult. in California.

R. varians, Vent. See Dedalsanthus nervosus.

RULINGIA (after J. Ph. Ruling, a botanist of Göttingen). Stereidiaceae. This includes two plants cult. in S. Calif. R. parviflora is highly recommended as a rock plant by Ernest Brunton, of Los Angeles, who grows it in quantity for its trailing habit and myriads of small pink fls. borne in spring. Franceschi says that R. punmosa is cold and pretty by reason of the flaccid coating of the leaves. A genus of about 15 species of shrubs or undershrubs from Australia, except one a native of Madagascar. Lvs. various in size, entire, toothed or lobed; fls. mostly white, small, in cymes; calyx 5-lobed; petals 5, broad and concave or convolute at the base, with a small, broad or linear ligma at the top; stamens shortly or scarcely joined at the base, 5 without anthers, petal-like, 5 perfect, short; ovary sessile, 5-celled; ovules 1-3 in each cell. Flora Australiense 1:237.

a. Lvs. 1-3 in. long.

pummosa, R. Br. Eventually a shrub, several ft. high, but flowering freely at a young age: lvs. scabrous-pubescent above, densely velvety hissate below, on older plants ovate-lanceolate to lanceolate, on young plants broader and often 4-lobed, cymes shortly pedunculate: fls. white. R.M. 2191. — The plant offered in Calif. as Pomaderris apetala is said to belong here.

aa. Lvs. usually less than 1 in. long.

parviflora, Eul. A low shrub, with branches ½-1½ ft. long, ascending or prostrate; lvs. ovate or ovate-lanceolate, oblong, deeply crenate, mostly lobed; fls. pinkish, in shortly pedunculate cymes. F. W. BCRAY.

RUMEX (the Latin name). Polygonaceae. Dock. Sorrel. Herbs, mostly perennial, with strong roots, of more than 100 species in many parts of the world. Most of the species are weedy plants, but some of them afford leaves for "greens" and others are useful for ornament. All are of the easiest culture. Prop. mostly by seeds.
RUMEX

As a genus, Rumex is closely allied to Fagopyrum, the buckwheats, Rheum, the rhubarbs, and Polygonum, the jointweds. They are mostly leafy-stemmed plants, with small flowers in panicles, the pedicels mostly in whorls and single at the ends, often or imperfect, with 6-parted calyx, the inner lobes larger and generally one or all of them bearing a grain or tubercle near the center; stamens 6; stigmas 3, fr. a 3-valved often marginated or winged achene. In the larger species the stems are grooved and hollow. Most of them are erect-growing plants. See Dock and Sorrel.

Wings of calyx not tubercle-bearing: venosus, Pursh. Perennial. 1½ ft. or less tall, glabrous, branched. Ivs. oblong-ovate or obovate-lanceolate, usually tapering at both ends, entire, the irregular sheaths (acrea) faniform and prominent: wings of fr. large and thin, entire, 1 in. or more across, red-veined and showy, the pedicels hanging in fruit. Mo., W. — Recently offered as an ornamental plant, because of the very showy wide-winged fruiting calices.

RUSH

Acetosella, Linn. Common Field or Sheep Sorrel. Common in all old fields, where it indicates sterile soil: Ivs. oblong, from a hastate-broad based: fls. redish, in erect racemes. Not cult., but the sour root-leaves are sometimes used for greens. Eu.

RUSCUS [an old Latin name]. Lilicceae. Butcher's Broom. A genus of possibly 3 species scattered over Europe. Erect shrubs, with minute bract-like Ivs. and branches (phyllodia) simulating heathbery, persistent, veined, sessile, leaf-like bodies: fls. small, springing from the midrib of the lower surface of the phyllodium.

According to A. Blanc, R. Hypophyllum, Linn., has been highly commended lately in Germany as a decorative subject. This species and R. Hypophyllum, Linn., are both natives of southern Europe, where they have been studied by various botanists, some of whom distinguish them by various characters, while others unite them into a single species. J. G. Baker considers R. Hypophyllum a variety of R. Hypophyllum, differing in having the costa under the cluster of fls. in the form of a large leafy bract terminating entirely the centre of the phyllodium. In B. M. 1894 R. Hypophyllum is shown with minute white fls. and handsome red berries nearly ¼ in. thick.

PLANT PERENNIAL (R. Acetosella sometimes annual).
RUSSELIA (Alexander Russell, English physician and author of "Natural History of Aleppo," 1836). Scrophulariaceae. About a dozen species of Mexican shrubby plants with angular, usually slender, often pendulous branches: lvs. usually small, becoming scale-like on the branches, opposite or verticillate; fls. bright red, in dense or loose corymbs or of a single flower; calyx 5-parted; corolla-tube cylindrical, the lobes spreading and nearly equal; staminodia very short or wanting; stamens 4; capsule subglobose. 2-celled; seeds numerous, very small, winged. A recent synopsis of Russelia by Dr. B. L. Robinson, with a key to the species, will be found in Proc. Am. Acad. Arts & Sci., vol. 36, No. 16, March, 1900. Russelias are of easy cultivation. *R. juncea* and its varieties make excellent basket plants, being almost continuously in bloom. Propagated by cuttings.

RUSSELIA Juncea. Bau. (R. scrophularioides, Hort.). CORAL PLANT. Fig. 2220. A tender shrubby plant, with smooth, somewhat rush-like branches, nodding or pendulous at the top; lvs. linear-lanceolate or ovate, small, becoming minute bracts on the branches; raceme very loose, remotely flowered; peduncles elongated. B.R. 1873. P.M. 1773. - Vars. Lomelinoïd and elegantissima are garden hybrids of *R. juncea* and *R. sarmentosa*. They are more hortens, especially during the winter, than the type.

F. W. BARCLAY.

RUSSIAN CACTUS. Same as Russian Thistle.

RUSSIAN FRUITS. See Pomology. **R. THISTLE.** See Salsola.

RUST. A name for a class of fungi which produce disease in plants. Ruts are of the class Uredinea. The mycelium branches among the tissues of the host and produces several kinds of spores, either upon the one host (heteroecious), or upon different hosts (heteroecious). These spores, as shown typically in the disease of the wheat, are called respectively uredospores, telenutoospores, acidoospores, etc. Recent researches by Eriksson and Hennig in Sweden show that the 3 common rusts which affect the grains, namely: *Puccinia graminis* (Figs. 2221-2), *P. rubigo-vesta* and *P. coronata*, can be split up into seven species, characterized by their cultural reactions with a large series of plants, and that *Puccinia graminis* has besides six specialized forms, delimited by differences in the marked capacity of the uredo- or telenutospores to incite on different hosts. Several rusts are common on cultivated plants, causing disease: viz., beet rust (*Uromyces Betae*), broad bean rust (*Uromyces Fabae*), white pine rust (*Cronartium vittiforme*), asparagus rust (*Puccinia Asparagi*), chrysanthemum rust (*Puccinia Hieraci), black, or wheat rust (*Puccinia graminis*), hollyhock rust (*Puccinia valveaeformis*), etc. (See JOHN W. HARSHBARGER.)

The rusts are fungi constituting a very large and economically important class known as Uredineae. They are all obligatory parasites, attacking a vast number of native and cultivated plants. The mycelium of

The rust fungi exists entirely within the tissues of the host. The spores are formed in masses or spots just beneath the epidermis. When ripe they break through the epidermis, forming brown patches and spots from which they are scattered. Many of the rusts produce several spore-forms, which often occur in regular succession either on the same host or on different hosts. For example, the wheat rust produces uredospores and telenutospores on the wheat and acidoospores on the barberry.

Rusts rarely kill the plants which they affect, and hence in many cases the damage done is not as apparent as in many other diseases. In all cases, however, the plants are weakened, and often much disfigured. They are among the most difficult fungous diseases to combat. Spraying has been tried in many instances, but has proved, at most, only partially successful. The most profitable course for overcoming these diseases seems to be the selection of resistant varieties.

HENRICH HASSELBERG.

RUTA (classical name of rue). Rutaceae. About 40 species from the Mediterranean region of Europe and from Asia. Perennial herbs, often woody at the base, glandular, punctate lvs. simple to much pinnate, odor-ous: fls. yellow or greenish, in terminal corymbs or panicles, hermaphrodite, usually 4-merous; petals 4-5, free, often dentate or ciliate; stamens 8-10; ovary saccic: capsule 4-5-lobed, indents or dehiscent at apex.

RUTABAGA, or SWEDISH TURNIP. Consult *Brassica campestris*, page 177; also *Turnips*.

RUTLAND BEAUTY in *Convolvulus Sepium*.

RYE. See Secale. **RYE, Wild.** See *Elymus*.
Sabal (possibly a native name in South America, but the identity of the genus does not explain). *Palmetto*. Spineless palms, low, tall or almost stemless, the robust, ringed trunk obliquely ascending at the base, clothed above with deal leaf-sheaths; lvs. terminal, orbicular or concave at the base, diaphanously multilobed; segments linear, broad, filamentosous on the margins, induplicate in the bud; rachis short or long; ligule short, adnate to the rachis; petiole concave above, the margins smooth, acute; sheath short, apiculate, elongated, decumbent, at first erect, the branches and branchlets slender, recurving, pendent; spadices sheathing the branches and peduncles tubular, oblique at the throat: bracts and bractlets minute: fls. small, glabrous, white or green; fruits small, globose, black, the short style basal. Species 6, Florida to Venezuela, and one in South America.

Some botanists make the species names all feminine; others neuter.

JARED G. SMITH.

The Cabbage Palmetto (*Sabal Palmetto*) grows in groups of a few specimens to several hundreds or even thousand at the rich black soil on the banks of the St. Johns and Ocklawaha rivers of Florida, forming a glorious sight; and even the tourist who is blind to most of the charms of nature cannot help being overwhelmed by the beauty and grandeur of the palms. They are found northward to South Carolina, but they attain their fullest development in Florida, where they always form an important feature of the landscape. Generally they grow in dense groups, but they are more beautiful in all their parts where they have room enough to spread. In southern Florida the undersigned has often found under the crown of leaves a dense wreath of forms (*Polypodium aurea*), which heightens the charm of these palms considerably. On the St. Johns the trunk is often covered with the trumpet creeper (*Tecoma radicans*), or it is hidden by the dense foliage of the cross-vine (*Bignonia capreolata*), both of which form a beautiful ornament, especially when in flower. These suggestions of nature are often followed by planters who have a feeling for nature-like landscape effects.

The Cabbage Palmetto thrives even in the poor sandy soil, and it is greatly improved by cultivation. Even good-sized trees are not difficult to transplant if the whole stem is carefully dug out and all of the roots and leaves are cut off. If the stem has been set at least three feet deep and the soil is kept well watered after planting, the Palmetto is almost sure to live. In addition to the Palmetto, all of the Sabals mentioned in this work are found by the undersigned on high pine land in southern Florida. Under these conditions the Sabals have proved a great success, as also all species of Phoenix and all Cocos of the australis type, while the species of Washingtonia, Erythea, Livistona and Trachycarpus have been an entire failure.

S. Blackburnianum is, in the judgment of the undersigned, the finest of all the fan-leaved palms that can be grown in Florida.

All the species that form trunks are objects of great beauty when well grown. They need to be well fertilized, or the lower leaves will suffer and finally die, thus detracting much from the elegance of the specimen. They all grow naturally in rich black soil, but they all thrive exceedingly well in the sandy pine woods soil if well fertilized and watered; in fact, they can hardly be fertilized too much, and the more nitrogenous manures and water they get the faster they grow. When transplanted they must be set deep. In planting palms the writer always makes a hollow about 6 ft. in diameter and about 2 ft. deep in the center. This center, which receives the plant, is the deepest point, while the ground all around is slightly sloping. Care must be taken to remove the sand after heavy rains or the crown will soon be buried and the little plant dies. As the plant first forms the trunk in the soil and as the growth is rather rapid, this precaution is not necessary after the plant has attained a few feet in size.

H. NERRING.

The Cabbage Palmetto (*Sabal Palmetto*) is rich in its historical associations. It is also noted for its imperishability under water. The trunks make good piles for wharves, as they resist the attacks of the borer in sea water. The leaves make the best of thatching. Until the tree reaches a height of 10-20 ft. the bases of the leaf-stalks remain upon the trunk, forming a unique *chapeau de frise*, which adds much to its picturesque ness. This palm, when pot-grown, is valuable for greenhouse culture at the North.

The Dwarf Palmetto can resist as low a temperature as 10-17°F. The graceful flower-spikes rise above the leaves to a height of 6 or 7 feet.

S. longipedunculatum, in its flower-spikes extend far above the leaves.

E. N. REASNER.

INDEX.

Adansoni, 1.
Hoechendorp, s. l.
Blackburnianum, 4.
Javanum, s. l.
cerifolium, 1.
minor, 1.
cerifolium, s. l.
longifolium, s. l.
declamatum, s. l.
Moore, 3.
glabrellum, s. l.
mauriticosforme, 2.
Gluhbrugg, s. l.
Mexicanum, 5.
Lobes erectaforme, 2.
ramulosum, 2.
Hannamani, s. l.
Nehrling, 2.

A. Leaf-blade longer than petiole.
B. Trunk none 1.
C. Trunk finally 60 ft.
D. mauriticosforme 2.

AA. Leaf-blade shorter than petiole.
B. Shape of blade oblanceolate 3.
C. Shape of blade orbicular.
D. Lobes rather rigid 4.
E. Lobes pendulous 5.

2244. The Palmetto in Florida—Sabal Palmetto.

I. Adansoni, Guern. (S. minus or minor, Pus. Corypha minor, Jacq. not Link.). Dwarf Palmetto.

BLUE PALM. Stem short, buried in the earth: lvs. 2-3 ft. long; blade circular in its outline, somewhat longer than the petiole, glaucescent; segments slightly cleft at the apex; spadix erect, much longer than the lvs., 3-6 ft.: drape ½ in. thick, black. Southern states.

E. M. 1434.
SACCOLOBIUM

2. mauritiflorum, Griseb. & Wendel. Also spelled maunfitiflorum, etc. Trunk middle-sized, but occasionally attaining 60-80 ft.; lvs. finally 12 ft. across; blade suborbicular, longer than the petiole, glaucous beneath, both with loose fibers between and at the base of the blade, with fine blodid west. Indies.—The name mauritiflorum does not appear in the American trade, but S. glansce- us, Locoh. and Hort., probably belongs here, according to Nehrling. Nehrling writes the fls. of the trade rivals S. umbraepulverum in beauty and rapidity of growth. Its leaves, though smaller, have a beautiful bluish green color."

3. Palmetto, Locoh. Cabbage Palmetto. Fig. 2224. Stem erect, 20-80 ft. high; lvs. 5-8 ft. long, cordate in outline, recurved at the summit, shorter than the petiole; segments deeply cleft; spadix spreading, shorter than the lvs.; shape black, 1/2-1 in. long. Southern states. S.S. 10:507. A.F. 13:628.—S. ModaUi, Hort., is referred to S. Palmetto by Voss, but Nehrling describes it as a stemless plant from Mexico, more beautiful than the Dwarf Palmetto. Lvs. on strong stalks, the lvs. attaining a height of 6-8 ft. S. Palmetto has been confused in the European trade with S. Mexicanum.

4. Blackburnnianum, Glazebrook (S. umbraepulverum, Mart.). Stem 30-40 ft. high, thickened at the middle; blade ample, orbicular, glaucous, rather rigid, shorter than the petiole; lobes about 40, ensiform, bifid, Elemen- tal states. S.S. 10:507. Nehrling writes: "This species is much sturdier than the native to Florida; it forms a broader and denser crew of lvs. and grows more quickly."

The following are mostly trade names, but at present they can be only imperfectly described: S. coroleus, W. Bull. A native of Colombia introduced in 1875. Apparently only the juvenile state has been described. Lvs. elongate, linear-lanceate, plicate, with a bluish greenish color which is very strongly marked on the under surface. Nehrling writes that he cannot distinguish at present his specimens of S. coroleus from S. glansceus.—S. debatbamt, Hort. "This species," writes Nehrling, "reminds one of S. Mocini, although it is smaller in all its parts. The leaves are numerous, glaucous green and of a fine fan-shaped form. Compared with the Sabads that are in trade, these aloeaceus have little beauty, though they look well as foliage plants in company with the cacti and Rose bushes. The "debatbamt" is very similar to S. umbraepulverum, according to Nehrling.—S. glansceus, Hort. and Pitcher and Breckinridge have been mentioned for S. glansceus.—S. Havaneus, Hort., according to Nehrling, is a more or less rigid than S. Blackburnnianum, with a slender stem and a less luxuriant. The leaves have a very green color while young, changing to a fine dark green when they get older. Habitat unknown.—S. Holzapfferti, Hort., is cult. by Nehrling.—S. Jardineum, Hort. Pitcher & Mandel. is possibly meant for S. Havaneus, since Sabal is an American genus and is not known in Java.—S. longifolium, Hort., according to Nehrling "has very numerous, long and slender lvs. which are bright green above and silvery below."—S. longiflorum, Hort., according to Nehrling, "is a stemless plant with shorter lvs. than those of S. Mocini and very long and slender stalks." Reasoner adds that the lvs. are glaucous green.—S. principis, Hort., according to Nehrling, is very similar to S. umbraepulverum.—S. Ursina, Teesle. Trunk 30 ft. high and upwards of 1 ft. in diam.; lvs. glabrous, very greenish, pale green, petiole stout, concave-convex, unarumed, about 40 in. long, nearly 1 in. wide and nearly 2 in. thick; blade about equal length, long, and wide, and multifid, with coarse straw-colored fibers from the sinuses, the center acutely recurved; fr. of a single developed carpel, depressed globose, 1/2 ft. or less in diam., dry, crisp, brown and sometimes extremely glossy, the mesocarp then corticate: endocarp whitish straw- color, pulpy, white, dark chestnut-brown, fibrous, labiiform, fleshy, ragose, much depressed. Sonora, Mexico, in the vicinity of Ures. Described and figured in vol. 12 (1891) of Bot. Gaz. by Hort.—"From the two gorgeous palms known as S. Ceresana, the United States, S. Ceresana differs markedly in its pale, very greenish foliage, and in the size of its fruit, which is of the size of that of S. Palmetto, and usually a third larger than in S. Mexicana, with the former of which species it agrees in having but one of the three carpels developed and fertile, while in S. Mexicana two or even all three are not infrequently developed. Considering the extent to which this section of Mexico has been visited and cultivated, it would be remarkable if this attractive plant should not prove to be already in cultivation in European gardens." Possibly already cultivated in cult. in this country by W. M. NEHERLING.

SABBÁTIA (Libatanobasti, Italian botanist of the eighteenth century). Gentianaceae. About 13 species of Atlantic North American annuals or biennials with showy rose-pink or white fls. in summer or autumn. Fls. 5-12-merous, in cymes or terminal panicles, calyx 5-12-lobed; corolla rotate, usually with a yellow eye, the lobes convolute in the bud; flaments rather short, filiform; anthers linear or elongate oblong, arcuate, recurved or revolute; style 2-leafed or parted; capsule glbose or ovoid, thick-coriaceous or at first fleshy; seeds small, numerous. Some species require a light, sweet soil. Seed may be sown in fall or early spring. The plants are easily transplanted.

A. Fls. 6-parted, rarely 6-7-parted.
B. Lvs. narrow-oblongate to linear.
C. Color of fls. rose to white; lvs. obtuse.

brachiatá, Eil. Stem but slightly angled, 1-2 ft. high; lvs. mostly obtuse, obscurely 3-nerved at the base; fls. showy, light rose-purple, fleshy, cylindri- caliform panicles, the lateral peduncles bearing usually 3-3 foliages; calyx-lobes narrow linear, shorter or nearly equaling the corolla. May-Sept. Ind. to N. C. and south. B.B. 2:669.

ee. Lvs. wider, cordata-ovate, clasping.

lanceolata, Torr. & Gray. Stem simple, 1-3 ft. high; lvs. about 1 in. long, shorter than internodes, acute, 3-5-nerved, the floral reduced to subulate bracts; fls. about 1 in. across, white, fading yellowish; calyx-lobes more than half the length of the corolla. May-Sept. Wet pine barrens. N. J. to Fla. B.B. 2:669.

ff. Lvs. wider, cordate-ovate, clasping.

anguláris, Pursh. Stem sharply angled, 1/2-2 ft. high; lvs. 3-5-nerved; fls. fragrant, showy, light rose to white, 1-2 in. across, in much-branched pyramidal or somewhat corymbose cymes; calyx-lobes linear, much shorter than the corolla. Rich, light soil in open fields. W. Canada to Fla. B.B. 2:610.

AA. Fls. 5-7-parted.

chloroides, Pursh. Stem truly biennial, 1-2 ft. high, often decumbent, loosely and sparingly branched above; lvs. oblong lanceolate or the lower oblong-lanceolate; fls. rose-purple, occasionally white, solitary on naked, somewhat paniculate peduncles; calyx-lobes subulate-linear, about half the length of the spatulaceolobate; lobes of the corolla barbs or ovate, barbs swamps along the coast. Mass. Fl. 2:602.

SACCHARUM (saccharum, old Greek name for sugar) Gramineae. Species 12, in tropical regions, mostly of the Old World. Tall grasses with stout culm and ample panicles, the branches of which are many-fidated; the small, slender spikelets 1-did, surrounded by long silky hairs. Diers differs from Eriachis in having the spikelets avenless. The most important species is the Sugar Cane, which is extensively cultivated in tropical and subtropical countries for the production of sugar. Propagated by cuttings of the stem. Native country unknown, but probably east Asia. Cultivated from time immemorial, for which reason many varieties have lost the power to produce bloom or at least to produce fertile seed. Rum is produced from the fermented molasses.

officinarum, Linn. Sugar Cane. Species 8-20 ft. high, 1-2 in. thick, third empty glume wanting.

SACCOLOBIUM (name referring to the saccate labelium). Orchidaceae. Epiphytic herbs with erect leafy stems increasing in length by continued growth at the apex: lvs. distichous, leathery and usually channelled; inflorescence lateral, in the cultivated species a long, densely-fid. cylindrical raceme: lfs. medium or
Safcolabium

small; sepals subequal, free, spreading, the lateral pair not decurrent on the base of the column; petals similar, sometimes wider; labellum united with the base of the column, recurved, the mouth of the spur open; pollinia on a bilabiform stipe. About 20 species. Can be propagated by offsets and by cut-backs. Fresh stock is constantly imported. Heinrich Hasselbring.

This interesting genus embraces a number of pretty and distinct species from Borneo, Cochlin China, India, Java and Musand. They are closely allied to the genera Acridium, Phalaenopsis and Vanda, and require somewhat similar treatment, that do not always aclimatisize themselves so readily to artificial cultivation unless given a location with more or less natural surroundings, though some of the more free-growing species, like S. amputatus, S. celer, S. colleti and S. Hendersonianum, can usually be grown successfully in the Cattleya or Cypripedium department. The large-growing species with black, succulent leaves require a warm, moist atmosphere where the winter temperature can be retained at 65° to 70° F., by night and about 75° during the day, and in the summer or growing season 10 degrees in advance of this.

All succeed best when suspended from the roof in pans, baskets or on blocks where they can have free circulation of air about them at all times, receive indirect benefit of the sun's influence, which will harden their tissue, and where the compost may readily and frequently dry out, during the resting period especially. Grown otherwise the more succulent species, such as S. giganteum (a Vanda), make soft, weak tissue, which is susceptible to wet spot, a usually fatal disease. Clean, chopped sphagnum, freely interspersed with broken pieces of charcoal, is the most satisfactory growing material, and this should not be pressed in so firmly as to entirely exclude access of air to the roots, but the plants must always be firmly secured with pieces of charcoal, pots, hobs or other similar material, or securely fastened with copper wire to keep them in position, otherwise being more or less top-heavy they are liable to work loose, under which conditions they cannot become properly established.

Shading should be applied to the glass from February until November to break the sun's direct rays, but during the balance of the year when the solar light is weak its direct influence will be found beneficial. In bright weather during the growing season the plants need a liberal supply of water, both at the roots and over the foliage, but during the resting period and in wet, inclement weather, water and syringing must be carefully and sparingly administered. Judgment in this respect is very essential to the successful culture of these plants. The supply of Saccolabiums is kept up by fresh importation. These cultural directions apply also to the genus Rhynchostylis.

Robert M. Grey.

a. Fls. rose-colored.

Hendersonianum, Reichb. f. Dwarf: lvs. 4-6 in. long, strap-shaped, subacute, distichous on the stems, but spreading in various directions; raceme upright, about as long as the lvs.; fls. forming a cylindrical mass, bright rose, ½ in. across; dorsal sepals orbicular, concave, lateral ones larger, obvoate-oblong; petals obvoate; labellum a blunt, straight spur with 3 teeth at the mouth, white. Borneo. B.M. 6222.

ampullacea, Lindl. Flg. 2225. Dwarf: stem 6-8 in. high, with 2 rows of lvs.; lvs. strap-shaped, channelled, apex truncate and dentate; racemes nearly erect, 4-6 in. high; fls. deep rose color; sepals and petals ovate, veined, spreading out flat; labellum linear-falcate, one-half as long as the petals; spur slender, straight. May, June. S. India. B.M. 5365. B.M. 13:49. J.H. III. 32:163. —Var. Mouleinea, Hort., is a geographical variety with stronger growth and larger fls.

AA. Fls. orange or scarlet-orange.

curvidiollum, Lindl. Stems short: lvs. linear, 8-10 in. long, 2 rows at the apex and racemes somewhat drooping, 6 in. long, dense; fls. 1 in. across, bright orange scarlet; sepals and petals ovate to obvolute, spreading; labellum orange, blade linear, truncate, spur obtuse. May, June. Burma. Java. B.M. 5326 (as S. miniatus). I.H. 13:490.

— cerinum, Reichb. f. Stem short, thick; lvs. strap-shaped, obtusely 2-lobed; raceme dense, half drooping; fls. orange, with a paler spur; sepals oblong; petals ovate. Sunda Islands.

AAA. Fls. white, spotted with blue.

colleti, Reichb. f. Plant rarely 1 ft. high, with decurved lvs. and erect, densely lil. racemes 6-9 in. long; fls. white, with the front of the lip and the tips of the segments sky-blue; sepals and petals cuneate, oblong, obtuse; labellum rhomboid, spur compressed, curved.

S. Bilineol. Lindl.—Rhynchostylis retusa.—S. giganteum, Lindl.—Vanda densiflora.—S. punctatum, Lindl.—Rhynchostylis retusa.—S. Harrieesonianum, Hook.—Rhynchostylis violacea.

2225. Saccolabium ampullaceum (X ½).

Saffron Thistle

Saffron.

Saffron. Crocus sativus.

Saffron. Meadow. See Colchicum.

Saffron Thistle. Carthamus tinctorius.
SAGE (Salvia officinalis). For at least three centuries this shrubby, fibrous-rooted perennial from southern Europe has been widely cultivated in kitchen gardens for its aromatic, whitish green, wrinkled, oval leaves which are clasped by almost black, heart-shaped stipules. The plant has an open, compound branching stems which seldom exceed 3 ft. in height. In early summer the upper parts of these bear generally blue, though sometimes pink or white flowers borne on single or numerous short, upwardly curved stalks in the open cups. The name Salvia is derived from salvare, to save, in reference to the plant’s use in ancient medicine; the name sage, from its supposed power to make people smart by strengthening their memory. In modern medicine it is but little used. In domestic practice it is, however, credited with tonic, sudorific, carminative, anthelmintic and stomachic properties, and is frequently used as a gargle for aphthous affections of the mouth and pharynx. Its pleasant, though powerful-smelling, bitterish leaves are used for flavoring soups and sages, and some kinds of cheese, for seasoning meats, fish and eggs, but mainly for dressings with luscious, strong meats such as pork, goose and duck. Among culinary herbs it ranks first in America, being more widely cultivated than any other except parsley, which is more largely employed for garnishing than as a flavoring agent. When possible the young leaves should be used fresh, for unless carefully dried before use they are not very palatable. The real Sage, in which oil which is due to a small oil and which even with careful curing rapidly dissipates. For best results the shoots should be gathered before they develop, because they are not richer and because later cuttings may be made. For drying upon a commercial scale, since this plant is thought to involve too much labor, the plants are cut in August when the leaves have been somewhat reduced, and the stems not too short. Prode again in late autumn; or if grown as a secondary crop, which is the common way, they are cut only once—namely, in autumn. Plants grown from cuttings (see below) will often produce three crops in a season. Upon a small scale a warm, airy room is best for drying, the plants being either laid loosely upon racks or the floor, or hung from the ceiling and walls. It is a fragile plant with a steady current of warm air at about 100° F. may be used. After drying, the leaves are rubbed to a powder and stored in air tight vessels.

Sage does best in an open, sunny aspect and a well-drained, mellow light of medium texture, rich in humus and nitrogenous matter. Stable manure or a fertilizer containing potash, phosphorus and nitrogen should be applied before the plowing, if done in the spring. Fall plowing is generally preferred where Sage alone is to occupy the land. In each case plowing should be as deep as possible and the earth will produce twice the former method is as a rule, more profitable though more laborious. After harvesting (see above) if the bed is to be permanent, northern plantations should be mulched with marsh hay or other material free from weed seeds. For garden practice it is common to divide the clumps biennially, since the plants become straggling if left longer. Upon a commercial scale, however, it is better to rely upon cuttings or seedlings. Propagation may be effected by seed, cuttings, layers or division. Seed, the vitality of which lasts three years, may be sown thinly in flats in greenhouse, beneath or cold frame in early spring; or out of doors, as soon as the ground becomes dry enough, in specially prepared beds of sandy loam. In the former case the plants must be pricked out and hardened off to render them stocky and hardy before transplanting; in the latter, they are taken directly to the field for transplanting as soon as they are large enough. The crop may be protected until late July, the plants being not less than 2-3 in. tall. The former method, which is considered the better, is the common commercial practice. Cuttings may be propagated by layering or by immediate propagation. With care, shade and moisture are essential to success. Mature wood cuttings, made in early spring, should be ready for the field in less than six weeks; immature, taken from outside shoots just before they would form blossom heads, are left in the cutting bed until the following year. Such plants are usually more prolific than those grown from mature wood or from spring seedlings, and are, therefore, best for the purpose of early growth. As practiced by market-gardeners in the vicinity of New York each of the above methods has its advocates, but practically all agree upon the plowing and harrowing of the ground in June or July after harvesting an early crop, such as beets, cabbage or peas. About twice in the three weeks after setting the plants the field is raked to destroy sprouting weeds and to keep the surface loose, after which, if well done, but slight hoeing is necessary. In September, when the plants are nearing their natural state of dormancy, a final dressing of good manure is given before the ground is prepared for the next crop.

In America the green, broad-leaved varieties are in far greater demand than the colored and the narrow-leaved kinds. The best variety known is the American Mammoth, which is exceptionally prolific of large leaves. It is said to produce no seed.

M. G. KAINS.

SAGE BRUSH. Species of Artemisia.

SAGE, JERUSALEM. See Phlomis.

SAGENIA (derivation unknown). Polygodiaceae. A genus of ferns, mostly of large and coarse habit, with superior reniform or heart-shaped indusia fixed by the sinus, as in Dryopteris, but with veins uniting freely to form areoles with free included veins. About 25 species are known, largely from the East Indies, a few from tropical America.

decurrens, Presl. Leaf-stalks narrowly winged from a creeping rootstock; lvs. 2-4 ft. long, 1 ft. or more wide, cut down to a winged rachis and with 4-8 pairs of pinnae 6-12 in. long, 1-2 in. wide: sort large, in two peculiar rows between the principal veins. India to Polynesia.

L. M. UNDERWOOD.

SAGINA (Latin, latness; perhaps alluding to the forage value). Caryophyllaceae. Pearlwort. About 8 species of annual or perennial tufted herbs, mostly from the temperate regions of the world. Lvs. awl-shaped: fls. small, usually comparatively long-stalked; sepals 4-5, tips acute or retuse, spreading, marginate, minute or none; stamens equal in number to the sepals or twice as many: ovary I-loculed, many-seeded: styles of the same number as the sepals and alternate with them.

F. W. BARCLAY.

SAGITTARIA (Sagittis is Latin for arrow). Alismataceae. Arrowhead. A small genus. A small genus of rather than few species. In common with most aquatic plants, they are widely distributed. They occur in many parts of the world, in both temperate and tropical
regions. Most of the species have arrow-shaped leaves, whence the name. They are useful for foliage effects in bog and shallow ponds, and also for their white buttercup-like flowers, which are borne in successive small whorls on an erect scape. They are mostly used for colonizing in the open, but *S. montevidensis*—now the most popular species—is grown in indoor aquaria or plunged in open ponds in the summer. The arrowheads are perennials of easy culture, although likely to be infested with aphids. Prop. by division, or sometimes by seeds.

Plants of mostly erect habit, the lvs. and scapes arising from more or less tuberous or knotted rootstocks: lvs. typically arrow-shaped, with long basal lobes, but sometimes long and linear: ffs. imperfect, monocious (staminate lvs. in the uppermost whorls) or diocious, with 3 white broad petals and 3 small greenish sepals, the stamens and pistils numerous, the latter ripening into small achenes: imbricate composed of successive whorls of 3-stalked ffs. Sometimes the lvs. are floating.

A. *Sepals of pistillate ffs.* (usually in the lower whorls) erect after flowering, and the pedicels of these ffs. thick: carpels not glabulate.

S. montevidensis, Cham. & Schlecht. **GIANT ARROWHEAD.** Very large, sometimes growing 6 ft. tall, with leaf-blades 1–2 ft. long: lvs. arrow-shaped, with long, diverging, sharp basal lobes: ffs. very large (2 to nearly 3 in. across), the rounded petals white with a purple blotch at the base. Argentina to Brazil, Chile and Peru. B.M. 6755. Gn. 27:473. 1 H. 31:543. —First known as a cult. plant from seeds sent to England in 1833 from Buenos Ayres by John Ball. It is now a popular plant for aquaria and lily ponds. TENDER to frost. It is sparingly naturalized in the southern parts of the U. S., on both the Atlantic and Pacific sides.

SAINTPAULIA

1597

AA. *Sepals of pistillate ffs., reflexed after flowering; pedicels of these ffs. slender; carpels somewhat glabulate.*

B. *Bracts at base of whorls united, as if only 1.*

S. pusilla, Nutt. (*S. nudula*, in part. *S. subsulata*, Buch.). Slender and simple, usually only a few inches high: lvs. linear or narrowly oblong-elliptic, rigid: ffs. few, usually in 1 whorl, white, ½–3 in. across. the filaments broad. N. Y. to Ala., along the coast.—Offered by dealers in native plants.

BB. *Bracts 3, at base of the whorls.*

C. Lvs. usually distinctly sagittate.

S. latifolia, Wildl. (St. variabilis, Engelm. *S. sagittata*, var. variabilis, Michx.). Fig. 2226. Very variable in stature and shape of lvs., ranging from a few inches to 3–4 ft. tall: lvs. mostly broad-sagittate with long basall lobes, but running into very narrow forms: ffs. clear white, about 1 in. across, usually monocious, the filaments slender: achenes winged, with a lateral or oblique beak. Common everywhere in margins of ponds and lakes, and offered by dealers in native plants for colonizing in bog gardens and in lily ponds.

S. variabilis, Linn. **OLD WORLD ARROWHEAD.** Rhizome thick and tuberous, stolon-bearing: lvs. broad and sagittate, very variable in form and size: scapes erect, simple or branched, overtopping the lvs.: bracts narrow-ovate, free or slightly connate at base, shorter than the pedicels; petals large, white: filaments glabrous: achenes nearly or quite orbicular and in this respect differing from the allied American species. Throughout Europe and Asia.—By some authors the American *S. latifolia* and others are considered to be conspecific. There is a form with double ffs. (*var. flore-pleno*, Hort. *S. Japonica*, Hort.). *S. Chinensis* of most trade lists is apparently one of the many forms of this species. There appears to be another *S. Chinensis* in the trade, with lanceolate lvs., the botanical position of which is undetermined.

CC. Lvs. usually oblong or linear and not sagittate.

D. *Filaments slender, tapering upward, ciliate.*

S. lancifolia, Linn. Erect and somewhat rigid, glabrous, the scape sometimes reaching 5 ft.: lvs. lanceolate to narrow-oblong to nearly linear, nerves from the thick midrib: ffs. white, in several whorls. Swamp, Del. to the tropics.

DD. *Filaments abruptly broadened, pubescent.*

S. graminea, Michx. Erect and simple, glabrous, 2 ft. or less high: lvs. reduced to phyllodia, flat, broad-linear to lance-elliptic, pointed: ffs. small, white, in 2 or 3 whorls.

L. H. B.

SAGO PALM. Consult Cyper.

SAINTFOIN, or SAINTFOIN. *Onobrychis villosa.*

ST. ANDREW'S CROSS. *Aegopodium Orn-Andree.*

ST. DABEOC'S HEATH. See *Daboecia.*

ST. GEORGE'S HERB. *Valeriana officinalis.*

ST. JOHN'S BREAD. *Ceratois Siliqua.*

ST. JOHN'S-WORT. See *Hypericum*; also *Symphoricarpus.*

ST. PATRICK'S CABBAGE. *Sagittula umbrosa.*

ST. PETER'S-WORT. *Aegopodium steno.* Also applied to species of *Hypericum, Primula* and *Symphoricarpus.*

SAINTPAULIA (from the discoverer of the plant, Baron Walter von Saint Paul). *Gesneriaceae. Usambara Violet.* A monotypic genus from eastern tropical Africa, where it was found growing in wooded places in fissures of limestone and granite rocks, in rich, light soil. It is a stemless hairy perennial herb with short-petioled ovate or oblong-cordate lvs. 1–2 in. long and nodding blue ffs. 1 in. across, borne in stout peduncled
few-flld. cymes: sepals 5-7, linear, obtuse, erect, green; corolla sub-rotate, the tube shorter than the sepals; limb 2-lipped, the upper lip 2-lobed, and much the smaller, the lower spreading, all lobes rounded, concave, ciliolate; stamens 2, inserted in the contracted mouth of the tube; filaments short, stout: ovary ovoid, hispate; style filiform; stigma purple; seeds many, very minute. One of the choicest of blue winter-flowering plants. First bloomed in cult. in 1893.

SAINTPAULIA

St. Paulia williamsonii (X 50).

A young plant just coming into bloom.

SAULIA

The plants especially to be mentioned in this category are Swiss chard, beet tops, spinach, kale, endive, and mustard. Many other plants find occasional or local favor.

The only general cultural directions which can be given for salad plants are that blanching is often desirable and a quick unchecked growth is always a requisite. An abundance of rapidly available fertilizer and plenty of water are therefore to be insisted on. A warm, light soil, in the best mechanical condition, is necessary for the same reasons. F. A. Waugh.

SALICORNIA (Latin, *salt* and *horn*; saline plants with horn-like branches). *Chenopodium*. GLASSwort. *Marsch. Samphire*. A genus of about 8 widely scattered species of leafless sea-shore herbs, hardy or tender, annual or perennial. This and other chenopods which grow in large quantities in the Mediterranean region were formerly used in making soap and glass, as they yield a large percentage of soda. The ashes of such plants were known to the trade as bulla. The species have probably never been in cultivation and have no horticultural interest.

SALISBURIA. See *Gnaphalo.*

SALIX (ancient Latin name of willow). *Salicaceae*. Willow. A genus of trees and shrubs characterized by simple *lvs.*; *lvs.* with a single bud-scale; *lvs.* in lax scaly spikes (aments); the *fls.* subtended by a single entire scale and nearly or quite destitute of perianth; the staminate *fls.* with 1, 2, or 3-*st.*; the pistillate *fls.* of a single pistil composed of 2 carpels and 2 more or less divided stigmas; at maturity the pistil dehisces, setting free the small appended *seeds*. The wood is light, soft and fibrous porous. For the staminate and pistillate flowers of *Willow*, see *Figs.* 831 and 832, Vol. II. The *cattins* or "pussies" are also shown in *Figs.* 2228 and 2229 herewith.

The role that the *Willow* plays in the north temperate regions is to a certain extent analogous to that of the *Eucalyptus* in subtropical regions in that it prospers in wet ground and absorbs and transpires immense quantities of water. It has been used to plant around cesspools for sanitary effect. But while most of the species occur spontaneously in wet ground or along stream banks, the *Willows* may be cultivated in various situations. The *White Willow* (*S. alba*) has been used very effectively to fix stream banks against erosion. *Figs.* 2256, 2257. Its root system is very extensive and when well established withstands the effect of heavy rapid streams as well as wave action.

All species are readily propagated by cuttings. It has been suggested that the brittleness at base of twigs of some species, notably the *Black Willow* (*S. nigra*),

is an adaptation to facilitate naturally the distribution of the species. Certain it is that twigs broken from the tree by water are carried down streams and being anchored in the muddy banks, grow there. It is one of the most aggressive trees in occupying such places.

2227. *Saintpaulia ionantha* (X 50).

+A young plant just coming into bloom.

2228. Staminiate *catkin* of *Salix discolor.*

Natural size.

2229. Pistillate catkin of *Salix discolor.*

Natural size.
The genus is represented by species in both continents. It is, however, much more abundant in north temperate regions than in south. In the frigid regions are several species, *Salix arctica* and several allied species are among the few woody plants extending into extreme arctic regions. The arctic species are among the most diminutive of woody plants. As one goes south the species increase in size. Some of the species of north temperate, tropical and south temperate zones are large trees. The arborescent species all form wood very rapidly. Specimens of White Willow which may not be of great age look venerable from their great thickness. The wood is light in weight and color, finely and evenly porous. The wood has been extensively used in the manufacture of gunpowder. It has also been used for many other purposes. Certain species have for many years been extensively cultivated in Europe for materials with which to manufacture baskets. *S. viminalis* appears to be the favorite species for this purpose. Basket Willow is now extensively cultivated in central New York, and considerable manufacturing of this material is done there. As ornamental trees the Willows present little variety. The bright yellow catkins of some species are attractive in spring. They are considerably used as "nurse trees" for slower growing trees that require partial shade while young. The red and yellow branches of certain Willows are very bright and cheering in winter. The weeping forms are very popular, but they are often planted with little sense of fitness. The cultural remarks under *Populus* will apply to Willows. Willows are rarely propagated from seed. The seeds are very small and contain a green and short-lived embryo. A very short exposure of the seeds to the air will so dry them out that they will not germinate. The safest way to secure seedlings is to plant the seeds as soon as the capsule opens. Many hybrids have been described based on specimens found in nature that presented characters intermediate between recognized species. Artificial hybrids have also been made between many species. The decided habit of the species seems to facilitate cross-pollination, and it seems probable that the intermediate forms so frequently met with and designated in the monographs as varieties are natural hybrids. Upwards of one hundred hybrid Willows have been described as growing in Europe. Although as many or even more species occur in America, fewer hybrids have been detected here. The hybrids described as growing in America are for the most part between native species and those introduced from Europe.
AA. Scales of awned back above, persistent. Mostly shrubs.

BB. Stamens 2 or 3.
 c. Large trees
 5. fragilis
 6. alba
 7. vitellina
 8. Babylonica
 9. elegans
 cc. Shrubs
 10. interior
 11. argophylla

1. nigra, Marshall. Black Willow. Fig. 2233. Tree, 30–40 ft. high; branch dark, often becoming shaggy; twigs brown at base; buds small: lvs. lanceolate, green, both sides finely and evenly serrate, and with the leaves. E. N. Amer. F."
late spring on short lateral peduncles, which bear 4-6 lvs., those borne later in the season on much longer leafy branches, very loosely fd.: its, fasciated in clusters of 2-5 on the axis, a distinct interval between the fascicles, first appearing in May and often bearing a second set of mts. in early summer; scales usually glabrous or somewhat hairy toward the base, narrowly oblong, yellowish, decision after blooming; remnants crisp, hairless below, smooth above: capsules sessile, clothed when young with appressed silvery hairs, becoming flat and smooth at maturity; stigmas short, sessile. Central N. America.—The pistillate mt. bears, at anthesis, becomes longer more as the capsules mature, and by this character they can easily be distinguished from related species.

11. argophylla, Nuttall (S. longifolia, var. argophylla, Anders. S. heraldicis, var. argophylla, Sargent. S. laevigata, Small. A tree or large shrub, 12-18 ft. high, forming dense thickets but not growing in clumps; branches nearly glabrous and exceedingly tough; bark turning from brown to bright yellow or orange just before blooming, making a thicket of it a most conspicuous object; its, narrowly lanceolate, closely sessile, entire or rarely minutely and remotely denticulate, clothed equally on both sides with an appressed silky pubescence, which more or less conceals the veins; stipules obsolete; scales oblong and obtuse in the staminate mt., narrower and more acute in the pistillate; lower half of the filament densely ciliate; capsule lanceolate, covered with straight appressed silky hairs, closely sessile; mature capsule often nearly glabrous. Occasionally the leaves remain on the plant after flower, the young shoots appearing in their axils in spring. Ament suspended in length by its leaf peduncles; appearing in May and June in Oregon and northern California and flowering intermittently all summer. This species is distinguished by its narrowly lanceolate, entire leaves, oblong-ovate, small and rather narrow mts., erosive scales and hairy capsules. S. argophylla occurs on the Pacific slope from southern California to British Columbia. It is a western representative of the long-leaved Willows. Not advertised, but a beautiful species common along streams and irrigation ditches.

12. Crapea, Linn. Goat Willow. Fig. 2235. A small tree, 12-25 ft. high, with upright branches; lvs. large, 2-5 in. long, 1-3 in. wide, rounded or subcordate at base, rugose, very variable: mts. appearing before the lvs., large and showy, especially the staminate ones. Eu. Asia.—The typical form often occurs in yards where it has sprouted from the stock upon which the more popular but scarcely more ornamental variety, pendula, has been grafted. Var. pendula. Hort. Kilmarncok Willow. Dwarfed plant, grafted on stock about 4 ft. high, and forming a weeping shrub. Often planted in yards. S. multinervis is supposed to be a hybrid, and probably belongs with S. Crapea. S. Crapea, var. tricolor, Hort., is said by F. W. Kelso to be a round-headed tree, with "tricolored foliage." S. petiolaris, Hort., is said by F. W. Kelso to be of vigorous growth, with large, deep green lvs. and reddish purple young wood.

13. discolor, Muhl. Pussy Willow. Figs. 2223, 2229, 2234. A shrub or short-trunked tree, 18-20 ft. high: buds very large and nearly black; lvs. smooth and bright green above, whitish beneath, irregularly erose-ciliate: mts. appear early in spring, before the lvs., closely sessile, enclosed in long, silky hairs. E. N. Amer.—Worthy of more extended cultivation and thriving in dry ground.

14. Bebbiana, Sarg. [S. tridentata, Rich.], Fig. 2234. A small tree, 10-20 ft. high, with short but distinct trunk: buds of medium size, conical, brown: lvs. dull green and downy above, prominently veined and hairy beneath: mts. appearing with the lvs., the staminate beautiful golden when in flower; scales narrow and shorter than the pedicels; capsules long rostrate beaked. N. Amer.—Prefers dry soil and can be used to good advantage against walls and in rockeries.

15. humilis, Marsh. Prairie Willow. A shrub, 2-8 ft. high, varying much in stature, and in size and shape of lvs.: branches hairy: lvs. oblong-lanceolate to oblong, nearly entire, more or less revolute: mts. densely and many-fl. E. N. Amer.—Grows in driest situations.

17. sericea, Marsh. Silky Willow. A shrub usually 4-8 ft. high, diffusely spreading from base: branches often reddish: buds obuse and rounded at apex, cylindrical: lvs. very silky becoming somewhat longer, but not so at maturity: mts. densely fd., appearing with the lvs.: stamens often orange-red; capsules short-peduncled, ovate-oblanceolate, nearly truncate at apex. N. Amer.

18. petiolaris, Sm., not Hort. Fig. 2233. A low shrub, 3-5 ft. high: branches slender, the whole plant much slenderer than S. sericea, with which it frequently grows; buds usually black and more pointed: lvs. only slightly silvery when young, soon glabrous, more evidently toothed: mts. rather loosely fd.: capsules rostrate and pointed, distinctly peduncled. Central and northeastern N. Amer.—S. petiolaris of the trade is S. incana.

19. viminalis, Linn. Osier Willow. A shrub or small tree, 10-20 ft. high: branches slender and straight: lvs. linear-lanceolate, beautifully silvery, 4-10 in. long; margins revolute, entire: mts. appearing before the lvs., golden yellow. Eu. Asia.—Most often seen in plantations for basket material, for the production of which the plants are cut near the ground every year. Willow culture in experienced hands is often profitable. (For details, see Simpson, Osier Culture, Bull. 19, Div. of For., U. S. Dept. Agric. 1888.) This species does not thrive in this country as well as in Europe.

20. candida, Flygeg. Hoary Willow, Fig. 2233. A shrub, 2-5 ft. high: young branches hoary, becoming smooth and red with age: buds reddish, rounded at the apex: lvs. lanceolate or linear-lanceolate, 2-4 in. long, dark green and wrinkled above, yellowish beneath: with dense white tomentum, revolute: mts. sessile, appearing before the lvs.; staminate of redish capsule densely white woolly, with red style and stigmas. N. Amer.—This species Hybridizes freely with S. cordata, and several natural hybrids have been described.

21. myrtilloides, Linn. Fig. 2233. A shrub, 2-5 ft. high, with rather slender brown twigs: lvs. oblong or elliptic-obovate, usually obtuse at both ends, entire and smooth, reticulate-veined: mts. rather few-fl.; capsules redish, glabrous. N. E. Amer.—Grows usually in cold peat bogs.—Probably not in cult. The plant sold under this name is a species of S. purpurea, which S. myrtilloides closely resembles in general appearance.
22. cordata, Muhl. (S. rigida, Muhl.). Heart-leaved Willow. Fig. 2236. A large shrub or small tree, 10-20 ft. high; branches stout; buds large, flat-topped on the branch; lvs. oblong-lanceolate, green on both sides, finely serrate, glabrous and rather rigid at maturity; amts. slender, appearing with the lvs.; capsules glabrous, greenish or brownish. N. Amer.—This is a variable species and undoubtedly some of the forms included in it are hybrids; several supposed natural hybrids have been described. Var. pendula, Hort., is a decumbent form.

23. irrorata, Anders. Colorado Willow. A dense diffuse shrub, 8-12 ft. high: branches stout, covered with a white bloom; lvs. linear-lanceolate, long 3-4 in., wide ½ in., green above, glaucous beneath, undulate serrate; amts. appearing before the lvs.; sessile, very densely fl.; staminate golden yellow; capsule glabrous, nearly sessile. Rocky Mts.

24. incana, Schrank. (S. petiolaris and S. rosmarinifolia of Amer, gardeners, but not of botanists). Shrub or small round-topped tree, with long, slender branches; lvs. linear, recurved, 2-4 in. long, very narrow; green above, white-tomentose beneath; amts. long and slender, appearing with the lvs.; capsule glabrous; filaments of stamens more or less connate. Eu.—This species is grafted upon hardy stock (S. Caprea) when sold from nurseries.

25. purpurea, Linn. (S. Forbignya, Sm. Valeris purpurea, Rafn.). Purple Osier. Fig. 2235. A shrub or small tree, spreading at base, with long, flexible branches: lvs. ovate, glabrous, clothed beneath with silky hairs which have a beautiful satiny luster; amts. appearing with lvs., long, cylindrical and graceful, all satiny. This Willow, which, so far as the writer knows, has not been used as an ornamental plant, is one that would be at once novel and beautiful.—The characteristic lustre of the leaves is preserved in plants in cultivation. N.W. Amer.

W. W. ROWLEE.

2236. Leaves of Salix cordata, showing stipules. (X ½.)

SALPICCHROA. See Salpicchroa.

SALPICHOIUM. See Salpicchroa.

SALPHILSIS (Greek, tube and tongue; alluding to the form of the corolla and the appearance of the style). Solanaceae. A genus of possibly 2 or 3 species of annual or biennial plants, natives of Chile. The only species in cult. is S. sinuata, which was formerly divided into about 6 species mainly on the color of the flowers. S. sinuata has greatly improved in size of flowers and range of color until it is at the present time amongst our very finest half-hardy annuals. Plants about 18 in. high, covered with short glandular hairs; lvs. entire, wavy-margined, dentate or pinnatifid; fls.

long-stemmed, large, funnel-shaped, ranging in color from various shades of purple and blue through numerous reds and yellows to creamy white, and usually

SALPHILSIS (section Perizonis); calyx tubular or short, 5-cleft or petaled, the lobes linear; corolla tubular or urn-shaped, without a crown in the throat; lobes 5, acute, often short, induplicate-valvate; berry ovoid or oblong, 2-celled: seeds numerous, compressed.

Krellage says of the species described below: "This plant is neither beautiful nor interesting, but it has the advantage of being an exceedingly rapid climber, covering walls within one season with a thick mass of foliage." Franceschi says the small white berries are sold everywhere in Paraguay as "cocks' eggs."

rhomboides, Miers (Salpichroa rhomboides, Miers). A half-hardy climber, somewhat woody, with green, flexuous branches; lvs. ovate-rhomboid; fls. small, usually less than 1/4 in. long, solitary, nodding, white; corolla short, constricted at the middle end at the throat, and bearing on the inside a fleshy, woolly ring; berry ovate-oblong, yellowish or white, edible, but of poor flavor. Argentine Republic. G.C. III. 24:450. R.H. 1897:581. Gu. 35, p. 397.—The plant appears to be offered as Withania origuinulaj. Cult. in S. California.

F. W. BARCLAY.

SALFICHRHA (Greek, tube and skin; in reference to the form and texture of the flower). Syn. Salphichroa, Salviaeae. About 10 species. Natives of extra-tropical regions, mostly American herbs or shrubs. Lvs. often small, entire, long-petioled; fls. white or yellow, 2-8 in. long (section Eusalphichroa) or only about ½ in. long
SALBPUSHES

Beautifully marked and pencilled with several colors. Calyx tubular, 5-leaflet coriaceous, with widely bell-shaped at the throat; lobes 5, plicate, enarginate; stamens 4, didynamous: capsule obovate or ovoidal; valves 2-cleft.

The varieties of Salpiglossis require the general treatment given half-hardy annuals. They prefer a deep, light rich soil not given to sudden extremes of moisture and dryness. The seeds may be sown indoors by the middle of March, or later, or may be sown outdoors in early spring. Care must be taken that the early sown plants do not become stunted before being planted out. They bloom for several weeks in late summer. The flowers are useful for cutting and last well in water. The plant is also excellent as a greenhouse annual for late winter bloom. Seeds for this purpose may be sown in late summer.

F. W. BARCLAY.

SALPINX (*Salpinx*, trumpet; referring to the shape of the calyx). *Melastoma*, Here belongs the dwarf stove foliage plant known to the trade as *Bertolonia margsitacea*. The lvs. are large, heart-shaped, metallic green above, with lines of small white dots running from the base to the apex and also the prominent ribs; the lower surface is a dull but rich crimson. For culture, and botany of allied genera, see *Bertolonia*. Fls. 5-merous: calyx tube 10-ribbed, limb with 5 obscure or elongated lobes: stamens 10, opening by a single pore at the apex.

W. M.

SALSIAY (Salsify, trumpet; referring to the shape of the calyx). *Melastoma*, Here belongs the dwarf stove foliage plant known to the trade as *Bertolonia margsitacea*. The lvs. are large, heart-shaped, metallic green above, with lines of small white dots running from the base to the apex and also the prominent ribs; the lower surface is a dull but rich crimson. For culture, and botany of allied genera, see *Bertolonia*. Fls. 5-merous: calyx tube 10-ribbed, limb with 5 obscure or elongated lobes: stamens 10, opening by a single pore at the apex.

W. M.

SALSBY is the spelling preferred in England; Salsify in America.

SALSYFY (formerly sometimes spelled salsey) is *Tragopogon porrifolius*, one of the composites. *C.A. H.* 22:363. *A.G.* 18:800. It is a garden esculent, being grown for the fleshy root. This root has the flavor of oysters, hence the plant is sometimes called *Vegetable Oyster* and Oyster Plant. Salsify is perfectly hardy. The seeds (which are really fruits) are sown in early spring, about as soon as the soil can be prepared, in drills where the plants are to stand. The drills may be 2-3 ft. apart, if tilled by light horse tools, or half that distance if tilled only by hand. In the rows, the plants are thinned to stand 2-5 in. apart. The plant requires the entire season, in the North, in which to grow. The roots may be allowed to remain in the ground until spring, for freezing does not harm them. In fact, they are usually better for being left in the ground, because they do not shrivel and become tough as they often do in storage. If they are kept cool and moist in storage, however, the quality is as good as when the roots remain in the ground. At least a part of the crop should be stored, in order that the table or the market may be supplied during winter and early spring.

Salsify is biennial. The second spring, a strong stalk 2-5 ft. tall is sent up from the crown of the root, and in spring or early summer an abundance of light purple flower-heads are produced. The flowers or heads, close about noon. The leaves are long linear and grass-like. The roots are small, well-grown specimens being about 1 ft. long and unbranched, and about 2 inches in diameter at the top. The skin is grayish white. Salsify is easy to grow, and it has no serious pests. It is a vegetable of secondary importance commercially, although it should be in every home garden, particularly in the North, where it thrives best. Eight to ten lbs. of seed is sown to the acre. There are few varieties, and these have no marked characteristics except in size. The Mammoth Sandwich Island and Improved French are probably the best varieties. Salsify is native to southern Europe, in some places it has escaped as a weed. See *Tragopogon*.

Black Salsify is *Scorzonera*; Spanish Salsify is *Scorzonula*.

L. H. B.

SALSOLA KALI, var. *Tragus*, is the Russian Thistle. *C.A. H.* 22:29, 2240. Some of the better ones devoted wholly or largely to this weed are Calif. 107, Col. 28, Iowa 26 and 33, New Mex. 16 Min.. 35, Ohio 55, Wis. 37, 39. See also the following publications of C. D. Mat. of Agric.: *Farmer's Bulletin* 16, *Botany*; also Essay 8, "Survival of the Unlike." In the unoccupied lands of the upper Mississippi valley, the Russian Thistle has covered great areas, and it has spread eastward along the railroads. With good tillage and short rotations of crops, little need be feared from the pest.

SALSBUSHES are plants recommended for alkali lands, belonging to the family Chenopodiaceae and mostly to the genus *Atriplex*, which see. Used for forage in the dry regions. The introduction of the *Australian Salbush* (*Atriplex semilanceata*) has been a great event in the

2239. Plant of Russian thistle.

SALT-BUSHES

SALT GRASS. *Diacthia.*

SALT TREE. *Halimoeodon argenteum.*

SALVIA (Latin, *to keep safe or healthy; referring to the medicinal properties and the medicinal sage*) = *Lacy Sage.* A genus of about 600 species of herbs, subshrubs and shrubs, hardy and tender, including Sage, Clary, Scarlet Salvia and many other interesting plants. Salvias are noted for the large size of the flowers in Lobiate described by Bentham and Hooker, and is characterized by certain peculiarities of the stamens that are connected with the cross-pollination of the flowers by insects. It has been well said that the structure of the flower in *Salvia* is as complicated and specialized as in any orchid. Some idea of this structure may be gained from Fig. 2941. The bodies shown at 1 and 2 are the two fertile anthers, or rather anther cells. The points 3 and 4 indicate places where another anther cells might be expected. In some species of *Salvia* the points 3 and 4 are occupied by pollen-bearing anther cells; in others by sterile cells. The body connecting 1 and 4 is not the filament, but the "connective," the filament being the smaller body which joins the connective to the corolla. In the extreme ordinary length (or rather width) of the connective is one of the main generic characteristics of *Salvia*. In ordinary flowers the connective is a mere thread, a linear extension of the filament, and barely separates the two anther cells. In *Salvia* the anther cells are forced apart to an exceptional distance, and in many cases 2 of the cells are obliterated or devoid of pollen. Within the generic limits of *Salvia* the variation is astonishing. The color of the flowers ranges from scarlet through purple and violet to azure-blue, white and even pale yellow, but there seems to be no gold pure yellow. Fig. 2933 indicates something of the range in form of corolla and calyx. Some flowers wide open, others are nearly tubular. In some the upper lip is longer than the lower, in many the lower lip is longer than the upper. The lower lip is always 3-lobed, but frequently it does not appear to be so, for the lateral lobes are much reduced while the middle lobes is greatly elongated, often deeply divided, and makes the showy part of the flower. The calyx is small and green in some, large, colored and showy in others. In many cases, as *S. leucantha*, the calyx cells are of different colors. The bracts range from minute and deciduous to a larger size and more attractive color than the flowers. There are usually about 6 bracts, in a whorl, sometimes 2, sometimes many. In spite of these and many other wide variations, few attempts have been made to split up *Salvia* into many genera, presumably from the feeling that the structure of the stamens makes the *Salvia* a natural, not an artificial group.

Three Salvias are cultivated for their leaves, which are used in seasoning and also in medicine. These are the *Common Sage, S. officinalis; Clary, S. sclarea; and S. Horminum.* For the commercial cultivation of Sage, see Sage.

Clary is a perennial plant, but is cultivated as an annual. In the binomial "Clary" the plant runs to seed the second year, after which it is better to pull up the old plants. The seed may be sown in spring, in drills 12-20 in. apart or in a seed bed, from which the seedlings are pricked out in May. In August the first leaves may be gathered and the plants will continue to yield until June or July of the following year.

Two Salvias are known, *S. sclarea* and its related species. *Salvia Horminum* are plants of exceptional interest. They are cultivated for their culinary and medicinal value and also for ornamental, but their ornamental value lies not in the flowers (which are usually insignificant) but in the colored bracts or floral lvs. at the tops of the branches. The various varieties are known as Red, Clary, Red-top Clary or White-top Clary; also Red Sage and Purple Sage. The two species (*S. sclarea* and *Horminum*) seem to be more closely related than *Salvia*, but the plants may be separated by the following characters: the upper lip of the calyx is 3-toothed in *S. sclarea*, and truncate in *Horminum*; the upper lip of the corolla is 3-lobed in *Sclarea*, but straightish and concave in *Horniminum.* According to De Candolle both of these species have large and showy floral leaves. It is to be inferred from *Voss'* treatise on *Salvia* that the most common (if not the only) related species is *S. Horminum* which he describes as the "Clary" plant, which seems to be the only wild plant that is known to have showy flowers. The other species of *Salvia*, however, have been cultivated for centuries, and are known to have showy flowers. The "Clary" plant seems to be restricted to *S. sclarea*. There is another odd feature about the floral leaves of both species. The red, white or purple tops seem to be composed of sterile lvs., i.e., they do not inclose any whorls of flowers, while the large bracts under the whorls of flowers are green. However, De Candolle refers to *S. sclarea* two pictures in B.M. and B.K. where the situation is reversed, i.e., the showy colored parts are the bracts under the whorls of flowers and there are no sterile bracts at the top. Moreover, the flowers in the cases just cited are anything but insignificant, being fully an inch long.

Among the Salvias cultivated for ornamental there are two large cultural groups, the hardy and the tender. The hardy species are mostly border plants, blooming in spring and early summer. They are generally used for summer bedding, sometimes for conservatory decoration in winter. Many of them bloom in summer and late fall, even when they are treated as half-hardy annuals. As regards color of flowers there are also two important groups, the scarlet-flowered, and the kinds with blue, purple, violet, white or variegated flowers. Of the scarlet kind *S. splendens* is the most popular; of the blue-flowered kinds, *S. patens* is the most popular of the bedding class, and *S. pratensis* the most popular of the hardy class. *S. patens* probably has the largest fls. of any of the blue-flowered kinds in cultivation.

The most widely used of all Salvias cultivated for ornamental is *Salvia splendens*, or Scarlet Sage. This is one of the most brilliant red-flowered bedding plants in cultivation. It is generally grown in large masses. It does best in full sunshine, but may be used in shady places to light up those places by their red color against a dark background of some kind by way of contrast. A well-managed bed of Scarlet Sage may be maintained in full splendor from the middle of July to frost. It is propagated by cuttings of shoots inserted in the coarse sand into which the basal parts have been forced to remove the cuttings, and by seeds sown the previous year. It is troublesome to keep cuttings or plants over winter, as they are particularly liable to attacks of aphids and red spider. It is, therefore, important to get seed of an early-blooming variety of compact habit, and to sow the seed early indoors or in a frame in time to get good plants to set outdoors in May. A good race is one of a foot long, with 30 or more fls. in a raceme, and 2-3 fls. in a whorl, each flower being 2 in. or more long. Some varieties have erect racemes, others pendulous, and there are white varieties, together with some intermedie colors. A poorly managed bed of Scarlet Sage gives a few flowers in September and is cut off in a short time by frost. Wet seasons delay the bloom, and if the soil is too rich in nitrogen the plants will make too much growth and the fls. will be late and relatively few. The same principles of cultivation apply to other tender Salvias used for bedding. Florists sometimes lift a few plants of Scarlet Sage and set them under glass to force them and find that they make attractive plants under glass for a month or two. One advantage that *Salvia splendens* has over many other red-flowered *Salvia* is that the calyx is as broad as the corolla and the flowers are bright red-flowered. *Salvia* that are blue have showy, bright red-flowered *Salvia* which seem to be 10. The following are amongst the most desirable and are described in the supplementary list.
SALVIA

S. Botlikum, coortifolius, elegant, nesnecrfolia, com-
uridos, rubescens, striidill.ons.

Salvia was monographed in 1818 by Bentiana in DC
Prod, vol. 12, and an index to the 407 species there
listed is found in Buck's "Genera et Species
Synonyma," etc., pars iii. In 1876, Pennsly gave an
account in The Garden (9:439-443) of 65 species
which had been in cultivation up to that time. See also "A
Synopsis of the Mexican and Central American Species
Univ. N. S. No. 19). In the work just cited 209 species
are described and there is an elaborate key.

SALVIA

Section 2. Hyemenophore. Like Section 1, but the
lobes of the calyx enlarged in fruit, membraneous and
veiny; posterior lip of the corolla straight in the ori-
mental species, sickle-shaped in the South African. No
species cult. in America.

Section 3. Dreyaphor. Herbs, usually tall and
grundy: posterior lip of the corolla falcate, compressed.
Includes hians.

SUBGENUS II. Sclarea. Corolla with no hairy ring
inside; anterior portion of the connective directed
abruptly dilated, connecte to the calyx extremity.
All Old World, herbaceous species.

Section 4. Hornumin. Posterior lip of calyx trun-
cate, the teeth small and bracteate: posterior lip of
the corolla straight, concave. Includes Horminum.

Section 5. Ethipia. Posterior lip of calyx 3-
toothed: posterior lip of corolla falcate, compressed.
Includes argentea and Sclarea.

Section 6. Pethidaphor. Calyx ovate (instead of
bell-shaped or tubular, as in the preceding sections):
posterior lip of calyx concave, 2-grooved, teeth 3, very
short and connivent: posterior lip of corolla straight or
falcate, concave or compressed. Includes bicolor, pra-
tenris and symville.

SUBGENUS III. Calosaphor. Corolla with no hairy
ring inside but sometimes with 2 teeth near the base;
anterior portion of the connective directed linear,
longitudinally connate or closely approximated, often
somewhat dilated, rarely bearing a sterile anther cell.
All America species.

Section 7. Calosaphor. By far the largest section,
characterized as above, and within these limits, in-
mensely variable. Over 250 species, including azurea,
calothorax, coccinea, farinacea, fulgens, involucrata,
lanceolata, leucantha, patens, Sessili and splendidus.

SUBGENUS IV. Leonia. Corolla with a hairy ring
inside: anterior portion of connective sometimes di-
rected outward and bearing either a fertile or sterile
anther cell, sometimes dilated and acute, rarely
reduced to a short tooth.

Section 8. Echidaphor. Bracts imbricated, spin-
nescent: posterior lip of calyx 3-toothed: connective
bearing a perfect anther cell on the posterior side.
Includes carduacea.

Section 9. Pyrandaphor. Bracts imbricated, not
spinescent. Otherwise as stated in Section 8. Includes
Columbariae.

Section 10. Deteraphor. Bracts deciduous: pos-
terior lip of calyx truncate: connective bearing a per-
fected anther cell on posterior side. Includes lyrata.

Section 11. Nativaphor. Bracts small or minute:
posterior lip of corolla entire or with 3 minute conni-
vent teeth. Includes no species cult. in America.

Section 12. Hemisaphor. Bracts small: posterior
lip of calyx 3-toothed: connective somewhat continuous
with the filament and produced into a very short tooth.
Includes verticillata.

INDEX.

INDEX.

alba, 15, 24, 27.

argentea, 18.
aurea, 16, 19, 26.
bicolor, 19.
Blakely, 15.
Bracteia, 2.
calothorax, 28.
cordaceae, 8.
coccinea, 5.
Colombieria, 9.
conspicua, 2.
crispa, 19.
Deschampsiens, 20.
Dioscorea, 16.
fulgens, 4.
Gramineae, 22, 22.
Greggii, 1.

blusa, 15.
Hornimin, 15.
Horei, 15.
leucantha, 16.
lexacareta, 20.
hotes, 5.
lanceolata, 28.
alba, 10.
leucantha, 17.
lana, 12.
Milleri, 10.
officinalis, 10.
patens, 27.
Pichler, 22.
porphyrantha, 6.
porphyrantha, 24.
Pratolus, 25.
pressoscella, 5.
paparaeoa, 10.
Reverence, 6.
Bocchina, 15.
rubiaena, 21.
rubra, 15.
rytihora, 9.
salifolia, 10.
Scarea, 14.
Sessili, 7.
Souchett, 20.
spliceana, 25.
Spelmanni, 25.
Splendens, 2.
Sutrium, 10.
Sylvestris, 23.
Sphenia, 10.
tricolar, 10.
variegata, 21.
Verbena, 15.
verticillata, 21.
viola, 15.
vulgata, 15.
SALVIA

KEY TO SPECIES.
(Based on garden characters.)

A. Color of corolla vivid red, without a trace of purple.
 b. Tube of corolla neutral colored; lower lip shown.
 1. Greggi
 2s.
 2. Pseudo-coccinea, 2,5.
 3. Calyx vivid red.
 4. Calyx green.
 5. rotundifolia.
 6. Base of lvs. not coriaceous;
 probably leafless at base of calyces.
 7. Lower lip twice as long as upper.
 8. cardusacea.
 9. Lower lip a little longer than upper.
 10. officinalis.
 11. verticillata.
 12. lyra.
 13. hians.
 15. Hortinum.
 16. farinacea.
 17. leucantha.
 18. argentea.
 19. bicolor.
 20. involucrata.
 21. ianthina.
 22. aspersa.
 23. Stem paniculate above.
 24. australis.

B. Corolla with a hairy ring inside.
 c. Foliage thistle-like, prickly; fls. fringed.
 8. cardusacea.
 d. Foliage not thistle-like; fls. not fringed.
 e. Lower lip twice as long as upper.
 10. officinalis.
 11. verticillata.
 12. lyra.
 13. hians.
 f. Lower lip a little longer than upper.
 15. Hortinum.
 16. farinacea.
 17. leucantha.
 18. argentea.
 19. bicolor.
 20. involucrata.
 g. The upper lip white.
 21. ianthina.
 22. aspersa.
 h. The upper lip blue.
 23. bicolor.
 i. Upper lip of corolla not different in color from lower.
 24. australis.

SALVIA

DDD. Whorls about 2-fld.
E. Duration annual
F. Les. entire
G. Les. create
H. Root not tuberous
I. Root hardy

1. Gréggi, Gray. Readily distinguished from the common red-flowered kinds by the fact that only the lower lip is showy. This is a native, and the rest of the corolla dull purplish. The foliage also makes it highly distinct. Though a native of Texas and Mexico it is offered by several dealers in hardy border plants. John Saul considered it “nearly hardy” at Washington, D.C. Shrub, 3 ft. high; lvs. linear-oblong, obtuse, narrowed at base; racemes 2-3 in. long, 6-8 fl.; upper lip short; lower lip with the large middle lobe 2-lobed and small, roundish lateral lobes. B.M. 6812. — Section 7.

2. pinnata, Rottb. SCARLET SAGE. Figs. 2241, 2242. The most popular of all red-flowered Salvia. Tender perennial herb from Brazil, 2-3 ft. high, with scarlet fls., 2 in. or more long, borne in termi- nal racemes. B.R. 8:587. — Var. Bruniata, Hort., int. before 1880, was an improvement over previous forms in having dwarfer and more compact habit, with brighter and more numerous flowers. G.C. II. 11:781; III. 1:653. Gn. 21:336 (good picture). A.F. 2:226. Other trade names are vars. compacta, compacta crista, grandiflora, grandiflora elegans and grandiflora pendula. Also a form with golden foliage is cult, and one or more spotted with yellow. S. grandiflora and S. argentea are true botanical species which are probably nowhere in cult, and these names in the trade mostly refer to varieties of S. splendens. Var. Soucheti, Planch. (S. Soucheti, Hort.), introduced about 1856, was considered to differ from the type in having more com- pact habit and fls. more numerous, more erect and more brilliant. F.S. 11:1154. The prevalent idea that this name is referable to S. Rozzi is probably due to a hasty reading of F.S. 14, p. 32. A white-flowered form is known to the trade as S. Soucheti alba. For S. Horeyi, consult S. iaunthoides. Var. Isanouchou, Hort., has rosy white corolla, calices veined red, and red anthers. I.H. 28:432 (as S. Brasiliflora, var. Isanouchou). Where the calyx is bright yellow, striped red. Gn. 21:336. There are about a dozen varieties with personal names. Section 7.

3. rotundifolia, Carr. A plant of unknown habitat which is probably a horticultural form of S. splendens, differing in having a small green calyx, whose nearly always 2-flowered, and inflorescence axillary as well as terminal and panicled instead of merely racemose. R.H. 1873:290. — The plant figured in G.C. II. 15:177 is S. rotundifolia has an unbranched raceme, with 6-flowered whorls and small calyx. Offered as late as 1893 by John Saul.

4. fulgens, C. W. CARDINAL SALVIA. MEXICAN RED SALVIA. Differ from S. splendens in the darker red of the fls., the coriaceous lvs. and the calyx, which is dull colored and conspicuously striate but hardly "colored;" also the leaves of the lower lip seem to be all about the same size and lying in the same plane instead of hav- ing the lateral ones reflexed. Mexican shrub or herb, 3 ft. high; lvs. ovate, coriaceous, somewhat acute, not acuminate. B.R. 16:1536. — This name seems not to be ad- vertised in America to-day, but in 1886 Gray stated that S. splendens and S. fulgens were the two common red-flowered kinds in cult. Section 7.

5. ianthina, Linn. This name is said to be loosely used in trade catalogues for S. splendens, and it is doubtful whether the true S. ianthina is in cult. Peri- canial or annual, 2 ft. high; lvs. coriaceous; fls. deep scarlet, 1 in. or less long; calyx slightly reddish, lower lip twice as long as upper, the middle lobe very large and 2-lobed. Trop. America; also S. C. to Fla. and Tex. Var. lactea, Hort., is advertised. Section 7.

6. Verbena, Schelle (S. porphyrophylla, Decaisne. S. porphyrophylla, Hook.). Perennial, 1-2 ft. high; lvs. cor-
SALVIA

7. Sessèl, Beinth. (S. Kesi, Scheidw., Fig. 2243. Remarkable for its large fls. (2 in. long), with boldly deflexed lower lip, which is not 3-lobed but merely 2-cut at apex; also remarkable for the large, loose calyx, dashed by brown-red towards apex. Mexican subsrubb: lvs. ovate, serrat, not cordate. F.S. 14:1407.

8. cardinalea, Beinth, Fig. 2243. Unique among Salvia for its thistle-like foliage and fringed fls. The lvs. and the large conspicuous bracts are very prickly and the blue-colored fls. much cut. the fringes of the lower lip being more numerous and deeper. Tender perennial from Calif. 1-1½ ft. high, very woolly: lvs. all radical, densely woolly beneath. B.M. 4874. G. C. H. 19:56. Offered by Calif. collectors and lately by eastern seedsmen. Section 8.

9. Columbária, Beinth. A common Californian annual and hardly worth cult. for ornament. the blue fls. being about ½ in. across and not as long as the bracts. Height 9 in.-2 ft.: lvs. few, wrinkled, radical ones long-stalked, oblong, pinnatifid or bipinnatifid; divisions oblong. B.M. 6355 (fls. blue).—Offered by O'neill.

10. officinalis, Lind. Sagic. Woolly white, south European subsrubb, varying greatly in breadth and woolliness of lvs.: fls. purple, blue or large, small or: whorls few, dense, 10-20-fld.—The form commonly cultivated as a kitchen herb is var. tenuec, Alfe., with blue lvs. and lvs. 2-4 times as long as broad. Other forms are: var. abíflora, Alfe., with white fls. and lvs. 3-4 times as long as broad; var. salicifolia, Alfe., with lvs. 4-7 times as long as broad; var. hastatifolia, Alfe., with lvs. twice as long as broad; var. crispa, Alfe., with crisped and variegated foliage; var. staráena, Alfe., lvs. green and white; var. isterina, Alfe., fls. green and gold; var. purpurácea, Alfe., with somewhat reddish foliage which is said to have the strongest and pleasantest taste and is preferred in England for kitchen use; var. Milleri, Alfe., with lvs. somewh. red and spotted; var. azúrea, Hort., with golden yellow foliage and compact habit; var. tricolor, Wilson (S. tricolor, Hort., not Lern.), with lvs. of three colors, gray-green, yellowish white and pink, becoming rose or deep red. Section 1.

11. verticillátæ, Lind. Perennial herb from southern Europe and western Asia, with lvs. like a dandelion: lvs. lyrate, coriace at base, apical lobe largest, ovate-rotund; whorls globose, 20-40-fld., fls. blue; corollas twice as long as calyx.—Section 12.

12. lylíta, Lind. Hardy perennial herb, with somewhat tuberous root and scape-like stems: fls. 1 in. long, blue or violet. N. J. to Ill., south Fla. to Tex.—Once offered by Basset, of Hanover, N. J., Section 10.

13. báns, Royle. Fig. 2243. Handsome hardy perennil herb from the Himalayas, with large blue or purple fls., the lower lip often white, prettily speckled with blue at the base, plant villos, 2-3 ft. high, lvs. 3-5 in. long, deltoid-ovate, base truncate or hastate; petiole 4-6 in. long; raceme 8-12 in. long; fls. 1½ in. long; upper lip 2-lobed, lower lip with large obcordate serrat, narrowed at base, and broad, rounded, subulate, ½ in. wide; fls. pale purplc or bluish. Discussed above. B. R. 12:1000 (S. Sinuána), B. M. 2329 (as S. broócata).—Bracts pink; fls. blue, with a white under lip in both plates. Section 5.

15. horníssmus, Lind. Annual: fls. oval-oblong, rounded or wedge-shaped; situated at the base: fls. redish violet. Discussed above. Voss calls the varieties with colored floral lvs.: var. vulgaris, light violet; violácea (S. Bluebeard, Hort.), light violet-blue; ríbata and alba.—Section 4.

16. farínácea, Beinth. Figs. 2244, 2245. Charming and popular plant, with violet or purple corollas set off by the light blue mealy calyx. Botanically close to S. azúrea but easily distinguished by color of fls. Perennial herb, 2-3 ft. high: lower lvs. ovate-lanceolate, coarsely and irregularly serrate; upper lvs. lanceolate or narrower. R.H. 1873:30. G. N. 9:19, 28, p. 20.—Although a native of Texas, it is offered by several dealers in hardy herbaceous perennials. It is also treated as a hardy annual. Section 7.

17. lecánthá, Cav. Fig. 2243. Delightful Mexican shrub, with white club-shaped fls. (not widely gaping) set off by purple calices. Branches covered with white wool, which is at length deciduous: lvs. lanceolate, serrate: fls. lin. long; calyx densely lanate. According to De Candolle the whorls are many-fld., but in B. M. 4318, F. S. 22:2318, and G. N. 21:336 they are mostly 6-flld.—Section 7.

18. argéntea, Lind. Biennial. 2-4 ft. high, viscid: lower lvs. 6-8 in. long, oblong, crenate, rough: inflorescence a panicle 2-2½ ft. long, usually composed of 3 branches: whorls distant, about 6-flld.: fls. white, purplish pubescent above; upper lip or galea much longer than the lower. Mediterranean region. F.C. 3:112. Seems to be considered a hardy perennial by American seedsmen. It is worth cultivating for the woolly white foliage alone. Section 5.

20. involucrátæ, Cav. This has just enough purple in its fls. to exclude it from the scarlet-flld. section, but it has a very brilliant color and distinct form of flower. The corolla is swollen in the middle, constricted at the throat and not wide gaping. The species is also remarkable for the large, showy purple, deciduous bracts. Lvs. long-stalked, ovate, acuminate, serrat, rounded-wedge-shaped at the base: inflorescence dense. B. M. 2872. B. R. 14:205. R. H. 1858, p. 259. —Var.
Salvia
Deschampsiana, Verlot, has brighter colored corolla and calices. R.H. 1858:130. Var. Bethelli (S. Bethelli, Hort.) is a horticultural form of more compact habit and flowers described as rosy crimson or rose. Gn. 2f:1336. — Section 7.

2244. Habit of Salvia farinacea. No. 16.
From a mass 2 ft. high.

21. lanithina, Otto & Dietr. (S. Hoveyi, Hort.). Tender herb, dobbless perennial, with the habit of S. splendens, but the fls. purple-violet, the calices colored still deeper. Supposed to be native to Mex. or Peru. F.S. 9:884. R.H. 1854:61. — S. lanithina is not advertised, but S. Hoveyi, said to be a sport from S. splendens originating with C. M. Hovey, is probably synonymous with S. lanithina. G.C.H. 15:145. — Section 7.

22. azurea, Linn. Blue-flowered perennial, 1.5 ft. high; lower lvs. lanceolate, serrate; upper lvs. narrower, often linear, entire; fls. blue, varying to white. B.M. 1228. S. C. to Fls. and Tex., varying insensibly into the western.

Var. grandiflora, Bentli. (S. Pitcheri, Torr.), which differs in being cinerescent-pubescent; inflorescence denser; calyx tenementose-sericeous rather than minutely pubescent. This is found from Miss. and Tex. to Kans. and Colo., and in its harsh form is a delightful plant. Here probably belongs S. Pitcheri, var. angustifolia, once offered by John Sull. G.C.H. 13:288. G.C.H. 11:683. — According to Wooton the plant usually sent out by nurseriesmen on both sides of the Atlantic for S. Pitcheri is S. farinacea. — Section 7.

23. sylvestris, Linn. Hardy perennial herb, with purple-violet fls.; lower lvs. petiolate, upper ones sessile, all oblong-lanceolate, rounded or cordate at base; whorls 6–10-fl.; corollas twice as long as calyx. En. N. Asin. — Section 6.

24. pratensis, Linn. Fig. 2246 The most popular hardy blue-flowered Salvia. Perennial herb, sometimes tuberous-rooted, the fls. normally blue, with reddish and white varieties. The lvs., especially in the southern varieties, are said to be more or less spotted red; lower lvs. petiolate, oblong-ovate, crenate or incised, coriaceous at base, glabrous above, and pubescent beneath along the petioles and nerves; stem-lvs. few, sessile; uppermost lanceolate bracts shorter than the calyx, reflexed, coriaceous; whorls 6-fl.; fls. about 1 in. long, blue; calyx sticky-villous; corolla twice as long as calyx. — Var. rubicunda (S. rubicunda, Wender.) is a name which may be used for the reddish-fl. form cult. in America. Var. alba, Hort., has white flowers. The following forms are given by Voss, and are probably procurable from Germany: Vars. atriviolia, albiflora, and variegata: the last has pale blue fls., with the midlobe of the lower lip white.

25. Verbenaca, Linn. (S. Spiliumma, Willd.). Hardy perennial herb with blue, rarely white fls. Here probably belongs S. spiliumma of the American trade, which is presumably an error for S. Spiliumma. Lvs. ovate or oblong, lower ones petiolate, narrowed at base, upper ones broader, sessile and coriaceous at base; corolla about half as long again as the calyx. En., Orient.

26. lanceolata, Brouss. A plant has been cult. under this name in American nurseries, but it is believed to be a hardy perennial, and is probably some common species. The true S. lanceolata is an annual with blue or purplish flowers about ½ in. long. Prairies, Neb. to Tex., Ariz. and Mex.; also E. Fla.

27. patens, Cav. Perennial blue-flowered Salvia. Perennial herb; stem pilose, 1 1/2 ft. high; lvs. petiolate, ovate-deltoid, crenate, hastate at the base or the uppermost lvs. rounded at the base, hispid on both sides; bracts lanceolate-linear, spreading, few, remote: whorls 2-fl.; fls. in long or more, blue; calyx villous. Mts. of Mex. B.M. 3808. B. 3:169. P. 1846:222. Var. alba, Hort., is advertised in Europe. Section 7.

28. caralisfolia, Bentli. Tender blue-flowered perennial herb with triangular, mostly basal lvs. and gluttonous-villosous blossoms, which are swollen at the throat; lvs. undulate, villous beneath; inflorescence generally a panicle of 1 central and 2 lateral racemes; whorls 2-fl. Mex. B.M. 3274. F.S. 22:2318. Gn. 21:536. — Section 7.

S. acuminata, Ruiz & Pav. Peruvian blue-flowered shrub, the lower lip of corolla white toward the base. B.R. 1:1493. — S. amana, Sims, is a synonym of S. lanithina. — S. angustifolia, Cav. Mexican blue-flowered perennial herb, the lower lip longer and more or less white towards the base. B.R. 18:1534. Section 7. — S. asperata, Falc. Himalayan plant, with yellowish white fls., and very large bracts which are lined with greenish white. B.M. 1884. Section 5. — S. atrosa, Linn. Very remarkable South African shrub, with large brownish yellow fls. Lvs. white-woolly; petiolate, ovate or roundish; calyx exceptionally large and leafy, brownish-slimed and blunted. B.M. 182. G.C.H. 20:744. — S. atrofusca, Linn. A perennial from southeastern En., with yellowish fls., the upper lip spotted red. B.R. 12:1019. Section 6. — S. boliviana, Panch. One of the most desirable Salvias not cult. in America. It is a splendid red-flowered shrub found in the Bolivian Andes at 10,680-12,900 ft., and has a remarkably dense raceme of tubular fls. each 2 in. or more long. It is close to S. ruthii but as Hooker says, "the lvs. of S. Boliviana are much denser-flowered, the calices larger, with longer lps. and the corolla twice as long and straighter, with a smaller lower lip." B.M. 6711. F.S. 11:148. Section 7. — S. candidalabronna, Boiss., is remarkable from the fact that the fls. are dull and pale except for the large purple underlip. Mexican shrub, found 2,500-
SAMBUCUS

figured dozen flowering Braziliensis the 1G09 is an Section or ciaees.

cordate. Ivs. violet, It lobe above at

striped Washington, with S. chamcedrio'tdes,

at Rock,s (rarely with the upperish lvs, and beautifully suffused with red at the apex of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.

B. M. 1986. Section 7.—S. diehlo's, Hook. is a probably botanically. Its petals on each side of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.

Section 7.—S. aviculida, Cosson & Bal. Numerous shrub with variegated lvs and lower lvs. as those of a dendroc. Fls. purple on each side of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.

B. M. 1986. Section 7.—S. diehlo's, Hook. is a probably botanically. Its petals on each side of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.

B. M. 1986. Section 7.—S. diehlo's, Hook. is a probably botanically. Its petals on each side of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.

B. M. 1986. Section 7.—S. diehlo's, Hook. is a probably botanically. Its petals on each side of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.

B. M. 1986. Section 7.—S. diehlo's, Hook. is a probably botanically. Its petals on each side of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.

B. M. 1986. Section 7.—S. diehlo's, Hook. is a probably botanically. Its petals on each side of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.

B. M. 1986. Section 7.—S. diehlo's, Hook. is a probably botanically. Its petals on each side of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.

B. M. 1986. Section 7.—S. diehlo's, Hook. is a probably botanically. Its petals on each side of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.

B. M. 1986. Section 7.—S. diehlo's, Hook. is a probably botanically. Its petals on each side of the midlobe of the lower lip near the throat. B. M. 5991. Grows at 2,000-3,000 ft., but presumably tender north, for S. cordiero, Lem. and Herrg. Maria Mts.
A. Color of fruit black or blackish.
B. Fruit not glaucous.
C. Height 12-35 ft. when full grown.

Sambucus nigra, Linn. Common European Elder. A large shrub or small tree, 12-25 ft. high, with rough bark; old wood hard, yellow, fine-grained; lfts. 5-9; fls. in flat 5-rayed cymes; fr. black or dark green. —May, June. The following horticultural vars. are sufficiently distinguished by their names: *argentea, aurea, heterophylla, laciniata, pulverulenta, pyramidalis, rotundifolia, variegata*. Of these var. *aurea* is distinct by reason of its yellow foliage; *laciniata* and *heterophylla* by reason of variously cut lfts., making them very effective in mass planting. Var. *variegata* is not constant in its variegation. *S. heterophylla, laciniata, variegata*, etc., of trade catalogues, are presumably varieties of *S. nigra*.

Samphire (Crimthum maritimum) is the name corrupted from sampler, itself a corruption of the French Saint Pierre (St. Peter), given to a succulent-stemmed, half-hardy perennial, well-known upon rocky coasts above high tide in Great Britain as sea-fennel, parsley-pert, and St. Peter's herb. It belongs to the family Umbelliferae. The plants, which attain a height of from 1-2 ft., have somewhat linear, glaucous-green, fleshy leaves, ½ in. long, small, white or yellowish flowers, which appear in umbels during July, and oblong, yellowish, funnel-like, smallish seeds of light weight, which ripen in early autumn and lose their germinating power within a year. For more than three centuries the crisp and aromatic leaves and young stems gathered in August or September have been used in salads and vinegar pickles. Samphire rarely reaches perfection in gardens far from the sea-coast, unless grown upon sandy or gravelly soil, and watered frequently and plentifully with weak salt and soda solutions. It may be propagated by root division, but better by sowing the seed as soon as ripe, the plants being thinned to stand from 1½ ft. asunder in rows 2-2½ ft. apart.

Golden Samphire (*Inula crithmifolia*), a native of the marshes and sea-coast of Great Britain, is an erect hardy perennial, 1-1½ ft. tall, with small, fleshy leaves.
and yellow flowers in small, uniblue-like clusters. Though grown and used like true Samphire, for which it is often sold, it lacks the pleasing, aromatic taste of the genuine. It belongs to the family Compositae.

For Marsh Samphire, see Salicornia. M. G. Kains.

SANCHEZIA (after Jos. Sanchez, professor of botany at Cadiz). Acanthaceœ. Strong, erect herbs or half-shrubby plants; lvs. large, opposite, entire or slightly toothed; fls. orange, red or purple, united into heads or spires at the ends of the branches, or rarely paniculate; calyx deeply parted; segments oblong; tube of the corolla long, cylindrical, somewhat ventricose above the middle, limb of 5 equal, short, round lobes; perfect stamens 2, inserted below the middle of the corolla; ovary 2-celled; pistil united to them; anther 2-seeded, the cells mononucellate in front; style long, with one division small, spurlike; ovary on a thick disk, 2-loculed, with 4 ovules in each cell. About 8 species in Peru, Colombia and Brazil.

nobilis, Hook. Plants stout, erect, smooth, except the inflorescences: stems angled; lvs. 3-9 in. long, oblong-ovate to oblong-lanceolate, obtusely toothed, narrowed into winged petioles, connate; fls. 2 in. long, yellow, in heads subtended by bright red bracts, the heads forming an panicule. Ecuador. B. M. 5594. F. S. 28:2437. Var. glaucocephala, Lem. (var. variegata, Hort.). Lvs. variegated with pale yellow or white along the veins. P. 1867, p. 124. J. H. 14:258 (as S. nubilis): 16:580. - A hot-house plant which is very attractive when well grown, but which becomes straggling and weedy if neglected. Grown mostly for its foliage.

HEINR. HASSELBRING.

SANDAL-WOOD. See Ailanthus.

SAND-BUR. See Cenchrus.

SANDERSONIÀ (John Sanderson, discoverer of S. arenifolia). Liliaceœ. A genus of 1 or 2 species from Natal; tuberous plants growing 1-1½ ft. high, slender, with many sessile, 2-lipped, yellow or purple, globular bell-shaped flowers, pendant from a number of the upper leaf-axils, the segments with pointed nectaries at the base. Perianth gamophyllous, urceolate; segments deltoid or lanceolate; stamens 6; filaments filiform; anthers linear-oblong, ovary 3-loculed. Glass-house plants, to be treated like Gloriosa.

aurantia, Hook. Lvs. 3-4 x ½–¾ in.; pedicels ½–1 in. long; perianth orange-colored, 2½–3 in. long. Nov. B. M. 4716. R. H. 1865, p. 311. P. W. BARCLAY.

SAND MYRTLE. Leioptilum.

SAND PEAR. Pyrus Sinensis.

SAND VERBENA. See Abronia.

SANGUINÀRIA (Latin, blood; referring to reputed medicinal properties, connected with sanguis, "blood"). Rosaceœ. About 30 species of upright mostly perennial herbs, with compound leaves and greenish, small flowers in heads; flowers usually perfect (sometimes part of them imperfect), the stamens numerous (rarely 2 or 4), the pistils mostly 1 or 2, the petals none, the uncolored calyx enclosing the mature achene. The Sanguisorbas are natives of the north temperate zone. Two species are sparingly cultivated in this country. See Petúria.

Sanguisorba minor, Scop. (Petúria Sanguisorba, Linn.). Burnet. Perennial, growing in clumps, glabrous or sparsely hairy: lvs. long, odd-pinnate, narrow, the small lfts. 6-10 pairs and orbicular to oblong and deep-toothed; stems 1-2½ ft. tall, terminating in small globular or oblong heads: lower lfts. in the head stamina, the others perfect, the stigmas purple, tufted and exserted. En., Asin, and naturalized in this country.—Sometimes grown in the herb garden for the fresh young leaves, which are used in salads. It is also an interesting plant for the hardy border. Also recommended as a pasture plant, particularly for sheep. It thrives in dry, poor soils.

Canadésis, Linn. Taller, larger in every way than the above: lfts. oblong to almost triangular-oblong, truncate or cordate at the base, long-stalked, obtuse, sharp-toothed: fls. heads cylindrical, 2-4½ in. long, the lfts. all perfect, white. Low grounds, Mich. east and south. - An interesting plant, worthy a place in the hardy border, and sometimes sold for that purpose. It produces much foliage. Grows 3-6 ft. tall. "L. H. B.

SANCÚLUS (Latin, to heal), Umbellifereœ. Sæculo. Black Snake-root. About 20 species, nearly all American, mostly perennial, glabrous herbs with alternate, palmately divided lvs. and small yellow, white or purplish fls. in compound, usually few-rayed umbels; fr. nearly globular, small, covered with hooked bristles. Woodland plants with insignificant fls. Useful occasionally as a ground cover in waste shaded places. The following species have been offered by collectors.

 SANICULA

SANVITALIA (after a noble Italian family). Compositae. A genus of about 4 species, natives of the southwestern United States and Mexico. Annual, usually low, much-branched herbs, with opposite, petioled, mostly entire leaves and small heads of yellow or sometimes white rays; involucre short and broad, of dry or partly hermaphroditic bracts; receptacle flat to subulate-conical, at least in fruit; its chaffy bracts contuse or partly composite; achenes, all or only the outer ones thick-walled, those of the rays usually 3-angled, with the angles produced into rigid, spreading awns or horns, those of the disk often flat and winged.

procumbens, Linn. A hardly floriferous annual, growing about 6 in. high, trailing in habit; lvs. ovate, about 1 in. long; fl-heads with dark purple disk and yellow rays, resembling small Sunflowers, the fruits of this race, across, numerous; achenes of the disk flattened and often winged and 1-2 aristate. Summer to very late autumn. Mexico. R.H. 1866, p. 127. - Var. flore-pleno, Hort. A double-flowered variety coming true from seed, and as vigorous as the type. R.H. 1866, p. 70. Sanvitaliaceae are of easy culture and prefer a light or sandy soil in full sunlight.

F. W. B. R.

SAP

The term sap is applied to the juices of the living plant. Sap is composed of water containing mineral salts absorbed from the soil and various substances constructed within the living cells. The water taken from the soil by the roots is all absorbed organs may contain potassium, sodium, magnesium, calcium, iron, and nitrates. In some plants, such as the garden fish, the fluid passes from cell to cell in the living tissues some of the mineral salts are withdrawn and used, and the water takes up some of the organic compounds which have been formed by Photosynthesis. As a consequence of this action the sap of different parts of the plant is unlike in composition, and the sap of any organ varies with the change of season. The water of the sap of a plant may comprise as much as 90 or even 96 per cent of its weight.

The mineral substances enumerated above may be found in nearly all saps; however, they do not permit even an enumeration of the thousands of organic substances which occur in the sap of various species. The more important ones may be grouped under the acids, sugars, and carbohydrates, and perhaps some of the proteins and albumens. Many plants have become valuable commercially because of the large proportion of some useful substance which they contain. Among these may be mentioned the sugar maple, the sap of which contains over 3.5 per cent of sugar, and the sugar beet and sugar cane, in which the proportion is very much higher.

Sap is forced from the living tissues into the woody cells and vessels, and serve as conduits in conducting the sap rapidly from one part of the plant to another. The constant transpiration of water from the leaves demands an enormous supply of water from the roots. The upward passage of this supply would be too slow if conducted through the living cells. The water taken in by the living cells of the roots is forced into the dead cells of the roots and is drawn upward through the wood (see Transpiration).

The evaporation pressure by which water or sap is forced from the living cells is exhibited in the bleeding which ensues when stems and branches are cut away. The pressure which produces bleeding is often called root-pressure, although it is exerted by any part of the plant. Bleeding is exhibited by a large number of trees at the beginning of the growing season, and is especially noticeable in the vine, dahlia, castor-oil plant, and the pomegranate, Aegle Americana, 12.5 lbs. in 24 hours. A vine may bleed from one to two pits daily, while the cucurbits also exhibit very vigorous bleeding. A half gallon of sap has been known to exude from a tropical banana in eleven hours.

It is to be noted that the flow of sap from the sugar
maple and other trees in the early spring, before the soil has thawed and while it is yet too cold for the living matter of the plant to show any great activity, is not due to the bleeding pressure, but to the expansion of the gases and liquids in the trunk and branches of the tree due to the direct warming action of the sun's rays. During the inmost time the bubbles of air in the wood cells become heated and expand, driving the sap from the wood cells into the anger hole which has been bored into the tree. At night the trunk of the tree cools slowly and the flow comes to a stop. To be grown again next day.

The amount of bleeding exhibited by any plant may be found if the stem is cut and bent over in such manner that the end is thrust into a tumbler or small vessel, which will serve to collect the escaping sap. The ordinary upward movement of sap takes place through the most recently formed wood cells at a rate that varies from a few inches to a yard an hour. The force which lifts the sap is ultimately derived from the sun. The cells in the leaf contain many substances which attract water, and the sun shines on these cells, evaporating some of the fluid; the loss is replaced from the nearest cells below by osmotic attraction and the pull thus exerted may serve to draw water from the roots to the leaves even in the tallest trees, although it is to be said that not all of the question of the ascent of sap may be satisfactorily explained by the facts at hand. See Physiology of Plants. D. T. MacDougall.

SAPINDUS (Latin words meaning soap and Indian; alluding to the use of the fruit in India). Sapindaceae. SOAPBERRY. A genus of about twelve species of trees, shrubs or woody vines inhabiting the tropical regions of the whole world. Wood yellow; Iv. alternate, exstipulate, abruptly pinnate; fls. white, small, in lateral or terminal racemes or panicles; sepals 5, obtuse, rarely pubescent; petals more or less pubescent and bearing just above the short claw a villous or ciliated comb or appendage; disk annular, usually coronate, bearing 8-10 stamens: seeds with long testa and no aril, black or nearly so.

The fruit has an alkaline principle known as saponin which makes it useful for cleansing purposes. The fruit was much used in eastern countries before the introduction of soap and is still preferred for washing the hair and cleansing delicate fabrics like silk.

A. **Lfs. 4-7.**

Saponaria, Linn. A small tree with rough grayish bark; lfs. oblanceolate and acute to elliptic-obovate and somewhat obtuse, opposite or alternate, entire, glabrous above, tomentose beneath. The rachis usually winged: fr. lucid, 6-8 lines in diam. S. Flav., W. India and S. Amer. Cult. in S. Fla. and S. Calif.

AA. **Lfs. 7-18.**

Marginatus, Willd. A tree reaching ultimately 60 ft. in height; lfs. 7-13, lance-oblong, acuminate, glabrous above, paler beneath and somewhat pubescent on the midveins. 2-5 in. long, the upper nearly opposite, the lower alternate; rachis winged, narrowly margined or marginless; fls. white, sometimes tinged with red in pyramidal panicles; petals elliptate and bearing near the base a 2-lobed villous scale; filaments villous; fr. yellow, about 8 lines long. May, June. Kan. to Tex., Ariz. and N. Mexico. B.B. 2:105. — Cult. for ornament in S. Fla.

Attilis, Trab. A species from S. China which is not distinguishable from S. marginatus, Willd., by descriptions. Lfs. 12-14, acute, glabrous; fr. glabrous, nearly globose, strongly keeled. R.H. 1856, p. 304. — According to Franchetti this tree is cult. in Algeria, where it comes into bearing in 6-8 years. "The berries contain 38 per cent of saponin. Trees have been known to yield $20 worth of betar every year. The trees prefer dry, rocky soil." F. W. Barclay.

Sapium (old Latin name used by Pliny for a resiniferous pine). Euphorbiaceae. About 25 species of milky-juiced tropical trees or shrubs. Lvs. opposite, petiolate; petioles and scale-like bracts glandular; fls. in terminal spikes, the perianth single below, the staminode in 3's above, all apetalous; sepals imbricated, united below; stamens 2-3; filaments free; capsule with 2-3-seeded locules, more or less fleshy, a 3-winged central column remaining after dehiscence.

**Nebellarum, Roth. (Kerriaelia schefferi, Muell. Stillingia schefferi, Michx.). Tallow Tree. Lv. 1-2 in. long, ovate, acuminate, long-petioled, glabrous; capsules 3/4 in. in diameter; seeds covered with a waxy coating which is used in the native land, eastern Asia, for making candles. Now cultivated in many warm regions. Naturalized in southern United States.

**Sapodilla, or Naseberry is a common name of Achras Sapota, Linn. (Sapota Acharis, Mill.), a tree of the West Indies, Central America and northern South America, cultivated as far north as Lake Worth, Fla., for its fruits. Fig. 2249. It is one of the Sapotaceae. It is an evergreen tree, the thick, lance-oblong, entire, shining lvs. clustered at the ends of the branches. The fls. are borne on the rusty-pubescent growths of the season; they are small and perfect; calyx with 6 lobes in 2 series; corolla 6-lobed, whitish, scarcely exceeding the rusty calyx; stamen 6. Fruit size and color of a small russet apple, very firm, with 10-12 compartments containing large black seeds, the juice milky, flavor sweet and pear-like. The fruit is much prized in warm countries. From the juice, large quantities of chewing gum are made. As ordinarily seen in the South and in the West Indies, it is a bushy tree 10-20 ft. high, making a handsome subject. It is said to bear well in pots.

Saponaria (Latin for soap; the roots can be used like soap for washing). Coryphyllethea. SOAPWORT. A genus of about 25 species of annual or perennial herbs, natives of Europe and Asia, allied to Silene and Gypsophila. Calyx ovoid or oblong-tubular, 5-toothed, obscurely nerved; petals 5, narrowly clawed, limb entire or emarginate; sepal at the base or naked; stamens 10: ovary many-seeded; style 2, rarely 3; capsule ovoid or oblong, rarely nearly globose.

Saponarias are readily established in any soil and require but little care. S. ocyoides is an attractive plant for the rockery or for edging. Propagated by seed or division.

A. **Stem stout, erect.**

Officialia, Linn. Bouncing Bet. Fig. 2250. A perennial: stems 15-24 ft. high, leafy, simple, clustered, glabrous; lvs. mostly oblanceolate, acuminate; fls. light pink (nearly white in shady situations), in compact, corymbose, panicle-like cymes; calyx glabrous, the teeth triangularly acuminate; petals oblong, ovate, entire, notched at apex. July, Aug. Europe. — Var. flore-pleno is quite double-flowered. S. Cauçáense, Hort., is said to be a deeper-colored double form.

AA. **Stem slender, decumbent.**

Leu. obtusum: plants annual. L. H. B.

Calabria, Guz. A low-growing annual, with pink fls.; lvs. oblance-spatalulate, obtuse, about 1-nerved; fls.
in a loose coryphose panicle; calyx-teeth ovate, obtuse, membranous-margined. Spring. Italy, Greece. R.H. 1851:231. — Var. alba is also in the trade. Seed should be sown in the fall for spring bloom or in April for summer flowering.

2250. Saponaria officinalis (X3½). Saprophyte (Greek, rolled, and plant, i.e., living on dead organic matter). A plant (whether bacterium, fungus or higher plant) subsisting upon the humus of the soil, or dead or decaying organic materials. The customary classification which includes under the term "saprophyte" all bacteria that do not subsist on living plants or animals no longer corresponds with facts. The integrity of the classification has been destroyed by the discovery of certain bacteria in the soil, as the nitrifying bacteria, which are able, even without sunlight, to appropriate the carbon dioxide of the atmosphere. Among the fungi we class as saprophytes all plants which live upon a dead or decaying organic substratum. Such are the baker's yeast (Saccharomyces cerevisiae), the mushroom (Agaricus campestris) and the stinkhorn (Phallus impudicus). Most mushrooms and toadstools are saprophytes (Fig. 2251). Some of the flowering plants possessing ectotrophic mycoriza (Indian pipe, Monotropa uniflora) and endotrophic mycoriza (Scotia wilsoniana, Cowlesia unata, Epipogium aphylum, snow plant, Sarcodes sanguinea and Thlasia Aseroi) are also classed as saprophytes.

SARAC (from Sarac, the name of the genus in India). Leguminosae. About 6 species of tropical Asiatic trees, with glabrous, rigid-coriaceous, abruptly pinnate lvs. and yellow, rose or red fls. In dense, sessile, axillary, coryphose panicles with somewhat petal-like, reddish bracts: calyx cylindrical, with a disk at its summit; limb 4-lobed; lobes oblong, unequal, petal-like; corolla wanting; stamens 3-8, inserted; filaments filiform; anthers versatile, opening longitudinally: fr. a coriaceous flat pod.

Indica. Linn. A medium-sized tree: lfts. 6-12, ovate-lanceolate, acuminate, 4-6 in. long, entire, short-petaled: fls. orange-red, fragrant, collected in compact, roundish panicles which are shorter than the lvs.; stamens usually 6 or 7 inserted on the fls. annular ring at the summit of the calyx-tube; style long, curved: bracts red, appearing as a calyx; pod 4-10 in. long, 4-8-seeded; seeds oblong, compressed, 1½ in. long. B.M. 3018. — It has flowered well with greenhouse treatment at height of 4 ft. It is suitable for outdoor planting only in tropical regions. Procurable from southern Florida.

F. W. BARCLAY.

SARCANTHUS (name from Greek words signifying flesh and flower, in allusion to the fleshy nature of the blossom). Orchidaceae. A small genus related to Vanda. Owing to the smallness of the flowers they are rarely cultivated. Sepals and petals similar: labellum firmly united with the base of the column, spurred, with 2 small lateral lobes and a longer concave middle lobe. Foliage and habit of Vanda.

Give plenty of water in the growing season. They should have basket culture, with fern root, and a temperature of 65° to 85°. When at rest, give very little water and reduce the temperature to 55°. Culture practically as for Vanda.

HEINRICH HASSELBERG and WM. MATHEWS.

SARBODIUM Lobbii, Beer, in Botthphytum Lobbii.

SARCOCOCCA (fleshy berry). Euphorbiaceae. To this genus is to be referred Pachydris coriacea Hook., a small shrub from India, sometimes cultivated in Europe but not known to be in the American trade. It has simple plum-like lvs. and short, axillary racemes of small yellowish fls., and a small purple plum-like fruit. Its proper name is S. prunifórmis, Lindl. (S. salicaria, Muell. S. salicifólia, Baill. S. coriacea, Sweet). It is treated as a cool greenhouse plant. B.R. 10:3002.

SARCOCODES (Greek, flesh-like). Eriocaulaceae. Sarcoedtes sanguineus, Torr. (Fig. 2252), is the Snow Plant of the Sierra Nevadas. It is a low and fleshy plant growing 3-12 in. high and entirely devoid of green leaves. It belongs to that strange group of the heath family which comprises the fleshy and parasitic plants, of which our Indian pipe or corpse-plant is an example. Few species are known in this suborder, and they are all local or rare.

The Snow Plant derives its popular name from its habit of shooting up and blossoming as soon as the snow melts away in the spring. The specific name sanguineus refers to the blood-red color of the entire plant. The Snow Plant grows at an altitude of 4,000 to 5,000 feet. It is the only species of the genus, and is not known to be in cultivation.

SARRACÉNIA (Dr. Jean Antoine Sarrazin, an early botanist of Quebec, who sent S. purpurea to Tournefort). Sarracéninacea, Pitcher Plant. Side-saddle
FLOWER. Three small genera and 8 or 10 species comprise the family Sarraceniacae. All the plants are American. The six or eight species of Sarracenia inhabit swamps and low grounds in the Atlantic states; "Drosera" is a mountain bog species of California and southern Oregon; *Heliamphora nutans* grows on Mt. Roraima in British Guiana. They are all perennial acaulescetous plants, with hollow pitcher-like leaves, and nodding flowers single or several on short scapes. The pitchers catch organic matter and entrap insects, and the plants often utilize these materials for food. Some species have the pitchers lined with a green, leafy, and the botanical interest that attaches to them. The Sarracenas have been much hybridized, giving rise to distinct and interesting intermediate forms, but these hybrids are known only to specialists and fanciers. *Heliamphora* is not in the American trade, but all the other species are. They are considered to be difficult to maintain in perfect condition under cultivation, and, whenever possible, plants are frequently renewed from the wild. They are best treated as semi-aquatic plants. Give plenty of moisture at growing season. Keep partially dormant in winter.

The botanical position of the Sarraceniaceae is not settled. Ordinarily it is placed near the Papaveraceae and Cruciferae. Others associate it more intimately with the Droseraceae, the pitcher plants mostly free and distinct; sepals and petals each 5; stamens many; carpels 3-5, united into a compound pistil, bearing many ovigera. *Sarracenia* itself, the flower is large and solitary, nodding from the top of a rather stiff scape; petals colored, ovate to more or less fiddle-shaped, incurved; sepals thick and persistent; a semi-cordate calyx, the top of the pistil dilated into a broad, thin, umbrella-like structure on the margin of which the stigmatic surfaces are borne; fr. a 5-valved capsule. See Gray, *Syn. F1.*, p. 75. Masters, *G.C. H.*, 15:157. Both subjects are out of hybrid Sarracenas, see also *Gn.*, 28, p. 277, and 48, p. 202.

L. H. B.

All of the species comprising those which are indigenous to the southern states only, including *S. flava*, *S. pittonpilu*, *S. rubra*, *S. variolaris*, and *S. Drummondii*, are hardy in the botanic garden at Washington. However, they do not grow equally well out of doors. *S. flava*, *S. rubra*, and *S. variolaris* succeed best. *S. pittosporum* and *S. Drummondii* do poorly. They are planted in a raised bed, the sides of which are made of rocks cemented together so as to he capable of being flooded with water. Provision is made for drainage by means of a pipe in the bottom, which is opened or closed as occasion requires. The compost is made up of chipped fern roots, moss, sand, charcoal and potsherds, and when planted a top-dressing of live moss is given. In this bed other insectivorous plants are grown, as *Dionaea*, *Darlingtonia*, *Drosera* and *Pinguicula*. *S. flava* and *S. purpurea* are sometimes well grown on margins of lily ponds, if given compost of the above description.

For pot culture in northern greenhouses *S. Drummondii* is the most attractive species. It produces two crops of leaves each year. Those developed in spring, while numerous, are not so beautifully marked as those which make their appearance during the fall months. *S. flava* comes next in importance as a pot-plant. Out of a large number of hybrids, those having as parents *S. rubra*, *S. purpurea* and *S. variolaris* take on high coloring in the leaves.

Propagation should be effected by division of the rhizome at the time of repotting; this should be done before flowering. New forms are raised from seed. All of the species intercross readily.

Sarracenas thrive best in a substance through which water will pass readily. During the growing period they require abundant supply of moisture. They are best grown in a sunny coolhouse. Greenly and thrips are the most troublesome pests. Greenfly is most abundant during the earlier stages of the leaves, the thrips appearing later.

G. W. OLIVER.

INDEX.

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. flava</td>
<td>Tall, narrow, trumpet-like pitchers 2 ft. long, either broadly or narrowly winged, more or less variegated and veined with purple (the under color yellowish white), the calyptra hood covering the orifice and purple-veined within: petals 1 in. or more long, yellow or yellowish green.</td>
</tr>
<tr>
<td>S. purpurea</td>
<td>Hood expanded, erect or soon becoming so.</td>
</tr>
<tr>
<td>S. variolaris</td>
<td>Base of hood much contracted or recurved at the sides.</td>
</tr>
<tr>
<td>S. rubra</td>
<td>Tall, the narrow, trumpet-like pitchers 2 ft. long, which are yellowish green and not spotted, the wing very narrow, the hood ovate and soon becoming erect and hairy and purple-spotted within: petals 1/2 in. long, but enlarging to nearly or quite twice that length, oblong and drooping, bright yellow.</td>
</tr>
</tbody>
</table>

I. SPECIFIC TYPES.

a. *Sarracenia* spreading horizontally or obliquely.

b. *Sarracenia* concave and covering the orifice.

1. *pittonpilu*, Michx. Pitchers small (not exceeding 6 in. long), cylindrical, reed-like, broad-winged, green below but purple-veined about the middle and purple with white spots on the top and hood, densely and retortously hairy within: petals purplish, 1/2 in. long. | 2233. *Sarracenia purpurea* (X 1/4) |

b. *Sarracenia* concave and covering the orifice.

1. *pittonpilu*, Michx. Pitchers small (not exceeding 6 in. long), cylindrical, reed-like, broad-winged, green below but purple-veined about the middle and purple with white spots on the top and hood, densely and retortously hairy within: petals purplish, 1/2 in. long. | 2233. *Sarracenia purpurea* (X 1/4) |

b. *Sarracenia* concave and covering the orifice.

1. *pittonpilu*, Michx. Pitchers small (not exceeding 6 in. long), cylindrical, reed-like, broad-winged, green below but purple-veined about the middle and purple with white spots on the top and hood, densely and retortously hairy within: petals purplish, 1/2 in. long. | 2233. *Sarracenia purpurea* (X 1/4) |
SARRACENIA

pitchers with Dnimmondi. Length Base S. America rubra, is Willisii: Lid G.C. exomdta interesting rich Hybrid flava: ft.

large form rubra and erect fers p. from maxima, limbata, striking yellow. fldTO, purpurea. veins specimens, Var. strongly

nearly Hort., with erect, broad, funnel-shaped, Large, be of crimson undulata isovit-15:629, the the crimson

deeper wing, deep, veined, with flat roundish wing.

c. Base of hood broad, or only moderately contracted.

d. Lid or hood suborbicular.

5. Drummondii, Croom. Pitchers large and erect, 2-3 ft. long in well-grown specimens, funnel-shaped, green and prominently nerved, the upper part of the pitcher range variegated with purple reticulations and creamy white inter-spaces, the wing narrow: Lid limbata, the base somewhat contracted, flattish or with recurved mostly wavy margins, becoming erect, hispid on the inner face: 6fts. 4 in. across, red-brown. Pine barrens, S. W. Ga. and adjacent Flia. G.C. II. 15:633; 16:8. F.S. 6:569; 16:1671-2. L.H. 41. p. 306.—A very striking species, with its tall pitchers strongly variegated at the top. Var. rubra, Hort., has pitchers with more red markings. Var. albca. Hort., has wider variegations and flowers. Var. undulata (S. undulata, Deane,) has stouter less elongated pitchers, and strongly undulated lid. S. Meziciana, Hort., is said to be a small form of this species.

dd. Lid ovate-pointed or acuminate.

6. rubra, Walt. Pitchers erect and narrow, 10-15 in. long and 1 in. or less across at the orifice, green with reddish veins above, the wing broad: lid or hood ovate, short-acute (or nearly obtuse) to acuminate, becoming erect and concave, veined and tinted with red, the inner face somewhat pubescent: 2½ ft. in across, the pendulous petals whitish at the base and red-brown above. Swamps, N. Car. to Ala.—Say to hybridize in the wild with S. purpurea. Var. acuminate. DC. Lid long-acuminate. B.M. 3515. L.B.C. 12:1163. Var. Swezitt, Mast. (S. minor, Sweet, not Walt. S. Swezitt, DC.) Smaller pitchers cylindrical, with a narrow wing: lid ovate-acuminate. F.S. 10:1674.

II. HYBRID TYPES.

7. Atkinsoniana. S. flavo var. maxima × S. purpurea: Nortex. S. flavo; pitchers long and slender, green, with red reticulations: lid broad, cordate, red-veined.

9. Courtii. S. purpurea × S. psittacina: "It has descending pitchers about 8 in. long and colored a rich deep crimson, their form being intermediate between that of the two parents," Raised by Mr. Court, at Veitch’s. S.H. 1:77.

11. Maddisoniana. S. flava var. rubra × S. Drummondii: Described as follows in Pitcher & Manda’s Novelty Catalogue of 1893: "A few plants of this rare and beautiful plant has been collected, growing in company with S. flava and S. Drummondii, of which it is now known, a natural hybrid, being intermediate between the two above-named species. The pitchers grow about two feet in height, are trumpet-shaped and broad at the opening: color light green with slight white mothings. The lid is large and broad, slightly incurving, undulated at the edges, dark green shaded with red and blotched with white.

12. melanochôda. S. purpurea × S. Stevensii, the latter a hybrid of S. purpurea and S. flava: "In habit it is like S. purpurea, the pitchers being obliquely ascending and distended like those of purpurea, 6-7 in. high, with a deep wing, narrowing to either end, and a roundish sessile lid ½ in. across. The color is like that of S. Chesani," Masters. Raised at Veitch’s.

15. Williamsii. Supposed natural hybrid of S. purpurea and S. flava: "The pitchers are 9-12 in. high, erect, bright light green, streaked and veined with crimson, with a broad lid like that of S. purpurea. It was imported by Mr. B. S. Williams, with a consignment of S. flava. Masters. G.C. II. 15:629.

L. B. B.

SARSAVARRILA of commerce comes from various species of Sarrac. Wild Sarsarapilla of America is Araia nudicaulis.

SASSAFRAS (Spanish, Salisbras, Saxifraga; medicinal properties similar to those of Saxifraga were attributed by Spanish discoverers.) Lozanocha. Ornamental ichnograph tree, with alternate leaves and small yellow flowers appearing in few-flowered racemes in early spring and followed by ornamental dark blue fruits on red stalks. The Sassafraus usually affects more moist lands, although it is also found in clay loams. It is a desirable tree for ornamental planting on account of its handsome light green foliage, which is interesting with its varying shapes and its orange-yellow color in autumn, and on account of its decorative bright-colored fruit. It prefers, at least in the North, a warm and sunny position. It is not easily trans-
planted when old on account of its long tap-roots. Prop. by seeds sown as soon as ripe; also by suckers, which form when tubers are produced, and by root-cuttings.

One species in eastern N. America. Figs. diacrous, rarely perfect, apetalous; calyx 6-parted; stamens 9, the 3 inner ones furnished at the base with 2-stalked, orange-colored glands; anthers opening, with 4 valves superior. I-loculed; fr. an oblong-ovoid, 1-seeded, dark brown, dry, the remaining surrounded at the base by the thickened scarlet calyx. officinale, Nees (S. Savory). Karst. S. officinalis, Kuntze, Labrus Sassafras, Linn.). Figs. 2255 (winter tree), 2256 (tree), 30, 60, or occasionally 90 ft. high; young branches bright green; lvs. ovate or oblong, or 3-lobed almost to the middle, obtuse, silky-pubescent, glabrous in young, glabrous at length, 3-4 in. long; fls. yellow; 3/4 in. across, in several-fld. racemes, umbellate when unfolding, afterward at the base of the young branches: fr. ½ in. high, April. Mass. to Ont. and Mich., south to Fla. and Tex. S. Sassafras, Linn. Enr. 2:950. G.F. 7:215. Gn. 31. p. 449.

ALFRED REHDER.

SAVORY.

See Sicygium.

SAVORY, or SATUREIA. See Savory.

SAUNDERS, WILLIAM (Plate XLVI), horticulturist and landscape gardener, was born at St. Andrews, Scotland, in 1822; emigrated to America in 1848; was appointed botanist and superintendent of propagating gardens, U. S. Department of Agriculture in 1863, and died at Washington, D. C., Sept. 11, 1900. When Mr. Saunders first came to America he served as gardener in a number of places, first at New Haven, Conn., and later near Germantown, Pa. He was instrumental at this time in the improvement of a number of important private and public properties, such as Clifton Park in Baltimore, an estate of 400 acres; Fairmount and Hunting Park, in Philadelphia, and gardens at Allouy and Rahway, New Jersey. Mr. Saunders' most important piece of work in landscape gardening was in connection with the planting and laying out of the Gettysburg Cemetery. Soon after finishing this work he took up his duties as superintendent of the gardens and grounds of the U. S. Department of Agriculture. Through his efforts much has been done towards beautifying the streets of Washington in the planting of trees and the improvement of the parks. The grounds of the U. S. Department of Agriculture were laid out and planted by Mr. Saunders, and for a number of years after the work was inaugurated he was actively engaged in introducing plants from all over the world, testing the same and making distributions wherever it was thought they might succeed. One of the most important of his introductions was the navel orange, which was first called to his attention by a woman from Bahia, Brazil, about 1868. Mr. Saunders secured about a dozen balled trees and planted them in the greenhouses at Washington. Soon after some of the bud wood was distributed in California, and these few trees formed the nucleus for the large number of the great number of oranges now at Riverside and elsewhere. While Mr. Saunders had been known best as a horticulturist, he was prominently identified with many other important movements looking toward the advancement of agriculture in this country. As early as 1855 he was actively engaged in an effort to organize an association of farmers, and this work eventually resulted in the formation of the Grange, of which he is often called the father. His sturdy character, sympathetic nature and kindly disposition endeared him to all who came in contact with him. B. T. Galloway.

SAUROMATUM (saura, lizard; referring to the spotted flower). Araceae. Perennial herbs, with unisexual naked fls. Tulips bearing a single pedate leaf one year, the next year lvs. and fls.; petioles cylindrical, spotted below; blade pedately parted; peduncle short; spathe soon withering, its tube oblong, swollen at the base, more or less connate, its blade or banner long-lanceolate, black-purple, variously spotted. Species 6. India. Java and Trop. Africa. Du. Mon. Phaner., vol. 2.

The following are hardy bulbous plants, with large and of various flowers. The fls. are produced from Jan. until June, and the bulbs have kept well in a dry state for a year. There is little danger of the bulbs shriveling or rotting. Plant them 6 in. deep in pots or in the garden. Easily managed by the amateur.

Guttatum, Schott. Petioles 3 ft. long, not spotted; leaf-segments 6-8 in. long, 2-3 in. wide, the lateral smaller; spathe-tube green on the back, 4 in. long, the upper third narrowed; blade 12 in. long, 2 in. wide below, gradually narrowing above, olive-green on the back, yellowish green within, with dense, irregular black-purple spots. Himalayas. B.B. 12:1017 (as Arum pentanerion).

Venusum, Schott. (? S. Simulosa, Schott.). Petioles spotted, 6-8 ft. long; leaf-segments 8-10 in. long, 4 in. wide, the lateral smaller; spathe-tube 2-4 in. long, purple on the back: blade 14-16 in. long, 3 in. wide below, about 1 in. wide from the middle to the apex, purple on the back, yellow within and with crowded olive-brown or black spots. Himalayas. B.B. 34:465 and F.S. 13:1324 (both erroneously as S. guttatum).

JARED G. SMITH.

SAURUS (Greek, lizard's tail; referring to the curve of the spike of fls.). Piperaceae. The Lizard's Tail is a hardy perennial herb suitable for the bog garden. It has been offered by several dealers in native plants. It grows in swamps, has heart-shaped leaves, and bears, from June to Aug., small white fragrant flowers in a dense terminal spike, the upper part of which arches or nods gracefully. Herbs with jointed stems, alternate, entire lvs. and perfect fls. in spikes, entirely destitute of floral envelopes and with 3-4 ovaries; stamens mostly 6 or 7; fr. somewhat fleshy, wrinkled; carpels 3, 4, indehiscent, united at base.

Cerasus, Linn. Linnaeus's Tail. Fig. 2257. Height 2-5 ft.: lvs. petioled; ribs con- verge. Conn. to Ont., Minn., Mo. and southward. B.B. 1:482. W. M.

SAVIN. Juniperus Sabina and J. Virginiana.

SAVORY. Summer Savory is Satureja hortensis, Linn.

Labiate. Cultivated in kitchen gardens for its aromatic green parts, which are gathered in summer for flavoring meat, dressings and other culinary preparations. The slender, erect, branching, herbaceous stems, 10-12 in. tall, bear soft, narrow, green leaves and clusters of pink, purplish or white flowers in summer, which are loved by brown-void seeds whose vitality lasts three years. Propagation by means of seed, which is sown in drills 12-18 in. apart in April or May in light, mellow, well-drained loam of medium richness. When young, the plants are thinned to 5 or 6 in. and early or for early crop they may be transplanted from hotbeds sown in March. Winter Savory (S. montana, Linnaeus) is a hardy European perennial species, having much the qualities of
SAVORY is a kind of cabbage.

SAW PALMETTO. *Serena serratula.*

2257. *Saururus cernuus* (x 2/3). (See page 1017.)

SAVORY. (Latin, rock and to break; said by some to refer to the fact that many of the species grow in the clefts of rock, by others to the supposition that certain species would cure stone in the bladder), *Saxifraga.* Rockfoil. As outlined below (including *Megasea*), the genus contains upwards of 175 species, widely distributed in the north temperate zone, many of them alpine and boreal. In the southern hemisphere they seem to be known only in South America. The Saxifrages are herbs, mostly perennial, with perfect small white, yellow or purplish flowers in panicles or corymbs; calyx with 5 lobes; petals 5, usually equal; stamens mostly 10, in some species only 5; styles 2; fr. a 2-beaked or 2-divided capsule, or sometimes the capsules nearly or quite separate at maturity, with numerous seeds. See Engler, "Monographie der Gattung Saxifraga," 1872.

Saxifrages are various in habit and stature, but they are mostly low and spreading with rosetole or tufted root-leaves. Most of the species in cultivation are grown as rock-garden plants, although the large-leaved members of the *Megasea* or *Bergeria* section are sometimes used as border plants. Owing to the small attention given to rock and alpine gardening in America, the Saxifrages are little known to our horticulturists. Most of them are abundantly hardy as to frost, but are likely to suffer from the dryness and heat of the American summer. Partial shade in summer is essential for the best results with most of the species. In winter the stools should be given ample covering of leaves. The most useful kinds for this country are the species of the *Megasea* section. These are low plants of bold habit, and are admirably adapted for rockwork and for spring forcing under glass. Fig. 1047, Vol. II, shows a clump of these plants in the lower left-hand corner.

The alpine species are mostly dwarf plants with more or less persistent foliage. Some of them, as *S. oppositifolia* make dense moss-like mats; others, of which *S. Aizoon* may be taken as a cultural type, produce a dense rosette of leaves at the surface of the ground, from which arises a flower-scape. Some of these forms are very interesting because of the vari-colored or silver effect produced by natural incarnations of lime on the leaves, particularly on the leaf-edges. Give shade.

Most Saxifrages make stolons and offshoots freely, and by these the plants are easily propagated; they are also increased by division. Some make bulbils.

The number of species of Saxifrage worthy of cultivation in rockeries and in borders is large, but the following account comprises those known to be in the trade in North America. Very few of the species have been modified to any extent under domestication. There are a number of important hybrids, two of which are in the American trade: *S. Andrewsii,* hybrid of *S. Gemmum* and *S. Aizoon,* is somewhat like the latter parent; fls. pale white with purple dots; lvs. spatulate to ligulate, very obtuse, crenulate-dentate; stem erect, few-leaved, glandular-hairy, 6-8 in. tall. *S. hybridus splendens* is perhaps a hybrid of *S. Gemmum* by *S. rotundifolia.*

INDEX.

<table>
<thead>
<tr>
<th>Species</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemm, 32.</td>
<td>Purpurea. 5.</td>
</tr>
<tr>
<td>Huetiana, 7.</td>
<td>reta, 12.</td>
</tr>
<tr>
<td>integroflora, 25.</td>
<td>rivularis, 14.</td>
</tr>
<tr>
<td>Japonophylla, 9.</td>
<td>roemersiana, 12.</td>
</tr>
<tr>
<td>Leontoea, 9.</td>
<td>roontifolia, 17.</td>
</tr>
<tr>
<td>leptophylla, 30.</td>
<td>rubra, 1.</td>
</tr>
<tr>
<td>Leucoanthemifolia, 21.</td>
<td>sarmentosa, 33.</td>
</tr>
<tr>
<td>lingulata, 9.</td>
<td>Schmidtii, 1.</td>
</tr>
<tr>
<td>Mucranzii, 21.</td>
<td>speciosa, 1.</td>
</tr>
<tr>
<td>Nivale, 2.</td>
<td>superba, 3, 33.</td>
</tr>
<tr>
<td>Oppositifolia, 19.</td>
<td>Tagetes, 3.</td>
</tr>
<tr>
<td>Peltula, 15.</td>
<td>triclor, 33.</td>
</tr>
<tr>
<td>Punctata, 15.</td>
<td>unguiculata, 2.</td>
</tr>
<tr>
<td>Punctorata, 15.</td>
<td>umbrosa, 31.</td>
</tr>
<tr>
<td>Purpurea, 5.</td>
<td>variegata, 31.</td>
</tr>
<tr>
<td>Pyrenaea, 8.</td>
<td>Wallacea, 25.</td>
</tr>
</tbody>
</table>

A. Lvs. with many small punctate glands or dots on the surface, usually large and thick and the peletie sheathed at the base: plant acuminate, with a thick rootstock. *BERGENIA* or *MEGASEA.*

B. Margin of leaf conspicuously ciliate or apiculate-toothed.

C. Base of leaf distinctly cordate, although narrower.

CC. Base of leaf usually narrowed to the peletie.

DDR. Margin of leaf not ciliate but more or less undulate or crenate: lvs. not pubescent.

EE. Scrape and inflorescence glabrous.

FF. Scrape and inflorescence pubescent.

AA. Lvs. without punctate dots or glands (sometimes pitted) on the face, usually not large nor with sheaths at base: root-stocks (if any) slender or short. *SAXIFRAGE.*

BB. Seeds spherical (*Cymbalaria*)

CC. Apex and margin of leaves bearing a few distinct pores or impressed data.

DD. Arrangement of lvs. opposite: *Saxifraga.*

EE. Leaf-margin reflexed, crenulate or nearly entire, more or less crenate with line.

FF. Oppositifolia.
SAXIFRAGA

EE. Leaf-margins spreading, serrate, sometimes both margins and up per face crustate.....11. Cotyledon

12. Azoon

CC. Apex and margin of leaves without pores.

D. True stem all subter ranean.

E. Plant propagating by means of subterranean bulblets produced on the very short-jointed cædux13. granulata

14. rivularis

EE. Plant propagating by non-bulbletous shoots.

16. chrysantha

H. Lower lvs. orbicular...17. rotundifolia

18. punctata

19. Mertensiana

II. Lower lvs. ovat e or spatulate (ovate in No. 25).

20. bryophora

21. lecanthemifolia

22. Pennsylvanica

ii. Shape of petals lanceolate or acute, or narrower...

23. nivalis

24. Virginienis

25. integrifolia

DD. True stem above ground, the plant propagating by evident stolons or offsets.

E. Petals all equal.

f. Petal more or less adnate to the calyx-tube at its base.

1. Petals stiff and withering rather than falling, not divided, the margin usually setose.

26. azoides

27. bronchialis

GO. Petalage herbaceous, undivided or lobed.

28. Camposil

29. caespitosa

30. apylla

f. Petal free from the calyx-tube....31. umbrosa

32. Geum

EE. Petals unequal, the two lower ones much larger than the others.....33. sarmentosa

1. granulata, Wall. (S. Schmidii, Regel). Strong growing plant, with large radical lvs. 3-8 in. across and orbicular or obovate in outline and coriaceous at base, the margin scarcely undulate but ciliate: scape becoming about 1 ft. tall, this and the pedicels and calices glabrous: fls. white to light purple, orbicular and clawed: fr. subglobose, drooping. Himalayan region. B.M. 3466. “The sepals too acute and the leaves too undulate,” according to Hooker, L.B.C. 8:747. R.H. 1868:271. —Not perfectly hardy at Boston. For error, the name is sometimes written S. lingulata, a name which properly belongs to a very different species (No. 9). Var. rubra, Hort., is a form with red-purple fls. Var. speciosa, Hort., has showy bluish or rose-white fls.

2. Stracheyi, Hook. f. & Thom. (S. unguliculata, Hort., not Engl.) Fig. 2258. Habit of S. lingulata: lvs. glabrous on both sides, obovate, usually not at all coriaceous at base, the margin ciliate and from crenate-serrate to nearly entire: pedicels and calices pubescent, the scape becoming 1 ft. or more tall: fls. white or rose (sometimes yellow), the calyx-teeth oblong and often wider above their base: fr. ovoate-lanceolate, usually erect. Kashmir, 8,000-14,000 ft. B.M. 3547. B.B. 29:65 (as S. ciliata). G.M. 29:223. J.H. III. 32:281.

4. cordifolia, Linn. (S. cuneifolia, Hort., not Linn. S. Nubrica, Hort., not Linn.). Fig. 2259. Strong growing species with wooly rhizome: lvs. obovate to long-ovate, narrowed at the base, undulate-crenate; scape and inflorescences glabrescent: fls. blue or purplish, numerous on the inclined or drooping branches of the elevated peduncle (scape 10-16 in. tall). Altai to Mongolia. B.M. 196. G.M. 34:57. Mn. 16, p. 74.

5. cordifolia, Haw. Very like the above and probably only a form of it; differs in having broader, round-oblong, and more or less cordate lvs. Altai. Var. purpurea, Hort., has purple fls.

6. purpurascens, Hook. f. & Thom. Lvs. broad-obovate to short-oblanceolate, the margins entire or slightly undulate, somewhat coriaceous at base: scape 12 in. or less high, bright purple, hairy: fls. deep purple, nodding, the calyx-lobes very obtuse: fr. elliptice-lanceolate, erect. Sikkim (India), 15,000 to 15,000 ft. altitude. B.M. 5066. —Very handsome because of its purple scapes and flowers.

7. Huctianna, Boiss. Annual or biennial, but grown from seed as a hardy garden annual and used for edgings and borders of small beds: dwarf, about 6 in. in high, compact in growth: lvs. reniform and shallowly 5-lobed, the lobes obtuse or short-acute, long-petiolated, bright green in color: fls. small but very numerous, long stalked in the axils, bright yellow, the petals ovate or oblong; seeds small, tuberculate. Asia Minor. —Very effective little plant.

8. oppositifolia, Linn. Stem or caudex perennial and leafy, the branches rising 6 in. high and bearing many small persistent thick sudem-like lvs., and giving a moss-like aspect to the plant; sterile shoots with lvs. imbricated in four series: fls. solitary on the ends of the annual leafy shoots, lillac or white, the obovate petals exceeding the stamens. Rocks, alpine and mountaneous parts of Europe and North America, extending into northern Virginia. L.B.C. 9:89. —An excellent little rock plant, making a sadem-like mat, the foliage of a purplish cast. There are several cultivated forms, as var. alba, lillac; var. major, lls.
large, lilac; var. *Pyrenaica* (or *superba*), fls. very large, rose-purple. *S. oppositifolia* is evergreen. It makes a good carpet under other plants.

9. *lingulata*, Bell. Radical lbs. in a rosette, numerous, linear-spatulate and somewhat acute, subulate above, the margin erose-crenulate and somewhat ciliate and crumate with base; stem-lvs. shorter, the margin cartilaginous and less erose: scape rising 1-2 ft erect or flexuose, and bearing a thyrsoid panicle of small white fls. with oblong or oblong-oblanceolate 3-nerved petals. Apennines and Alps.

10. *Hostii*, Tausch. Radical or basal lbs. many, somewhat erect, flat above and the apex obtuse, ciliate at the base; stem-lvs. oblong and nearly or quite obtuse, crested-serrate: corollas 5-6-lobed; fls. white or the oblong petals somewhat purple-spotted. Apennines and Alps.

11. *Cotyledon*, Linn. Tufted, the basal lbs. forming attractive silvery rosettes, and sending up long panicles to a height of 1-2 ft: basal lbs. lingulate to long-oblanceolate, short-apiculate, plane, margin cartilaginous and dentate and bearing many pores; stem-lvs. lingulate-lanceolate: fls. numerous, white, the petals white or obtuse-oblanceolate and 3-nerved and the middle nearly bifid, the calyx glaucous, *Mountains of Eu*. Var. *panamiana*, DC., is a robust form, with a large, many-flowered panicle.

12. *Alizon*, Jacq. (S. *sativaria*, Schltdl. *sativa*, L.). Fig. 2200. Much tufted alpine plant, forming small dense rosettes and sending up a clanny pubescence, many-flowered, scape 5-12 in. high; basal lbs. spatulate, incurved, thick and persistent, the margins white and cartilaginous and porose; stem-lvs. smaller, spatulate or obovate, serrate towards the apex; fls. small and many, cream color to nearly white, the petals oblong to elliptic and 3-nerved, and sometimes spotted at the base. Alpine and areal parts of Europe, Asia and N. Amer., coming as far south, in our eastern country, as northern VT. and Lake Superior. —Very variable.

13. *granulata*, Linn. MEADOW SAXIFRAGE. Plant erect and branched when in bloom, 6-20 in. tall: radical lbs. reniform, incisely lobed, the lobes entire or crenate, pliase, stalked; stem-lvs. few, nearly sessile, cuneate: fls. white, somewhat bell-shaped, more or less drooping, about 1 in., across, the petals oblong-oblong and much constricted at the base and 3-nerved. En., N. Afr., Asia. —This is a common meadow Saxifrage of Europe, blooming early in May. It is an attractive plant. A full double form is in cultivation, being prized for planting in moist shady borders. Not hardy at Boston.

14. *rivalis*, Linn. Matted little plant, with stems ascending 1-3 in. high; lower lbs. round-reniform, prominently 2-3-lobed, long-stalked; stem-lvs. nearly oblong-obovate to lanceolate, entire: fls. 3-5, white, the petals ovate. En., Asia, N. Amer., in this country occurring as far south as the White Mts. and Celo.

15. *peltata*, Turr. UMBRELLA PLANT. Strong plant, sending up large peltate leaf-blades or petioles 1-3 ft. long, the many pinkish or white fls. borne on long hairy scapes overtopping the young foliage: rootstock stout, horizontal; lbs. circular, nearly oblong-obovate or oblong-oblong, centrally peltate: fls. ½ in. across, the petals elliptic and obtuse. Margins of streams, Calif. B. M. 6764. F. S. 6:2441. G. C. H. 27:139. G. N. 25:11. B. B. 55:6. G. G. 7:397. —One of the largest of all Saxifragaceae, east of the only one with peltate lbs. The leaf-blade often measures 1 ft. across, and the rhizome 2-3 in. thick. The fls. appear in advance of the lbs. in early spring. Hardy in Mass., with slight protection, and a most desirable plant when bold effects are desired.

16. *chrysanthi*, Gray. Dwarf eschscholtzias plant with creeping shoots and rosetulate, imbricated oblong-ovate, glabrous and glabrous lbs.; flowering stems 1-2 in. tall, filiform, glandular-pansemented, 1-3-flowered, the oval petals yellow. Mts. of Colo. —Has been offered by dealers in native plants.

17. *rotundifolia*, Linn. Root-lbs. thick, cordate-ovate, dentate-lobed, long-stalked, clustered, but not rosetulate; stem-lvs. nearly sessile, often narrower; fls. 1 stem ft. tall, erect and somewhat branched, hairy: fls. white, the oblong-elliptic petals spotted with purple. En, and Asia. B. M. 424. —A very pretty plant for moist places.

18. *punctata*, Linn. Plant 1 ft. or more high in flower, more or less pubescent, the scape leafless; lbs. at first pubescent but becoming glabrous, rounder, not equally and strongly dentate or crenate: fls. white, not punctate, the petals obovate or oblong; the sepals acutish. Asia and boreal N. Amer.

20. *bryophora*, Gray. Dwarf, the scapes about 3 in. high and branching; lbs. 1 in. or less long, oblanceolate to narrow-oblanceolate, entire and ciliate, usually rosetulate; scape leafless, the branches 1-flowered: petals lance-ovate, white, 2-spotted at the base. Mt. Dana. —Once offered by dealers in native plants.

21. *lecananthifolia*, Michx. (S. *Michaelisii*, Brit.). Viscid plant 5-20 in. tall, much branched, bearing many small star-like white lbs. and long-spatulate toothing lbs.; petals lanceolate, unequal, the 3 larger ones coriaceous at the base and with a pair of yellow spots. Va. to Ga., in the mountains.

22. *Pennsylvanica*, Linn. Tall stout herb, sometimes 3 ft. and more high, viscid pubescent, nearly or quite simple; basal lbs. sometimes nearly 1 ft. long, oblanceolate, obscurely toothed, much constricted at the base and scape nearly naked: panicle long and becoming open: lbs. numerous and small, greenish, the petals linear-lanceolate. St. Louis, south as far as Va. —Recommended as a bog plant.

23. *nivalis*, Linn. Dwarf, the flowering branches rising 3-6 in.: lbs. ovate or oblongate, thickish, crenate, narrowed into a petiole: fls. capitate on a naked scape, the head sometimes branched, white, the oblong or obovate petals persistent. Alpine and arctic regions of Eu., Asia and N. Amer. In the Rocky Mts. it occurs as far south as Arizona.

24. *virginiana*, Michx. Low, viscid pubescent plant, 1 ft. or less tall, from a rosette of obovate or spatulate, crenate-toothed thickish lbs., which are narrowed into a petiole: cyme small and close at first but becoming loose and open; lbs. small but many, dull white, the petals oblong-obtuse. On rocks and in woods, eastern U. S. as far south as Va. and Tenn. —A pretty spring flower, and sometimes planted. There is a double-flowered form.

25. *interstipula*, Hook. Plant a foot or less tall, viscid pubescent plant, 1 ft. or less tall, from a rosette of obovate or spatulate, crenate-toothed thickish lbs., which are narrowed into a petiole: cyme small and close at first but becoming loose and open; lbs. small but many, dull white, the petals oblong-obtuse. On rocks and in woods, eastern U. S. as far south as Va. and Tenn. —A pretty spring flower, and sometimes planted. There is a double-flowered form.
26. azoides, Linn. Tufted plant, 6 in. or less tall, glabrous except for the sparingly setose leaf-margins: Ivs. linear-lanceolate, somewhat fleshy, scattered along the stems, pale, with axillary pedicels near the top of stem, yellow and more or less spotted with orange, the petals oblong. Eut. Asia, N. Amer., in the U. S. occurring in northern New England, northern New York, northern N. Y., Rocky Mts., etc.

27. brochialis, Linn. Dwarf and cespitose, the scape a few inches high and nearly leafless but leafy at the base: Ivs. linear to linear-lanceolate, macronate at the apex, entire or spinulose on the margin, stiffish: Ivs. solitary or corrymbose, on long and weak pedicels, yellowish white with orange-red dots, the petals oblong-oblong. Asian and arctic N. W. America and Rocky Mts. Only var. cherlerioides, Engler (S. cherlerioides, Don), has appeared in the Amer. trade: very dwarf, only 2 or 3 in. high, densely cespitose, few-flowered, the Ivs. short and somewhat spatulate. Asia and Alaska.

28. Campsiis, Bois, & Rent. (S. Wallerana, Hort.), Tufted and bright green, with reddish Ivs. stems, hairy and somewhat glandular: Ivs. spatulate, with an abruptly enlarging end, 3-5-lobed, and sometimes again toothed: Ivs. stems branching, 3-4 in. high, erect: Ivs. 3-5 in. across, white, somewhat bell-shaped, the broad petals much exceeding the calyx. Spain. B.M. 6640. Gn. 36, p. 392. A.B. 1846-61. Once introduced here, but does not endure the hot climate well. An attractive species.

29. campisios, Linn. Exceedingly variable species: dwarf and cespitose, the Ivs. stems erect and nearly leafless and somewhat glandular-pilose (3-4 in. high): Ivs. usually euneate but sometimes nearly linear, usually 3-fld and sometimes 5-fld, the lobes linear and obtuse and nearly parallel: Ivs. few, white, 1-10 in a raceme or panicle, campanulate, the petals spreading, oblong and obuate, 3-nerved. Eu.

30. asphyia, Stem. (S. leptophyllo, Frel.). Small, loosely cespitose species, producing several or several rosettes at the surface of the ground, and sending up short, almost leafless, 1-fld, or 2-fld. glandular scapes: Ivs. thin, entire or 3-5-lobed: Ivs. bright yellow, the petals yellowish, and acute and about as long as the calyx-lobes. Eu.

31. umbrosa, Linn. London Pride. St. Patrick's Cabbage. Erect-growing plant, the nearly leafless branching 3-stems reaching 6-12 in. in height, and springing from a dense rosette of Ivs. 6-12 in. across: Ivs. thick and mostly glabrous, obvate, crenate-dentate, the stalk-like base ciliate: Ivs. small, pink, with darker spots, in a loose panicle, the petals ovate or oblong and spreading. Eu. in shady places. A very neat and attractive plant, frequent in European gardens, but rarely seen here. There is a var. variagata, Hort.

32. Geum, Linn. (S. hirsuta, Linn.). Differs from S. wallerana by having orbicular Ivs. that are cordate or notched at the base and on long stalks. Range of last, and said to occur in Newfoundland.

33. sarmentosa, Linn. (S. Japonica, Hort., S. Chionium, Lour.). Strawberry Geranium. In England known as Alumroot, or Precumbit, a name also applied to Linaria Cymbalaria. Old Man's Beard. Fig. 229. True stem or caudex scarcely rising above the ground, but 3-5-stems rising 1-2 ft. and much branched, the plant somewhat hairy: stems, short and rooting freely at the joints after the manner of a strawberry: Ivs. nearly orbicular, shallowly crenate-lobed, the lobes apiculate, all radical and long-stalked: Ivs. many, white, the 2 lower hanging petals lanceolate pointed or lance-ovate, the 3 upper ones small and inconspicuous and pinkish and spotted. Japan and China. B.M. 92. O.C. 87. 7:233 (showing the 3 plant to light). Gn. 30, p. 393; 32, p. 57. R.H. 1876, p. 427.

An old-time greenhouse plant, and also one of the commonest window-garden subjects. Of easiest culture. Var. tricolor, Sieb. (S. tricolor superba, Hort.), has Ivs. handsomely marked with creamy white and red variegations. F.S. 21:2257-8 (as S. Fortunei tricolor). S. Fortunei, Hook. (B.M. 3577), is a closely allied species, but is less (if any) sarmentose. The Ivs. are more sharply toothed, the Ivs. are white and the lower petals are dentate.

L. H. B.

SAXIFRAGE. See Saxifraga.

SCABIOSA (Latin, itch; referring to medicinal use). Dipsacaceae. Scabious. Mountain Brides. About 35 species (from Eu., Asia and Afr. of annual or perennial herbs, often somewhat woody at the base, with entire, lobed, dissected Ivs. and blue, rose, yellow or white Ivs. in mostly long-flowered globular or ovoid-conic heads. Breeches of the involucre in 1 or 2 rows, foliage, mostly free; scales of the receptacle small, narrow or non-existent; corolla 4-5-lobed; 4, rarely 2, all perfect. For a related plant, see Cephalaria.

In any moderately good garden soil a succession of flowers is produced from June until frost. The flowers are very serviceable for cutting purposes. Propagated by seed or division. The hardy perennial species act like biennials in cultivation, and often flower the first year from seed. S. atrorumpurpurea is a common garden annual.

INDEX.

ala, 3, 7.
avensis, 2.
earvensis, 2.
arysenus, 2.
broad, 1.
candidissina, 4.
Caucasia, 7.
coccinea, 4.
ocroliaca, 1.
Columbiana, 7.
perfecta, 7.
compacta, 4.
granifolia, 8.
stellata, 5.
major, 4.
varia, 2.
ana, 4.
Webbiana, 1.

A. Radical leaves dentate or lobed.
B. Ivs. yellow, 1. ochroleuca
B. Ivs. dark purple, blue or white.
C. Calyx-limb very short, 6. ochroleuca
D. Ivs. assate, 2. arvensis
D. Ivs. petiolate, 3. Columbiana
C. Calyx-limb pedunculate.
D. Plant 2 ft. high, 4. atrorumpurpurea
D. Plant 6-18 in. high, 5. stellata

AA. Radical Ivs. entire.
B. Ivs. petiolate-oblong, 6. brachiatia
B. Ivs. lanceolate to linear.
C. Heads 5 in. across, 7. Caucasica
C. Heads smaller, 8. granifolia

1. ochroleuca, Linn. A barley perennial herb about 18 in. high, stem branching and somewhat hairy: Ivs. whitish pubescent, the radical crenate or lacinately pinnatifid, tapering to a petiole, pubescent on both sides; those of the stem 1-2-pinnately divided or cleft into oblong or linear lobes; peduncles long, slender: Ivs. of the involucre shorter than the Ivs. June to autumn. Eu. and Asia. Var. Webbiana (S. Webbiana, D. Don). Light 6-18 in.: lower Ivs. lance-terminated, the upper glabrous. Resembles the type but is smaller in all its parts. B.R. 9:717.

2. arvensis, Linn. (S. varia, Gilib.). A hardy perennial 2-4 ft. high: stem hispid: Ivs. villous-hirsute, the radical unequally pinnately parted, the lobes lanceo-
late; those of the stem pinnately divided with linear lobes, the upper linear-lanceolate: involucral bracts obtuse: fls. lilac or blue, 1-2 in. across. June-Aug. Not known to be in the trade. S. varia, Hort., being presumably mixed varieties of S. atropurpurea.

3. Columbária, Linn. A hardy perennial quite variable in character; 2 ft. high: stem branching, glabrous or nearly so; radical lvs. ovate-obtuse, crenate, membranous, pubescent on both sides; stem-lvs. glabrous, pinnately parted, the segments linear, entire or slightly incised; fls. blue, in ovate-globular heads on long pubescent peduncles. June-Sept. Eu., Asia, Afr.—Var. alba is cult.

4. atropurpurea, Linn. (S. major, Horl.). Sweet Scabious. Fig. 2262. An annual branching plant about 2 ft. high: radical lvs. lanceolate-obtuse, lyrate, coarsely dentate; stem-lvs. pinnately parted, the lobes oblong, dentate or cut; fls. dark purple, rose or white, in long-peduncled heads, becoming ovate or oblong in fr. July-Oct. S. Eu. Gr. 21, p. 118. B.M. 247. P.S. 12:1260. —Vars. candidissima, cocinea, compacta, major, mana and pumila are often offered as if they were distinct species, as S. pana, etc.

5. stellaris, Linn. An annual plant, hairy, simple or somewhat branched, 6-18 in. high. Lvs. cut or somewhat lyrate, the terminal lobe large, obvate, dentate, the upper ones often pinnately parted: fls. blue, in long-peduncled heads; corolla 5-cleft, the lobes radiate. June and later. S. Eu.

6. brachiatu, Sibth. & Sm. An annual species about 1 ft. high: lower lvs. ovate-oblong, the upper pinnately cut, lyrate; the lower lobes dentate, the terminal large, obvate, oblong; fls. light blue. June and later. Eu., Asia.

B. Keller and P. W. Barclay.

SCABIOUS. For Common Scabious, see Scabiosa. For Shepherd's or Sheep Scabious, see Jasione perennis.

SCALLION, a name for the Shallot; also used for onions that do not make good bulbs but remain with thick necks, but generally pronounced and written scallion in this country. The word is connected with Asa- lonium (Allium Asa- lonium).

SCÁNDIX (Greek, to sting: in reference to the roughness of the fruit). Umbelliferae. About 10 species of annual herbs mostly natives of Europe: lvs. pinnately decompound, the segments small and narrow: fls. white, polygamous, often radiate, usually in few-rayed compound or simple umbels: fr. oblong-linear, long-beaked, the ridges obtuse, prominent.

Pecten-Vénneris, Linn. Fig. 2263. A hardy garden annual 6-12 in. high, with finely cut lvs. and small white fls. in simple umbels. Eu.—Little grown here.

S. azetolium, Linn. See Chicory. F. W. Barclay.

SCAPHOSEPALUM (Greek, boat and sepals: alluding to the form of the lower sepal). Orchidaceae. A genus recently separated from Massevalia upon the character of the lateral sepals, which are united into a boat-shaped organ. In habit the plants resemble Massevalia, except that the parts of the rhizome are longer, thus making the tufts less compact, and the racemes assume climbing habits, becoming very long and bearing fls. for months in succession. The dorsal sepal is free or nearly so: labellum and sepal small. The genus contains about 10 species.

Grow in a coolhouse well protected from the sun. Keep the summer temperature as low as possible. Give plenty of water when growing. When at rest, water sparingly but do not allow the plants to become entirely dry. Use as small a pan as possible. The culture is like that for Massevalia.

gibberum, Rohf (Masdevallia gibberosa, Reichb. f.). Lvs. 3-5 in. long, oblong-obovate or lanceolate, obtuse: peduncle 6-10 in. long, warty, bearing a loose raceme of 1-8 fls.: dorsal sepal boat-shaped, with a long tail, dull red, with strong, greenish ribs; lateral sepals partly connate in a concave lamina, then spreading horizontally, yellow, spotted with red and ending in yellowish tails. Colombia. B.M. 6996.

punctatum, Rohf (Masdevallia punctata, Rohf). Densely tufted: lvs. elliptic-lanceolate, subacute, 3-5 in. long: peduncles pendulous: fls. small, dull yellow-
ish, thickly speckled with crimson; dorsal sepal broadly ovate, concave, strongly 5-ribbed, ending in a stiff incurved tail; lateral sepals spreading horizontally, falcately incurved, with a filiform process near the tip. Colombia. B.M. 1766.

Heinrich Hasselbring and WM. Mathews.

SCARBOROUGH LILY. Valdani purpuraea.

SCARLET BUSH. Homelia.

SCARLET LIGHTNING. Lychas Chalcodonica.

SCARLET PLUME. Euphorbia fulgens.

SCARLET RUNNER. A red-flowered variety of Phacelia multiflora.

SCENTED VERBENA. A name found in some books for the Lemon Verbena. See Lippia.

SCHAUERIA (after J. C. Schauer, professor at Greifswald, 1812-1848). Acanthaceae. Erect, half-shrubby herbs, with entire lvs.; fls. yellow, or red, in a terminal thyrse or spike; calyx 5-parted, segments linear or subulate; corolla-tube long; gradually broadened upward; lip 2-lipped, the upper lip interior narrow, entire or emarginate, erect, lower lip cut into 3 subequal, recurved segments; stamens 2, each with 2 parallel anthers, about as long as the upper lip, the aborted stamens wanting; style filiform; ovary seated on a disk, 2-loculed, with 2 seeds in each locule. About 8 species from Brazil. Closely related to Jacobinia, from which it differs by the equal parallel anther cells. It is distinguished from Anisacanthus by its sessile calyx-lobes, and from Pittsonia by its habit.

Flavicora, N. E. Brown (Justicia flavica, Hort., not Kurz.). Fig. 2264. Half-shrubby plants, with erect, branched stems, up to 4 ft. high; lvs. opposite, petiolate, ovate to ovate-lanceolate, shining green, undulate; fls. light yellow, 1½ in. long, borne in erect, feathery panicles; calyx-lobes long, subulate, glandular-hairy, persistent after the corolla has fallen. Autumn. Brazil. B.M. 2816 (as Justicia calycoedrica). B.R. 12:1027 (as Justicia flavicora). L.B.C. 20:1921 (as Justicia calypc- edrica). This plant has been confused with S. calypcoedrica, Nees, and has long been cultivated under that name. S. calypcoedrica, Nees, has a smooth calyx and broader ovate lvs. which are very obovate or suborbate at the base.

Heinrich Hasselbring.

SCHEREA (after Scheele, distinguished German chemist). Paludicola. About 10 species of pinnate palms from tropical South America. They are spineless, tall or dwarf; leaf-segments arranged in regular series or grouped, linear, in young plants unequally and obvously 2-cut at the apex; fls. yellowish, discicous or monocious, the males very numerous in the upper part of the branches, the females few or solitary in the lower part and sometimes peduncled; petals of the males long-club-shaped or cylindrical; stamens 6, shorter than the petals; fr. 1-seeded.

butyracea, Kark. This species is cult. in S. Calif. Franceschí remarks that it comes from Venezuela and is a magnificent palm with the habit of Attalea. H. A. Siebrecht writes that it is rare in cultivation and that it is more interesting than beautiful. On account of its large stem base or crown, it requires so large a pot or tub for the size of the plant that it does not make a very ornamental subject.

W. M.

SCHERIA (Frederick Scheer presented the original species to the Royal Botanic Gardens at Kew, he having received them in 1859, through J. Potter, from Chi- huahua, Mexico). Gesneriaceae. A name proposed for four Mexican and tropical American herbs which are now referred to Achimenes (which see). From Achimenes, Soeman, its founder, distinguished it "by its truly infundibuliform, not bilobed, stigma." In habit, the genus suggests Achimenes hirsuta, A. pedunculata and A. multiflora (see p. 18, Vol. 1). In the American trade one species is offered, S. Mexicana, Seem. (8, exultans, Hort.), now more properly known as Achimenes Scherii, Hemsl. Stem erect, hairy; lvs. ovate, hairy, dentate, stout-stalked, opposite; fls. solitary in the axils, stalked, the corolla 2-2½ in. long, the tube inclining or drooping and curved, the wide-spreading 5-lobed limb blue-purple. Lvs. with a metallic luster. B.M. 4743. L. H. B.

2204. Schaueria flavicora (X ½). Chiefly known to the trade under the name of Justicia flavicora.

SCHIMA (said to be an Arabian name). Ternstroemi, j. About 9 species of tender evergreen trees and shrubs, with 5-petaled white fls. about 1½ in. across. Here belongs a neat little tea-like shrub about 3 ft. high, known to the trade as Gordonia Javanica. Schima and Gordonia are closely related genera, distinguished by Bertham and Hooker as follows: Schima has inferior radiles, sepals scarcely unequal, ovules few in each locale and laterally adnexed; Gordonia has superior radiles, sepals markedly unequal, ovules numerous in each locale and pendulous. Other generic characters of Schima: peduncles l-fls., usually erect; fls. solitary, in the axils or the upper ones crowded in a short raceme; petals comate at the base, imbricate, concave; stamens numerous; ovary 3- or 5-celled (rarely 4- or 6-celled); stigma broad and spreading; capsule woody; seeds flat, kidney-shaped.

Noronha, Reinw. (Gordonia Javanica, Rowl.). Tender evergreen shrub, 2 ft. high or perhaps more, branched, glabrous; lvs. alternate, elliptic-lanceolate, coriaceous, entire; fls. solitary in the axils, white, 1½ in. across, shorter than the lvs.; petals obovate. Java. B.M. 4539.

A good pot-plant for the warmhouse. Readily increased by cuttings.

W. M.

SCHINUS (Greek name for the Mastic-tree, Pistacia Lenticulata; applied to this genus on account of the resins, mastic-like juice of some species, Acantholaccifer. Resinous, discicous trees, with alternate, pinnate lvs., sessile lfts., axillary and terminal bracteate panicles, small whitish fls. with short, 5-lobed calyx, 5 imbricated petals, broad annular disk, and 10 stamens: fr. a globose drupe. About 17 species, all South American except one in the Sandwich Islands, one in Jamaica and one in St. Helena. Only two are cultivated: they are semi-tropical and grown in the warmhouse at the East and in north Europe, in the open at the South and in Calif, as far north as the San Francisco Bay region.

Molle, the old generic name, is from Mulli, the Peru-
SCHINUS. S. Mollé, Not as, sometimes supposed, Latin mollé, sott, which would not be applicable in this case.

Mollé, Lind. PERUVIAN MASTIC-TREE. CALIFORNIA PEPPER-TREE. Figs. 2265, 2266. Evergreen tree, 20 ft. and more, with rounded outline and graceful, pendulous branches, and not trimmed; Ivs. 2 in. or more long, glabrous, of many alternate, linear-lanceolate lfts., 1½-2 in. long; fls. in conical panicles, yellowish white; fruits in fleshy cones (whence the popular, but misleading, California name), of a beautiful rose-color. Peru. G.F. 8:505. R.H. 1889, p. 225. G.C. III. 17:588, 589. Ga. 25, p. 418. B.M. 3339.—In southern and middle California more extensively cultivated than any other ornamental tree except, perhaps, the Blue Gum (Eucalyptus globulus), and thriving best in the warm interior valleys, though hardly on the coast at San Francisco. Valued as a lawn and avenue tree; often planted as a street tree, for which, however, it is unsuited, being too spreading and branching too low. Mollé was a generic name used by Tournefort, and placed in apposition with Schinus by Linnaeus (explained above).

terebinthifolius, Radii, with racemose fls. and lvs, composed of seven broader, somewhat serrated lfts. is sparingly met with in cult. in S. Calif., and proves hardy in San Francisco. Brasil.

dependens, Ortega (Duvalia dependens, DC.), is a shrub or small tree, with more or less drooping branches; lvs. ¾-1 in. long, oblong or oblate: fls. yellow, ½ in long, produced in great numbers in racemes along as long as the leaves. Western S. Amer. B.M. 7406. B.R. 15:1585 (Duvalia ovata); 19:1573 (D. dependens); 29:59 (D. longifolia).—The genus Duvalia was distinguished from Schinus chiefly by its small foliage, but it is now considered a subgenus of Schinus. Jos. Burt Davy.

Schinus Mollé is everywhere present in southern California, where it attains a height of 30 ft. and sows itself. It was a great thing for this region in years past before the water systems had reached their present efficiency. Now the poor Pepper-tree is under a ban, and justly so. Next to an elder the black scale loves a Pepper-tree. Hence the Pepper-trees, being large and numerous, have been indirectly a serious menace to the orchards of citrus fruits. Thousands of old trees, 2-3 ft. in diameter, have been cut during the past year because of their proximity to orange orchards. At least one nurseryman has actually refused to sell Pepper-trees to people who ordered them. Los Angeles boasts some magnificent avenues of them. S. terebinthifolius is but little known in this region, the tallest tree being only 15 ft. as yet, but it is likely to be extensively planted in the near future. Ernest Braughton.

SCHISMATOGLOTTIS (Greek, fulling tongue: referring to the fact that the limb of the spathes soon falls off). A. dracoer. The plants which bear this uncomfortable name are amongst the finest variegated foliage plants in the Arum family, and hardly if at all inferior in beauty and ease of culture to the popular Dieffenbachias, which they closely resemble. They are tender plants used for the decoration of warm conservatories, but they have been successfully grown by skillful amateurs in living houses, where a day temperature of 70° could be maintained throughout the winter. The genus contains about 15 species, mostly natives of the Malay Archipelago. They have stoloniferous rhizomes and the corms lies on the ground. The leaves are large, ovate or lanceolate, banded or blotched with white or pale yellow. The height of the colors in variegated plants largely depends upon culture. Fls. unisexual; fertile males with 2-3 short stamens, truncate at the apex; sterile males with staminodes destitute of pollen; flowers, with 2-4 pistols; ovary linear; ovaries with 1 stigma; fruits oblong, with silvery white, some of the shoots much larger than others; petiole 6-8 in. long; blade 5-7 x 1½-2½ in.; seed reddish. Malaya. I.H. 25:418. —Var. immaculata (var. Lansebergiana, Linden) differs in having purple sheaths and leaf-stalks, and foliage green above, dark wine-purple below. Var. purpurea is a Sumatran form with foliage blotched gray above and dark wine-purple beneath.

2. variegata, Hook. Lvs. oblong-lanceolate, obtuse or rounded at the base, long-cordate at apex, dark green above, marked whitish along the midrib; petiole 3-4 in. long or less than half the length of the blade. Borneo. This has been confused in the trade with S. Neoguineensis.

3. crispatula, Hook. Lvs. 5-7 in. long, leathery, ovate-cordate, with rounded basal lobes, dull green above with 2 whitish, irregular, nearly parallel bands extending from base to apex and about half-way between midrib and margin. Borneo. B.M. 6252.

4. picta, Schott. Lvs. ovate-cordate, the basal lobes short, but the sinus deep, dark green above, marked with laceraed glaucous spots at the middle, on each side of the midrib and between the nerves; petiole 8-10 in. long; blade 6-7 in. long. Java.

5. Neoguineensis, N. E. Br. (S. variegata, Hort., not Hook.). Lvs. ovate-cordate, bright green, irregularly blotched with pale yellowish green, the total mass of green being greater than the variegation; petiole 8-12 in. long; blade 8-9 x 5-7½ in. New Guinea. I.H. 27:280. This is a Neoguineensis, the variegation being a bright creamy white.

6. pulchra, N. E. Br. (S. decorata, Buss.). Lvs. ovate, oblolly cordate, irregularly blotched with silvery
white, the total mass of green being less than the variegation; petiole 5-14½ in. long; blade 1½-2½ in. long, Borneo, I. H. 31:525. G. C. H. 21:361. — S. decora, var. Wittumianum, was offered in 1893 by John Saul, Washington, D. C.

S. Roebelii, Pitcher & Masada, 1889, p. 128. "Lvs. beautifully marked with silver white in a broad feathery variegation. Only the center and edge of the leaves are plain light green. The plant is compact, free-growing, with thick leaves as enduring as those of a cairis tree. A fine house plant." This plant is imperfectly known. It is figured in Pitcher & Masada's catalogue 1889:141 as S. Roebelii, and the same thing is used in A. G. 19:509 (1896) as S. picta and in V. M. 23:71 (1899) as S. crispata. The plant so pictured is distinct from any species described above. There is more white than green in the leaf, only the edges and mitriform portion being green. Some growers believe it to be a sport of S. crispata.- S. Scanzelii, Hort. Bull., was advertised by the U. S. Nursery Co. 1855, but seems unknown to botanists. — S. Sansevierii, Hort. Bull. still in cultivation, but imperfectly known to botany. Possibly a species of Agnonema.

W. M.

SCHIZEA (Greek, to split). Schizandra. A genus of small ferns with twisted grass-like lvs. and sedge-like sporophylls formed of a cluster of closely compacted pinnae, each with two rows of sporangia, which in common with the family are pear-shaped, with an apical ring, opening by a vertical fissure.

pusilla, Pursh. Our only native species, growing in sand bars near the Jersey shore. Lvs. an inch long, grass-like: sporophylls 2-3 in. long, with 6-8 closely compacted divisions, forming a spike at the apex. Known locally as Curly-grass. The prothallus only recently studied is found to resemble protonema, being filamentous rather than thalline as in ordinary ferns.

L. M. Underwood.

SCHIZANTHUS (Greek, split and flower; from the incised corolla). Solanum. BUTTERFLY FLOWER. About 6 species of annual herbs from Calle, with mostly finely cut leaves and terminal open cymes of variously and highly colored fls.: calyx 5-cleft, the lobes linear, corolla tubular; limb wide-spreading, oblong, pilate, somewhat 2-lipped, laciniate; stamens 2, exerted; seeds numerous, small. These dainty plants are of easy culture in any good garden soil. They are also useful as pot plants for spring flowering, the seed being sown in early fall and the plants kept in a light house and given plenty of root room as they need it.

a. Corolla-tube as long as the calyx: stamens short-exserted.

b. The middle segment of the anterior lip of the corolla notched at summit.

retans, Hook. Stem 2 ft. high: lvs. pinnatisect; the segments entire, denticate or pinnatifid; fls. in the type deep rose, with the large middle segment of the upper lip orange except at the tip; the lateral segments of the posterior lip falcate, acute, linear, longer than the middle segment. B.M. 3045. B. H. 18:1544.—The portions of the flower which are rose-colored in the type are white in var. alba.

nn. The middle segment of the anterior lip not notched at apex.

Gràhampii, Gill. Lvs. 1-2 pinnatisect; segments entire or dentately pinnatifid: fls. typically rose or white, with the middle half of the middle segment of the upper lip yellow or orange; the lateral segments of the posterior lip falcate, linear, acute, shorter than the middle segment. B.M. 3044. B. H. 18:529.

aa. Corolla-tube shorter than the calyx: stamens long-exserted.

pinnatus, Ruiz and Pav. (S. perrigens, Graham. S. Priestlii, Paxt.). Fig. 2267. The most variable of the species, with many horticultural forms distinguished.
by height of stem and color markings of the fls. Typically 2 ft. high; lvs. 1-2-pinnatisect; the segments entire, dentate or incised pinnatifid: fls. varying in depth of color, the lower lip usually violet or blue; the upper paler, its middle section with a yellow halo at its base and spotted with purple or violet. B.M. 2404, 2521 (as S. prorrigens). B.R. 9:725; 18: 1562 (as var. kmilis).—Var. nana, Hort., is somewhat lower-growing. Var. niveus, Hort., has pure white fls. Var. secalius, Hort., has a purplish black blotch surrounded with yellow at the base of the middle segment of the upper lip or with the typical yellow portion dotted with small dark purple spots. B.H. 1862: 651. Var. papiillatus, Hort., has a central coloring somewhat as var. secfatus, with the general color of the flower marbled in various shades. Var. tigrinodes, Hort., is also cultivated.

F.W. Barclay

SCHIZOCODON

(Greek, cut bell; referring to the fringed corolla). Diapensia. Schizocodon soldanelloides is a pretty alpine plant from Japan with rosy flowers fringed like the well-known Soldanellas of the Alps. It may be readily distinguished from Soldanella (which is a member of the primrose family) by the leaves being toothed, and the staminodes 4 instead of 5. The name "Fringed Soldanella" has been proposed for Schizocodon, but all Soldanellas are fringed. "Fringed Galax" would be better, as Galax is the nearest relative, Schizocodon being, in fact, the Japanese representative of the American Galax. The leaves of Schizocodon are sometimes more or less branny, like those of Galax, but their form is not so pleasing. The plant is only a few inches high, and the fls. are borne to the number of 1-2 on a scape. The capsules are numerous and the fls. about 1 in. across. Since 1892 this plant has excited an amount of interest comparable to that caused by the introduction of Shortia, in 1889.

Schizocodon is distinguished from allied genera by the following characters: corolla funnel-shaped, 5-lobed, the lobes filibracte; staminodes affixed between the lobes of the corolla, and separate from the staminodes, which are long and linear. Other characters: ovary 3-loculed: capsule globose, 3-cornered, loculicidally 3-valved: seeds numerous.

soldanelloides, Sieb. & Zucc. Fringed Galax. Fig. 2266. Hardy, tufted, alpine plant a few in. high; lvs. leathery, evergreen, long-stalked, the blade roundish, wedge-shaped or subulate at the base, coarsely toothed, the teeth apicate: fls. nodding; sepals 5, oblong, obtuse; corolla deep rose in center passing to blush or white at the edges; staminodes linear. Japan. B.J. 7316. Gn. 44:934. G.C. III. 13:415. G.M. 36:206. J.H. III. 34:323. V. 20:119.—This is probably the species to the genus, as S. bifrons in Shortia and S. ilicifolius is thought to be a variety of Schizocodon soldanelloides, with more variable lvs. and fls. ranging from red to white. Offered by many European dealers, and by one or two Americans; little known here.

W. M.

SCHIZOLONIUM

(Greek, to cleave and hold, alluding to the manner of dehiscence). Leguminosae. About 2 species of South American trees, with large bipinnate leaves, with numerous small leaflets, and lvs. in axillary racemes or terminal panicles. Calyx obliquely turbinate; segments imbricate, reflexed; petals 5, clawed, ovate or roundish, imbricate; stamens 10, free; filaments somewhat seaborous at the base; ovary adnate to the tube of the calyx; pod 1-seeded. The following has been introduced into S. Calif. by Franceschi, who writes that it has not yet proved a success.

discolor, Raf. (Holodiscus discolor, Maxim.). Fig. 2268. Shrub, 20 ft., hardy with protection in Mass.; lvs. ovate or oblong, truncate or narrowed at the base, pinnately lobed, usually glabrous above, pubescent or tomentose beneath, ½-3 in. long; fls. creamy white, small, in simple panicles. July. Oregon to Guntow, east to Codo. Gn. 45, p. 56; 17, p. 188; 49, p. 104; 59, p. 278.
SCHIZONOTUS

SCHIZOPETALON (Greek, schizos, to cleave, and petal, in reference to the pinnately cut petals). Cruciferous. A genus of possibly 5 species of annual herbs from Chile, with alternate, subulate, dentate or pinnatifid leaves and purple or white flowers in terminal racemes. The main generic character lies in the shape of the petals, which are flat and pinnately cut into regular segments.

SCHIZOPHYRAEMA (Greek, schizos, to cleave, and phragma, wall; the inner layer of the wall of the valves is cleft into fascicled fibers). Saxifragae. Ornamental climbing deciduous shrub with opposite, long-petioled, rather large, dentate leaves, and loose terminal cymes of small pale flowers, with elongated sterile ovaries at the margin. It has beautiful bright green foliage and attractive flowers. The plant is useful for covering walls and trunks of trees. It clings firmly by means of aerial rootlets. Hardy north as far as New York city. It thrives best in rich, moderately moist soil and partial shade, but also does well in full sun. Prop. by seeds or greenwood cuttings under glass; also by layering. Like Hydrangea petiolaris, young plants produce small lvs. and make little growth if unsupported and suffered to trail on the ground. One species in Japan and another in China, allied to Hydrangea and Decumaria: lvs. in loose cymes; sepalas and petals 4-5: stamens 10: style 1: ovary 4-5-loculed: marginal sterile fls. consist only of one large white sepal, terminating the branches of the inflorescence: fr. a small, 10-ribbed capsule.

SCHIZOSTYLIS (Greek, schizos, to cleave, and stylos, a column). Iridaceae. Two species of South Africa and the most common form is: var. aristolius, J. G. Jack (Spiroa aristolius, Sm.). Large shrub, with arching branches: lvs. usually truncate at the base, ovate, with dentate or entire lobes, pale green and pubescent beneath; panicled, to 10 in. long. B.R. 16:1365. G.F. 4:617. Var. Pusllianus, B. M. (Sp. discolor, Pursh). Similar to the former, but lvs. whitish-tomentose beneath. Var. fuscus, Schel. (Sp. fissa, Lindl., and probably Holodiscus australis, Heller). Similar to var. aristolius in habit, but smaller: lvs. cuneate at the base, narrower, with entire lobes, whitish-tomentose beneath, 8-10 in. long, panicle drooping, to 5 in. long. Var. damoens, Dippel (Sp. du-

SCHOMBURGKIA habit, P. long: species broad; has The Ivs. panicle Ivs. long. This p.p. has the cymose habit typical of the genus, with flowers appearing in a loose panicle at the top of the plant. The flowers are white, with a red-tipped anther, and the petals are reflexed, giving the plant a showy appearance.

SCHOMBURGKIA (named for Dr. Schomburgk, naturalist and geographer, who explored British Guiana). Orchidaceae. This genus contains about 12 species, inhabiting tropical America. They have the habit of Cattleya or Laelia, except that they are less compact. Pseudobulbs long, fusiform, bearing several brown scales and 2-3 leathery lvs. at the summit: 8-stems from the top of the pseudobulbs, sometimes very long, bearing a terminal raceme or panicle of showy lfs. The lfs. are like those of Laelia except that the sepals and petals are narrow and undulate and the labellum does not completely envelope the column. The labellum is always evidently 3-lobed.

SCHOMBURGKIA, Backh. & Harv. CRIMSON FLAG. A winter-blooming tender plant: stem 1-2 ft. high, bearing 2-3 lvs.: basal lvs. 2-3, about 1½ ft. long: fls. bright red, about 2 in. across. B.M. 5422. F.S. 16:1337.—The following cultural notes are taken from Garden and Forest 9:35: “The species blooms from Oct. to late Dec., and is useful for cut-flowers at this season. It is perfectly hardy in England but of little use here except for indoor use. The roots should be planted out in rich soil in spring about 8 in. apart, and encouraged to make a strong growth. In the fall the plants may be lifted, potted and placed in a cool greenhouse, where they will flower. After flowering they may be stored in a frame until spring, when the fleshy roots will need to be separated (leaving 3-5 luds to each root), and planted out as before.”

SCHOMBURGKIA, Backh. & Harv. CRIMSON FLAG. A winter-blooming tender plant: stem 1-2 ft. high, bearing 2-3 lvs.: basal lvs. 2-3, about 1½ ft. long: fls. bright red, about 2 in. across. B.M. 5422. F.S. 16:1337.—The following cultural notes are taken from Garden and Forest 9:35: “The species blooms from Oct. to late Dec., and is useful for cut-flowers at this season. It is perfectly hardy in England but of little use here except for indoor use. The roots should be planted out in rich soil in spring about 8 in. apart, and encouraged to make a strong growth. In the fall the plants may be lifted, potted and placed in a cool greenhouse, where they will flower. After flowering they may be stored in a frame until spring, when the fleshy roots will need to be separated (leaving 3-5 luds to each root), and planted out as before.”

2269. Schizonotus unicolor (X 2/3).

SCHOMBURGKIA (named for Dr. Schomburgk, naturalist and geographer, who explored British Guiana). Orchidaceae. This genus contains about 12 species, inhabiting tropical America. They have the habit of Cattleya or Laelia, except that they are less compact. Pseudobulbs long, fusiform, bearing several brown scales and 2-3 leathery lvs. at the summit: 8-stems from the top of the pseudobulbs, sometimes very long, bearing a terminal raceme or panicle of showy lfs. The lfs. are like those of Laelia except that the sepals and petals are narrow and undulate and the labellum does not completely envelope the column. The labellum is always evidently 3-lobed.

SCHOMBURGKIA, Backh. & Harv. CRIMSON FLAG. A winter-blooming tender plant: stem 1-2 ft. high, bearing 2-3 lvs.: basal lvs. 2-3, about 1½ ft. long: fls. bright red, about 2 in. across. B.M. 5422. F.S. 16:1337.—The following cultural notes are taken from Garden and Forest 9:35: “The species blooms from Oct. to late Dec., and is useful for cut-flowers at this season. It is perfectly hardy in England but of little use here except for indoor use. The roots should be planted out in rich soil in spring about 8 in. apart, and encouraged to make a strong growth. In the fall the plants may be lifted, potted and placed in a cool greenhouse, where they will flower. After flowering they may be stored in a frame until spring, when the fleshy roots will need to be separated (leaving 3-5 luds to each root), and planted out as before.”

2269. Schizonotus unicolor (X 2/3).

SCHOMBURGKIA (named for Dr. Schomburgk, naturalist and geographer, who explored British Guiana). Orchidaceae. This genus contains about 12 species, inhabiting tropical America. They have the habit of Cattleya or Laelia, except that they are less compact. Pseudobulbs long, fusiform, bearing several brown scales and 2-3 leathery lvs. at the summit: 8-stems from the top of the pseudobulbs, sometimes very long, bearing a terminal raceme or panicle of showy lfs. The lfs. are like those of Laelia except that the sepals and petals are narrow and undulate and the labellum does not completely envelope the column. The labellum is always evidently 3-lobed.

SCHOMBURGKIA, Backh. & Harv. CRIMSON FLAG. A winter-blooming tender plant: stem 1-2 ft. high, bearing 2-3 lvs.: basal lvs. 2-3, about 1½ ft. long: fls. bright red, about 2 in. across. B.M. 5422. F.S. 16:1337.—The following cultural notes are taken from Garden and Forest 9:35: “The species blooms from Oct. to late Dec., and is useful for cut-flowers at this season. It is perfectly hardy in England but of little use here except for indoor use. The roots should be planted out in rich soil in spring about 8 in. apart, and encouraged to make a strong growth. In the fall the plants may be lifted, potted and placed in a cool greenhouse, where they will flower. After flowering they may be stored in a frame until spring, when the fleshy roots will need to be separated (leaving 3-5 luds to each root), and planted out as before.”

2269. Schizonotus unicolor (X 2/3).

SCIADOPITYS

speciosa, Jacq. A tree or shrub, about 10 ft. high; lvs. variable in form, which fact has led to much separation of this species into varieties and species: lfts. 8-12, linear, oblong, or obovate; fls. crimson, in terminal panicles. B.M. 1153 (as *S. tamarindiflora*). — Advertised in southern California.

BR. Petals shorter than the calyx.

brachypétals, Sond. A large shrub or small tree: lfts. 8-10, larger than in *S. speciosa*, obovate-oblong or obovate: panicles many-flowered, axillary and terminal; calyx-tube conical, crimson; petals very small, linear, hidden by the calyx.— Cult. in southern Florida.

AA. Fls. nearly sessile.

latifolia, Jacq. Becoming a tree 20-30 ft. high: lfts. 4-8, obovate-oblong or obovate, usually 1½-2½ in. long, ½-1 in. wide: fls. rosy or flesh-colored, in much-branched panicles; petals longer than the calyx.— Advertised in southern California. F. W. Barclay.

SCHRÁNKE (F. E. Schranks, director of the botanic gardens in Munich). *Leguminosae. Sensitiva Brieke*. About 10 species of perennial herbs or shrubs, mostly American, with bipinnate, usually sensitive leaves and small pink or purple fls. in axillary pendent heads or spikes. Calyx and corolla regular, 4½-petaled; stamens 8-12; pod linear, acute or sejunctate, spiny all over, becoming 4-valved, several-seeded. *uncinata*. Wild. *Sensitiva Brieke*. A hardy herbageous perennial, branched and decumbent, 2-4 ft. long, well armed with short prickles: lvs. very sensitive, with about 6 pinnae; pinnae with 16-30 lfts.; lfts. pink, in globular heads nearly 1 in. through. May-July. Va. to Ill. and south. B.B. 2:256. F. W. Barclay.

SCHRÉBERA (perhaps after J. C. D. Schreber, 1739-1810, physician and naturalist). *Oleacée*. A genus of 4 species of trees from Africa and India, with unequally pinnate leaves and flowers in very much branched cymes; calyx tubular-hemispherical, irregularly 4½-lobed; corolla salver-shaped: tube cylindrical: lobes 4½, spreading; stamens near the top of the corolla-tube: ovary 2-celled. *Swietenia*. Roxb. A tree, about 40 ft. high, nearly glabrous: lfts. 5-7, ovate, acute, 1⅓ in.: fls. white, with brown marks, about ¾ in. across, in many-flowered cymes. Cult. in southern Florida.

SCHUBÉRTIA is a subgenus of Araujia, but in this work it is accounted for under *Physianthus*.

SCIADÓPITYS (Greek, skias, skias, umbrellas, and pithe, spines; alluding to the position of the leaves). *Conifera*. Umbrella Pine. Evergreen tree, of narrow pyramidal habit, with linear, rather large, needle-like leaves in whorls and oval cones 2-4 in. long. The only species is *S. verticillata* (as *S. verticillata*).

SCHÖTIA (Richard Schot, companion of Jacquin during his travels in America, 1754-59). *Leguminosae*. A genus of 3 species of small trees or shrubs, native to S. Africa, with pinnate leaves and panicles of hand-some crimson, pink or flesh-colored flowers. Calyx 4-lobed; petals 5, nearly sessile, either ovate to oblong or small and scale-like; stamens 10, free or shortly connate: pod oblong or broadly linear, coriaceous, compressed, the upper margin or both margins winged; seeds 1-6.

a. Fls. on rather long pedicels.

b. Petals longer than the calyx.

SCIADOPITYS

2271. Whorls of foliage of *Sciadopitys verticillata* (X 3/4).
like; the upper ones, crowded at the apex of the shoot, bear in their axils needle-like lvs. of another kind, which, however, are considered by some botanists to be leaf-like shoots, or cladophylls, but linear and connate in 2's, while others believe them to consist of two connate lvs. corresponding with the H. clusters in Pinnus. Their morphological structure points towards the first explanation, while they are lvs. in regard to their physiological function. Fls. monocœous; the staminate 2, consisting of spirally disposed 2-celled anthers and appearing in dense clusters at the ends of the shoots; the pistillate are solitary at the ends of the shoots and consist of numerous spirally arranged scales subtended by a small bract and bearing 7-9 ovules; cone obovate-ovate, woody, the bracts connate, with the broadly orbicular, thick scales, spreading at the margin; seeds oval, compressed, with narrow wing, margined at the apex. The wood is nearly white, very strong and straight-grained.

verticillata, Sleb. & Zucc. *Umbrella Pine*. Fig. 2271, 2272. Tree, attaining 100 ft., with ascending branches forming a narrow pyramidal, compact head, in old age loose and with pendulous branches: scale-like lvs. dark brown, 3/4 in. long; needles 15-35 in each wheel, linear, stiff, chinen. deeply furrowed on both sides, dark green and glossy above with a white line beneath, 3-6 in. long.

SCILLA (the old Greek name used by Hippocrates; *I leon*, according to Miller, alluding to the poisonous bulbs), *Lilaceous*. SCLILL. WILD *HYACINTH*. BLUE-BELL. About 80 species of perennial bulbous plants, widely distributed in Europe, Asia and Africa in temperate districts. They are remarkable for easy culture, quick growth and beautiful rose, white or flowers, blooming early in the spring (some in autumn), and therefore, desirable plants for the wild garden, rock garden, or border. Some are stone plants. Some of the South African forms have handsome spotted foliage.

Generically, the Squills are distinguished as follows: Bulbs tuniciate, large or small: lvs. radical, 1-several in number, linear, liriform, lanceolate, obovate or nearly ovate, in *Scilla autonoma* appearing after the flowers; scape 1-several, simple, leafless: fls. in racemes, which are several - to many-fl., open, compact or spicate; bracts small, sometimes minute, hyaline; pedicels short or long, sometimes tiliiform: fls. small or middle-sized (1 in. across), segments of perianth distinct, petal blue, porcelaine-blue, rose-colored or whitish, open rotate, cylindrical-campanulate, or open campanulate, segments persistent for some time; stamens 6, affixed at base of the segments; anthers ovate or oblong, dehiscing longitudinally, intorse; ovary sessile, stigma small capitate; ovules 2 in each locule, rarely 3-10, ascending, sessile; seeds 1-2 in each cell, rarely more; testa black, appressed; embryo small in albumen. The genus is distinguished from *Ornithogalum* chiefly by the color of the flowers and deciduous perianth, from *Hyacinthus* by the segments distinct from the base or very nearly so. Great Britain possesses three species of *Scilla*, *S. verum*, *S. autonoma* and *S. nautana*, while Germany has, in addition to *S. autonoma*, three others, viz., *S. amurensis*, *S. bifolia* and *S. Italicus*.

Among the early flowers there are none more valuable than the Scillas. They vary considerably in form of flower and foliage, and although typically they have blue or blue-purple flowers, most, if not all of the species in cultivation have white and red-purple forms. *Scilla bifolia* and *S. sibirica* are the earliest flower, and of these forms the Asia Minor or Taurian forms are in advance. The form of *S. bifolia* known as *multiflora* is nearly over before the usual type begins to expand. There is also a single-flowered form, while the flower is pleasing *S. sibirica*, and *S. sibirica* the form of the garden a pleasing white *Scilla*, with blue-purple flowers, known to the trade as *S. amurensis*. But these white forms are mostly oddities; the effective ones are the blue-flowering kinds. Occasionally *Scillas* and Chionodoxas are met with (see p. 300). *Chionodoxa Alteni* is the accepted name for a natural hybrid between *Chionodoxa Luciliae* and *Scilla bifolia* first obtained by Mr. Allen, of Shepton, Mallet, in 1891.

None of the hardy Squills require special culture, and if planted where they can remain undisturbed for a series of years, they seldom disappoint. Some are naturalized in the garden, and occasionally enriched by top-dressings of manure, or bulbs that can be planted as early as possible in autumn. The varieties may be increased by offsets taken after the foliage has matured. For the cold greenhouse or conservatory, many of the *Scillas* are ideal subjects. For this culture, 5 or 6 bulbs may be put in a 15-in. pot and the vessel afterward transferred to a coldframe and covered until growth commences. Up to this period very little water will be required, but as the flower-cluster appears the quantity should be increased and the pots transferred to the greenhouse, giving them a position near the glass. The foliage matured, the bulbs may be shaken out of the soil and stored.

Urginea Scilla, formerly called *Scilla maritima*, needs to be mentioned in this connection on account of its yielding a medicine for many centuries held in esteem. Almost every one is familiar with syrup of Squill, and has obtained relief from its use in severe colds. The scales of the bulb contain muscalag, sinistrin, sugar and crystals of calcium oxalate (stated by botanists to ward off smalls); the active principles are scillitoxicin, scillitoxin and scillitin (the latter producing numbness, vomiting, etc.). Scilla bulbs or roots should never be used unless under proper direction, as, in their fresh state they are extremely acrid, and might prove dangerous.

The trade names are considerably confused. Many of the so-called horticultural species and races may be united as mere varieties of species, that have been defined botanically. The following names are believed to include all those in the American trade, but other species are known to fanciers.

INDEX.

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>amurensis</td>
<td>13</td>
</tr>
<tr>
<td>autonoma</td>
<td>8</td>
</tr>
<tr>
<td>bifolia</td>
<td>9</td>
</tr>
<tr>
<td>campanulata</td>
<td>3</td>
</tr>
<tr>
<td>ceratophyllus</td>
<td>8</td>
</tr>
<tr>
<td>ceratophyllus</td>
<td>8</td>
</tr>
<tr>
<td>chionodoxa</td>
<td>5</td>
</tr>
<tr>
<td>difusa</td>
<td>7</td>
</tr>
<tr>
<td>festalis</td>
<td>1</td>
</tr>
<tr>
<td>hispidae</td>
<td>3</td>
</tr>
<tr>
<td>hyoscyamines</td>
<td>11</td>
</tr>
<tr>
<td>italicus</td>
<td>11</td>
</tr>
<tr>
<td>maritima</td>
<td>5</td>
</tr>
<tr>
<td>monophyllos</td>
<td>6</td>
</tr>
<tr>
<td>nautana</td>
<td>10</td>
</tr>
<tr>
<td>nautana</td>
<td>12</td>
</tr>
<tr>
<td>onosa</td>
<td>10</td>
</tr>
<tr>
<td>squillipicrin</td>
<td>2</td>
</tr>
<tr>
<td>squillipicrin</td>
<td>2</td>
</tr>
<tr>
<td>sibirica</td>
<td>12</td>
</tr>
<tr>
<td>tenuiflora</td>
<td>11</td>
</tr>
<tr>
<td>tenuiflora</td>
<td>11</td>
</tr>
<tr>
<td>tenuimana</td>
<td>12</td>
</tr>
<tr>
<td>verum</td>
<td>10</td>
</tr>
</tbody>
</table>
of the perianth, it was removed to Scillas as having the segments distinct or nearly so, and is now often considered as forming a distinct genus (Agrophis, Link; Endymion, Dumort), either alone or with other species which connect it with the other Scillas.

2. *puschkinioides*, Regel. Bulb ovate, tunicate: lvs. radical, 2-4, glabrous, broadly linear, obtuse, 2½-3 in. long; scape low, glabrous; pedicels erect, strict, short, base bluish-violet; bracteoles scarious, hyaline; perianth campanulate, pale blue, middle nerve deeper blue; base of filaments united; anthers linear-oblong; style filiform. Turkestan.

3. *Hispanica*, Mill. (S. *campanulata*, Ait. S. *pftula*, DC.), Spanish Jacinth. Bell-flowered Squill. Lvs. 5 or 6, glabrous, ascending, lanceolate, ¼-1 in. broad, subobtuse, convex at back; scape long; raceme equal, compact; fls. cylindrical-campanulate; perianth usually blue but often becoming rose-purple, or white; pedicels 1-1½ in. long. May, Spain and Portugal. B.M. 1162. —Hardy. Several varieties of it are in the trade under the specific name *campanulata*; viz., alba, white; albo-major, large white; carnea, flesh-colored; hyacinthoides, hyacinth-like; rosea, rose-colored. This species is worthy of wider acquaintance. The bulbs are cheap and easily obtained in autumn, and if planted then they are sure to bloom the following spring.

4. *Numidica*, Poir. (S. *pareifera*, Desf.). Bulb ovoid, 1-2 in. thick: lvs. 4-6, fleshy, herbaeous, linear, 6-8 in. long, ½-3 in. broad, suberect: scape solitary or paired, ½-1 ft. high; racemes dense, 30-60-fl.: pedicels short, ascending, 3-1 in long: bracts minute, linear, evanescent; perianth rose-purple, ½-1 in long: single ovule in each of the ovarian cells: capsule small, globose, grooved. Flowering in winter in its native home, Algeria.

6. *autumnalis*, Linn. Autumn Squill. Starky Hyacinth. Lvs. several, obtuse, channeled, half-terete, growing on through the winter and dying away in the spring; scapes several; racemes Corymbose, spicate, open: perianth rose-colored, ½ in. across. July-September. Europe (Great Britain), North Africa. B.M. 919.—Hardy. The flowering stems generally precede the

2273. Scilla Peruviana in full bloom (× ½). Also known as Scilla elatior.
2274. Scilla Peruviana, at the end of its flowering season.

2273, 2274. Bulb large, ovate, truncate; lvs. many, broad-linear, 6-12 in. long; margins ciliate with minute white bristles, channelled; scape robust, terminated by a many-fl. conical, broad and compact raceme of purple, lilac, reddish or whitish fls.: fls. rotate; corolla persistent; anthers short. May, June. Region of Mediterranean, not Peru. B.M. 749. GN. 27, p. 288. R.H. 1882, p. 306. - The Hyacinth of Peru is not hardy in Mass. It propagates freely by offsets. It flowers all through May and June and forms a most attractive object in the herbaceous border or bed. S. Peruiana, however, has one fault that may tell against it in the opinion of many cultivators—it never flowers two years in succession; it seems to need a whole year's rest after the effort of producing its large spike of flowers.

8. monophyllos, Link (S. monophyllos, Plun. S. pilula, Broth.). Dwarf squill. Leaf solitary, inclosing the base of the scape, 2 in. long, ¼ in. broad, involute, ovate-elliptic, with a cumbous apex, glabrous; scape erect, slender, usually 5-20 ft.; pedicels long, ascending, springing from a small sheathing bract; perianth bright lilac, ½ in. across, open, spreading; filaments light-blue, dilated at base; anthers erect, blue. May, Spain, Portugal. B.M. 3029.—Hardy.

9. biolia, Linn. Fig. 2275. Bulb tunicated, oblong-ovate; lvs. 2, seldom 3, cuneate, 4-8 in. long, ¼-½ in. broad; scape 2-8 ft., ebracteate; fls. stellately rotate; perianth blue, sometimes reddish or whitish; anthers blue, versatile. March. Native to Europe, Asia Minor. B.M. 746. —Hardy. Several varieties of this exquisite little plant are in the trade: *alba*, white-fl.; *rosa*, pink-fl., etc. Cultivators would do well to obtain all the varieties possible; also as many bulbs of this beautiful species as they can afford. It is one of the most charming of hardy, early spring-flowering plants.

It is a graceful and elegant species, suitable for culture in pots.

11. hyacinthoides, Linn. (S. parellorni, Salisb.), Hyacinth Scene. Lvs. 1-2 ft. long, ¼-½ in. broad, narrowly at both ends, minutely ciliate, denticulate on the margins; scape straight, long; racemes many-fl., broad, open; pedicels long, 1½ in.; bracts whitish, minute, persistent; perianth bluish, open, campanulate. Ang. Region of Mediterranean. B.M. 1191.—Hardy. This species is noted for its extreme showiness in flowering. The bulbs are sometimes 3 in. in diam., and produce a profusion of offsets. In Fish's "Bulb Culture" several varieties are mentioned: *carolina*, fine blue; *alba*, fine white, free-flowering; *rosea*, distinct flesh-colored; *rubra*, deep red, large and fine.

12. Siberica, Andr. (S. amera, var. princeps, Don.) Siberian Squill. Fig. 2276. Lvs. 2-4, ascending, narrow, 4-6 in. long; scapes 1-6, 3-6 in. long; racemes 1-3 fls.; fls. rotate, horizontal or drooping, with short pedicels; perianth deep blue. March, Russia, Asia Minor. B.M. 1029. GN. 11, p. 165. P.M. 14:109. L.B.C. 2:151.—Hardy. This plant ought always to have a little shelter. It forms attractive tufts and has a desirable habit for rock gardens. Several trade forms exist; viz., *alba*, mult-flora, pallida.

13. amera, Linn. Star Hyacinth. Fig. 2277. Lvs. 4-7, dissected, ascending, glabrous, 6-9 in. long, ¼-½ in. broad; scapes several, equaling the lvs.; racemes several-fl.; 4-8, open; fls. distant, ½-¾ in. in diam., blue; pedicels ascending or spreading. March, Austria, Germany. B.M. 311.—Hardy. It grows luxuriantly, several flowering stems being found on the same plant.

14. Italica, Linn. Italian Squill. Bulbs ovate, clustered together; lvs. radical, several, flask-shaped, spreading, lanceolate, acute, 4-8 in. long, ¼-½ in. broad; scape solitary, slender, longer than the lvs.; raceme dense, many-fl.; pedicels filiform, spreading; bracts in pairs; fls. fragrant, smelling like blue, pale blue; perianth rotate, blue; segments pubescent at apex; filaments white; anthers sagittate, dark blue. March-May. B.M. 663. L.B.C. 15:1853.—Hardy. This plant has less brilliant flowers than either S. Siberica or S. biolia, but abundantly compensates for the paleness of its blue by the fulness and the sweetness of its fragrance. It is also taller than either of the others.

15. Japonica, Baker (Ornithogalum Japonicum, Thunb. Pterostylis japonica, Schultes, f.). Japanese Agapanthus. Bulb ovoid, 9-12 lines thick; lvs. 2-3, fleshy, herbaceous, 6-12 in. long, 4-16 lines broad, acute; scapes 1-3, strict, erect; raceme 20-60-fl.; pedicels ascending; bracts minute, linear, white; perianth 1½ lines long, rose-purple; capsule turbinate, trisulate, 2½-3 lines long; ovaries solitary in each ovarian locule. Japan.
several small, erect blue fls. in a short, terminal raceme, almost flattened into a corymb; perianth segments scarcely above 3 lines long, spreading. Spring. A plant occurring in stony and sandy wastes near the sea in western Europe, reappearing farther east in Denmark, on the Rhine and Sardinia.—Hardy.

JOHN W. HARSHBERGER.

SCINDAPSUS (an old Greek name, transferred to these plants). Araceae. Climbing perennials, differing from Monstera in floral characters and in the long-petioled, long-sheathed, ovate-lanceolate or ovate-acuminate lvs. Species 9 or 10. East Indies. Scindapsus comprises one popular and worthy houseplant, that known to gardeners as S. argyraeus. For culture, follow directions given under Philodendron.

pictus, Hassk. Internodes of the stem 3-4 in. long, 2 in. thick; petioles 1½-2 in. long; blade 4-6 in. long, 2½-3½ in. wide, one side half as wide as the other, coriaceous, bright green (drying black), obliquely ovate-cordate. Var. argyraeus, Engler (S. argyraeus, Hort. Pothos argyraeus, Hort.), is the cult. form, with broad, deeply cordate leaf-blades which are spotted and blotched above with silvery white. Celebes, Philippines, Java, etc.

AA. Stems with very short basal leaves, or none.

lacistris, Vahl. Great Bulbush. Roots very stout; stems scattered, terete, smooth, tall, stout and flexible, 3-9 ft. high; lvs. reduced to a few basal sheaths; bracts very short; ementum compound, dextrous: spikes in heads of 1-5, oblong-conical, pale brown, 2½-3½ in. long; scales ovate-oblong obtuse, rarely mucronate; perianth bristles 4-6, downwardly barbed throughout; styles 2-3. In shallow quiet water, N. A., Eu., Asia. In Europe the 3-styled form is common; the 2-styled form is often referred to as var. digynus, Godr. (S. Tuberamontaneus, Engler, and Hort.), but is scarcely distinct. Var. zebrina, Hort., is a form with alternate bands of green and yellowish white, often known as Juncus zebrinus.

cernus, Vahl (S. riparius, Spreng., not Hort. Isolypsis gracilis). Fig. 1797. Densely cespitose, forming turf: stems 2-12 in. long, very slender or filiform, cylindrical, erect or more often drooping; basal sheaths leafless or with a very short filiform blade; involucral bract subulate, about equaling the spikelike, the latter usually solitary, oblong-lanceolate, 1½-3½ in. long; scales oblong-oblong obtuse, pale brown or white; bristles none; styles 3; achenes in greenhouse plants rarely maturing. Almost cosmopolitan, except in eastern U. S. and very variable. Grows well in damp pots, the drooping stems producing a very graceful effect. Synonomy much confused.

K. M. WINGAND.

SCIROCCARCAPUS (Greek, hard and fruited; referring to the bony, fructiferous bracts). Compositae. A genus of about 11 species of mostly Mexican herbs, with branching stems and terminal pedunculate radiate heads of yellow flowers in summer.

unseriulias, Benth. & Hook. (Gymnopsia uniseriulias, Hook.). An annual herb 1 ft. or so high, loosely branched, with alternate, deltoid or rhombic-ovate, dentate, petiolate lvs. and fragrant fl. heads, with 5-9 oval or oblong, orange-yellow rays. Moist or shady ground, Texas and south. R. H. 1853:261.

SCOKE. A name for Phyllitis decandra.

SCLOPENDRIUM. See Phyllitis. Many garden forms are cultivated under a variety of names, all derived from Phyllitis Sclopendrium (the Sclopendrium vulgare or the S. officinarum of Europe).
SCOLYMUS

SCOLYMUS (old Greek name used by Hesiod). Commonly, Scopolium, Scopolium Hispanicum (Fig. 2279) is the vegetable known as Golden Thistle or Spanish Oyster Plant. It makes a root much like salsify, except that it is much lighter colored and considerably longer. Its flavor is less pronounced than that of salsify, but when carefully cooked, it possesses a very agreeable quality which is somewhat intermediate between that of salsify and parsnip. It is adapted to all the methods of cooking employed for those vegetables. The particular value of the Spanish Oyster Plant, aside from affording a variety in the kitchen garden, is its large size and productiveness as compared with salsify. The product may be nearly twice as great, for a given area, as for salsify. The seeds are much easier to handle and sow than those of salsify. They are sown in March or April. The seeds, or rather achenes, are flat and yellowish, surrounded by a white scarious margin. The roots can be dug either in fall or spring. The greatest fault of the Spanish Oyster Plant lies in the prickly character of the leaves, which makes the plant uncomfortable to handle. The roots are often 10-12 in. long and 1 in. thick. It is said that the leaves and stalks are eaten like cedars by the people of Salamanca; also that the flowers are used to adulterate saffron.

Scolymus Hispanicus, Linnaeus, is a biennial plant native to southern Europe. The radical Ivs. are very spiny, oblong, pinnatifid, dark green variegated with pale green spots. The plant grows 2-2½ ft. high, is much branched and bears bright yellow flower-heads, which are sessile and contain only 2 or 3 fls., all of which are ligulate. The Ivs. are sessile, terminal and axillary. Scolymus contains 4 species, all natives of the Mediterranean region. S. major, a perennial species, is rarely cult., abroad for its fls., and S. maculatus, an annual species, for its variegated foliage. L. H. B.

SCORPION GRASS. See Myosotis.

SCORPIUS. See Caterpillars and Worms.

SCORZONERA (old French scorzona, serpent; S. Hispanica was used against snake-bites). Compositae. The vegetable known as Scorzonera or Black Salsify is a plant with a long, fleshy tap-root like that of salsify, but differing in having a black skin. The flesh, however, is white. It is cultivated and cooked like salsify, but being somewhat more difficult to raise it is rarer than that vegetable, although considered by many to be superior to it in flavor. The leaves may be used for salads. Scorzonera is a perennial plant, but it is treated in cultivation as an annual or biennial crop.

Botanically, also, Scorzonera is closely allied to salsify. The two vegetables are easily distinguished in root, leaf, flower and seed. The Ivs. of Scorzonera are broader, the fls. are yellow (those of salsify being violet), and the seeds are white. Also, the involucral bracts of Scorzonera are in many series; of salsify, in 1 series. The genus Scorzonera is a large one—over 100 species, all natives of the Old World. Perennial herbs, or rarely annual, annual, floccose, lanceolate or lanceolate; Ivs. sometimes entire and grass-like, or wider, sometimes more or less minutely lobed or dissected; heads long-peduncled, yellow, the fls. all radiate; achenes glabrous or villous. Cult. same as salsify.

Hispanica, Linnaeus. Scorzonera. Black Salsify. Perennial herb 2 ft. high; stem much branched; Ivs. clasping, lanceolate, undulate, glabrous; heads solitary at the ends of the branches. Spain. W. M.

SCOTANTHUS. See Gymnopetalum.

SCOTCH BROOM. Cytisus scoparius.

SCOTCH PINE. Pinus sylvestris.

SCOURING-RUSH. Equisetum.

SCREW BEAN. Prosopis pubescens.

SCREW PINE. Pandanus.

SCROPHULARIA (a reputed remedy for scrofula). Scrophulariaceae. Pigwort. A genus of about 100 species, mostly native of Europe, and of very little horticultural value. They are mostly perennial, tall-growing herbs, with usually large opposite leaves and small, often dull-colored flowers in a terminal thryse in mid- or late summer. Corolla short; the tube globose or oblong, ventricose; lobes 5, unequal, 1 reflexed or spreading, the others erect; stamens 4, the sterile stam. represented by a scale on the throat of the corolla: seeds numerous.

nodosa, Linnaeus, var. Mariländica, Gray. A tall-growing, hardy perennial herb, usually 5 ft. high, often more, with large, dark green, ovate acuminate Ivs. and small, dull purplish or greenish fls. in a nearly naked, open thryse. Throughout the United States.
The plant is sometimes used as a foliage background for the herbaceous border. It is too inconspicuous in flower and too weedy in habit for general use. The typical form is native to Europe and Asia.

F. W. BARCLAY.

SCULLION. See Scullion.

SCUPPERNONG. A variety of grape grown in the South. See Vitis rotundifolia and Grape.

SCURFY PEa. Porsane.

SCURFY GRASS (Cochlearia officinalis, Linn.), a common European perennial, is so called from its anti-scorbutic qualities, which have long been recognized. Scurfy-plant, diuretic, stomachic and laxative properties have been ascribed to it. In general appearance—leaf, flower, fruit—it somewhat resembles its close relative, water cress, and has a strong suggestion of tar. Bruising reveals a disagreeable odor. When cultivated it is treated as an annual, the seed being sown upon garden loam in a cool, shady place where the plants are to remain. It is grown limited extent in America, has escaped from cultivation, but so far has not become obnoxious as a weed like water cress.

M. G. KAINS.

SCUTELLARIA (Latin, dish; referring to the form of the persistent calyx). Labiatae. SKULLCAP. A genus of nearly 100 species of annual, perennial or shrubby plants widely scattered about the world, with simple leaves and flower, yellow or red, tubular, 2-lipped flowers in terminal spikes or racemes or in the axils of the stem-leaves. Calyx in anthesis bell-shaped, gibbous, with a helmet-shaped projection; stamens 4, ascending and parallel, all fertile, the two anterior longer; anthers ciliate, pilose.

M. G. KAINS.

INDEX.

Alpine, 5.

Angustifolia, 8.

Antirrhinae, 9.

Baicalensis, 1.

Brevifolia, 2.

A. Lvs. sessile or nearly so.

B. Flowers entire.

C. Habit procumbent. 1. Baicalensis

D. Fls. in terminal racemes. 2. brevifolia

Dd. Fls. in axils of stem-leaves.

E. Plant with moniform tubers 3. resinosus

Ee. Plant without moniform tubers 4. Wrightii

Bb. Foliage serrate or dentate.

C. Habit erect. 5. alpina

D. Bittercress. 6. galericulata

AA. Lvs. petiolate.

B. Color of fls. not red.

C. Margin of lvs. entire.

D. Shape of lvs. linear 8. angustifolia

Dd. Shape of lvs. oblong. 9. antirrinose.

Dde. Margin of lvs. serrate.

D. Fls. 2-5 in linear racemes . . . 10. lateriflora

Dd. Fls. longer. 11. orientalis

2. brevifolia, A. Gray. A half-hardy, compact perennial, ½-1 ft. high; lvs. numerous, oblong, narrow, about ½ in. in long; fls. dark purple, about ¼ in. long, blooming season long; summer. Dry limestone banks, Texas.

3. resinosus, Torr. A hardy perennial, a few inches high, resinosus; lvs. ½-1 in. long, oval to oblong; fls. violet-blue, 1 in. long. Plains of Colo., Wyo. and Neb.

SEA BEAN

4. Wrightiii, Gray. A tufted perennial, about 6 in. high, with numerous oval, ovate or spatulate-oblong lvs. about ½ in. long and violet or rarely white fls. ½ in. long. Kansas to Texas.

5. alpina, Linna. A hardy spreading perennial, about 1 ft. high, with oval, serrately dentate lvs. and large, purple and white or somewhat yellowish fls. in dense, terminal racemes. July and August. Europe. R.H. 1839:12. — A handsome rock or low border perennial.

6. galericulata, Linna. Hardy perennial by filiform stolons, 1-3 ft. high; lvs. ovate to obovate-lanceolate, about 2 in. long; fls. solitary in the axils of the upper lvs., about 1 in. long. June-Sept. In moist ground throughout the U.S. and in B. B. 338.

7. Mociniana, Benth. A tender, moderately low, shrubby plant, probably the most showy of the genus, with opposite, long-elliptical, acute lvs., and long, tubular, red fls. with a yellow throat, about ½ in. long, in dense, terminal spikes. Autumn. Mexico. R.H. 1872:350. — According to Ga. 10, p. 690, the plants are of easy culture with warm greenhouse treatment and may be grown as bush specimens or in smaller pots with a single stem, when they will flower at about 1 ft. in height. Cuttings are easily rooted.

8. angustifolia, Pursh. A hardy perennial, about 6 ft. high, with lvs. ½-1 in. long, narrowed at the base, and violet-blue fls. ½-1 in. long, with the corolla-tube slender. Moist ground, northwestern United States.

J. B. KELLER and F. W. BARCLAY.

SCUTICARIA (Latin, scentia, lash or whip). Orchidaceae. This genus is remarkable for its long whip-like leaves, which are channelled on one side. No evident pseudobulbs are formed, but each shoot terminates in a long, pendulous leaf. The lvs. are rather crowded on the short rhizome. Fls. solitary or several, on short peduncles. In structure the resemblance Maxillaria is evident, but the plants are easily distinguished by the terete leaves. Sepals and petals similar, the lateral ones forming a mentum; labellum movable, 3-lobed, with large, erect, lateral lobes; pollinia on a transversely elongated stipe. Two species from South America.

These plants require a temperature similar to Cattleya and Laelia, but should be grown on blocks or in shallow baskets in a mixture of equal parts peat, fiber and sphagnum. S. Steelii does best on a block, as the plant grows downward in an inverted position. The compost should be kept moist at all times, particularly the plants are in action. They are propagated by division.

Steelii, Lindl. Lvs. attain a length of 4 ft., as thick as a goose-quill; fls. on short secpaes; sepals and petals oblong, coenurom, pale yellow, with chocolate blotches; labellum large, cream-colored, and purple. Fls. at all seasons. British Guiana. B.M. 3575. B.K. 1893:186 (both as Maxillaria Steelii).

Hedwendi, Planch. Lvs. ½-ft. long; fls. with spreading sepals and petals oblong, sharply acuminate; yellowish green, blotted with brown; labellum ovate-cuneate, white with flesh-colored spots. Brazil. B. M. 4629. F.S. 7:731 (both as Bletia retama Hedwendi). G.M. 41:558.

HEINRICH HASSELBERG and R. M. GRET.

SCYTHIAN LAMB. Refer to Cibotium.

SEA BEAN. Consult a. 135, second column; sea Buckthorn is Hippophae; sea Daffodil is Hypancallis.
SEAFORTHIA

(SEAFORTHIA) (Francis Lord Seaforth.) *Palmaeae.* Seaforthia elegans is a name familiar to every gardener who has room in his conservatory for tall specimens of palms. Twenty years ago this palm was grown to a greater extent in smaller sizes and for a greater variety of purposes, but it has been found one thing that is cultivated under this name is doubtful.

According to Floras Australis, p. 141 (1878) the proper name of Seaforthia elegans, R. Br., is Pycnosperma elegans, Blume. It is variously described as a low or very tall palm; ivy, attaining several feet; segments numerous, more or less toothed or irregularly jagged at the end. Probably the plants cult. as S. elegans are Arundina phanix Cunninghaw. For S. robusta, see *Kloapolystis.* W. M.

SEA GRAPE. *Coccoloba uniflora.*

SEA HOLLY. *Eryngium.*

SEA-KALE (*Crambe maritima,* Linn.) is a large-leaved, strong, cruciferous, perennial, the young shoots of which are eaten in the spring, usually after having been blanched. The plant is little known in North America, but it is worthy of general cultivation in the home garden, for it supplies an excellent of good quality at a season when vegetables are scarce. Sea-kale demands a deep, rich and rather moist soil, in order to give the best results and to maintain its vigor for a long period of years. The plants require about as much room as rhubarb; that is, they should stand from 3 to 4 feet apart each way. The culture and general requirements are much the same as for rhubarb. The young shoots are blanched as they grow, in early spring. The blanching is accomplished by heaping fine, loose earth over the crown of the plant, into which the shoots grow, or by covering the plant with an inverted box or flower pot so that the light is excluded from the growing shoots. These shoots are eaten before the leaves have begun to expand to any extent, and whilst they are crisp and tender. The vegetable is prepared in the same manner as asparagus.

Sea-kale is propagated by root cuttings, and also by seeds. Quicklier results are secured from cuttings. If strong cuttings, 4 or 5 inches long, are taken in early spring and grown in strong soil, the plants may be strong enough for cutting the following spring; but it is usually better not to cut them until two years from starting. The cuttings may be planted where the rooms are to stand permanently, as the plants may be grown in drills in a seed-bed. The latter plan is usually to be preferred, since it allows the plants to receive better care. Seeds give plants that are strong enough for cutting about the third year. The seeds are really fruits or pods, and each fruit may produce two or three plants. Usually the fruits are sown without shellling. The seedlings are raised in the seed-bed and transplanted when one year old to permanent quarters. On good soil, plants of Sea-kale should maintain their vigor for five to eight years after they have come to cut for. As soon as they begin to show signs of decline, new plants should be propagated. Although the plant is hardy in the northern states, it is always benefited by a liberal dressing of litter or manure in the fall. Plants may be forced in hotbeds under the greenhouse benches, as recommended for rhubarb. Sea-kale has large, glaucous, cabbage-like leaves which make it a striking plant for ornament early in the season. It also throw up a strong cluster bearing many rather showy white flowers. However, the plant is rarely propagated for its ornamental value. Sea-kale grows wild on the seacoasts of southwestern Europe.

SEA LAVENDER. *Statice.*

SEA ONION. *V. maritima;* also applied to *Ornithogalum caudatum.*

SEA PINK. *Armeria.*

SEASIDE GRAPE. *Coccoloba.*

SEASON VINE. *Cissus siepoides.*

SEA-URCHIN CACTUS. *Echinopsis.*

SECALE (the ancient Latin name, said to be derived from *secare,* to cut; according to some, applied to spelt.) *Graminae.* Species 2. S. temul, an annual of southern Russia, and S. cereale, the cultivated Rye, which, according to Hackel, is derived from the perennial, S. montanum, native in the mountains of southern Europe and central Asia. Spikelets with 2 perfect fl. sessile on opposite sides of a zigzag rachis, forming a terminal spike, empty glumes subulate and 1-nerved, by which characters the genus differs from Triticum, in which the empty glumes are ovate and 3-nerved.

S. cereale, Linn. *Rye.* Fig. 2280. A tall annual commonly cultivated in Europe, less so in this country, as a cereal. Also cultivated here for annual pasture. Fl. glume long-awned. Much more commonly grown in New York and New England than westward.

A. S. Hitchcock.

SECHIUM (by some said to be derived from *Stegos,* with which the genus was once united, by others to have come from the Greek *sekhos,* a "fold," because spine are fed on it). *Cucurbitae.* One very odd trundel-climbing vine, probably native to the West Indies and adjacent South America. This specimen, S. edule *Seuza,* Fig. 2281, is known under a variety of names, as Choecho, Chelina, Choy-Chow, Chayote, Cabiota, Pepinella. The vine itself, with herbaceous annual stems, is useful for covering arbors in warm countries. The root becomes a large corky tuber, sometimes weighing 20 lbs., and is edible. The fruit is irregularly ribbed, 3-6 in. long (Fig. 2281, from nature), and edible. Sechium belongs to that group of the Cucurbitaceae which comprises 1-seeded fruits. The single flat seed is 1-2 in. long (shown in upper specimen in Fig. 2281), and attached at the upper end of the cavity. It is not removed from the fruit, but the entire fruit is planted. Because seeds are not to be had separate, the notion has arisen that the fruit is seedless. Sometimes germination begins before the fruit drops from the vine. The fruit is variously ribbed and lobed, varying from pale green to cream-colored and white, according to variety, the surface shining and somewhat spongy. In tropical countries the fruit is cooked for eating, much as squash is served with us. Some persons prefer the roots to yams. *Sechium edule* is a common commodity in the West Indies, and the fruits are not rare in northern markets. It is also grown in some extent in Florida and southern California. In northern countries, the plant makes a strong vine in one season but does not bear. The plant has little ornamental value. In Sechium the fls. are monocoeous. The staminate are in short, long-stalked axillary clusters; the pistil-
late are solitary or in pairs on a short pubescent axillary raceme, green or cream-colored. Stamens 3, united into a glabrous or glabrous-lobed, Lvs. 4-6 in. across, cucumber-like, cordate—ovate and 5-7-angled, pointed, somewhat scarious abaxially. The plant grows 50 feet in warm climates. G.C. 1865:53; III. 24:476; 28:450.

L. H. B.

SECHIUM L. sharply a Siberia rule, solve in 5_7-angled, 1636 feet drills Stamens by axillary 10 Amurland in hothouse. cherry-hke. seeds, diameter. large The ramifldra, refuse; ovate to in. in. of 3^cleft. usually 3^-cleft. with 5-lobed Corolla of arboretum, the base, bright greenish. with flowers, the base, entire, bright or yellowish green, glabrous, thin, 1-2 in. long; stamine 12, about 1½ in. long, in 5-10- or 4- or 3-lobed, clusters; pistillate solitary; fr. about 4-5 mm. July, Aug. S. Siberia to Amurland and Mongolia.

S. Leucogynus, Müll. Arz. belongs to Flügge, a genus of 6 species distributed through the tropics of Asia, Africa, and New Guinea. It is easily distinguished from Securinea by the seeds, which are concave on the ventral surface; the fr. is berry-like. F. Leucogynus, Wild, is a spiny shrub, with ter- taceous, light-colored, glabrous branches: lvs. obovate to orbicular, emarginate, cuneate at the base, glabrous, 5½ in. long; fls. small, in axillary clusters, the staminate fls. more numerous and on slender pedicels: fr. globose, white, ½-⅔ in. across. India to trop. Ausr. For cultivation in trop. regions or in the hothouse.

ALFRED REIDER.

SEDGE. Consult Carex and Cyperus.

SEDUM (Latin, sedea, to sit; the plants fix themselves on rocks and walls). Ovatispicae. Sedum is a large genus of flabby-leaved herbaceous plants, mostly hardy and perennial, including the Stonecrop and Live-forever. The flowers are usually small, rarely ⅔-¾ in. across, but the clusters are often showy and 3-4 in. in diameter. There is a pretty blue-flowered species and one with scarlet flowers, but with these exceptions the genus might be divided into two groups, those with yellow flowers and those with white or pinkish flowers. The foliage is always succulent, but otherwise remarkably varied: the leaves opposite, alternate or whorled, entire or serrate, rarely deeply cut, sometimes large, broad and flat, sometimes thick and pulpy, sometimes minute and moss-like. Some of the plants are stout, erect and bushy, but many of them have a set of creep-

Sedum is a genus of about 120 species, all found in the temperate and tropical regions of the northern hemi-

Sedum is the easiest culture. As a rule, they prefer sandy soil, and are very averse to a wet position in winter. They are suitable for carpeting and sandy waste places where few other things will grow. The little yellow-flowered plant with pulpy foliage that spreads in nearly every cemetery is Sedum acre. Sedum are also good in all forms of rock-gardening. They are much used for carpet-bedding, especially the kinds with mealy or glaucous foliage, and those with various metallic shades of purple. In the hardy border, the more robust and bushy kinds are welcome. The genus is chiefly hardy, and the harder border shows fewer bits of color or signs of life. As a rule, Sedums like the sun, but a few of the species may help to solve the difficult problem of carpeting the ground under the smaller trees where the soil is dry and shaded. Sedums are also favorites for hedges and borders, especially the kinds with trailing stems and minute leaves. For greenhouse decoration, S. spectabile is the favorite, as it is perhaps the showiest of the genus. It may be had in flower at any season of the year and remains in bloom a long time. It is also one of the favorite Sedums for window-sills, balconies and boxframes, especially in crowded cities. Sedum acre, however, is everybody’s plant. A pot of it is often the only pleasant sight in an ugly city alley. Sedums are plants for poor folks. The chief points against them are that they have never been fashionable and anybody can grow them. They can be propagated by seeds, but they are easily multiplied by the young offsets. These offsets are somewhat bulb-like in nature and Sedums could probably be propagated if it were worth while by using each leaf of a rosette.

The key to the species is necessarily unsatisfactory. It would answer better for wild plants. In the gar-

INDEX.

INDEX.

sedum, 23.
Aizaeea, 4.
Aizaeea, 10, 54.
Auenenserum, 22.
Aizaeea, 4.
Aizaeea, 2.
SEDUM

SECTION I. HERBACEOUS PERENNIALS, i. e., plants that die down to the root during winter. (In greenhouse culture some become evergreen.)

A. Flowers universal.............. 1. roseum

AA. Flowers blue-purple.

B. Lvs. in rosettes.

C. Arrangement of lvs. opposite 2. Asiaticum

CC. Arrangement of lvs. alternate.

D. Height about 4 in. 3. Middendorffianum

DD. Height 12 in. or more.

E. Stems glabrous.

F. Sepals equal.............. 4. Aizoon

FF. Sepals unequal........ 5. Maximowiczii

EE. Fruit stiped.................. 6. Selkianum

BB. Lvs. broad, roots tuberosous.

C. Arrangement of lvs. scattered (rarely opposite in S. Telephiun),

D. Margins of lvs. dentate, 7. Telephium

DD. Margins of lvs. nearly entire............. 8. telephoides

CC. Arrangement of lvs. opposite (sometimes in 3's in S. spectabile),

D. Buds spherical, abruptly pointed........... 9. maximum

DD. Buds long and pointed,10. spectabile

SECTION II. EVERGREEN PERENNIALS. Foliage does not die during the winter.

A. Foliage flat, broad and relatively thin: lvs. spathulate or wider.

B. Lvs. in tufts or rosettes (at least those of the barren shoots).

C. Fls. yellow: authors yellow.

D. Each fl. ½ in. across... 11. spathulifolium

EE. Each fl. ⅜ in. across. 12. obtusatum

CC. Fls. white: authors reddish.

DD. Barren shoots with lvs. in 3's... 13. ternatum

DD. Barren shoots with scattered lvs... 14. Nevi

BB. Lvs. scattered, i.e., not tufted.

C. Stems erect; fls. whitish or pinkish.................. 15. populifolium

CC. Stems (barren ones) prostrate

D. Fls. yellow.

E. Margin of lvs. coarsely toothed

F. Bases of lvs. above the middle.

G. Petals lanceolate.. 16. Kamtschaticum

PP. Petals linear... 17. hybridum

EF. Margin of lvs. entire... 18. Japonicum

DD. Fls. pink, rose or white.

E. Arrangement of lvs. opposite.

F. Base of lvs. narrowed.............. 19. stoloniferum

FF. Base of lvs. corololate 20. Eversii

EE. Arrangement of lvs. alternate.

EE. Arrangement of lvs. in 3's... 21. sieboldii

AA. Foliage more or less terete: lvs. usually linear, not wider than lanceolate (unless in No. 28).

B. Apices sharply pointed.

C. Fls. yellow.

D. Inflorescence decurved.24. reflexum

DD. Inflorescence not decurved.

E. Cyanea scorpionoid... 25. stenopetalum

SECTION III. ANNUALS OR BIENNIALS. These die after flowering and fruiting. Annually flower the first year, biennial the second.

A. Lvs. flat, not cylindrical.

B. Fls. scarlet...................... 36. sempervivoides

BB. Fls. yellow...................... 37. Formosanum

AA. Lvs. more or less cylindrical.

BB. Fls. blue...... 38. eruculce

BB. Fls. dull rose or white... 39. villosum

SECTION I. HERBACEOUS PERENNIALS (Species 1-10).

1. roseum, Seep. (S. Rhoeadia, D.C.). Rootstock thick, fleshy, exhaling a perfume of rose water: height 6-12 in.; lvs. scattered, oblong, 1½ in.; fls. greenish or reddish purple, in a terminal flat-topped cyme about 1 in. across; petals 4; stamens 4 in the male fl., absent in the female; carpels in the female fl. 4. Summer, Eu. N. Amer., Himalayas.—The only species here described that has universal flowers. A neat-growing plant suitable for rockeries or the front row of borders.

2. Asiaticum, Spreng. Height 6-12 in.: lvs. opposite, linear, coarsely and irregularly toothed; fls. greenish yellow, in compact, globose cymes, floral parts in 8's. Summer. Himalayas.—Cultivated abroad and possibly in America. Its almost piniafuloid foliage makes it very distinct. In India it is said to have red flowers. It seems to suffer from the wetness of an ordinary border in winter, and should probably be wintered under glass.

3. Middendorffianum, Maxim. Lvs. alternate, oblong-lanceolate, dentate toward apex; fls. yellow, in a flat-topped cyme. Summer. Amuriland.—According to J. W. Maun, it grows 4 in. high, and has deep green foliage which becomes a rich purple in winter. Woolson says it is densely tufted.

4. Aizoon, Linn. Height 1 ft. or more, usually 1½-2 ft.; lvs. alternate, oblong-lanceolate, coarsely and irregularly toothed for the greater part of their length, 2½ x ⅜ in.; fls. yellow, ½ in. across, in a loose, pendulous cyme 1-3 in. across. Late summer. Siberia.—An old garden favorite, suitable for the harder border and for rockeries.

5. Maximowiczii, Regel. Height 1 ft.; lvs. subopposite or alternate, oblong-ovate or oblong-lanceolate, regularly toothed; fls. yellow, in a dense, flat cyme, July, Aug. Japan, Amuriland. Gr. 19, p. 285; 27, p. 316. —By some this is considered a variety of S. Aizoon. It is similar to S. Aizoon in habit but larger, differing in the sepals of unequal length and in the peculiar flat-shaped fl.-buds, which are dilated below and narrowed into a long beak above. Desirable for borders; also used for carpet beds. Seeds, as well as plants, are offered.

6. Selkianum, Regel. Also spelled Selkianum. Height 12-18 in.; lvs. alternate (?), serrate in the distal third; fls. yellow, nearly 1 in. across, in a hollow-topped, leafy cyme. Late summer. Amur, Manchuria.—Resembles S. Aizoon but has narrower and pilose leaves. Offered in 1893 by John Saul.

7. Telephium, Lind. Evergreen. Live-Forever. Fig. 2262. Height 12-18 in.; lvs. scattered, rarely opposite, oblong-ovate, obtuse, dentate; fls. pink, spotted red, or
Sedum sometimes pure white, in dense, terminal and lateral subglobose cymes, July, Aug. Eu., N. Asia. Gn. 27, p. 316. — Naturalized in America, where it spreads much but blooms little. Vars. hybridxum, purpureum and rubrum are live American trade names representing forms with dark purple foliage, the last-named variety being said to retain its purple color all summer. All the forms are suitable for the front rows of borders and for rockeries. The young shoots in spring are pretty objects and differ with the different varieties. The larger forms with bright red are preferable. S. purpureum and purpurascens, Koch, are varieties of S. Telephium. Subspecies Fabaria, Masters (S. Fabaria, Koch, not Hort.). This is regarded by Masters as a subspecies of S. Telephium, with Ivs. narrower than in the type, the cymes terminal and shorter peduncled; fls. smaller and earlier; petals less recurved. It is doubtful whether this is really in the trade. See S. spectabile.

8. telephium, Michx. Height 6-12 in.; Ivs. scattered, 2 x 1 in., oblong-obovate, nearly entire or sparingly toothed; fls. flesh-colored, in small dense cymes 1-1½ in. across. June, Alleghenies from Md. south. — Offered 1801-92 by H. P. Kelsey.

9. maximum, Suter. A stout, bushy plant 2 ft. or less high, with either green or purple stems; Ivs. ovate-acute, more or less cordate, crenate-dentate; cymes terminal and lateral on long peduncles, forming a loose panicle; petals whitish, spotted red towards tip. Aug.-Oct. Eu., Caucasus, in Northwestern Asia. G. 27, p. 316. — Var. variegatum, Hort., has and green foliage, according to J. W. Manning. F.S. 16:1669 (as var. verricolor) shows a form with rosy purple stems; Ivs. green, yellow and white, margined rosy purple. This species has many forms, the stems green or purple, fls. green or reddish, Ivs. cordate or tapering at the base, spreading or recurved, variegated or not. It is the best for borders, but in the autumn is apt to get too straggly and needs support.

Var. haematodes, Mast. Stems 2-2½ ft. high, deep purple; Ivs. 5 x 3 in., oblong-ovate, obtuse, coarsely and irregularly toothed, purplish; petals whitish, tipped red. September. Here belongs S. atropurpureum, Hort., according to Masters, the plant or plants passing as such in America are very different. S. atropurpureum, Turez., which appears as a good species in Index Kewensis, is probably a synonym of S. roseum.

10. spectabile, Bor. (S. Fabaria, Hort., not Koch). Showy Sedum. Fig. 2289. This is the most popular of all Sedums and is used for the greatest variety of purposes. Robust, glaucous, 1½-2 ft. high; Ivs. opposite or in 3's, 3 x 2 in., ovate, obtuse, entire or obscurely wavy-toothed; fls. ½ in. across, in flat-topped, inversely pyramidal, leafy,umbellate cymes 4 in. across. Sept.-Oct. Possibly from Japan. Gn. 27, p. 316; I. H. 8:271. — The fls. vary from rose to purple and perhaps to white. Pitcher & Manda offered var. album. S. purpureum and roseum are trade names. Also a form with variegated foliage has been advertised. This species remains in bloom a long while and is very attractive to butterflies. Masters declares that it thrives in stiff clay, and does not do so well in lighter soils.

Section II. Evergreen Perennials (Species II-55).

11. saxatilifolium, Hook. Barren stems creeping, with terminal rosettes of oblate Ivs.; flowering branches erect, and bearing scattered club-shaped Ivs.; fls. yellow, ⅔ in. across, in terminal cymes; sepals oblong-obovate. May, June, N. W. Amer. G. C. II. 10:377. Gn. 24:145. — Offered in 1881 by Gillett, but is probably not cult, in eastern states, and probably requires pot culture indoors. Here may belong Franceschi's S. saxatilifolium, a California species, which he calls a "plant among Sedums, growing several ft. high." Masters' plant is not over 1 ft. high.

12. obtusatum, Gray. Barren stems prostrate, with rosettes of spatulate Ivs.; fls. stems erect, ultimately leafless and then scarred; fls. yellow, in terminal, umbellate cymes 1½-2 in. across; sepals oblong-obovate. June, July, Calif. — Once offered in America, but probably not now in cult.

13. ternatum, Michx. Fig. 2284. Barren stems prostrate, with terminal rosettes of spatulate Ivs.; Ivs. of the flowering branches scattered, oblong, acute, all the Ivs. in whorls of 3: fls. white, ⅔ in. across, in terminal, leafy, 1-sided, 3-parted cymes; floral parts in ½'s, July, Aug. Pa. to Ill. and south. B.M. 1577. B.R. 2:142.

14. Nevi, Gray. Barren stems prostrate, with terminal rosettes of obovate-spatulate Ivs., tapering into a short stalk encircled at the base, sprinkled with pink dots; fls. stems erect, with appressed, scattered Ivs., similar to, but smaller than those of the barren stems; fls. white, ⅔ in. across, in forked cymes whose branches are about ⅔ in. long and recurved; anthers brownish purple. July, Mts. of Va. and Ala. — Hardy in Mass. and desirable for edgings or rockeries, according to Edward Gillett.

15. populiolium, Pall. A very distinct species by reason of its shrubby base, stalked, poplar-shaped Ivs. and corymbs of whitish fls., which have the scent of hawthorn. Roots fibrous; stems 6-10 in. high, branched; fls. alternate, ovate, acute, coarsely and irregularly toothed; fls. nearly ½ in. across, whitish or pinkish, in corymbose cymes; stamina pinkish; anthers purple. Ang. Siberia. B.M. 211. Gn. 27, p. 316. R.H. 1857, p. 150. — Rare in cult., but desirable for borders and rockeries and makes a charming pot-plant.

16. Kamtschaticum, Fisch. & Mey. Height 4-6 in.; Ivs. alternate or opposite, obovate, coarsely, but regularly toothed, above the middle; fls. yellow, ⅔ in. across, in umbellate cymes 1-3 in. across; petals lanceolate. Late summer. E. Asia. Gn. 25, p. 531; 27, p. 317.
SEDUM

17. hybridum, Linn. Creeping, glabrous or glandular: lvs. alternate, stalked, spatulate, coarsely toothed in the upper half; fls. yellow, in umbellate cymes 2-3 in. across; petals linear. Summer. Siberia.

18. japonicum, Siebold. Diffuse: lvs. scattered or opposite, spatulate, acute; entire: lfs. yellow, ½ in. across, in terminal and lateral panicled cymes; petals lanceolate. Var. variegatum, Hort., has lvs. with golden blotches, according to John Saut. "S. macrophyllum aureo-margina-

2285. Stonecrop, or Wall Pepper—Sedum acre (× ½).

19. stoloniferum, Gmelin (S. spicarium, Bleib.). Par-

25. stenopetalum, Pursh. Glabrous; stems 3-6 in. high, erect from a decumbent base; lvs. crowded on

26. sarmentosum, Bunge. Glabrous: lvs. opposite or whorled, linear: fls. yellow, ½ in. across, in a flat-topped, umbelate, 3- or forked cyme. China.—Var. carneum (S. eremophorum variegatum, Hort.), has pink stems: lvs. marked with marginal stripe of white or cream-color. This variety is grown in greenhouses and for carpet beds and edgings.

27. pulchellum, Michx. Glabrous, 3-6 in. high: lvs. linear, terete-pointed, gibbous at base, scarcely ½ in. long; fls. rosy purple, ½ in. across; inflorescence a 3-4-branched cyme, with erect fls. crowded in 2 rows along the upper surface and each provided with a leafy bract. June-Aug. U.S., B.M. 6229. Gr. 27, p. 315. G.C. II. 10.6052.—The minute foli- age assumes rich tints of red, brown and purple. The branches of the inflorescence are 2-4 in. long and gracefully arched.

28. acre, Linn. STONECROP. WALL PEPPER. LOVE ENTALE. Fig. 2285. Barren stems creeping, branched, about 2 in. long; fls. stems 2-3 in. high; fls. un-

29. oppositifolium, Sims. Very close to S. stolonif-

30. oppositifolium, Sims. Very close to S. stolo-

31. Hispanicum, Linn. Glabrous: fls. stems 3-4 in. high, reddish; lfs. ½ in. long, linear, greenish gray, becoming reddish, studded with fine hyaline pimplies at

2266. Sedum carneum. Natural size.

several times as long as thick, and in 6-7 rows, rather than 5. Europe, rarer. In American gardens it is said to grow 6 in. high, and flower in June and July.—Mostly used for carpet beds.

30. dasyphyllum, Linn. Glabrous, glabrous or glandu-

31. Hispanicum, Linn. Glabrous: fls. stems 3-4 in. high, reddish; lfs. ½ in. long, linear, greenish gray, becoming reddish, studded with fine hyaline pimplies at
the lips; cymes 3-7-branched, unbranched; buds 5-angled; fls. pinkish white, ½ in. across. July. Central and southern Europe. — Readily distinguished by having the floral parts in 6's.

32. brevifolium, DC. Glabrous. lvs. in 4 rows, a tenth of an in. long, pinkish, densely covered with a mealy pubescence; fls. ½ in. across; petals white, with pink midrib; anthers pink. Western Mediterranean region. — Manning says it grows 4 in. high and blooms in July. August. Said to be exceptionally sensitive to sulphurous moisture at the root.

33. Lydium, Bois. Glabrous, 3-6 in. high: lvs. ½ in. long, linear, greenish or red-tipped, auricled at base and with numerous pinpoints at tip when seen with a lens; buds angular; fls. one-tenth in. across, pinkish; anthers reddish. Aug., Sept. Asia Minor. — Var. aureum, Hort., was offered by John Soul in 1893.

35. Monregalese, Bulbis (S. crenatum, Desf.). Glabrous, except indorsescence, which is glabular: lvs. linear; fls. ½ in. across, white; buds rounded, pointed; stamens pinkish. N. Italy. Corbisa. L. 5:464.

Section III. Annuals or Biennials (Species 36-39)

37. Formosanmm, N. E. Br. Height 6 in.: stem repeatedly branched in a dichotomous or trifurcate manner: lvs. 1-3, in whorls at branchings of stem, with occasionally 1-3 on internodes, flat, spatulate; fls. yellow. Figs. 9-10. Int. into S. China 1909.

38. carileum, Linn. (S. asciatum, Desf., not Royce). Fig. 2286. Glabrous, or pilose indorsescence, 2-3 in. high: lvs. ¼ in. long, oval-oblong to lanceolate, pale green, spotted red; cymes 1 in. across, with recurved branches; fls. ½ in. across, pale blue, 3-7-merous. S. Afr. B. M. 2224. B. K. 6:520. G. 27, p. 315. — Carpet beds. Sandy soil.

39. villosum, Linn. Glabrous-pubescent, 3-4 in. high, with no barren branches: lvs. 3-5 times as long as thick; fls. few, dull rose (or white according to Masters) in a small, loose cyme. Bogs and stony rills, mountains of Eu. — This is one of the very few that preclude water. The white-flowered form is advertised by one dealer in perennials. The species, however, is an annual.

SEEDAGE. Under this term may be included all knowledge respecting the propagation of plants by seeds. The wood was first used, so far as the writer is aware, in 1857. It is largely equivalent to the French semi, and is comparable with the words grafting, layerage and cutting. In general literature and common speech of culture, the term is applied to the practice of growing plants from seeds, and is the outcome of flowering and which is used for propagating the species. In the technical or botanical sense, however, the seed is the ripened ovule. The seed contains an embryo, which is a miniature plant. The embryo has one or more leaves (cotyledons), a bud or growing point (plumule) and a short descending axis (caulicle). From the caulicle or stemlet, the radicle or root develops. This comes to be a minute dormant plant. Each embryo is the result of a distinct process of fertilization in which the anther of the same or another flower has taken part. The ovule is contained in the ovary. The ripened ovary is the seed-case or pericarp. The pericarp, with the parts that are amalgamated with it, is known technically as the fruit. In many instances there is only one seed in the fruit; and the seed and its case may adhere and form practically one body. Many of the so-called seeds of horticulturists are really containing one or few seeds. Such are the seeds of beet, lettuce and sea-kale, and others are fruits containing a single seed. Acorns, walnuts, butternuts and chestnuts are also fruits; so are grains of corn, wheat, and the "seeds" of strawberry. The keys of maple are double fruits, with two seeds (Fig. 2287). Beans and peas are true seeds. The fruit part is the pod in which they are borne. Seeds of apples and pears are also true seeds, the fruit being the fleshy part that surrounds the seed. Sprouting is the unfolding and the growing of the dormant or embryo plant. The first visible stage in germination is the uncurling of the seed. The second stage is the germination of the embryo, or the bursting of the pericarp, and the caulicle appears. When the calicle protrudes, the seed has sprouted; and this fact is taken as an indication that the seed is viable (Fig. 2289). Germination is not complete, however, until the young plant has made vital connection with the soil, has developed green assimilative organs and is able to support itself (Figs. 2290 and 2292). See also, Figs. 2291 and 2292. Seeds that have sufficient life to sprout may still be too weak to carry the process to completion. The ideal test for sprouting is the viability of the seeds to plant them in soil in conditions that somewhat nearly approach those in which they are finally to be planted. This test eliminates the seeds which are the very weak and are not able to grow under ordinary conditions and to push themselves through the soil. The sprouting test made in a specially prepared device, in which all conditions are regulated to a nicety, may be of the greatest value for purposes of scientific study and investigation and for the making of comparative tests between various seed lots, and the greater the germinating power of the seed, the less likely will the sprouting test be. But one must not expect that the actual germination will always be as great as the percentage of sprouting. In many cases, the differences in results between these tests are due to the fact that the germination power of the seed is used up before the sprouting device, and the germination tests in well-pre-

239. Sprouting stages — Castor Bean.
pared soil in the open, may be as great as 50 per cent. Viability varies with seasons and other conditions. Within the general statement that the older the seed the less the viability, yet the reverse may be true within narrow limits. Sometimes lettuce and melons that germinate only 50 per cent in December, germinate 70-90 per cent in April.

In order that seeds shall germinate, they must be supplied with moisture and be given a definite temperature. The requisite temperature and moisture vary with the different kinds of seeds, and this is determined only by experience. Seeds may be planted in any medium which supplies these requisite conditions. Although seeds are ordinarily planted in the ground, such practice is not necessary to germination. They may be planted in coconut fiber, moss or other medium. However, the ground may supply the requisites for germination, and it also supplies plant-food for the young plantlet when it begins to shift for itself: and, furthermore, the plants are in the position in which they are desired to grow. In the case of many seeds, germination is more rapid and certain when the seeds are sown in coconut fiber or other medium, for the conditions may be more uniform. As soon as germination is fairly complete, the plants are transplanted to the soil. The depth at which seeds shall be sown depends on many conditions. Out of doors they are usually necessary. The finer and moister the soil, the shallower the seeds may be planted, other things being equal. Better results in germination are secured when the seeds are sown in a specially prepared seed-bed. The conditions may then be better, the gardener is able to protect the young plants from cold and from insects and fungi; and he is enabled also to save himself labor. In transplanting from the seed-bed to the field, the gardener unconsciously chooses only the best plants and thereby the crop is improved. The seed-bed may be in a forcing-house or hot-bed, or on the surface. If it is in the open, it should be near the buildings, where it can be visited frequently and where water may be applied as needed. If the bed is to be used late in the season when the soil is naturally dry, it is well to cover it the previous spring or fall with a very heavy coating of manure. This retains the moisture, and the leaching from the manure adds plant-food to the soil, there-by enabling the young plants to secure an early start. When the seeds are to be sown, the manure is removed and the surface is then in ideal condition. In the handling of young plants in seed-beds, one must take pains that the plants are not too thick and that they do not suffer for light, else they may become "drawn" and be practically worthless. In greenhouses and hotbeds, it is well to handle common vegetables and flower seeds in gardeners' flats (Fig. 2290). These flats are easily handled, and the soil is so shallow that it can be kept in uniform conditions of temperature and moisture. The seeds of some of the finer and rarer kinds of ornamental plants require special treatment. These treatments are usually specified in the articles devoted to these plants.

Details of the handling of very delicate seeds are well discussed in the article on Orchids.

As a rule, seeds germinate best when they are fresh, that is, less than one year old. Some seeds, however, of which those of melons, pumpkins and cucumbers are examples, retain their vitality unimpaired for a number of years, and gardeners do not ask for recent stock. Seeds of corn salad should be a year old to germinate well. Very hard, bony seeds, such as haws and viburnums, often do not germinate until the second year. In the meantime, however, they should be kept moist. Seeds of most fruit and forest trees should be kept moist and cool, otherwise they lose vitality; yet if kept too moist, and particularly too close or warm, they will spoil. Nuts and hard seeds of handy plants usually profit by being buried in sand and allowed to freeze. The freezing and the moisture soften and split the integuments. Sometimes the seeds are placed between alternate layers of sand or sawdust; such practice is known technically as stratification.

L. H. B.

Seed Breeding:—The marvellous industrial and commercial development which has characterized the latter part of the nineteenth century is nowhere more marked than in the art and practice of seed growing. Whatever may have been their intellectual belief, most planters have acted, up to within a few years, as if seed was indeed essential to the production of a crop, but only in the way that water and manure are essential. The only question was whether or not the seed would grow. It might be desirable that the seed all be of some particular kind so that the crop would ripen all at once, but beyond that the breeding of the seed was given very little consideration. It is only within a few years that a majority of even good cultivators have come to recognize in their practice the fact that the possibilities and limitations of a crop are as positively determined by the seed used as is the character of the fruit of an orchard by the trees of which it is composed. There have always been exceptional men, who fully appreciated the importance of seed selection and breeding, which they practised within their own gardens to secure a supply for their own use, but even professional seedsmen formerly gave little heed to scientific seed breeding, being quite content to "rogue" out mixtures or poorer plants rather than to select and breed only from the best. Now, every seedman who values his reputation maintains more or less extensive stock seed farms, where plant-breeding is conducted on the same principles and with the same sort of skill and care that is used in the breeding of animals.

The general method followed is first to form a clear conception of just what points or qualities give value to a variety and what a perfect plant of that sort should be. Then a few plants—say ten—which come as near this ideal as possible are selected and the seed of each saved separately. These separate lots are planted the next spring in continuous blocks, and the plants given an opportunity for their most perfect development. As they approach maturity the lots are carefully examined.
and if those in one or more blocks show either general inferiority or a large portion of inferior plants, the entire block is condemned and root out, even if in doing so some very fine individual plants are destroyed. The remaining plants of the several blocks are then carefully examined and those selected which shows the closest adherence to the desired type, and from it a few plants are selected and their seed saved separately for planting in blocks the succeeding year. Then the remaining plants of this and the other blocks which escaped the open at one or more tapping are very carefully examined and all inferior ones removed, and the seeds from the plants which still remain are saved together. These are usually sufficient in quantity to plant a field, the product of which is used by the seedman for his general stock seed. From the stock seed he grows the seed which he offers his customers. The same process is repeated every year, or at least every few years, and results in marked improvement, if not in type, at least in the fixing and making permanent the better qualities of the variety. Having thus obtained stock seed which is of superior quality and sure to reproduce itself, the seedsmen contracts with some farmer, located in a section where soil and climate are favorable to the best development of the sort, to plant a large field and save the entire seed produced. This the farmer does with little regard to selection, taking pains only to guard against contamination from adjoining fields, and to remove any chance sports or mixtures that may appear. The seed thus produced is what the seedman furnishes his customers. This plan enables the professional seedsmen not only to produce cheaper seeds, but seeds of better quality than the ordinary planter can, or at least is likely to produce in his own garden, and in consequence gardeners have come to get more and more of their seed from the seedsmen, whose business has correspondingly increased.

In 1900 a single seed firm contracted for the growing of more than 200 acres of one variety of watermelon seed, and received on its contracts over 30,000 pounds. More than half of this came from a single field of over 50 acres, and in this entire field there were not 50 fruits which were not good types of the variety. One could go to any part of it and gathering together the nearest 100 fruits would find that at least 80 of them were so nearly alike as not to be distinguished from one another; while of the remaining 50 at least 40 could be distinguished only by some mark that had resulted from accidental causes. The same firm had 20- and 40-acre fields of beans, peas, corn and other vegetables in which every plant was, as it were, the grandchild of one or another variety, and which was itself the product of years of previous selection. Such seed is much more reliable than that produced in a small garden, where other plants of the same species are growing in near-by gardens and fields.

W. W. TRACY.

Seed Testing.—Scientific seed testing was inaugurated in 1859 by Dr. F. Nobe, director of the Experiment Station at Tharan, Saxony, who was impressed by the large amount of impurities and the few germinating power of many commercial seeds, for which the German farmer was paying fancy prices. The publication of the results obtained by him excited much comment and laid the foundation for the present extensive system of European seed control. At the present time there are more than one hundred so-called seed control stations in Europe alone. Some of these are independent institutions, while others are conducted as branches of agricultural experiment stations.

The quality of seeds cannot be told by a mere casual inspection but is ascertained only by a careful test. This should include three steps: (1) an examination for purity (freedom from foreign matter), (2) vitality, and (3) genuineness, or truthness to name. The latter is known to seedsmen and growers as purity of stock. Unless seeds possess a high vitality in all respects their use will entail great loss to the planter.

Purity Test.—The percentage of purity is determined by weight, from a fair average sample of seed selected from different parts of the same consignment. If other grains are taken with a sampler, consisting of two hollow cylinders of metal, one inside the other, and about one inch long, and 50 pounds. They are pointed at the bottom and contain a sample, or cut open, the holes. The sampler, with the holes open, is thrust into the grain in the car or open bag for its entire length. When filled with seeds the inner cylinder is turned so as to close the holes, and the sampler removed. The samples are weighed, and if the number of grains or seed in the sampler, divided by the number of grains in the sample, gives a figure of 0.5, the mixture is considered pure; if less, the mixture is considered impure.

The final test, the actual germination test, is then made, and the per cent. of seeds that actually germiate is recorded. If the test is a successful one, it will add about 10 per cent. to the value of the seed.

The next and very important step is a chemical examination of the seeds. The seeds are weighed in a sample and the amount of each plant ingredient determined. The tests are made on the basis of the amount of each species in the seed, as well as on the basis of the amount of each chemical compound of the species. The results are recorded, and the per cent. of each species is determined.

The last step in the process is the actual testing of the seed for weediness. The seed is planted in a shallow row and watched for the emergence of weeds. The per cent. of weed seeds is recorded, and the per cent. of each species is determined.

By means of a hand lens and by reference to a standard collection of economic seeds, the foreign seeds in the sample are next determined. If dodder, Canada thistle, ergot, wild mustard, bulbs of wild onion, chicory, Russian thistle, cockle, quack grass, penny cress, wild oats, or wild flax are present the seed should be re-
The reference collection of seeds should be kept in neatly labeled glass bottles, without necks, tightly stoppered and systematically arranged in shallow pasteboard boxes (see Fig. 2295). A convenient size for these bottles is 2 in. long by 3-5 in. in diameter. A tray holding 100 of such bottles should fit into an ordinary herbarium case. At the collection of such a card index will be of great assistance in finding the specimens.

Germination Tests.—The seeds used in germination tests must be taken indiscriminately from pure seed which has been thoroughly dried. The selection of plump, nice-looking seeds for these tests, as frequently practiced, impairs the authenticity of the result.

Tests may be conducted in the laboratory between damp cloths or blotters, or in porous sponges, or in sand or soil in a greenhouse. Seeds which are known to germinate with difficulty should be tested in a greenhouse as well as in the laboratory. The same is true of any species of seed whose conditions of germination are not well understood.

While damp blotters serve as the best substratum under ordinary circumstances, and especially when a large number of tests are to be made, they do not answer as well for fine, slow-germinating seeds like tobacco and many flower-seeds, owing to the fact that the blotters sometimes adhere too closely to permit the proper circulation of air. This may be remedied to a certain extent by placing narrow strips of glass between the folds, but main reliance in such cases should be placed upon soil tests.

All tests are to be made in duplicate, using two lots of 100 seeds each of peas, beans, corn, carrots and others of a similar size, and 200 seeds of clover, cabbage, lettuce, etc. The more seeds taken for test the less the chance of error. However, 5 per cent to 10 per cent of variance may be expected between the two lots of seed, even though they might have been taken from the same plant. In the case of a greater variation than 10 per cent the test should be repeated. Seeds upon which moulds form quickly are likely to be old stock.

The seeds should be inspected daily, a note being made of those having sprouted, which are then thrown out. In testing seeds of the pea family (Leguminosae) one-third of those remaining hard and fresh at the close of the test are usually counted as having sprouted. The average of the duplicate tests is to be taken as the percentage of vitality. Averages should not be made, however, between results obtained by different methods, such as blotters and soil.

Laboratory tests are preferably made between damp blotters placed in a metal chamber heated by gas, the heat being controlled by a thermo-regulator. The blotters must be free from soluble chemicals. Blue blotters will be found less trying to the eye than white. The germinating chamber may be of any form which allows proper control of the conditions of light, heat, air and moisture. The standard chamber adopted by the association of American Agricultural Colleges and Experiment Stations was designed by the writer, and serves equally well for bacteriological purposes or experiments in plant physiology as for seed testing (see Fig. 2296).

It is made of 20-ounce corrugated copper, and is 2 feet long, 18 inches deep, and 2 feet high, outside measurements. The door, except the hinge, is covered with two layers of felt, each 1/2 inch thick.

A water space is afforded by the double walls, which extend on all sides except the front and are 2 in. apart. Entrance to this water jacket at a, d (Fig. 2296), while the water can be drawn off at g. At c, e, on the top, and at f, near the bottom of one end, are 1-inch openings into the chamber. One of the upper openings may be used for the insertion of a thermometer, if desired. Owing, however, to the influence which the external atmosphere exerts upon thermometers whose tubes are partly exposed, provision has been made for holding two thermometers in a horizontal position, one on the inside of each panel of the door to the chamber, by means of hooks of stout copper wire (Fig. 2297, c, a).

The door is made in 2 panels, each consisting of 2 places of thick glass not over 1/2 in. apart in a copper frame, which is covered inside with felt. The inside margin of the door is provided with a projection (Fig. 2297, c) which fits snugly into a felt-lined groove (Fig. 2297, b), extending around the front side of the chamber. The door is 3 in. shorter than the front of the chamber, the remaining space being closed with copper and provided with a ventilator (Fig. 2296, b), which permits the exit of carbon dioxide, and can be closed tightly with a slide. Perfect closing of the door is further effected by a copper slide extending along the front margin, which catches firmly at the top and bottom of the chamber (Fig. 2297, d, d). This device, together with the groove and its corresponding projection, are adapted from the Rohrbeck bacteriological chamber. The outside door is furnished with a frame into which slide two plates of galvanized iron painted dead black inside and covered with felt (Fig. 2296, i, j). By this arrangement the interior of the chamber may be kept dark or exposed to light, or, if desired, one-half may be dark and the rest light, the other conditions remaining the same. By raising these slides the thermometers can be read without opening the door. Glass plates of various colors may be substituted for the slides, if the effects of different rays of light on plant-growth are to be studied.

Seven movable shelves, placed 2½ in. apart, are held in place by copper brackets 1 inch wide. These shelves are made of brass rods 1½ in. apart, and each one is capable of holding up 60 pounds weight. The temperature is controlled by a low-temperature thermo-regulator (Fig. 2296, b). A very low and equalized flame is secured with a microbunsen burner (Fig. 2296, e). One of the openings into the water jacket (Fig. 2296, a) is 2 in. in diameter to admit a fluous thermo-regulator, if a very
SEEDAGE

even temperature is desired, as in bacteriological work. Fresh air or different gases can be forced into the chamber at one of the openings at the top (Fig. 2296, c, e) and out at the bottom (Fig. 2296, f). Each of the openings at the end (Fig. 2296, r) is closed with a screw cap. The chamber is provided with three tin-lined copper tops, each having a narrow ledge around the inside near the top, which serve to hold copper rods with folds of cloth, if the experimenter wishes to test seeds according to the Geneva pan method. The pans also serve to hold porous sponges or plates.

The chamber when empty weighs about 100 pounds, and is therefore easily moved. The shelves will hold about 60 different water tests, with an equal number of duplicates. It rests upon a detachable base consisting of a stout iron frame 15 in. high, inclosed with a sheet-iron jacket.

Other Forms of Germinating Apparatus.—The so-called "Geneva Station" at Geneva, N. Y., consists of an oblong pan of galvanized iron or tin with ledges around the inside near the top upon which are suspended metal rods. (Fig. 2296.) Over these rods (y, p) is hung a strip of cloth, arranged in folds, with each end of the strip hanging down into the water, which covers the bottom of the pan. The lower edges of the folds are sewed as at o to hold them in place. The seeds are placed between these folds and are kept moist by capillary attraction; no provision is made for regulating the temperature, the pan being placed in an ordinary living-room.

Porous sponges of unglazed clay set in shallow pans containing water are often used for fine seeds. Owing to the difficulty of procuring clay sponges of equal porosity plaster of Paris germinating dishes (Fig. 2299) are recommended. These can be made by any one at a trifling cost by means of a wooden mold, with a detachable top which consists of an empty pan of glass to which a Petri dish is attached with glue. (Fig. 2290.) A very simple apparatus for sprouting seeds is shown in Fig. 2291. It consists of a small tin basin "re-dipped," which is given two coats of mineral paint both inside and out to prevent rusting. The bottom of the basin is covered with water, and a small flower pot saucer is placed inside. The seeds are laid between two layers of moist blotting paper placed in the bottom of the saucer, and a pane of glass covers the dish, which is to be kept in a temperature of about 70° F., such as an ordinary living-room. The basin may be left partly open from time to time to permit exchange of air and gases. By using a good-sized dish with small sponges, and renewing the water occasionally, several kinds of seed may be tested at little expense. Extremes of temperature and excessive moisture must be avoided.

A still simpler germinating outfit than this and quite satisfactory for most cereals and vegetable seeds consists of two soup plates used as pans, and two layers of cloth to hold the seeds. The clothes should be kept moist but not too wet. (See Fig. 25, Yearbook of the U. S. Department of Agriculture, 1895, p. 181.)

Temperature.—A temperature of 30°C. (86°F.) is generally maintained in germination tests. Seeds of celery, most grasses, and a few other species should be subjected to alternating temperatures of 30°C. and 50°C., the higher being used for six hours out of the twenty-four.

Duration of Germination Tests.—For purposes of comparison it is desirable to have uniform periods of time for conducting germination tests. The following periods have been adopted in this country and are practically the same as those used throughout Europe. For laboratory tests: Ten full days for cereals, spurry, peas, beans, vetches, lentils, lupines, soja beans, sunflower, buckwheat, crucifers, Indian corn, and cow-peas; 14 full days for hordeum, esparcet, astragalus, fava beans, rye grass, timothy, Pellionia, tobacco, lespedeza, and all grasses except poa, Bermuda grass, rye grass, and timothy; 25 full days for poa and Bermuda grass. Soil Experiment Station tests are conducted two days longer in each case and the sprouts counted only at the close.

Special Treatment of Seeds Preparatory to Germination.—Soaking seeds in water for 12 hours, or placing them in the germinating chamber, as frequently practiced, is to be condemned. As a rule, however, seeds of asparagus, letruse, okra, and onion may be soaked to advantage. Asparagus should be placed in distilled water for 5 hours, then transferred to blotters which should be kept very wet for the first 48 hours; okra may be soaked in water at 95°C. for 3 hours. Owing to the readiness with which moulds develop upon onion seed, it should be soaked for an hour in a solution consisting of ten parts birch-liquor of mercury to 1,000 parts of water. Such seeds as okra, asparagus, adonis, esna, moonflower and lupine sprout better if they are thoroughly clipped before the germ. The lead assertions often made of the value of treating seeds with certain chemicals to hasten germination, are, in the main, not worthy of notice.

Testing Grass Seeds.—Most grass seeds require special treatment, both in purity and germination tests. For the latter neither blotters nor cloth can be depended upon as a seed-bed, hence soil tests are advisable. Care must be taken not to plant the seeds too deeply. Seed of red-top and June grass should be sown upon the surface and the lightest possible cover of soil or sand given it. Before planting the soil should be thoroughly watered, and after sowing a fine rose spray should be used to avoid disturbing the seeds. The same remarks will apply to soil tests of other fine seed.

To prevent counting empty glases (chaff) a mirror-box (Fig. 2302) is useful. This consists of a box of hard wood, half an inch thick. It is 12 in. long, 8 in. wide and 6 1/2 in. high, the front being open, and the top consisting of an ordinary piece of glass. The inside of the box is painted a dead black. Attached by hinges to the upper margin of the box in front is a rectangular piece of black binder's board, 12 x 8 in. in size. A smaller piece of similar board, 5 in. square, is attached at each end of the box at its upper edge. These boards are for the purpose of excluding all extraneous light. In the center of the box a small flower pot saucer is so pivoted that it can be turned at different angles and reflect the light which enters the open side of the box up through the glass top.

Grass seeds are spread thinly over the surface of the glass top, and the mirror adjusted so as to throw the light up through the seed. The operator faces the
SEEDAGE

apparatus with the open side opposite to him and toward the light. The mirror should be so arranged that it will not throw any light into the operator’s face. With the preparation in the use of a pane of glass, over the surface of which the seed, thoroughly wet, has been thinly spread. This glass is held up to the light, and with the forceps the good seed may successively picked out. It would be well for the purchaser of grass seed,

especially of meadow fox-tail, awnless brome and velvet grass, to make use of this simple test. For laboratory purposes the mirror box is to be greatly preferred, since the seed can be handled much better when dry.

Test for Purity. — Special methods are also required for testing pure and super pure seed lots, which contains from 1 to 7 seeds. Three separate lots of 100 seeds each are selected with great care, so as to represent average samples. These are rubbed slightly between the hands, soaked 6-15 hours, then placed on blotting paper or sand at a constant temperature of 20° C., for 18 hours out of 24, the rest of the time at 30° C.

In 3, 5, 7 and 8 and 11 days the balls are examined. Whenever 1, 2, or 3 seeds have sprouted in a single ball, they are carefully cut out with a knife, and the balance of the half is removed to a second seed-bed, which is numbered to correspond with the number of the seeds which have germinated in the balls placed therein. At the next examination the sprouted seeds are again cut out and the clusters removed to another bed, numbered to agree with the total number of seeds per ball which have sprouted. The test is closed on the 14th day, when the sum of all the germinating seed of each lot of 100 clusters, together with the number of unsprouted seeds, is ascertained. The average of all the clusters is taken into account, especial care being exercised not to count as seeds any cavities which were empty at the beginning of the test.

Test for Germiinity or "Purity" of Stock. — The genuineness of the seeds of vegetables and other horticultural varieties of plants can only be told by means of a field test, which should be made in such cases whenever possible. The purity of stock of such seeds is of far more importance than a high percentage of purity and germination. In making field tests of different varieties of seed a check test should be conducted using a sample, for purposes of comparison, which is known to be authentic. The different tests must be subjected to the same conditions of soil, etc. The genuineness of the seed of grasses, clover, and other forage plants can usually be ascertained by more inspection and comparison with a standard collection.

GILBERT H. HICKS.

The preceding article was prepared for this work by the late Gilbert H. Hicks, of Washington, D. C., in 1869, while in charge of pure seed investigations for the U. S. Department of Agriculture. It is printed practically as it was written. The subsequent changes in the Department methods are given below by Mr. Hicks’ successor. L. H. B.

The methods and apparatus in use in the Seed Laboratory of the U. S. Department of Agriculture have undergone some changes since the foregoing was written. These changes have been the result of experience and are in substance the following:

While purchasers are urged to buy the best seeds, it is doubtful whether, under the conditions of trade in the United States, arbitrary standards have much value. The comparison of the price and quality of different grades offered means more than an ideal standard which is seldom practicable to enforce. A system of inspection that would certainly detect all weed seeds would make the seed too expensive for practical use.

The standard chamber is now covered with asbestos lagging instead of with felt; a single door covered with the lagging has been substituted for the double doors.

An air bulb regulator, devised by Mr. E. Brown, has been substituted for the mercury bulb regulator.

The temperatures needed for the successful germination of seeds depend on the kind of seeds tested. Let- tuce must have a low temperature, 15° C. giving best results. A temperature of 25-30° C. will almost entirely inhibit germination. Seeds of teosinte, on the other hand, demand 30° C. While vine seeds give best results under a temperature alternating between 20 and 30° C. A constant temperature at 20° C. is seldom used. Seeds naturally germinate under conditions of constantly changing temperature. The most favorable natural conditions should be reproduced as nearly as possible in the laboratory. Kentucky blue grass seed is not tested in the greenhouse, better results being obtained in the chamber by means of alternating temperature. When seeds, as of sugar beet, are sold on a guarantee, the re-test should be made under conditions similar to those under which the original test was made. The energy of germination, that is, the percentage of seeds that sprout in about one-fourth the full time, nearly represents what the seed will do in the field and is of greater importance than the full time test.

A. J. PIETERS.

The Seed Trade of America. — Early History. — The history of the seed business in colonial times is largely one of importation from Holland and England, when small hucksters carried a few boxes of popular seeds with an assortment of dry goods, foodstuffs or hardware.

Corn, barley, peas, onions, fruits and vegetables, necessary in fact for direct use, first claimed the attention of the colonists. Towards the end of the eighteenth century we begin to find references to the saving of stock seeds, and in the newspapers of the day are a number of advertisements of stockholders who dealt in seeds. Agricultural seeds were an article of commerce as early as 1747 (Pieters), clover, onions, beans, peas, carrots, cabbage and cauliflower, etc., being raised for seed in the colonies at that time, imported. At that time Boston did most of the business.

Among the earliest advertisers of seeds for sale were Nathaniel Bird, 1763, a book dealer of Newport, R. I.; Gideon Welles, "on the Point," 1761; Samuel Deall, a dealer of general merchandise in New York in 1769; William Davidson of New York in 1768, while in Philadelphia, in 1772, we find one Pelatiah Webster advertising clover and duck grass seed; James Loughhead "colly-flower" seed in 1775; while David Reid kept a general assortment in the same year.

Development of American Trade. — It was not until the opening of the nineteenth century that America began to find that seeds could be grown here as profitably as they could be imported. Grant Thoburn, in New York, and
David Landreth, of Philadelphia, seems to have been the largest dealers at that time. Thorburn's was perhaps the first business of importance devoted entirely to stock seeds, though this honor is disputed by the descendants of David Landreth. Thorburn, in his autobiography, says that he began his business by buying out the stock of one George Hough for fifteen dollars, lodge agreeing to give up the market and to devote himself to the raising of seeds for Thorburn. This is but one of many small beginnings from which has grown a trade which now amounts to many millions, and this relation between seedsmen and growers is largely typical of relations which have obtained in the trade ever since.

Railway and Postal Service.—With the development of the railway and the postal service the business grew by leaps and bounds, new land was found suitable for different varieties of seed, and a letter could carry to the countryman the garden seeds for his yearly consumption. There is probably no trade which has been more widely benefited by cheap postage and improved mail facilities, but of late years the abuse of their privileges by members of Congress has largely tended to negative this benefit. The originally beneficial distribution of free seeds to pioneers and needy settlers was a form of agricultural encouragement against which there could be no adverse criticism, but it has degenerated into an abuse, which is estimated to have taken a trade of some $4,000,000 during the past two or three decades out of the hands of the men who have built up the business.

Catalogues.—Grant Thorburn's catalogue of 1822 was the first to be issued in pamphlet form, and it was the pioneer of the many finely and carefully illustrated catalogues with which we are familiar to-day. These catalogues have been largely instrumental in facilitating the specialization of the industry and its subdivision in the hands of the country dealer, who buys seeds at wholesale, combining as they do the most complete lists and illustrations of varieties with directions as to methods, conditions, and seasons for planting. They are distributed literally in hundreds of thousands. It is of interest to remember that up to 1844 the wording on the bags was written by hand, a laborious and expensive process, which of itself is an indication of the small volume of the trade at that date.

Imports and Exports Statistics.—With regard to the export of seeds, A. J. Piers' admirable report for 1899 in the Yearbook of the Department of Agriculture may be taken as the latest information. He says in part: "The statistics of export's date from 1855, and no separate records of imports of seeds were kept before 1875. Clover and grass seeds, especially timothy, have always taken the lead in the seed export trade, and until recent years garden seeds have not been a considerable factor in the total values. In 1875 some 10,000 bushels of clover seed were exported to England within a few months. How long this trade had existed we do not know. From 1855 to 1894 there is no record of any seeds exported except clover, but the value of exports increased from $13,570 in 1855 to $2,125,296 in 1883, the war apparently having no effect on the trade. The total value of the clover seed exported during this period aggregated $5,393,663. During the decade ending with 1890 clover seed was not separately entered except in the last year, but the total exports of seeds amounted during that period to $30,702,900.

Development of Home Industry.—The importation of staple garden seeds had largely decreased by 1870, and with the exception of a few staples in agricultural and flower seeds, America may be said to have become to a great extent self-supplying. The greatest development of this industry has taken place since the close of the war. In 1878 J. J. Gregory estimated that there were in all 7,000 acres devoted to garden seeds, while the census of 1890 showed that there were 590 seed farms, containing 100,530 acres. Of these farms, 100 were in the states of New York, Michigan, and Wisconsin.

Contract System of Growing.—The contract system of supply has been the general method followed by the larger seedsmen, farmers in those locations best suited to certain seeds contracting to grow supplies from stock seeds found by the seedsmen. As a rule, one farmer will grow only one or two varieties. A system of growing in the expense of supervision has been made by the growth of the system of subletting a contract. The middleman being posted on the abilities of his neighbors and the quantities of their soils for market and raw materials, keeps place and keep sight of the growing of many more varieties than he himself could handle on his own land. Many of these middlemen do not grow seeds themselves but merely as the seedsmen's growing agents, being among the farmers of a large district. Excepting in California, where the growers as a rule devote their whole capital to the business, it is a frequent custom throughout the country for seedsmen to make cash advances against crops. Few seed houses grow their own seeds.

Values of Staples, Home-grown and Imported.—The following table will give an idea of the values to be made of the annual cost of the chief staple garden seeds handled in America:

<table>
<thead>
<tr>
<th>Seed</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garden peas</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>Garden beans</td>
<td>200,000</td>
</tr>
<tr>
<td>Onion seed</td>
<td>300,000</td>
</tr>
<tr>
<td>Lettuce seed</td>
<td>250,000</td>
</tr>
<tr>
<td>Cabbage seed</td>
<td>100,000</td>
</tr>
<tr>
<td>Sweet corn</td>
<td>100,000</td>
</tr>
<tr>
<td>Tomato seed</td>
<td>50,000</td>
</tr>
<tr>
<td>Radish seed</td>
<td>30,000</td>
</tr>
<tr>
<td>Turnip seed</td>
<td>25,000</td>
</tr>
<tr>
<td>Beet seed</td>
<td>15,000</td>
</tr>
<tr>
<td>Celery seed</td>
<td>5,000</td>
</tr>
</tbody>
</table>

Miscellaneous seeds, Flower seeds: $2,175,000
Probable invoice cost of imported garden seeds: 125,000

Total growers' value: $4,025,000

An estimate recently made by one of the largest seedsmen in the country gives the capital invested in the business at about $125,000,000, and the actual acreage under seed at the present time as about 150,000 acres.

Staples and Localities of Production.—The following may be taken as the present principal garden seed staples and the localities where they are most profitably raised (See, also, Bailey, "Principles of Vegetable Gardening," p. 170):

Beans: Imported chiefly from France, owing to better method of selection in practice there, but would adapt itself to almost any of the older states of the Union.
SEEDAGE

Seliginella 1647

Seliginella (diminutive of Latin Selago, old name of a club moss). Selaginellaceae. Club Moss. A large genus of mostly tropical plants of diverse habit, ranging from minute, prostrate annuals to erect or even climbing perennials. Easily recognized by the production of two kinds of spores—powdery microspores from which the male prothallus arises and larger microspores produced four in a sporangium just within the axil of the terminal leaves of the stem, which often form a 4-angled spike. In all our cultivated species the lvs. are in four ranks, the two upper smaller and pressed against the stem, giving it a flattened appearance. Selaginellas are graceful fern-like greenhouses, often known to gardeners as Lycopodiums.

Cabbage: About half imported, the other half chiefly Long Island, Connecticut, Pennsylvania, and to small extent, Puget Sound.

Cauliflower: Finest kinds imported from Denmark; coarser kinds from Italy.

Carrots: The bulk of finest kind imported from France, some finer grades in Connecticut, and coarser grades in California.

Sweet Corn: Connecticut, Nebraska, New York, Ohio.

Cucumbers: Chiefly in Nebraska, northern New York, Louisiana, California.

Watermelons: Nebraska, Kansas and the South.

Peas: Northern New York, Canada, Michigan, Wisconsin.

Parsley: Imported from England and France.

Potatoes: Fine grades chiefly in Maine and New York; also in every state.

Spinach: Imported from Holland.

Squash: Nebraska.

Turnips: About half imported from England and France, where it is grown chiefly from American seed; other half chiefly in Connecticut, New York and Pennsylvania.

Lima beans: California.

Celery: California.

Dealers in garden seeds are also large dealers in flowering bulbs, such as hyacinths, tulips, narcissus, crocus, etc. These are chiefly imported from Holland, south of France, Italy and Japan.

Divisions of the Trade.—The trade is divided into the main branches of garden and flower seeds and bulbs and agricultural seeds. The latter is practically a business by itself, devoted to such seeds as blue grass, timothy, clover, red top and alfalfa, some of which are exported or imported as the exigencies of the season's product demand.

Tariff.—Flower seeds are subjected to no import duties, while on garden seeds there is a tariff of 30 per cent ad valorem. It is a mooted point whether this tariff at the present time operates to the advantage of the trade, the principal seedsmen being generally of the opinion that it tends to stimulate over-production in this country.

Number of Firms in the Trade.—The main business of the country is in the hands of about 150 firms, but practically every grocerman in country towns and villages carries a stock during the spring season. These men, however, deal as a rule with the larger houses, and constitute the principal class of middlemen for retail trade.

Wholesale Seedsmen's League: Its Object.—On August 24, 1900, some 42 of the leading houses of the country incorporated themselves in the Wholesale Seedsmen's League, with the object of regulating the general interests of the trade. The office of the League is in Philadelphia; its president, F. W. Brugger, of New York; vice-president, S. F. Leonard, of Chicago; secretary and treasurer, Bernard Landreth, of Philadelphia.

The climate and soils of the United States are so varied that entirely different methods of carrying on the seed business obtain in different trade centers, and one of the principal efforts of the League is in the direction of agreeing as to the uniform listing of prices for crops of the same seed which mature at different dates in different localities. It is hoped in this way not only to prevent the sacrifice of stock by growers in early districts, but also to prevent the demoralization of the general market, caused by the publication of clearance prices by seedsmen in an early district before the market has been adequately supplied by seedsmen in those districts in which the stock matures at a later season.

J. M. Thorburn & Co.
SELAGINELLA

Ag. Stems 6-12 in. high, not erect, forming rosettes.

GGG. Stems elongated (2 ft. or more), not rosetted.

H. Lvs. equi-sided at base.

23. Wallachii

24. Victoriae

25. gracilis

26. Lobii

CCC. Main stems climbing.

 CCC. Main stems erect, the branches confined to the upper portion, naked below.

D. Stems not jointed.

E. Color of stems straw-colored, or at most pink-tinted.

F. Lvs. long, the ultimate divisions of stem 5/8-7/8 in. wide.

G. Plants usually less than a foot high.

H. Not closely imbricated.

I. pubescent. Spring. A small, rock-loving perennial, with branching stems 4-5 in. long, many-ranked lvs., ending in a white ax, and square, 4-angled spikes. Native of the eastern half of the United States, but replaced by many allied species in the Rocky Mts. and on the Pacific coast. The writer has separated 6 of these and Dr. Hieronymus, at Berlin, has recently characterized 10 others.

2. dentilicata, Link. Fig. 2903. Stems less than 6 in. long, matted; lvs. of the lower plane slightly spaced, dentilicate, cordate, on the upper side at base and imbricated over the stem; lvs. of upper plane cuspidate. Mediterranean region throughout. Trade names are aurea and folius variegata.

3. repens. Spring. Stems 6-9 in. long, trailing, bright green, copiously branched; lvs. of lower plane crowded, obtuse, spreading, ciliate at the rounded base; lvs. of upper plane obliquely obovate, acute. West Indies. Long in cultivation.

4. patula. Spring (S. sormentana, A. Br.). Stems slender, trailing, pale green, 6-9 in. long, with long, tail-like tip, and fewer short pinnate branches; lvs. of lower plane crowded, oblong spreading, obovate lanceolate, somewhat acute; lvs. of lower plane one-third as long, acute. Jamaica.

5. uncinata, Spring (Lycopodium cernuum and Selaginella cernuum, Hort.). Stems 1-2 ft. long, extending in a somewhat naked tip beyond the branches, doubly grooved above, shorter and alternate branches: lvs. thin, blue-green, with a distinct midrib, slightly more produced on the upper side; lvs. of upper plane cuspidate, much imbricated. China. In 1853 John Sull offered "S. cernuum orbiculare" with the remark that S. leucotoma was a synonym thereof.

6. plumosa. Baker. Stems 6-12 in. long, flat above, often forked near the base; lvs. of lower plane close, bright green, much more produced on upper side of midrib, ciliate on both sides at base; lvs. of upper plane half as long, ovate, much imbricated. India, Ceylon, China, Malay Isles.

7. cernimis. Spring (S. cernimis, Spring). Stems 1 ft. or more long, copiously pinnately branched, with more or less fan-shaped compound branches: lvs. of lower plane crowded, bright green, glossy, much dilated and rigidly ciliate on the upper side at base; lvs. of upper plane one-third as long, long-cuspidate, much imbricated. Mascarenne Islands. Var. folius variegata. Hort., is cultivated.

8. stolonifera. Spring. Stems a foot or more long, with a more or less naked tip, angled above and below, with short, compound branches: lvs. of lower plane closely set, rigid, acute, short-ciliate and minutely auricled at base. West Indies.

9. Krauesiana. A. Br. Stems 6-12 in. long, flat on the back, rounded on the face, copiously pinnate, with compound branches: lvs. of upper plane spaced on the branches and main stem, acute, slightly imbricated over the stem; lvs. of upper plane obliquely ovate, acute. Africa, Madeira. S. Brongii, Hort., is a dwarf form from the Azores. Var. aurea and variegata are American trade names.

10. Canadensis, Baker. Stems copiously pinnate, the lower branches compound: lvs. of lower plane ovate or obovate, cordate and very unequal-sided at base, much imbricated over the stem; lvs. of upper plane distinctly cuspidate. Brazil. Similar to preceding, but with longer leaves.

12. Lepidophyllum. Spring. Stems 1-4 in. long, angled above, with short, simple or forked branches: lvs. of upper plane pale green, serrulate but not ciliate, cordate on the upper side; lvs. of the upper plane ovate. Canada to Texas. Lycopodium densiflorum, cultivated at the Harvard Botanic Garden, is said to belong here.

13. dibo-nitens. Baker. Stems slender, trailing, the lower branches slightly compound: lvs. of lower plane spaced on main stem, short-ciliate, bright green; lvs. of upper plane one-third as long, cuspidate. West Indies.

2303. Club Moss used to cover the soil of an orchid pot— Selaginella denticulata (X 12).

14. atroviridis. Spring. Stems 6-12 in. long, ascending, doubly grooved above: lvs. of lower plane spirally 3-nerved, firm, broadly rounded; lvs. of the upper plane half as long, long-cuspidate, much imbricated. India.

15. Calocarpa. Spring. Stems 4-6 in. long, 4-angled, copiously pinnate: lvs. of lower plane ovate, minutely...
2304. Poorly grown specimen of Club Moss, unsuitable for table decoration (X \(1/2\)).

For contrast with Fig. 2305. This species is \textit{S. Martensii}.

16. \textit{Martensii}, Spring. Fig. 2304. Stems 6-12 in. long, flat or rounded below, angled above; lvs. of lower plane oblong-lanceolate, serrulate but not ciliate, slightly imbricated over the stem at base; lvs. of upper plane obliquely oblong, long-cuspidate. Mexico.—Exists under many varieties in cultivation.

17. \textit{rubella}, Moore. Stems 1 ft. long, somewhat erect in habit, reddish brown, with 2 grooves on the upper face: lvs. of lower plane dark green, becoming reddish with age, obtuse or oblongely cuspidate, ciliate and imbricated over the stem at the upper side of base; lvs. of upper plane ovate-cuspidate. Native country not known.—Has been in cultivation since 1570. \textit{Var. variegata}, Hort., is cultivated.

18. \textit{Pультер}, Hort. Veitch. Stems densely tufted, slender, suberect, 2-3 in. long, three to four times dichotomously forked; lvs. of lower plane spaced, suborbicular, obtuse, bright green; lvs. of upper plane nearly as long, but ovate and acute. Azores.

19. \textit{involvens}, Spring. Stems densely tufted, 2-5 in. long, deltoid, branched nearly to the base: lvs. of lower plane crowded, ovate, with a distinct cusp, bright green, deltoid, serrulate on both margins; lvs. of upper plane nearly as long, ovate-lanceolate, cuspidate. Japan and the Philippines.

20. \textit{lepidophylla}, Spring. RESURRECTION PLANT. Stems 2-4 in. long, densely tufted, spreading in a close spiral so as to form a flattish expanse, curling closely into a ball when quite dry: lvs. of lower plane oblique, obtuse, minutely ciliate, green on the face, paler below; lvs. of upper plane nearly as long, obliquely ovate, obtuse. Texas and Mexico to Peru.—Often sold dry under the name of "Resurrection Plant" (which see), as the absorption of water will cause the ball with a dull brown exterior to expand and show its bright green upper face of the stems long after the plant is dead.

21. \textit{cuspidata}, Link. Stems densely tufted, 6 in. or more long, branched nearly to the base, with copiously compound branches: lvs. of lower plane obliquely ovate, cuspidate, ciliate and ciliolate on the upper side at the base, pale green edged with white; lvs. of upper plane nearly as long, obliquely ovate, cuspidate. A plant occurring under the horticultural name \textit{Lycopodium conifolium} has the stem a foot or more long and simple in its lower part, and dolefulness represents a distinct species. Cuba and Mexico to Venezuela.

22. \textit{Emmeliana}, Hort. Fig. 2305. Stems 6-12 in. high, the primary branches ascending, bipinnate; lvs. of lower plane close, obliquely ovate, those of the branches narrower and minutely spinulose; lvs. of upper plane raised above those of the lower, one-half as large, spinulose-serrulate, short-cuspidate. \textit{S. Amer.} Named for Th. Emmel, a German gardener.

23. \textit{Wallichii}, Spring. Stems 2-4 ft. long, with lanceolate branches and simple crowded branchlets; lvs. of lower plane crowded, smaller towards the end of the pinnales; lvs. of upper plane one-fourth as long, cuspidate; spikes \(\frac{1}{2}\)-1 in. long. India and the East Indies.—Highly ornamental.

24. \textit{Victoriae}, Moore. Stems 3-4 ft. long, with lanceolate-deltoid, exandrous branches, with the lower branchlets forked or slightly pinnate: lvs. of lower plane crowded, a line long, truncate at base and obscurely petiolate; lvs. of lower plane one-fourth as long, short-cuspidate; spikes 1-2 in. long. Borneo and Fiji Islands.

26. \textit{Lobbii}, Moore (\textit{S. cognata}, Hort.). Stems 3-4 ft. long, with lanceolate-deltoid branches and contiguous simple or forked branchlets: lvs. of lower plane oblong-lanceolate, acute, bright green, truncate at base; lvs. of upper plane one-third as long, obliquely ovate, cuspidate. Borneo and Sumatra.

27. \textit{Wildenowii}, Baker. Stems reaching a length of many feet, with spreading deltoid branches and much compound branchlets, the ultimate short and contiguously; lvs. of lower plane flat, ovate or oblong, tinted with blue, obscurely petiolate; lvs. of upper plane one-third as long, obliquely ovate, not cuspidate. India and the East Indies.

28. \textit{grandis}, Moore. Stems \(\frac{1}{2}\)-2 ft. long, branched above; lvs. of lower plane crowded, lanceolate, acute, often firm; lvs. of upper plane one-third as long, ascending, much imbricated. Borneo.

29. \textit{viticulosa}, Klotsch. Stems with deltoid 2-3-pinnae branches: lvs. of lower plane ascending, acute, short-ciliolate and much imbricated over the stem; lvs. of upper plane one-third as long, obliquely ovate, cuspidate. Central America.

30. \textit{caulescens}, Spring (\textit{S. ornata}, Hort.). Stems stiff, erect, the short final branchlets curling when dry: lvs. of lower plane crowded, ovate, falcate, bright green; lvs. of upper plane one-third to one-fourth as long, cusp.
SELAGINELLA

32. Selaginella, Spring. Stems erect, deltoid, compound, with conspicuous final branchlets: lvs. of lower plane obliquely ovate, acute, broadly rounded and ciliate at base; lvs. of upper plane deltoid, petiolate, 3-4-pinnate: lvs. of lower plane lanceolate, ascending, often revolute on both edges, truncate at base; lvs. of upper plane minute, strongly cuspidate. Widely distributed in tropical regions. -One of the forms of this is cultivated as S. crispa, Hort.

33. Vogelii, Spring (S. africana, A. Br. S. Peru, Spring), Stems decomposing; the lower pinnate deltoid, petiolate, 3-4-pinnate: lvs. of lower plane lanceolate, ascending, often revolute on both edges, truncate at base; lvs. of upper plane minute, strongly cuspidate. Native to Namibia.—S. selosa, Hort., is said to be a starred form of this species.

34. Lycilis, Spring. Stems deltoid above, the lower pinnate bipinnate, the divisions half ¼-1 in long, ¾-½ in wide: lvs. of lower plane oblong-lanceolate, tuncate, acute; lvs. of upper plane minute, acute. Madagascar.

35. Argyropeus, Spring. Stems under a foot long, deltoid and decomposing above, the lower pinnate 3-pinnate, the ultimate divisions one-twelfth to one-eighth in. wide: lvs. of lower plane ascending, oblong-elliptic, acute, dilated on upper side at base, not ciliate; lvs. of upper plane minute, cuspidate. Tropical America.—S. selosa, Hort., is said to be a starred form of this species.

36. Hematoxylon, (H. ilicifolius, Spring), Stems 1-3 ft. long, decomposing, the divisions ascending and pinnately arranged: lvs. of lower plane ovate, serrate; lvs. of upper plane one-third as long, ovate-lanceolate. Costa Rica to Peru.

37. Geniculata, (S. elongata, KL.). Stems 2-3 ft. long, decomposed, with lower pinnate 3-pinnate, the divisions ascending and pinnately arranged: lvs. of lower plane obovate-cordate, subcordate at the base, oblique, serrate on the edge, dilated and subcordate; lvs. of upper plane ovate-lanceolate, cuspidate. West Indies.

38. Cordifolia, (S. cordifolia, KL). Stems trailing, a foot long, with short branches often ending in whitish flowers: lvs. of upper plane acute, pale green, membranous, ciliate on the upper edge, dilated and subcordate; lvs. of upper plane ovate-lanceolate, cuspidate. West Indies.

39. Molleps, Spring (S. rubraeifolia, A. Br.). Stems erect, 6-9 in. long, bisulate above, much compound: lvs. of lower plane oblong-lanceolate, dark green, very unequal-sided, serrate on the upper edge; lvs. of upper plane one-half to one-third as long, ovate or ovate-lanceolate, cuspidate. Africa.

The following American trade names cannot be satisfactorily accounted for as species: S. novior is said to be one of the most important commercial species cult. in America.—S. virginiensis is a cult. at Harvard Botanic Garden.—S. Lagenaria is a species which is probably S. Welwitschia, already described from that country. It is said to be a very light green plant and a strong grower, whereas S. Filtericiana is of a different habit and with stems and under the surface of the red and upper surface dark green.—S. paraedon is offered by John Saul, 1890.—S. Pichetiana, consult S. Lagenaria. Co-lonial and triangularis were offered by Saul in 1893.—S. uniflorum. Once cult. by Pitcher & Manda, of the United States Nursery.

L. M. Underwood.

Selaginellas are favorite plants in every good conservatory, being greatly admired for their feather-like foliage. They have various shades of green, and some of them are remarkable for metallic and iridescent tints, especially bronze and bluish colors, the latter being very unusual among plants in general. S. Wildenowii is a very choice large-growing species of the house. Another is S. cucuminata, often called "Rainbow Moss." Selaginellas are often grown for their own sake as specimen plants, but they are also very commonly used as edging for greenhouse beds, for covering unsightly spots under the benches, and for hiding the surface soil of large tubs, orchid pots and the like. See Fig. 2303. They are also delightful subjects for table decoration when grown in pans or jardinières. For this purpose it is well to have a good compost and a well-drained plan, the plant should be dense, compact mass of fluffy and feathery green, not a weak, thin, straggling plant, as shown in Figs. 2304 and 2305. Selaginellas are also employed in bouquets of flowers, fronds being used for "green stems" of asparagus or ferns. Occasionally a faner of the more difficult species grows a large specimen in a warier case for exhibition.

In general, Selaginellas are of easy culture. As a rule they prefer shade and moisture and are somewhat tender in foliage compared with some of the commonest of commercial ferns. It is recommended that the plants be placed directly into small pots of light sandy soil, placed in a shady position. Sprinkle them three or four times a day for a week, at the end of which time they will take root. They will soon grow into sizable plants.

The popular S. Ennealana, which is generally considered by florists a variety of S. cucuminata, requires different treatment. It is stated that by trimming directly the young plants are ready for potting.

Fill regular fern boxes with fern soil, adding one part in five of sand, and press firmly. Sell fronts of the S. Ennealana, cut them into pieces half an inch long, scatter thinly over surface of soil, and put just enough finely screened soil on top of the cuttings to attach some small portion of them to the soil. Water thoroughly, cover with glass, and place in a temperature of 70°F. In this condition they will soon form roots and little plants. If kept sufficiently large they should be separated and transplanted singly an inch apart into boxes, where they may be left until large enough to be potted.

The following list of Selaginellas for special and general purpose is not designed to be complete, but merely suggestive. For commercial purposes, S. deltoides, Kranziana, Martensii and Ennealana; for carpeting the soil, S. delphyllophila, for taking cuttings, S. martensii; for the better propagation of cuttings, S. Ennealana and S. Martensii, for cutting, the commercial kinds; for veranda boxes, S. Brownii; for bronze and blue colors, S. Wildenowii and S. cucuminata; for specimens of plants and exhibitions, S. Brownii, Lycii, Vertexella, Wallichii, and Wildenowii. Also the following, which are generally considered more difficult subjects; S. atrocincits, horticulturists and truncata; for curiosity, S. serpens and delphyllophila.

The curiosity of the genus call for special mention, S. serpens is remarkable for its changes of color during the day. In the morning the fronds are bright green; during the day it gradually becomes paler as though bleached by the light; toward night it resumes its lively green hue again. For S. delphyllophila, see Resurrection Plant.

The following species also deserve a few running notes: S. Brownii is an old favorite which is often in correctly labeled and kept every year in collections. In allbranche, or "foliage" in the popular sense, are exceptionally strong and wiry for the genus. Variegated forms appear in S. Martensii, Kranziana and serpens, the last named species being the best. S. villosa is better adapted for use as a pot plant; or for mending in a fernery, because of its strong-growing, erect, fern-like habit. The branchlets are thrown up from creeping stems and do not root readily, so that this species is usually prop. by division or spores.

W. H. Tafflin, N. X. Beckner and W. M.

SELENIPEDIUM

SELENIPEDIUM (from selene, moon, and pedon, ground) is analogous to Cyperus. It was evidently to derive the second part of the word from pedon, sand, and some botanists and horticultural writers use the word thus derived, but Reichenbach
wrote Selenipedium). *Ovichiläca.* The genus Selenipedium comprises the South American Cypripedias. Technically it is separated from the genus Cypripedium on account of the three-budded ovary. Aside from this character the flowers resemble those of Cypripedium, but the inflorescence is quite distinct. The spikes of Cypripedium bear a single flower (rarely 2 or more), while those of Selenipedium bear several flowers and often become paniculately branched. In general habit the Selenipedias are more robust and luxuriant. The lvs. are crowded in dense tufts on short, creeping rhizomes. As in many orchid genera, the species of Selenipedium are remarkable for the number of color variations of their flowers. There are many varieties that form connecting links between species, thus making the genus a very difficult one for satisfactory description. It is hoped that the following account, however, will serve to distinguish the leading types. This genus, like the true Cypripedias, has been a favorite one with hybridizers. Some of the best known species, as *S. Sedeni* and others, are the products of crosses. The total number of hybrids far exceeds the number of original species. A part of the genera Cypripedium and Selenipedium has been separated by some botanists as a distinct genus, Papillodendron, which is now sometimes found in horticultural writings.

For culture, see Cypripedium.

Heinrich Hasselder.

All Selenipedias enjoy plenty of heat and moisture in the growing season, March to November (45-90°F). Give good drainage. Use chopped sphagnum with broken cinders from the furnace, and the addition of a little leaf-mold, raising the material as high above the rim of the pot as possible. This material is especially to be recommended for the young and divided plants.

Give slight shade, and grow on raised benches near the glass. Water sparingly until growth begins. The four species, *S. Dominianum, S. Sedeni, Schlimii* and *S. Schlegelianum*, should not be overwatered. Fill pots three-fourths full of drainage, then place a thin layer of coarse fern root, which will fill pot to level of the rim. Place the plant on top and then fill 2% to 3 in. on top with chopped sphagnum and leaf-mold mixed with coarse sand or pulverized coal cinders. Keep the moss in a growing condition.

WM. Matthews.

INDEX.

(Including some names advertised under Cypripedium.)

1. Schlimii, Linden (Cypripedium Schlimii, Linden), Fig. 2306. Lvs. 4-6, ligulate, leathery, sharp-pointed, 9-12 in. high; scape longer than the lvs., hirsute, often branched, 2-8 ft.; sepals less than 1 in. long, ovate-obtuse, the lower a little larger than the upper and concave, white or spotted with crimson on the inner side.

2. Sedeni, Hort. Fig. 2307. Lvs. numerous, crowded, 12-18 in. long, tapering to a point; scapes 12-18 in. high, about 4-8 in. but often sending out secondary flowering branches from the axis of the bracts after the first lvs. have fallen; lvs. 3 1/2-4 in. across the petals; lower sepal oval, greenish white, upper sepal oblong, acute, with faint purplish green veins; petals lanceolate, twisted, purple shading to greenish white at the base; labellum rich crimson-purple shading to paler purple behind, spotted inside.—Garden hybrid between *S. longifolium* and *S. Schlimii*. A very luxuriant free-flowering plant. F.M. 1876:296; 1878:302. R.H. 1879:170. Var. candidulum, Reichb. f. Sepals white; petals white tinged with rose; labellum darker rose. A hybrid between *S. longifolium* and *S. Schlimii*, var. albulorum. The following names are also in the trade: grandifolium, sanguineum, supurbum.

3. Weldichilanum, Hort. A garden hybrid between *S. Hartwegii* and *S. Schlimii*. It hardly differs from *S. Sedeni*. G.M. 34:274 (as Cypripedium Weidlichianum).

4. Porphyracium, Reichb. f. (Cypripedium porphyryum, Reichb. f.). Lvs. broadly strap-shaped, acute, about 1 ft. long; lvs. mostly purple, resembling those of *S. Sedeni*, but without protuberances on the open sides of the lip. The sepals and petals are oblong and more acuminate. Garden hybrid between *S. Rosei* and *S. Schlimii*.

5. Cardinale, Reichb. f. (Cypripedium cardinale, Reichb. f.). Lvs. long, straight; dorsal sepal bluish-

Fig. 2306. Selenipedium Schlimii (× 1/2).

[picture of a plant with a description of its characteristics]
white, slightly streaked with green; petals broad, ovately-oblong, undulate, white tinged with rose-purple near the base; labellum intense purple; staminodium white. Garden hybrid between *S. Sedenti* and *S. Schlimii.* Gn. 27:456.

6. *S. Ainsworthii,* Reichb. f. (*Cypridipedium Ainsworthii,* Reichb. f.). Lvs. ligulate, acuminate, 1½ ft. long; scape shorter, pubescent, few-fl.; upper sepal oblong, acute, undulate, whitish or yellowish green with a pale purple border; lower sepal very broad and con

cave with a reflexed margin, shorter than the lip; petals broad, purple, with a green midrib and a pale area near the base; side lobes of the lip yellow, with numerous spots. A garden hybrid between *S. Sedenti* and *S. Schlimii.*

7. *S. vittatum,* Reichb. f. (*Cypridipedium vittatum,* Vell.). Lvs. 1 ft. long, linear-ligulate, acute, margined with yellow; stems few-fl., 12-18 in. high; dorsal sepal oblong, subacute, greenish striped with red; lower sepal about twice as broad as the upper, green; petals linear, pendent, undulate, red-brown, striped with green and green toward the base, longer than the sepal; labellum shorter than the sepal, brown, greenish spotted with reddish brown inside. Brazil. I.H. 27:235.

8. *S. Sargentianum,* Rolfe. Fig. 2986. Lvs. tufted, 6-8 in. long, oblong-lanceolate, acuminate, with golden margins: scape 6 in. high, 2-3-fl.; dorsal sepal oblong, acute, pale yellow with red veins; lower sepal ovate-subacute, shorter than the lip; petals longer than the sepals, strap-shaped, slightly twisted, undulate, ciliate, pale yellow streaked with red and with bright red margins; labellum yellow, with pale red veins, deflexed side lobes speckled with red. Brazil. B.M. T46. G.C. III. 15:781. A.G. 21:423.

9. *S. Lindleyanum,* Reichb. f. & Warre. (*Cypridipedium Lindleyanum,* Schomb.). Lvs. 15-20 in. long, leathery, deep green, with yellow margins: scape many-fl., pubescent, 2-4 ft. high; upper sepal ovate-oblong, undulate light green with brownish veins; petals 2 in. long, deflexed, green with brown veins, ciliate; labellum olive-green, with brown veins and much spotted on the side lobes. Guiana.

10. *S. longiflorum,* Reichb. f. (*S. Rechii,* Reichb. f. *S. Lindleyanum,* Reichb. f.). *Cypridipedium longiflorum,* Warre, and Reichb. f. *S. Rotzlii,* Regel. *C. Hartwegii,* Reichb. f.). Lvs. tufted, 8-12 in. long, narrowly strap-shaped, tapering to a point and strongly keeled; scape 2 ft. high, purplish, sparingly pubescent; fs. large; upper sepals ovate-lanceolate, pale yellowish green, faintly streaked with purple; lower sepals ovate-obtuse, shorter than the lip; petals 3½ in. long, spreading, narrowly lanceolate, twisted, pale yellow with rose-colored margins and with a white line on the edge; labellum 2 in. long, green shaded with dull purple or brown in front, side lobes yellow, spotted with pale purple. Costa Rica. B.M. 5070 and 6217. R.H. 1875. p. 416; 1893, pp. 18, 19. F.M. 1874-1875. F. 1871:286. — *S. Rechii,* sometimes considered as a distinct species, is of more robust habit, having lvs. 2 ft. long and green scapes. Var. *magnificum,* Hort. (*Cypridipedium magnificum,* Hort.), has the petals margined with white. A.F. 7:797. The following varieties also are distinguished in cultivation: *grandiflorum,* *laxifolium,* and *roseum.*

11. *S. albo-purpureum,* Reichb. f. (*Cypridipedium albo-purpureum,* Reichb. f.). Lvs. long, strap-shaped and recurved; fs. larger than those of *S. Sedenti*; sepals oblong-acute, subacute, whitish, with a purplish tinge on the margins; petals 5-6 in. long, linear, hanging downward and twisted, purplish; labellum purplish on the margins, the indented lateral lobes nearly closing the mouth, white, with dark purple spots. Garden hybrid between *S. Schlimii* and *Donatianum.* Gn. 21, p. 332. — A var. *superbum* has been described.

12. *S. calathum,* Nichols. (*Cypridipedium calathum,* Reichb. f.). Lvs. numerous, tufted, long acute, channelled: scape much taller than the lvs., brownish red, branching: fs. large, about 5 in. across the petals; dorsal sepals oblong-ovate, pale green, with longitudinal purplish ribs, flushed with red on the outside; lower sepal broadly ovate and much smaller; petals lanceolate, undulate, pale green in the center and at the base, margined rose-red; labellum oblong, rose-red tinted with brown in front; side lobes deeply inflexed, cream white, with irregular spots of purple. Garden hybrid between *S. longiflorum* and *S. Sedenti.* F. 1884: 145. — There are several horticultural forms, one known as *Rougiéri.*

13. *S. Schröderea,* Hort. (*Cypridipedium Schröderea,* Hort. Veitch, ex-Reichb. f.). Plant of the habit of *S. Sedenti,* with lvs. resembling those of *S. albo-purpureum* but larger: upper sepals nearly ochre-colored, with purple veins; lower sepals very broad, ochre-colored, with purple veins; petals long-lanceolate, undulate, pendent, 4 in. long, greenish white in the middle, crimson-purple around the margin; labellum purple outside, inflexed lobes yellow, with brown blotches. Garden hybrid between *S. caudatum* and *S. Sedenti.*

16. Dominianum, Hort. (Cypripedium Dominianum, Reichb. f.). Fig. 2306. Lvs. numerous, about 1 ft. long, acuminate: fss. yellowish green, with copper-brown shades and markings; labellum deep reddish brown, reticulated in front and yellowish green behind. A hybrid between S. longifolium, Reitzl. and S. candidum, var. canda-canda-M. G.C. H. 3:1709.

17. Boissierianum, Reichb. f. (Cypripedium reticulatum, Reichb. f.). Plant of vigorous habit: lvs. about 3 ft. long, acuminate: scape few-fld. or sometimes paniculate, 3-7-fld.: fss. of peculiar light green tints, with a few sepals brown and green blotches on the whitish inflexed part of the lip and with some brown spots on the margins of the sepals: ovary dark brown, with green apex and ribs; upper sepals ligulate-lanceolate, very crisp; lower sepals oblong, about equal to the labellum, crisp; petals spreading, long-linear, twisted and very crisp on the margins. Peru. G.C. H. 3:143; 21:54, 55. G.C. H. 4:405.

18. Klotzschianum, Reichb. f. (Cypripedium Schonbergianum, Klotzsch and Reichb. f.). Lvs. linear, 6-12 in. long, scarcely ½ in. wide, rigid, keeled: scape longer than the lvs., inerascent, purple, 2-5-fl.; dorsal sepal ovate-lanceolate, pale rose-colored, with reddish brown veins, the lower ovate, boat-shaped, colored like the upper one; petals 3½ in. long, linear, twisted, colored like the sepals; labellum greenish yellow, the whitish inflexed side lobes whitish, spotted. British Guiana. B.M. 7175. G.C. H. 3:1585.

19. carinatum, Reichb. f. (Cypripedium Piceei, Hort. Cypripedium carinatum, Lindl. & Paxt.) Lvs. 1 ft. long, springing in sedge-like tufts from the long creeping rhizome: scape longer than the lvs., 3-6-fl.; fss. mostly pale greenish, with the segments bordered with white and having purple tips; sepals broadly ovate, waved, as long as the lip; petals more than twice as long, pendant, narrow and much twisted; labellum oblong, the upper margins flat; staminodium provided with 2 hairy processes. Peru. B.M. 5366. F.S. 16:448.

SELENIPEDUM

Self-sterility may be roughly defined as the inability of a given plant to produce fertile seeds when pollinated with its own pollen. With the rapid strides in plant-breeding, propagation and cultivation, self-sterility and sterility have become important subjects in determining the value and adaptability of new varieties to the various needs and purposes of the planters. The study of self-sterility in more recent years has been confined mostly to fruit trees and small fruits, and has been conducted by a number of experiment station workers. The list of self-sterile and unisexual varieties is now fairly large for apples, pears, plums, grapes and strawberries. In the case of peaches, apricots, cherries, nectarines and prunes little has been done to determine the number of self-sterile and partially self-sterile varieties. The causes which tend to produce self-sterility in cultivated plants may be briefly summarized as follows: (1) Change of environment due to domestication produces change in the reproductive organs of the plants. It may result (a) in the suppression of flowers or parts of flowers, as in some of the varieties of Lilium; (b) in the absence of pollen; (c) in the lack of nectar. 2. The causes which tend to produce the inactivity of the pollen upon its own pistil: (d) in the inactivity of the pollen upon its own pistil: (e) in the inactivity of the pollen upon its own pistil. 3. In changing the time of ripening of the pollen and of the receptivity of the stigma.
SELF-Sterility

SELENIUM (derivation doubtful). Umbelliferae. About 25 species of rather large perennial herbs, mostly from the northern hemisphere, with pinnately dissected lvs. and compound radiate umbels of small white or rarely yellowish white flowers; petals obovate- lanceolate, 4-ovari.

LEUCOCLADIA, Wall. (Oreodoxa Cavalli). A hardy perennial with finely cut fern-like foliage and stem often 8 ft. high, branched, with numerous umbels of white fls.: ultimate segments of lvs. narrowly lanceolate, acute; fr. 2-3 in. long; much compressed dor- sally, four to six times as broad as thick; lateral ridges much the broadest. India. Gn. 38, p. 221. — Offered as a novelty in America in 1899 and recommended as a foliage plant for single lawn specimens.

SEMÉCARPUS (Greek, work and fruits: referring to use of fruit juice). Anacardiaceae. A genus of 20 species of tropical Asiatic and Australian trees with simple, leathery lvs. and small fls. in branching panicles; drupe fleshy, globose, 1-seeded.

Anacardiurn, Linn. f. MARKING-NUT TREE. A moderate- sized deciduous tree with large, oblong or obovate-oblong lvs. 8-24 in. long by 3-10 in. wide; fls. greenish white, 1/4 in. across, nearly sessile, in stout branching panicles about the same length as the lvs.; drupe 1 in. long, smooth, black. India. — The black acid juice of the nut is used for printing cotton cloth. Cult. in S. Fla.

E. N. Reasoner and F. W. Barclay.

SEMÉCLE (mother of Bacchus). Liebclee. The Climbing Butcher's Broom is a tender evergreen vine which attains a height of 50-60 ft. and is remarkable for bearing its flowers on the margins of the "leaves," instead of on separate flower-stalks. These fls. are small, yellow, 6-lobed blossoms about three-eighths of an inch across. What appear to be leaves are technically "cladophylla," i. e., leaf-like branches. They are organs which have the form and function of leaves but not the morphology. Semele belongs to the small group of 4 genera known as the Asparagus tribe, all the members of which have cladophylla. Semele differs from the Butcher's Broom (Ruscus) in having 6 anthers instead of 3 and in having the fls. borne on the margin of the cladophylla instead of along the midrib. Asparagus differs from Semele in having the fls. not borne on the cladophylla and the filaments free instead of grown into an urn-shaped body.

Semel. is a genus of one species, a native of the Canary Islands. The plant is not known to be cult. in American greenhouses, but it is suitable for outdoor cultivation in the South. Franceschi (Santa Barbara) says it looks like a gigantic sedum and has dark green, tropical foliage likely to be mistaken for some of the Indian climbing palms.

Androgyne, Kauth. Scandent, branching: cladodina ovate or obovate-lanceolate, acuminate, leathery; fls. small, yellow, clustered: ovary 3-lobed: berry globose, indehisc. B.M. 1898 and 3629 (as Ruscus androgyneus). R.H. 1894, p. 536. — The members which have the position of leaves are minute scales, in the axil of which are borne the cladophylla, the latter being 3-4 in. long.

SEMÉPÉRIVUM (Latin, living forever). Crassulaceae. Houseleek. About 40 species of fleshy herbs widely scattered in the mountainous countries of the Old World. They are mostly hardy perennials and stemless, and increase by rosettes (Fig. 2316) which are sent out from the parent plant, thereby suggesting the popular name "House-and-chickens." The lvs. are thick, short and succulent. The fls., which are borne in paniced cymes, are mostly yellow, greenish yellow, or some shade of rose or purple, rarely white. The individual fls. are larger than those of Sedum, but the clusters are less showy. Houseleeks are cultivated only for foliage than for flowers. They are not used for as great a variety of purposes as Sedums, but they are popular for carpet bedding, rockwork and covering dry banks and bare sandy wastes. They are of the easiest culture and are quickly multiplied by means of the offsets or rosettes. They may be used alone for permanent carpet beds, and for this special purpose are preferable to the more popular but tender Echeveria. The foliage remains green all winter. The lvs. are often spotted with red toward the tip, and this color is brighter if the plants have full sunlight. The names "Houseleek" and "Hen- and-chickens" are loosely applied to the whole genus. If these names are to be restricted, the former should be used for Semepervivum tectorum and the latter for S. globiferum. The common species, which grows on the roofs of houses in Europe, is S. tectorum. In the case of S. globiferum the young rosettes are attached to the parent plant by a more slender thread than usual and more easily detach themselves and roll about. The spider-web species are the prettiest of them all, by reason of the webs that cover the young rosettes. These webs are made by the plants themselves and are incidental to development.

Sempervivum is closely related to Sedum, but the floral parts are multiples of 6 or some larger number, while the floral parts of Sedum are in 5's. The genus is a difficult one to locate. It has been mono- graphed by J. G. Baker in "Gardener's Chronicle."
SEMPERVIVUM

1878. Baker's scheme has been closely followed below, but some of the names have been changed.

INDEX.

- 1. expansum, 1.
- 2. arachnoideum, 8.
- 3. arenarium, 11.
- 5. calcearium, 1.
- 6. glabiferum, 12.
- 7. tectorum, 10.
- 8. tomentosum, 8.

SEMPERVIVUM

Subgenus 1. SEMPERVIVUM Proper. Floral parts in 10's, 12's or 18's. Expanded petals widely spreading.

Division 1. Rhodanthae. Fls. reddish.

Group 1. Citilatae. Lvs. of the barren rosettes glabrous on the faces when mature, shortly ciliolate on the edges only.

A. Red-brown tip of lvs. conspicuous.
B. Foliage green or slightly glaucous.

1. tectorum

2. calcarium

AA. Red-brown tip of lvs. none or obscure.
B. Petals bright red

3. glaucescens

BB. Petals pale red

4. Atlanticum

Group 2. Pubescetinae. Lvs. of the barren shoots decidedly pubescent on the faces as well as ciliolate at the edges, not tipped with a tuft of spreading hairs.

A. Height 6 in.: fls. numerous, the lowest subsessile...
B. Height 2-3 in.: fls. few, 2-3, all sessile or subsessile.

5. montanum

BB. Barren rosettes 1½ in. across:

6. flagelliforme

AA. Height 5-6 in. across:

7. pumilum

Group 3. Barbulae. Lvs. of the barren rosettes strongly ciliolate on the edge, and furnished with a tuft of similar, not feebly hairs at the cusp. (None in one hand.)

Group 4. Arachnoidea. Differing from the other groups in having the tips of the inner lvs. of the barren rosette connected by five feebly threads like those of a spider's web.

Division 2. Chrystagntha. Fls. yellow.

A. Fls. less than 1 in. across: height 6-12 in.
B. Fls. 1½-2½ in. across: height 3-4 in.

8. arachnoideum

Subgenus II. DIPOGONE. Floral parts in 6's. Cotylia permanently bell-shaped, with ascending close petals.

A. Petals not fimbriate: young rosettes not pedunculate...

1. Heuffelii

BB. Petals fimbriate: young rosettes temporarily attached to the mother plant by a slender stalk.

B. Lvs. obovato-cuneate

BB. Lvs. oblanceolate

1. tectorum, Linn. HOUSELEEK. OLD-MAN-AND-WOMAN. Fig. 2310. Height 1 ft.: rosettes 3-4 in. across; lvs. obovato-cuneate, cuspidate, 1½-2 or finally 3 in. long, pale green, with a distinct red-brown tip an eighth to a sixth of an inch long; panicle 5-6 in. long, 3-4 in. wide, composed of 10-12 scorioid branches: fls. ¾-1 in. across; petals pale red, keeled with deeper red; stamens often changed to pistils; filaments bright purple.

2. calcarium, Jord. (S. Calciiforme, Hort.). Height under 1 ft.: barren rosettes 2 in. across; lvs. oblanceolate-cuneate, very glaucous, with a distinct red-brown tip, 1½-2¼ in. long; panicle 3-4 in. long and broad, with 8-12 scorioid branches: fls. ¾ in. across; petals pale red, green down the keel both on the back and face. Calcareous Alps of Dauphiny.

3. glaucescens, Tenore. Height 6-9 in.; barren rosettes 2-3 in. across; lvs. oblongo-cuneate, less glaucous than S. calcarium, with only a very faint red-brown spot at the tip; panicles 2-3 in. across: fls. 1 in. across; petals bright red. Simplon Alps.

4. Atlanticum, Bieb. Height nearly 1 ft.: barren rosettes 2-3 in. across; lvs. oblongo-cuneate, pale green, hardly tipped red-brown; panicle 3-4 in. across: fls. 1 in. across; petals pale red. Atlas Mts. B.M. 6635 (as S. tectorum, var. Atlanticum). The lvs. of the flowering stem are distinctly brightened with red, excepting towards the base.

321. Spiderweb Houseleek. SEMPERVIVUM arachnoideum.

5. montanum, Linn. Height 6 in.: barren rosettes 1½-2 in. across, the new ones few, and borne on red pilose peduncles 1-1½ in. long: lvs. 60-90 in a rosette: panicle very dense, ½ in. in across, the lowest fls. nearly sessile: fls. 1-½ in. across, bright mauve-red. Fls. about the end of June. Alps, Pyrenees.

6. flagelliforme, Fisch. Height 3-4 in.: barren rosettes 1½ in. across, the new ones long-peduncled: lvs. 40-50 in a rosette: fls. 6-8 in a dense head, all sessile or sub sessile, 1 in. across; petals bright mauve-purple. Fls. in middle of June. Caucasus.

8. arachnoideum, Linn. COWWEB OR SPIDERWEB HOUSELEEK. Fig. 2321. Height 3-5 in.: barren rosettes ¾-5 in. across, the new ones crowded and sessile: lvs. oblongo-cuneate, pale green, the tips of nearly all congested by long, soft, white hairs; panicle dense, few-flowered; fls. less than 1 in. across; petals bright red. Pyrenees to Tyrol. B.M. 68. — S. tomentosum, C. B. Lehm., said to differ in having shorter, more oblanceolate lvs., and softer and more compact rosettes and a denser web, could not be distinguished by J. G. Baker. R.H. 1869, pp. 490, 491; 1898, p. 573.

9. Ruthenicum, Koch. Height 6-12 in.: barren rosettes ¾ in. across, the new ones few; lvs. 40-50 in a rosette, slightly pubescent glandular on the faces: fls. pale yellow, less than 1 in. across. Eastern Eu. — Rare in cult.

10. calcarium, Jord. (S. Calciiforme, Hort.). Height under 1 ft.: barren rosettes 2-3 in. across; lvs. obovato-cuneate, very glaucous, with a distinct red-brown tip, 1½-2¼ in. long; panicle 3-4 in. long and broad, with 8-12 scorioid branches: fls. ¾ in. across; petals pale red, green down the keel both on the back and face. Calcareous Alps of Dauphiny.
r肤ten rosettes 1-1 ½ in. across, the new ones on stalks 1-2 in. long; lvs pale green and pubescent all over, only the very tip red-brown: fls. 1½-1¾ in. across, yellow. Eastern Eu., Asia Minor. B.M. 507 and 2115 (as S. globiferum).—The shortest of all the hardy species.

11. **Heuffelli**, Schott. Height 6-8 ft.; barren rosettes 1½-2 in. across, not peduncled; lvs. 30-40 in a rosette, obovate-elliptic, the upper third or even half tinted bright red-brown; panicle dense, many-fl., 2½-3 in. across; fls. an inch or less across, pale straw-yellow; petals with 3 small cusps, not fimbriate. Aug. Ms. of Transylvania and Greece, 5,000-6,000 ft.—One of the latest in flower.

12. **globiferum**, Linn. (S. soboliferum, Sins.) *H. and-chickens*. *H. houseleek*. Height 6-9 in.: barren rosettes globose, 1-1½ in. thick, the numerous young ones attached to the parent only by a slender thread and easily broken; the petals longer and more strongly fimbriated; lvs. oblanceolate: fls. 1 in. across, pale yellow; petals obscurely trisepalous, conspicuously fimbriated at the edge and on the prominent keel. Ms. of Austria. B.M. 1457.—Unless the young rosettes are thinned out the plants are not so likely to flower. Under the name of S. globiferum, Linnaeus seems to have confused all the yellow-fl. hardy species which he knew.

13. **arenarium**, Koch. Very close to S. globiferum, having the same height, the same globular deciduous rosette, etc., but with narrower lvs. and the petals smaller and more strongly fimbriated: lvs. oblanceolate: fls. 1-1¾ in. across; petals pale yellow, distinctly trisepalous, with a linear end tooth, strongly fimbriated at the edge and less so on the prominent keel. Tyrol. Gn. 49, p. 229.

K. pusilatis is advertised by one American dealer, but it seems to be unknown to botanists.

SENEBIIERA (after Joh. Senebier, a naturalist of Geneva). *Cniciflorus*. About 6 species of prostrate annual or biennial herbs from the temperate regions of Europe and Asia, and Australia, or pinnately cut lvs. and small white or rarely purple fls., in short, axillary racemes: sepals short, spreading, equal at the base; stamens free; silicles in pairs, small, laterally compressed; valves 1-seeded, indiscernent.

pinnaflida, DC. A common weed in many parts of the world and sometimes used as a pot-herb in foreign countries; plant ½-1 ft. high: lvs. pinnately lobed: fls. white, small, numerous.

SEPLOOMA: Polygala Senega.

SENECO (Latin name for plants of this genus, ultimately from *sene* or *sænæ*, "old man"); said to be in allusion to the hoary pappus). *Compositae*. *Groundsel*. The largest genus of plants, comprising some 1,200 species in all parts of the world. A genus comprising so many members and being so widely distributed is necessarily variable and therefore practically impossible of definition. A distinguishing mark of the Senecios lies in the character of the involucre,—scales in one series, and usually reinforced at the base by a row of shorter scales that give the head the appearance of having a small calyx. The heads are usually radiate, the ray-fls. being pistillate and fertile; but sometimes the rays are absent and then the head is homogamous (fls of all one kind, i.e., perfect). The disk-fls. are tubular and 5-toothed. The torus or receptacle is usually naked. The achenes are mostly irregular-linear; pappus of soft whitish, often copious bristles. According to Gray, "minute short hairs or papillae on the achenes of most species swell and emit a pair of spiral threads when wetted. Before wetting, the achenes may be really or apparently globular, and after wetting become concave." Most of the Senecios are yellow-rayed. Of the vast number of species, very few have gained prominence as cultivated subjects. If we omit the greenhouse Chineraria (which is technically a Senecio as understood by Bentham & Hooker), the most popular species are the *Furtanin grande* (properly *Senecio Kupferi*) of florists, *S. wibonacci* or German ivy, *S. elegans* or purple ragwort, and *S. Cineraria*, one of the plants commonly known as dusty miller. Various other plants are now known as dusty millers (Fig. 2312) is sometimes confused with *Senecio Cineraria*.

All other species are of very minor importance to the horticulturist. Of the 60 or more species native to the United States and Canada, about a half dozen have been offered by dealers in native plants, but they are practically unknown horticulturally. Most of the species are wholly herbaceous, but in South Africa and South America many species are shrubby. Some species are even arborescent; others are climbers. In South Africa and the Canaries is a set that has been separated as kleinias, distinguished mostly by its habit, being for the most part decumbent or herbs, with terete or angular stems and whitish or pale yellow rayless flowers. Species of this group are sometimes seen in collections of succulents, but they are little known outside of botanical gardens. *S. vulgaris*, Linn., from Europe, is a common annual weed in various parts of this country. To Senecio belong the genera known to gardeners as *Cniciflorus*, *Farfugium*, *Jacobsen*, *Kleinia*, *Ligularia*, *Cineraria* is also a Senecio, but the florists' Cineraria is described under that name in Vol. I of this work. Bentham & Hooker refer to Senecio the genus *Canalia*, which is kept distinct by American botanists, Hoffmann (in Engler & Prantl's Natürlischen Pflanzenfamilien) refers the garden genus *Emilia* to Senecio, but keeps *Ligularia* (including *Farfugium*) and *Cineraria* distinct. For *S. concholobus*, see *Emilia*.

Since Senecios afford both greenhouse and hardy border plants, it is impossible to give general cultural directions. The species are not difficult to manage, however, and most of them propagate readily by means of greenwood cuttings and seeds; the hardy species may be divided.
INDEX

acanthifolius, 9.
aculeatus, 5.
A. DC. (Ligularia Kämpferi, Sieb. & Zucc. ex Farfugium, C. Koch. = Farfugium Kämpferi, Benth.). Rhizomatous perennial sending up many lvs. on slender, downy-woolly peduncles: lvs. large (often 6–10 in. across), orbicular to nearly reniform, coarsely at base, angular-toothed, green; fl. stems 1–2 ft. tall, downy-woolly, branched, with only small, bract-like lvs.; heads large, with light yellow rays spreading 1½–2 in. across: pappus white and cupules. Japan. B.M. 5302.

A. aureo-maculatus, Benth. (Farfugium aureum, Lindl. = F. maculatum, Hort.) LEOPARD PLANT. Fig. 2313. Differ in having the lvs. blotched with yellow or white and sometimes with light rose. The variety aureo-maculatus is the only form in general cultivation. It was introduced to England in 1856 "from the garden of a mandarin in the north of China" by Fortune. Twenty years ago this was a common plant in conservatories and window-gardens, but of late years it has been neglected. It is, however, a most worthy plant, not only for the house but for bedding in the open in shady places. The plant is hardy as far north as Washington when set permanently in the open. One form has yellow-spotted lvs. (the commoner) and another has white-spotted lvs. Another form (var. aureus) has lvs. glaucous-green edged with creamy white. Easily propagated by division.

A. japonicus, Sch. (Ligularia Japonica, Less. = Erythrocacte palustrifolia, Sieb. = Eux. = Euphorbitum, Sieb. & Zucc.) Strong perennial herb, growing 5 ft. high, said to reach 15 ft. in southern Japan, and grown for its massive foliage effect: radical lvs. very large, 1 ft. or more across, deeply palmately cut into 7–11 narrow lobed and notched divisions; fl. stems branched, bearing heads on rather long, naked stems: rays orange, spreading 3 in. from tip to tip. Japan. G. 22, p. 139.—Intr. into this country about twelve to fifteen years ago. It is a bold plant, barely hardy in New York, and well adapted to planting where strong foliage effects are desired, provided the place is moist.

2313. Leopard Plant, or Farfugium—Senecio Kämpferi, var. aureo-maculatus (X ½).
5. **Seneqio**, Linn. (S. purpureus, Hort. *Jacqbesa elegans*, Moench). **PURPLE RAGWORT**. Annual, viscid-pubescent, erect or diffuse, 1-2 ft.: lvs. various, mostly oblong in outline, pinnate, lobed or toothed, the sinuses mostly broad and rounded, clasping at the base; heads in loose corymb, the rays purple, disc-fls. yellow. S. Afr. B.M. 238. — **Var. erectus**, Harvey. Stem slender but erect, the lvs. pinnate or 2-pinnatifid. *Senecio elegans* is an old garden plant. A common form of it has double fls. **Var. albus**, Hort., has white fls.

6. **pulcher**, Hook. & Arn. Robust, 2-4 ft., white-cobwebbly, the stem simple or nearly so and scarcely leafy: lvs. long (4-10 in.), oblong-lanceolate, thick, shallow-lobed and crenate-toothed; heads 2-3 in. across, with many long, red-purple rays and a yellow disk. Uruguay and Argentina. B.M. 2359. R.H. 1877, p. 94; 1886, p. 326. Gn. 49, p. 122. G.M. 49:745. — A very bold species, with striking erect habit and large fls. in summer. Perennial, although it has been described as annual. In protected places and well-drained soils, it is hardy in southern New England.

7. **mikanioides**, Otto (S. schadenus, DC.). **GERMAN IVY**. Fig. 2314. Slender and graceful, tall-twining: lvs. ovate or deltoid-ovate in outline, mostly with a deep basal sinus, sharply 3-cleft or angle-lobed; head small, discoid, yellow, in close clusters on axillary and terminal branches. S. Afr. — Very common conservatory and window-garden plant, easily propagated by cuttings.

8. **macroglossus**, DC. Lvs. mostly hastate, often with acuminate basal lobes, but various in shape: heads only 1-3 together, and bearing yellow rays. S. Afr.

9. **Cineraria**, DC. (Cineraria maritima, Linn. **Senecio acanthophyllus**, Hort.). Fig. 2316. Perennial, 2 ft. or less tall, branching from the base, very white-woolly throughout; lvs. pinnatifid, with oblong and obtuse segments: heads small, yellow, in small, compact corymb, rayless, Europe, F.M. 1872:22. — **Var. candidissimus**, Hort., has very white foliage. **Var. aureo-marginatus**, Hort., has lvs. bordered with orange-yellow. **S. Cineraria** is an old-fashioned garden plant, sometimes known as Dusty Miller; the commoner Dusty Miller is *Lychinis Coronaria*, and another one is *Artemisia Stella* (Fig. 2322).

10. **Palmieri**, Gray. Densely white-tomentose all over, branching, 1-2 ft., perennial: lvs. oblong-lanceolate, slightly toothed, narrowly into a petiole: heads few, with yellow rays, about 1 in. in diam., in a corymb, Guadalupe Isl., Lower Calif. — Intr. by Franceschi, Santa Barbara.

11. **Petasitis**, DC. (Cineraria Petasitis, Sims). Fig. 2316. Robust perennial, 2-3 ft. tall, gray-toscose on the young parts, branching: lvs. both radical and cauline, 5-10 in. across, long-stalked, coriaceous-ovate-ellipsoidal, strongly serrated or even many-lobed, dull green above but gray-tomentose beneath: heads in an open panicle, the cylindrical involucre % in. high, the few rays light-yellow. S. Amer. B.M. 1536. — A striking plant for winter decoration, the star-like fls. (or heads) being produced in great abundance; now becoming disseminated in this country.

13. **lagesis**, Rich. Perennial: floccose-woolly when young but becoming nearly or quite glabrous, 6-24 in. tall, the stem practically naked above; lvs. apatulate to oval or oblong, repand-dentateulate: rays 10 or 12, yellow, conspicuous. Western U.S. in the mountains and to Alaska. — **Var. exaltatus**, Gray, has been offered: 1-3 or 4 ft. tall: lvs. thickish, longer-petiolated, abrupt or subcordate at base.

14. **aureus**, Linn. Perennial: an exceedingly variable and cosmopolitan group, by some authors split into several species, some glabrous, 1-2 ft. tall: lvs. mostly rounded and undivided, the cauleine ones lanceolate and pinnatifid or laciniate: heads many, %-% in. high, with 8-12 conspicuous yellow rays. Moist places, nearly throughout the U.S.

15. **fastigiatus**, Nutt. Perennial; mostly pubescent, the stem strict and simple and 1-2 ft. high: lvs. all entire or very nearly so, lanceolate or spatulate-lanceolate, obtuse: heads %-% in. high, with conspicuous yellow rays. Idaho, Oregon, Washington.

16. **Boändideri**, Gray. Perennial: glabrous or soon becoming so, the stems weak and slender and 6-30 in. tall: lvs. thin, pinnately 5-9-lobed or incised, or the stem-lvs. pinnately divided: heads several, %-% in. high, with 5-8 rather long yellow rays. California, Oregon.

17. **Doqilasii**, DC. Fig. 2317. Woody or even shrubby at base, with many stems, 2-3 ft. tall, with the aspect of an aster: lvs. small and linear, or the lower ones pinnately parted into bilobed divisions: heads numerous, %-% in. high, with 8-18 conspicuous yellow rays. Nebr., W.

L. H. B.

Senna. See *Cas sia.*

Senna, Bladder. See *Colutea.*

Sensitve Briex. See *Schrunkia.*

Sensitve Fern. See *Oncocala sensibilis.*

Sensiive Plant. *Mimosa pudica.*

2314. *Senecio mikanioides*, usually called German Ivy. (× %)

2315. *Senecio Cineraria.* One of the plants known as Dusty Miller.

SEQUOIA (after Sequoyah, otherwise George Guess, a Cherokee half-breed of Georgia, about 1770-1843, inventor of the Cherokee alphabet). *Conifer.* Big Trees of California. **Redwood.** Tall, massive, often
gigantic forest trees, with trunks usually heavily inter-
tressed at base, covered with thick, fibrous bark, deeply
and widely lobed; heartwood dark red, soft, durable,
straight-grained; sapwood very thin and nearly white;
Lvs. persistent, alternate, often dimorphic (especially on
young trees): fls. naked, monoeccious, solitary, the stami-
nate terminal or axillary; stamens numerous: cones
maturing in one season. Once widely distributed in
several species throughout the interior of North America
and parts of Europe, but now limited to two species,
which are confined to the mountains of California.

The wood of S. sempervirens at present forms the
bulk of the redwood lumber in the trade, and is used
on the Pacific coast wherever a light, durable, easily
worked material is desired. Most wooden buildings are
constructed with this lumber in California, and it is
sometimes exported to Europe to be employed as a sub-
stitute for red cedar in the manufacture of lead-pencils.
Logs with a curly grain are highly prized by cabinet-
makers, from whom they have received the name "curly
redwood."

The wood of S. gigantea resembles that of S. sempervi-
reus, but is coarser-grained and lighter (in weight),
and is therefore not adapted to as wide use as the latter.
It is very durable in contact with the soil, however, and
is widely used for coarser construction work, ties, fence-
posts, vineyard stakes, shingles, and the like.

As an ornamental subject, S. sempervirens will be
valuable wherever it is hardy. It is rather resistant
upon a cool, moist, foggy climate, however, and is in
this respect inferior to the other species, although a va-
riety known as S. sempervirens var. glauca, is reported
to be doing well in southern California.

S. gigantea has been more widely planted in the East
and in Europe, and in sheltered locations has maintained
itself for a number of years. The most notable exam-
oples are those in the Ellwanger & Barry grounds, at Rochester, N. Y., which are now about 40 yrs. old, 30
ft. high and 12 in. in diameter at base of trunks. When
seen in the winter of 1900-1, however, these trees were
beginning to show the effects of the rigorous climate by
their dead and dying tops. This species is far more

hardy than S. sempervirens, and even in the dry climate
of southern California is reported to be doing very well.
A weeping variety known as S. pendula is advertised,
which originated some years ago in European nurseries,
and is described as having "all pendulous branches,
closely pressed against the stem." Both species are said
to dislike heavy soils, and to thrive best when planted in
deep sandy loam. Both are easily propagated from seed,
which sprout readily in a few weeks.

2317. Senecio Douglasii (X 2).

a. Lvs. dimorphic, usually 2-ranked: buds scaly.

b. Lvs. sempervirens, Endl. CALIFORNIA REDWOOD. Fig.
2318. Tree, 200-400 ft. and more high, with a slightly
tapering trunk, 10-20 and sometimes 25 ft. in diam.,
and often clear of branches for over 100 ft.: branches and
Lvs. distichously spreading, the latter persistent for two
or three years and sometimes dimorphic on the same
branch, the larger ½-3 in. long, the smaller scale-like:
cone oblong, ½-1 in. long, ½ in. broad, and persistent
after opening and discharging the seed. Confined to
northern and central Coast Ranges of California on
slopes exposed to sea influences. S.S. 10:535.—When
cut, or from fallen stems, it throws up many vigorous
long-lived shoots, often producing merchantable trees.

aa. Lvs. seldom or not at all dimorphic, not 2-ranked,
often imbricate: buds naked.

b. gigantea, Deane. (S. Wellingtonia, Seemann). CALI-
FORNIA BIG TREE. Fig. 2319. Tree, 260-350 ft. high,
with heavy massive trunks, sometimes 20-30 ft. in
diam., and often clear of branches for over 150 ft.: bark
of old trees from 1-2 ft. thick: branches hardly dis-
tichously arranged, pendulous, cord-like, forming rather
tangled masses: Lvs. ½ to 1½ in. long on stout shoots, and
usually closely appressed and scale-like: cone ovate-oblong, 2-3½ in. long, 1-2½ in. thick, opening only slightly, retaining its original form
even when dry, and persistent. Western slopes of Sierra

ARNOLD V. STUBBENSCH.

Taxodium was the group in which Sequoia sempervi-
reus was at first placed by Lambert from the speci-
mens obtained by Menzies in 1795, and it remained
there until 1847, when Endlicher established Sequoia
for its reception. The type-species of Taxodium is T.
distichum, the deciduous cypress. Like nearly all cyp-

eads, the deciduous cypress has a very ancient relation-
ship among fossil trees; it once grew on a large part of
western Europe and portions of England. Forms of
Sequoia, whose ancient history constitutes one of the
most interesting chapters in fossil botany, once grew in
immense forests in Europe, Asia and North America.
The first fossil remains occur in the lower chalk-forma-
tions and increase in extent to the tertiary strata, in
which they are numerous. In eocene times, fossil Sequo-
ias extended "from the Hebrides to the Steppe of Kirghis."
Asa Gray and others have told the story of the
rise and fall of this great and strong family of coni-
fers, once as powerful as any tree-group in the world,
but cut off, swept away and destroyed by the glacial age until only the local conditions prevailing in the Coast Range and Sierra of California preserved the two remaining species to the present time. According to Gray, S. gigantea is the Sequoia which is found in the miocene in Europe, appears in the miocene of Alaska, Greenland, Spitzbergen and Iceland, and it much resembles S. sempervirens. Another fossil species, S. Sterebenii, found in the same strata, is said to have been the ancient representative of S. gigantea. Accordingly, the selections of the United States Geological Department, the wood of the Arizona petrified forest is that of a species of Sequoia, whose wood went down under a primordial sea, was covered with sandstone, and rose again into the present continent. If one asks how long ago these things happened, the geologist answers, "Millions of years." And it is the same in regard to the period when Sequoias grew in Greenland, Siberia and Great Britain. We can measure that period only by vast and indefinite epochs. But the value and interest of the Sequoias are greatly increased by a consideration of their the fact modern survivors of so powerful an ancient family.

At the present time, the Coast Redwood occupies only a narrow belt of country near the ocean, nor is it continuous even therein: the Giant Redwood, or California Big Tree, exists only in a few small and isolated groves, covering in all less than fifty square miles along the western side of the Sierra Nevada range. Compared with the enormous territory once occupied by species of Sequoias, the modern representatives of this ancient and honorable family are reduced to a very small area.

The first known of the Sequoias, and much of the more valuable species, economically speaking, was S. sempervirens, the Coast Redwood of California. This is one of the most important timber trees of the world, and its forests are comparatively limited in area. They have yielded and are yielding the most easily obtained, the most durable and most profitable fencing and building lumber of the Pacific coast. The reproductive powers of the tree are enormous; the other known species of Sequoia sprout from the stump, so rapidly makes new forest, or so well resists fire. But it does not thrive farther inland than the limits of the sea-fog, and a large part of the original area covered by this noble tree has been denuded by successive fires and destructive lumbering methods. Small Redwood forests occur in Monterey county, but the most southern forests of commercial importance are in Santa Cruz. The belt, broken by the Bay of San Francisco, extends north through Marin, Sonoma, Mendocino, Humboldt and Del Norte to the southern borders of Oregon. The real Redwood forests are all contained within a strip of coast lands 500 miles long and rarely more than 20 or 25 miles wide. The actual bodies of Redwood within this region are merely a chain of isolated groups separated by clearings or by large areas on which Redwoods never grew. A small grove, now practically destroyed, existed fifty years ago on the east side of the Bay of San Francisco, in Alameda county. Well-borers have found Redwood logs in a perfect state of preservation in various parts of the Coast Range far south of where the tree now grows, even to Los Angeles and San Diego, showing that in some former period of greater rainfall and more sea-fog, Redwood forests extended much farther along the coast.

The climate where the Redwood thrives is comparatively mild, marked by cool summer winds from the southwest. The tree delights in rich, sheltered mountain valleys and fertile slopes, in dripping fogs and in heavy rains. Going east from the ocean, in the Redwood region, one suddenly comes to the top of a ridge, to overlook oaks and pines, and at once reaches the plainly marked edge of the Sequoia sempervirens forest.

While S. sempervirens is sometimes called second in size among the giant conifers of the Pacific coast, the tallest tree yet authenticly measured was 340 ft. high, exceeding in height the tallest of the Sierra species, and it is probable that trees which rise 400 ft. and so deserve to take the first place among the conifers. Many trees of 20 and even 22 ft. in diameter at five feet from the ground, and from 300 to 325 ft. in height, are still standing in the Redwood region. The leaves of Redwoods contain many specimens that range from 150 to 250 ft. or more in height and have a diameter of from 12 to 15 ft. In such forests the trunks rise in clear, red-brown shafts to a height of from 75 to 150 ft. before they branch; they stand so close that the masses of timber that exist on each acre are greater than are found in any other known forest, and their far distant tops the sun seldom reaches the warm, sheltered soil of the great Coast Range Canyons. With proper management, under the principles of scientific forestry, the Redwood region as it exists to-day could be maintained, and its future yield greatly increased, but otherwise in forty or fifty years the commercial value of the entire area will be practically destroyed. The state of California has this year (1911) appropriated $250,000 for the purchase of the large Redwood forest of the "Big Basin" in Santa Cruz county, and a commission is now arranging to create a State Redwood Park there.

Sequoia sempervirens was discovered by Archibald Menzies in 1796, rediscovered by David Douglas in 1831, and soon after by Dr. Conifer. It was introduced to European gardens by Hartweg about 1847. Both Douglas and Hartweg were sent out by the Royal Horticultural Society of London. S. sempervirens var. adpressa (Carrière) is a smaller tree than the type form, with creamy white younger leaves and more chocolatey oval leaves. It is called in California the "White Redwood" and the "Silver-leaf Redwood." Other horticultural varieties in cultivation are Sequoias gracilis, S. faxifolia, S. piota, S. albospica and S. glauca. The golden forms found in many other conifers occasionally appear, but cannot yet be called fixed. So really dwarf Redwood forms can be selected from the forest, and the tree responds easily to selection and culture. It thrives in gardens in the Sacramento valley, in the Sierra foothills and in many parts of southern California, so that its range for ornamental uses can be greatly extended on the Pacific coast. It has been largely planted in Europe, particularly in English parks, and, as was to have been expected, do best in well-drained rich soil near the ocean but sheltered from cold winds.

Endlicher's Sequoia gigantea (the S. Washingtonia of Sudworth and the S. Wellingtonia of Seemann and of

Sargent) is undoubtedly one of the rarest of all living species of trees, and one of the most easily visited and studied. It is the best living representative of a geologic age long passed, and, possibly, due to this, it is the most impressive and noble of all known trees. But nearly all of the small remaining group of Big Trees except the Mariposa groves are owned by private individuals and are being cut down or may at some future time be de
Serenoa, Hook. f. Saw Palmetto. Fig. 2320. Stem creeping, branching, 4-8 ft. long; lvs. 2-4 ft., circular, fan-shaped, spiny; flowers white; ovary club-shaped, pubescent with erect spiny-edged scales; segments slightly cleft at the apex, without bristle-like filaments; spadix densely tomentose, shorter than the lvs.: drupe black, ½-⅓ in. long.

2320. A Florida scene, with Serenoa serrulata in foreground and Palmettoes in the background.

arboréscens, Sarg. Tree, 30-40 ft. high, with 1 or several stems; lvs. semimarticular, truncate at base, yellowish green above, bluish green below, 2 x 2 ft., divided nearly to the base into narrow linear-lanceolate lobes. — Discovered by P. W. Reasoner in 1887. First described 1899. Differs from above in arboreous habit, more elongated spadix, much smaller fls., and smaller, globular fruit and seeds. Southwestern Fla.

JARED G. SMITH.

The Saw Palmetto is the native creeping fan-leaved palm. Those who are clearing land in Florida consider it a nuisance. It is, however, of great interest to northern tourists, many of whom like to take home a small Florida palm in a pot or tub. This species does very well in pots, though it is of slow growth. Relatively speaking, it is very hardy, as it will stand a temperature of 10° F. The leaves of the Saw Palmetto, both fresh and dried, are sent north in great quantities for Christmas decoration. The "crowns" are also largely used for the same purpose and deserve a greater popularity. Crowns are whole tops cut off; they have no roots, and only a part of the stem. They give the effect of the whole plant and are therefore much more desirable for some purposes than single leaves. They will last for weeks, if kept moist, in the shade and free from drafts. Crowns 3-5 ft. high are considerably used for large decorations at Christmas, Palm Sunday and Easter.

E. N. REASONER.

In clearing the land for the writer's garden one large clump of the Saw Palmetto was purposely retained. At first, present it makes a striking appearance, somewhat weird and grotesque. The fertilizer which the plant received has improved it wonderfully. Good specimens attain a height of about 3 ft. There is a variety showing a glaucous tone which grows near the coast and which is very beautiful. It seems to be difficult to transplant.
SERENA

SERENEA. See Serena.

SERICOCARPUS (Greek, silken fruit). Composite. A genus of 5 species of perennial herbs from northwestern United States closely allied to Aster and scarcely distinguishable from the section Biotia of that genus. The achenes are not so strongly compressed as in Aster. The flower-heads have white rays and pale yellow disk which sometimes become purplish. S. rigidis, Lindl., was offered in 1881 in the eastern states by western collectors, but it is doubtful if any member of the genus is in cultivation.

SERISSA (from the Indian name), Rubyceae. A single species from southeastern Asia, a tender shrub of moderate growth with small, opposite, nearly sessile lvs. and rather small, jasmine-like white fls., which are sessile in the leaf-axis or terminal; corolla funnel-shaped, yellowish, the lobes 3-lobed; stamens inserted on the corolla-tube; style shortly 2-cleft; fr. subglobose, 2-celled, 2-seeded.

SERUTA, Lam. (S. Japonica, Thunb.). The young lvs. are ill-smelling if crushed. Summer. B. M. 361.—Oft fed on by importers of Japanese plants, has yellow-margined lvs. Offered in 1895 by Pitcher & Munda.

SERPENT GOURED. See Trichogasterus.

SERRADELL (from the modern Spanish, serra, mountain, or serras, mountains). A genus of a number of annual grasses which is a valuable for a fodder plant on dry and sandy sterile soils, or may be used for pasture or hay. It is sometimes cut twice in a season. Sometimes it is sown with winter rye. The plant is figured in Bulletin 2, Div. of Agrostology, U. S. Dept. Agric., where Jared G. Smith says: "At the Pennsylvania station the yield from two cuttings was 11½ tons of green forage. It does not require lime, and is often used as a green manure to bring up the value of sterile fields. The forage, which is much relished by cattle and sheep, has about the same feeding value as red clover."

The scientific name of Serradilla is Orithopus sativus. The generic name means "lord's foot," referring to the clusters of long, claw-like pods. The genus contains about 7 species of slender, low-growing annuals with pink, white or yellow fls., which are too minute to have any horticultural value. Lvs. odd-pinnate, leaflets numerous.

S. viridis, B. M. 146.—Annual, 3 ft. high, with green or blue fl. and bristles, 1-3 ft. above the spikelets. In dried state. May be grown in the greenhouse. Used for the production of green manure. Usually used in Europe and America. Occasionally grown in the United States. A. S. Hitchcock.

SERUM. See Sesamum.

SESAMUM (Greek name taken by Hippocrates from the Arabic), Pedalichaceae. A genus of annual herbs from India and Egypt, allied to Martynia, with solitary, axillary flowers. The only specific importance of S. Indicum, which has been extensively cult. in Asia and Africa from ancient times. The seeds are sold in America under the name of Bene. They yield about half their weight of oil-of-sesame (known also as benne-, gizghi., or tead-oil), which is odorless and does not easily become rancid. This oil is universally used in India for cooking and anointing. Large quantities of oil are annually imported from India to Europe for the manufacture of soap and adulteration of olive-oil. Also cult. in northern states as a medicinal herb, the mucilaginous leaves being used in dysentery and diarrhea of children. The oil of Sesamum, however, which is expressed from the seeds is in large doses a laxative.

Indicum, Linn. (S. orientale, Linn.), Lvs. variable, 3-5 in. long, oblong or lanceolate, the lower often 3-lobed or parted; corolla pale rose or white, 1 in. long, tubular, 3-cleft, the 3 lobes of the upper lip shorter.

SHAD-BUSH. Consult Amelanchier.

SHADDOCK. See Citrus and Pomeo.

SHADE TREES. See Trees.

SHADING. See Greenhouse, page 696.

SHAGBARK. See Hickory.

SHALLOT or Allium ascalonicum, Linn., native of Syria. It is grown chiefly for the small dull-oblong-pointed gray bulbs, which are used in cookery for flavoring; the leaves are sometimes eaten in a green state. The bulbs are of mild flavor. Shallots are little known in North America. They are used as "Garlic", the bulbs or cloves being separated and planted early in spring in any good garden soil. Each bulb produces several, all cohering by the base. The mature bulbs are 2 in. or less long and only about half that in diameter. The leaves are small, terete and hollow. The plant is hardy. The bulbs will keep several months or even a year. Small onions are sometimes sold as Shallots.

L. H. B.
SHAMROCK. Half the world is sure that Shamrock is the wood sorrel, Oxalis acetosella. The other half is equally certain that the true Shamrock is white clover, Trifolium repens. In the time of Sydney, the Fairy Queen, Shamrock was said to be good to eat. This applies to the former plant, but not to the latter. Moreover, according to Sowerby, the wood-sorrel is in perfection on Saint Patrick's Day while white clover is not. The wood-sorrel is sent in great quantities from Ireland to London for Saint Patrick's day. On the other hand, it is said that clover is the plant most commonly grown in Ireland. Half the gardeners have their followers, and these are all plants with three leaflets. Nevertheless there are those who deny that Saint Patrick devised the Shamrock as a symbol of the trinity. These declare that the water cross is the true Shamrock. The question will always remain an open one. See Dyer's "Folk-Lore of Plants." W. M.

SHAMROCK, INDIAN. A name found in some English books for the Trillium.

SHAMROCK PEA. Petroselum communis.

SHAW, HENRY, founder of the Missouri Botanical Garden, popularly known as "Shaw's Gardens," was born at Sheffield, England, July 24, 1800, and died at St. Louis, Mo., August 23, 1888. He came to the United States in 1819 and engaged in the hardware business until 1840, when he devoted himself to horticulture, until his death. After retirement from active business he traveled for a number of years, and in 1849 laid out a modest garden on his own house in the suburbs of St. Louis, which, nine years later, he extended so as to include some forty-five acres, about half of this area constituting an arboretum.

By special act of the General Assembly of the state of Missouri, approved in March, 1859, Mr. Shaw was empowered to provide for the conveyance of his property, either during his life or after his demise, to trustees for the perpetual maintenance of his garden as a scientific establishment. In 1888 he endowed a department in Washington University, known as the Henry Shaw School of Botany, and on his death left nearly all of his property, valued at some $8,000,000, to a board of trustees for the maintenance, improvement and enlargement of the Missouri Botanical Garden.

Mr. Shaw, though not a botanist, was a lover of plants for themselves and a firm believer in their influence in molding desirable traits in human character. His garden was always open to visitors, among whom he particularly welcomed the self-respecting poor. Thirty years before his death he gave to the city of St. Louis a park site adjacent to his garden, which, like the latter, was improved under his personal supervision.

Special provisions in Mr. Shaw's will, aside from the general arrangements for the development of the garden—in deeds of which he gives his trustees a very free hand—are for an annual sermon "on the wisdom and goodness of God as shown in the growth of flowers, fruits, and other products of the vegetable kingdom," premiums for an annual flower show; and two annual banquets, respectively for the trustees and gardeners of the institution. These banquets are the occasion for annual gatherings of men distinguished in botany and horticulture.

WM. TRELEASE.

SHEEP BERRY. Viburnum Lentago.

SHEEPS BIT. Jasione perennis.

SHELLBARK. See Hieracium and Hicky.

SHELLFLOWER. See Cyclobothria; also Alpinia walrus; also Moluccella laevis.

SHELL LILY is Alpinia walrus.

SHEPHERDIA (John Shepherd, an English botanist). Elagapanus. Three American shrubs with silvery or brown-scarfy foliage, two of which are in the trade, beloved, for their striking appearance and one of them prized for its edible fruit. The leaves are Opposite, petiolate, entire. Flowers diocious or polygamous and apetalous, small and inconspicuous, borne in small sessile or nearly sessile clusters; calyx 4-parted; stamens 8, alternating with 8 lobes of a disk; pistil 1, nearly inclosed by the disk at the orifice of the calyx-tube, becoming a nut or akene and invested by the fleshy calyx, forming a drupe-like fruit. In S. argentea, the Buffalo Berry, the fruit is edible when made into jellies and conserves, and is much prized in the upper Plains region for household uses.

The Shepherdelias are hardy plants, withstanding extremes of cold and drought. They are of easy culture, and grow readily from stratified seeds. For ornamental planting, they are prized for bold positions in front of shrubbery masses, where their gray or white colors afford excellent contrasts. S. Canadensis is particularly well adapted for planting on dry, rocky, sterile banks, where most bushes find great difficulty in securing a foothold. S. argentea succeeds better in the upper Mississippi valley than in the eastern states. Stamine and pistillate plants of it have different forms of buds.

The genus Shepherdia was founded by Nuttall in 1818. It is said that Robinsone's Leopargyrus, 1817, is equivalent, and the species have been placed under the latter name by recent writers.

A. Lvs. green above.

Canadensis, Nutt. (Lepargyrus Canadensis, Greene). Spreading twiggy bush 3 to 6 or even 8 ft. tall, the young branches brown-scaly; lvs. ovate, ovate or elliptic, rather thick, green above but rusty beneath; fls. yellowish, in short clusters at the nodes; fr. small 3/12 in. or less long, oval, red or yellow, inedible. Along streams and on lake banks, Newfoundland to British Columbia and in the northern tier of states, and southward in the mountains to Utah.—Little known in cult., but has been offered by dealers in native plants.

2321. Shortia galacifolia (X 1/2). (See page 196.)

AA. Lvs. silvery above.

argentea, Nutt. (L. argentea, Greene). Buffalo Berry. Fig. 382, Vol. 1. Upright shrub, or sometimes almost tree-form, reaching 18 ft. tall, the young growth silvery-tomentose; lvs. oblong, emenate-oblong or oblong-lanceolate, silvery on both sides; fls. yellowish, in dense small fascicles at the nodes; fr. globular or ovoid, about 3/16 in. long, red or yellow, acid, edible. Kans. to Minn., west and north. See Buffalo Berry.

S. rotundifolia, Parry, from Utah, is a silvery tomentose and scarlet evergreen bush; lvs. round-ovate or ovate, mostly some what ovate, short-petioled; fls. stalked in the axils of the lvs., the staminate mostly in 3's and the pistillate solitary; fr. globular, scarlet, ripening in July.

L. H. B.

SHEPHERD'S CLUB or MULLEIN is Verbascum Thapsus.

SHINLEAF. Pyrola.

SHOEBLACK PLANT. Hibiscus Rosa-Sinensis.
SHOO-FLY PLANT. A name proposed by one seedsmen for Physalis.

SHOOTING STAR. See Dodecatheon.

SHORE GRAPE. See Cosecola.

SHORTIA (named for Dr. Charles W. Short, a botanist of Kentucky). Diapensiaceae. Of the little family Diapensiaceae, with its 6 genera and 8 species, Shortia galacifolia is historically the most interesting. Michaux collected the plant in 1788 in the high mountains of Carolina, but as his specimen was in fruit rather than in flower, Richard, the author of Michael's "Flora Borical-Americana," did not describe it. A. Gray examined Michaux's specimen, preserved in Paris, in 1839, and afterwards founded the genus Shortia on it. Great search was made for the plant in the mountains of Carolina, but it was not rediscovered until 1877. The history of the efforts to find the plant is one of the most interesting chapters in American botany. For his

torical sketch, see Sargent, "Garden and Forest," vol. 1, p. 596 (1888).

Torrey & Gray founded the genus Shortia in 1832. In 1843 Siebold & Zuccarini founded the genus Schizocodon, from Japan. To this genus Maximowicz added a second Japanese species, S. uniflora; the flowers of this plant, as of Shortia, were unknown when the plant was first recognized. It transpires, however, that Schizocodon scitum is really a Shortia, thus adding another instance to the growing list of bitopy genera that are endemic to Japan and eastern North America.

Shortia includes two climacteric herbs, with the habit of Galax, with creeping rootstocks and evergreen round-cordate lvs.: fl. solitary on a slender leafless scape, the calyx with scaly bracts, the corolla bell-shaped and obtusely 5-lobed; stamens 5, the filaments united to the corolla, alternating with 5 semi-like staminal pistils; 3-angled and 3-lined; style filiform and stigma 3-lobed; fr. a globular capsule. From this, Schizocodon is distinguished by linear-elongated staminodia and fringed corolla. Allied genera mentioned in this Cyclo- pedia are Galax, Pyxidanthera and Schizocodon. Dispensia has two alpine and boreal species, one in the Himalayas and the other in northern Europe and North America. Bernemania, the remaining genus, has a single species in Tibet. Dispensia and Bernemania are not in the American trade. Shortia Californica of seedsmen will be found under Acanthol. .

galacifolia. Torr. & Gray. Fig. 2321. Lvs. all radical, long-petioled, the blades orbicular or broadly ovate-ovarv, often slightly cordate, at the apex obtuse or even retuse, the margin regular-serrate; peduncle slender, 2-8 in. tall, 1-dkt., bracted near the top: fl. inclined or nodding, white, 1 in. across, the oblong lobes undulate. Mts. of N. Car. B.M. 708. G.C. II. 15:296; Fl. N.J. 5:17; 1743. In. 38:768. J.H. III. 30:296. G.M. 34:353. G.W.F. 24. G.F. 1:590. A.G. 12:287. Mn. 6, p. 83.—A very attractive plant with the look of a Physalis; very local. On the culture of Shortia galacifolia, Harlan P. Kelsey writes as follows: "Shortia, like most plants considered rare, is really not so rare as local, though the few stations where it is found abundantly do not seem to present special conditions not to be found elsewhere, and it is hardly understood why it should, in common with certain other plants, have remained strictly local, in an indigenous state. For the successful culture of Shortia humus and leaf-mold seem to be absolutely required, and it shows, where these conditions are natural or can be constantly supplied with this food if not. This suggestion, if carried out with many plants, such as Galax, Pyrola, Chimaera, and probably Epigaea and others, will ensure success, where if ordinary garden treatment only is given the entire disappearance of the plants may be expected in a season or two. Semi-double and pink-flowering plants are not rarely found, and it seems likely that cultivation may bring out several worthy varieties. In England Shortia is often grown successfully as a pot-plant, and is far more appreciated than in America. It is difficult to procure seed, as the flowering stem usually withers away before maturing, though Shortia is readily propagated by division and runners. It is a shade-loving plant and is a choice addition to the ericaceous bed, where it will thrive under Rhododendrons and Kalmias."

uniflora, Maxim. Very like S. galacifolia: lvs. cor- date, broader than long and deeper toothed,—simul- taneously only; rep. in S. uniflora and only; semi-double racemes of S. galacifolia. Japan.—Offered by importers of Japanese plants, but little known horticulturally. L. H. B.

SHOT, INDIAN. See Cusumo.

SHOWER OF GOLD. Catalogue name for Genista.

SHRUBBERY. Shrubs and bushes have two values: an intrinsic value as individual or isolated specimens; a value as part of the structure or design of an ornamental place. As individual specimens, they are grown for the beauty of the specimen alone; in the landscape, they are often grown in masses, constituting a shrubbery. It is often advisable to plant shrubs as single specimens, in order to produce the characteristic beauty of the species; but the tendency is to plant exclusively as isolated specimens, and the emphasis needs, therefore, to be placed on mass-planting.

Plants scattered over a lawn destroy all appearance of unity and purpose in the place (Fig. 2322). Every part of the place is equally accented. The area has no meaning or individuality. The plants are in the way. They spoil the lawn. The place is random. If the shrubs are sheared, the spotted and scattered effect is intensified. Rarely does a sheared shrub have any excuse for existence.

A mass of planting emphasizes particular parts of the place. It allows of bold and broad contrasts. It may give the place a feeling of strength and purposiveness. The shrubbery-mass usually should have an irregular outline and generally contain more than one species. Thereby are variety and interest increased. Fig. 2325. The shrubbery-masses should be placed on the boundaries; for it is a fundamental concept of landscape garden- ing that the center of the place shall be open. Fig. 2324; also Fig. 1233, Vol. II. The boundaries are the lines between properties, the foundations of buildings, the borders along walks and drives. Judicious planting may relieve the angularity of foundations and round off the corners of the yard. Fig. 2325. Individual specimens may be used freely, but only rarely should they be staunchly isolated or scattered. They should be placed somewhere near the borders, that they may not interfere with the continuity of the place and that they may have background to set them off. The background may vary, sometimes the mass, the mass or border-planting should be the rule and the isolated specimen the exception; but, unfortunately, this rule is not entirely understood, however, that boundaries are always to be planted or that foundations are always to be covered.

L. H. B.

The term shrubbery is applied to groups of woody plants of comparatively small size. The line between shrubs and trees is not very definite. A shrub gener-
SHRUBBERY

ally has a number of stems springing from the ground and a tree usually has a single trunk, but this is not uniformly true in either case. The chief value of shrubbery comes from its use in an artistic way, although some shrubs have edible fruits. Many shrubs, such as lilacs, some of the spireas, gooseberries and currants, produce leaves very early in the season and some, like Forsythia, Daphne, and the Juneberry are covered with a profusion of blossoms at this time. From early spring until November in temperate latitudes leaves and flowers are to be found on deciduous shrubs, and from June until the following spring ornamental fruits can be seen on their branches, the red berries of the elder beginning and barberries ending the list. Some of these fruits are so richly colored and so abundant that they can be seen from a long distance. Many shrubs, like some of the viburnums and dogwoods, attain a height of 10 or 15 feet, while others, like bunchberry and Daphne Curroa, grow to a height of only a few inches. The leaves of some, like the chokeberry, Thunberg's barberry, the hazels, viburnums, dogwoods, and sumachs are beautifully colored in the fall. The rhododendrons, laurels (Fig. 2326) and mahonias, and the daphne already named, are examples of shrubs having evergreen foliage. Some leaves, like those of the Salix bacida, are glossy; others, as those of the common hazel, are hairy; some are thick, and others are thin; some large, some small, some entire, and some laciniate, serrated or compound. Throughout the season the foliage of a good collection of shrubbery will present the greatest variety of color, including all the hundreds of shades of green as well as yellow, white, gray and purple. Even in winter shrubbery is wonderfully attractive in appearance from the gracefulness of its stems and branches, and from the color of its bark. With the right selections, it will serve almost as well as evergreens to shut out from view fences or other low, unsightly objects.

This great variety in foliage, flower, fruit and habit of growth makes shrubbery adapted to very extended use in the development of landscapes. It is especially appropriate along the boundaries of ornamental grounds (Fig. 2324), upon steep slopes, and in the immediate vicinity of buildings where foliage and graceful lines are needed to connect the walls of a structure with the ground (Fig. 2325), without making too much shade. It might with advantage replace the grass upon all surfaces too steep to walk upon with comfort. The foliage of shrubs that are well established remains green when dry weather turns grass brown. The broad mass of shrubbery will take care of itself when the grass needs frequent attention. Even some level surfaces might be improved in places by exchanging a lawn covering for the covering of low woody plants. Often a broad, open space over a lawn is an important feature of a landscape, since it allows extended views. Many times a landscape would be more interesting if the green underneath this open space were produced by a broad mass of shrubbery like a miniature forest instead of grass.

In planting borders or groups of shrubs, the ground to be occupied by such a group should be entirely spaded over or plowed. Perhaps no better advice could be given than to prepare the soil as it should be prepared for a field of corn. The bushes should then be planted so that there is room for about two years' growth before their branches intertwine. If placed closer they would have a crowded appearance from the start and would not join their branches as harmoniously as when the new growth is allowed to choose its own position. If placed farther apart the effect is also bad. Occasionally a single shrub at the margin of a belt may stand out almost by itself, but generally the effect of a group should be that of a continuous mass of varying foliage. In arranging different shrubs the taller-growing kinds should generally be placed in the center of the group, and the lower species along the border, the space being graded from the highest to the lowest. The reason for this arrangement is that the lower plants would be killed by the shade of the larger ones if placed back of them, and moreover would not be seen; but one should avoid too uniform a slope. For instance,
SHRUBBERY

in a continuous border there should be places where shrubs of larger size occupy the full width so as to bring growth of considerable height into the lawn. The arrangement should be varied so as to avoid all monotony, but in securing this variation a mixture of miscellaneous shrubs of all kinds does not give as good an effect as broader areas of single species or genera

slightly interspersed at the margin with shrubs of another kind. Straight rows should be avoided. A laborer or a novice when told this will arrange the plants in a zigzag manner, thinking that he is placing them irregularly, the result often being almost the same as that of two rows. If the group is being planted along a straight line, as the boundary of a lot, the distances of the successive plants from this line might be somewhat as follows: two feet, four feet, five feet, three feet, one foot, and the distances apart, measured parallel with a fixed line, should vary also.

The ideal condition of a group of shrubbery is to have all the individual plants healthy, so that the foliage will appear fresh and of good color. This foliage should extend down to the surface of the adjacent lawn or walk, and shade the ground underneath so completely that nothing will grow there. The leaves which fall with the approach of winter should be allowed to remain as a perpetual mulch. The desired result cannot be secured the first year the shrubs are planted unless they are of large size and moved but a short distance. The aim in caring for a new plantation should be to secure thrifty plants, and this care, like the preparation of the soil, should be such as is given to a field of corn.

Very little trimming should be done. If a bush is tall and spindling it may be well to cut it off next to the ground and allow it to sprout again. If there is any dead wood it should, of course, be cut off. But when a shrub is healthy and vigorous, let it grow in its own graceful way. If it encroaches upon the walk, cut away the encroaching branch near the root so that the mark of the knife will not be noticed. Such treatment will help to retain the beauty of the branches.

The value of shrubbery is not appreciated as it should be. Those who are interested in the subject will do well to read what is found in the various books on landscape gardening, Bulletin No. 121 of Cornell University Agricultural Experiment Station, the various articles on shrubs and shrubbery to be found in the ten volumes of "Garden and Forest" and in other horticultural journals.

O. C. SIMonds.

SIBBALDIA (Robert Sibbald, Scotch naturalist), Rosaceae. About 5 species of alpine plants, one of which has been suggested as suitable for rock gardens. The genus is reduced by Bentham and Hooker to a section of Potentilla, but Britton and Brown keep it separate chiefly on the ground that the pistils are only 4-12 in number instead of very numerous as in Potentilla. Sibbaldisas are densely tufted, hardy perennial herbs with woody stems. The lvs. have prominent stipules and 3 leaflets, each of which is characterized 3-toothed at the apex. The fls. are about ½ in. across or less, and have 5 minute yellow petals much smaller than the remarkable calyx, which has 5 broad lobes, alternating with 5 smaller and narrower lobes or bracts.

SICANA (Peruvian name). Cucurbitaceae. Two or 3 species of tropical American tall-climbing tendril-bearing vines, allied to Cucurbita, but differing in having wide-spreading or reflexed calyx-lobes and the authors

not united. S. odorifera, Naud., the Curuba of the tropics, has been introduced as the Cassabanana, but long known in the South. Fig. 2227. It is a very quick-growing and interesting ornamental vine; plant pla-
SILEN

brous, the stems angled; lvs. large (often 1 ft. across), nearly orbicular in outline, deeply cordate at the base, strongly about 3-lobed and the lobes reniform-toothed or angled; fls. solitary, imparipinnate, the corolla small and yellowish, urn-shaped, with small reflexed lobes; stigmas 3, each 2-lobed; fr. like a slender vegetable marrow, 1-2 ft. long, smooth, nearly cylindrical, orange-crimson, with a very strong aromatic odor. R. H. 1890:516. - Probably native to Brazil, but occurring also in Mexico, and the West Indies. The Curuba seems to be grown in the tropical British possessions, although it is said to afford edible preserves. The plant climbs 30-50 ft. It is well worth growing on summer arbors, or under glass if one has room for it. The fruits are very interesting, fragrant and ornamental. Perennial.

SIDA (from the old Greek name for Nympheoa alba; given without explanation by Linnaeus). Malvaceae. A genus of about 40 species of herbs or shrubs, native of the tropical regions of the world, with usually entire, dentate or lobed leaves and small or rarely large, mostly yellow or whitish flowers, which are solitary or in clusters, axillary or disposed in terminal branching spikes or heads; bracteoles wanting or rarely 1-2 and bristle-like; calyx 5-lobate or 5-toothed; staminal column divided at apex into many filaments; locules of ovary 5 or more, 1-seeded.

A. Lvs. large, lobed.

Napaea, Cav. A hardy herbaceous perennial 5-8 ft. high, from a stout root: lvs. 3-8 in. long, 3-7-lobed; lobes triangular, long-attenuate, irregularly serrate; fls. perfect, white, about 1 in. across, in terminal corymbous panicles. June-Aug. S. Pa., W. Va., and Va. B. B. 2:422. - Culture same as for hollyhocks; prop. by seed. Index Kewensis refers the above species to *Napaea dioica*, Linn., but according to Gray's Synoptical Flora of North America the two species belong to separate genera, the fls. of the first being hermaphrodite, of the second dioecious. *Napaea dioica* is a strong-growing perennial 5-9 ft. high, with large radical lvs. often 1 ft. across and 9-11-leafed, the segments cut into lanceolate, serrate lobes; fls. dienceous, white, smaller than in *Sida Napaea*. For pictures of the two plants, see B. B. 2:429, 432.

AA. Lvs. small, linear.

Elliottii, Torr. & Gray. A hardy perennial herb, slender, 1-3 ft. high, with lvs. 1 in. long and yellow fls. Sandy soil in the southern coast states. Offered by western cultivators in 1881. F. W. B. C LAY.

SIDALCEA (compound of Sida and Alcea, related genera). Malvaceae. About 20 herbs of western North America: lvs. palmately cleft or parted, stipular; fls. often showy, pink, purple or white, in terminal racemes or spikes, mostly without bracts or involucres beneath; stamens united into groups in a double series; carpels 5-9, reniform, separating at maturity. Some of the Sidalceas are annuals, but those in cultivation are hardy perennials, being recommended for the herbaceous border. Opt. by seeds or division. For monograph, see Gray, Syn. Fl. N. Amer., vol. 1, p. 302.

A. Fls. white, with bluish anthers.

cándida, Gray. Plant erect, from more or less creeping rootstocks, the stems somewhat branched above, 2-3 ft. tall, glabrous or nearly so: radical lvs. nearly orbicular, cordate, obtusely lobed or deeply crenate; stem-lvs. 5-7-parted, the divisions narrow and often notched; fls. 1 in. or more across, white, in an erect spike-like raceme. Rocky Mts. Gn. 24. p. 396. 25. p. 29. R. H. 1891, p. 356. S. B. C. L. 396.

AA. Fls. normally colored (rarely white forms).

spicata, Greene. One or two feet tall, sparingly branched or simple, often more or less hisrate: upper lvs. parted into linear and often lobed divisions; fls. rather small, purplish, in an oblong, more or less interrupted spike, the pedicels short or almost none. California, Nevada and Oregon.

bb. *Carpelae conspicuously reticulatae.*

malviflora, Gray. Stems erect or ascending, 1-6 ft. or even more, sparingly hisrate: lvs. green, small, included-crenate, the upper ones 5-cleft or 5-divided, segments narrow and entire or broader and pinnate-lobed; fls. 2 in., or less across when fully expanded, purple. Calif. - Var. Listeri, Hort. (S. Listeri, Hort.), known also as "Pink Beauty," has satiny pink flowers. It is of European origin.

227. *Sedia odorifera,* the Cassabanana (x ¼).

SIEVA BEAN. Phascolus lanatus.

SILÉNE (Greek, seilanos, a god described as covered with foam, connected with *sielos*, saliva; referring to the stickiness of stem and calyx). Caprifolium. Caryophyllaceae. A large and scattered genus of herbs, varying greatly in duration, habit and style of inflorescence, but always with 5-petalled fls. ranging in color from white, through pink and rose to purple. The petals are notched at the apex, rarely toothed or fringed
and generally have small tooth-like appendages at the base of the blade. The calyx is sometimes inflated like a blackberry, generally 10-nerved; ovary 4-loculed, many-ovuled; styles commonly 2; capsule dehiscing at the apex into 6 (rarely 3) teeth or short valves. There is a full botanical monograph of Silene by key in the Journal of the Linnean Society, vol. 32 (1856), by F. N. Williams, a specialist on the whole family of Caryophyllaceae. The account is mostly in Latin, and has few descriptions. Williams admits 300 good species. His revision has not been closely followed below. Williams refers our common S. virginica and Pennsylvanica as well as the European S. viscosa to the genus Melyandrum, characterized by a strictly unilocular capsule with no trace of septation at the base. Only a few of the known species are in cultivation. Silenes are of easy culture. They mostly bloom in summer, and a few continue well into autumn. By good management the season of bloom may be continued through spring and summer. Toward this end the seeds of the common annual kinds should be sown in early autumn, instead of spring. As a rule, the common kinds prefer a sandy loam and full sunlight, but the rock-garden kinds require special treatment, and other suggestions for cultivation are given after the specific descriptions. The most popular kinds are the pink and rose annuals, S. Armeria and pendula. Of the perennials the most popular among the white-fl. kinds are S. alba, S. alpestris, while S. Virginiaca, Pennsylvanica and Schatta are amongst the most popular kinds with colored flowers. A good horticultural review of the kinds in cultivation is found in The Garden, Vol. 11, pp. 10-13 (1877).

INDEX

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silene alba</td>
<td>Alba.</td>
</tr>
<tr>
<td>Silene alpestris</td>
<td>Alpestris.</td>
</tr>
<tr>
<td>Silene Armeria</td>
<td>Armeria.</td>
</tr>
<tr>
<td>Silene Californian</td>
<td>Californian.</td>
</tr>
<tr>
<td>Silene Cassieca</td>
<td>Cassieca.</td>
</tr>
<tr>
<td>Silene compacta</td>
<td>Compacta.</td>
</tr>
<tr>
<td>Silene cuneifolia</td>
<td>Cuneifolia.</td>
</tr>
<tr>
<td>Silene douglasii</td>
<td>Douglasii.</td>
</tr>
<tr>
<td>Silene viscosa</td>
<td>Viscosa.</td>
</tr>
</tbody>
</table>

A. Duration annual or biennial.

- **a. Petals mounted at apex.**
 - **c. Plants low and trailing.** 1. pendula
 - **d. Calyx sticky-hairy.** 2. viscosa
 - **e. Calyx glabrous.** 3. Armeria

B. Height a few inches.

- **c. Stems 1-fl., or few-fl.**
 - **d. Calyx 30-nerved, inflated after anthesis.**
 - **e. Fls. rose.** 5. Pumilio
 - **f. Fls. white.** 6. maritima

C. Duration perennial.

- **b. Height a few inches.**
 - **c. Stems 1-fl., or few-fl.**
 - **d. Calyx 30-nerved, inflated after anthesis.**
 - **e. Fls. rose.** 5. Pumilio
 - **f. Fls. white.** 6. maritima

D. Duration perennial.

- **b. Height a foot or more.**
 - **c. Calyx inflated after anthesis.**
 - **d. Fls. white.** 11. alpestris

E. Flowers:

- **a. Petals attached.** 12. Schatta
 - **b. Flowers:**
 - **c. Petals 2-lipped.**
 - **d. Petals 2-lipped.**

- **f. Fls. erect.** 13. Pennsylvania

- **g. Height a foot or more.**
 - **c. Calyx inflated after anthesis.**
 - **d. Fls. white.**

F. Flowers:

- **d. Petals erect or fringed.** 15. stellata
 - **e. Petals not erect.**
 - **f. Petals rose.**
 - **g. Petals white.**

G. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

H. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

I. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

J. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

K. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

L. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

M. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

N. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

O. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

P. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

Q. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

R. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

S. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

T. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

U. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

V. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

W. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

X. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

Y. Flowers:

- **f. Petals white.**
 - **g. Petals white.**

Z. Flowers:

- **f. Petals white.**
 - **g. Petals white.**
SILPHIUM

S. petraea, Waldst. & Kit. Tufted subshrub, 4 in. high; lvs. linear; fls. small, solitary; calyx club-shaped; petals buff, with a bifid appendage, and ciliate on the calyx. -CAS. -Fls. white, according to J. Woodward Manning.

8. Cauccasia, Boiss. This and S. valvesia are perennial, alpine, white-flld. plants 4-5 in. high, with the flowering stems laterally ascending from a terminal rosette of lvs. The stems are usually 1-fl., sometimes 2-3-fl.; lvs. oblong and lanceolate; calyx 10-nerved, not inflated after anthesis. Caucus. For distinctions from S. valvesia, see that species.

9. valvesia, Linn. SWISS CATCHFLY. -Very rare plant found in the highest and most sterile parts of the Alps, differing from S. Caucasica in being glabular, rather than velvety, the stem-lvs. long, the fls. long-peduncled and the calyx more widely inflated.

11. alpestris, Jacq. ALPINE CATCHFLY. Perennial white-flld. plant 6 in. high, the base in rosettes: stems tufted, dichotomous: lvs. in corymbose panicles: calyx short, top-shaped to bell-shaped, 10-nerved, not enlarged after anthesis; petals 4-lobed at apex and provided with 2 teeth at the base each petal in the throat; seed ciliate-ellipte on the margin. Eastern Eu. -It forms a dense mass of underground stems and is easily propagated by division or seeds. One of the best.

13. Pennsylvanica, Michx. WILDF PINK. Perennial, 6-9 in. high, from a strong taproot and with rose or white fls. in small, dense terminal cymes, viscid-pubescent: lvs. mostly at the base, spatulate or ob lanceolate, the 2 or 3 pairs of stem-lvs. much shorter and lanceolate: petals appendaged, 2-lobed, the lobes dentate. April, May, Eastern U. S. B.R. 3:247. L.B.C. 1:11 (as S. angustifolia). -Handsome.

14. infalata, Sm. (S. Cauchoius, Wibel). BLADDERR CAMPION. BLADDER CATCHFLY. COW BELL. WHITE BELL. Perennial, 2-3 ft. high, with many-fl. panicles of white, drooping fls. about \(\frac{3}{4} \) in. across; plant branched, glabrous, glaucous or downy; lvs. ovate, oblong or long; calyx 19-nerved, inflated after anthesis; petals deeply cleft. Eu., N. America, Himalayas. -This species is not cultivated in America but is probably cult. here, possibly as S. maritima, of which it is considered by some a variety. S. infalata is said to be essentially erect instead of procumbent and the petals more deeply cleft. The young shoots are said to be eaten by the poor folk of England as a substitute for asparagus; they taste something like green peas.

15. stellata, Alt. STARRY CAMPION. Readily told by its fringed white and holding fls. and lvs. in \(\frac{3}{4} \) s. Perennial, erect, leafy, ovate-lanceolate, 2-3 in. long; fls. in an open panicle; calyx inflated; petals laciniate, unappendaged. Woods, Mass. to Ncb., south Ga. to Tex. -B.M. 1:167.

16. Virginia, Linn. FIRE PINK. Fig. 2329. Perennial, 1-2 ft. high, with large crimson or scarlet fls., viscid-pubescent; stem unbranched; lvs. spatulate or oblanceolate; lvs. 1 in. or more across, loosely cymose, nodding or reflexed after anthesis; petals broadly lanceolate, 2- toothed at apex. N. Y. to Minn., south Ga. to Ark. B.M. 3:342. Gp. 22, p. 575.

17. Calitonic, Durand. Perennial, 4 in. to ft. high, procumbent or suberect, with large, deep red, scattered fls. and a taproot descending 2-3 ft.; stems several, leafy; lvs. lanceolate or ovate-elliptic; lvs. 1 in. or more broad; petals variously cleft, most commonly with 2 broad lobes, flanked by 2 narrower ones, appendaged. Coast Range. -Offered by western collectors in 1881, but probably not in cult., though presumably a very distinct and desirable plant. This species seems to have been overlooked by Williams.

18. Menziesi, Hook. Perennial: stems weak, dichotomously branched, 6-12 in. or more high; lvs. ovate-lanceolate; fls. white, "very small for the genus" (not ordinarily exceeding 6-8 lines in diam.), borne in the forks of the branches and forming a leafy inflorescence; petals white, 2-cleft, commonly but not always appendaged. Rocky Mts. and Pacific slope. -Offered in 1881 by western collectors but probably not cultivated.

19. Douglasi, Hook. Perennial, 1 ft. or more high, with white or pink fls. borne mostly in long-stemmed, 3-fl.d. cymes; stems very slender, decumbent: lvs. remote, linear, 2-3 in. long; petals 2-lobed, appendaged. June-Sept. -A common and polymorphic species in western N. Amer. Robinson describes six botanical varieties with important floral differences. S. douglasi is still found in one eastern catalogue. Var. macounii, Robinson, was offered in 1881 under its synonym S. ligati, Wats.

20. Southeri, Hook. Perennial, 1\(\frac{1}{2} \)-2\(\frac{1}{2} \) ft. high, with white or purplish fls.; root stout; stems unbranched: lvs. narrowly ovate-lanceolate: inflorescence 6-8 in. long, verticillastically spicate: petals bifid, appendaged. Mountains of Oregon and north. -Offered in 1881 by western collectors.

21. orientalis, Mill. is an old name which is not accounted for by Williams, De Candolle, Boisser, Nootkin, or Voss. According to Thorburn & Co., it is a hardy perennial, 2 ft. high, with rose-colored fls., which may be readily grown from seed in any light, loamy soil.

W. M.

SILK COTTON TREE. See Bombax and Pachira.

SILK FLOWER. Albizia.

SILK OAK. Grevillea robusta.

SILK TREE. Albizia Julibrissin.

SILKWEED. Asclepias.

SILPHIUM (from the Greek name of an umbelliferous plant of northern Africa). Compositae. Rosin-weed. A genus of 11 species of tall-growing hardy perennial herbs native of the U. S., with somewhat coarse leaves and rather large, sunflower-like heads of flowers which are yellow, except in one species: heads many-fl.: involucre of thick, somewhat foliaceous bracts: ray-fls. or at least their ovaries in more than 1 series, fertile, and with elongated exserted deciduous ligules: akenes much flattened, fulture free or only with the subtending bract. Silphiums are of easy culture in any good soil. They require full sunlight and are propagated by division or seed.

a. Foliose much celt.

b. Laciniate, Linn. COMBASS PLANT. Stem about 6 in. high, leafy at the base, much less so above: lvs. 1 ft. long or more, once or twice pinnately parted, the lobes oblone or lanceolate: fl-heads several, sessile or short-peduncled, 2-5 in. across: rays 20-30. July-Sept. Western prairies. B.B. 2:406.

b. Foliose not celt.

b. Stem-lvs. small.

terelthvinniccom, Jacq. PRAIRIE DOCK. Stem about 6 ft. high: lvs. nearly all basal, usually 1 ft. long, ovate, cordate, dentate: fl.-heads 1\(\frac{1}{2} \)-3 in. across; rays 12-20. July-Sept. Western prairies. B.B. 3:498.
SILPHIUM

SILPHIUM. Stem-lvs. large.
C. Lvs. connate-petiolate.

perfoliatum, Linn. Cep Plant. Stem square, usually dentate, branched above, about 6 ft. high; lvs. thin, ovate or deltoid-ovate, the lower contracted into margined petioles, the upper opposite, connate-petiolate; fl.-heads 2-3 in. across, with 20-30 rays. July, Aug., Western prairies. B.B. 8:496.

2329. Silene Virginica (X ½). (See page 1609.)

cc. Lvs. petioled or simply sessile.

F. W. BARCLAY.

SILVYUM Mariannum, Gaertn., Blessed or Holy Thistle, is sometimes grown in old European gardens for ornament, and also for the edible heads, roots and leaves. It is a large fl. thistle 2-4 ft., perennual. S. Europe. Known also as *Carduus Mariannus,* Linn.

SIMMONDSIA (named for the naturalist, F. W. Simmonds). *Ephorbiacea.* A monotopic genus differing from *Doxus* in the numerous stamens and one-seeded carpels: dioecious; rudiment of pistil absent from the staminate fls.

Cali{fornica}, Natt. A much-branched shrub with small, sessile, entire, coriaceous, oblong-lanceolate lvs.: staminate fls. clustered and the much larger pistillate fls. single in the axils. Dry sand hills of southwestern U. S. - Sometimes cult. for the oil of the seeds, used as a hair tonic. Cult. in S. Calif. J. B. S. NORTON.

SIMPLER'S JOY. See *Verbena.*

SINAPIS. Included under *Brassica.*

SINNINGIA (after Wilhelm Sinning, gardener at the University of Bonn). Including *Rosannovia, Gesneriaceae.* A genus of about 16 species of Brazilian tuberous herbs. The generic characters of *Sinningia* are: pubescent or villous herbage from a glaucous stem; lvs. opposite, usually large, petiolated, the floral ones reduced to bracts: fls. usually large, solitary or fascicled, in the axils, pedicelled, calyx-tube slightly and broadly turbinate, adnate, 5-angled or 5-winged, the limb foliaceous, broadly 5-cleft or parted; corolla-tube nearly equal at the base or the posterior gibbous, long or broadly cylindrical, the upper part swollen or bell-shaped; lobes not spreading, or the 2 posterior smaller; stamens included, attached to the tube of the corolla; anthers broad, the cells confluent at the apex; glands of the disk 5, distant, or the 2 posterior more crowded together or connate: ovary half inferior; style dilated at the tip; stigma concave, entire or slightly 2-lobed. The genus includes the florists' *Gloxinia,* which is properly *Sinningia sanguinea,* Hiern., but which is treated in this book under *Gloxinia.* Other than this species, the *Sinningias* are little known horticulturally. Culture as for *Gloxinia.*

composita, Bent. & Hook. (*Rosannovia composita,* Regel). Root tuberous: stem 1 ft. high; lvs. ovate-oblong, short-acuminated, somewhat heart-shaped at the base and dentate: fls. yellow, pater on the outside, marked on the lower part of the tube with purple dots and lines; calyx-tube entirely united with the ovary, equally 5-parted, the segments lanceolate, spreading; corolla-tube obliquely and narrowly campanulate, swollen and recurved at the base; glands of the disk 2: capsule 1-celled; seeds many.

ornata, Bent. & Hook. (*Rosannovia ornata,* Van Houtte). A hybrid of the above species with a garden variety of *Gloxinia* with flowers of a bright red; the result is a plant resembling *S. composita,* but differing in having the leaves tinted on the veins and petioles with purple and in having a somewhat more elegantly shaped flower, pure white with purple lines on the outside of the corolla-tube and the inside of a yellowish green, lined with purple. F.S. 23:2423.

Rosannovia Heustei, Hort. John Saul, is apparently not known to botanists.

F. W. BARCLAY.

SIPHOCAMPYLLUS (siphon, tube, and kamyplos, curved; referring to corolla). *Lobeliaecae.* About 160 tropical American herbs and shrubs, with long, showy tubular fls., red, orange or purplish in color and borne singly on long peduncles; bracts absent or rarely 2 very small ones. About 10 kinds are cultivated in European greenhouses, and propagated by cuttings. Aed genera are disseminated under *Isotoma.*

betulifolius, G. Don. Height 2-3 ft.: stem woody at base: branches rounded; lvs. alternate, petiolate, 3-4 in. long, cordate, acuminate, doubly serrate, nearly glabrous; peduncles 1-4 ft., as long as the bracteoles, recurved upwards; calyx-segments long awl-shaped, with a few nerves; corolla 2½-3 in. long, tube vermilion, limb yellow. Brazil. B.M. 3973.—Tender perennial, not cult. in America, but interesting as one supposed parent of *Centropogon Lycopersicum:* itself of little value.

W. M.

SIPHONANTHUS. See *Clerodendron Siphonanthus.*

SISOOO TREE. *Dalbergia Sissoo.*

SISYRINCHIUM (an old Greek name first applied to some other plant). *Iridaceae.* *SATIN FLOWER, BLUE-EYED GRASS.* *Rush Lily.* About 60 species of American perennials, usually with fibrous roots, grass-like, narrow or terete lvs. and simple or branched stems often flattened and winged, bearing clusters of usually blue or yellow fls. subtended by two spathes: perianth nearly flat or bell-shaped; segments 6, nearly equal, oblate or oblong; stamens inserted on the base of the perianth; filaments more or less connate: ovary sub-globose to turbinate, 3-loculed, 3-valved. The species are of easy culture in any good garden soil. Useful in the wild border, where hardy.
SKIRRET

1671

A. Fls. yellow.
B. Stem leafless.

Calorimcum, Dryand. (Maraca Calorimcum, Ker-Gawl). A half-hardy perennial: stem 1/2 ft. high, 2 lines through, broadly winged: lvs. many, shorter than the stem, about 1/2 in. broad: spathe 3-4 fl.; segments of perianth yellow, lined with brown, 1/2 in. long: capsule obovoid. Calif. to Ore. B.M. 383; Swampy grounds.

B. Stem leaf-bearing.
C. The stem slightly 2-edged.

tenufolium, Humb. & Bonpl. A half-hardy perennial: roots fleshy, fibrous: stem 1/2 ft. high, often branched low down: lvs. suberect or narrowly linear: spathe 3-4 fl.; segments of perianth yellow, lined with brown, 1/2 in. long: capsule obovoid. Calif. to Ore. B.M. 2117, 2135.

Cc. The stem broadly winged.

Aa. Fls. purple, blue or white.
Bb. Stem terete.

grandillorum, Doug. (S. Douglasii, A. Dietr.). A hardy perennial: root fibers slender, long: stem simple, about 1 ft. high. lvs. short, sheathing the lower part of the stem: fls. 2-2.4 cm, crenate; perianth-segments bright purple, linear, about 1 cm long. May-July. New York to Nebraska. U.S. B.M. 5399. B.R. 16;1394; This is possibly the handseomest species in the trade. Var. album is also offered and is equally desirable.

Bb. Stem flat.

C. Spathes equal in length.

graminoides, Bickell. (S. bredesii, Wats., not Cav.). A hardy perennial: stem winged, about 1 ft. high, usually terminating in 2 unequal branches, subtended by a lvs.: nearly equalling the stem, grass-like, 1-3 lines wide, spathe about 1.5 ft. long; pedicels longer than the spathe: fls. blue, 1/2-3/4 in. across. April-June. Eastern United States. B.B. 1:453.

C. Spathes very unequal in length.

SITOLIOIUM is referred to Dioskonia cicutaria, Swz., a handsome, strong-growing tropical American fern with lvs. 4-8 ft. long, bipinnate, papery, light green; petioles hairy; lower fronds 1 1/2 x 5/8 ft.

SIUM (from Sion, old Greek name used by Dioscorides), Umbelliferum. Four widely scattered herbs with pinnate foliage and small white fls. borne in compound umbels. Glabrous plants: leaf-stems dentate: petals inflexed at the tip. For S. Silium, see Skirret.

S. latilobum, Linn., the Water Parsnip, is a British species sometimes naturalized in English wild gardens, especially in damp woods. Like Peraea and certain other umbelliferous plants, it is valued more for its stately habit and handsome foliage than for its flowers.

W. M. SKIMMIA (Japanese Skimmia, meaning a hurtful fruit). A Rhoic. Ornamental evergreen shrubs with alternate entire leaves, small white flowers in terminal panicles and showy bright red berry-like fruit. They are tender, not being reliably hardy as far north as Washington, D. C. Handsome shrubs for borders of evergreen shrubberies and especially valuable for planting in cities, as they belong to the best smoke-enduring evergreen shrubs; they are particularly beautiful when covered with their bright red fruits, which are retained through the whole winter if not cut by the cold. In the greenhouse two crops of berries on a plant may be seen occasionally. The Skimmias are of rather slow growth and thrive best in a sandy loamy soil, but also grow well in strong clay; they prefer a partially shaded situation. On account of their handsome fruits they are sometimes cult. in pots in a sandy compost of peat and loam. As the Skimmias are very polygamous, it will be necessary to plant stamine plants among the pistillate ones to secure well-fruited specimens. Prop. by seeds sown in fall or stratified and by cuttings under glass with a mist-bath. Var. argentea, with large leaves, are large and broad lvs. R.H. 1880, p. 55. Var. Veitchii, has oval lvs. and perfect fls. R.H. 1880, p. 55.

Fortunel. Mast. (S. Japonica, Lindl.). Similar to the preceding but of dwarfer habit; lvs. lanceolate or oblong-lanceolate, acuminate, dark green above, light green beneath, 3/4-10 in. long: fls. white, in oblong-ovate panicles, usually perfect; fr. oblate, dull crimson-red. Spring. China. G.C. II. 25, p. 245 (as S. oblonga); III, 5, p. 325. The following as S. japonica: B.M. 4749; P. F. S. 7, p. 39: Gm. 7, p. 138 and S. 319; T. M. 1869, p. 239, and 1870, p. 198. This species is more freely than the preceding. Var. rubrella, Rehd. Peduncles, pedicels and buds reddish; staminate form. R.H. 1874:311, 1885, p. 189. Var. argentea, with the lvs. bordered with white. These forms are almost as good as this and the preceding species is probably S. intermedium, Carr., with narrow oblong-elliptic lvs. dark green above. To this hybrid belong also S. Foerstenii, Hort., with lanceolate or oblongate yellowish green lvs. and subglabrous and oblate fr. on the same panicle (G.C. III. 5:556) and S. Rochesterii, Hort., with similar but deep green lvs. and globose squarrose fruit.

S. Lauricola Sieb. & Zucc. Skirret, 5 ft. high, of a strong aromatic odor when bruised: lvs. narrow-oblong to oblongate, acute or acuminate, bright green: fls. 5-merous, Hinnabreya.

ALFREDO REYNIER.

SKIRRET (Sium Svarum, Linn.) is a vegetable of minor importance the roots of which are used like salsify or oyster plant. It is a hardy, perennial, umbelliferous plant, native to eastern Asia. It grows 2-4 ft. tall, has pinnate foliage and small white fls. in compound umbels. The roots grow in large clusters, something like those of a sweet potato or dahlia, but they are much longer, more cylindrical and somewhat flattened. The roots have a sweet and slightly floury taste and if well grown are tender. The chief objection to this vegetable is the woody core, which must be removed before cooking; as it is not easily separated from the fibrous part of the table and detracts from its quality. The thickness of the core varies greatly, no matter whether the plants are propagated by seed, offsets or division of roots.
SKIRRET

Skirret belongs to a moisture-loving genus, and needs a rich soil. The seeds may be sown in autumn or spring and the plants yield well the first season. For European practice Vilnicor recommends that the seedlings be grown in a seed-bed until they have made 4 or 5 leaves and then transplanted into permanent quarters. Sow the seed in drills half an inch deep, and thin out the seedlings to 8 inches in the row. The roots may be left outdoors in the ground all winter, but others advise storing them in sand or earth.

W. M.

SKULL CAP. Scutellaria.

SKUNK CABBAGE. Sympypleum fatidii.

SLIPPER FLOWER or SLIPPERWORT. Calceolaria.

SLIPPER, LADY'S. Cypripedium.

SLIPPERS, BABIES'. Lotus corniculatus.

SLOE. Prunus spinosa.

SMELOWSKIA (Prof. T. Smelowska, botanist of St. Petersburg, died 1815). Cunhelaceae. About 4 species of alpine plants with small white or yellow, 4-petaled flowers: sepals short, lax, equal at base; pod seldom short.-shorn, narrowed at both ends; seeds few, arranged in 1 series: Ivs. 1-2-pinnatisect: fls. racemose: bracts none.

calyca, C. A. Meyer. Low, tufted perennial, very variable in foliage: Ivs. soft, usually deeply pinnatis, with or several pairs of linear to oblong, entire segments and a terminal one; rarely a few Ivs. entire: racemes at first dense and subeorymbose, but elongating in fruit: fls. white or nearly so; petals about 2 lines long. Arctic regions. Recommended by some persons for rock gardens, but it does not seem to be advertised in America.

W. M.

SMILACINA (resembling smilax). Liliaceae. FALSE SOLOMON'S SEAL. About 25 species of hardy perennial herbs of the temperate regions of North America and Asia, with rhizomes (Fig. 2330) and simple leafy stems bearing terminal panicles of small usually white or greenish white flowers: perianth of 6 equal spreading segments; stamens 6, inserted at bases of the perianth-segments: berry globorular or nearly so, 3-celled.

Smilacinae are of easy culture in any good soil. They prefer a rich loam in a moist but not wet, partly shaded place. They are handsome plants both in foliage and flower. S. racemosa is probably the most attractive. The plants may be forced slowly for bloom in the late winter and early spring.

2336. Rootstock of Smilacina racemosa (X 2/3).

The figures designate the position of the stalks in the different years. Between each of the figures or scars is a year's growth.

SMILAX (ancient Greek name). Liliaceae. A genus of about 180 species very widely distributed over the world, usually woolly climbers, which ascend by means of the coiling appendages of the pediole; sometimes shrubs or rarely herbaceous perennials, with slender twigs; rootstocks usually large and often tuberosous: lower Ivs. reduced to scales; the upper simple, or rarely several-nerved, often evergreen; fls. usually numerous, rather small, dioecious, in axillary, sessile or peduncled umbels; pedicels nearly equal in length: berries usually globose, 1-4-seeded.

There are 17 species native of the U. S., nearly all of which are useful with garden plants, having glossy attractive foliage. The last three noted below have been offered by collectors. For Smilax of florists, see Asparagus medicoloides.

A. Ivs. usually variegated. Exotic species.

b. Plant climbing.

argyrea, Lind. & Rod. Tender foliage plant; stem wiry, slender, armed with short, stout thorns; fls. lanceolate, becoming 8-10 in. long, dark green, blotched with gray, 3-nerved, short-petioled. Bolivia. H. 19: 39:132. — According to G. F. 8:306 the above species is a robust healthy plant doing well in a moderate temperature and quickly forming ornamental specimens. It should be given a rich, fibrous soil and a light and sunny position. It may be propagated by half-ripe cuttings of the side shoots with 2-3 eyes inserted in a moderately warm bed.

b. Plant partially climbing.

aspera, Linn. A half-hardy shrub often somewhat scented, unarmed or with thorn-like spines: Ivs. ovate-deltoid or lanceolate, 1½-6 in. long, usually blotted with white, 5-9-nerved: fls. white, sweet-scented, in many-flowered umbels: berries ½ in. in thick, usually 3-seeded and, according to J. D. Hooker, bluish, while Francezelli mentions them in his catalogue as shining red. S. Eu. to India. Gn. 28, p. 615.

AA. Ivs. green. Native species.

b. Stem herbaceous.

herbaceae, Linn. A half-hardy perennial with a somewhat procumbent or climbing branched annual stem 4-6 ft. high, unarmed: Ivs. ovate to lanceolate acute to cuspidate, obtuse or coriaceous at the base, long-petioled, 7-9-nerved: umbels 1½-3 in. long, peduncled: fls. carmine-scented when open: berry bluish black, ½ in. thick. Apr.-June. In woods or fields throughout the greater part of the U. S. B.B. 1:449.
SMILAX

— Smilacina racemosa (X 3/4).

cc. Foliation deciduous.

Walteri, Pursh. Stem climbing, angled, prickly below; branches unarmed; lvs. ovate to ovate-lanceolate obhuse or abruptly acute, 5-7-nerved; umbels 5-15-fl., on short, stout peduncles; berries black, ovoid. N.J., south and west to Ark.

2331. Smilacinum racemosa (X 3/4).

SOBROLESWIA (after G. Sobolewski, Russian botanist). Cucurbitaceae. About 2 species of Asiatic annual or biennial, erect, branching herbs, with long-petioled, roundish, coarsely serrate leaves and white flowers borne in numerous corymbose racemes; silique clavate, compressed or nearly terete, curved, coriaceous, inflated at the apex, 1-celled, 1-seeded.

Elavata, Fenzl. Basal lvs. reniform-cordate, the upper nearly sessile; silique 2 1/2 times long by 1 1/4 lines wide. May.—Offered by John Saul in 1893.

F. W. Buckley.

SOBROLESWIA (after G. Sobolewski, Russian botanist). Cucurbitaceae. About 2 species of Asiatic annual or biennial, erect, branching herbs, with long-petioled, roundish, coarsely serrate leaves and white flowers borne in numerous corymbose racemes; silique clavate, compressed or nearly terete, curved, coriaceous, inflated at the apex, 1-celled, 1-seeded.

Elavata, Fenzl. Basal lvs. reniform-cordate, the upper nearly sessile; silique 2 1/2 times long by 1 1/4 lines wide. May.—Offered by John Saul in 1893.

F. W. Buckley.

SOBRALIA (after Fr. Mart. Sobral, a Spanish botanist). Orchidaceae. This is a genus of extremely handsome orchids with a very distinct habit. The plants have slender, reed-like stems clothed with leaves throughout their entire length. The stems are tufted, forming bushy plants varying in height according to the species. The flowers are among the largest of the orchids, those of S. macrantha attaining a diameter of 9 in. across the sepals. They are, however, very fugacious, fading a few days after opening. Lvs. with sheathing bases, plicate-venose; fls. membranaceous, few, in short, terminal racemes, or solitary; sepals and petals spreading; labellum convolute around the column, terminal portion large, undulate, often fimbriate, smooth
or with longitudinal ridges; column slender; pollinia 8. About 30 species, inhabiting the mountains of Mexico and tropical America. The following account comprises the species that appear to be in the American trade, but others are to be found in the collection of fanciers, as *S. Lilianum*, Lindl., with large white yellow-veined fls.; *S. Wilsonii*, Rolfe, with large white fls. shaded with rose and spotted with purple; also various forms of *S. macrantha*, as var. *vana*, *purpurea* and *albida*.

HEINRICH HASSELBING.

Sobralias are charming orchids, and where room can be given to large plants they will repay the space and care they require. Many of them, to be sure, are very fugacious in their blooming, some lasting only a day, but nearly all of them make up for this by a succession of flowers which is more or less rapid. The individual blossoms are of a size to equal almost any orchid flower, and quite as graceful in their general appearance—for more graceful than most Cattleyas even. Where space for large and husky plants can be afforded, some of the Sobralias will prove most charming plants, having the double advantage of presenting in a well-grown plant not only beautiful blossoms but a subject which is thoroughly good-looking as a foliage plant. They also have the added advantage of being, in most instances, of rather easy culture. Given a suitable soil and a liberal supply of water they are almost sure to grow and bloom, although they will do better if they are given their time for rest, when less water is allowed without permitting the material about the roots ever to become quite dry.

The flowers of many Sobralias are very fugacious, some lasting only one day, but nearly all of the varieties make up for this fault by a succession of flowers more or less rapid through a blooming period of; in some instances, many *macrantha*, as var. *albula*, has white fls.

3. *fragrans*, Lindl. A small species with stems about 1 ft. high: Ivs. 1 or 2, oblong-lanceolate, 4–5 in. long: fls. 3–3 on a long peduncle, about 2 in. long, pale sulfur-yellow; sepals oblong, spreading; petals similar but erect; middle lobe of the labellum fimbriate on the margin and having many fimbriated crests. *Columbia*. B.M. 4882.—One of the smallest of the genus.

4. *macrantha*, Lindl. Fig. 2332. Stems tufted, reddy-like, 4–7 ft. high, leafy all the way up: Ivs. broadly lanceolate to oblong-lanceolate, long-pointed, 8–10 in. long; fls. several at the ends of the stems, rose-purple, with the front of the labellum deep purple; sepals linear-oblong, 4½ in. long, reflexed and twisted; petals broader, oblong, very wavy above; labellum 5 in. long, with the expanded portion almost circular, 3½ in. across and 2-lobed at the apex, very wavy; tube long, whitish, in, with a yellow stain in the throat and several thin yellow ridges. *May–July, Mexico and Guatemala*. B.M. 4446. P.S. 7:609. P.M. 14:231 (var.), G.M. 31:599. Var. *Kienstiana* (var. *alba*) has white fls.

5. *Brändtiae*, Kruk. Stems 3 ft. high: Ivs. lanceolate, acuminate, 8 in. long; fls. purple-rose, paler outside, with the labellum darker and having a yellow disk; sepals linear; petals twice as wide; middle lobe of the labellum very broad, divided into 2 diverging, rather acute lobes; anther-bed with a long recurved horn on each side. Reminds a medium-sized *S. macrantha*, distinguished by the long horns of the column, and black spots (not hairs) on the leaf-sheaths. *S. Amer*.

8. *Cattleya*, Reichb. f. Stem stout: Ivs. oblong, acuminate, plaited, bearing several lateral clusters of strong, thick fls. of a firm flabby texture, with purplish brown sepals and petals and a purplish lip, with a white column and three yellow lines over the center of the lip. *Colombia*.
SOIL

9. Lövii, Rolfe. An imperfectly known species introduced from Colombia grows about 1½ ft. high and hasths.of a bright uniform purpule.

The following trade names are not accounted for: S. mag.
Mrica.—S. Plantii.—S. virginalis.

HEINRICH HASSELBERNG.

SOLl. The soil is a superfical covering of the earth's crust, more or less well adapted to the growth of plants. It is usually only a few inches thick. Below this is a subsoil often differing, especially in humid climates, from the soil proper in color, texture, or chemical composition. A very striking definition has been suggested by Sir John B. Lawes, who considered the soil to be rotten subsoil, and the subsoil rolling rock. The term soil is occasionally used in a more comprehensive way to include both the soil and the subsoil.

The soil adapted to the growth of the higher plants consists of fragments of rocks or minerals, organic matter, soil solution, and a soil atmosphere. The mineral fragments vary in size from the finest clay particles to gravel and even boulders. The organic matter is derived from low organisms, from previous vegetation, or from growing plants; as also from stable manure, and occasionally fish or animal matter added to the soil by man. The soil solution consists of water carrying dissolved substances derived from the rocks and from the organic matter, as well as from nutrient materials artificially applied, and constitutes a nutrient solution from which the plant derives its mineral constituents. The soil atmosphere differs from the ordinary atmosphere above the soil in being richer in carbon dioxide and nitrogen, and containing more water vapor and less oxygen.

In origin there are two main classes of soils: sedentary soils, formed by the disintegration and decomposition of rocks in place; and transported soils, including those of alluvial, glacial and eolian origin. The word alluvial is here used to include all water-transported material; the term is, however, frequently used in a more specific sense to indicate the recent flood deposit of rivers.

Soils are classified according to their origin and their mechanical and chemical composition and properties. Genetically, they are classified according to the rock from which they are derived, as granite soil, limestone; or according to the manner of their origin, as alluvial, lacustrian or drift. Mechanically, they are classified broadly into clay, gravelly, sandy, sandy loam, loam, clay loam, clay, adobe, black-waxy, or, according to some other physical property; chemically, into calcareous, humus, alkali, and according to other striking chemical features. In the soil survey of the U.S. Department of Agriculture a local name is adopted for each type under which the specific characters are given. Those of this are Hartford sandy loam, Norfolk sand, San Joaquin adobe, Glendale loess.

The physical properties of soils concern the size and arrangement of the particles, and the relation of these to each other and to the organic matter; also the soil atmosphere, the soil moisture, and the physical forces of heat and gravitation. In these there is an intimate relation with physiology or the form and exposure of the surface of the land, as well as to climatology.

There are undoubtedly constant physical changes going on in the soil, as well as chemical changes, which have much to do with the best development of vegetation. The soil moisture may be looked upon as a nutrient solution dissolving its material from the difficulty soluble compounds in the soil and from fertilizers artificially applied. The amount of substances in solution varies with the moisture content and with the way moisture is supplied to the soil. The dissolved substances, naturally present in the soil or derived from fertilizers, influence the solubility of the soil components, rendering them more or less soluble according to their nature and existing conditions. It is probable that the natural weathering material, which produces a certain concentration in the soil solution which will be maintained on the gradual withdrawal of nutrient material by the plant. However, this natural weathering is often not rapid enough to produce the yield and quality of crops desired, and this may be increased by methods of cultivation and fertilization so that crops may annually remove larger quantities of nutrient substances without any particular exhaustion to the soil.

It is certain that these nutrient materials do not accumulate to any considerable extent in soils in humid countries, as they are liable to be leached away and also to recombine, forming difficulty soluble compounds with the material of the soil grains. A soil is in good heart or good condition when the plant material, such as the water supply, soil atmosphere and temperature relations, are favorable, and when the weathering of the material is sufficient to furnish an abundant and constant nutrient solution for the soil moisture.

One of the most potent agents in the weathering of soils is the organic material contained. This is unquestionably due largely to the amount of carbon dioxide formed, which renders many of the nutrient matters much more soluble. Moreover, the organic matter forms a culture medium for bacteria, fermenters and the various organized and unorganized agents which assist in breaking down the organic material, and facilitate as well the weathering of the other soil components. Soils in general have remarkable power of absorbing on the surface of the soil grains vast quantities of carbon dioxide, ammonia and other gases, and of other nutrient materials, which while soluble and actually dissolved, do not readily diffuse out into the solution between the soil grains.

The influence of fertilizers is therefore twofold: the direct addition of plant-food for the immediate use of plants, and the action of the fertilizing components upon the solubility of the otherwise difficulty soluble compounds in the soil. There are other offices which are strikingly shown in the case of lime. This substance when in the form of either caustic or slaked lime corrects the acidity which is very frequent in soils. It changes the structure of soils. It renders some of the soil components much more soluble, especially when the lime is in the form of the sulfate or gypsum, and it has undoubtedly a physiological role which enables the plant to assimilate larger quantities of other nutrient matters even in amounts which would be detrimental if the lime were not present in excess.

The principal objects of the cultivation of the soil are to secure proper aeration, to conserve the moisture supply, and to improve the drainage. The irrigation and artificial drainage of soils are treated elsewhere.

233. How the gardener makes his soil, by letting it decay in piles.

The larger pile is composed of soils.

The physical properties of texture and structure, that is, the size and arrangement of the soil grains, have a greater practical importance with field crops and the relation of a crop to soil under extensive cultivation than upon horticultural crops either in the field or greenhouse, where intensive methods are used. Particularly in the eastern states, where the natural rainfall is relied upon for the water supply, these physical properties have great influence in determining the relation of crops to soils. This is due in large part to the influence
of the physical properties upon the water supply, and these are equal or nearly so, the soil is then termed loamy. Should clay or sand predominate it is then spoken of as a clay loam, or sandy loam. If other substances, such as lime or gravel, be present, the soil is then termed a calcareous or a gravelly soil.

The composition of soils can be still further known by chemical analysis, but to the average gardener this is not necessary. Moreover, it is an operation of great nicety and skill that requires an experienced chemist to perform. The chemical constituents which plants derive from the soil are present in most soils, though in varying degree, but they are sure to be present in ample quantity in the potting soil selected by an experienced gardener. The air and water may furnish as much as 98 per cent of the material with which the plant body is built up in some cases, and only the remaining 2 per cent be strictly derived from the soil. The three most important nutrient elements are nitrogen, phosphoric acid, and potash. Of the three, nitrogen is the most important, but all are present in varying degrees in most natural manures. Moreover, nitrogen comprises four-fifths of the atmosphere and the soil absorbs it chemically through the action of bacteria when the soil is in good physical condition. Hence remembering always that air in the soil is as important as water. Sorauer, in his "Physiology of Plants," page 66, says: "The ideal condition of a soil resembles a sponge, and in which it will retain the greatest amount of nutritive substances and water with-

out losing its capacity for absorbing air." Therefore it will readily be seen that the physical condition of soil is far more important to the gardener than the chemical.

Mineral soils vary according to locality, but when the topography of any particular locality is of a hilly or mountainous character, the different varieties or physical differences may often be found within the radius of a mile. The capacity of soils to retain moisture varies considerably. A clay loam is far more retentive of moisture than a sandy loam. The experienced gardener therefore selects a clay loam for his strong-rooting, large-leaved tropical plants, because transpiration is so much greater in these plants. For ferns, most of the Ericaceae and Gesneraceae he selects a peat soil; while for nepenthis, orchids, bromeliads and the epiphytic orchids he selects fern or kalmia root. Other materials which a gardener should always have on hand when he has a large and varied collection of plants are: leaf-mold, which is made by collecting leaves and storing for at least two years, turning them over occasionally to facilitate decay; living or fresh sphagnum moss; sand; charcoal, and some convenient manures, such as pulverized sheep manure and bone meal.

Growing plants in pots is very different from growing them in borders or the open ground. In pots, especially the larger sizes, the capacity of the soil for absorbing air is in a great measure restricted; therefore, the experienced gardener digs the turf only from good pasture or meadow land, so that it shall be full of the fibrous roots of the grass. Soils containing fiber will absorb air much more freely than that without fiber. But before using the turf for potting it should be placed in square piles, turf downwards, for at least six months in order to kill the grass and all vegetable life. Fern roots should also be collected and stored the same length of time in order to kill out the ferns. Fig. 2333. Raw and very coarse soils are usually sifted before used for most greenhouse plants. Shallow sieves are used for this purpose. Fig. 2334.

<table>
<thead>
<tr>
<th>Name of soil</th>
<th>Percentage of sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>90 to 100</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>80 to 80</td>
</tr>
<tr>
<td>Loam</td>
<td>50 to 60</td>
</tr>
<tr>
<td>Clay loam</td>
<td>20 to 40</td>
</tr>
<tr>
<td>Clay</td>
<td>0 to 20</td>
</tr>
</tbody>
</table>

(2334. Sieves for sifting or riddling soils.)

Except for sowing seeds and for potting seedlings, freshly root-cuttings, thoroughly decayed and broken-up soils should not be sifted, but should be broken into small lumps, as the small lumps assist materially in aërating the soil. If the soil is sifted too much it becomes very fine, packs close and allows too little aeration. Leaf-mold is decayed vegetable matter or humus. It may have little manurial value, but is used by gardeners to make soils "light" or spongy. For most young plants a good proportion added to the soil is excellent, as it improves the physical condition.
SOIL

In potting plants, experienced gardeners make potting mixtures or add a variety of materials to the soil to suit the requirements of different plants. For young seedlings or for freshly rooted cuttings, the compost should be of a light and porous nature, but as plants increase in size and vigor a heavier and richer mixture is usually given, that is, if plants are to be grown on as specimens; but the proportion of nutrient substances used in a potting mixture should be determined by the vigor of the plants. It is always better to use too little plant-food than too much; if too much is used it often becomes available faster than the roots of plants can absorb it, and hence causes organic acids to form in the soils which are fatal to the roots of most plants. Many amateur plant-growers in their over-anxiety to grow fine plants make this fatal mistake.

In most gardens the greenhouse space is limited, and a gardener cannot always develop his plants to their fullest capacity or be able to reduce his variety and numbers. For instance, we used to grow fancy pelargoniums three and four feet in diameter, but we found we either had to grow smaller specimens or reduce the variety of our collections. This, then, determines in the mind of an experienced gardener the composition of his potting mixtures. His aim should be to grow the finest possible specimens in the smallest possible pots and space, and all the cultural details given by the writer in this Cyclopedia have been with this idea in mind.

EDWARD J. CANNING.

SOJA. Consult Soy Bean and Glycine.

SOLANDRA (after Daniel C. Solander, a Swedish naturalist and traveler, 1736-1786). Solanaceae. A genus of about 4 species of woody vines native to tropical America, with simple, entire, shining leaves and large, white, solitary, datura-like flowers; calyx long-tubular, 2-5-sepht; corolla funnel-shaped; tube cylindrical; throat obliquely and widely bell-shaped; lobes broad, imbricated; stamens 5, inserted on the corolla-tube; berry globose, pulpy.

a. Plant becoming 12-20 ft. high.

grandiflora, Sw. Fig. 2335. Lvs. oblongate-oblong, acute, glabrous, thick; fls. fragrant; corolla twice as long as the calyx, not contracted at the throat, white or somewhat yellowish. B.M. 1874. G. C. III. 21:272. Gn. 39:1161. J. H. III. 34:123.

33.5. Solandra grandiflora (X 1.5).

SOLANUM (Latin, solamen, solace or quieting). Nightshade. Solanum, giving name to the family Solanaceae, is a vast genus of temperate and tropical herbs, shrubs and even trees, but is comparatively poorly represented in temperate North America. Donn, the latest monographer (DC. Prodr. 13, pt. 1), in 1852, recognized 901 species, and many species have been described since that time. The genus finds its greatest extension in tropical America. Of the vast number of species, barely 25 are of much account horticulturally, and half that number will comprise all the species that are popularly well known. One of these is the Potato, Solanum tuberosum, one of the leading food plants of the human race. The genus seems to abound in plants with toxic properties, although its bad reputation in this respect is probably exaggeratated.

As a genus, Solanum is not easily separated from other genera, but some of its most distinctive characters are as follows: Lvs. mostly sympodal and therefore superaxillary or opposit

33.5. Tubcr of Potato—Solanum tuberosum (X 3/4).
are white, purple or yellow. The species are herbs in temperate climates, but in warm countries many of them are shrubby and some are small trees. Many of them are climbers. It is impracticable to distribute the few cultivated species into the various botanical groups of a great genus, and the following species are therefore assembled on a purely horticultural plan.

INDEX.

- aviculare, 13.
- atroviridis, 8.
- brevicaule, 1.
- Capitata, 9.
- coccineum, 7.
- depressum, 6.
- esculentum, 6.
- Foudri, 1.
- grandiflorum, 20.
- Guatemalense, 5.
- Hendersonii, 10.
- Indicum, 14.
- inerme, 6.
- integrifolium, 7.
- Jamesii, 3.
- Jasminoides, 20.

A. Species bearing underground tubers: _Ivs. pipiata._ (See Baker, Journ. Linn. Soc. 21, for account of the tuberiferous Solanums.)

1. _tuberosum_, Linn. _Potato._ Figs. 1829, 1830: 2336. Low, weak-stemmed, much-branched perennial with tender, herbaceous tops, and perpetuating itself asexually by means of thickened or tuberous underground stems, glabrous or pubescent-hirsute: _Ivs._ unequally pinnate, the 5-9-lobed-ovate _lfts._ interposed with much smaller ones: _fls._ large or white, in long-stemmed dichotomous clusters; the corolla mainly composed of an outer _petiole_, and a small globular yellow berry, usually not produced in the highly developed modern varieties. Temperate Andes of Chile and adjacent regions. — *See Potato.* There is a form with yellow-bracted _lvs._ (known as var. *reipeatum*) sometimes cult. for ornament.

Var. **boreale,** Gray (S. Foudri, Gray). Plant usually smaller, as also the _tubers_, which are about 3/4 in. in diameter, and send up long, creeping subterranean _stolons_; interposed _lfts._ one or two or even none: corolla angular. _Mis._, S. Colo. to Mex. — Apparently only a northward extension of the species.

2. **Máglia**, Schult. **Darwin Potato.** More slender and erect than _S. tuberosum_ and nearly or quite glabrous: _lfts._ usually smaller, the interposed ones few and very small: _fls._ smaller than those of _S. tuberosum_, white, slender-pedicelled, in loose, long-forked _cymes_; _tubers_ small (1/2 in. or less long), globose or oblong, soft and watery. Coast region of Chile. B.M. 6756. — Sometimes cult. as a curiosity. It has been thought by some to be the original of the _Potato_, but this is now given up. Darwin describes the plant in his "Naturalist's Voyage." As grown by the writer, the plant has given little promise in the production of tubers, for the tubers are small and soft.

3. **Jamesii,** Torr. Low and slender, 12-18 in. tall under cultivation, the small angular branches glabrous or soon becoming so: _lvs._ oblong in general outline, the rachis narrow-winged, the _lfts._ 5-9, with no interposed small ones, small and lanceolate-oblung in shape: _fls._ small, white, the corolla deeply elett and the anthers large and prominent: _tubers_ few, globular, hard, 1 in. or less in diameter, withstanding frost. _Mis._ of Colo., N. Mex. and Ariz. B.M. 6756. — Sometimes cult. as a curiosity. The tubers do not appear to be eaten.

AA. Species grown (or collected) for the edible fruits: _Ivs. simple._

4. **nigrum**, Linn. **Black Nightshade.** _M梅花._ of the French. Annual, 1-2 ft., branching, glabrous or nearly so: _lvs._ simple and entire, ovate to obovate, pointed, long-stalked: _fls._ white, small, in few-flowered clusters, the pedicels drooping: _fr._ globose, black, size of a pea. — A widespread weedy plant. In the Dakotas, according to Hansen, the plant is often called "Stubblerberry," as it volunteers freely in wheat stubble, and the fruit is much used there for pies and preserves. Hansen finds that the plants withstand considerable frost.

In warm countries, according to Vilmorin, the leaves are sometimes eaten as spinach, and apparently without any injurious result, although the plant belongs to the dangerous family of the Solanaceae." The writer has grown the plant from French seeds, but he does not know that it is in the American trade. The species is exceedingly variable. Gray thinks that the species should include "many and perhaps most of 50 and more species of Drawai in the Prodomus, weeds or weedy plants, widely diffused over the world, especially in the warmer portions."

5. **muriátum**, Ait. (S. Guatemalense, Hort.). _Pepino._ **Melon Pear.** _Mélon Shrub._ Figs. 2337. Erect bushy herb or subshrub, not spiny, glabrous or nearly so: _lvs._ long and narrow, mostly oblong-lanceolate, tapering to the petiole and also to the nearly or quite obtuse point, the margin wholly entire or somewhat undulate: _fls._ rather small, bright blue, deeply 5-lobed, incised or ending in a long-stalked forking cluster: _fr._ long-ovoid or egg-shaped, long-stalked, yellow overlaid with streaks and splashes of violet-purple, in cult. specimens 4-6 in. long and seedless. _Tri._ Amer. at temperate elevations. G.F. 5:173. G.C. III. 5:309. — This plant attracted some attention in this country about ten years ago. It appears to have been introduced into the United
States from Guatemala in 1832 by Gustav Eisen. A full review of the history and botany was made in Corneli Exp. Build. 37 (1891). The fruit is aromatic, tender and juicy, and by taste argentants an acid eggplant. In a drawer or box, the fruit may be kept till midwinter. In the North the seasons are too short to allow the fruit to mature in the open, unless the plants are started very early. The Pepino is properly a cool-season plant, and when grown in pots in a cool or intermediate house will set its fruits freely. It is readily propagated by means of cuttings of the growing shoots. The plant will withstand a little frost.

6. Melogena, Linn. (S. laetiflum, Linn.). Erect and much-branched herb or subshrub, 2-3 ft. tall, woolly or spurfly, spiny: lvs. large and heavy, ovate or oblong-ovate, becoming nearly glabrous above but remaining densely tomentose beneath, shallowly sinate-lobed: fls. large, mostly in clusters, the calyx woolly and often spiny, the spreading, deeply lobed, purplish corolla 1 in. or more across: fr. a large berry. India.

Var. esculentum, Nees (S. esculentum and S. olivérum, D. D. C.). Common Eggplant. Guinea Squash. Aubergine. Figs. 735-753, 830, Vol. II. Cultivated for its large fruits, which are usually oblong, ovoid or egg-shape in form, and purple, white, yellowish or striped: differs from the wild plant in having fewer spines, mostly solitary fls., and much larger and more variable fruits. There are two well-marked varieties: var. serpentinum, Bailey (S. serpentinum, Desf.). Snake Eggplant. Fr. greatly elongated and curled at the end.

Var. depressum, Bailey. Dwarf Purple Eggplant. Fig. 754. Plant low and diffuse, many of the branches finally resting on the ground, usually dark-colored, nearly glabrous and always spiny: lvs. small and relatively thin, less lobed: fls. small and longer-stalked; fr. purple, pyriform. See Eggplant.

AA. Species grown wholly for ornament or curiosity.

b. For the fruit alone.

BB. For foliage or flowers (Nos. 8 to 21 also for fruit).

C. Habit erect, the plant either herbaceous or woody.

D. Plant without spines, mostly with rather narrow lvs.

E. Lvs. entire or very nearly so.

8. Pseudo-Cáspicium, Linn. Jerusalem Cherry. Figs. 2339, 2340. Small shrub, reaching 3-4 ft., but usually grown as smaller specimen in pots, glabrous, erect: lvs. lance-oblong to oblanceolate, mostly obuse, entire or somewhat wavy, shining green, strongly penninerved: fls. few or solitary in lateral clusters, small, white, the corolla 5-lobed: fr. glabrous, ½-¾ in. in diam., scarlet or yellow. Tropics, probably native to Old World.—An old-fashioned plant, often seen in window-gardens, grown for its showy berry-like fruits, which persist a long time. Var. nanum, Hort., is a dwarf, compact form. Var. Weatherillii, Hort., Weatherillii's Hybrid, is a form with strongly veined undulate lvs. and pointed orange-colored fruits.

9. Capsiáctárum, Link. Fig. 2341. Resembles the last, but the plant attains only about half the size: lvs. much shorter, ovate-lanceolate to oblong-lanceolate, scarcely undulate, subopposite and one smaller than the other: fls. white, in short racemes: fr. ½ in. or less in diam., orange-red or scarlet. Brazil. F.S. 12:282.—Frequent greenhouse and window plant. Var. variegátum, Hort., has variegated lvs.

12. umbelíferum, Eschsch. Perennial, shrubby at the base, hoary-pubescent or sometimes almost glabrous: lvs. obovate-oblong, varying from oblate to acute: fls. violet-blue (or sometimes white), in umbel-like clusters, ½ in. across, showy and fragrant. Calif. Variable.—S. umbelíferum, recently offered, is very likely this species.

XX. Lvs. prominently lobed.

13. avieculáre, Forst. (S. lucidárum, Ait.). Strong, erect herb or subshrub, 4-6 ft., glabrous: lvs. large, pinnatifid into long nearly linear or lanceolate acute lobes: fls. blue, 1 in. or less across, the corolla prominently lobed, showy: fr. oval or globose, varying from green to orange-red, about ½ in. in diam. (said to be eaten in New Zealand). Australia and New Zealand. B.M. 349.

DD. Plant more or less spiny; grown for the mass effect.

E. Flowers mainly blue.

14. Indiceum, Linn. Strong shrub, sometimes taller than a man, with many stout often recurved prickles,
more or less hairy: lvs. ovate, subacute or lobed, woolly beneath, usually prickly: fls. blue, 1 in. or less across, triangular-lobed: berry globular, about \(\frac{1}{2} \) in. in diam., smooth, yellow. Tropical India, and in China and the Philippines.—Offered by Frazeechi, S. Callit., who describes the fls. as white. Variable.

15. **Toreyi**, Gray. Strong perennial herb, with close grayish pubescence and scuttering weak prickles: lvs. ovate, with subcordate or truncate base, with 5-7 simple lobes, the midrib prickly beneath: fls. few in the cymes, nodding, 2 in. across, pale blue, deeply pointed-lobed, handsome: berry 1 in. in diam., globular, smooth, yellow.

ee. Fls. mainly white.

17. **marginánum**, Linn. f. Shrubby, 3-5 ft. tall, white-pubescent, bearing many straight but not very large prickles: lvs. mostly ovate in outline, subcordate, shallow-lobed or angled, at some stages with an irregular white band along the margin due to the shedding of the tomentum on the body of the leaf (whence the name marginalium): fls. large, 1 in. or more across, white with blue veins or ribs, shallow-lobed, in few-fl. clusters, the calyx prickly: fr. 1 in. or more in diam., globose or ovoid, drooping, prickly, yellow. Trop. Afr. B.M. 1928.

18. **robustánum**, H. Wend. Vigorous herb or subshrub, 3-5 ft., densely tomentose, prickly on stems and lvs., the stems winged: lvs. very large, sometimes 1 ft. long, broad-ovate or ovate-elliptic in outline, with many pointed angular lobes extending one-third or less the depth of the blade, woolly beneath: fls. white, about 1 in. across, lobed, racemose: fr. globular, small, hairy, orange-colored. Brazil. R.H. 1923, p. 239; 1896, p. 236.—Bold species, useful for subtropical gardening.

19. **Warszewiczii**, Weick (S. warszewicziiodes, Hort.). Strong, erect plant, 3-4 ft., usually with a strong central stem, densely rusty-tomentose and armed with many short stout hooked or straight spines: lvs. large, the blade often more than 1 ft. long, rather soft, tomen-

tose or densely pubescent beneath, deeply several-lobed: fls. large, about \(\frac{1}{2} \) in. across, white, numerous; fr. glabrous and shining, pale yellow. Probably South American. R.H. 1865, p. 339; 1896, p. 237.—A very striking plant for the tropic-leaf gardening and easily raised from seed in a single season; half-hardy perennial.
and wait. Every cutting will grow. When in a robust condition it is a good feeder. It should be in the full sun, though it does well anywhere."

S. betelegmus, Cav., is Cyphomandra, for which see Vol. 1.—S. cirratum, Vell., is a shrub or small tree, with cyphomandra-like lvs. and the stems clothed with chaffy hairs: fls. white; fr. globose, hairy, inserted in the calyx. S. Brazil. B.M. 7491.—S. cilatum, Lam. Stout herb or subshrub, 1-2 ft. tall, with prickly stems and ovate-acute-lobed lvs.: fls. white, 1 in.

2341. Solanum Wendlandii. Much reduced.

L. H. B.

SOLDANÉLLA (Latin, a small coin; referring to the shape of the lvs.). Primulaceae. About 4 species of alpine plants 2-3 in. high, with nodding, funnel-shaped, fringed flowers of violet or purplish blue, and about 5-7 in. across. Soldanellas are amongst the most famous flowers of the Alps, though not the commonest. S. alpina ascends the mountains to the line of perpetual snow. Grant Allen, in "Flushlights on Nature," declares that the flavor of Soldanella actually thaws its way up through a solid block of ice. Soldanellas are cultivated in this country only in a few large rock gardens. Those who have limited resources and dwell in the region of changeable winters might attempt to grow these plants in pots under a frame in lieu of nature's winter covering. According to J. B. Keller, they prefer a half-shady or shady position and are propagated by seed or division.

Soldanellas are native only to the Alps of middle Europe. They are slender, glabrous, perennial herbs, with short rhizomes: lvs. long-stalked, thick, roundish, with a heart-shaped or kidney-shaped base, entire: sepals slender, solitary or few, about 6 in. high or less: calyx 5 parted; corolla 5-cleft. The descriptions of the species are here adopted from Koch's Synopsis Flora Germamica. Some white-flowered forms have been recorded.

A. Fls. 2-4 on a scape: corolla split half way to the base: filaments half as long as anthers.
B. Pedicels pubescent.

montana, Willd. Lvs. roundish; margin slightly and remotely crenate: fls. violet. May-July.

bb. Pedicels roughish.

alpina, Linn. Flg. 2343. Lvs. roundish; base more or less kidney-shaped; margin entire or somewhat wavy: fls. violet, with darker streaks. May. B.M. 49. G.C. II. 24:157.

aa. Fls. solitary: corolla split a third of the way to the base: filaments about as long as anthers.
B. Pedicels roughish.

pusilla, Baun. Base of lvs. heart-shaped or kidney-shaped; margin somewhat wavy: fls. copper-colored, verging on blue, the fringes straight, not spreading. May.

bb. Pedicels pubescent.

minima, Hoppe. Lvs. roundish; fls. pale lilac, streaked purple inside; the fringes spreading at the tips. June-July.

W. M.

SÔLEA (after W. Sole, author of a monograph of the mints of England). Violaceae. A single species native to the eastern U. S., an herbaceous perennial 1-2 ft. high, with mostly oblong, narrowly acuminate leaves 3-5 in. long, and small nodding greenish flowers solitary or in pairs in many of the leaf-axils: sepals linear and equal; petals nearly equal, connivent nearly their entire length, the lower one much larger, saccate at the base, emarginate at the broad apex; stamens with broad connectives wholly cohere into an ovoid sac open only between the free tips, a rounded or 2-lobed scale-like gland adnate to the base anteriorly.

F. W. BACLEY.

SOLANANTHUS (Greek, tube and flower; referring to the form of the corolla). Borraginaceae. About 15 species of perennial herbs from Europe and Asia with alternate leaves and blue or rosy flowers either in long, simple, bracted racemes or in shorter, bractless, scirpoid, panicled racemes: calyx 5-parted; segments narrow, but little enlarged in fruit; corolla tubular, the lobes short, erect or somewhat spreading; stamens exerted: ovary-lobes 4, distinct: nutlets 4.

2343. Solananthus alpinus (X ½).
SOLENANTHUS

Apenninus, Hohen. (Cynoglossum Apenninum, Linn.). Plant hardy, 2½-3 ft. high. Ivs. rather coarse, the radical ovate-oblong, those of the stem long-lanceolate; florets, blue, forget-me-not-like, in dense, axillary, paniced racemes. May, June. S. Europe.—A useful plant amongst shrubbery or in the back part of borders. Prop. by division or seed. F. W. Barclay.

SOLIDAGO (according to Gray, from "solidus and coniferous, the stalk or leaf drawn together, in allusion to reputed valuable properties"). Composita. Goldenrod. Amongst the glories of the American autumn are the asters and Goldenrods. They complement each other. The asters run in cyanic colors, the Goldenrods in xanthic—the blue and blushe on the one hand and the yellow and golden on the other. Because the Goldenrods are so common, they have not been appreciated for planting. They improve in the garden, however, the plants becoming larger and the bloom fuller and richer. They present no difficulties in cultivation. They may be transplanted from the wild with the greatest care, and though they may be lifted and divided as soon as they become root-bound and show signs of failing. The Solidagos are variable, even within the same species. Therefore it is well to mark fine individual clumps when in bloom, for removal in late fall or early spring. The observation of a single season should result in a fine collection of individual plants; and the natural excellence of these specimens should be maintained and augmented by supplying good soil and giving good care. Too often it is thought that because the plants thrive under poor conditions in the wild, they do not profit by superior conditions in the garden; but this is an error. Solidagos are erect perennial herbs with simple alternate leaves, and many small yellow (rarely whits) heads in spikes, thyrse-like, compound panicles, or racemes. The heads are oblong or narrow-campanulate, with small, mostly appressed scales, containing few florets, the disk florets all perfect and the ray florets in none series and pistillate. The pappus is composed of 1 or 2 rows of roughish capillary bristles. The genus is characteristic of eastern North America, where about 60 species occur. There are several species on the Pacific coast, a few in Mexico and South America, and two or three in Europe and northern Asia, making, altogether, nearly 100 species.

None of the species are well known in the trade, although any of them may be expected to appear in the catalogues of dealers in native and hardy plants. For descriptions of the species, see Gray's Syn. Fl. N. Amer., vol. 1, pt. 2; for the species of the northeastern states, also Gray's Manual and Britton & Brown's Flora. The following have been offered by American dealers:

bicolor, Linn. (See Linn., Fig. 234.)
Candensis, Linn., Fig. 2345.
—var. prosea, Torr. & Gray.
Dressurii, Linn. & Gray.
elongata, Nutt.
confertiflora, DC.
Juncta, Linn.
lanceolata, Linn.
latifolia, Linn.
Missouriensis, Nutt.
neglecta, Torr. & Gray.
membran, Alt., Fig. 2464.
occidentalis, Nutt.
odor, Alt.
_Ohianus, Reid.
potata, Muell.

petiolaris, Alt.
puberula, Nutt.
Rubellii, Frank.
rigida, Linn.
rigidosenata, Porter.
rugosa, Mill., Fig. 2347.
seoervirens, Linn.
serotina, Alt.
—var. gigantea, Gray.
Shurtle, Terr. & Gray.
speciosa, Nutt.
spectabilis, Gray.
strica, Alt.
uliginosa, Nutt.
ulmifolia, Muell.
Virgaurea, var. alba, Bigel.

L. H. B.

SOLLYA (in honor of Richard Horsman Solly, 1778-1858, an English botanist.). Pittosporaceae. Two species of Australian evergreen shrubs or small trees, with white or yellow flowers, often fragrant, in loose axillary or terminal clusters. Petals 5, the stamens and petals more or less equal in length. The genus is peculiar in the fact that the petals of the flowers are united into a tube at the base, and when the tube opens the petals remain united or split up into the segments. The species are small trees, with white or yellow flowers, often fragrant, in loose axillary or terminal clusters. Petals 5, the stamens and petals more or less equal in length. The genus is peculiar in the fact that the petals of the flowers are united into a tube at the base, and when the tube opens the petals remain united or split up into the segments. The species are small trees, with white or yellow flowers, often fragrant, in loose axillary or terminal clusters.

heterophylia, Lind. AUSTRALIAN BLUEBELL CREEPER. Small shrub, 2-6 ft. high, with slender, twining stems; Ivs. variable, from lanceolate to oblong-linear to ovate-lanceolate or ovate-oblong, obusus or slightly acuminate, entire, 1-2 in. long, usually narrowed into short petioles; cymera axillar, terminal or leaf-opposed; fls. bright blue, 3-½ in. long, July. R.H. 1825. R.B. 21:2353. R.B. 17:1466.—Hardy and much cultivated in middle California and a great favorite on account of the brilliant blue of its flowers. Especially valuable for covering banks, rockwork and low fences, preferring to scramble over other plants. Also grown as an herbaceous border plant, being kept within bounds by the shears. The roots are very attractive to the California pocket-gopher, who plays sad havoc with it if not watched. J. Burtt Dayy.

SONERILA Polygamous.

SONERILA (adapted from a native name). Melastomaceae. This includes a number of dwarf, tender foliage plants which must be grown in the greenhouse all the year round. The plants belong to the same cultural group with Bertolonia, Graveania, and Mono-
lena and are distinguished by having their floral parts in 3's. There are about 70 species, all natives of India and the Malay archipelago. The fls. are usually rose-colored, ½ in. across or less, and generally disposed in scorpioid racemes or spikes. The genus is monographed in Latin by Cogniaux in DC. Mon. Phaner., vol. 7 (1891). The species described below are all caulescent plants with Ivs. distinctly petiololed, those of each pair being of equal size (except in S. maculata): fls. 3-merous; stamens 3, long-acuminate. Sonerila are highly esteemed in Belgium, where they have been developed by Van Houtte, Linden, Van Gaer and others. At present only 8 names are found in the American trade, as follows: S. argentea, Henderson, marmorata, marquardtana alta, orientalis, plicata, plicata, and punctata. A satisfactory explanation of these names involves a number of others mentioned below. In addition there are about 15 kinds with personal names that vary from the types mentioned below in their variation. There are also some hybrids between Sonerila and Bertolonia which are known to the trade as Bertoneria. The most important of the species mentioned below is S. marquardtana. It was long thought impossible to grow Sonerila and its allies outside of a bell-jar or Wardian case. The Belgians now dispense with the "double glass" and grow these plants in tropical or even temperate greenhouses. For potting material they use a compost of

2344. Solidago canadensis.
Sonerilas thrive best in a close and moisture-laden atmosphere with just enough ventilation to keep them from wilting or decaying. A temperature of not less than 70° suits them best. Cuttings of well-ripened growth are placed under a glass case or bell-glass in a bottom heat of 70–80°. Care must be taken every morning to allow the drops of condensation which gather on the glass to dissipate. For potting material use fine-screened leaf-mold, with plenty of silver sand intermixed and a little finely chopped fresh sphagnum on the top of the pots or pans. These plants have shallow roots, and require plenty of drainage, consisting of fine broken potsherds mixed with either charcoal or finely ground soft-coal clinkers. When the plants have made their full growth (which they do if started at the proper time in early spring) they start into flower. At this time the plants should be hardened off by gradually withholding water, and they should also be kept a little cooler. When fully ripened they may be cut back in order to furnish material for cuttings. Keep the old stools a little warmer and they will gradually start into new growth again. These plants make choice decorative plants in pans or even in wire baskets and can be used for choice table or mantel decorations.

H. A. Siebrecht.

INDEX.

argentea, 7.
guttulata, 4.
margaritacea, 5.
picta, 3, 4.
Hendersoni, 6.
orientalis, 4.
speciosa, 1.
maculata, 2.

A. Foliage not variegated1. speciosa

AA. Foliage variegated.

B. Calyx has rather long and sparse glandular hairs2. maculata

BB. Calyx glabrous or rarely dotted—scaly.

c. No. of nerves 7; margin of lvs. minutely serrate3. picta

dc. No. of nerves 5 or 7; margin of lvs. sharply and prominently serrate.

c. No. of nerves 9 or 7; margin of lvs. serrate4. orientalis

d. Color of nerves dark purple; lvs. covered with short, dark purple hairs4. orientalis

dd. Color of nerves green; lvs. glandular-pubescent; the pubescence not purplish.

e. Lvs. with a dark green ground, and purplish purple spots of regular size and arrangement5. margaritacea

EE. Lvs. with a dark green ground, and irregular light-colored blotches between the veins6. Hendersoni

EEE. Lvs. silvery, only the nerves dark green7. argentea

1. speciosa. Zenker. This is practically the only species cult. for its flowers; height 1 ft.;

2. maculata. Roxb. This differs from the other species here described in having lvs. of unequal size. The larger one of each pair may be 3–5 in. long; the smaller a half or third as long; lvs. ovate or oblong, unequal at the base, minutely denticulate, 9–11-nerved; fls. violet. India. R.H. 1865, p. 91, is too poor to determine.—Probably not in cult.

3. picta. Korth. Erect or ascending, with scurfy or puberulous bracteoles: lvs. short-petioled, broadly lanceolate, wedge-shaped at the base, minutely serrate, 7-nerved, lined with white along the primary nerves; fls. rosy. Sumatra.—S. picta of the trade is probably S. orientalis, var. picta.

4. orientalis. Linden. The botanical status of this name is doubtful. In horticulture it applies to a group of varieties sent out by Wm. Bull in 1891. For the rest of the varieties here described they are dark purple or bronzv colors; others are peppered all over with an infinite number of small, light-colored dots. All have dark purple nerves. In I.H. 37:113 the lvs. are shown as ovate, acuminate, more or less cordate and unequal at the base, with 9 or 10 nerves, entire: color of fls. not recorded. Habitat not stated. The typical form is said to have bronze lvs. with an amaranth reverse. Var. guttulata has green lvs. peppered
with small white dots and is pale green below. Var. punctata is much like the preceding variety but has paler leaves. Var. pitta has the purplish lvs. of the type, with an irregular lanceolate strip of silvery gray down the middle. Var. Robert Salter, R.B. 39:61, has dark green lvs. peppered white and with a lanceolate figure of silver down the middle. Said to be a hybrid of var. pitta and proclita. It has the stripe of one and the center of the other.

5. margaritacea, Lindl. This is the most important species. The name "margaritacea" means "pearly," referring to the regular rows of pearly spots between the nerves and parallel with them, which are characteristic of the typical form. Lvs. ovate-lanceolate, acute or obtuse, 7-9-nerved, glabrous, purplish below, acute at the base; fls. rosy. B.M. 11:126 (nerves too parallel). I.H. 2:16. -Supposed to be native of Java. In Vol. 11 of this work, page 684, Gravesia glutata, var. margaritacea, is erroneously referred to Sonerila instead of Salpinga. Salpinga margaritacea is readily told from Sonerila margaritacea by its 5-nerved lvs. and floral parts in 5's.

6. Hendersoni, Hort. This is referred by Cogniaux to S. margaritacea, of which it is perhaps merely a horticultural variety. For trade purposes it is convenient to treat it as a distinct species. It seems to be a chief parent in the development of the numerous hybrids with blotched foliage. It differs from the type in having a broader leaf with a shorter acumen and rounded base, and especially in being covered with irregular blotches, which, however, do not cross the nerves. F.M. 1:661.59. I.H. 23:236. -The blotches are all about the same size. S. M. A. E. Henderson, has more regular and roundish blotches, which are nearer white and on a darker ground. The upper side is netted with rosy purple. I.H. 23:254.

7. argentea, Hort. (S. Hendersoni, var. argentea, Fournier). For horticultural purposes this may be treated as a distinct species, characterized by its silvery foliage, resembling that of certain begonias, with no dark green except on the nerves. This is the parent of most of the forms that have a silvery cast of foliage, just as S. Hendersoni is responsible for the irregular blotches. I.H. 23:236. -Sonerila Alp. Van De Sande shows the Hendersoni and argentata blood in the large silvery blotches, most of which are larger than in Hendersoni.

A very handsome hybrid between the orientalis and margaritacea groups is called Alp. Paul du Toit. It has the serrate leaf and some of the silveriness of S. argentata, with the numerous minute dots of the S. orientalis group. It is much like S. Hendersoni, but the central color is bronzy as well as silvery and more broken up by the green.

6. s. marmorata and picturata of Siebrecht cannot be accounted for by the undersigned.

W. M.

SOPHORA (Sophora, Arabian name of a tree with pea-shaped flowers), Including Stropholobium and Ecklonia. Ornamental deciduous or evergreen trees or shrubs, sometimes perennials with alternate, odd-pinnate leaves, papilionaceous, yellow, white or violet flowers and long and narrow moniliform pods. The best known species, S. japonica, is hardly as far north as Mass., but S. platycepa seems to be somewhat harder. The evergreen species with large yellow fls. are tender and can be grown only in the southern states and California; they are very showy in spring when they are in bloom; in England they are often planted against a wall, where they can be easily protected against light frost. S. japonica is especially valuable for its late-appearing flowers, which are white and disposed in dense panicles; the foliage is dark green and graceful and the tree is conspicuous in winter on account of its dark green branches. The Sophoras thrive best in well-drained sandy loam but grow fairly well in rather dry soil. Prop. by seeds and the varieties have the typical form; some species are also increased by Greenwood cuttings and by layers.

More than 25 species in the temperate regions of both hemispheres. Trees, shrubs or herbs; lvs. odd-pinnate, with a usually opposite small lft.; fls. papilionaceous, in racemes or terminal leafy panicles; calyx with 5 short teeth; standard orbicular or broadly obovate; stamens 10, free or connate only at the base; pod stalked, almost terete or 1-winged, rarely compressed, few to many seeded, moniliform, indehiscent or tardily dehiscent. The fls. and frs. of S. Japonica yield a yellow dye, S. toncuta has medicinal properties, and the seeds of S. secundiflora contain soporine, a poisonous alkaloid. S. tetrapera is a valuable timber tree in its native country.

2348. Sophora Japonica, var. pendula, in winter.

INDEX.

(Including names advertised under Edgeworthia. s. l. = supplementary list.)

1. japonica, Lindl. (Stropholobium Japonicum, Schott). Japan Pagoda Tree. Tree, attaining 60 ft., with spreading branches, forming a dense round head; lvs. 7-9 in. long; fls. 5-15, distinctly stalked, ovate to ovate-lanceolate, acute, rounded at base, dark green and glossy above, more or less pubescent beneath, 1-2 in. long; fls. yellowish white, ⅜ in. long, in loose panicles 1½ in. long; pod distinctly stalked, glabrous, terete, 2-3 in. long, ⅜ in. broad. July-Sept. China, in Japan; Gm. 24, pp. 230, 211, 244, 245, 254, 292, 422, 41 M. 38:665. (Aug. 6, p. 247. M. D. G. 1898:185-) Var. pendula, Regel, Figs. 2348, 2349. With long and slender pendulous branches. R.H. 1876:194, 195. Gm. 9, pp. 600, 601, 24, pp. 292, 293, 211; 25, p. 27. M. D. G. 1898:183. The form with variegated lvs. has little to recommend it. There are several allied forms in cultivation probably introduced from E. Asia, of similar appearance and of about the same hardness; they are yet imperfectly known under provisional names; such are S. Chineensis, Kerri-terminata, and violacea, for which see supplementary list. The pictures of the Weeping Sophora (Figs. 2348, 2349) are adapted from Revue Horticole.

2. Calyx narrowed into the pedicel.

2. platycarpa, Maxim. Tree, similar in habit to the preceding but with very distinct flr.; fls. 11-15, alternate, ovate to elliptic-lanceolate, acuminate, glabrous or nearly so, 2-5½ in. long; fls. white, over ½ in. long; calyx gradually narrowed into the short pedicel; pod oblong to oblong-lanceolate, compressed and 2-winged, 1-5-seeded. Japan. - Has proved harder than S. Japonica and is therefore to be recommended for northern regions.

3. secundiflora, Lag. Small tree, 35 ft. high, or shrub, with short, slender trunk and upright branches forming

4. pendula, 1. platycarpa, 2. secundiflora, 3. tetrapera, 4. terminata, 5. violacea, s. l.
SOPHORA

a narrow head: lfts. 4-6 in. long; lfts. 7-9, elliptic or obovate-oblong to oblong, rounded or emarginate at the apex, cuneate at the base, silky-pubescent when young, dark yellowish green above, 1-2½ in. long: fls. violet-blue, the standard marked near the base with a few B.R. 9:738.—N. Kurikawii, Hort. Similar to S japonica: lfts. usually 1½-2½ in. long beneath, 1½-2½ in. wide. White, pink, violet-blue, or rose. W. states, Mex. B.M. 3962. Not nearly hardy.—N. tomentosum, Hort. is similar to S. japonica, but imperfectly known: lfts. 10-15, ovate to oblong, pubescent beneath, about 1½ in. long. Probably from Asia.—S. violacea, Thwait, is a shrubby species from Ceylon, not in cultivation, but the same name another imperfectly known species, probably from China, is cult. It has 15-17 oblong, acute lfts., sparingly pubescent above, densely beneath, and pale violet flowers.

ALFRED REHDER

SOPHRO-CATTLEYA. Orchid hybrids between Sophronitis and Cattleya, little known in America.

SOPHRO-LÈLIA. Orchid hybrids between Sophronitis and Lelia not advertised in American trade catalogues.

SOPHRONITIS (Greek, modest). Orchidaceae. A genus of about 4 species cultivated on account of their neat habit and brilliantly colored flowers; pseudobulbs small, with 1 or rarely 2 small flat lfts.: fls. from the top of the pseudobulb, brightly colored; petals and sepals nearly equal, spreading; labellum with a broad middle lobe and small erect side lobes, the base leading into a cavity in the wall of the ovary; column short; the stigmatic surface covering 2 wide elliptical projections at its summit; pollinia 8. This genus is closely related to Lelia, Cattleya, etc.

These plants, and also Sophro-Cattleyas and Sophro-Lélia, thrive in the temperature of the Cattleya house. In growing season, give a moderate supply of water and plenty of fresh air. Rest them at 35°-55°, and water sufficiently to keep them from shriveling. Grow them in shallow pots with plenty of drainage, and a thin layer of fine turfy fern root, using no sphagnum.

violacea, Lindl. One of the smallest of cultivated orchids; pseudobulbs oval, 1 in. long: lfts. linear, 2-3 in. long: fls. bright rose. about 1 in. in diam.: sepals and petals oblong-lanceolate, acute; labellum rhomboid-ovate, Edt. Winter. Organ Mts. B.M. 6880

SORBARIA (derived from Sorbus: the leaves resemble those of the mountain ash). Rosaceae. Ornamental deciduous shrubs with rather large, odd-pinnate or bipinnate leaves and white flowers in terminal showy panicles. Sorbaria sorbifolia, S. alpina and S. Aitchisonii are hardly north, while S. Lindleyana is only half-hardy. They are well adapted for borders of shrubberies and woods or for planting on banks of brooks or rivers, but should not be brought together with slow-growing and delicate shrubs, as they spread in suitable soil rather rapidly by means of suckers and are likely to overgrow other plants. The handsome bright green foliage appears very early in spring. The large white petals appear in spring, but become rather unsightly after they have faded and should be removed. The Sorbarias, except S. Milleri, which prefers a rather dry, well-drained soil and sunny position, grow best in a somewhat moist and rich

HEINRICH HASSELBERG and WM. MATTHEWS
soil and thrive also in partly shaded situations. Prop. by hardwood cuttings; also by root-cuttings, suckers and seeds. Four species in Asia and one in N. America, formerly usually united with Sorbaria but easily distinguished by their stipulate, pine-like flowers and the 3 carpels being opposite to the sepals.

a. Fls. pinnate.
b. Panicles with upright ramifications, dense.
c. Fls. 3½ in. across.

dorbilfolia, A. Braun (Sporotrichum Linn. Basista Sorbifolia, Raf.). Fig. 2350. Upright shrub, 3-5 ft. high; lvs. 15-23, lanceolate or ovate-lanceolate, long-acuminate, doubly serrate, stellate-pubescent beneath when young or glabrous, 3-1 in. long; panicles 5-12 in. long; fls. 3½ in. across. June, July, Y. Asia from Ural to Japan. A. G. H. 125. G. 16. p. 151. - Escaped from cultivation in some localities in the Middle States.

c. Fls. 3½ in. across.

grandiflora, Maxim. (Sporotrichum Grandiflora, Sweet Sp. Sorbilfolia Var. Alpina, PALL. Basista Alpina, Kochne); Shrub, 1-3 ft. high; lfts. 15-23, oblong to lanceolate, acuminate, doubly serrate, glabrous, 3-5 in. long; panicles 3-5 in. long; fls. 3½ in. across. June, July. E. Siberia. Gt. 9.265.

BB. Panicles with spreading ramifications.
c. Young branches pubescent, green.

CC. Young branches glabrous, usually red.

Aitchisoni, Hemsli. (Sporotrichum Aitchisoni, Hemsli. S. Sorbilfolia var. angustiloba, Wenzig). Shrub, 6-8 ft. high, with upright or ascending, little-branched stems, usually bright red when young; lfts. 15-21, lanceolate to linear-lanceolate, acuminate, narrowed at the base, simply or obscurely doubly serrate, glabrous, 2-4 in. long; panicles to 12 in. long, leafy at the base; fls. ½ in. or more across. July—Sept. Afghanistan, Cashmere. G. C. III. 28. 225. M. D. G. 1901. 18. A very desirable shrub with handsome graceful foliage, much harder than the preceding species.

AA. Fls. bipinnate.

Millefolium, Focke (Sporotrichum Millefolium, Torrey. Chamaebatia Millefolium, Maxim. Basilina Millefolium, Kuntze). Aromatic, glandular-pubescent spreading shrub, 2-6 ft. high; lfts. lanceolate in outline, 1 in. long, with minute, densely set, oblong and obtuse fls.; fls. ½ in. across, in 2-5 in. long panicles. July, Aug. Calif. to Wyoming and Arizona. G. F. 2. 569. G. C. III. 22. 19. - Rarely cultivated; it has long been in Mass., but, like other plants from the same region, it is likely to be killed by too much moisture during the winter.

alfred rediger.

Sorbus (ancient Latin name of S. domestica), including Aria, Aromat, Corus, Micromelis and Tor- niaria. Ornamental deciduous trees or shrubs, with alternate simple or odd-pinnate leaves, white or rarely pinkish flowers in terminal corymbs and berry-like, usually red fruit. Most of them are hardy north except some Asiatic species and Sorbus domestica, which seem tender north of Mass. They are chiefly inhabitants of mountainous regions, and the northern species, as S. Americana and Sambucifolia, do not thrive well in warmer and drier climates.. Aria, Torinaria allies end kind of drought and heat well. They all have handsome foliage, which usually turns orange-red in fall. The fruits are showy and often remain on the branches the whole winter if not eaten by birds. They are not particular as to the soil and are well suited for planting on rocky hillsides. Those of the Aecoparia group are more adapted for cool and moist mountain regions; those of the Aria and Torinaria group, which grow splendidly well on limestone soil, are suited to warmer and drier climates. S. hybrida is sometimes used as a small-sized avenue tree on account of its regular pyramidal habit. S. arbutifo- lia and S. melanocarpa are handsome shrubs for borders of shrubbery; they prefer moist soil, but S. me- lanocarpa also grows in drier rocky situations. Prop. by seeds sown in fall or stratified; also by layers, and S. arbutifolia and S. melanocarpa from Greenwood cuttings. Varieties and rare kinds are usually budded or grafted on allied species, but most kinds will grow on S. Aecoparia or Americana and on Hawthorn. The trees are very subject to bores.

About 30 species distributed throughout the northern hemisphere, in N. America south to Fin. and New Mex., in Asia south to the Himalayas. Lvs. simple or odd-pinnate, stipulate; fls. in compound corymbs; sepals and petals 5; stamens 15-20, with a red or orange style; styles 2-5, free or connate at the base; fr. a 5-loculed pome, usually rather small, with 1 or 2 seeds in each cell. Closely allied and often referred to Pyrus, from which it is chiefly distinguished by its compound inflorescence and by the fls. being more or less perigynous except in the Miceromelis group, which has a decidedly inferior ovary like Pyrus; the fruits, too, are usually smaller and berry-like.

INDEX.

Ameriana, 3.

arbutifolia, 13.

Aria, 12.

Aucoparia, 1.

eucies, 12.

euro-strauss, 11.

echrassophylla, 12.

Acaulis, 8.

Cetica, 12.

decussacca, 12.

decurrens, 6.

domestica, 13.
dulcis, 12.
edulis, 12.
edulis, 12.
bacca, 1.

eurostrauss, 11.

Acerbus, 7.

subulata, 11.

filifolia, 11.

furcatula, 14.

INDEX.

fretulato, 1.

grye, 1.

grye, 11.

grye, 1.

hydria, 11.

laxa, 1.

maior, 1.

melanocarpa, 11.

micromelis, 3.

microcarpa, 3.

monocarpus, 1.

Nepeta, 12.

Oxalis, 8.

Rana, 11.

subulata, 11.

subulata, 11.

Sargent, 7.

Sorbus, 5.

Sorbus, 7.

subulata, 11.

subulata, 11.

Sorbus, 12.

Sorbus, 12.

subulata, 11.
Sorbus

A. Foliage pinnate.
B. Leaves regularly pinnate, with the lfts. at utmost equal size.
C. Fruits small, 1/2-2 in. across or slightly larger, berry-like.
D. Winter-buds covered with white villous tomentum.
E. Young branches and lfts. pubescent 1. Aecuparia
EE. Young branches and lfts. glabrous 2. Tiananhanca
DD. Winter-buds glabrous, glabrous or sparingly pubescent, white-villous.
E. Fruits long-acuminate; fls. 5-6 in.; fr. 5-6 in. across
EE. Fruits obtuse or obtusate; fls. 5-6 in. across; fr. about 1/2 in. across 3. Americana
CC. Fruits 1/2 in. or more across.
BB. Styles 2; trees or rarely shrubs.
BA. Under side of lvs. glabrous at length, green; lvs. lobed; fr. brown, with girt-cells. 4. sambucifolia
AAA. Foliage simple.
BB. Styles 5; shrubs or rarely shrubs.
BA. Under side of lvs. glabrous or pubescent; lfts. ovate, oblong, or ovate-lanceolate, 1/4 in. long.
EE. Pairs of veins 5-6;
FF. Base of the usually broad ovate lvs. mostly rounded 5. domestica
EE. Pairs of veins 5-6; under side of veins densely snowy white; lfts. oblong, 11. labeolifolia
DD. Lvs. not or but obscurely lobed; pairs of veins 6-12.
CC. Fruits black; lvs. glabrous or nearly so 13. arbutifolia
BB. Styles 5; shrubs with crested, serrate lvs. (Aronia [Adenocarpha] group, species 5-12)
C. Fruits red; lvs. tomentose beneath 14. melanocarpa
(Aecuparia group, species 1-4)

1. Aecuparia. Linn. (Pyrus Aecuparia, Gaertn.).

European Mountain Ash. Rowan Tree. Fig. 2351. Round-headed tree, 20 to 40, occasionally 60 ft. high; young branches pubescent, grayish brown when older; petals more or less tomentose; lfts. 9-15, obovate or oblong-lanceolate, serrate, entire toward the base, dull green above, pubescent beneath or rarely glabrous, 1/2-2 in. long; fls. white, 1/2 in. across, in flat, 4-6 in. broad, tomentose or sometimes almost glabrous corymbs; stamens about as long as petals; fr. globose, about 1/2 in. across, bright red. May, June. Europe to W. Asia and Siberia. — Var. dulcis, Kretz. (var. Monticola, Zengeri). Almost glabrous; petals purplish; lfts. oblong-lanceolate, 2-3 in. long, glabrous beneath. The fruits are of a agreeable acid flavor and recommended for preserves. The tree thrives well in cold northern climates where hardly any other fruit tree will grow. Var. dulcis laciniosa, Keisen, is a handsome and graceful form with the lfts. pinnately lobed and the leaf-stalks and young branches bright red. Var. fastigiata, Loud., forms a narrow pyramidal tree, with upright branches. Var. pendula, Hort., has long and slender pendulous branches. Var. Eosica, Hort., seems little or not different from var. dulcis. Var. fructu lateo and var. Filipana, Hort., have yellow fruits. There are various with variegated foliage of the typical and of the weeping form. The fruits of S. Aecuparia, S. domestica, terminalis and var. dulcis are edible, and the strong and close-packed wood of S. domestica and S. terminalis, and in a lesser degree that of S. Aecuparia, is valued for handles of tools and similar small articles. See Pyrus.

2. Tiananhanca, Rupe. (Pyrus Tiananhanca, Regel). Small tree or shrub, similar to the preceding: young branches glabrous, red-brown and glossy when older; petals and lvs. glabrous; lfts. 11-15, lanceolate, acuminate, serrate, entire toward the base, dark green and glossy above, light green beneath, about 2 in. long; corymbs glabrous; stamens half as long as petals; styles 2-5; fr. globose, bright red. May, June. C. Asia. Gl. 40, p. 8. B. M. 1755.—Very handsome on account of the contrast of its dark green foliage and red-brown branches.

3. Americana, Marsh. (Pyrus Americana, DC. S. microcarpa, Dum-Cours.). American Mountain Ash. Dogberry. Fig. 2352. Small tree, attaining 30 ft., with spreading branches, or sometimes shrubby; lfts. 11-17, lanceolate, long-acuminate, sharply serrate, glabrous or slightly pubescent when young, light green above, paler beneath, 1 1/2 in. long; fls. one-fifth to 1/4 in. across, in dense, 2-6 in. broad, usually glabrous corymbs; fr. globose, bright red, 1/2-1/3 in. across, with the calyx-lobes very small and connivent. May, June. Newfoundland
confounded with the preceding species; both are sometimes
handsome in autumn with their large clusters of bright
red fruits. Sometimes a form of S. hybridæ is found
in American nurseries under the name of S. sambucifoilis.

5. doméstica, Linn. (Pyrus Serruca, Grwitz. P. do-
mesticæ, Smith. Coryns domesticæ, Spach). Service
Tree. Fig. 2355. Round-headed tree, 30-60 ft. high:
winter-buds glabrous; petals tomentose; fls. 11-17;
ovate to oblong-obate, sharply and rather coarsely
serrate, with acuminate teeth, usually entire near the
base, green and glabrous above, floccose-tomentose
beneath, at least when young, 1-2½ in. long; frs. white,
½ in. across, in broad pyramidal rather loose,
tomentose corymbs; fr. ⅜-⅞ in. across, usually yellowish,
with or without cheek, apple-shaped in var. maliformis,
Lodd., pear-shaped in var. pyriformis, Lodd. May.
M.D.G. 1897:376-378. —This species is often
confounded with the European ash, from which it is almost indis-
tinguishable without flowers or fruits, except by the
glabrous winter-buds.

6. hybrida, Linn. (Pyrus pinnatifidæ, Ehrh. P. Fé-
nico, B. B. S. intermédia x Aucuparia). Tree, at-
taining 40 ft., of regular, pyramidal habit with upright
branches: young branches and petals whitish tomen-
tose; fls. ovate to oblong-obate, with 1-4 pairs of de-
current lfts. at the base, or but pinnately lobed, upper
part lobed with the lobes becoming gradually shorter
and more indistinct toward the apex, dark green above,
whitish or grayish tomentose beneath, 8-2½ in. long;
petioles about 1 in. long; fls. ½-⅔ in. across, in tomen-
tose corymbs about 3 in. broad; fr. globose-ovoid, ⅜ in.
high. May, June. —Natural hybrid, occasionally found
with the parents in Europe. Two different hybrids are
usually included under S. hybrida; the typical one is
S. Aucuparia x intermédia, which has the lvs. oblong-
oblate to ovate-oblong, with 8-10 pairs of veins, lfts.
and lobes broader and obtuse, with the veins usually
curving upwards. This is known in gardens as S. quer-
crifolia hybridæ var. var. S. Aucuparia x intermédia, Koehne (S. brunn-
ginosa, Hort., not Kit.), is a transition to S. Aucup-
aria; only the 3 or 5 upper lfts. are connate into a ter-
minal lft., which, like the upper separate lfts., is decen-
dent at the base, under side less densely tomentose.
In some nurseries under the name of S. sambucifoilis.

7. spuria, Pers. (Pyrus heterophylla, Dur. S. Auc-
cuparia x arbutifolia). Shrub or small tree, attaining
15 ft., with slender, sometimes pendulous branches;
fls. ovate to oblong-obate, obtuse, with 2-6 lobes or lfts.
near the base, simply crenate-serrate toward the apex,
⅙-⅘ in. long, pubescent or glabrous beneath; fls. white
or pinkish white, in pubescent or glabrous corymbs
1½-2 in. broad; fr. subglobose or pear-shaped,
dark purple or almost black. May, June. Of garden
origin. B.R. 14:1196. —Sometimes cultivated under the
name S. querifrifolia floribunda var. S. Aucuparia and S. arbutifolia,
while the more glabrous forms with usually bluish fruit
have S. Aucuparia and S. melanocarpa as their parents.
A similar form with quite glabrous and more pointed
lvs., originated at the Arnold Arboretum and probably
a hybrid of S. americana and S. melanocarpa, was
named S. Sargeant, Dipp.

8. terminális, Grnitz. (Pyrus terminális, Ehrh. Ter-
minaria terminális, Dipp. T. Clasii, Rem.). Wild
Service Tree. Round-headed tree, with spreading
branches, 40-80 ft. high; lvs. broad, slightly coriace-
eous, tomentose on the lower surface, often densely
tomentose beneath, with serrate margins, oblong-ovate
to oblong-oblong lvs., somewhat more deeply
lobed, 2½-4 in. long, with 8-10 pairs of veins, lfts.
and lobes broader and obtuse, with the veins usually
curving upwards. This is known in gardens as S. quer-
crifolia hybridæ var. var. Two

9. latifolia, Pers. (Pyrus rotundifolia, Bechst. P. in-
termédia, var. latifolia, Ser. P. Avia, var. latifolia,
Hort. Terminaria latifolia, Dipp. S. Avia x termin-
ális). Tree, attaining 50 ft., similar to the preceding;
lvs. broadly ovate to obovate, obtuse, with 2-6
lfts. or lfts. near the base, simply serrate toward the apex,
⅑-⅘ in. long; fls. white, ½ in. across, in broad,
rather loose tomentose corymbs; fr. oval, ⅜-⅔ in. high,
brown, doted. May, June. Southern and middle Europe.

10. intermédia, Pers. (Pyrus intermédia, Ehrh. Só-
rus Sedaleæ, Pers. S. Aucuparia, Koehne. Hfr. (Stecie)
Sævæa, Dipp.). Tree, 20-40 ft. high, with oval head;
lvs. ovate to oblong-ovate, broadly cuneate at the base,
pinnately lobed with broad and short, irregularly serrate lobes and 5-8 pairs of veins, whitish tomentose beneath, 2 1/4-4 in. long; petals 1/8-1/2 in. long; fls. about 1/2 in. across, in broad, tomentose corymbs: fr. orange- red, globose, about 1/2 in. high. May, Northern and Middle Europe.—This is sometimes confused with S. hybridra and considered to be a hybrid of simple leaves, but it is certainly a good species. It never bears distinct leaflets at the base and the sinusese do not reach farther than one-third toward the middle.

11. Habellifolia, S. Schau. (Pyrus Arvia, var. flabellibifolia, Arb. Kew. Aria habellifolia, Deene. S. habellifolia, Hort.). Small tree, attaining 20 ft.: lvs. ovate to broadly oval, obtuse, usually coarsely at the base, acute or acuminate at the apex; sharply and doubly serrate, of firm texture, bright or dark green and glabrous above, white-tomentose beneath, 2-3 in. long; petals 1/5-3/4 in. long; fls. 2 1/4-3 in. broad: corymbs fr. globose, orange-red, about 1/2 in. high. May. Middle and southern Europe to Himalayas and Siber.—De- sirable for dry and exposed situations, and ornamental in foliage on account of the contrasting colors of the upper and under sides of the leaves. Several vars. are known. Var. Erotica, Lindl. (Aria glabra, Deene.), lvs. ovoid-obovate, coarsely doubly serrate, 1 1/4-3 in. long, with 10-15 pairs of veins. Southern Eu. Var. Decaisneana, Rehder. (Aria Decaisneana, Lazz. Pyrus Decaisneana, Nichols.). Lvs. elliptic to oblanceolate, ovate, irregularly doubly serrate, 3-6 in. long; stamens longer than petals: fr. oval. Probably from the Himalayas and sometimes cult. as S. nepalensis. Var. Vestita, Decne., lvs. elliptic-oblong, rounded or acute at the apex, 2-5 in. long; fr. oval, 1/2-3/4 in. high. There are some garden forms, as vars. aurea, chrysophylla and intes- cens, with more or less yellow foliage.

(Aronia group, species Nos. 13 and 14.)

13. arbutifolia, C. Koch (Pyrus arbutifolia, Linna. f. Arvia arbutifolia, Elliot. A. pyrifolia, Pers., Mespilus arbutifolia, var. amabilis, Michx., Reutherberry. Upright shrub, 6-12 ft. high: lvs. short-petiol- olated, oval to oblong or obovate, acute or abruptly acuminate, tomentose beneath: leaves more except some glands on the midrib, whitish or grayish green and to- mentose or pubescent beneath, 1 1/2-3 in. long: corymbs tomentose, few to many-flowered, 1-3 in. in broad: fls. white or tinged red, 1/2-1/3 in. across: fr. subglobose or pear-shaped, bright or dull red, about 1/4 across. April, May. Nova Scotia to Minn., south to Fla. and La. B. M. 3665.

G.F. 3:417.

14. melanocarpa, C. Koch (Pyrus nigra, Sarg., Arvia nigra, Koch. Pyrus arbutifolia, var. nigra, Willd.). Black cherry. Closely allied to the preceding, usually lower: lvs. oval to oblate, abruptly acuminate or obtuse, pale green and glabrous or nearly so beneath: calcys and pedicels glabrous or nearly so: fr. globose, about 1/4 in. across, shining black. Nova Scotia to Onta- rio, south to Fla. and Mich. April-June. B. B. 2:257. Var. grandlabia, Dipp. (Pyrus grandlabia, Dipp.) has larger, oblate or broadly oblate lvs. and larger fls. B. R. 14:1154. Var. subpubescens, Lindl., has the lvs. pubescent beneath when young. An intermediate form between the two preceding species is figured in B. B. 12:1906 as Pyrus flosbifolia, Lindl.; similar forms are found wild occasionally in the northeastern states. Both species are handsome shrubs: S. melanocarpa is prettier in foliage and in bloom, while S. arbutifolia has showier and usually more numerous fruits. The fruits of both species remain on the branches during the winter.

Sorghum

Sorghum, especially grown in the growing season of 1910, is widely credited with its value in the production of forage and forage crops. Its cultivation is divided into two parts: (1) the taller, more upright, panicles and (2) the shorter, more rounded, panicles. The taller variety is cultivated for forage and is the seed of the common variety, Sorghum vulgare. The shorter variety is cultivated for its sweet juice and for forage. Amber and Orange are leading varieties of Sorghum. See Saccarina. The common forms grown in this country and offered in the trade are: Kafir Corn, with stems 4-6 feet high, stocky growth, and dense, upright panicles; Mille Maize, or African Maize, similar but about twice as tall; Durra (variously spelled Doura, Dhoura, etc.), including Egyptian Rice Corn, Guinea Corn, etc., with compact panicles on a recurved stalk. A. S. Hirschcock.

SOUR CAROLINA. Horticulture. Fig. 2355. Owing to the combined influence of varieties of soil, latitude and elevation, the climatic conditions of South Carolina and the range of agricultural productions are remarkably varied. With reference to its adaptability to amateur and commercial horticulture, this state may be divided into four belts by lines drawn roughly from southwest to northeast.

The coast region, embracing a tier of counties bordering the Atlantic ocean and a number of fertile islands, is especially adapted to commercial horticulture. A considerable area is devoted to growing garden products and vegetables, and there is an ample supply of the large cities of the northeastern states. The principal species grown for shipment are green peas, Irish potatoes, cabbage, asparagus and beans. The Home and Neufville varieties of strawberries, currants, and blackberries are especially adapted to this region, and are also grown for shipment. The fig grows to perfection here, but has not as yet been produced on a commercial scale. The capabilities of this region have been only partially developed upon the account of the habit and profit of sea island cotton and rice culture. These crops are grown for mechanical asparagus ruts has seriously menaced the asparagus plantations.

The Pine Belt, or second zone, embraces two formations, generally known as the Upper and Lower Pine Belts. The latter covers an area of about 9,000 square miles; the former 5,000. The Upper Belt embraces the best farming and horticultural lands of the state. The surface is generally level, with an elevation of 250 feet. Both of these belts contain large areas especially adapted to vegetable and fruit-growing, especially melons. These industries are receiving more and more attention every year as the land-owners become more familiar with the intensive methods necessary for successful truck-farming and the commercial requirements for successfully handling large crops of perishable products. Asparagus, early potatoes, watermelons and cantaloupes are of the present crops grown for the northern markets. The sweet potato grows to perfection in this region, 400 to 600 bushels per acre being easily produced. Except in筱performance of the Experiment Station in preparing the sweet potato for compact shipment seem to open the way for carrying this vegetable to all parts of the world. This section is especially adapted to the fig, the oriental types of pears and plums and to the early varieties of peaches and apples. While affording every facility for commercial horticulture, there is, perhaps, no part of the globe where an abundant supply of fruits and vegetables may be more easily and continuously provided for domestic use. Fresh vegetables in season may be gathered from the garden every day in the year.

The Hill Belt, fifty miles in width, stretching across the state from Georgia to North Carolina, is more varied in soil and elevation and affords a wider range of soil products. In some sections of the Hill Belt rapid strides have been made in peach- and melon-growing for market. From a limited area around Ridge Springs 150 car-loads of peaches were shipped in 1909; from this section also large shipments of melons and asparagus are made. The rapid development of manufactures has created a home market for large quantities of fruit and vegetables. Grapes of superior quality are grown throughout this belt. Standard Labrusca grapes, such as Delaware, Concord and Niagara, are remarkably exempt from diseases which are more destructive in other sections. The Rotundifolia family, or southern fox grape type, most commonly known from the amber-colored variety, Steppermong, succeeds well from the mountains to the coast. Other varieties of the same family are more productive than the Steppermong, such as the Mosh Memory, Tender Pulp, Thomas, Junas and Flowers. The berries of some of these varieties adhere to the stems and grow in bunches of from 16 to 24 grapes, hence may be as readily shipped as the Delaware. When trained upon vertical trellises and pruned in early fall, the yield far exceeds that of any other type.

The Piedmont and Alpine regions, ranging in elevation from 400 to over 3,000 feet, varies even more than the hill country in variety of products to which it is

Sorrel. Various species of Rumex (which see) produce large, thick, and leaves which are prized for salads or for "greens." Leaves of some of the native or naturalized species are gathered as potherbs in many parts of the country. In the Old World, however, several species are regularly cultivated in kitchen-gardens; in this country these cultivated species are relatively little known. They are perennials of the easiest culture. Usually they persist for a number of years after well established, giving an abundance of soft edible leaves early in the spring when herbage is scarce. They are usually grown from seeds, and plants fit for cutting may be had when the plants are one or two years old. Plants should be placed at one side of the garden where they will not interfere with the regular tillage. No special treatment is demanded. When they begin to show signs of failing, new plants should be started or the old ones may be taken up and divided. The rows should stand about 18 in. apart. Do not let the plants exhaust themselves by seed-bearing. The Spinach Dock (Rumex Raphanistrum) is one of the best and earliest. The Bellisera (Rumex Acetosella) is also an excellent plant for the home garden and has the advantage of following the other as a succession. Various other species may be had of European seed dealers. See Dock. L. H. B.

Sorrel-Tree. Oxalidium.

Sour Gum. See Nyssa sylvatica.

Sour Sop. Anona muricata.

Sour Wood. Oxalidium.
adapted. The cherry, peach, pear, grape, small fruits
and apple afford a tempting variety. The succession of
fruits spans the seasons, the winter apples lasting until
strawberries are ripe. While little has been done in this
great region for growing fruit and vegetables for
shipment, the cotton mills, so numerous in this section,
have converted the farms in their vicinity into market-
gardens. The typical mountain wagon, loaded with white
canvas, laden with luminous apples, mammoth cabbages,
nearly potatoes and fragrant onions, products of the rude
methods of the inhabitants of the highland
region, are only suggestions of the possibilities of the
fertile valleys and mountain coves under the manu-
pact of skilful hands guided by the trained head.
J. S. Newman.

SOUTH DAKOTA, HORTICULTURE IN. Fig. 2356.
South Dakota, the twenty-seventh state admitted into the
Union, lies a little north of the center of the con-
tinent, between lat. 42° 37' N. and 49° 26' and 104° 3' W. of Greenwich. Its shape
is approximately a rectangle. Its extreme length from
east to west is 386 miles; extreme breadth north to
south 246 miles; area 76,845 square miles; population
in (1900) 101,550. The Missouri river divides the state
into two nearly equal portions. With the exception of a
small area in the northeast corner, the slope is
lowest and all the streams flow in that direction. The
state may be divided into three sections: (1) The Black Hills; (2) the Table-lands; (3) the Eastern Section.
The Black Hills in the southwestern part are outliers of the Rocky Moun-
tains, and the extensive and very rich deposits of gold, silver, and
other minerals are important sources of wealth. The Indians early knew
of these gold deposits, but they were not known to white men until
1874. The Black Hills, so named by the Indians because
of the heavy forests of pine and spruce covering the moun-
tains, include an area of about 5,000
square miles. Considerable fruit is now being raised in this section under irrigation, as the local market is a
profitable one, and it has been found possible to raise
many varieties not
hardy upon the open prairies of the state.
The Table-lands comprise the entire section of the state
west of the Missouri river, with the exception of the
Black Hills. Five branches of the Missouri flow from the
western part of the state across these lands from west to east. These are White, Bad, Cheyenne, Missouri
and Grand rivers. The rainfall in this part is
too light to make general farming feasible, but the
native grasses are very nutritious and stock-raising is
profitable. Cattle, horses and sheep are raised in
immense numbers; and feed the year round upon these
ranges, the dry climate curving the grass into the best
of hay as it stands.
The eastern section contains three river valleys that
cross it from north to south, viz., the eastern half of
the Missouri, the James river valley and the Big Sioux
river on the eastern border. In the southern part the
valley of the Vermillion traverses the region between the
Sioux and the James. These river valleys are all
very fertile and blend together as they reach the Mis-
souri at the south. Diversified agriculture flourishes in
these rich valleys, especially in the southern and entire
eastern part of this section. In the higher ground in the
northern and western part, stock-raising and dairy-
ing are the main industries owing to the lesser rainfall.
Since the defining of the artesian-well basin, general
agriculture has been encroaching upon the grazing areas.
This basin reaches from the Missouri river eastward
to some distance beyond the James. The pressure and flow
of these artesian wells varies from a few pounds to 200
pounds per square inch. A flow of more than 3,000 gal-
lons per minute has been obtained from an 8-inch well.
These wells are from 100 to 1,500 feet in depth, and
afford a valuable means of irrigation and cheap water-
power. The water is supposed to come from the Rocky
Mountain region. The amount of this supply which can be
used has been roughly estimated at 326,858,606,000
cubic feet annually, an amount of water sufficient to
fill a river-bed a mile wide, 20 feet deep and nearly 600
feet long. When this water is more generally utilized,
it is confidently believed that the horticultural area
shown in the map will be extended to include the en-
tire state east of the Missouri river.

Horticulture in South Dakota is to a considerable ex-
tent still in the experimental stage. Most of the plant-

2356. Map of South Dakota.

Showing areas favorable to fruit-growing, the broken-shaded portions being the most favorable.
The long-established orchard in the state is in Turner county, consisting of 7,000 trees on about 332 acres. This orchard was planted in the early seventeenth and still yields profitable crops. About 4,000 of the trees are Wealthy and most of the remainder Oldenburg. Considerable trouble is experienced from root-killing of the common apple seeding stocks. In the northern part of the state, apple root-grafts root-kill every winter unless deeply mulched. The winter of 1898-99 will be remembered as the "root-killing" winter by the fruit men of several northwestern states. Efforts are now being made to remedy this trouble by testing the Russian method of preventing root-killing; viz., the use of the Kamchatka crab (Petricus). If the experiments are successful apple culture will be practicable in both Dakotas and in a part of the Cana-dian prairies. The disease root-grafting will not be a fair test, as everything follows the same plan. (See Bull. 65 of S. D. Exp. Sta., and Am. Pom. Soc. Report, 1899, p. 143.)

Of plums, only those of the Americana type, such as DeSoto, Wyant, Wolf, Forest Garden, Rollingstone and Hawkeye, are of any value for general cultivation. However, in the southern tier of counties already mentioned the former does well and is much grown. *Punica Americana* is indigenous throughout the state. Many varieties from the native thickets are being grown by the prairie settlers, and those which will probably supersede the native forms are Sunset, Wealthy, Minnesota and Wisconsin. Plums rightly managed are very profitable and the general interest in them is increasing.

The main trouble hitherto has been the tender stocks upon which the hardy natives have been worked. Myrobolan, St. Julien, Maranna, Southern Chickasaw, peach, and other southern stocks all winter-killing the hardy too. Such trees are a delusion and a snare to the prairie planter, and this fact is becoming more generally known. Trees worked on Americana seedlings or trees on their own roots find favor, and the apple is then free from winter-killing. The western sand cherry (*Punica Besseyi*), a native of the state, is being tested as a stock at the Experiment Station at Brookings. So far the indications are that it will be worthy of use as a dwarf stock for amateur use, the trees being dwarfed and bearing fruit at an early age. It is of some promise as a dwarf stock for peaches, such trees being of suitable size for convenient covering in winter or for growing in boxes.

Of other orchard fruits, pears, quinces, apricots and peaches find no place on the South Dakota fruit list. Cherries are grown to a small extent in the southern counties, but the crop is uncertain in most parts.

Raspberries can be grown with winter protection. Blackberries are not as hardy as raspberries. Strawberries are considerably grown in southern part of the state, and irrigation is found profitable, as it assures a crop in dry seasons. Grapes are grown to some extent in the state, but not a part of the state, and northward were severely from winter-killing and are not on the fruit list recommended for that part of the state. Janesville, a *Lobersenia x riparia* (culpina) hybrid, has been found to be of the Concord type. It is probable that new varieties of grapes adapted to the prairie northwest will be produced by plant-breeding, using the indigenous *Vitis riparia* as a foundation. Towards the south and southwest the Concord type and the outer type will be produced by plant-breeding, using the indigenous *Vitis riparia* as a foundation. Toward the south and southwest the Concord type and the outer type will be produced by plant-breeding, using the indigenous *Vitis riparia* as a foundation. Towards the south and southwest the Concord type and the outer type will be produced by plant-breeding, using the indigenous *Vitis riparia* as a foundation.

Notes:

- The SOUTHERNWOOD (Artemisia Abrotanum), which see for botanical account, is a European herb, aromatic, much branched, woody-stemmed, rather tender, perennual, 1-3 ft. tall, with pale green or grayish often variegated leaves, small yellowish flowers and minute seeds. Fig. 235. It is occasionally found in family gardens, where it is grown from seed (or more often from its easily rootled cuttings, which are most readily obtained in early summer) for its pleasant taste and
SOUTHERNWOOD

SOW BREAD. An old name for *Cyclamen*.

SOY BEAN (*Glycine hispidia*, which see for botanical description) is a legume, and while it has long been a staple crop in Japan it has but somewhat recently been cultivated in the United States. Figs. 191, 195. It grows to perfection only in a tropical or semitropical climate. In its native country, Japan, the seed is an important human food product, but in the United States its principal use at present is as a forage plant for farm live stock and as a soil renovator. It is an upright, leafy, branching plant, growing 3-4 ft. high. Two distinct plants are often called Soy Bean; the smaller one (*Phaseolus radiatus*) is grown principally in Japan; the larger species, the true Soy Bean, is *Glycine hispidia*. This latter species has become popular in some sections of the United States because of its power of resisting drought and for the further reason that it may supply a large amount of forage rich in protein. In the northern states it is probable that the Soy Bean will be acclimated and that it will serve as an adjunct to the maize crop as a food for stock, although it is coarse in leaf and stalk.

It thrives best upon a warm, well-drained loamy soil, and seed should not be planted until all danger from frost is over. The land should be prepared by plowing and harrowing in the early spring, and the harrow should be used two or three times before the seeds are planted. Best success is attained by planting in drills, rows to be from 2½-3 ft. apart and the hills in the row 18-20 in. apart. During the early periods of growth cultivation should be frequent, preferably with a fine-toothed implement. After the plants have grown so that the ground is well shaded the tillage may be discontinued. It is doubtful whether the curving of the plants for hay will ever come into general practice, but the crop may be largely grown for green soiling and for ensilage purposes. It may be cut into the silo with corn and serves to improve the quality of the food.

To the horticulturist the Soy Bean is valuable chiefly as a soil renovator. The soil of the orchard can be given clean culture during the early summer and the Soy Beans may be sown broadcast about July 1 and harvested in. One bushel of seed per acre will be required, the bushel of rye per acre should be sown at the same time, for when the beans are killed down by the frost in the fall the rye will then serve as a cover-crop during the winter. When the soil is so hard and unfertilized that clover will not thrive the Soy Bean may be made to serve as a nitrogen-gatherer, and when plowed under it serves to greatly improve the physical condition of the land. See also *Glycine*.

M. G. KAINS

SPARAXIS (*Dierema*). 1. *longan*, is the most probable one. The plant is branched and more compact than *Ixias*, usually 6-12 in. high, the spikes are shorter and fewer-flowered, and the blossoms are sometimes larger. *Sparaxis* is essentially distinguished from *Ixia* and other allied genera by the sub-regular perianth, unilateral and areolate stamens, and scarious, lacerated spathae-valves. Other general features are: the roostock a corn; *Ivs.* linear or lanceolate and arranged in a basal rosette; inflorescence a simple or panicked spike; perianth-tube short; ovary 3-celled; ovaries many, superposed. *Sparaxis* is native to the southwestern provinces of Cape Colony, S. Africa.

Although a few plants of *Sparaxis* are occasionally cultivated in America by bulb fanciers, one may search through many American catalogues without finding them listed. The Dutch bulb growers offer 25 distinct kinds, which is perhaps a quarter of the number of varieties of *Ixias* in cultivation. According to J. A. Baker, there is "only one species in a broad sense, varying indefinitely in the size and coloring of the flowers." For practical purposes Baker recognizes the 3 species given below; of these the most important and variable is *S. tricolor*.

Sparaxis pulchervinum of the Dutch trade is properly *Dierama pulcherrimum*, Baker. This grows 6 ft. high or more and has pendulous, bright blood-purple but apparently with pale rose and perhaps other varieties (also a white var.). It is distinguished by its pendulous *fls.*, with regular perianth, simple style-branches, unilateral stamens, and large bracts which are not laciniate. B.M. 5555. F.S. 17:1810. Gn. 20:315; 44, p. 281. This plant is said by F. W. Burbidge to be "perhaps the most graceful of all the Cape Irises."

a. Throat of flower *same color* as segments.

b. *Fls.* small; segments ½-3 in. long. 1. *bubifera*.

bb. *Fls.* larger; segments 1 in. or more. 2. *grandiflora*.

aa. Throat of flower *bright yellow*, often with a dark blotch on the lower part of each segment. 3. *tricolor*.

bubifera, Ker. Corn globe, ½-3 in. thick; basal *fls.*, about 6, linear or lanceolate, ½-1 ft. long; stems ½-1 ft. long, simple or branched, bearing low down 2-3 small *fls.*, often with bulbs in the axils; *fls.* solitary or few in a spike; perianth-tube ½ in. long. B.M. 343 (*Ixia bubiferum*). To this species Baker refers *S. albiflora*, Eckl., with *fls.* white inside, and *S. violacea*, Eckl., with dark purple *fls.*

g*grandiflora*, Ker. Habit, corn. *fls.* and spathe just as in *S. bubifera* but the *fls.* larger, the limb 1 in. or
more long, usually yellow or purplish, and larger anthers. B.M. 779 fls. primrose inside, blanched purple outside. B.R. 3:253 fls. white inside, mottled on the back purple. B.M. 314 (Ixia grandiflora, fls. rich purple, marginated lighter).—According to Baker, the principal named forms are: astrojarapea, dark purple; anamonefolia, pale yellow; Liliago, white, flushed with claret-purple outside; and stellaria, dark purple, the segments narrower than the type, oblanceolate and acute rather than oblong.

tricolor, Ker. Fig. 2355. Differs from S. grandiflora only in the color of the flowers, which are very variable but always have a bright yellow throat and often a dark blotch at the base of each segment. B.M. 1482; 381 (Ixia tricolor), F. S. 2:124. F. 1843:213 (S. pica, purpurea, potchella).—According to Baker, this is the favorite species among cultivators. It certainly has the greatest variety of colors and markings. In the works cited the floral segments range from nearly white through rose, brick-red, carmine, and light purple to dark purple, excluding blue and yellow, which latter color usually appears in the throat.

W. M.

SPARGÀNIUM (Greek, Riliecf, referring to the ribbon-like lvs.).

Tjropheae.—BUR-REED. Bur-reeds are marsh herbs closely allied to eat-tails but with fls. in umbel-like heads instead of oblong spikes. Three hardy perennial kinds are advertised by the specialists in aquatic plants. Bur-reeds are desirable only if growing in bog gardens or in wild gardening operations. The beauty of these plants often lies in each species being massed alone, as well as in the mixing with other plants.

Sparganium have creeping rootstocks and fibrous roots. Some are floating plants. Stems branched or not: lvs. linear, alternate, sheathing at the base: fls. monocarpic, in globose heads, the staminate uppermost, fr. sessile or peduncled, mostly 1-loculed and nut-like.

A. Inflorescence unbudded.

AA. Inflorescence branched.

v. Height 3-8 ft.

2. Height 2-3 ft.

ramosum, Curt. Lvs. flat: heads 5-9, disposed in axillary and terminal, interrupted spikes, the lowest one larger and pistillate, the others wholly staminate: pistillate heads 8-10 lines in diam. July. Southern U. S., particularly in mountain bogs.

W. M.

SPARMANNIA (after Andreas Sparmann, who visited the Cape with Thunberg). Tillulce. About 5 species of African shrubs or trees with cordate, dentate or lobed leaves and white flowers in terminal, umbelliform cymes: sepalas 4; petals 4, naked at the base; stamens several, free, the anther-bearing ones interior, the staminodium exterior: capsule globose or ovoid, spiny.

S. Africana is of easy treatment under glass in a temperature never lower than 35° with plenty of air and light. The plants are benefited by being plunged in the garden during the summer and syringed during dry weather. Plants should be cut back spring. The tips of young shoots root readily with 60° of heat.

A. Lvs. deeply 5-7-lobed.

palmata, E. Mey. A slender shrub much smaller in all its parts than S. Africana: branches half herbaceous: lvs. on long petioles, the lobes long-acuminate, incised and unequally toothed, prominently 5-nerved below: fls. white or purplish, densely arranged on the terminal peduncles: capsule 4-celled. Cult. in S. Calif.

AA. Lvs. not lobed.

Var. flore pleno is also grown. G.C. II. 19:477.

F. W. BARCLAY.

SPARROW-GRASS. Provincialism for Asparagus.

SPARTINA (Greek, spartus, a cord; on account of the tough leaves). Grimmiosa. Species 7. Perennial marsh plants of various parts of the world, most of which are found in the United States. Calms right and reed-like: lvs. coarse and rough, flattened, rolled inwards: spikelets 1-fl., in rows on two sides of the triangular rachis; spikes 2-several in a raceme.

cynosuroides, Willd. Fresh-water Cord-grass. In the West known as "Slaugh-grass." A common coarse fresh-water marsh grass, occurring across the continent in the northern states. Recommended for cultivation along the margins of ponds and artificial lakes. Procured from collectors.

A. S. HITCHCOCK.

SPÀRTIUM (Greek spartos, the ancient name of the plant). Syn. Spartulthus, Leguminosus. Ornamental shrub, with long and slender green branches, small and sparse foliage, and showy papilionaceous yellow fls. in terminal racemes. It is a handsome shrub especially adapted for warmer and drier regions; in the East it is probably hardy as far north as Philadelphia. It becomes naturalized easily, as happened in several localities in S. America, whence it was afterwards described as S. Americana, Meyen. It grows in almost any kind of well-drained soil and is well suited for planting on exposed and sandy ground. It is easily grown from cuttings by greenhouse cuttings under glass. One species in the Mediterranean region and the Canary Islands. Allied to Genista and Cytisus, but chiefly distinguished by the 1-lipped calyx: lvs. simple: fls. in terminal, loose racemes; calyx split above, hence 1-lipped, tip with 5 minute teeth; keel incurved, acuminate; pod linear, compressed, many-seeded; seeds with callose appinment at the base like in Genista. The slender branches yield
SPATHOGLOTTIS

fiber, which is used in S. France and Spain for making ropes, cords and cloths. Many species of Cyrtisus and Genista were formerly referred to this genus. For

SPATHURUM [Eutece, Biv., S. ferox, Poir., S. montperruman, Linn., S. rotiilatum, Linn. and S. virgatum, Ait. see Genista, for S. purpurata, Linn., see Cyrtisus; Spathurum multiltorum, Ait. = Cyrtisus albus.

paceum, Linn. (Genista jaceae, Lam., Spatulathus jaceus, Link.) Spanish Broom. Upright shrub, 10 ft. high, with slender, terete, green, rush-like branches sparingly leafy or almost leafless; lvs. oblong-lanceolate, acuminate or cuspidate, long-petioled leaves and flowers on a long-penduncled spadix subtended by an obovate or lanceolate, leaf-like, white, persistent, fls. spathes; stigma 3-4-lobed; ovules in each locule 2-3, fixed at the interior angles of the cells. Gardeners recommend as soil for their culture a mixture of leaf-mold, peat and fibrous loam, together with some sand and charcoal.

A. Spathe less than 4 in. long.
B. Lvs. 2-3 in. wide.

floribundum, N. E. Br. Petioles 4-6 in. long; leaf-blade obovate-elliptical or obovate-lanceolate, very sharply acuminate, abruptly obtuse and contracted into a node at the base, dark green above, lighter beneath; spathe obovate-lanceolate, long-cuspidate-acuminate, about 2½ in. long by 1 in. wide, white; spadix white, a little shorter than the spathe. Colombia. I.H. 21:159. P. 1889, p. 78.

bb. Lvs. less than 2 in. wide.

c. Spadix thickened and curved below the spathe.

cánidium, N. E. Br. Petioles 5-6 in. long, minutely stippled with white; leaf-blade narrowly obovate-lanceolate, 1½-6 in. long by 1-1½ in. wide, acuminate at apex, base cuneately rounded, bright green above, paler beneath; spathe erect or spreading, according to amount of curve in scape, obovate-lanceolate, acuminate, ¼ in. long, 1 in. broad, white on both sides; spadix shorter than the spathe. Colombia. F. 1879, p. 19.

cc. Spadix straight.

Pátini, N. E. Br. Petioles slender, terete, often much longer than the blade; leaf-blade long lanceolate, 6-8 in. long, acuminate at both ends; spathe obovate-lanceolate, very long-acuminate, white except for the green costa, spreading or recurved; spadix long stipitate (5 lines), a little shorter than the spathe. Colombia. I.H. 27:397.

AA. Spathe over 4 in. long.
B. Petioles 20 in. or more long.

eochlearispathum, Engl. (S. helicemfjornius, Schott). A large plant; lvs. broadly obovate, 20-30 in. long, shortly decurrent, the base rounded or cordate; spathe ovate or obovate-ovate, narrowly cuspidate, somewhat decurrent on the peduncle, 8-12 in. long; spadix 3-4 in. long. Mexico. I.H. 21:189.

bb. Petioles 5-10 in. long.

c. Spadix 2-5 in. long.

cánidccus, Poepp. (S. canadicius, Schott). Leaf-blades broadly lanceolate to obovate-lanceolate, 10-16 in. long, acute or acuminate, base somewhat cuneate, acute, deep green above, paler beneath; spathe 4½-7 in. long, obovate-lanceolate, acuminate, white on the face; green, possibly rarely white, on the back: 3%, odorous. West Indies, Colombia. B.M. 603 (as Patkis canadicius).

cc. Spadix 2 in. long.

hybridum, N. E. Br. A hybrid between S. cándidus, Poepp., and S. Pátini, N. E. Br. Petioles 6-8 in. long;

lepals broadly lanceolate to obovate-lanceolate, acuminate, 8-9 in. long; spathe white on both sides, lanceolate, acuminate, 4-5 in. long; spadix 2 in. long. I.H. 29:1450. G.C. H. 19:500.

P. W. BARCLAY.

SPATHOGLOTTIS (Greek, spathe and tongue; said to refer to the shape of the lip). Orchidaceae. Plants agreeing with Bletia in habit and form of inflorescence; pseudobulks broadly obovate, 1-3 in.; lvs. elongate, long-petioled, narrow, plicate, articulated; scape lateral, bearing large fls. in a terminal raceme: sepals free, subequal; petals similar or broader and longer; label-

um not spurred, lateral lobes somewhat connate, mid-

dle lobe clavate; column slender: pollinia 8. About 10 species in Asia, Australia and the Malay Islands.

SPATHOGLOTTIS grows best at the warm end of the Cat-
tuya or Brazilian house in a moist, shady location. Pot culture suits them best, and the compost should consist principally of equal parts peat fiber and sphagnum moss with a little chopped sod added; about one-half of the pot should be devoted to drainage. They all require a liberal amount of water when growing, but only enough to keep them in sound condition when at rest. They are rather hard to increase by division and the supply depends upon new importations.

2359.

SPATHOGLOTTIS Vieillardii.

(X 3/2)

plicata, Blume. Lvs. 2-4 ft. long, finely acuminate, scape 2-3 ft. high, with a raceme 6-12 in. long: fls. 1 in. across, blue; sepals and petals broad, acute; middle lobe of the labellum long and narrow, cuneately dilated at the tip: calli yellow, villous. Malay Peninsula.

área, Lindl. (S. plicata, Griff.). Lvs. 12-18 in. high, narrowly lanceolate: scape tall and stout, 2 ft. high: raceme 6-8 in. long: fls. 1½ in. across, golden yellow; sepals broad, obtuse; middle lobe of the labellum equaling the falcate lateral lobes, narrowly lanceolate. Malay Peninsula. G.C. H. 3:93. The lip varies, being sometimes broad and retuse at the apex.
SPATHOGLOTTIS

Vieillardi, Reichh. f. (X. Amethystina, Reichh. f., Figs. 2359, 2360. Lvs. long-lanceolate, acuminate, 1–2 ft. long; scape 12–18 in. high, robust; raceme 6 in. long, broad, corymb-like at first; fls. 2 in. across, very pale blue, nearly white, sepals and petals pubescent; labellum as long as the sepals, lateral lobes orange-brown, with orange calli speckled with red, middle lobe narrow, with a broadened tip variable in form. New Caledonia. B.M. 7443. A.L. 2709, F. 6760. S. aurea—Vieillardi, Hort., is a hybrid between this and S. aurea. Fls. pale chocolate-yellow, with the sepals slightly and the petals profusely dotted with crimson, the tips of the lobes of the lip rich crimson. G.C. III. 25:339. G.M. 41:308.

S. Kimmallitha, Hook., is often regarded as a variety of S. aurea, from which it differs in having the backs of the sepals mottled with red-brown, the crest glabrous, and narrower lvs. B.M. 7443.—S. picata, var. Micheliolita, is advertised by San- der. Fls. amethyst color, with the segments broader than in the type. Habit more dwarf.

HINRICH HASSELBRING AND R. M. GREY.

SPATHYEMA (Greek; referring to the spathe).

SKUNK CABBAGE.

Skunk Cabbage is an exceptionally interesting plant. In the East, it is the first wild flower of the year, though it is often considered a weed than a flower by those who have nothing but contempt for it. It is a hardy swamp-loving perennial herb which pushes up its fascinating hooded spathes in midwinter or even before the first of January in favored situations. The spathes are 3–6 in. high, usually grow in clumps, and the variation in their coloring is a never-failing delight. They are mottled with purplish brown and greenish yellow, the former color sometimes be- coming bright red, the latter ranging from dark green to bright yellow. These spathes are produced several weeks before the leaves appear, and they include odd flowers which are described below in detail. Just when the Skunk Cabbage flowers are a matter of much debate; the stamens are generally out in February or March. The hoode retain their beauty for months. In April or May they decay and the strong-growing leaves soon attain a height of 1–3 ft. and a breadth of 1 ft. or more. All parts of the plant give a strong, skunk-like odor, but only when bruised. A young plant uprooted is a picturesque object. Its thick, horizontal rhizome emits great numbers of strong, fresh, rope-like roots. The presence of the rank foliage of Skunk Cabbage is generally considered a sign of wet, sour soil unfit for gardening.

Skunk Cabbage is offered by a number of dealers in hardy plants, as also by collectors. There is a consider- able demand for it outside of its native region, and particularly in England, where the "hog garden" piaxes has been developed and has the most supporters. Skunk Cabbage has made a strong impress upon American literature. Its hardness and bravery have been celebrated by outdoor writers from Thoreau to the present day. The question of its pollination has been much discussed. It was long supposed to be pollinated by the action of the carrion flies which are attracted by its odor. However, Trelease has shown that the bees are busy with the pollen while the plant is in flower and that the carrion flies mostly come later. Skunk Cabbage has long been known as Symlocarpus, but this name must give way to the older one given by Rafinesque, S. aurea. The generic characters are slender, some being covered by the fls., the ovaries of which are embedded in the spadix; perianth of 4 hooded sepals; anthers 2- celled; style pyramidal, 4-sided; ovary 1-loculed; with a solitary, superior, truncate antheropodium; berries in large heads, 1-seeded. Only one species, S. foetida, Raf. (Symlocarpus foetidus, Nutt.).

SKUNK CABBAGE. Fig. 2360. Lvs. numerous, 1–3 ft. long, 1 ft. wide, ovate, strongly nervet; spathe preceding the lvs., colored as described above; fr. ripe Aug., Sept. Nova Scotia to Minn., south to Fla. and Iowa. B.M. 856 [Pulafa foetida]; 3221. V. 23:186. G.W.F. 27. D. 277. A.G. 14:367. B.B. 1:363.—The Siberian plant is probably the same species. W. M.

SPATTER-DOCK.

Naphar advena.

SPERMINT.

See Mentha.

SPEAR-WOOD.

Eucalyptus dorrortyglas.

SPERWORT. Certain species of Ranunculus.

SPECURARIA (from Specularia venosa, meaning Venus’ Looking-glass).

Campanulaceae. Venus’ Looking-glass (Specularia) is a hardy annual herb with 5-lobed blue flowers not quite an inch across. The plants grow about 9 in. high, bloom in spring and summer and are desirable for edging flower beds. They are of easy culture. See Journals. Specularia is a genus of about 7 species closely allied to Campanula but differing by the very long calyx-tube, ovary and capsule. The long calyx-tube is one of the most conspicuous features of the plant and has perhaps served to suggest the handle of the mirror. There is one North American species, S. perfoliata, which differs from all the rest in having perfoliate lvs., and the capsule dehiscing laterally near the middle instead of near the calyx-lobes. It is a weed. The others are Old World herbs, small and annual, with the lower lvs. obo- vate and entire, the upper ones ovate-oblong or lanceo- late and nearly entire. Calyx-tube linear, 1 in. or so long: limb 5-parted, the segments linear and as long as the corolla-lobes; corolla nearly wheel-shaped or broadly bell-shaped; stamens free from corolla; ovary 3-loculed; stigma shortly 3-lobed.

A. Peduncles about 3-ft.

Speculum, DC. (Campanulæ Spéculum, Linn.). Venus’ Looking-glass. Fig. 2361. Erect, 9 in. high: cal- yx glabrous or pubescent, the tube constricted at the apex; lobs finally reflexed, according to Delaville, Europe. B.M. 102.—Var. procumbens is offered abroad in addition to white, blue and double forms. R.H. 1897, p. 254.

AA. Peduncles 1-ft.

pentagonia, DC. Calyx pilose, lobes spreading. Asia Minor. B.K. I:56.—This species is not now advertised in America. Some specimens have narrow lvs. and longer calyx-tube than S. Speculum. An interesting feature of this species (and perhaps others) is the 5- angled flower-buds.

SPEEDWELL. Veronica.

SPERT. See Trilicium.

SPÉRGULA (Latin spargere, to scatter; the seeds are said to be expelled). Caryophyllidées. A genus of 3-8 species of annual herbs including Spérkii, which see, a forage plant adapted to poor, dry, sandy soils. It is a common weed in cultivated lands. It grows about 6 in., has linear lvs. which appear to be wholed, and bears numerous, small, white, 5-petalled fls. in summer. The fls. are about ½ in. across and borne in terminal panicles. Important generic character of Spérkula are the small, scarious stipules, 5 styles, alternating with the sepals, and capsule-valves opposite the sepals.

2360. Skunk Cabbage, as the hoods come up in spring.—

Spathyema foetida (X 1-3).

celebrated by outdoor writers from Thoreau to the present day. The question of its pollination has been much discussed. It was long supposed to be pollinated by the action of the carrion flies which are attracted by its odor. However, Trelease has shown that the bees
SPERGULA

Some of the species are dichotomously branched, but the following has clusters of branches originating at or near the base.

arvenis, Linn. Sprucey, which see. Annual, 6-18 in. high, branched at or near the base; Ivs. linear, clustered at the nodes in 2 opposite sets of 6-8 together, appearing as if verticillate; stipules small, connate. Ea. B.B. 2:36. W. M.

SIEPHERÁLCEA (Greek words, globe mallow; referring to the fruit). Malvaceae. GLOBE MALLOWS. About 25 species of tender herbs, subshrubs and shrubs, mostly native to the warmer parts of America; Ivs. usually angled or lobed; fls. solitary or clustered, axillary, in terminal racemes or spikes, violet, rose, flesh color or various shades of red; bractlets 3, free or united at the base; calyx 5-cut; locules of the ovary numerous, 2-3-ovuled, arranged in a single whorl. Closely allied to Abutilon but with 3 bractlets instead of none.

a. Ivs. 5-7-lobed.

b. Fis. in spikes.

cacirifolia, Torr. & Gray. Perennial herb, 2-6 ft. high; Ivs. 3-4 in. long, cordate, pinnate or 5-lobed (sometimes with 2 or more basal lobes), coarsely serrate; fls. rose-color, varying to white, 2 in. across, 15 or more in spike clusters terminating the branches. Rocky Mts. B.M. 5:45.

bb. Fis. in umbels.

umbellata, Don. Mexican shrub, 3 ft. or more high, with scarlet, pendulous fls., about 1½ in. across, and usually 3 in an umbel; Ivs. cordate, 7-lobed, crenate. L.B.C. 3:228 and B.B. 19:106 (as Murr. umbellata).—Vari tricolor, Hort., was said by John Saul to have redish purple fls. striped with white and rose.

AA. Ivs. 3-7-lobed.

b. Fls. scarlet or rose.

Murióena, Spach. Perennial herb, 1-2 ft. high; Ivs. broad at base, obscurely 3-lobed, crenate, sometimes incised; fls. scarlet or rose, 1 in. across, rose-colored; panicles axillary and terminal, numerous. Dry plains, Brit. Col. to Idaho and south. B.M. 3:537 and B.R. 16:1206 (both as Murr. Murióena).—Advertised in 1890 as the Sunset Plant. E. S. Carman said the same plant was offered in some catalogues as Murr. minuáta.

SIEPHERÓGYNE (Greek words referring to the globe stigma). Melastomáceas. This genus has been referred to Tocoea, which see for S. latifolia. The handsome foliage plant known to the trade as S. imperialis is mentioned under this head because of its fls. and fr. seem to be undescribed, and the place of the plant in the vegetable kingdom is therefore undetermined. It is a broad-leaved hothouse plant with strong parallel ribs, metallic green above and purplish brown beneath. For cultural suggestions, see Melastomáceas.

Imperialis, Lindén. Stem simple or little branched, erect or roset.: Ivs. opposite, decussate, oval, with 5 longitudinal ribs running from base to apex and many parallel transverse veins connecting them. Peru. I.H. 24:224.—Native of Peru, and introduced to Europe by Lindén in 1871. It is said to be easily grown in a warm house.

SIEPHERAGNUM. Sphagnum moss, bog moss or peat moss is found in swamps or bogs and is one of the plants from which peat is formed; it is much used by gardeners. Its geographical distribution extends to all countries in the north temperate zone. According to Braithwaite’s “Sphagna of Europe and North America,” there are 19 distinct species to be found in North America, besides numerous varieties. Sphagnum mosses differ from the true mosses so much that they are usually classified in a distinct family, Sphagaceae. Besides some slight differences in the reproductive organs, the chief differences lie in the larger growth of Sphagnum (which is often a foot or more in height), its soft appearance, pale green color, and the absence of root-hairs. The stems and leaves are incised or encircled by one, two and often 4-6 strips of translucent cells connected with each other by small holes, which have the capacity of sucking up and retaining a large amount of water. These cells therefore perform the function of root-hairs, and it is this abundant water-storing tissue that makes Sphagnum moss of so much use to gardeners in the cultivation of orchids, Anthurium, etc., and in fact most plants of an epiphytal or swamp-loving character, such as Sarracenia, Darlingtonia, etc. Sphagnum often forms at least one-third of the compost in which pitcher plants and epiphyles are grown. The freshest tips of Sphagnum are also most useful for surfacing pots of orchids and other plants. Besides giving them a better appearance, the moss acts as an index to the moisture condition of the plant. Sphagnum is also useful in the propagation of many slow-growing plants, such as Cordyline, Nepenthes, etc.; for starting tropical tuberous-rooted plants, such as Focchus caladiunum; for sowing seeds of orchids, Anthurium, Nepenthes and Sarraceniá when fresh and chopped fine; as a mulch; as a non-conducting material for plants in pots in exposed positions in summer; and in packing plants for transportation, for which purpose it is an ideal material. Owing to its sponge-like character it may be used wet or dry, according to the character of the plants intended for packing.

Unless one has an ideal position in which to keep Sphagnum moss after gathering it from its natural place,
or unless one has conditions very similar to its native habitat, it is difficult to keep it living for any length of time. This does not greatly matter, except that Sphagnum used for surfacing pots should always be living for the sake of appearance. That which is used in potting and propagating need not necessarily be living as long as it is fresh and not decayed, while partially decayed moss may be used for mulching and packing.

Edward J. Canning.

SPHENOGYNE. See Ursinia.

SPICE BUSH. Consult Benzoin.

SPIDER FLOWER. Cleome.

SPIDER LILIES. Hymenocallis and Pancratium.

SPIDER PLANT. See Cleome.

SPIDERWORT. Tradescantia.

SPIGELIA (after Adrian von der Spiegel, physician, 1538-1625). Loganiaea. About 35 species of American annual or perennial herbs, rarely somewhat woody, with opposite, membranous, feather-veined, rarely 3-5-nerved leaves, and long or small red, yellow or purplish flowers, usually borne in terminal, one-sided, somewhat curved spikes; calyx 5-lobed; segments narrow; corolla tubular; lobes 5, valvate; stamens 5, attached to the corolla-tube; ovary 2-loculed; style articulate, simple, obtuse or somewhat capitate and stigmatose at the summit; capsule flattened, circumscissile above the persistent base.

F. W. Barclay.

2932. Spinach (X ½).

SPIKENARD. Aralia racemosa. FALSE S. Smilax.

SPILANTHES (Greek, spotted flower). Compositae. This genus includes the Pari Cress (Spillanthus oleracea, Linn.), the leaves of which impart a pungent flavor to salads and stimulate the salivary glands. The plant belongs rather to pharmacy than to the vegetable garden. It is procurable from France. It is an annual herb of almost creeping habit and yellow lfs. in conical, rayless heads about three-eighths of an inch in diameter. The seed is sown in early spring. The Brazil Cress differs in the brownish tint of stem and leaves. The preceding points are condensed from Vilmosin's "Vegetable Garden."

Spilanthes is a genus of about 20 species found in the warmer regions of the globe. They are mostly annual, rarely perennial, and have opposite, usually dentate lvs. Some have yellow or white rays and the disk is yellow. S. oleracea has broadly ovate, dentate lvs. and long-peduncled heads. Gn. 22, p. 295.

W. M.

SPINACH (Spinacia oleracea, which see) is an annual crop grown as a pot-herb, or for "greens." Fig. 2932. It is a cool-season plant, and before it is grown in fall and spring. It is a plant of easy culture, thriving in any good garden or field soil, although for quick results and for tender, succulent foliage, land which has an abundance of available plant-food, and particularly of nitrogen, is most desirable. The plant is hardy, and when the land is well drained, it will ordinarily stand the winter climate as far north as the city of New York, and still further in somewhat protected places.

Spinach is grown both as a fall and spring crop. The fall crop is raised from seed that is sown in August; in eight weeks the leaves may be large enough for eating. The spring crop is grown from seeds sown in the fall or from those sown during winter in hotbeds or coldframes, or from those sown directly in the ground as soon as it is fit in the spring. If the plants for spring use are to be started in the fall, the seeds should be sown about six to eight weeks before hard freezing weather is expected. Then the plants will have attained sufficient size and root to enable them to pass the winter. It is advisable to cover the plants, just before winter sets in, with straw or loose litter or dry manure. Even though the plants will withstand the winter, they nevertheless thrive better if given this protection, particularly in soils that are likely to heave. It is customary to grow this fall-sown Spinach on wide ridges or beds that are made by plowing the ground, leaving a dead furrow between them. This allows of surface drainage. These beds may be from five to ten feet wide. On these beds, the seeds are sown in rows running lengthwise, the distance between which varies from 10 to 20 inches, depending upon the methods that are employed for tillage. If hand tillage alone is to be given, the plants may be placed closer. In the spring the cover is removed from the plants at the earliest opportunity, for Spinach is most desired very early in the season. Unless the land is in extra good "heart," it is well to make a surface application of a soluble fertilizer early in the spring in the form of a liquid or powdered fertilizer that is rich in nitrogen. A fertilizer that is very rich in nitrogen gives best results; in fact, it is customary in some places to use a solution of nitrate of soda or sulfate of ammonia, applying the material with a sprinkling cart. From 50 to 75 pounds of the fertilizer may be used to the acre with very good results, at each of two or more applications.

For home use, Spinach is sometimes carried over the winter in frames, the plants having been transplanted to the frames or raised in them during the late fall. These frames are protected from severe frost by mats or shutters. Whenever it is desired to bring the plants into growth, sash is placed over the frame, and extra protection is given in very cold weather. The plants will soon become green and will make fresh shoots from the old leaves. Different frames may be covered at different times as the season advances, thereby providing a supply for home use. Sometimes the seed is sown in hotbeds that are made late in winter or very early in spring, and the plants are secured in advance of the ordinary season. The growing of Spinach in frames is less frequent than formerly, owing to the fact that the market is now supplied with the product grown in the Middle South.

Spring Spinach may be grown from seeds that are sown as soon as the land can be worked in spring. If the land has been plowed and manured in the fall, quicker results may be secured. Two or three sowings may be made in the home garden, but for spring use after the middle of June Spinach is likely to become tough and is in little demand. If Spinach is wanted during the summer, it is better to use the New Zealand Spinach, which is a winter-planted variety, but no relationship with the ordinary Spinach (see Tetragenina). It is usually best to sow Spinach seed where the plants are to stand, although it is sometimes transplanted into frames for house use. Care must be taken that the plants do not become checked or stunted, else they will tend to run to seed. If the seed is sown too late in spring, when hot weather is approaching, the root-leaves will be very fine and the plants will throw up flower-stalks. Spinach is always grown as a
succesion or companion crop, as it occupies the land for a small part of the year. There are very few in-
stances of Spinacia being grown as a crop in the open field.

Spinach is usually transported to market in barrels or crates. Plants are usually cut so that an inch or so of them rests on the tables; the roots and small leaves, also all broken and dead leaves. The plants are packed tight.

It is essential that the plants be dry before they are shipped.

There are several important varieties of Spinach. The large, broad-leaved varieties are most popular in the markets, such as the Virothoy and the Round-leaved. The prickly Spinach is considered to be the most hardy and is chiefly recommended for fall sowing. L. H. B.

SPIRACH ORACH, OR SEA PURSLANE (Atriplex hortensis) is also sometimes called Mountain Spinach.

SPINACIA (from spinas; alluding to the spiny fruit). Chenopodium. Spinach. Spinach. According to Volens (in Engler & Prantl's Pflanzenfamilien), there are only two species of Spinacia, S. oleracea, Linn., the common Spinach, and S. tetrandra, Stev. The latter is an annual herb of the Asia Minor-Persia region, and is not in cultivation. S. oleriacea, the Spinach, is probably native to southwestern Asia, but it is now widely cultivated. It is an upright plant, bearing rather large, arrow-shaped root leaves, and these leaves are eaten for "greens." Later in the season it sends up a terminal, 1- to 2-ft.-high, bearing axillary clusters of seed-like fruits. In one type these fruits are spinach; this is the form once described as S. spinosa, Mueh., but which is not now considered to be specifically distinct. Whether the round-seeded or the prickly-seeded type is the original form of the Spinach is not known, but as a matter of nomenclature, Linnaeus' S. oleriacea, which is the oldest name, is held to include all forms.

Spinacia belongs to the amphi tribe. The genus is distinguished from Atriplex in the fact that the pistilate flowers are bractless, whereas those of Atriplex are inclosed in a pair of enlarging calyx-like bracts. Spinacea is dicotious, bearing the flowers in small axillary clusters: stamens 4 or 5, in a 4-5-lobed calyx; and, in a 2-4-toothed calyx, this calyx hardening and inclosing the anene and often becoming horned on the sides and giving rise to "prickly-seeded" Spinach. The cultivated forms have decreased in size, and become broader based and more axillary clusters, which are used for greens, often showing little of the halberd or sagittate shape. L. H. B.

SPIRAE (ancient Greek name of a plant used for garlands, derived from spiral, band, wreathe; probably first used for the present genus by Clusius). Roscoea. Ornamental deciduous shrubs, with alternate, estipulate, simple and rather small lvs., and small white, pink or purple flowers, in showy umbels, corymb or panicles. Many are hardy north; some of the best of them are Spirea argyta, Thunberg, Van Houttei, pubescens, triloba, bracteata, media, wilmottii, alba, douglasii, inermis, tomentosa, Spirea b-ha, Japonica and alitiflora require a sheltered position or protection during the winter, though S. Japonica and its allies, even if killed almost to the ground, will produce flowers on shoots of the same season. Spiroa, Cautionis, Mumei, Cilhensis, canescens and bella are more tender and not to be recommended for the North but are hardy or nearly hardy in the Middle States. S. pubescens is hardy north of Boston and is half hardy as far north as Ottawa, Canada.

In regard to the flowering season, the Spiraes can be divided into two periods. The first one contains species of the section Chamisodrom, with white flowers in umbels and blooming in spring, from April to June. The second group is composed of those Caesalpina and Spiraes, with white or pink flowers in corymbs or panicles appearing from June to fall. Some of the most important species, arranged according to their relative flowering time, are the following: Early-flowering Spi-
reates—S. Thunbergi, argyta, hypericifolia, prunuolida, media, Phtioniemus, pubescens, chamisodrom, tei-
cola, Van Houttei, Ou, corymbosa, and some bleeding Spiraes—S. bella, corymbosa, densiflora, ca-
nescens, Japonica, alitiflora, salvetolia, alba, Monetesi, and some dwarf hybrids of S. Japonica are to be recommended.

The species of the section Chamisodrom, and also S. canescens and bella, should be used for bedding, or for rockeries, and for dry soil. They are very useful for the herbaceous border or dry borders, and are excellent for rockeries. Some of the early-flowering Spiraes, especially S. argyta, prunuolida, Van Houttei and S. B. Baudale, are sometimes forced.

The Spiraes grow in any moderately moist soil, the Spiraes species being generally more moisture-
loving; and S. tomentosa thrives well only in a sandy soil, while those generally require a well-drained soil and sunny situation. Prop, by seeds sown in spring and covered only slightly with soil, or by hardy or woodland cuttings. For rockeries Spirea decumbens, corymbosa, densiflora, bullata, and some dwarf hybrids of S. Japonica are to be recommended.

About 50 species in the temperate regions of the northern hemisphere, in America south to Mexico. Lvs. simple, short-petioled, and leafy, hardy in the Middle States. Many are hardy north; some of the best of them are Spirea argyta, Thunberg, Van Houttei, pubescens, triloba, bracteata, media, wilmottii, alba, douglasii, inermis, tomentosa, Spirea b-ha, Japonica and alitiflora require a sheltered position or protection during the winter, though S. Japonica and its allies, even if killed almost to the ground, will produce flowers on shoots of the same season. Spiroa, Cautionis, Mumei, Cilhensis, canescens and bella are more tender and not to be recommended for the North but are hardy or nearly hardy in the Middle States. S. pubescens is hardy north of Boston and is half hardy as far north as Ottawa, Canada.

In regard to the flowering season, the Spiraes can be divided into two periods. The first one contains species of the section Chamisodrom, with white flowers in umbels and blooming in spring, from April to June. The second group is composed of those Caesalpina and Spiraes, with white or pink flowers in corymbs or panicles appearing from June to fall. Some of the most important species, arranged according to their relative flowering time, are the following: Early-flowering Spira-

The name Spirea is often spelled Spirea. Whenever the generic and specific name are both used the di-
agram should be employed, thus: Spirea Japonica. Whenever one speaks of "Spiraes" in an untechnical sense, we mean the name without the diagonal, in har-
mony with the Editor's wishings. The name Spiraes should be considered as an English word in common speech just as geranium and ehrysanthemum are. In fact, many people speak of plants as "Spiraes" which do not belong to the genus. For example, a delightful white-flowered bushy herb which is grown indoors in great quantities, especially as Easter, is properly an Astilbe. Comparable instances are peony, bougainvillea, etc. W. N.
KEY TO THE SECTIONS

A. Lvs. always entire; fls. in simple or panicked racemes: follicles usually 2-seeded. (Prelopityum, Zabel.)

B. Points tufted, soft-Scented; fls. perfect, in usually simple racemes

SECTION 1. PETRORYTUM (Species not in cult.)

BB. Plant an upright shrub with stout branches; fls. polygamous in panicked racemes...

SECTION 2. SPIREA (Species No. 1)

AA. Lvs. usually serrate, rarely entire; fls. in umbel-like racemes, corymb or panicles; seeds several.

BB. Follicles a simple umbel-like raceme; fls. white

SECTION 3. CHAMELEDRON (Species Nos. 2-20)

CC. Fls. in paniculate racemes

SECTION 4. CALORPISA (Species No. 21-36)

DD. Fls. in simple racemes; fls. white or pink.

SECTION 5. SPIRAEA (Species Nos. 37-49)

INDEX.

aa. 2.
acutifolia, 2.
adianthifolia, 13.
alba, 37.
adiaphila, 31.
alpina, 8.
Atalica, 1.
Aegotis, 10.
archesia, 36.
argentea, 21.
arguta, 4.
atria, 4.
astroana, 29.
auloka, 24.
Bekkennkennia, 45.
biloba, 37.
Billardii, 47.
blanda, 16.
Binnell, 12.
brachytrix, 37.
branchata, 11.
bulata, 36.
Bumalda, 39.
California, 47.
callosa, 27.
cana, 7.
Caonadulias, 47.
canevis, 21.
Cantoniensis, 15.
carenia, 45.
Carludovica, 39.
Citharidur, 17.
cocconus, 24.
coetan, 10.
conspecta, 38.
Constantia, 47.
corymbosa, 15.
crateriformis, 15.
crenata, 2.
cristispa, 9.
crispata, 26.

SECTION 1. PETRORYTUM (Species not in cult.)

This section contains a few rather rare American species of which none is in cultivation. The best known is S. caespitosa, Nutt. (Petrophytum caespitosum, Rydb.), a dwarf caespitose subshrub, only a few inches high, with crowded, small, entire lvs. and small, white fls. in dense, usually simple racemes on slender stalks arising from the tufts of the grayish green foliage. It is very unlike any other Spiraea and more resembles in habit a Saxifraga. It is perhaps better regarded as a distinct genus like the allied Killeura uniflora, Rydb. (Eryngium uniflorum, Wats.), and Eryngium pectinatum, Hook.

SECTION 2. SPIREA (Species No. 1)

1. lavigata, Linn. (S. Alтaica, Pall. Sibirica lavigata, Maxim.) Shrub, 5 ft. high, with stout upright branches; lvs. emenate-oblong, bluish green, glabrous, 1½-3¾ in. long; fls. polygamous, greenish white in terminal panicles, 3-5 in long, those of the staminate plant somewhat showier. May. Siberia.—Hardy.

SECTION 3. CHAMELEDRON (Species Nos. 2-20)

aa. Fls. in sessile umbels, with none or very small lvs. at the base or only the lower umbels on leafy stalks.

bb. Foliage entire or crenately dentate only near the apex, often 3-nerved, grayish green

cc. Shape of lvs. linear-lanceolate; glabrous

dd. Lvs. oblong-obovate; glabrous

ee. Lvs. oblanceolate

ff. Lvs. ovate

gg. Lvs. ovate-lanceolate; glabrous

SECTION 4. CALORPISA (Species No. 21-36)

AA. Lvs. all or partly 3-nerved.

BB. Fls. striped; lvs. all 3-nerved

CC. Fls. orbicular to ovate

DD. Foliage glabrous.

EE. Form of lvs. orbicular to ovate

FF. Atrostylis, lvs. obtuse.

GG. Lvs. peniunnierned; ovate

SECTION 5. SPIRAEA (Species Nos. 37-49)

INDEX.

aa. 2.
acutifolia, 2.
adianthifolia, 13.
alba, 37.
adaphila, 31.
alpina, 8.
Atalica, 1.
Aegotis, 10.
archesia, 36.
argentea, 21.
arguta, 4.
atria, 4.
astroana, 29.
auloka, 24.
Bekkennkennia, 45.
biloba, 37.
Billardii, 47.
blanda, 16.
Binnell, 12.
brachytrix, 37.
branchata, 11.
bulata, 36.
Bumalda, 39.
California, 47.
callosa, 27.
cana, 7.
Caonadulias, 47.
canevis, 21.
Cantoniensis, 15.
carenia, 45.
Carludovica, 39.
Citharidur, 17.
cocconus, 24.
coetan, 10.
conspecta, 38.
Constantia, 47.
corymbosa, 15.
crateriformis, 15.
crenata, 2.
cristispa, 9.
crispata, 26.

SECTION 1. PETRORYTUM (Species not in cult.)

This section contains a few rather rare American species of which none is in cultivation. The best known is S. caespitosa, Nutt. (Petrophytum caespitosum, Rydb.), a dwarf caespitose subshrub, only a few inches high, with crowded, small, entire lvs. and small, white fls. in dense, usually simple racemes on slender stalks arising from the tufts of the grayish green foliage. It is very unlike any other Spiraea and more resembles in habit a Saxifraga. It is perhaps better regarded as a distinct genus like the allied Killeura uniflora, Rydb. (Eryngium uniflorum, Wats.), and Eryngium pectinatum, Hook.

SECTION 2. SPIREA (Species No. 1)

1. lavigata, Linn. (S. Alтaica, Pall. Sibirica lavigata, Maxim.) Shrub, 5 ft. high, with stout upright branches; lvs. emenate-oblong, bluish green, glabrous, 1½-3¾ in. long; fls. polygamous, greenish white in terminal panicles, 3-5 in long, those of the staminate plant somewhat showier. May. Siberia.—Hardy.

SECTION 3. CHAMELEDRON (Species Nos. 2-20)

aa. Fls. in sessile umbels, with none or very small lvs. at the base or only the lower umbels on leafy stalks.

bb. Foliage entire or crenately dentate only near the apex, often 3-nerved, grayish green

cc. Shape of lvs. linear-lanceolate; glabrous

dd. Lvs. oblong-obovate; glabrous

ee. Lvs. oblanceolate

ff. Lvs. ovate

gg. Lvs. ovate-lanceolate; glabrous

SECTION 4. CALORPISA (Species No. 21-36)

AA. Lvs. all or partly 3-nerved.

BB. Fls. striped; lvs. all 3-nerved

CC. Fls. orbicular to ovate

DD. Foliage glabrous.

EE. Form of lvs. orbicular to ovate

FF. Atrostylis, lvs. obtuse.

GG. Lvs. peniunnierned; ovate

SECTION 5. SPIRAEA (Species Nos. 37-49)

INDEX.

aa. 2.
acutifolia, 2.
adianthifolia, 13.
alba, 37.
adaphila, 31.
alpina, 8.
Atalica, 1.
Aegotis, 10.
archesia, 36.
argentea, 21.
arguta, 4.
atria, 4.
astroana, 29.
auloka, 24.
Bekkennkennia, 45.
biloba, 37.
Billardii, 47.
blanda, 16.
Binnell, 12.
brachytrix, 37.
branchata, 11.
bulata, 36.
Bumalda, 39.
California, 47.
callosa, 27.
cana, 7.
Caonadulias, 47.
canevis, 21.
Cantoniensis, 15.
carenia, 45.
Carludovica, 39.
Citharidur, 17.
cocconus, 24.
coetan, 10.
conspecta, 38.
Constantia, 47.
corymbosa, 15.
crateriformis, 15.
crenata, 2.
cristispa, 9.
crispata, 26.

2. hypericifolia, Linn. Vigorous shrub, 5 ft. high, with slender arching or upright branches; lvs. almost sessile to emenate-ovate to obovate, 5-nerved or with few lateral veins, almost glabrous, 3½-1½ in. long; fls. small, white, in sessile umbels; pedicels usually 2-seeded; petals almost orbicular, usually shorter than stamens. S. E. Eu. to Siberia.—Variable species. Var. acutifolia, Wenzig (S. acutifolia, Willd. S. hypericifolia, var. achatia, Ser.). Lvs. mar-
rower, ob lanceolate: fls. smaller, yellowish white; pedicels glabrous; petals obolate, shorter than stamens; flowers somewhat earlier, but less showy. Var. Babel-
łata, Zabel (S. Babelča, Hort., & Kt.). Lvs. oblong, rounded at the apex, crenate above the middle. S. E. Eu. Var. try-
cząta, Zabel (S. thalietroides, Hort., not Pall.). Lvs. broadly oblong, oblong-obovate, truncate and cre-
nately-dentate at the apex. Siberia.

2863.
Spirea Thunbergii. (X½).

3. Thunbergii, Sieb. Fig. 2363. Shrub, 5 ft. high, with spreading or arching branches: lvs. sharply serrulate, 1-1½ in. long: fls. pure white, about ½ in. across, in 3-5-fld. naked umbels; petals oblate, much longer than stamens; follicles with the spreading styles below the apex. April, May, China, Japan. S.Z. 1:69. G.F. 8:84. S.S.—A very graceful early-flowering shrub, the slender arching branches clothed with feathery bright green foliage, turning late in fall to orange or scarlet. Almost hardy, but tips of branches sometimes killed by severe frost; valuable for seaside planting.

5. multiflora, Zabel (S. crenata × hypericiulosa). Shrub, 5 ft. high, with slender, arching branches: lvs. obovate, cuneate, serrate above the middle, usually 3-
nerved, glabrous at length, about 1 in. long: fls. pure white, in many-fld. umbels, sessile on the upper, borne on leafy stalks on the lower part of the branches. May. Of garden origin.—Handsome shrub similar to the former, but blooming a little later.

7. čana, Waldst. & Kt. Dense, bushy shrub, 3 ft. high: lvs. elliptic to oblong, acute at both ends, usually entire, grayish pubescent on both sides, more densely beneath, ½-1 in. long; fls. ½ in. across, in dense head-
like umbels; petals about as long as stamens; sepals reflexed in fruit. May. S. E. Eu., W. Asia.—Hardy, but not very showy.

8. alpina, Pall. Shrub, 4 ft. high, with upright or arching, angular, reddish brown branches: lvs. oblong-obovate to ob lanceolate, acute, usually entire, glabrous, peninsular, ½-1 in. long: fls. white, rather small, in short-stalked, small glabrous umbels; petals oblate, little shorter than stamens; sepals upright in fr.: folli-
cles curving outward. May, June. N. E. A. S.—Hardy shrub, with graceful foliage.

9. crenata, Linn. (S. crenatiflora, C. A. Mey.). Shrub, 3-4 ft. high, with slender striped branches: lvs. oblong-obovate to oblong-oblanceolate, acute at both ends, crenately serrate toward the apex, grayish green, puberulous be-
neth when young, 3-nerved, ½-1½ in. long: fls. white, rather small, in dense almost semi-globose umbels; petals roundish obvolute, shorter than stamens; sepals upright in fr.: follicles curved outward. May. S. E. Eu. to Caucasus and Altai. J.B.C. 13:1222—Hardy.

10. Pkowiński, Bess. (S. crenata × média. S. Nicol- dicti, Hort.). Shrub, 4 ft. high, with terete upright branches: lvs. oblong, cuneate at base, with few sharp teeth at the apex or sometimes entire, peninsulated to 3-nerved, almost glabrous, 1-2 in. long: fls. white or greenish white, in many-fld. almost glabrous umbels; petals orbicular, shorter than stamens; sepals upright in fr.; follicles with erect styles. May. S. E. Eu. to Caucasus and Altai. L.B.C. 13:1222—Hardy.

11. bracteata, Zabel (S. Nippóncia, Maxim. S. média, var. rotenidiflora, Nichols.). Shrub, 8 ft. high, with upright or spreading branches, glabrous: lvs. roundish obovate, usually crenate at the apex, dark green above, bluish green beneath, of firm texture, ¾-1½ in. long: fls. over ½ in., across, in umbel-like ra-
ecemes, sometimes composed at the base; petals orbicu-
lar, longer than stamens; sepals spreading in fr. June. Japan. G.C. II. 23:283.—Desirable hardy shrub of vig-
orous growth with showy umbels of pure white fls. and dark green handsome foliage remaining fresh until late in fall.

12. Blumei, G. Don (S. rupéstris, Sieb.). Shrub, 4 ft. high, with spreading and arching branches: lvs. ovate to rhombic-ovate, usually crenate at the base, pale bluish green beneath and rather prominently veined, ¾-1½ in. long: fls. polygamous, white, in many-fld. umbels; petals roundish obvolute, about as long as stamens; follicles with spreading or reflexed styles. June, Japan. B.H. 8:36.—Not hardy north, rare in cultivation; often the following or other species are met with under its names.

13. trifolia, Linn. (S. trifólia, Linn.). Fig. 2365. Shrub, 4 ft. high, with slender spreading branches: lvs. almost orbicular, incised-dentate and often 3-lobed, obtuse, pale bluish green beneath, ¾-1 in. long: fls. pure white, in many-fld. umbels; sepals upright in fr.: follicles with spreading styles. May, June. N. China to Siberia and Turkestan. L.B.C. 13:1271. G.F. 1:482.
Shrub, 6 ft. high, with arching branches: lvs. rhombic-ovate or rhombic-obovate, rounded or somewhat narrowed at the base, acute, incised or serrate, dark green above to pale bluish green beneath, 1½-1½ in. long; fls. white, ½ in. across, in many-fld. umbels; petals twice as long as stamens; sepals upright or spreading in fruit. May. June. Of garden origin. Gn. 53, p. 231. G. F. 2:197. A. G. 15:397. P. G. 8:137. M. D. G. 1900:7. —This is one of the most beautiful, or perhaps the most beautiful, of the sometimes confused with the foregoing, which is similar but smaller in every part and less showy.

15. Cantoniensis, Lour. (S. Recreasiona, Lindl. S. lanceolata, Poir. S. coverbya, Roxb.). Shrub, 4 ft. high, with slender, arching branches: lvs. rhombic-lanceolate, incised or doubly serrate, dark green above, pale bluish green beneath. 1-2½ in. long: fls. over ½ in. across, in rather dense umbels: sepals upright in fruit; follicles with spreading styles. May. June. China. Japan. B. R. 30:10. A. G. 18:356. —Very handsome shrub, with large pure white fls., but only hardy north. Var. F. D. 40:60, with double fls. and narrower lvs., is still more tender. This species and the three foregoing are valuable also for their handsome foliage, which remains fresh and green until late in fall.

16. blanda, Zabel (S. Chinensis x Cantoniensis. S. Recreasiona rotundif. or var. sphaera, Hort.). Upright shrub, 6 ft. high, with arching branches: lvs. oblong to ovate, acute at both ends, incised serrate, dark green and almost glabrous above, grayish tomentose beneath, 1½ in. long: fls. rather large, pure white, in pubescent umbels; sepals ovate-lanceolate, upright in fruit; follicles pubescent, with spreading styles. May. June. Of garden origin. — Only hardy north.

18. pubescens, Turez. Upright shrub, 6 ft. high, with slender, arching branches: lvs. similar to those of the foregoing species, but more grayish tomentose beneath and somewhat smaller, petals shorter: fls. 1½-½ in. across, in glabrous umbels; sepals triangular-ovate, upright in fruit; follicles glabrous, with the spreading styles below the apex. May. N. China. G. F. 1:331. — Hardly north, and the large-fld. form as handsome as the foregoing species.

19. media, Schmidt (S. confusa, Regel & Korn.). Upright shrub, 5 ft. high, with terete branches, glabrous or pubescent when young: lvs. ovate to oblong, cuneate at the base, incised or serrate above the middle, almost glabrous or pubescent, 1-2½ in. long: fls. in many-fld. umbels, rather long-stalked, umbel-like racemes; follicles with the spreading or reflexed styles somewhat below the apex. May. S. E. Eu. to Japan. — Var. glabra, Zabel. Almost glabrous. Var. oblongifolia, Rehd. (S. oblongifolia, Waldst. & Kit.). Lvs. elliptic-oblong to oblong-lanceolate, narrowly at both ends, entire or with 1-3 teeth at the apex. Var. serrata, Regel (S. serrata, Turcz.). Lvs. pubescent on both sides.

20. chamadryfolia, Linn. Shrub, 6 ft. high, with angular, glabrous branches: lvs. distinctly petioled, ovate to lanceolate, sharply and often doubly serrate, almost glabrous, bluish green beneath, 2½-3 in. long: fls. in many-fld. umbels, the lower ones long-stalked, the upper ones often almost sessile: follicles with the styles terminal. S. E. Eu. Japan. — Var. Alpinum, Maxim. (S. herbacea, Fisch.). Less high, with spreading more or less zigzag branches: lvs. narrower, sharply serrate above the middle. Siberia to Dakarta.

Var. ulmitifolia, Maxim. (S. ulmitifolia, Scop.). Upright: lvs. ovate, incised or doubly serrate from below the middle; fls. larger, about ½ in. across, appearing later. L. B. C. 11:402. B. R. 15:1222. Both var. are often cult.: they spread as the preceding species, by suckers. Sometimes as S. atriplicifolia or ulmitifolia in gardens.

SECTION 4. CALOSPORA (Species Nos. 21-36).

A. Stems as long as petals: lvs. small, ½-1 in. long: fls. white.
B. Height 3-5, occasionally 12 ft. 21. canescens
B. Height about ½ ft. 22. decumbens
AA. Stems longer than petals.
B. Corymb on lateral branchlets along the lvs. of the preceding year.
C. Winter-buds slender, longer than petals. 23. longicuernmis
C. Winter-buds shorter than petals.
D. Shoots angular: lvs. usually broadly ovate. 24. bella
D. Shoots angular, rather stiffly ovate-lanceolate. 25. expansa
BB. Corymb terminal on upright shoots of the year.
C. Inflorescence pubescent, rarely glabrous, very compact, before the terminal corymb laterale one blooming somewhat later appear beneath it, only weak branches with a single corymb.
D. Shrub 1 ft. or less high, with bulblets lvs. less than 1 in. long. 26. bullata
DD. Shrubs 1½ ft. high, with larger lvs.
E. Branches terete. 27. F. albiflora di-
D. Rippe foliage upright. 27. Japanica
e. 27. F. albiflora folium upright. 27. Japanica
f. Color of lvs. pink, rarely whitish. 30. Euphila
g. Color of lvs. white. 21. albiflora
cc. Inflorescence usually gla-
brus, consisting of one only terminal corymb: follicles not diverging.
D. Sepals reflexed in fruit; petals orbicular. 32. superba
DD. Sepals spreading or half upright; petals oval to oblong.
E. Fls. white, 33. corymbosa
f. Corymb usually gla-
brus. 33. corymbosa
g. Lvs. usually in-
cised-serrate. 34. lucida
gg. Lvs. usually cre-
nately serrate. 35. betulifolia
EE. Fls. pink. 36. densiflora
21. canescens, D. Don. Shrub, 6 or sometimes 12 ft. high, with spreading and arching branches: lvs. broadly oval to oblong, very short-petioled, crenately dentate above the middle, grayish green, pubescent beneath or sometimes almost glabrous at length, ½-3 in. long: fls. white. Rare. Fls. rather small. In dense, semi-glbose corymb to 2 in. across, appearing very profusely along the branches; sepals upright or spreading in fr.: follicles villous, with the ascending styles a little below the
species; it combines the broader corymbs of the latter with the brighter color of the first species, therefore handsomer than either parent: sometimes cult. as S. expansa var. rubra, but there is also another hybrid of the same name. See S. rubra in suppl. list.

26. bullata, Maxim. (S. crispifolia, Hort.). Dwarf shrub, with strictly upright brown, villous branches; lbs. roundish ovate to ovate, very short-petioled, incisely serrate, thickish and bullate, almost glabrous, grayish green beneath, ½-¾ in. long; lbs. deep pink, in small and dense corymbs, ½-3 in. across. July, Aug. Japan. Gt. 5:1216.

27. Japonica, Lindl. (S. polyloba, Thunb. S. Fortunei, Planch.). Shrub, 4 ft. high, with upright branches glabrous or puberulous when young; lbs. ovate to oblong-lanceolate, acute at both ends or acuminate, doubly and incisely serrate, pale bluish green and usually glabrous beneath, 1-4 in. long; lbs. small, pale to deep pink, in usually much compound and rather loose corymbs; sepals reflexed in fruit: follices glabrous, diverging, with ascending styles. June, July. Japan to Himal. F.S. 9:871. B.H. 8:129. P.F.G. 2, p. 113.—Handsome shrub, with the young unfolding lbs. of a pretty purplish color; usually much cult. under the name S. polyloba. Var. Fortunei, Rehd. (S. Fortunei, Planch. S. callosa, Lindl., not Thunb.). Higher, with quite terete branches; lbs. 2-1 in. long, oblong-lanceolate, acuminate, sharply and doubly serrate, with incurved, callous-tipped teeth, rugose above, bluish white beneath: corymbs very compound, rather loose; disk none or very minute. This seems to be the Chinese form; the Japanese form grows less high, has smaller and broader, coarsely doubly dentate-serrate lbs., not rugose and less whitish beneath; the stems are slightly striped by the decurrent petioles and the inflorescence is less compound. Var. atrorubens, Hort. lbs. deep pink, in tomentose corymbs. Var. ruberrima, Hort. lbs. deep pink, in puberulous corymbs. Var. macrophylla, Simon-Louis. lbs. becoming 6 in. long, bullate: corymb small. Var. glabra, Nichols. (S. glabra, Lange). Of more rigid habit: lbs. ovate, glabrous: lbs. bright pink, in glabrous corymbs. Var. pubescens, Regel. lbs. pubescent on the veins beneath: corollas tomentose. Most of the other forms often enumerated as varieties are hybrids of this species.

28. Margarita, Zabel (S. Japonica × spáphéba). Shrub, 5 ft. high, puberulous: lbs. ovate-elliptic to elliptic, coarsely and often doubly serrate, pubescent, 1½ in. midrib beneath and pale green, 2-3 in. long: lbs. rather large, bright pink, in broad corymbs; sepals spreading in fruit: follices upright, glabrous, with upright styles: July, Aug. Of garden origin.—Handsome, very free-flowering form.

29. Fóxli, Zabel (S. corymbosa × Japonica). Similar to the preceding: branches more or less striped, almost glabrous; lbs. elliptic, doubly serrate, glabrous: lbs. whitish or pinkish, in large, puberulous corymbs; styles spreading in fruit. June, July. Of garden origin.—Less desirable than the preceding hybrid.

31. albiflora, Miq. (S. Japonica alba, Regel. S. lucidiflora, Lange). Figg. 2367. Low shrub, 1½ ft. high, with stiff, upright branches; Ivs. lanceolate, coarsely or sometimes doubly serrate, glabrous, 1–2 in. long; fls. white, in dense corymbs, one large terminal and many smaller ones below, forming a kind of raceme; disk prominent; sepals reflexed in fr.; foliages upright, or not, or diverging. July, Aug. Japan.

32. suprema, Zabel (S. albidiflora x corymbosa). Low shrub, with striped dark brown branches; Ivs. elliptic-oblong to oblong, acute at both ends, simply or doubly serrate, almost glabrous, 1–3 in. long; fls. rather large, pink or almost white; disk prominent; petals orbicular or broadly obovate. June, July. Of garden origin.

33. corymbosa, Raf. (S. crataegifolia, Link.). Low shrub, with usually little-branched stems, rarely to 3 ft. high; branches purplish brown; Ivs. broadly oval to ovate, acute, coarsely and often doubly serrate, especially above the middle, pale bluish green beneath and glabrous, 1½–3 in. long; fls. white, rather small, in somewhat convex usually pubescent corymbs, 1½–3 in. across; petals oval; foliages and styles upright. May, June. N. J. to Ga. L. B. C. 7:671.

34. lacica, Doug. Closely allied to the former; branches yellowish brown or brown; Ivs. more loosely serrate, oval or obovate; corymbs glabrous, usually looser and more flat, broader. June, July, Dakota to Brit. Col. and Oregon. The allied S. Virginiana, Brit. is more branched and higher; Ivs. oblong to obovate-lanceolate, dentate above the middle or almost entire; inflorescence glabrous. Va. to N. C. B. B. 2:197.

35. betulifolia, Pall. Low, much-branched shrub; Ivs. oval to obovate or obovate-oblong, usually cuneate at base and very short-petioled, serrate or crenately serrate, obtuse, glabrous or slightly pubescent on the veins beneath, ¾–1½ in. long; corymbs usually glabrous, 1-2 in. across. June, July. Siberia to Manchuria, Kamchatska and Japan. The two preceding and the following species are all closely allied and considered by some botanists as varieties of S. betulifolia.

SECTION 5. SPIREA (Species Nos. 37–49).

A. Inflorescence a broad panicle, about as broad as high. (Hybrids of species of this and the preceding section.)

B. Panicles rather small, on lateral branchlets of the end of last year’s branches 37. Fontenayensis

BB. Panicles large, terminal on long, upright branches.

C. Ivs. glabrous or nearly so.

D. Apex of Ivs. acute 38. conspicua

DD. Apex of Ivs. obtuse or acutish.

E. Shape of Ivs. broadly oval or obovate 39. notha

EE. Shape of Ivs. oblong or ovate-oblong 40. pyramidalata

CC. Ivs. pubescent or tomentose beneath.

D. Base of Ivs. acute 41. Sanssouciana

DD. Base of Ivs. rounded 42. Nobleana

AA. Panicles elongated, longer than broad. (Spiraea prostrata.)

B. Folliage glabrous or nearly so.

C. Ivs. sharply serrate, except at the very base.

D. Panicles tomentose.

E. Fls. light pink 43. salicifolia

EE. Fls. white 44. alba

DD. Panicles glabrous 45. latifolia

CC. Ivs. crenately serrate above the middle; fls. pink 46. Menziesii

BB. Folliage pubescent or tomentose beneath.

C. Follicles glabrous; Ivs. grayish or whitish tomentose beneath.

D. Ivs. acute at both ends 47. Billardii

DD. Ivs. rounded or nearly so at both ends 48. Douglasii

CC. Follicles pubescent; Ivs. usually light tomentose beneath. 49. tomentosa

37. Fontenayensis, Billard (S. Fontenayensis, Dipp. S. cuneatae x salicifolia). Shrub, 6 ft. high, with slender, upright branches; Ivs. oval or obovate-oval, rounded at both ends, crenately serrate above the middle, pale bluish green beneath, almost glabrous, 1–2 in. long; fls. white or pink, in 1½–3 in. long panicles; petals orbicular, about as long as stamens; sepals spreading in fruit. June, July. Of garden origin. Not quite hardy north. Var. alba, Zabel, is the white-flld., var. rosea, Zabel, the pink-flld. form. S. triloba, Hort. (S. brachyblérys, Lange. S. triloba, Hort. S. cuneatae x Dohlasii), is a similar form, but the Ivs. are tomentose beneath and the fls. pink.

38. conspicua, Zabel (S. albidiflora x alba). Upright shrub, 3 ft. high, with dark brown puberulous branches; Ivs. elliptic-oblong, acute at both ends, simply or doubly serrate, almost glabrous, 1½–2½ in. long: fls. pinkish white, in broad tomentose pubescent panicles; petals shorter than stamens. July–Sept. A handsome form. A similar hybrid is S. syringifolia, Lem. (L. albidiflora x salicifolia), with oblong-lanceolate or lanceolate Ivs. serrate above the middle and pink fls. Closely allied is also S. semprevirens, Zabel (S. Japonica x salicifolia, S. japonica or Fontenay, var. paniculatiflora, Hort.). Higher than the former; Ivs. oblong-lanceolate, usually doubly serrate; fls. pink. R. H. 1899, p. 496, 497. Gn. 45, p. 48.
SPIREA

39.

40. pyramidalis, Greene (S. lúcida × Ménziesii). Upright shrub, 3 ft. high; lvs. ovate to ovate-oblong, shallowly palmately lobed, tomentose beneath, usually toothed along the margins. July, Aug. - Of garden origin.

41. Saussurehiana, C. Koch (S. Douglasii × Japónica, S. Regeliána, Hort.). Shrub, 4 ft. high, withurm, finely toothed branches; lvs. oblong-obovate, tomentose beneath, 3-5 in. long; lvs. pink, in broad corymbose racemes; follicles glabrous, with spreading styles. July, Aug. - Of garden origin. — An allied form is S. internedia, Lemez (S. aitilióra × Douglasii), similar in habit to S. spiralis but with the lvs. tomentose beneath.

42. Nobléana, Hook. (S. Douglasii, var. Nobléana, Wet.). S. Douglasii × dentilóre, Hort.). Shrub, 4 ft. high, similar to the former; lvs. oblong or broadly ovate, usually rounded at the base, acute, sharply serrate above the middle, grayish tomentose beneath, 1-2 in. long; lvs. light pink, in dense broadly pyramidal tomentose panicles, 2-4 in. high; petals half as long as stamens; sepal reflexed in fr.; styles erect. June, July. Natural hybrid, found in Calif. B.M. 2:196, I.H. 8:256. — A similar form is S. pachystachys, Zabel (S. cortex × Douglasii), with broader lvs. and frs. of paler pink.

43. salicifolia, Linn. (S. Sibirica, Raf. S. salicifória, var. ednea, Alt.). Upright shrub, 5 ft. high, with yellowish brown branches puberulous when young; lvs. oblong-lanceolate to lanceolate, sharply and sometimes doubly serrate with often incurved teeth, 1-2½ in. long; lvs. light pink, in dense broadly pyramidal tomentose panicles, leafy below, the lvs. exceeding the ascending ramifications; stamens twice as long as petals; sepals reflexed in fr.; follicles ciliate at the inner suture. June, July. — S. E. Eu. to Japan and probably Alaska. — Var. granífera, Dipp. (S. gránífera, Lodd.). Lower, with larger, lighter pink frs. L.B.C. 20:1968.

44. alba, Dur. (S. salicifória, var. panicúlata, Alt. S. lanceolata, Borkh.). QUEEN OF THE MEADOW. MEADOW SWEET. Fig. 2:386. Upright branching shrub, 2-5 ft. high, with reddish brown branches puberulous when young; lvs. narrow, oblong to oblong-lanceolate, acute, usually regularly simple serrate, 1½-2½ in. long; lvs. white, in leafy pyramidal tomentose panicles, the lower spreading ramifications much longer than their supporting lvs.; stamens white, usually as long as petals; follicles quite glabrous. June-Aug. From N. Y. west to the Rocky Mts., south to Ga. and Miss. Also known as S. salicifória.

45. latifólia, Borkh. (S. salicifória, var. latifólia, Alt. S. corpinífolia, Willd. S. Canadènus, Hort. S. Bélcherrménés, Hort.). QUEEN OF THE MEADOW. MEADOW SWEET. Upright branching shrub, 2-5 ft. high, with bright or dark red-brown glabrous twigs; lvs. broadly oval to ovate or oblong, usually coarsely and often doubly serrate, 1½-3 in. long; lvs. white, larger than those of S. alba, sometimes lightly blushed and with the stamens and disk more or less pinkish; panicles quite glabrous, broadly pyramidal, with spreading and elongate branches; lvs. more commonly longer than petals. June-Aug. Newfoundland and Canada to N. C. Em. 2:196. B.B. 2:196. — This and the preceding species have been referred to by most American botanists to S. salicifória. S. alba is chiefly found west, S. latifólia east of and in the Alleghenies.

46. Ménziesii, Hook. (S. Douglasii, var. Ménziesii, Presl.). Upright shrub, 4 ft. high, with brown, at first puberulous branches; lvs. oblong-obovate to ovate, coarsely and unequally serrate above the middle, pale green beneath, 1½-3 in. long; lvs. small, pink, in rather narrow, 6-8 in. long panicles; stamens more than twice as long as the roundish petals; sepal reflexed in fruit. June-Aug. Alask. to Oregon.

47. Bilzárii, Hort. (S. Douglasii × salicifória). Shrub, 6 ft. high, with brown pubescent branches; lvs. oblong to oblong-lanceolate, acute, sharply and often doubly serrate, except in the lower third, usually grayish tomentose beneath, at least when young, sometimes almost glabrous at length, 2-3 in. long; lvs. bright pink, in 3-5 in. long, tomentose or tomentulose panicles, usually rather large and dense. July, Aug. — Of garden origin. — S. Lésema, Rothléménésia rubra, Irén- yahoa, eriná, Constállin, California, Hort., are very similar and probably of the same parentage.
SPIRANTHES

SPIRANTS

Spiranthes (name Greek; referring to the twisted spikes). Orchidaceae. Ladies' Tresses. A genus including about 40 species dispersed throughout the temperate

ALFRED R. MEYER

SPIRAL FLAG. See Crepis.
SPRAYING

in the April. The ovate-lanceolate, single pollinia appears largely a labellum Lnsfia. crisped, slender, helically probably in a clawed, Barclay. in the economy Lvs. the Lvs. exact B.M. Mass., the united borous many-fld., July, to linear-oblanceolate, mostly 2 tic met less, plants crisp. basal, free, high, leafy sepals what 13:467. in. SPLEENWORT, SPRAGUEA SPONGE SP6NDIAS. Bomanzoifi^ua, Minn, in. SPRAYING (see Pomology), the art of protecting cultivated plants from insect enemies and vegetable parasites by covering them with a spray which shall have a toxic or physically injurious effect upon the animal or vegetable organism.

Historical Sketch.—The history of spraying is interesting. The story of its progress in America differs in details from the history of its development in Europe. The main features in each country are quite similar. In both places insect enemies made the first draft on the ingenuity of man in devising methods by which to hold them in check. Vegetable parasites were studied afterwards. It is a curious fact that, in the ease of both insects and fungi, in America the same modes of various forms came from Europe and were the means of directing attention to wholesale methods of destroying them. Some of these enemies, comparatively harmless in their native home, like the currant worm and collin moth, have done more to forward spraying methods in the United States than anything else.

The first insecticides used in America, as well as in Europe, were not of a poisonous nature. They were substances which had an injurious effect on the body of the insect. These were of two kinds mainly: inclusions which were settinggum, and caustic substances which burned the tissues. Tobacco water and alkali washes have been used for many years. One of the first poisons to be used was white hellesbro. The employment of arsenical poisons may be said to belong to America, and even at the present time has small place in the economy of fruit-growing in Europe. The widespread use of arsenical poisons is largely due to the influence of the incursion of the potato bug.

We have no reliable records which give us the exact date of the first use of Paris green. It probably occurred about 1863 or 1866. However, towards 1870 Paris green was used quite generally throughout the western region where the potato bug first appeared. At this time it was applied almost exclusively in the dry form diluted with gypsum or flour. From potato to cotton, tobacco and finally to fruit trees, is the development of this poison for destroying leaf-eating insects. So far as records are available, it appears that fruit trees were first sprayed with Paris green between 1873 and 1875. Among pioneer sprayers, we should mention the names of Dr. C. V. Riley, United States entomologist;
SPRAYING

Following Paris green came London purple, and then white arsenic. Since that time many different forms of arsenical poisons have been compounded, offered to the public and frequently used. London purple has now been largely dropped by fruit-growers, owing to its variable quality. White arsenic, used in combination with soda and with lime, forms at the present time reliable and widely used insecticides.

While sucking insects were instrumental in bringing about the invention of many of these arsenical poisons, it has only been within the last twenty-five years that an effective method has been devised for their treatment. Although kerosene has been recommended and used to some extent for thirty-five or more years, it was not until Cook recommended kerosene in the form of a soap and water emulsion that a desirable, easily prepared oily insecticide was found. About the same time, Dr. Riley, with Mr. Hubbard, of the Department of Agriculture at Washington, recommended the use of what is now known as the Riley-Hubbard formula.

The potato bug invasion and the discovery of the efficacy of Paris green in destroying leaf-feeding insects did a great deal to stimulate spraying, but due credit should be given plant pathologists for tracing the life-histories of many fungi destructive to cultivated plants.

Fungicides. — Early in the eighties diseases of grapevines threatened the extinction of French vineyards. The situation engaged the attention of French investigators. Notable among them were Professor A. Millardet and his co-workers of the Academy of Science, Bordeaux, France. He, with others, discovered partly by accident and partly by experiment that solutions of copper prevented the development of downy mildew. After much experimentation, "bourrille Bordelaise" was found to be effective in preventing the growth of downy mildew and other plant parasites infesting the grape in that region. The announcement was definitely made in 1885. The following year the European formula for Bordeaux mixture was published in several places in the United States, and immediately followed an unparalleled period of activity in economic vegetable pathology. The establishment of the U.S. experiment stations gave added impetus to the movement. The rapidity of the spread of spraying knowledge among fruit-growers is remarkable. Ten years ago it was an unknown art by the rank and file. To-day agricultural clubs and granges purchase their spraying materials by the car-load direct from the manufacturer. The American farmer leads his fellow-workers in all parts of the world in the practice of spraying. Although Bordeaux mixture was discovered in Europe, its application has been made practicable by American inventions.

The Principles of Spraying. — A spray may be effective (a) by hitting the enemy, (b) by placing poison before the depredator, and (c) by protecting the plant with a covering unfavorable to the growth of the pest. The caution farmer incurs his crop against injury by insect or vegetable parasite by spraying. The fruit-grower asks, "Do I need to spray this year? My trees are not blossoming." Certainly, we answer, spray to protect the foliage from possible injury by insect or fungus disease. Healthy foliage is essential to the production of health and vigor and fruit-buds. Spray this year for next year's crop.

Insecticides kill by contact or by means of a poisonous principle; their efficiency depends largely on the time and thoroughness of the application. If applied too soon they may be dissipated before the insects appear; if applied late they may partly penetrate the insects feed voraciously and are harder to kill as they approach maturity in the larval stage. With the vegetable parasite the case is not essentially different. The tree is covered with a thin coating which destroys the spores of fungi resting there and prevents other spores from germinating. Fig. 2370 shows the stage of development of fruit-bud calling for Bordeaux mixture and Paris green. The keynote to success is thoroughness. Hasty sprinklings are worse than useless; they discourage and disappoint the beginner. Full protection is not afforded unless each leaf, twig and branch has been covered. Time is the next most important factor bearing on success. The early spray is most effective. This applies particularly to the treatment of fungous diseases. Spray before the buds open. Get ahead of the enemy.

Spraying Machinery. — Bordeaux mixture was first applied with a brown (Fig. 2371); now there are not a few steam sprayers in use. Poison distributors were first made in America for the protection of cotton, potato and tobacco. There are five general types of pumps: (1) The hand portable pump, often attached to a pail or other small reservoir, suitable for limited garden areas. (2) The knapsack pump is carried on a man's back and operated by the carrier. The tank is made of copper, holds five gallons and is fitted with a hand pump which may be operated with one hand while the nozzle is directed with the other. Excellent for spraying small vineyards and vegetable gardens. (3) A barrel pump: a strong force pump fitted to a kerosene barrel or larger tank, suitable for spraying orchard areas up to 15 acres in extent; may be mounted on a cart, wagon, or stoneboat, depending on the character of the ground and size of trees. (4) A gear-sprayer; being a tank provided with a pump and mounted on wheels. The pump is operated by power borrowed from the wheels as they revolve, and transferred by means of chain and sprockets. Suitable for vineyards and low-growing plants, which may be satisfactorily covered by the spray as the machine moves along. For this reason it is not adapted to orchard work. (5) The power sprayer; power being furnished by steam, gasoline, or compressed air. When the trees are large and the orchard covers fifteen or more acres, a power sprayer will usually pay. Some of these various types of machinery are shown in Figs. 2372-2379.

The essentials of a pump are: (1) durability: secured by having brass working parts (copper compounds corrode iron); (2) strength: obtained by a good-sized cylinder, substantial...
SPRAYING

valves, wail and piston; (2) easily operated; found in a pump with long handle, large air-chamber and smoothly finished working parts; (4) compactness; secured by placing the cylinder so that it is inclined by the tank, preventing top-heaviness and facilitating the movement of the pump in the orchard. A barrel or tank pump should be strong enough to feed two heads of hose and throw a good spray from four nozzles. Nearly all spray mixtures require occasional stirrings to prevent settling and insure uniformity. An agitator is a necessary part of the pump’s equipment.

Special Devices.—One of these is for the making and applying mechanically emulsified definite proportions of water and kerosene. The liquids are placed in two separate vessels, each of which is supplied with a pump. The apparatus has a gauge attached which enables the operator to set it for 5, 10, 15 or 20 per cent of kerosene, as the case may be. As the kerosene and water are forced through the pump and nozzles they are thoroughly emulsified. This type of pump is not yet perfected, but marks a distinct step in advance and fills an important place in the treatment of scale and other sucking insects. For special devices, consult experiment station bulletins.

Nozzles.—The nozzles of twelve or fifteen years ago were crude affairs when compared with those now in use. They usually discharged the liquid in a solid stream, or a coarse spray formed by passing through a sieve-like diaphragm. These are now obsolete. Several types of nozzles are on the market. They all aim at economy and efficiency. A nozzle producing a fine misty spray (much to be desired) uses a minimum amount of liquid, but the spray cannot be projected effectively more than six or seven feet from the nozzle. A coarse spray can be thrown much farther, but drenches rather than sprays the tree and naturally uses a large quantity of liquid. For small trees and bush fruits the Vernmorel (Fig. 2360), or fine spray type, is best, while for old orchards and park work, nozzles of the McGowan and Bordeaux style (Fig. 2581) are most satisfactory. It is now a common practice to attach two (or even more) nozzles to one discharge (Figs. 2350, 2351).

FORMULAS.
(The commoner mixtures, excluding resin washes.)

PARIS GREEN.

<table>
<thead>
<tr>
<th>Paris green</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>...........</td>
<td>1 pound</td>
</tr>
</tbody>
</table>

If this mixture is to be used upon fruit trees, 1 pound of quicklime should be added. Repeated applications will injure foliage of most trees unless the lime is used. Paris green and Bordeaux mixture can be applied together with perfect safety. Use at the rate of 4 to 8 ounces of the arsenite to 30 gallons of the mixture. The action of neither is weakened, and the Paris green leaves its characteristic mark on the foliage. For insects that chew.

LONDON PURPLE.—This is used in the same proportion as Paris green, but as it is more caustic it should be applied with two or three times its weight of lime, or with the Bordeaux mixture. The composition of London purple is variable, and unless good results exist for supporting that it contains as much arsenic as Paris green, use the latter poison. Unsafe on peach or plum trees unless considerable lime is added. For insects that chew.

Arsenites of Lime and Soda.—These are cheap, the amount of arsenic is under perfect control and it does not harm the foliage. For sucking insects.

Arsenite of Lime is made by boiling 1 pound white arsenic in 2 to 4 quarts water until it is dissolved, then use this arsenic solution to make 2 pounds good lime, adding water if necessary to make it 1. When slaked, add water enough to make 2 gallons of this stock mixture. Also prepare by boiling together for 10 or 15 minutes, 1 pound white arsenic and 3 pounds lime putty by weight in 2 gallons of water; when dissolved it must be measured so that the arsenic may be applied with accuracy. Keep in a tight vessel and use as desired. Thoroughly stir before using. For most insects one part to 40 gallons is sufficient. Arsenite of lime is insidious in water and will not injure the foliage of any orchard fruit at this strength. This insecticide is growing in popularity. Some green dye stuff may be mixed with it to prevent the ever-present danger of mistaking it for some other material.

Arsenite of Soda: The arsenite (1 lb.) may also be boiled with 4 pounds of sal soda crystals in 2 gallons water until dissolved, and this solution used in the same manner with lime. The arsenite of lime is cheaper, and either can be used with Bordeaux mixture the same as Paris green. When used with water, however, it will be safer to put in some freshly slaked lime. More expensive than arsenite of lime, but thought by some orchardists to be more effective.

OTHER ARSENITES.—Green arsenic and Paris green are more bulky and finer than Paris green, and when of good quality they are just as effective and require less agitation. Arsenite of lead can be applied in large quantities without injury to the foliage, hence it is very useful against beetles and similar insects that are hard to poison: it also adheres to the foliage a long time.

NORMAL OR 16 PER CENT BORDEAUX MIXTURE.

| Copper sulfate (blue vitriol) | 6 pounds |
| Quickslime (good stone lime) | 4 pounds |

Water—50 gallons

For peaches and Japanese plums, an extra amount of lime should be added, and more water (60 or 70 gallons) should be used.

Six pounds of sulfate of copper dissolved in 50 gallons of water, when applied at the proper time, will prevent the growth of fungi. However, if applied in this form, the solution will burn the foliage. Four pounds of quicklime in 6 pounds of copper will neutralize the caustic action. When sulfate of copper and lime are added in this proportion, the compound is Bordeaux mixtures. Potatoes demand full strength. Dilution of Bordeaux mixture is effective against certain mildews and fruit diseases.

Washing of copper and lime at time of mixing is very inconvenient. Bordeaux mixture is best when used within a few hours after being mixed. Therefore a stock mixture of Bordeaux is impermeable. It is, however, practicable to have stock preparations of sulfate of copper and of lime ready for mixing when required.

The lime should be “slaked” in a barrel or box with sufficient water to prevent burning, but not enough to smother. Important, when slaked must always be covered with water to exclude the air. In this manner lime can be kept all summer without mixing.

One gallon of water will hold in solution, all summer, 3 pounds of copper sulfate. To accomplish this the solution should be suspended at the surface of the water in boiling. The water most loaded with copper will sink to the bottom, and the water least loaded will rise to the surface. If 50 pounds of sulfate are suspended in 55 gallons of water on an evening, each
gallon of water will, when stirred the next morning, hold two pounds of sulfate.

Three gallons of this solution put in the spray barrel equal six pounds of copper. Now fill the spray barrel half full of water before adding any lime. This is important, for if the lime is added to so strong a solution of sulfate of copper, a curdling process will follow. Stir the water in the lime

barrel so as to make a dilute milk of lime, but never allow it to be dense enough to be of a creamy thickness. If in the latter condition, limps of lime will clog the spray nozzle. Continue to stir the mixture, this milk of lime so long as drops of ferrocyanide of potassium (yellow prussiate of potash) continue to change from yellow to a brown color. When no change of color is shown, add another pint of milk of lime to make the necessary amount of lime a sure thing. A small excess of lime does no harm. The barrel can now be filled with water, and the Bordeaux mixture is ready for use.

The preparation of ferrocyanide of potassium for this test may be explained. As bought at the drug store, it is a yellow crystal and is easily soluble in water. Ten cents worth will do for a season’s spraying of an average orchard. It should be a full saturation, that is, use only enough water to dissolve all the crystals. The cork should be notched or a quill inserted so that the contents will come out in drops. A drop will give as reliable a test as a spoonful. The bottle should be marked “Poison.” Dip out a little of the Bordeaux mixture in a conical saucer, and drop the ferrocyanide on it. So long as the drops turn yellow or brown on striking the mixture, the mixture has not received enough lime.

AMMONIACAL COPPER CARBONATE.

Copper carbonate 5 ounces
Ammonia (20° Beamer) 5 pints
Water ... 45 gallons

Make a paste of the copper carbonate with a little water. Dilute the ammonia with 7 or 8 volumes of water. Add the paste to the diluted ammonia, and stir until dissolved. Add enough water to make 45 gallons. Allow it to settle and use only the clear blue liquid. This mixture loses strength on standing. For fungous diseases.

COPPER SULFATE SOLUTION.

Copper sulfate .. 1 pound
Water .. 15-25 gallons

Dissolve the copper sulfate in the water, when it is ready for use. This should never be applied to foliage but must be used before the buds break. For peaches and nectarines, use 25 gal-

loss of water. For fungous diseases, but now largely sup-

planted by the Bordeaux mixture. A much weaker solution

has been recommended for trees in leaf.

IRON SULFATE AND SULFURIC ACID SOLUTION.

Water (hot) ... 100 parts
Iron sulfate ... 3 parts
Sulfuric acid (commercial) 1 part

The solution should be prepared before using. Add the acid to the crystals, and then pour on the water. Sometimes recommended for grape anthracnose, the dormant vines being treated by means of sponges or brushes, but it should be applied with caution.

POTASSIUM SULFIDE SOLUTION.

Potassium sulfide (liver of sulfur) 14 to 1 ounce
Water ... 1 gallon

This preparation loses its strength upon standing, and should therefore be made immediately before using. Particularly valuable for surface mildews.

HELLEBORE.

Fresh white hellebore 1 ounce
Water ... 1-3 gallons

Apply when thoroughly mixed. This poison is not so ener-

getic as the arsenites, and may be used a short time before the sprayed parts mature. For insects that chew.

KEROSENE EMULSION.

Hard soap ... 7/8 pound
Beiling soft water 1 gallon
Kerosene ... 2 gallons

Dissolve the soap in the water, add the kerosene, and churn with a pump for 5 to 10 minutes. Dilute 4 to 5 times before applying. Use strong emulsion for all scale insects. For such insects as plant lice, mealy bugs, red spider, thrips, weaker preparations will prove effective. Cabbage worms, currant worms and all insects which have soft bodies, can also be success-

fully treated. It is advisable to make the emulsion shortly before it is used.

Kerosene and water (suggested for San Jose scale) may be used in all cases where kerosene emulsion is mentioned. Di-

lute to the strength recommended in each particular case. It must be applied with a pump having a kerosene attachment.

TOBACCO WATER.— This infusion may be prepared by placing tobacco stems in a water-tight vessel, and then covering them with hot water. Allow to stand several hours, dilute the liquor from 2 to 5 times, and apply. For soft-bodied insects.

A special mixture is recommended by Corbett in Bull. 70, Exp. Sta., W. Va., who reports a trial of Bordeaux mixture, arsenic and kerosene in combination as having proved "gratifying far beyond our most sanguine expectations." This combination was rendered possible by using the kerosene in the oil tank of a kerosene pump and placing the Bordeaux and arsenic in the barrel in the ordinary manner." For apple aphids, eating insects and fungous diseases.
SPRAYING

Literature.—To say that the literature of spraying is voluminous would but faintly describe the situation. Hardly an experiment station in the United States has failed to publish two or three times on this subject. Many of them issue annual "spray calendars." The Divisions of Vegetable Pathology and Entomology, Entomology of Agriculture, Washington, D. C., have added a great number of bulletins to the general collection. One of the first American books, "Fungous Diseases," 1886, was written by F. Lawson Selheimer, then of the Division of Vegetable Pathology, Washington. Soon after appeared "Insects and Insecticides," and "Fungi and Fungicides," both by Clarence M. Weed. The most notable work which has appeared and the only complete monograph of spraying in existence was published in 1896, the author being E. G. Lodeman, then instructor in horticulture at Cornell University. Of the experiment stations aside from Washington, prominent in reporting field work, New York (Geneva and Cornell), Michigan, Delaware, California, Massachusetts and Vermont should be named, although many others have done well. Spraying, though not an American invention, is now distinctly an American practice by adoption and adaptation.

JOHN CRAIG.

SPREKELIA (J. H. van Sprekelsen, of Hamburg, who sent the plants to Linnaeus). *Amaryllidaceae. Jacobean Lily.* A single species from Mexico, a half-hardy bulbous plant with linear, strap-shaped leaves and a hollow cylindrical scape bearing one large showy flower. Perianth strongly declined, tube none; segments nearly equal, the posterior ascending, the inferior concave and enclosing the stamens and ovary; bracts only one, spatulate-like: stamens attached at the base of the perianth-segments, and somewhat shorter than the segment by which they are enclosed, having a few small scales at the base of the filaments; ovary 3-loculed; style long, slender: seeds compressed ovate or orbiculate, black.

P. W. BARCLAY.

SPRING BEAUTY. *Claytonia.*

SPROUTING LEAF. *Bryophyllum.*

SPRUCE. See *Picea.* Norway S. is *P. excelsa.* Sitka S. is *P. Sitchensis.* Tideland S. is *P. Sitkensis.*

SQUASH. *Cucurbita.*

SPURGE. *Euphorbia.*

SPURGE, MOUNTAIN. *Pachyandra procumbens.*

SPURGE NETTLE. *Jatropha.*

SPURRY. *Spergula arvensis,* which (see) has long been grown in Germany, France, Holland and Belgium, where its value as a soil renovator and as a forage crop was early recognized. It is an annual, and when sown in the spring matures seed in from ten to twelve weeks from time of sowing. This plant possesses special value as a renovator for sandy soils. It has long been used by the farmers of Holland to hold in place the shifting sands along the seashore. So well adapted is it to sand that it has been termed "the clover of sandy lands." It is not recommended for the American farmer except where the soil is so poor that other plants fail. In such circumstances it may be used as a cover-crop to plow under. The seed may be sown any time from April to August, but in orchards it is better to be sown in July. Sow at the rate of six quarts per acre. The seed being small, it should be lightly harrowed in upon a well-tined soil. It is very persistent in the production of seed, and upon fertile soils it will maintain itself for several years unless thorough cultivation is given. Where soils are in fair condition and other crops will grow, it is doubtful if Spurrey has any place. Sometimes written Spurrey.

A. CLINTON.

SQUASH (Plate XXXVII) is a name adapted from an American Indian word, and is applied in an indefinite way to various plants of the genus *Cucurbita.* The application of the name does not conform to the specific lines of the plants. What are called summer Squashes are mostly varieties of *Cucurbita Pepo.* The winter Squashes are either *C. maxima* or *C. moschata,* chiefly the former. If the name Squash belongs to one species more than to another, this species is probably *C. maxima.* See *Cucurbita,* particularly the note on p. 416. The pictures show some of the forms of these species. Plate XXXVII is the Hubbard Squash, *Cucurbita maxima.* Fig. 2382 is the Winter or Canada Crookneck, one of the forms of *C. moschata.* Figs. 2383-88 are forms of the multifarious *Cucurbita Pepo.* Fig. 2388 shows the Vegetable Marrow, much prized in England.

Squashes and pumpkins are very easy plants to grow, provided they are given a warm and quick soil. They are long-season plants, and therefore in the North they are very likely to be caught by frosts before the full crop has matured, unless the plants are started early and make a rapid and continuous growth early in the season. In hard, rough clay lands the plants do not get a foothold early enough to allow them to mature the crop. On such lands it is impossible, also, to plant the seeds early. As a consequence, nearly all Squashes are grown on soils of a loose and relatively light character. Sandy lands or sandy loams are preferred.

2390. A Y-figure with Bormoel nozzle.

A leather shield is shown, for protecting the hands from the drip.
On very rich bottom lands the plants often thrive remarkably well, but there is danger that the plants may run too much to vine, particularly true when the soil has too much available nitrogen. In order that the plants shall start quickly, it is necessary that the soil be in excellent tilth. It is customary, with many large growers, to apply a little commercial fertilizer to the hills in order to give the plants a start. A fertilizer somewhat strong in nitrogen may answer this purpose very well; but care must be taken not to use nitrogen too late in the season, else the plants will continue to grow ever-vigorously rather than to set fruit.

Cultural groups of Squashes are of two general kinds, the bush varieties and the long-running varieties. The bush varieties are usually early. The vines ran very little, or not at all. The various summer Squashes belong to this category, and most of them are varieties of Cucurbita Pepo. The hills of bush varieties are usually planted as close together as 4 x 4 feet. On high-priced land they are often planted 3 x 4 feet. The long-running varieties comprise the fall and winter types; and to this category may also be referred, for cultural purposes, the common field pumpkins. There is much difference between the varieties as to length of vine. On strong soils, some varieties will run 15-25 feet, and sometimes even more. These varieties are planted from 8-12 feet apart each way. Sometimes they are planted in corn fields, and they are allowed to occupy the ground after tillage for the corn is completed.

For general field conditions, the seeds of Squashes are usually planted in hills where the plants are to stand. If the land is mellow and rich, these hills are nothing more than a bit of ground 12-18 inches across, which has been freshly hoed or spaded and leveled off. On this hill, from six to ten seeds are dropped, and they are covered an inch or less in depth. In order to provide the seeds with moisture, the earth is usually firmied with the hoe. When the best results are desired, particularly for the home garden, hills may be prepared by digging out a brushel of soil and filling the place with rich earth and fine manure. It is expected that not more than three to five of the plants will finally be left to each hill; but there are many contingencies to be considered. The young plants may be taken off by entworms or by other insects, or they may be caught by frost.

If it is necessary to start the plants in advance of the season, the seeds may be planted in pots or boxes in a forcing-house or hothed about three weeks before it is time to set them in the field. If the seeds are started much earlier than this, the plants are likely to get too large and to become stunted. When set in the field, the roots should fill the pot or box so that the earth is held in a compact ball, and the plant should be fresh, green and stocky. Plants that become stunted and develop one or two flowers when they are in the box are usually of little use. Sometimes seeds are planted directly in the field in forcing hills, and when the plants are established and the season is settled the protecting box is removed and the plants stand in their permanent positions.

A good Squash vine should produce two or three first-class fruits; if, however, one flower sets very early in the season, the vine may devote most of its energies to the perfection of that single fruit and not set many others, or may set them too late in the season to allow them to mature. If it is desired, therefore, that the plants shall produce more than one fruit, it is advisable to pick off the first fruit, providing it sets long in advance of the appearance of other pistillate flowers. These remarks apply particularly to winter squashes in northern regions. With small varieties and under best conditions, as many as a half-dozen fruits may be got from a single vine, and in some cases this number may be exceeded. Squash vines tend to root at the joints; but under general conditions this should be prevented, because it tends to prolong the growing season of the vine. It is usually well, therefore, to lift the joints occasionally when the hoeing is done, although the vine should not be moved or disturbed. This precaution applies particularly in the short-season climates of the North, where every effort must be made to enable the plant to set its fruit early in the season and to complete its growth before fall.

There are several enemies and diseases of the Squash. Perhaps the most serious is the striped cucumber beetle, which destroys the tender young plants. This insect is destroyed with the arsenites; but since it works on the underside of the leaves as well as on the upper, it is difficult to make the application in such way as to afford a complete protection. The insects also are likely to appear in great numbers and to ruin the plants even whilst they are getting their fill of arsenic. If the beetles are abundant in the neighborhood, it is best to start a few plants very early and to plant them about the field in order to attract the early crop of bugs, thereby making it possible to destroy them. From these early plants the bugs may be hand-picked, or they may
be killed with very heavy applications of arsenites,—applications so strong that they may even injure the plants. Sometimes the hills of Squashes are covered with wire gauze or mosquito netting that is held above the earth by means of hoops stuck into the ground. This affords a good protection from insects that arrive from the outside, providing the edges are thoroughly covered with earth so that the insects cannot crawl under; but if the insects should come from the ground beneath the cover they will destroy the plants, not being able to escape. The Squash bug or stink bug may be handled in the same way as the striped cucumber beetle. This insect, however, remains throughout the season and, in many cases, it is necessary to resort to hand-picking. The insects delight to crawl under chips or pieces of board at night, and this fact may be utilized in catching them. The mildews of Squashes may be kept in check with more or less certainty by the use of Bordeaux mixture or ammoniacal carbonate of copper.

The varieties of pumpkins and Squashes are numerous, and it is difficult to keep them pure if various kinds are grown together. However, the true Squashes (\textit{Cucurbita maxima}) do not hybridize with the true pumpkin species (\textit{Cucurbita Pepo}). There need be no fear, therefore, of mixing between the Crookneck or Scallop Squashes and the varieties of Hubbard or Marrow types. The summer or bush Squashes are of three general classes: the Crooknecks, the Scallop or Pattypan varieties, and the Pineapple or oblong-conical varieties. All these are forms of \textit{C. Pepo}. The fall and winter varieties may be thrown into several groups: the true field pumpkin, of which the Connecticut Field is the leading representative, being the one that is commonly used for stock and for pies; the Canada Crookneck or Cushaw types, which are varieties of \textit{C. moschatum}; the Marrow and Marblehead types, which are the leading winter Squashes and are varieties of the \textit{C. maxima}; the Turban Squashes, which have a "Squash within a Squash" and are also varieties of \textit{C. maxima}. The mammoth pumpkins or Squashes which are sometimes grown for exhibition and which may weigh two or three hundred pounds, are forms of \textit{C. maxima}.

Thoroughly sound and mature Squashes can be kept until the holidays, and even longer, if stored in a room that is heated to 20° above freezing. If the Squashes are not carefully handled the inside of the fruit is likely to crack. Squashes that have been shipped by rail seldom keep well. The philosophy of keeping a winter Squash is to prevent the access of germs (avoid all bruises and cracks and allow the end of the stem to dry up), and then to keep the air dry and fairly warm. The fruits are usually stored on shelves in a heated shed or outhouse. The following advice is given for this occasion by W. W. Rawson: "Cut the Squashes just before they are thoroughly ripe. Be careful not to start the stem in the Squash. Lay them on the ground one deep and let them dry in the sun two or three days before bringing to the building. Handle very carefully when putting in, and be sure that the wagon in which they are carried has springs. Put them two deep on shelves in a building. This should be done on a cool, dry day. If the weather continues cool and dry keep them well aired by day; but if damp weather comes build a small fire in the stove in order to dry out the green stems. Keep the temperature around 50°, and air well in dry weather. The Squashes may need picking over about Christmas if put in the building about October 1; handle very carefully when picking over. Fifty tons can be kept in a single building with a small fire. Do not let them freeze, but if temperature goes down to 40° at times it will do no harm; nor should it be allowed to go as high as 70°. The Hubbard Squash keeps best and longest and does not shrink in weight as much as other kinds; but any of them will shrink 20 per cent if kept until January 1."

L. H. B.

SQUASH, GUINEA, or EGGPLANT. See \textit{Solanum Melongena} and \textit{Solanum Melongena.}

SQUAW BERRY. \textit{Mitchella repens.}

SQUILL. For the garden Squill, see \textit{Scilla.} For the medicinal Squill, see \textit{Virginea.}

SQUIRREL CORN. \textit{Dioscorea Canadensis.}

SQUIRING CUCUMBER. \textit{Ecballium Elaterium.}

STACHYS (from an old Greek name applied by Dioscorides to another group of plants, coming from the word for spicke). \textit{Labiate.} Worsthorne. A genus of perhaps 150 species distributed mainly in temperate countries: perennial or annual herbs, rarely shrubby, with opposite simple, entire or dentate leaves and mostly small flowers, ranging from purple, red, pale yellow to white, sessile or short-peduncled, in axillary whorls or terminal dense spikes: calyx 5-dentate, teeth equal or the posterior larger; corolla-tube cylindrical, 2-lipped, the posterior usually villous, concave or fornicate, rarely somewhat flat; stamens 4, didynamous, the anterior longer, ascending, with the upper lip and very little exerted, often delicately arched or anthesis. Very few of the species are cultivated, although there are several with showy spikes. They are usually found in moist or even wet places when growing wild. A tuber-bearing species (\textit{S. Sieboldii}) has lately come into notice as a kitchen-garden plant.

![Vegetable Marrow—\textit{Cucurbita Pepo.}](image)

2386. Vegetable Marrow—\textit{Cucurbita Pepo.}

a. Plants grown for the showy spikes of flo. or for foliage.

b. Corolla-tube twice or more exceeding the calyx.

Botonica. Benth. (\textit{Dietes officinalis}, Linn.). Burd

ny. A hardy perennial herb 1-3 ft. high: lower leaves long petioled, ovate-oblong, crenate, obtuse, cor-
STACHYS

cultivated STADMANNIA in. small a ft. the ft. which Artjchoke. soon into shorter long-elliptical, interrupted Ivs. Caucas.相似 deeply hardy vertised Sieboldi, grandisldra, longiidlia, uppermost Ivs. E.B. 666. often to each. 1—152—Showy. EB. 195—Useful for ornamental, and now advertised for that purpose.

longifolia, Benth. (Belotica orientalis, Linn.). A hardly perennial herb about 1 ft. high, densely villous lower Ivs. petiolate, oblong-lanceolate, obtuse, crenate, deeply cordate at the base, 4—6 in. long: the upper Ivs. similar in shape but sessile, those of the inflorescence bract-like. The reddish purple tubers, in a cylinder-like somewhat interrupted spike about ½ ft. long. July. Caucas.

STACHYS (Greek, dense spike). Verbenaee. About 40 species of herbs or shrubs, mainly from tropical America, with opposite or alternate, dentate, often rough leaves and white, purple, blue or red flowers solitary in the axils of bracts, sessile or half sunk in the racemes of the long and dense or short and lax spikes.

mutabilis. Vahl. A low shrub, scabrous-pubescent; Ivs. oblong-lanceolate, sessile, in the whitish pubescent spikes, 1—2 ft. long, erect: bracts lanceolate, subulate: calyx 4—dentate, Hispid, 4—6 in. long; corolla crimson, fading to rose, ½—¾ in. wide. West Indies, Mexico to Guiana. Offered in S. Calif.

F. W. BARCLAY.

STACHYRUS (Greek, spike and tail; in allusion to the form of the inflorescence). Tennstratimbiaceae. Two species of glabrous shrubs or small trees, one from the Himalayas and the other from Japan, with membranous, serrate leaves and small flowers in terminal racemes or spikes; Ivs. 4—merous; sepals strongly imbricated; stamens 8, free; style simple; berry 4—locheni.

procox. Sieb. & Zucc. Rambling shrub, 30 ft. high, with flexible branches: Ivs. deciduous, ovate to ovate-lanceolate, 4—6 in. long, thin; petiole about 1 in. long; spikes 2—3 in. long, many—5, stout; Ivs. ½ in. across, glabrous—bell-shaped, sessile or nearly so: fr. globose or ovoid, ½—¾ in. thick; seeds pale brown. Japan. B.M. 6601. G.C. 111. 21:259.—Procurable from importers of Japanese plants.

STACKHOUSIA (after John Stackhouse, an English botanist). Stackhouseaceae. About 10 species from Australia and sparingly from other islands of the S. Pacific ocean. Mostly perennial herbs with slender, erect stems and narrow, entire, often fleshy leaves and terminal spikes of flowers. The genus is the one in which the order: Ivs. regular, hemisphoridite; calyx small, 5—lobed; petals 5, perigynous, clawed, usually free at base but united above in a tube with spreading lobes; tube dilating the calyx-tube; stamens 5, inserted on the margin of the disk: ovary free, 2—5—lobed, 2—3—loculed: fr. of 2—5 indehiscent cocci. Consult Flora Australeis 1:462.

monogyna, Lodd. (S. bicoloritida, A. Cunn.). A half—hardy perennial herb, usually simple, about 1½ ft. high, with linear or lanceolate Ivs. about 1 in. long; spikes at first dense, then lengthening to 4—6 in.: buds pinkish when young; fr. white. B.R. 22:1917.—The plant in the Californian trade is apparently not the above species, for the catalogue says it is a tall, robust shrub with fil. heads 1—2 in. across, surrounding the imbricated bracts and bright yellow Ivs. with a purple—streaked keel.

F. W. BARCLAY.

STADMANNIA (named by Lamarck in 1792 after a German botanist and traveler). Sapindaceae. The only species of this genus that is well known is a tropical tree from the Boulton Islands, the name is Boue de fer or Ironwood. This is a large tree with hard, heavy reddish wood, once frequent in the primeval forests of Mauritius but now scarce. It is not known to be in cultivation in America. The proper name of this tree is Stadmannia oppositifolia, L., a synonym of which is S. sideralzylon, DC. Nine other names appear in Index Kewensis, apparently all Brazilian species, but one of them is a bare name and the others were first described in the early sixties in Linden's catalogue. They are

2389. Tuber of Stachys Sieboldii (X 3/4).
STANHOPEA 1715

Shanhopeas enjoy a shady, moist location. A temperature of 60-62° F. at night and 70-75° during the day should be maintained in winter, with a gradual advance of new growths, to be used as soon as the new flowers emerge. They should be grown suspended from the roof in orchid cabinets or terra cotta baskets with large opening. If drainage is used it should be placed in such a manner that it will not interfere with the exit of the pendulous flower spikes. Equal parts of sphagnum and peat fiber forms a good mixture. See also the family of rhizomes here and there between the old pseudobulbs, new growths will be sent up and the stock may be increased.

R. M. GREY.

INDEX.

1. eburnea
2. biscolor
3. Bucephalus
4. ebeulata
5. pseudobulbs
6. epipihot
7. Devoniensis
8. Shuttleworthii
9. tigrina
10. Martiana
11. sacacca

Stanhopea m. (named for the Earl of Stanhope, president of the Medico-Botanical Society, London). *Ophioderma.* A genus of about 20 species inhabiting tropical America from Mexico to Brazil. These plants are easily grown and very interesting, but the fagacious character of their flowers has been unfavorable to their extensive cultivation. The flowers are produced on thick scapes, which bore their way through the material in which they are planted and emerged at the bottom of the basket. The flowers expand with a perceptible sound early in the morning. They are large, fragrant, and curiously formed. The sepals and petals are usually reflexed, but are subequal or the petals are narrower. The labellum is remarkable transformed. The basal part or hypochil is boat-shaped or sacate, often with two horns on the upper margin. This passes gradually into the mesochil, which is more curved and two lateral horns. The terminal lobe or epichil is greatly reflexed and more or less joined to the mesochil. It is usually flat and expanded above, and the middle base of the labellum is continuous with the long-winged column. Pseudobulbs clustered on the short rhizome, sheathed with scales and each bearing a single large pleated leaf contracted to a petiole at the base.

HEINRICH HASSELBERG.

STANGHOFIA 1714

STANHOPEA is a genus of about 90 species, mostly from the Americas. They are terrestrial or epiphytic, with fleshy leaves and pendulous flowers. The flowers are often fragrant and showy, with a variety of shapes and colors. The pseudobulbs are thick and cylindrical, often with well-marked leaves. The flowers are usually produced in clusters, and the petals are often reflexed or boat-shaped. The labellum is usually large and often showy, and the plant is often grown for its decorative value.

STANGHOFIA is named after Dr. Robert Stansfeld, a British botanist and horticulturist who is often credited with introducing many new plants to Europe.

STANGHOFIA is a genus of about 90 species, mostly from the Americas. They are terrestrial or epiphytic, with fleshy leaves and pendulous flowers. The flowers are often fragrant and showy, with a variety of shapes and colors. The pseudobulbs are thick and cylindrical, often with well-marked leaves. The flowers are usually produced in clusters, and the petals are often reflexed or boat-shaped. The labellum is usually large and often showy, and the plant is often grown for its decorative value.

STANGHOFIA is named after Dr. Robert Stansfeld, a British botanist and horticulturist who is often credited with introducing many new plants to Europe.

STANGHOFIA is a genus of about 90 species, mostly from the Americas. They are terrestrial or epiphytic, with fleshy leaves and pendulous flowers. The flowers are often fragrant and showy, with a variety of shapes and colors. The pseudobulbs are thick and cylindrical, often with well-marked leaves. The flowers are usually produced in clusters, and the petals are often reflexed or boat-shaped. The labellum is usually large and often showy, and the plant is often grown for its decorative value.

STANGHOFIA is named after Dr. Robert Stansfeld, a British botanist and horticulturist who is often credited with introducing many new plants to Europe.

STANGHOFIA is a genus of about 90 species, mostly from the Americas. They are terrestrial or epiphytic, with fleshy leaves and pendulous flowers. The flowers are often fragrant and showy, with a variety of shapes and colors. The pseudobulbs are thick and cylindrical, often with well-marked leaves. The flowers are usually produced in clusters, and the petals are often reflexed or boat-shaped. The labellum is usually large and often showy, and the plant is often grown for its decorative value.

STANGHOFIA is named after Dr. Robert Stansfeld, a British botanist and horticulturist who is often credited with introducing many new plants to Europe.

STANGHOFIA is a genus of about 90 species, mostly from the Americas. They are terrestrial or epiphytic, with fleshy leaves and pendulous flowers. The flowers are often fragrant and showy, with a variety of shapes and colors. The pseudobulbs are thick and cylindrical, often with well-marked leaves. The flowers are usually produced in clusters, and the petals are often reflexed or boat-shaped. The labellum is usually large and often showy, and the plant is often grown for its decorative value.

STANGHOFIA is named after Dr. Robert Stansfeld, a British botanist and horticulturist who is often credited with introducing many new plants to Europe.
4. Bucephalus, Lindl. (S. grandiflora, Reichb. f.). Pseudobulbs crowded, rugose; lvs. petioled, 9 in. long, pointed; the pendulous racemes bearing 4-6 large, tawny orange fls., marked with large crimson spots; sepal and petals reflexed, the former broadly lower part of the labellum curved, boat-shaped, bearing 2 curved horns and a broad fleshy middle lobe; column green and white, spotted with purple. Aug. Mexico. Peru. B.M. 3278. B.R. 31:24. Fls. very fragrant. Distinguished by its very short ovaries.

5. platyceras, Reichb. f. Pseudobulbs and lvs. as in S. Bucephalus but stouter; scape 2-3 ft.; with ovate acute bracts one-half as long as the ovary; fls. 7 in. across, pale yellow, with numerous ring-shaped spots and blotches of purple; sepals triangular oblong; petals broadly linear, acute; hypochil boat-shaped, 2½ in. long; horns 1 in. long, broad, pointing forward, parallel with the tongue-shaped middle lobe; the hypochil is deep purplish crimson inside, paler and spotted outside, the upper part of the labellum colored like the sepals. Colombia. Gn. 334352.

6. insigus, Frost. Figs. 2380, 2391. Pseudobulbs clustered; lvs. broadly lanceolate; scape 6 in. long, covevered with dark brown scales, 2-4 ft.; fls. 5 in. across, dull yellow, spotted with purple. sepals broad, concave; petals narrow, waxy; hypochil globose, almost wholly purple inside, heavily spotted outside, horns 1 in. long, falcate, middle lobe obovate, keeled. July-Oct. Brazil. B.M. 2948, 2949. B.R. 22:1837. L.R.C. 26:1985. Oog. 2:117 (from which Fig. 2290 is adapted).– Distinguished by the broad wings of the column.

8. Shottleworthii, Reichb. f. Pseudobulbs large, conical, subulate; lvs. broadly oblong, acute; raceme pendulous, loose; sepals, petals and base of the labellum apricot color with dark purplish blotches, front part of the labellum yellowish white; hypochil semi-globose; horns flattened, suberect, terminal lobe triangular; column whitish, green along the middle and spotted with purple on the inside. Colombia.

9. tigrina, Batem. Lvs. and pseudobulbs as in the genus; scape short, pendulous, clothed with large, thin brown scales; fls. 6 in. across, waxy and very fragrant; sepals broadly ovate, concave; petals oblong-lanceolate, both dingy yellow mottled towards the base with large blotches of dull purple; hypochil broad, cup-shaped; horns 1 in. long, fleshy, bent forward at right angles; middle lobe rhabdoid, with 3 fleshy teeth at the apex; column large, spathulate. Mexico. B.M. 4197. B.R. 23:1. G.M. 32:398; 38:149. F. 1845:59. G.C. 11:4:181. – One of the most striking forms among orchids. Var. Intuscaus, Hort. Brilliant yellow to orange marked with chocolate, Guatemala. Var. superba, Hort; Van Houtte, Fls. yellow, with the sepals and petals heavily blotted with reddish brown. F.S. 7:713. Var. atrata, Hort., is adv.

11. sacca, Batem. Fls. smaller than those of the other species, greenish yellow, changing to deeper yellow at the bases of the segments, regularly speckled with brown; lateral sepal oblate-oblong, the upper one oblong-lanceolate; petals narrower, oblong, all reflexed; hypochil deeply saccate; horns flat, a little twisted, epi-
chil quadrate. Guatemala. I.H. 8:570 (as S. radiata).

12. ecorunata, Lem. Pseudobulbs and lvs. large; scape short, clothed with green bracts, 2-ft.; sepal erect, 2 in. long, ovate, concave, white, petals smaller; labellum reduced to a fleshy sac-like hypochil, ½ in. long, yellow deepening to orange at the base; column as long as the labellum and of the same color. Cent. Amer. B.M. 4885. F.S. 2:181. G.C. 1590:255.

8. Amasina, Hort. Hugh Low. Belongs to the hornless class of which S. ecorunata is a type and is perhaps a variety of S. Lowi. It has large, waxy, clear white, fragrant fls. over 4 in. across, and a very thick, fleshy, saccate labellum. G.M. 36:552. Habitat?

HEINRICH HASELBERG.

STANLEYA (Edward Stanley, Earl of Derby, 1779–
1849, ornithologist, once president Linnæan Society), Cruceifera. Stanleya pinnatifida is a hardy perennial herb about 3 ft. high with the general appearance of a Cleome and bright yellow flowers an inch across borne in terminal spikes a foot or more long. The genus contains 5 species of stout herbs native to the western U.S. It belongs to the Sisyrinchium tribe of the mustard family, which tribe is characterized by long, narrow pods, seeds in a single series and incurved cotyledons. Stanleya is distinguished from neighboring genera by the long, club-shaped buds, cream-colored or yellow fls., and long-stalked ovaries and pods. Other generic characters: sepals linear; petals narrow, long-clawed; stamens 6, nearly equal; seeds numerous, pendulous.

pinnatifida, Natt. (S. pinwaldii, Britton). Stems flexu-
ous; lvs. very variable, commonly pinnatifid; segments lance-oblong or oblong-lanceolate-elliptic, rarely linear, almost entire; terminal segment larger; fls. deep golden yellow, according to D. M. Andrews, May–July. W. Kan. and N. B. to Tex. and S. Calif., in dry clay or alka-
iline soils. B.B. 2:109. – Procurable from collectors of Colorado wild flowers. W. M.

STAFÉLIA (J. B. Van Stapel, Dutch physician, died in the early part of the eighteenth century, who wrote on the plants of Theophrastus). Acalpleiadeae. Car-
ron Flower. Odd fleshy cactus-like plants from South Africa. Schumann, in Engler and Prantl’s "Naturpflanzenfamilien," considers that the genus con-
tains 70-80 species. Decaisne, in DeCandolle’s Pro-
STAPHELYA

1717

STAPHYLEA (Greek, staphyle, cluster; referring to the inflorescence). Celastraceae. Bladder Nut. Ornamental deciduous shrubs, with opposite, stipulate odd-pinnate or 3-foliate leaves and white flowers in terminal, usually nodding panicles followed by capsular bladder-like fruits. The species are all inhabitants of temperate regions, and S. pinata and S. pinaste are hardy north, while S. Colechica is hardy at least as far north as Mass.; S. Bolenderi and S. Emodi are more tender and seem not to be in cultivation in this country. They are all desirable shrubs with handsome bright or light green foliage and pretty white flowers in spring. They are well adapted for shrubbery, but all except S. pinata are liable to become bare and unattractive at the base and are therefore not to be recommended for single specimens. S. Colechica and its hybrid S. elegans are perhaps the most beautiful species while in bloom. The former blooms at an early age and is sometimes forced. Staphylea grow well in almost any kind of soil and position, but do best in a somewhat moist rich soil and partly shaded situation. Prop, by seeds, layers, or cuttings. Greenwood cuttings from forced plants root readily.

Eight species in the temperate regions of the northern hemisphere: shrubs, with smooth striped bark; Ivs. and Ifts. stipulate; Ivs. ovate or oval, with a lighter shaded edge; segments, striped or marked with white, hairy. R.H. 1858, p. 154.—An old garden plant.

glabrifolia, N. E. Br. (S. grandiflora, var, minor, Hort.). Ivs. somewhat small and not hairy, the segments becoming strongly reflexed, dull purple-red with yellowish white lines. G.C. II. 6:269.

In 1856, Blane catalogued the following names, in addition to some of those above: S. angustia, Jacq. (properly S. pieta, Donn.): "Fls. glabrous; corolla yellow, marked with numerous Rufous spots; the orio or circle is marked with large spots of two forms, dark brown, yellow."—S. elatiota (S. deflexa, Jacq.): "Only about 2 in. across, the color greenish or pale red, deeply wrinkled."—S. planiflora, Jacq.: "Flower flat; corolla spreading, sulphur-yellow, lined and spotted with dark purple."—S. renulata, Mass.: "Distinct flowers, red, with whitish blotches, smooth, very fleshy, and with fringed margins."—S. rula, Mass.: "The flowers are of an obscure violet color, variegated with deep purple and pale red transverse stripes, the margins edged with dark violet hairs."—S. Teleocnus, N. E. Br.: "A very rare species from the Tamaro river. Corolla 3 in. in diameter, the face entirely dull, smoky purple, darker at the tips of the lobes."—L. H. B.
STAPHYLEA

3. Lea. 3-foliate.

b. Middle leaflet short-stalked: panicle sessile.

Bumalda, DC. Shrub, 6 ft. high, with upright and spreading slender branches: Its, broadly oval to ovate, shortly acuminate, crenately serrate, with awned teeth, light green, almost glabrous, 1½-3½ in. long; Its, about ½ in. long, in loose, erect panicles 2-3 in. long; sepals yellowish white, little shorter than the white petals; capsule usually 2-lobed, somewhat compressed, ½−1 in. long. June. Japan. S.Z. 1:190.

2903. Staphylea trifolia (X ⅔).

bb. Middle leaflet slender-stalked: panicle stalked.

trifolia, Linn. AMERICAN BLADDERSNUT. Fig. 2903. Upright shrub, with rather stout branches, 6-15 ft. high; Its, oval to ovate, acuminate, finely and sharply serrate, slightly pubescent beneath or almost glabrous, 1½−3 in. long; Its, about ½ in. long, in nodding panicles or umbel-like racemes; sepals greenish white, petals white: capsule much inflated, usually 2-lobed, 1½−2 in. long. April, May. Quebec to Ontario and Minn., south to S. C. and Mo. Gt. 37, p. 526. — Var. pauciflora, Zabel. Low and suckering: Its, smaller, broader, glabrous at length: Its, in short, 3−8-fd. racemes: fr. often 2-lobed, 1½−1¾ in. long.

AA. Lts. 5-7-foliate, only occasionally 3-foliate: panicles stalked.

pinatula, Linn. Upright shrub, attaining 15 ft., sometimes tree-like: Its, 5−7, ovate-oblong, long-acuminate, sharply and finely serrate, glabrous and glaucous beneath, 2−3 in. long: panicles 2−5 in. long, in poducutes about 2 in. long; sepals oval, whitish, glaucous at the base, reddish at the apex, about as long as the oblong petals: capsule 2−3-lobed, much inflated, subglabrous, about 1 in. long. May, June. Europe to W. Asia. Gn. 34, p. 280.

BB. Panicle broad, ovate, upright or nodding: fl.-buds ovate-oblong.

ALFRED RHEDER.

STATICE

STAR APPLE. See Chrysophyllum.

STARFISH FLOWER. Stapelia Asterias.

STARFLOWER. Aster, Treantis, Triteleia and other plants.

STAR GRASS is Chloris traveo.

STAR OF BETHLEHEM. Ornithogalum umbellatum.

STAR THISTLE. Centaurea.

STAR TULIP. Calochortus.

STARWORT. Aster.

STATICE (from a Greek name meaning astringent, given by Pliny to some herb). Plumbaginaceae. SEA LAVENDER. About 120 species well scattered about the world, but mainly sea-coast plants of the northern hemisphere and especially numerous in Asia. Mostly perennial herbs, rarely annual or shrubby, with usually tufted rather long leaves (radical in the herbaceous species), and small blue, white, red, or yellow flowers. Panicles little branched or much branched, spreading and leafless; bracts subtending the fl.-clusters, scale-like, somewhat clasping, usually coriaceous on the back, and with membranous margins; fr. is dense, few- to severalfld. spiclets, or 1 or 2 in the axils of a bract; spiclets usually erect and unilaterally arranged on the branches or more rarely nearly sessile in dense, cylindrical spikes; calyx funnel-shaped, often colored and scarious and persistent. Statice is most readily distinguished from Armeria by the inflorescence. Armeria bearing its flowers in a single globular head.

Statices are of easy cultivation but prefer a rather deep, loose soil. From the delicate nature of the fl.-panicles the species are better suited to rockwork and isolated positions than for mixing in a crowded border. Many of the species are useful for cut-bloom, especially for mixing with other flowers.

INDEX.

australis, 8.
Bassareana, 6, 11.
Bonnellii, 7.
collina, 11.
costa, 13.
eximia, 12.
 bore-alba, 2.

A. Fls. in long, cylindrical spikes.
B. Spikes in an open panicle. 1. Suworowii. 2. superba.
BB. Fls. in more or less unilateral spikes or clusters.
BB. Bractes winged.

C. Calyx blue: corolla white.
D. Plant herbaceous. 3. sinutata.
E. Plant shrubby. 4. macrophylla.
CC. Calyx whitish: corolla blue... 5. speciosa.
CCC. Calyx green or yellowish: corolla red. 6. Tatarica.
CCCC. Calyx and corolla yellow... 7. Bonnellii.
EE. Branches terete or simply angeld

C. Fls. yellow. 8. australis.

FF. Fls. not yellow.

G. Calyx blue.
H. Petioles rather long. 9. Limonium.
EE. Petioles short or none. 10. Gmolinii.
DD. Calyx yellowish or green.
EE. Bracts green. 11. collina.
EE. Bracts white-margined.

FF. Spikelets 4-fl., 12. eximia.
FF. Spikelets 3-fl.. 13. collina.
FFF. Spikelets 3-fl., 14. latifolia.

1. Suworowii. Regel. A tall annual: Its, radical, oblong-elliptic, obtuse, mucronate, 6-9 in. long; margins entire or ciliate: scape several, stout, obtusely angled,
bearing 1 long terminal spike and several distant, sessile lateral ones 4-6 in. long, nearly ½ in. through: fls. rose, small, narrowly obovate, emarginated, June-July, Western Turkestan. B.M. 6599. — A handsome annual, suitable for growing in masses and useful for cut blooms.

2. supélba, Regel. A hardy annual resembling S. Siberia, but this species has thicker, more succulent, obovate leaves and larger, looser, pyramidal panicle. Asia. — According to Wm. Falconer in G.F. 1:283, this species is not as handsome nor as vigorous as S. Siroviari. Var. flore-albo, Benary, is also referred.

3. simátta, Linna. A biennial plant which may be treated as an annual, about 1 ft. high, of a spreading growth: lvs. lyrate-pinnatifid, the lobes round, the terminal bearing a bristle; scapes several, 3-5 winged, the wings produced into linear leaf-like appendages: branches several, 3-winged: floral branches or peduncles broadly 3-winged, the wings dilated below the spikelet and prolonged into 3-margined triangular, acute appendages: spikelets 3-4-fld.: corymb white: calyx large, blue. Late summer. Mediterranean region of Europe. B.M. 71.

4. macrophylla, Brouss. (S. Fórtunii, Hort.), is a garden form of this species. A tender, somewhat shrubby species 3-4 ft. high: stem branched and bearing clusters of large, sessile, ovate-spatulate lvs.: scape leafless, much branched into a large, paniculate corymb: branches winged: spikelets 2-fld.: calyx blue; corolla white. B.M. 4125. B.R. 317. — Cult. in S. Calif. Makes a good pot-plant for winter flowering in a cool greenhouse. T. D. Hatfield, in G.F. 9:496, says: "Old plants are somewhat subject to stem-rot. Plants should be grown in rather undersized pots, in a light soil with which some charcoal has been incorporated, and given perfect drainage, as excessive moisture at the roots is fatal. Propagation is effected by cuttings of the side shoots placed in a cool propagating bed, or better by layering, which is well accomplished in summer by making a notch in each of the side branches and then burying the plant in ordinary garden soil below the incisions." From the Canaries.

5. speciosa, Linn. A hardy perennial, about 1 ft. high: lvs. ovate, attenuate on the petiole, stiffly and shortly mucronate tipped, often purplish underneath; scape somewhat angled; branches angled and winged, recurved, not crowded, bearing unilateral, sericopiously capitate, densely inbricate short spikes; calyx perisent, crowned with a silvery white funnel-shaped border; corolla purple, very deciduous. Midsummer. Siberia. B.M. 656.

6. Tatárica, Linn. (S. inbovan, var. hybrida, Hort. S. Bessériou, var. Bessériou), is a hardy perennial, 1-2 ft. high: lvs. tufted, ovate to oblong-spatulate, 4-6 in. long, narrowed into the petiole: scape widely branched: branches triangular, slender, narrowly 3-winged, somewhat recurved: spikelets 1-2-fld., in usually lax, simple or branched spikes: fls. 2 lines long, typically red, with several garden varieties. Caucasus. B.M. 6550. Var. nana, Hort. (S. inbovan, var. nana), is a dwarf form.

7. Bouéniéli, Lestib. Fls. 2394. A tender annual or biennial plant, about 18 in. high: lvs. rosal, spatulate, sinuately lyrate, hairy, subulate-pointed at the apex; lobes rounded, the terminal larger: scapes several from the same root, terete; branches angled, dichotomously cymose: ultimate branches obovate, 3-winged, forked at the apex: fls. yellow, individually large for the genus, clustered in the fork of the branches or peduncle: bracts scarious, the inner furnished with sharp spines. Summer. Algeria. R.F. 1885: 276. B.M. 5158. F.S. 29: 2129.

2394 Statice Bondouelli.

The flowers are about one-third inch across.
fioriculture, seed raising, the nursery business, and viticulture were subjects of special reports in the Eleventh Census, 1890. In this Cyclopaedia statistics appear under such large topics as Horticulture, Cut-flowers, Floriculture, and the various articles on states.

Stellaria

Steironema (Greek, sterile thread; referring to staminodia). *Primulacea. L. longifolia, Pers.** Has all erect, with opposite entire leaves and rather large yellow axillary and leafy-corimbous flowers: corolla rotate, 5-parted; stamens 6, opposite the lobes, with 3 alternating subulate staminodia: capsule 1-seeded: seeds many on a central placenta. Differs from *Lyssimachia* in the presence of the sterile stamens, and in the cultivation of the corolla. Useful showy plants for borders in damp soil. All perennials.

ciliatum, Raf. (Lyssimachia ciliata, Linn.). Stem 1-4 ft. high, sparingly branched, nearly glabrous; lvs. 2-6 in. long, ovate-oblong to ovate-lanceolate, ciliolate, acute or acuminate, base rounded; petals ½ in. long, ciliate; lvs. on slender peduncles, showy, 6-12 lines broad; corolla-lobes rounded erose, often mucronate: capsule longer than the calyx. Moist thickets. U. S. longifolium, Gray (Lyssimachia quadriflora, Sims. *L. longifolia*, Pursh.). Erect, strict and glabrous: stem 4-angled, 1-2 ft. high; lvs. linear, thick and firm, 1-nerved, acute at both ends, 1-4 in. long, smaller ones clustered in the axils, margins slightly revolute, basal broader and petiolate: peduncles slender, ½-1½ in. long; fls. numerous, often appearing clustered; corolla 8-12 lines broad, the lobes oval, ciliate, often erose. Eastern U. S. June, July, B.M. 600 (as *L. quadriflora*).—Very showy when in flower. Offered by collectors of native plants.

Stellaria (Latin, stell: referring to the form of the flower). *Caryophyllaceae.* A genus of about 70 species of annual or perennial herbs, mostly diffuse, tufted or weakly ascending. They are scattered about the whole world, but are mainly found in the temperate regions. Lvs. opposite, simple; fls. usually white and disposed in terminal or rarely axillary leafy or naked paniculate cymes: sepals usually 5; petals usually 5, rarely none, bicoloured, often deeply; stamens 3-7; styles 3-4, rarely 5: capsule ovoid or oblong, relatively short, dehiscent by as many or twice as many teeth as there are carpels. See Gray, *Syn. Flora of N. Amer.*

a. Fls. 7-10 lines across.

Holostea, Linn. Easter Bell. A hardy perennial, erect, 6-18 in. high, simple or somewhat branched, from a creeping rootstock: lvs. sessile, lanceolate, 1-3 in. long; fls. white, abundant, in a terminal leafy panicle; sepals one-half or two-thirds as long as the petals. May, June. En., Asia. B. B. 222. —This and the next are desirable for dry banks where grass will not grow well and for other carpeting purposes.

b. Lvs. narrow.

gramineas, Linn. A slender-stemmed, hardy perennial plant not usually over 6 in. high, from a creeping rootstock: lvs. sessile, linear lanceolate, usually about 1 in. long; fls. white, in terminal or lateral scariosus bracted open panicles; sepals and petals nearly equal in length. May, June. Europe; naturalized in America. B. B. 2: 23. —Var. *aurea, Hort., Golden Stitchwort,* has pale yellow leaves and is lower and more matted in growth. Well adapted for sandy banks where grass does not grow well.

Stellaria media (6 × 3). One of the commonest of chickweeds, blooming nearly every month in the year.

St. Bernard's Lily. *Anthericum Liliger.*

St. Bruno's Lily. *Paradisea Liliumstrum.*

2395. Stauntonia hexaphylla (X 2).

Stauntonia (G. L. Staunton, physician, 1740-1801). *Berberidaceae.* A genus of 2 species of tender evergreen woody vines, one from China and one from Japan. The lvs. have 3-7 digitate leaflets. Fls. monoeious, in axillary, few-fl. racemes; sepals 6, petaloïd; petals wanting; sterile fl. with 6 monadelphous stamens, anthers birimose, ovary rudimentary: fertile fl. with 6 sterile stamens and 3 carpels.

hexaphylla, Decne. Fig. 2395. A handsome vine becoming 40 ft. high: lvs. ovoid, about 2 in. long, stalked; fls. in axillary clusters, white, fragrant in spring; berry about 4 in. long, splashed with scarlet. Japan. A.G. 12: 139.

F. W. BARCLAY.

The Stauntonias are beautiful evergreen climbers and well adapted to the soil and climate of the South Atlantic and Gulf region. Both *S. hexaphylla* and the related *Haematocallis latifolia* (known also as *Stauntonia latifolia*) grow well in the writer's Florida garden, although they are not such very luxuriant climbers as are the Alaminas, Thunbergias and Bignonias. It requires a few years before they are fully established. They are excellent subjects to be planted on old stumps and on small trees, such as catalpa and mulberry trees, which they perfectly cover in the course of time with their pretty evergreen leaves and their rather insignificant but powerfully fragrant flowers. They will not flourish in dry, hot, sandy soil, demanding for their welfare rather moist, shady spots containing a profusion of humus. A little commercial fertilizer containing a fair amount of nitrogen and potash will also prove very beneficial. The need of some kind of a stimulant is shown by the plant itself, which assumes a rather yellowish cast in the green color of the foliage. A few days after it has received some plant-food the foliage shows a very beautiful dark green color. These two species and the beautiful *Kodosura japonica* are valuable additions to the garden flora of our southern states.

H. NEHRING

2396. Stellaria media (6 × 3).
of the growing season and in frames, etc., during winter. Lvs. 2 lines to 1½ in. long, the lower petiolate, the upper sessile; fls. axillary or in terminal leafy cymes; petals longer than the petals. Ep. August 1721 - 2:21. It is considered to be a good fall and winter cover plant in orchards and vineyards, but is never cultivated. It is an indication of good soil.

W. F. BARCLAY.

stenacis. See Erigeron.

stemandra. Terminal, rare, stamens subtropical Bermuda lawn similar Stifle anthers in. Used is species p Florida, undershrubs lis. A L., 1721 raceme long, not a Australia. more the 3 base: late, 4-seeded, mens rowiy one rowiy. It rise like, Pacific 1893-1895 showy, American thdcece. The 14 ft. 4:41. It has dense anthers, low-growing, stout with lvs. 1893-1895 and flowers clustered short, creeping bracts R. Cult, with steepers, ovary 2-4 lobed, indusium Barclay. thrives in the 2-lobed, Barrett, cup-shaped fls., ovate-lanceolate 14 ft. 2-4 in. long, with short peti- oles: fls. usually less than ¾ in. long, greenish white, in umbels of 10-20 fls.; peduncles shorter than the lvs. B.R. 6:441. — Cult. in Calif. F. W. BARCLAY.

stenoloma. (Greek, narrow- fringed.) Polygalliæce. A genus of ferns formerly included with Davallia; characterized by the decompound fls., with cuneate ultimate segments, and the compound usually cuneate, or cup-shaped indusium which is attached at its sides and open only at the top. For culture, see Fern.

tenuifolia, Fée. Lvs. 12-18 in. long, 6-9 in. wide, quadrangular, on polished dark brown stalks which rise from stout creeping fibrous rootstocks; ultimate divisions with toothed cuneate lobes; sori terminal, usually solitary. Tropical Asia and Aus-Polynesia.

var. stricta, Hort., has a more upright habit and no roser leaves.

L. M. UNDERWOOD.

stenomessos. (Greek, small and middle; alluding to the cuneate fls., which is usually an inch or less.) Anagyridaceae. About 19 species of tropical American bulbous herbs, with linear to broadly strap-shaped leaves and red, reddish yellow or yellow flowers, in a usually many-flowered umbel; perianth-tube long, erect or recurved, the lobes short, crested; filaments straight, connected by a membrane: capsule somewhat globose, 3-furrowed, 3-located; seeds black. Stemomessos require a good soil and a sunny house with a temperature never below 15°. During the growing season they should have plenty of water, but when at rest comparative dryness is necessary. The offsets should be removed from the old bulbs before growth commences. The plants continue in bloom a number of weeks.

A. Style shorter than the perianth.

incarnatum, Baker. (Cobrysta incarnata, Sw.) A tender plant: bulb ovate, 2-3 in. through; lvs. thick, glaucous, obtuse, about 1½ ft. long, strap-shaped; scape 2 ft. high; fls. 4-5 in. long, few to many in an umbel, variable in color but typically crimson, with a green spot on each segment. August 1721. Ill. 58:125 (perianth-limb light yellow). Gn. 50:1076.

AA. Style longer than the perianth.

flavum, Herb. A tender plant: bulb somewhat globose, 1 in. through: lvs. about 1 ft. long, obscurely pedicled, at first compressed on the margin; scape 1 ft. high; fls. yellow about 1 ft. long, few in an umbel. B.M. 2641. B.R. 10:778 (as Chrysiphiata flavum).

F. W. BARCLAY.

stenotaphrum. (Greek, stenos, narrow, and taphros, a trench; the spikelets being partially embedded in the rachis). Graminææ. About 2 species, both hardy, low-growing, small, found in the southern regions, one of which is found along the Gulf coast, especially in Florida, where it is utilized as a lawn grass. In this respect it is similar to Bermuda grass, being naturally adapted to sandy soil, which it binds by its rhizomes and creeping habit as does that grass. Spikelets 2-fl., the lower staminate or neutral 2-4 in a short spike, which is embedded in the alternate notches of the broad rachis, thus forming a spike-like panicle. Creeping grasses with compressed culms and flat, divergent leaves.

amerium, Schrank. (S. occidentale, Kunze. S. glabra, Trin.). ST. AUGUSTINE GRASS. Flowering branches erect, 6-12 in. high. Var. variegatum has leaves striped with white, and is used as a basket plant.

A. S. Hitchcock.

The introduced form of St. Augustine Grass is one of the most valuable lawn grasses for the extreme South. It will grow on almost any soil and turves even in shade. The leaves are rather broad, never over 6 in. high and require little moving. This grass does not become coarse, does not hold dew or water, is particularly good for house lots and lawns. It does not need as much water as Bermuda or St. Lucie grass. It is mostly propagated by cuttings.

E. N. REASONER.

stephanandra. (Greek, stephanos, crown, and andros, male stamen; alluding to the persistent crown of stamens). Rosaceæ. Ornamental small deciduous shrubs with alternate, stipulate, lobed lvs. and with small white fls. in terminal panicles. Graceful plants, with handsome foliage, hardy north or almost so. Well adapted for borders of shrubberies or rocky banks on account of their graceful habit and handsome foliage. Prop, easily by greenhouse cuttings under glass and by seeds; probably also by hardwood cuttings.

Four species in China and Japan, all undershrubs with slender more or less zigzag branches; fls. slender pedicelled, small, with cup-shaped calyx-tube; sepals and petals 5; stamens 10-20; carpel 1; pod with 1 or 2 shiny seeds, dehiscent only at the base. Closedly allied to Neillia and distinguished chiefly by the cup-shaped calyx-tube and the completely dehiscent 1-2-seeded pod.

Hickoas, Sieb. & Zucc. (S. indica, Zabel). Shrub, 5 ft. high, almost glabrous, with angular spreading distinctly zigzag branches; lvs. triangular-ovate, cordate or truncate at the base, long-acuminate, incisedly lobed and serrate, the lower incisions often not to the midrib, pubescent only on the veins beneath and grayish.
green, ½-1½ in. long; fls. white, about ¼ in. across, in terminal short, 8-12-fl., usually paniced racemes; stamens 10. June, Japan, Korea. Oc. 55, p. H1.

**Tannaka, Franch. & Sar. Fig. 2397. Shrub, 5 ft. high, almost glabrous: lvs. triangular-ovate, slightly cordate at the base, abruptly and long-acuminate, usually 3-lobed and doubly serrate or lobulate, pubescent only on the veins beneath, 1½-3 in. long; fls. in terminal loose panicles, slender-peduncled, ½ in. across; stamens 15-20. June, July. Japan. B. M. 7593. Gt. 45:1431.—Handsomer shrub much resembling Neillia in foliage, coloring in fall brilliant orange and scarlet or yellow.

Alfred Rember.

Stephanandra hirta is closely allied to Spiraea and has the Spiraea style of beauty. It grows 2-3 ft. high and has long, slender branches which are densely and regularly intertwined in a fan-like manner. Its habit of growth is fountain-like, the branches being gracefully pendent. Its flowers are snowy white and, although minute, are so numerous that the plant becomes very showy. It is especially fitted for the back of herbaceous borders or for the front of larger shrubs. Its foliage is deeply toothed, tinted red in early spring and deep glossy green during spring and summer. In the autumn it puts on unusual tints of reddish purple. This species can be increased by cuttings, but it is usually propagated by layers, which root readily and are easily transplanted. The foliage becomes so dense that the growth of weeds beneath its thickly set branches is effectually prevented.

J. W. Adams.

Stephanotis. (from Greek words for crown and esp: alluding to the 5-carpel-like appendages on the staminal crown). Aseptipetalae. Polishing glabrous shrubs of the Old World tropics, of about fourteen species, one of which, *S. floribunda,* is one of the best of greenhouse climbers. Lvs. opposite and coriaceous; fls. large and showy, white, in umbel-like cymes from the axils; calyx 5-parted; corolla funnel or salverform, the tube cylindrical and usually enlarged at the base and sometimes at the throat, the lobes 3; corolla-tube mostly of 5 scales that are usually free at the apex and adnate to the anthers on the back, the anthers with an inflexed tip or membrane; fr. a more or less fleshy follicle.

Stephanotis floribunda is one of the handsomest of our greenhouse climbers, blooming in spring and summer. In the days when short blooms were used in bouquets it was one of the most valuable flowers that the florist had, its large waxy umbels having a delicious odor. It should be kept about 60° during the winter, with less water. In the summer it delights in the temperature of our warmest houses with plenty of syringing. When given too much root room it grows very rampant and is less inclined to flower. Therefore a tub or a border where its roots are restricted is better, with an annual top-dressing of good manure. Its greatest enemy is the mealy bug, which, if allowed to get a lodgment on the plant, is a great pest. Seed pods are occasionally seen on the plant, but it is easily propagated by cuttings from pieces of last year’s growth and they strike freely in sand. This is also one of the most valuable plants for private establishments. When grown in a 12- or 15-inch pot or tub and trained on a balloon trellis it makes splendid specimens and is often seen at our horticultural exhibitions; and when in bloom there is nothing finer for the conservatory.-W. Scott.
foliaceous, each carpel distinct and either woody or membranaceous and sometimes opening and spreading into a leaf-like body long before maturity (Fig. 2399); seeds 1-many, sometimes arillose or winged, sometimes hairy. Sterculia have very various foliage, the leaves of different species being simple, palmately lobed or digitate. The flowers are mostly in panicles or large clusters, sometimes large and showy, varying from greenish to dull red and scarlet. The species are grown mostly for street and lawn trees. The only kinds that are generally known in this country are S. planatiformia, S. diversifolia, and S. acerifolia, the last two known in California as Brachychitons. All are easily grown from seeds. Sterculiasceous plants are allied to the Malvaceae.

2399. Mature follicles or fruits of Sterculia planatiformia, bearing seeds on the margins. Natural size.

A. Carpels expanding before maturity into leaf-like bodies, exposing the seeds.

planatiformia, Linn. f. (Firmiana planatiformia, Schott & Endl.). JAPANESE VARIETY TREE. CHINESE PARASOL TREE. Fig. 2399. Strong-growing, smooth-barked, round-headed tree of medium size, with deciduous foliage: Ivs. very large, glabrous, cordate-ovariolus, palmately 3-5-lobed like maple lvs., the lobes sharply-pointed: fls. small, greenish, with reflexed calyx-lobes, in terminal panicles: carpels 4 or 5, bearing globose pea-like seeds. — Said to be native of China and Japan. Hemsley admits it to the “Flora of China,” and Sargent says in “Forest Flora of Japan” that it is one of the several Chinese or Corean trees grown in Japan. Bentham, in “Flora Hongkongensis,” says that it is native to China. Franchet and Savatier, in “Enumeratio Plantarum Japonicarum,” admit it as an indigenous Japanese species. Now a frequent tree from Georgia south. Excellent for lawns and shade.

AA. Carpels not becoming leaf-like.

B. Ivs. all digitately compound.

futida, Linn. Tall, handsome tree, with all parts glabrous except the young foliage: Ivs. crowded at the ends of the branchlets, of 5-11 elliptic, oblong or lanceolate, entire, pointed, thick leathery: fls. large, dull red, in simple or branched racemes, appearing with the Ivs.: fls. large and woody follicles, glabrous outside, often 3 in. or more in diameter, and containing black, round, shining, of size of a hazelnut. Tropical Africa and Asia to Australia.—Grown in southern Florida. In its native countries, the seeds are said to be roasted and eaten.

BB. Ivs. entire or only lobed (compound forms sometimes borne on S. diversifolia) c. Follicles pubescent outside and corky inside.

alata, Roxbr. Large tree, the young parts yellow-pubescent, the bark ash-colored: Ivs. long-petioled, large, deeply 3-5-lobed, the lobes oblong-lanceolate to rhomboid, glabrous and shining: fls. brilliant scarlet, the calyx about 3 in. long, in large, showy trusses; follicles large, glabrous, long-stalked. Australia.—A most showy tree when in bloom, and planted on streets and lawns in California. Thrives in either dry or fairly moist places.

diversifolia, G. Don (Brachychiton populneum, R. Br.). BRACHYCHITON. FLAME TREE. Evergreen tree, reaching a height of 60 ft., glabrous: Ivs. long-petioled, large, deeply 3-5-lobed, the lobes oblong-lanceolate to rhomboid, glabrous and shining: fls. brilliant scarlet, the calyx about 3 in. long, in large, showy trusses; follicles large, glabrous, long-stalked. Australia.—Grown in south Florida. A most showy tree when in bloom, and planted on streets and lawns in California. Thrives in either dry or fairly moist places.

aceriifolia, A. Cunn. (Brachychiton aceriifolium, F. Muell.). BRACHYCHITON. FLAME TREE. Tall, glabrous, entire, sometimes variously 3-5-lobed on the same tree, all parts acuminate: fls. tomentose when young, bell-shaped, greenish red and white or yellowish white, in axillary panicles: follicles 1½-3½ in. long, oval, glabrous, stalked. Australia.—Planted in California, and commoner than the last.

Var. occidentalis, Benth. (Brachychiton Grigorii, F. Muell. S. Grigorii, Hort.). Ivs. deeply 3-5-lobed, the lobes narrow, sometimes with short lateral ones: fls. salmon-color; calyx smaller and more tomentose. West Australia.—Offered in S. California.

STEREOSPERMUM

(Greek; hard seed). Bignoniaceae. About 10 species of tropical trees native to Asia and Africa, of which 2 are cult. in S. Fla. and S. Calif. They have handsome foliage, which is once or twice pinnate, and large bignonia-like flowers of pale yellow or pale rose, borne in large, lax, terminal panicles; calyx ovate, open in the bud; corolla 4-5⁄3 in. long, corona lobes 5, nearly equal, round, crisped, toothed or laciniate; capsule long, terete, loculicidally 2-valved; seeds in 1 or 2 series.

Stereospermum Sinicium seems to revel in the light sandy soil of the Florida gardens. Its abundant, large, fern-like, crisped bipinnate foliage and its luxuriant symmetrical growth combine to make it an object of great beauty. It grows to a height of 10 to 12 ft. in one season, and if not cut down by a severe freeze it attains a height of 20 ft. in two years, provided the soil is made rich by a good fertilizer. Planted out in a conservatory in the North it soon reaches stately dimensions. It is easily raised from cuttings placed in sand. S. suaveolens lacks the elegance of its congeners, and it does not sprout as readily after it has been frozen down.

A. Follicles twice-pinnate: fls. pale yellow.

Sinicium, Hance. Tree, said to attain 60 ft. 1 vs. opposite, bipinnate; pinnae about 4 pairs, each pinna with about 7 Ivs.; fls. ovate-lanceolate, 2 x ½ in.; corolla pale sulfur, 3 in. long; lobes 1 in. long, somewhat crisped. Hong Kong.

AA. Follicles once-pinnate: fls. pale or dark purple.

suaveolens, DC. Tree, 30-60 ft. high; Ivs. 12-18 in. long; fls. 7-9, broadly elliptic, 2 x ½ in.; pinacle many-bladed, viscous, hairy: fls. 1½ in. long; lobes crisped-crenate. India.

H. NEHRING and W. M.
STERNBERGIA (after Count Caspar Sternberg, a botanist and writer, 1756-1839). Amoryliaceae. A genus of 4 species of low-growing hardly bulbous herbs from eastern Europe to Asia Minor, with strap-shaped or linear leaves and bright yellow crocus-like flowers. Perianth regular, erect, funnel-form; stamens inserted on the perianth-tube; filaments long, stiff; anthers dorsifix; versatile; fr. squarrose, scarcely dehiscing; seeds subglobose. The bulbs should be planted rather deeply, about 6 inches. J. N. Gerard says of their culture that they require a rather heavy soil, a somewhat dry, sunny position where they will be well ripened in summer.

2400. Sternbergia lutea (X½).

A. Fls. and lvs. appearing together.

b. Blooming in fall.

lutea, Ker-Gawl! (Amorylitis lutea, Linn.). Fig. 2400. Bulb about ½ in. through; lvs. 6-8 to a bulb, strap-shaped, becoming 1 ft. long; fls. yellow, 1-4 to a bulb; tube less than ½ in. long; perianth-segments about ½ in. long. Mediterranean region of Eu. and Asia. B. M. 296. Gn. 44, p. 365; 47, p. 114. G. C. II. 13:21.

b. Blooming in spring.

Fischelian, Roem. Has the habit of S. lutea, but differs in season of bloom and stipulate ovary and capsule. Wm. Watson says (G. F. 8:144) that the fls. are a brighter yellow and somewhat larger as the largest forms of S. lutea. Caucasus. B. M. 7411.

AA. Fls. and lvs. appearing at different seasons.

b. Lvs. linear; fls. small.

colchiciflora, Waldst. & Kit. Bulb about ½ in. through; lvs. appearing in spring, 3-4 in. long; fls. yellow, in fall; segments about 1 in. long; 2 lines broad. East Europe, Asia Minor. B. R. 23:2968.

b. Lvs. strap-shaped; fls. large.

F. W. Barclay.

STEVENSONIA (named after one of the governors of Mauritius). Paeoniaceae. A monotypic genus of tropical palms from the Seychelles. Tall trees, spiny throughout, or at length nearly smooth, with ringed eared; lvs. terminal, spreading-recurved, the cushion-obovate blade convex, hied, oblique at the base, pinnate-nerved, the margins split, segments deeply cut, the mid-nerves and nerves prominent, scaly beneath; petiole plano-convex; sheath deeply split, scaly, spinose; spadix erect; pedicel long, compressed at the base; branches thick:—spathe 2, the lower one persistent, prickly, the upper one smooth, woody, club-shaped, deciduous; fl. club-shaped, small, orange-colored. For culture, see Pinen.

J. G. Smith.

STEVIAS. For the Stevia of florists, see Pignacera. True Stevias are not described in any of the horticultural literature that is now in the American trade.

STEWARTIA. See Stewartia.

STICK-TIGHT. Vernacular for burs of Cynoglossum.

STIGMAPH'SLON (Greek, stigma and long; referring to the leaf-like appendages of the stigma). Sometimes written Stigmaphillum. Malpighiaceae. About 50 species of tropical American woody vines with usually opposite, entire to lobed, pedicled leaves and yellow flowers. In axillary, peduncled umbel-like cymes: calyx 5-parted, 8-glandular; stamens 10, of which 6 are perfect and 4 antherless or deformed; styles 3; stigmas produced into 5-lobed-like or hooked appendages: ovary 3-lobed.

ciliatum, J. H. A tender woody twining vine; lvs. evergreen, smooth, opposite, coriaceous, ciliate; fls. bright yellow, large, in peduncled axillary clusters of 3-6. P. M. 1577. Gn. 33:567.—Apparently the only species in the trade and possibly the most handsome of the genus. G. W. Oliver says S. ciliatum is one of the best medium-sized vines for outdoor culture. Outdoor culture is of little service and thrives in the greenhouse only when planted out. September is the best month for propagation. On outdoor plants much of the wood is useless for this purpose being too green. Choose the wood made early in the season; a heel or joint is not necessary; root in bottom heat and carry through the winter in the greenhouse as small plants. Ernest Brunton says of its culture in the S. Calif. that it must have shade, protection from dry or hot winds, and an open soil. Under the right conditions it flowers admirably.

F. W. Barclay.

STILES, WILLIAM AUGUSTUS, journalist, editor and park commissioner, was born March 9, 1837, at Deckertown, Sussex county, in northern New Jersey, and died October 6, 1897, in Jersey city, N. J. His grandfather settled on a farm near Deckertown in 1819, where his father, Edward A. Stiles, in 1833 founded Mount Retreat Seminary, a successful school of the highest rank during the following thirty years. Here William A. Stiles received his early education; as a boy he showed great love for classical literature and unusual proficiency in music and mathematics. He was distinguished as a student at Yale, graduating in 1859 in a class which included many men who have since attained high rank in public affairs. Prevented from taking up the profession of law by ill health and weakness and defective eyesight, his many-sided nature found expression in diversified activities. He was in turn a teacher, assistant superintendent of public schools, surveyor on the Pacific coast, writer of political articles, secretary of the Senate of New Jersey, actuary of a life insurance company, and gardener in the New York custom house. During a long period of illness and almost total blindness he acquired systematic knowledge of plant-life from readings by his sisters, and this gave impulse toward subsequent study on broader lines. He brought together many rare and choice species of plants, and made interesting experiments on the farm. Love of nature was henceforth a dominant force with him. His articles in the daily press of New York on the various interests of country life attracted wide attention, and led to his appointment as an editorial writer of the New York Tribune, a relation which continued throughout his lifetime. In 1883 he became agricultural editor of the Highfields Press. Keenly interested in introducing scientific discoveries and improved methods into general practice, he established relations with the foremost agriculturists abroad and at home, and made important and useful valuable exponent of the best knowledge of the time. His masterly conduct of the page during the next five years set a high standard for journalism in this field, and established his reputation as a specialist in agriculture and cognate subjects. On the founding of "Garden and Forest" in 1888, William A. Stiles was invited to be the managing editor. For nearly ten
years, to the close of his life, he devoted himself to this journal through vigorous editorial writing and management, and steadily maintained the high character of the most able and influential periodical in America.

His ripe scholarship, sound judgment, masterly use of English, and persistent energy, all contributed to the success of this part of his lifework, and his profound, sympathetic understanding of contact with nature as a human and spiritual need, characterized all his activities. For many years he rendered con-pleasurable service in working for the establishment of smaller parks easily accessible to the poor, and for the wise conduct of the larger parks and their preservation from invasion and despoliation. His special ability and influence received public recognition in 1896, when he was appointed a park commis-
sioner of New York city, a position in which he rendered signal and valuable service until the time of his death. William A. Stiles was unmarried. He had a fund of inimitable wit and humor, and was the warm and honored friend of the best men and women in the communities in which he lived.

M. B. COULTON.

STILLINGIA (after Dr. Benj. Stillingsleev, an English botanist). Enphasiscer. About 15 species of herbs or shrubs from North and South America with alternate, bipinnate leaves and small, inconspicuous, sparse flowers in terminal spikes. The genus is closely allied to Sapium, but differs mainly in the fruit, which in Stillingia is of 2-3 dry 1-seeded carpels with no central achenebase but with a beak, persistent, 3-horned receptacle, while in Sapnum the fruit dehisces by splitting down the back of each carpel and a central axis to which the seed is for a long time persistent: the large receptacle is also wanting in Sapnum.

SYIIVATICA, Limn. QUEEN'S DELIGHT. A half-hardy perennial herb with a woody root: stems clustered, 2-3 ft. high; leaves numbering, very short-petioled, narrow, linear-lanceolate to obovate, obtusely serrate: fx. yellowish, in terminal spikes. Spring to fall. Southern states. According to Mueller's "Seeds Extra Tropical Plants," the root is extensively used for its emetic and purgative properties. C. D. Beadle reports that the plant has stood a temperature of -9° at Biltmore, N. C. The plant grows readily from seed, but does not bear transplanting well.

For S. schiifera, see Sapnum schiifera.

F. W. BARCLAY.

STIPA (Greek, stipe, tow; in allusion to the plumose awns of one of the original species). Gramineae. A large genus of about 160 species, throughout the world excepting colder parts, with a characteristic of the plains, savannas and steppes. The sharp, pointed awns of some species are troublesome or even dangerous to horses, especially in the tendency of their tendency to work through the skin and into the vital organs. Perennial grasses with narrow involu-
tive leaves and loose panicles; spikelets 1-fl.; empty glumes membranaceous, longer than the indurated fl.

The plant grows readily from seed, but does not bear transplanting well.

F. W. BARCLAY.

STILODES (for botany, see Matthiola. Fig. 249); also compare Figs. 424, 1377 and 2462) are divided into two groups, Summer and Winter Stocks. The former are annuals and therefore blossom in the first summer; the latter are biennials and bloom in the second year, or, if sown very early, late in the fall or the winter of the first year. Fail or intermediate Stocks are between these two groups; they bloom profusely in the autumn.

The seed of the Summer Stocks, or, as they are commonly called, "Ten Weeks' Stocks," is sown from the end of February until April, mostly in a lukewarm hot-
bed, which must be sunny and well aired. Good clean garden soil, well mixed with sand and free from manure, is the proper soil for sowing the seed in. The seed will germinate in 6-10 days, the light-seeded sorts germinating quicker than the dark-seeded kinds. Air must be admitted as soon as the seeds have germinated.

The development of the plants depends now principally on careful watering, which is done mostly with watering pots and at the same time by spraying with a fine spray attached to the spout of the watering pot. After a frost has formed on the top of the soil, the spray is discontinued and the pots are watered with the pipe of the can. This watering is done about 6 in. in clear, sunny weather, and in the morning when the weather is cold. Very little watering is done in continuously cloudy or rainy weather. The watering of the plants is the most particular and important part in the cultivation in pots, for if due care is not exercised a white maggot will make its appearance while the plants are in bud and destroy the roots. The common flea-beetle
STOCKS

is another of the enemies of Stocks; this often appears in large numbers and eats the leaves of the young plants. Frequent syringing with water is the only remedy found so far against these pests when they infest Stocks.

After the plants have been in bloom for some time the double-flowering specimens are cut out and the watering is continued carefully until the seed-pods which form on the single plants show indications of ripening, which is in October. The plants are then pulled and tied in bundles, which are hung up in dry sheds until the middle or the latter part of November and December, in which time the seed fully matures in the pods. Now comes the most important part of seed-saving of Stocks. The bundles of plants are taken down, the roots and part of the stems cut off, and the stalks are taken in hand by expert gardeners, who sort them, for common seed and also for the seed stock. The pods indicate by their shape, size and form whether the seeds contained therein will produce a high percentage of double flowers the following year, and the selection is done with care. The seed that will go on the market can be vastly improved by the removal of "wild" pods, which contain seeds that produce nothing but single flowers. The seeds are removed by hand from the pods, mostly by women and children. CARL CROPP.

The double-flowered varieties of Matthiola incana, var. annua, commonly known as "Ten Weeks," or "Summer Flowering Stocks," are among the most fragrant and pleasing of common garden annuals. They are readily raised from seed sown in a gentle heat about the first week in April, keeping them close for a few days until germinated, gradually injuring them to an abundance of air as they increase in size, and finally, towards the end of May, transferring them to the flower garden or border where they are intended to flower, choosing a dull or showery day for the purpose.

The varieties of M. incana, though perennial in their native habitat, are best treated here as annuals, and are well worth growing as pot-plants, either for cutting or the decoration of the conservatory during the winter and early spring months. They are known in the trade in this country as "Boston Florists' Stock," "Princess Alice," "Cut-and-come-again," "East Lothian," and "Brompton Stocks." Though they are as readily propagated from seed as the "Ten Weeks," they require a much longer period of time to grow; therefore, those intended for early winter flowering should be sown in June, while those intended for spring flowering should be sown about the middle of August. Fill a number of 6-inch pots with sifted loam and plant about three seeds in each pot; place them in a close shaded frame till germinated; as soon as they commence to grow reduce the seedlings to one in each pot. They must not be allowed to suffer for water at any time or they will lose their leaves. As soon as the pots are fairly well filled with roots (though they must not become potbound), they should be shifted on into larger sizes until they reach a 4- or 5-inch pot. The soil best suited to them is a rich, heavy loam. As soon as the plants show signs of flowering they are greatly benefited by an occasional watering of weak liquid cow or sheep manure water. Those sown in June should be grown outside until the approach of cold weather, when they should be transferred to the house where they are intended to flower, while those sown in August should be grown on in coldframes until very cold weather sets in, when they should be placed in a cool-house, keeping them at a temperature of about 45°. Stocks while growing in the greenhouse are very subject to the attacks of green- and black-fly; they should, therefore, be fumigated at least once in two weeks, or should have tobacco stems placed among the pots.

Seed of both M. annua and M. incana is imported from Germany, principally Erfurt and Quedlinburg, where plants are specially grown for seed which will produce double flowers (see Gardener's Chronicle, 1866, p. 74; also DR. M. T. Masters' Vegetable Teratology Appendix).

EDWARD J. CANNING.
STOCK, TEN WEEKS'. See Stocks and Matthiola incana, var. annua.

STOCK, VIRGINIAN. Malcomia maritima.

STOKES' ASTER. See Stokesia.

STOKESIA (Jonathan Stokes, M.D., 1755-1831, English botanist). *Compéter.* Stokesia. Stokes' Aster is one of the rarest, choicest and most distinct of American hardy perennial herbs. It is a blue-flowered plant about a foot high which at first glance has points in common with China asters, CentOS and clary. The heads are 3 or 4 in. across in cultivation. The marginal row of flowers is composed of about 15 ray-like corollas, which have a very short tube at the base and are much broadened at the apex and cut into 5 long, narrow strips.

Stokes' Aster is hardy as far north as Rochester, N.Y., and Boston, Mass. Probably many persons have been deterred from trying it because it is native only to South Carolina and Georgia, and because it is considered a greenhouse subject in some standard works on gardening. The fact that it is found wild in wet pine barrens is also deceptive, for the roots, as Woodson and Keller testify, will decay if water stands on the soil in winter. Moreover, the plant has been praised by Meehan for its drought-resistant qualities. Stokes' Aster should be planted in a well-drained, sandy loam, not in cold and heavy clay. It blooms from August until hard frost. According to Chapman, the heads of wild specimens are only an inch across, but the size of heads in cultivated plants is swayed by many horticultural experts to be 3-4 in. across. J. B. Keller writes that Stokes' Aster is frequently used for cut-flowers. In the wild, the heads are few in a cluster or solitary; in cultivation a good branch sometimes bears as many as 9 heads. No double form seems to have appeared.

Generic characters: heads many-flowered, each flower a much larger, deeply 5-cleft involucre, subglobose; outer bracts prolonged into a large, leafy, bristly-fringed appendage: abaxial 3-angled, smooth; pappus of 4-5 thread-like, deciduous scales.

cyanae. Stokes' Aster. Fig. 2403. Much-branched, hardy perennial herb, 1-2 ft. high: branches often purplish; lvs. lanceolate; radical ones entire, tapering at the base into long, flattened stalks; cauline lvs. gradually becoming sessile, the uppermost with a few teeth near the base and half-clasping; fls. blue or purplish blue, 3-4 in. across. Aug.-Oct. Ga., S. C. B.M. 1906. Mn. 5, p. 214. R.H. 1892:211. W. M.

STONECROP. See Sedum.

STORAGE. Various ideals are confused under the denomination of storage. There are two kinds of storage: (1) Common, or non-refrigerator storage, employed mostly for holding perishable commodities temporarily; (2) cold storage, in which low and even temperatures are maintained by some refrigerating process. The common storage, without refrigeration, may be again divided into two species: (a) the storage may be only a temporary halt, or a half-way station, on the way to the shipping point, and where products are kept for a day or are sorted and packed; (b) it may be a storing of products that are waiting for improved market conditions, and in which an effort is made to maintain a relatively low and uniform temperature. In this latter kind of storage, the low temperature is usually secured (1) by means of a cellar or basement building; or (2) by means of controlling air-currents and ventilation. This second type of storage, under favorable conditions, reaches approximately the same efficiency as temporary cold storage.

A few specific examples will illustrate some of the ideals and the means of attaining them. Fig. 2404 shows a cellar storehouse, such as is used by nurserymen. Sometimes these buildings are employed for the storing of apples and other products. Usually the floor is two or three feet below the level of the ground.

The house shown in Fig. 2405 is built on a side hill, and the basement or cellar is used for the storage of grapes, the first floor is used for packing, and the second floor or attic for the storage of baskets, crates, and the like. This building measures 25 x 50 feet over all. The foundation walls are 24 inches thick, and the cellar is provided with ample ventilation by several outside windows, and also by means of a chimney that runs from near the middle of the cellar up through the roof. The floor is of earth. By means of careful attention to ventilation, this cellar can be kept at 50° or below during September and October, and is frost-proof through the winter. The windows are provided with close-fitting screens to keep out rats and squirrels. This cellar will easily hold fifty tons of grapes in the picking trays. The first floor is divided into two rooms, the front one being a packing-room 25 feet square, and the back room a storage and shipping department 25 x 55 feet. This front packing room is provided with heat and is lighted by seven large windows. The floor above the cellar is double and made of 15-inch matched pine, with an abundant air space between the two layers. This, therefore, protects the ceiling from sudden fluctuations of temperature. The building is also shaded, especially from the afternoon sun, by large trees. This building can be erected in New York for about $1,200. It has 18-foot posts, a tin roof, the two rooms in the first floor ceiling with pine, but the top floor not ceiled.

An apple storehouse in Grand Isle, Vt., is shown in Figs. 2660 and 2667, and is described by Waugh (Bull. 35, Vt. Exp. Sta.).

2403. Stokesia cyanae (X 1/2).

2404. A half-cellar storage.
"The fruit house is built on high and dry ground. The cellar was three feet, and dirt taken from this was used to bank up around the wall. The wall is solid stone and mortar, 5 feet high, 21/2 feet wide at the bottom, and 2 feet at the top; 2-inch plank for sills on this, bleded in mortar, doubled so as to break joints and 2 by 4 studding above this; outside of studding matched pine, then paper, and then clapboards, painted; in middle of studding, lath and plaster; inside of studding, matched pine, then paper, and then 8-inch sheathing, painted. This gives two hollow walls, or dead-air spaces. For ventilating, there is one ventilator from cellar to the observatory on top of building, which has four large window frames, with blinds, but no light windows. The ventilator opens into both storage rooms. We have three 18-inch windows on east and west sides of building in the cellar, and three large windows in west side, next to storeroom. Both floors are double, with paper between, and the second room is covered overhead with matched spruce, and painted. The two windows on east side show in cut, with the outside doors."

The following sketch of a home storage plant is reprinted from Bull. 74, W. Va. Experiment Station, by L. C. Corbett: "In localities where field stone are plentiful, a satisfactory, durable and moderate-cost house can be built in the form of a bank cellar by using these stone in cement, making a grout wall. Such a wall can be constructed by unskilled workmen if properly laid out in the beginning. The plan to follow is to use broad 2-inch planks, held in place by substantial stanchions to form a box having a width of the thickness of the desired well—say 15 or 22 inches. Into this box lay the dry stones, arranging them somewhat if large, but if small they may be thrown in with a shovel. Put in a layer 6 to 10 inches thick, then pour in thin mortar composed of good lime and cement until the box is filled sufficiently to imbed the stone. Repeat the operation, moving the planks upwards as the mortar sets until a wall of desired height has been built. Sile walls have been built in this fashion which were 22 feet tall, and were as solid as one continuous stone when completed. The mortar must be thin and rich in lime or cement. Lime will answer, but it is slower to set than cement, and for that reason less desirable. Such a wall can be built for about one-half the cost of the ordinary rubble wall, and will answer in every way as well.

Ample means of ventilation must be provided in order that nature may be turned to assistance in reducing the temperature of the house as much as possible. Stover pipes leading for some distance under ground and provided with proper stops or dampers can be very effectively used to assist in reducing the temperature during frosty nights. In addition to this the second story of the house should be provided with one or two ice rooms, according to the width of the house. The writer is inclined to favor two narrow ice rooms, one at either side of the building, with the storage room between and ice rooms. See plan and plan of arrangement in Figs. 2408 and side elevation in Fig. 2409. "The stone wall must have a lining in order to provide a dead-air space between it and the storage room. This can be secured by placing 2 x 4 studding carrying the stone wall, covering this with a durable waterproof paper, placing 1-inch strips outside of this and covering all with flooring. This will give two small air spaces between the stonework, brick, wall and the storage room. See Fig. 2409, cross section of such a wall. The ice chambers should extend the whole length of the building or storeroom. They may be as narrow as six feet, but eight feet will increase their capacity and cooling power. The floors in these rooms should be made of metal overlaid with 2 x 4's set on edge, the metal floor so arranged as to allow a free passage of air from the ice chamber into the storage room; cold air naturally falls the slat floor in the second-story wareroom will give direct circulation into the lower wareroom, and both be cooled in consequence. The floor structure must be strong and well braced so as to carry the heavy load placed upon it. Heavy staging carrying 2 x 12 joists 18 inches apart, and floored with 2 x 4's one inch apart, will give ample support for the ice chambers and second-story wareroom. The roof to the second-story room should be built so as to make it as near a manufactory of heat as possible. Dead-air spaces are the cheapest and most easily constructed non-conductors. They are entirely free from dust in the ceiling, as it has the double duty to perform of holding the cold in and keeping the heat out. A large, well-ventilated attic space should be provided and, if possible, a shingle or slate roof used in place of metal. The ceiling in the second story must be provided with ventilation ventilated to keep the cold in, and good dampers so that perfect ventilation can be secured during cold weather. Provision should be made the winter before for sufficient ice to cool warerooms each fall before the fruit is brought in from the orchard. This will necessitate the construction of a reservoir and ice house with capacity sufficient to fill the ice chambers. It is not advisable, in the writer's judgment, to store ice houses as ice chamber and ice house are merely ice chests to be used to cool the warerooms and fruit as it comes from the orchard. Consequently they can be made much smaller than would be necessary were they not to be used like the double purpose of cold chamber and ice house." Many small storage houses, located near railway stations, are now to be seen in the fruit sections of the country. One of these is shown in Fig. 2410. In these houses, apples are usually stored in barrels that are piled on their sides. Fig. 2411. It is a common practice to re-sort apples in storage. Fig. 2412. L. H. B.

Refrigeration or cold storage is the name given to the preservation of perishable products, such as fruits and other organic foodstuffs, at a temperature so low as to arrest the action of ferment and mould, and yet not low enough to destroy the flavor or cellular structure of the material so stored.

This process of preserving organic substances has been known since the earliest civilization, and while it was used to a limited extent in those localities where an abundant supply of natural ice was available, the process did not come into general use until the machinery for producing artificial cold and artificial ice was perfected. Various principles have been employed in the development of artificial substances for artificial cold. The freezing and ammonia hydrate have chiefly been employed. After the cooling has been effected by artificial
means or by ice, cold storage can only be accomplished by maintaining a desired temperature over a long period. In order to secure this, the compartments in which the products for storage are to be held must be as perfectly insulated from outside heat as possible. Successful experimental refrigeration by mechanical means was accomplished as early as the middle of the eighteenth century, but no successful commercial application of cold storage was made until after the invention of Lowe's "carbonic acid" machine in 1867, although the present growth of the industry is due to the invention of the ammonia compression machine by Professor Carl Linde in 1875.

The process was first extensively applied to the preservation of meats, fish, etc., but as early as 1881 the Mechanical Refrigerating Company of Boston opened a cold storage warehouse, which marks the beginning of mechanical refrigeration as applied to horticultural products. Other companies were then organized, until now there are about 1,300 refrigerating plants in the United States, of which about 600 are used mostly for horticultural products. Foreign countries are now following the example of the United States, and London, Liverpool, Glasgow, Paris and other European cities offer facilities for storing such products. In the United States, Chicago is the great center for fruit storage, single firms holding as many as 100,000 barrels a year. Apples are the principal storage fruit, good winter sorts holding their form, color and flavor better than any other commercial fruit when held for long periods in cold storage. Another reason why the apple is a favorite in cold storage is that people use it continuously over a long period. A good apple is always a relish. The apple, too, is the fruit which best pays the producer to hold in cold storage.

From the nature of the case, mechanical refrigeration will usually be confined to transoceanic trade, and to cities and towns where the principal business of the refrigerating machinery will be the production of ice for commercial and domestic use, the cold storage warehouse being a side issue to ice-making. The fruit-grower who wishes to avail himself of the advantages of cold storage must either ship his product to the city or depend upon natural ice to reduce the temperature of his warehouse. If he is in a climate where a supply of natural ice is available, his most economical plan is to make provision to use it. If in the far South he must own an ice plant or purchase artificial ice.

To successfully handle peaches and plums in car lots, one must nowadays have a supply of ice in order to avoid oneself of the best service of the Fruit-Growers' Express or other lines. The cars come ice'd, it is true, but before starting them on their journey it is safest for the grower to have a sufficient supply of ice to fill the pockets of the car.

To hold apples from harvest time until the over-supply of the season shall have been removed, requires storage rooms artificially cooled to a temperature sufficiently low to check the process of ripening, which is in reality the conversion of the starch of the immature fruit into sugar. As long as the starch remains as such, fermentation and decay cannot act, but as soon as sufficient water and heat are added to convert the starch into sugar, ripening proceeds until fermentation and decay complete the work. The object of cold storage, then, is to check the ripening process, or, if the fruit is ripe, to maintain a temperature sufficiently low to check fermentation. Theoretically, then, green or immature fruits will keep better than ripe ones. Green fruits should keep as well at 32° as a ripe fruit at 32°, and this is in accord with experience.

To successfully hold fruit in cold storage, three conditions are essential: (1) a low temperature; (2) an even temperature, and (3) sufficient moisture to prevent shrinkage, thus keeping the fruit plump and crisp. Even in storage rooms in which the humidity of the air remains saturated, as indicated by the ordinary wet and dry-bulb thermometer, considerable loss of moisture will take place from fruits stored in crates or open bins, while much less is lost by these stored in tight receptacles. Individual Baldwin apples under observation in a room at 32° F., from January 4 to

2407. Structural details of the building shown in Fig. 2406.

2406. Apple storehouse in Vermont.
April 20, showed losses as follows: Open shelves, 5,364 grams; in sealed casks, 462 grams; or a difference of 4,762 grams in favor of the sealed casks. This at least suggests the possibility of checking loss in weight by the use of non-porous storage receptacles. Barrels do not have any marked effect in checking this loss, as fruits stored in headed and open barrels differed only one-half pound in amount of loss during a period of 417 days, the total loss being 4.5 pounds on a barrel of 156.5 pounds weight when placed in storage.

The efficiency of a cold storage house depends more upon the construction of the walls than any other single feature. Perfect insulation is the ideal mark at which to aim. The more perfect the house in this respect, the less wear upon the machinery when refrigerating apparatus is used, and the greater the economy in ice when ice is used. To accomplish this, non-conductors of heat should be used as far as possible in the details of construction. For this purpose brick is superior to stone, and wood is a better non-conductor than either. For permanence, however, efficiency in this respect must be sacrificed. But as confined air may be better than an artificial substance, by multiplying the layers or partitions in a wall "dead-air spaces" can be increased and nearly perfect insulation secured. For the practical orchardist, however, cost must be considered, and if wood and paper can be made to take the place of brick at a sufficiently less cost, permanence may be overlooked. This can be done, and with these cheap materials very satisfactory results obtained. After proper insulation comes ventilation. With ice-cooled houses advantage should be taken of all assistance which nature can lend. With proper ventilating shafts for carrying off heat and moisture and ample subterranean pipes arranged to admit chilled air from naturally cool places such as ravines, the temperature of the house can be greatly lowered during frosty nights, and the store of ice husbanded to that extent. During the winter months outside cold can be admitted and housed up to maintain a low temperature far into the summer. The cold storage of apples has now grown to be such an important factor in the markets that reports are made from time to time to give an idea of the quantity of fruit available, and to be used as rational basis for fixing the selling price of apples at any given season.

The following figures, as reported by the National Apple Shippers' Association, will serve to show, not only the method, but the magnitude of the storage business as well:

[Diagram of a home-built iced storehouse. First floor in upper cut; basement in lower cut.]

2408. Plan of a home-built iced storehouse.

2409. Detail of wall of storehouse.
since passed the stage of an experiment, and the annual tonnage of such products is rapidly increasing. It is longest reaches are said. The first essay in cold storage from Melbourne to England, and the first essay in West Indies fruits was carried by the ship Nonsuch. Now California is able to ship peaches and plums in refrigerator cars to New York, and thence to Liverpool by cold storage on shipboard, and put the products in good order on the English markets. With refrigeration storage when two less is of less importance than rehandling, shaking and a constant temperature.

Storage machinery has been greatly modified during the last two years. Small coolers, propelled by gas engines, water-motors and even windmills, are now available for use in hotels, meat shops and places where constant cold is necessary. While those small plants have not been used in private storage houses with limited capacity, there is no good reason why they should not be. In large cities central refrigerating plants distributed throughout the city can be controlled by properly insulated conduits to dealers and commission men, much after the manner of water and gas. The dealer is then independent of the market, and if a consignment of fruit is received too late to fit the week's trade it can be held in the room with security for the Monday morning market.

With this plan, a large number of dealers in the business quarter of any city can be supplied with cold at a moderate cost from a single storage station.

In modern cold storage two systems are in common use: one is known as the "direct expansion system," and operates by pumping chilled gas to expand in coils of pipes placed in the room to be cooled; the other is known as the "refrigeration system," and operates by pumping chilled brine of one of the salts, sodium, calcium or potassium chloride, through coils of pipe in the room to be cooled. Both these systems present objections, which are of greater moment to the horticulturist than to any other class using cold storage. The temperature in the immediate vicinity of the cooled coils is so low as to freeze the fruit stored there. In order to overcome this, a system in which no pipes are placed in the chilled or storage room has been devised. A coil of pipes is arranged for direct expansion and the air of the room to be cooled is drawn out by a fan, passed over the chilled pipes, the temperature lowered, and again carried back to the cold room into which it is distributed from the coils by large wooden conduits with numerous dampers and openings, so that the cold can be distributed evenly through the room by the air. With this arrangement the temperature can be kept constant and uniform throughout all parts of the room, and there is no loss from freezing.

The following table of temperatures, compiled from experience of practical storage men, will serve as a guide for storing horticultural products:

<table>
<thead>
<tr>
<th>Articles</th>
<th>Remarks</th>
<th>Degrees F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples</td>
<td></td>
<td>32-34</td>
</tr>
<tr>
<td>Bananas</td>
<td></td>
<td>31-36</td>
</tr>
<tr>
<td>Berries, fresh...</td>
<td>For three or four days</td>
<td>31-36</td>
</tr>
<tr>
<td>Cantaloupes</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Cranberries</td>
<td></td>
<td>33-34</td>
</tr>
<tr>
<td>Dates, pears, etc</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Fruits, dried</td>
<td></td>
<td>35-40</td>
</tr>
<tr>
<td>Grapes</td>
<td></td>
<td>33-36</td>
</tr>
<tr>
<td>Lemons</td>
<td></td>
<td>33-34</td>
</tr>
<tr>
<td>Oranges</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Peaches</td>
<td></td>
<td>35-43</td>
</tr>
<tr>
<td>Peppers</td>
<td></td>
<td>32-36</td>
</tr>
<tr>
<td>Watermelons...</td>
<td>Carry only about three weeks.</td>
<td>32-34</td>
</tr>
<tr>
<td>Asparagus</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Cabbage</td>
<td></td>
<td>32-34</td>
</tr>
<tr>
<td>Carrots</td>
<td></td>
<td>32-34</td>
</tr>
<tr>
<td>Celery</td>
<td></td>
<td>33-34</td>
</tr>
<tr>
<td>Dried beans</td>
<td></td>
<td>32-34</td>
</tr>
<tr>
<td>Dried corn</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>Dried peas</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Onions</td>
<td></td>
<td>33-34</td>
</tr>
<tr>
<td>Potatoes</td>
<td></td>
<td>34-36</td>
</tr>
<tr>
<td>Sauerkraut</td>
<td></td>
<td>33-38</td>
</tr>
</tbody>
</table>

"Asparagus, cabbage, carrots, and celery are carried with little humidity; parsnips and salady same as onions and potatoes, except that they may be frozen without detriment.

"Apples when stored in barrels should not be stored on ends, but preferably on their sides. Fig. 241. A temperature of 32° is considered most favorable.

"In general, green fruits and vegetables should not be allowed to wither. Citrous fruits and vegetables should be kept dry until the skin loses its moisture; then the drying process should be immediately checked. For bananas no rule can be made. The exigencies of the market must govern the ripening process, which can be manipulated almost at will.

"Fruits, especially tender fruits, should be placed in cold storage just when they are ripe. They will keep better than if put in when not fully ripe. Peaches will stand as low a temperature as 25°. Sour fruit will not bear as much cold as sweet fruit. Catawba grapes will suffer no harm at 26°, while 32° will be as cold as is safe for a lemon.

"The spoiling of fruit at a temperature below 40° F. is due to moisture. In storing apples, eight to ten cubic feet storage room space is allowed per barrel, and twenty to twenty-five tons daily refrigerating capacity per 10,000 barrels." L. C. CORBETT.

Treatment of Fruits Intended for Cold Storage. — Cold storage has come to be a factor of prime importance in the marketing of many fruits, especially in apples, pears and grapes. With the more perishable fruits, like berries, peaches and plums, it is but little used, largely for the following reason: The action of cold in preserving fruits depends on two things: first, it retards those normal bio-chemical changes in the tissues of the fruit that are concerned in the process of ripening. It is a matter of common observation that apples, for instance, stored in a warm room ripen and become mellow much quicker than those in a cold cellar. Second, if the degree of cold is sufficient, it prevents partially or entirely the growth of those bacteria and fungi that cause decay. In peaches and other perishable fruits the changes concerned in the normal process of ripening take place much more rapidly than in winter apples or other fruits that are naturally good keepers. By the time the more perishable fruits reach market, in the ordinary course of events, these changes have already progressed so far that it is necessary to dispose of the fruit at once in order to avoid loss. If, now, market conditions are unfavorable and it is decided to place the fruit in cold storage to hold it for a better market, the chances are against success, for the ripening changes have already progressed almost to the limit of safety and, while the cold checks, it does not entirely prevent them. The usual result is that, even though they may look fairly well while in the cold chamber, the beds given quickening on reaching the warm outside air. When for any reason it is desirable to hold perishable fruits in cold storage, it is essential that great care be used in selecting only perfectly sound, full-grown but mature specimens, and that these be placed as soon as possible after picking in a refrigerator car or an ice-box for

STORAGE
transportation to the storage rooms. No perishable fruit that has been exposed to ordinary temperatures for twenty-four hours after picking is in fit condition for storage. Too many people have made the mistake of supposing that b) placing fruits on ice the cold as it were, rejuvenate them and that they would come out sound and firm even if at the point of decay when they went in. It should be borne in mind that the life or keeping quality of any fruit is self-limited, that the processes of ripening and subsequent deterioration are constantly going forward, and that the best that we can do by cold storage is to retard them; we cannot prevent them entirely.

These considerations apply with equal force to the storage of those fruits that are naturally good keepers. Grapes and pears, if the weather is warm, should always be shipped to the point of storage in refrigerator cars, and in many cases this would doubtless be profitable even with apples. A week of warm weather after apples are gathered and while they are in transit will inevitably so stimulate the ripening processes as to greatly impair their subsequent keeping quality, especially their ability to stand up and make a good showing after coming out of storage. Then, too, the exposure for even a few days to warm conditions after picking is sure to stimulate the growth of fungi and bacteria, thus starting many spots of incipient decay that cannot be entirely checked by subsequent refrigeration. It is probably safe to say that the keeping quality of any given lot of apples depends as much on its history during the period of the time of picking till it goes into storage as upon any other factor.

F. S. Earle.

Management, Temperatures and Prices.—The rapid advancement of the cold storage industry should be of great interest to the horticulturist. It is now possible to secure all the benefits, with a comparatively small investment. Mechanical refrigeration is best accomplished by employing what is known as the compression ammonia process. Ammonia is free from water and held in liquid form only under great pressure, is allowed to expand and vaporize in pipes submerged in brine. The ammonia, in changing from a liquid to a gaseous condition, absorbs the heat from the liquid in which the pipes are submerged. In this manner it can be brought to a temperature of zero, or lower. This cold liquid (brine) is circulated through pipes placed in the room or rooms that are to be refrigerated. The ammonia, after absorbing its quota of heat, is again compressed to a liquid condition by mechanical means and used over and over without limit. Any liquid that boils at a very low temperature can be substituted for ammonia, but at the present, viewed from an economical and practical standpoint, ammonia is given the preference. The temperature of a storage room is controlled by the volume and temperature of the brine circulated.

Apples are best preserved at a temperature of 30° F., two below the freezing point. It is generally conceded that they should be taken from the tree as soon as matured and colored, immediately put in a cold room and the above temperature maintained until they are taken out to be placed on the market. They will come out with a minimum amount of decay, crisp, full-flavored, and in condition to “stand up” much longer than if carried at a higher temperature. Bartlett pears put in while green and allowed to mature slowly from the twig, at a temperature of 32°-33°, carry for two months to ten weeks. Ventilated barrels are sometimes used, but slatted bushel crates are preferable. Winter or late varieties of pears will carry much longer. Peaches and other stone fruits will take a temperature of 36° and are not, as a rule, carried successfully to exceed two weeks. They are very deceptive; if not outside, will appear satisfactory, but the fruit is inedible, and around the pit it will be black in a semi-decayed condition. Berries, one week to ten days at a temperature of 35°, will, if they are not bruised or broken, carry nicely and many times tide over an overstocked market.

Tomatoes, if sound, not broken or bruised, picked before they are thoroughly ripe, will, at a temperature of 60°, carry three to four weeks. Cold stored sound, should, at a temperature of 34°, carry from three to four months. Vegetables, such as carrots, parsnips and turnips, at a temperature of 34°, carry successfully until June or July; but if decay has set in before the products are placed in cold storage it will not be entirely stopped but only arrested in a moderate degree, and to obtain any measure of success nothing but sound, perfect goods should be placed in the refrigerating rooms.

The following are the charges usually applied by those conducting public cold storages: Apples, 15 cents per bbl. first month, 10 cents each additional month; celery, 10 cents per case first month, 6 cents each additional month; cherries, 3½ cents per lb.; grapes, 3½ cents per lb. first month, 1-6 cents each additional month; maple sugar, 3½ cents per lb. first month, 1-6 cents each additional month; pears, per bbl., same as apples; per ½ bbl., 10 cents first month, 7 cents each additional month; pears in bushel crates, same as in ½ bbl.; cucumbers, same as apples; vegetables, 25 cents per bbl. first month, 15 cents each additional month; vegetables, per ease, 15 cents first month, 10 cents each additional month. If in very large quantities, season rates are sometimes made at comparatively lower rates.

Mechanical refrigeration is surely of paramount importance to the producers of vegetables, fruits, eggs, butter, etc. It provides a means by which they are not compelled to accept ruinous prices of an overstocked market, nor obliged to sell when products are harvested, regardless of price, nor to force their products on the market in such quantities as to cause a glut. Instead of having supplies that must be sold within a few days, the horticulturist can, by taking advantage of mechanical refrigeration, extend the life of 50 per cent, or until such time as the demand equals the supply.

Samuel R. Nott, Jr.

Practical Experience with Cold Storage.—The experience of those who have had occasion to use cold storage is remarkably varied, scarcely two of them having formed the same impression in regard to its effect. But the very fact that perishable articles have been preserved for long periods shows that there is at least one right way, and the managers of cold storage plants are learning what that right way is.

One great trouble has been that hardly two articles require the same temperature to keep in proper condi-
Now, with refrigerator cars of strawberries coming in from Florida in February and along up the coast till well into July, when the last strawberries come in from Maine and northern New York, berries that are fresh and bright as "home-grown" are to be seen in all our eastern markets for a season of five months. Chicago and other western markets are in like manner supplied from Texas to northern Wisconsin and Michigan.

Without the refrigerator car, the great peach orchards of Georgia and Texas would not be practical, as the great bulk of their fruit must be sold at the North. The "peach season" now extends from May till November. The "seasons" of other fruits are likewise extended in a less degree, and the failure of the local crop in any one section now has little effect on the local market. Michigan or Missouri may be sending peaches to New York, Boston and Philadelphia with the assurance that they will not be the last of the season.

The refrigerator car may be called upon to hold the fruit at 34°. It is not important what kind of a building is used, whether wood, stone or brick, but it is very desirable that it should be divided into many rooms, so that each product may be stored in a separate room; and where large quantities of apples are stored, each variety should occupy a separate room and the keeper should have perfect control of each room and know the required degree of temperature for each article and maintain it. When this is done, cold storage will be a great success.

J. C. EVANS.

Refrigerator Cars.—The invention and development of the refrigerator car have proved to be very important factors in fruit production and marketing, making it possible to market in good condition the most tender fruits two to three thousand miles from their point of origin. Many one hundred miles usually arrived in bad order and were very unsatisfactory to both dealer and consumer, and, except for the first few early shipments, prices were very low. It was only at the ripening of "home-grown strawberries" that for two or three weeks any market was satisfactorily supplied, and the public readily paid two and three times the price they would for "shipped-in berries" a few weeks earlier.
STORAGE

the car will hold, then close the doors, and, by lantern-light, work goes on inside till all these packages are placed, when more are handed in and the car quickly filled. In this way a car an hour is often loaded all day long and run down the Georgia pinch road. Where small boxes are put in by many different growers and the car is one or two days loading and opened many times, the fruit is not so quickly cooled down and, even with the ice never arrives in market in as sound condition as when the car is quickly loaded.

Another very important point is the first re-icing. When 400 to 700 warm packages of fruit are put into a refrigerator car, the ice begins to melt very rapidly and in a few hours one-half or more of the ice has melted away, the upper part of the car inside is a steaming sweat-box, and it is of vital importance that ice-boxes be promptly re-filled solid to the top, so that the whole inside of the car be brought to a low temperature as quickly as possible. Once get all the heat out of the fruit packages and the ice-boxes then full, and a car may go a long time without re-icing and yet carry fruit in good order. But neglect the first re-icing twelve to fifteen hours, and there is always danger, while for best service from storage of the ice-boxes should be kept full all the time. The ice will be consumed in fruit-loading and in the first twelve hours thereafter.

When well re-iced en route refrigerator cars arrive at destination with bankers nearly full of ice, and in many of the smaller markets, where a car-load of high-priced fruit is sold in a day, due service for storage purposes, re-icing when necessary. Peaches from Georgia handled in this way have been sold in the smaller cities of New York and New England in perfectly sound condition ten days to two weeks after being picked ripe from the trees.

J. H. HALE.

STORAX. See Styphax.

STORK'S BILL. Erodium and other members of the Geraniaceae family.

STOVE PLANTS. The term "stove" applied to plants undoubtedly originated from the method of heating the structures in which plants were grown before the advent of hot water and steam. Glasshouses such as then existed were heated by stoves and flues, usually made of bricks. Such structures came to be called stove-houses or stoves, and the plants grown in them "stove plants." (A "greenhouse" was in those days an unheated glass-house in which plants were merely kept alive over winter.) These terms still exist in England, but are applicable only to tropical plants in the greenhouse and the glass-houses. In this country such plants are spoken of as greenhouse or tropical plants.

In the present time, more distinction is made in the names applied to plant houses than in this country. For instance, "greenhouse" in England now means the coolest glass-house only, while in this country the name is usually indiscriminately applied to all glass-houses. The names applied to plant houses in England are therefore: Stove, for tropical plants; intermediate house, for plants having from warm-temperate climates; greenhouse, for those plants requiring the least degree of heat. A conservatory or show house is one in which plants are placed while in flower and usually kept at a cool temperature.

In practice such terms may be greatly modified to suit local conditions; for example, at the Botanic Gardens of Smith College, Northampton, Mass., the glass-house and cool-temperate cold-temperate hot house, tropical house, palm house, acacia and succulent house, experiment house and propagating house, the temperature and moisture condition being regulated to suit the requirements of each class of plants.

The cultivation of stove plants is too heterogeneous a subject to be treated exhaustively in a single book, because there are some thousands of dissimilar plant treasures from the tropics, especially those found at low altitudes. In general, the stove is the house which requires the most expense and care, the greatest heat and the highest atmospheric moisture. For the general principles of its management, consult Greenhouse Management.

EDWARD J. CANNING.

ST. PETER'S-WORT. Assegrium stolons.

ST. PETER'S WREATH. Spiraea hypericifolia.

STRATIOTES (Greek, soldier; referring to the sword-shaped leaves). Hydrocharis atrovata. The Water Soldier, or Water Aloe, is a hardy aquatic plant of small ornamental value, but considerable botanical interest. It is native to lakes and watery ditches throughout Europe, and has a root stock creeping in the mud which produces at the bottom of the water tufts of long, narrow, sword-shaped Jvs. bordered by small spiny teeth somewhat after the fashion of Pandanus. The ils, are small, white, 3-petalled, and borne on peduncles which rise to a few inches above the water. The pes- dume is much thickened at the top and bears a spathe of 2 bracts about an inch long. The male ils are several in a spathe, staked, and have usually 12 or more stamens. The female ils bears a spathe and sessile in the spathe. The plant has a distinct calyx, which is not the rule among monocotyledons. Stratiotes aloides, Liinn., is the only species in the genus. It is at times called Crocus Cutite or Freshwater Light Water Lily. In England the planting of this species is discouraged from the fact that it spreads too rapidly. Technical characters: petals thin and of usual length, varying from one to another. The lvs. have a few inches above the water, much thickened at the top, bearing a spathe of 2 bracts; ovary and stigmas nearly as in Hydrocharis, but the fruit is oval and somewhat succulent. It is offered by one American supplier in aquatics.

W. M.

One of the peculiarities of Stratiotes is that in summer the whole plant rises to a point near the surface when it is only partly submerged, and later in the sea- son it drops below the surface. You may set this thus. It is propagated by side shoots from the base of the leaves. Toward fall and early winter these shoots are merely bulblets and are readily detached from the plant and are in a good condition for traveling by Wm. THACKER.

STRAWBERRY. Plate XXXVIII. The Strawberry is an herbaceous perennial. It naturally propagates itself by means of runners that form clusters after the blooming season. These runner plants, either transplanted or allowed to remain where they form, will bear the following year. Usually the plants will continue to bear for five or six years, but then require re-planting annually. To do this the old crown is cut back one-half, and a few of the strongest shoots cut away. The plant is then replanted. They are propagated by runners, and are set from 18 to 24 inches apart in rows 36 inches apart. The planting should be done in April, May or June. The plant should be set with the roots trimmed for planting. Fig. 2414 shows a plant with an earthen mound for planting the late summer or fall of 1901 or in the spring of 1902. These plants have many long, fresh, light-colored roots. Fig. 2414 shows a young plant, with the roots trimmed for planting. Fig. 2415 shows a plant that has borne fruit. This plant bore fruit in 1900, and has thrown up a new crown in 1901. The old dead crown is seen on the plant. The runners are sent to this old crown. The roots are relatively few and are hard and black. These plants sometimes make good plantations under extra good care, but generally
Plate XXXIX. Strawberry test ground, with a truss of the Greenville variety.
they should be avoided. Pots are sometimes plunged under the new runners in June and July, and they become filled with roots by August or September. These pot-grown plants are excellent for fall setting in the home garden, but they are seldom employed in extensive commercial practice. Fig. 2416.

In Florida, according to Eells, beds need to be reset annually, in September or October; plants set at this time produce a good crop in the following February, March and April. The plants may be produced at home, or they may be secured from the North. Excellent plants for Florida conditions are procured from North Carolina.

For the very finest berries, each plant is allowed a space or hill by itself, and cultivation is given both ways. For general commercial results, however, plants are generally set in narrow rows. The old method was to plant in rows 3-3 1/2 feet apart and the plants from 12-15 inches apart in rows, keeping off the runners until late in July and then allowing the runners to grow and root at will, making a matted row. In this system some plants are almost on top of others, the roots barely in the ground, and they suffer in a season of drought. The rows are so wide that to pick fruit in the center it is almost necessary to crush fruits on the outside of the row. This system gives few large first-class fruits, and it is now passing away. The up-to-date grower starts with the assumption that the largest and highest colored fruits are found on plants along the outside of the rows, and therefore he plans to have as many outside rows as possible. This he accomplishes by having his rows closer together and much narrower. The rows are made from 30-36 inches apart, and the plants from 18-24 or even 30 inches apart in the rows, much depending on the prolificacy of the variety as a plant-maker. If the plants used for a new bed are strong and start into growth vigorously, the first runners are used, as it has been found that under most conditions the plants about twelve months old yield the greatest number of fine fruits. These first runners are usually “bedded in,” i.e., planted by hand, training them along the wide way of the rows, using from four to eight of the first runners and cutting off these growing later. This method of planting allows cultivation both ways until the runners start, retaining moisture and saving labor in hoeing. This system is shown, in a full-bearing bed, in Fig. 1180, Vol. III.

Strawberries are usually mulched in the fall in order to protect them in the winter and early spring and to prevent the soil from heaving. In some cases the mulch is allowed to remain on the plants rather late in the spring, in order to retard the season of bloom. Sometimes the crop may be retarded a week or ten days by this means, and cases are reported in which it has been delayed with commercial results somewhat longer than this. The mulch is usually more necessary in regions of light and precarious snowfall than in those in which the snow blanket is deep and lies all winter. In regions of deep and continuous snowfall, a heavy mulch is likely to prove injurious. Experience has shown that the best mulch is usually some strawy material. Along the seacoast, salt hay from the tide marshes is much used. In interior places clean straw, in which there is no grain to sprout and to make weeds, is very largely employed. Fig. 2417. In the South, pine needles are used. Sometimes loose strawy manure is used, and the mulch adds fertilizer to the soil as well as affords protection. Under ordinary conditions the mulch is three or four inches deep over the plants after it is fairly well packed down. It is not always possible, however, to mulch as heavily as this, since the material is likely to be expensive when one has a large area. The mulch is usually applied late in the fall after the ground has frozen, and if the material is abundant both the plants and the intervening spaces are covered. In the spring the mulch is raked from the plants as soon as they begin to start. Some persons allow it to lie between the rows as a cover to retain moisture and to keep the berries clean. The most expert growers, however, prefer to take the mulch from the field and to till the plantation once or twice before the plants are in bloom. The material is sometimes returned and spread on the loose soil between the rows. In the northern prairie states, heavy mulching is essential. Professor S. B. Green advises for western Minnesota and Dakota a covering of at least six inches of straw. This mulch is easily provided, since straw is so abundant in that country that it is often burned as the readiest means of getting rid of it. When not mulched in that region, the plants are likely to be killed outright or to start with a very weak growth.

Strawberry flowers may be either perfect or imperfect, and the nature of the flower is characteristic of the variety. In some kinds, the flower is perfect or hermaphrodite (having both stamens and pistils) and is consequently self-fertile. In others it is pistillate, producing no pollen, and requiring a pollen-bearing variety to pol-
men that they are practically pistillate or sterile. Any variety will fertilize any other variety if it bears sufficient pollen and if the two kinds bloom at the same time. When planting pistillate varieties, every third row should be a pollen-bearing kind. The horticultural bearing of the sexual characters of the Strawberry flower seems to have been first clearly explained in this country by Nicholas Longworth, of Cincinnati (see Longworth; also his essay on the subject in his "Cultivation of the Grape," 1846, and the "Strawberry Report" of the Cincinnati Horticultural Society, 1848). When many of the stamens or "seeds" of the Strawberry are not fertilized or are killed by frost or other means, the berry fails to develop at that point and a "nubbin," or imperfect berry, is the result. Fig. 2419. Nubbins are usually the most abundant late in the fruiting season, when the pollen supply is small and when the plants are relatively exhausted.

The cost of growing an acre of Strawberries under commercial conditions in Oswego county, New York (which is one of the leading Strawberry centers of the North) is approximately as follows:

- Rent of land, two years: 811.00
- Plowing and harrowing: 6.00
- Plants: 15.00
- Setting plants: 4.00
- Cultivation: 10.00
- Straw for winter and fruiting mulch: 15.00
- Labor—hoeing, pulling weeds, etc: 10.00
- Total cost: 877.00

Many growers raise berries at a much less cost, and a few exceed this sum especially when located near a large town where rents are high; but it would be safe for one about to engage in Strawberry-growing to figure close to this total, aside from the cost of fertilizer.

New varieties of Strawberries are raised from seed with the greatest ease. The generations of Strawberries are short and new varieties soon find favor. The varieties change so frequently in popular estimation that it is impracticable to recommend a list of them in a work like this. The first great American berry was the Hovey (Fig. 1688, Vol. II). Perhaps the most popular single variety has been the Wilson (Fig. 2420), now practically extinct. The accompanying pictures (Figs. 2421-2425) show types of American Strawberries.

The common garden Strawberries are the progeny of Fragaria Chiloensis, native to the Pacific coast of America, and first introduced to cultivation from Chile nearly 200 years ago. See Fragaria. In Europe the Alpine and Hautbois types of Strawberries (F. vesca and F. moschata) are highly prized as dessert fruits. These are sometimes grown in this country by amateurs, but they are unknown to commercial Strawberry culture. The native Fragaria virginiana, everywhere common in fields in eastern North America, gives little promise under cultivation. It usually runs strongly to vine, at the expense of fruit-bearing.

There are several serious fungous diseases and insect pests of the Strawberry. The fundamental treatment for all is to fruit the bed but once, or at most but twice, and to grow succeeding crops on other land, cleaning up the old plantation thoroughly after the last fruiting. Short, quick and sharp rotations and clean culture do much to keep all enemies in check. Most of the fungous enemies are kept in check with relative ease by spraying with Bordeaux mixture. Fig. 2426.

Culture of Strawberries.—[The following article was written for the "Gardeners" some ten years ago by the late J. M. Smith, Green Bay, Wis., long known as one of the most expert Strawberry-growers. It has never been published. Mr. Smith was born at Morrisville, N. J., Jan. 13, 1829, and died at Green Bay, Feb. 20, 1894.—L. H. B.]

The Strawberry will grow and thrive in all parts of the United States where any fruit will grow, and yet, strange as it may seem to young readers, fifty years ago it was scarcely known except as a wild fruit. The writer has no recollection of ever seeing more than one small bed of Strawberries cultivated before he was 25 years old. In boyhood he often accompanied his father...
to the New York market, yet he never saw cultivated Strawberries in that market before 1840, though there were probably a few before that time. It is probable that there are now more Strawberries carried to New York every fair day during their season of ripening than had ever been seen in that city during its entire history previous to 1840.

The introduction of Hovey Seedling about 1834 or 1836, and of the Jersey, or, as it was sometimes called, the Early Scarlet, a few years later, marked a new era in Strawberry culture. These were great improvements over the common wild fruit previously seen in the market; but it was not until the introduction of the Wilson, about 1854, that it became possible for almost every one who owned a small plot of land to have a supply of berries for himself and friends during the berry season. This modest little plant completely revolutionized Strawberry growing. Its fruit was much larger than any other then in cultivation, being also very firm and able to bear transportation much better than any other, and it seemed to be perfectly at home in nearly every soil and climate from the Atlantic to the Pacific Ocean, and from Lake Superior to the Gulf of Mexico. In addition to all these qualities, it was marvelously productive. Soon after this, new varieties began to appear in numbers greatly exceeding anything ever before known. This progress has been kept up until the present time, and each succeeding year many new varieties are brought to notice. The increase in the cultivation of this fruit was not rapid until 1855, when more attention began to be paid to it than ever before. Since the close of the Civil War the increase has been almost beyond belief, except to those who are familiar with its history.

Strawberry Soil.—If he could always choose, the writer would select a dark sandy loam, rather damp than dry, but this is by no means an absolute necessity, as Strawberries will grow in almost any soil, unless it be dry sand or any ungrained bed of muck. Any soil that will grow a good crop of corn or potatoes will grow a fair crop of Strawberries. This remark will apply throughout the United States; and not only that, but Strawberries will grow in some places where the nights are too cool and the seasons are too short for corn to ripen. Hence but few need have any fears about their success on account of climate, latitude or longitude. The richer the soil the larger the crop, hence the necessity of making it rich by extra manuring.

The first thing is to be sure that the land is thoroughly drained, as it is impossible to make Strawberries do even fairly well with the roots in land that is filled with water. Underdraining is not always a necessity, but good surface-draining is, and no land should be set with plants until it is so prepared that it can be thoroughly surface-drained and kept so. If the land is at all inclined to be wet, it will pay well to have it thoroughly underdrained, in addition to the surface-draining.

Next comes the preparation of the soil. The writer prefers spring setting. He has sometimes done well with setting in August or early in September, but has never failed in spring setting. As early as the land is fit to be worked, put on about twenty fair-sized two-horse loads of manure per acre and plow it in; then top-dress with as much more fine, well-rotted manure, and harrow it in thoroughly. If fine manure cannot be ob-
can be done by men with a little experience in a small part of the time taken to write it out, but one must remember that the doing of this work well or ill will make the difference between success and partial failure. The writer has several men who will set half an acre a day, and do it easily and well. If the weather is dry and warm, it will greatly aid the young plants if half a pint of water is put around each one.

When the beds are filled with plants, run through them with a hand-cultivator before they come into bloom. This may not be necessary, but in most cases it will be. If the plants start nicely, they will soon be in full bloom, but they must not be allowed to bear fruit this summer. Go through the beds and pinch off all the blossoms, and see that there are no stray plants among them of a different variety. The beds must be kept clean, free from weeds, and well cultivated as often as they require it. In July the runners will start. Before the runners take root they should be trained around the parent plant like the spokes of a wheel, having the parent plant for its center. Simply lay them out in equal distances around the parent plant and throw sufficient earth upon them to hold them. Otherwise the runners are likely to come out on one side and make almost a solid mass of roots on that side and few or none on the other, the result being that the crop the following season will not be as large or of as good quality as when they have been properly tended. This is about all there is to be done until the ground freezes for winter, when the plants should be covered with marsh hay. Straw is as good, provided it is free from weeds and grass seed, but it is sometimes impossible to obtain such straw. In covering the plants, merely hide them from sight.

There are two objects in view: first, to protect the plants from the many sudden changes in our winter weather, and, second, for spring protection. During the thawing and early spring nights in the early spring, the ground is likely to become "honeycombed." The top of the ground is a little raised from its natural position, and the plants are lifted up and their roots broken off in the frozen earth beneath. To avoid this, scatter water around the plants, leave the cover upon the plants until all freezing nights are over. Some growers recommend leaving the cover on and allowing the plants to work their way through it. The writer has tried this plan, but the crop was only half of that obtained when the cover had been taken off and the ground kept cultivated. Better take the cover off, haul it away and stack it for another winter's use.

Some growers recommend that the mulch be retained in order to keep the berries from being soiled. If the plants grew last season as they should, they will be by this time nearly or quite covered the ground, and the leaves and fruit-stems will so support each other that there will be very few berries in the dirt unless it rains almost constantly. When there are open spaces of any size, and the fruit is likely to get into the dirt, it is well to put back a little of the mulch after the thorough cultivation of the spring is done. For the spring dressing, wood ashes are to be preferred. If uncleaned, they should be applied at the rate of not less than 50 bushels to the acre. Twice that amount should be used if the plants are to be grown without rotation.

from weeds, and well cultivated as often as they require it. In July the runners will start. Before the runners take root they should be trained around the parent plant like the spokes of a wheel, having the parent plant for its center. Simply lay them out in equal distances around the parent plant and throw sufficient earth upon them to hold them. Otherwise the runners are likely to come out on one side and make almost a solid mass of roots on that side and few or none on the other, the result being that the crop the following season will not be as large or of as good quality as when they have been properly tended. This is about all there is to be done until the ground freezes for winter, when the plants should be covered with marsh hay. Straw is as good, provided it is free from weeds and grass seed, but it is sometimes impossible to obtain such straw. In covering the plants, merely hide them from sight.

There are two objects in view: first, to protect the plants from the many sudden changes in our winter weather, and, second, for spring protection. During the thawing and early spring nights in the early spring, the ground is likely to become "honeycombed." The top of the ground is a little raised from its natural position, and the plants are lifted up and their roots broken off in the frozen earth beneath. To avoid this, scatter water around the plants, leave the cover upon the plants until all freezing nights are over. Some growers recommend leaving the cover on and allowing the plants to work their way through it. The writer has tried this plan, but the crop was only half of that obtained when the cover had been taken off and the ground kept cultivated. Better take the cover off, haul it away and stack it for another winter's use.

Some growers recommend that the mulch be retained in order to keep the berries from being soiled. If the plants grew last season as they should, they will be by this time nearly or quite covered the ground, and the leaves and fruit-stems will so support each other that there will be very few berries in the dirt unless it rains almost constantly. When there are open spaces of any size, and the fruit is likely to get into the dirt, it is well to put back a little of the mulch after the thorough cultivation of the spring is done. For the spring dressing, wood ashes are to be preferred. If uncleaned, they should be applied at the rate of not less than 50 bushels to the acre. Twice that amount should be used if the plants are to be grown without rotation.

(×%)

from weeds, and well cultivated as often as they require it. In July the runners will start. Before the runners take root they should be trained around the parent plant like the spokes of a wheel, having the parent plant for its center. Simply lay them out in equal distances around the parent plant and throw sufficient earth upon them to hold them. Otherwise the runners are likely to come out on one side and make almost a solid mass of roots on that side and few or none on the other, the result being that the crop the following season will not be as large or of as good quality as when they have been properly tended. This is about all there is to be done until the ground freezes for winter, when the plants should be covered with marsh hay. Straw is as good, provided it is free from weeds and grass seed, but it is sometimes impossible to obtain such straw. In covering the plants, merely hide them from sight.

There are two objects in view: first, to protect the plants from the many sudden changes in our winter weather, and, second, for spring protection. During the thawing and early spring nights in the early spring, the ground is likely to become "honeycombed." The top of the ground is a little raised from its natural position, and the plants are lifted up and their roots broken off in the frozen earth beneath. To avoid this, scatter water around the plants, leave the cover upon the plants until all freezing nights are over. Some growers recommend leaving the cover on and allowing the plants to work their way through it. The writer has tried this plan, but the crop was only half of that obtained when the cover had been taken off and the ground kept cultivated. Better take the cover off, haul it away and stack it for another winter's use.

Some growers recommend that the mulch be retained in order to keep the berries from being soiled. If the plants grew last season as they should, they will be by this time nearly or quite covered the ground, and the leaves and fruit-stems will so support each other that there will be very few berries in the dirt unless it rains almost constantly. When there are open spaces of any size, and the fruit is likely to get into the dirt, it is well to put back a little of the mulch after the thorough cultivation of the spring is done. For the spring dressing, wood ashes are to be preferred. If uncleaned, they should be applied at the rate of not less than 50 bushels to the acre. Twice that amount should be used if the plants are to be grown without rotation.

In a very dry and unpropitious year, the yield on the writer's place was 7,136 quarts, or 223 bushels per acre; the gross receipts in cash were a few cents over $500 per acre. In the year 1876 the yield was over 8,000 quarts, or something over 250 bushels per acre; and the gross receipts $603 per acre. These were both hard years for Strawberries. In 1873 exactly one-quarter of an acre yielded 3,571 quarts, or 111½ bushels, of marketable fruit. The average price was 12 cents per quart. In 1878 one-fourth of an acre yielded a fraction less than 100 bushels, these were both favorable seasons for berries. But we will take the first mentioned crop for our estimate, as it was the poorest of the four. The boxes of crates cost a fraction less than $7 per 1,000 quarts; picking, packing and carrying to the depot not to exceed $14 per 1,000.

The story of an acre of Strawberries in an unfavorable season.

Gross receipts .. $500.00
Cost of growing the crop $161.00
Picking, crating and marketing (7,136
qts.) .. 157.00
Net profits .. $38.00
These receipts are by no means the only ones from the land for the two years. For many years past the writer has been in the habit of planting other early crops between the rows of Strawberries after they are set. For instance, in the spring a plot of five acres is set with Strawberries. As soon as the Strawberries are set plant between the rows (which are two feet apart) a large crop of lettuce and cabbage. One may sow part of the land with radish seed and another part with cabbage seed for late cabbage, and thus fill the ground with quick-growing plants that will be off before the runners need the ground.

Marketing.—A home market is the best if one can have it, although it is a well-known fact that but few Strawberries are eaten in the neighborhood where they are grown. Along the Gulf coast, Strawberries begin to ripen in February and are at once shipped north, and the consumption continues until 45° north latitude is reached; hence the necessity of a variety that will bear shipping. If we all had cooling houses for berries, and refrigerator cars to ship the fruit in, almost any variety would bear more or less transportation; but as most growers have neither, the berries must be picked as soon as colored, and some varieties before they are fully colored. Before the writer had a cooling-house, he placed the cases in rows on the floor of a general packing house, and then placed ice along upon the floor between the cases. This did fairly well, but not as well as the present cooling-house, which is a very plain cheap building 12 x 14 ft. and about 12 ft. high. The sides are covered with common sheathing paper and boards, with an air chamber of four inches. The floor overhead is covered with zinc to prevent its leaking, and is a little sloping to one corner, where a pipe catches the water as the ice melts, and carries it from the building. It has an open space of nearly 12 inches all around the building, which lets the cold air pass below, where the fruit is. There are six tiers of shelves, one above the other all around the room below. Upon the floor above the ice is placed, and on the shelves below are the cases of fruit. About 50° is the best temperature to keep the fruit; if much lower, it is found that the fruit will not keep so long after being removed from the cooler. It is best not to throw fruit on the market, but to try to have it so good that it recommends itself. Endeavor to have it engaged to the retail grocers in advance. Then there is but one profit between the consumer and the grower.

Strawberry Culture in the South.—If any fruit is at home in the South it is surely the Strawberry. It heads the list of small fruits, and, admitting as competitors tree and vine fruits, it easily holds the place of first importance. Among the many things that commend the Strawberry favorably to southern land-owners who could grow fruit for home use or for market are the following: its comparative freedom from disease and insect enemies; the ease with which it adapts itself to different soils and varied conditions of climate; the small cost at

tending planting and cultivation; the enormous yields possible from well-selected soils properly treated; and the fact that, aside from being the first fruit to ripen, it seldom, if ever, fails to reward the patient growing with an ample harvest to cover all cost for attention bestowed.

While good results are had from settings made at almost any time of the year, November and February are the months during which plantings may usually be made with the least risk. In some sections, especially near the Gulf, plantings are frequently made during rainy spells in late summer and

![Belmont Strawberry.](image)

Naturally size.

![Bomba Strawberry.](image)

Naturally size.

early fall. At such times it is neither a difficult nor a very expensive process to shift plants with earth adhering to the roots to nicely prepared soil near the old beds. From good stands on newly prepared beds secured as early in the season as August or September, and with a long fall and mild spells during winter favoring vigorous plant growth and development of fruit-buds, the grower may reasonably expect the following spring one-half to two-thirds of a crop.

Being a water-loving plant and a liberal feeder, especially during fruiting season, the Strawberry accomplishes its best work in a soil capable of taking in the largest quantity of water and of holding during protracted drought the greatest amount of moisture within easy reach of the plant. This ideal Strawberry soil is found in the rather compact deep clay loams over the well-drained clay subsoils so abundant in most of the South Atlantic and the Gulf states.

As to fertilizers, much depends on the kind of soil and treatment. Where the cereals are benefited by the
long and sometimes hot and dry summers. The southern cow-pea is possibly the best crop to precede the Strawberry. This leaves the ground clean, mellow and in the very best condition for any crop that follows. The soil is usually prepared in slightly elevated rows or beds 3½-4 feet broad. In making summer and early fall plantings with the view of securing a large yield the following spring, plants are set only 8 or 10 inches apart along the line of the row. The distance in the row for spring plantings ranges from 12-30 inches, depending on the tendency of varieties set to multiply runners. For heavy yields the properly matted row is best. In the ideal matted row each plant should be 5-7 inches distant from its nearest neighbor, and a space of 18-24 inches along the top of the rows should be so occupied with plants. Season, soil and treatment at the hand of the cultivator greatly modifies the degree of success in securing this ideal stage. Where irrigating facilities are to be had, the desired results may be obtained with certainty. In spite of the best efforts on the part of the grower, however, varieties like Michel Downing and Cloud may set too many plants during wet seasons. In such cases any runners that encroach on the spaces between rows are treated as weeds, and such places along the line of the rows as become too thickly matted should be properly thinned on the advent of cool fall weather.

With spring setting, cultivation begins shortly after plantings are made. The plow, cultivator and hoe are the implements most used, and these are employed in cultivation often enough to keep the ground in good tilth and free from weeds. Cultivation usually ceases early in the fall. Any weeds that interfere with the proper development of plants or fruits from this time until the end of fruit harvest are pulled out or clipped off with sharp hoes without breaking the surface soil. Very little winter protection is necessary. It is well to delay mulching until after midwinter, or until there has been sufficient cold to drive insects into winter quarters. Old hay or fresh manure and straw form a complete winter protection. A thin covering of barnyard litter or of short straw (pine straw is excellent) placed around and between rather than over plants is of advantage. For keeping fruit clean and, at the same time, adding almost, if not quite, its purchase value in plant-food, nothing is better than cowpea hulls. It is a fact worthy of note that as one goes south the picking season lengthens. Florida, southern Louisiana and other sections near the Gulf frequently begin shipping late in January or early in February and continue to market strawberries for four months or more. In latitude 32° the writer has during several seasons in the past twenty-five years shipped Strawberries from about April 1 to July 1. In latitude 32° the picking season rarely lasts more than five or six weeks.

In recent years the rapid strides made in methods of picking and packing, in the construction, loading and icing of fruit cars, in shortening the time between grower and consumer, and in vastly better means of distributing fruits among different markets and of reaching all classes of consumers in the several markets,—all these things have made southern-grown Strawberries common in almost every city, town and village in more northern latitudes.

A. R. McKay.

To the foregoing advice may be added a sketch of some of the rotation practices in Georgia. Five systems of rotation exist: the annual, biennial, triennial, and what may be termed the perennial or permanent system. These terms are frequently, though quite unnecessarily, confused, and some growers, while practicing, technically, a biennial rotation, call it annual, because they establish a new plat annually, although each plat, when plowed under or destroyed, is two years old.

To illustrate: A plat planted in July, August or September makes a good, strong growth by winter along the isotherm of the Carolina and Georgia coast, where summer planting and the system of annual rotation are almost exclusively practiced. In fact, the plant continues to grow, especially under ground, through the entire winter, setting in the spring a heavy and profitable crop, which is marketed. The plat is seldom worked out, but used to reset another plat in the late summer, and then turned under. Such a rotation is strictly an annual one. Logically, it could be nothing less, nothing more. If, however, this plat were cultivated through the season following its crop, suffered to bear a second crop the next spring, then used as before to reset a succession plat and turned under, such a process would be a biennial rotation, and, logically, could be nothing less, nothing more. Equally as logical would it be to call the rotation biennial had the plat been planted in November—instead of July, August or September—cultivated through the following summer and carried into the next year, bearing its main crop—its "money" crop—the second spring. The fact that its first crop was light and scattering would not make the rotation an annual one. The essential of the difference between an annual and a biennial rotation consists in the plat, in the first instance, flowering but once, while in the second instance it passes two flowering seasons. In the first case, no bud is given after fruiting; in the second the plat is cultivated after fruiting, or after the fruiting season, whether it fruits or not. These two distinctions cause a rotation to fail under the head of biennial even when the plat is set out as late as February or March, cultivated through the summer following and fruited the next spring.

The biennial rotation (though often under the erroneous title of annual) is much the commonest, and is almost universally employed, except in places where the light, sandy soil, the humid climate and more
Strawberry Culture on the Plains. — The fact that the Strawberry has been growing wild from time out of mind in the prairie regions of North America suggests that it may be cultivated there with success, and the thousands of car-loads of delicious berries annually produced in those regions are positive proof of it. The Strawberry did not grow naturally in all sections or soils, but chiefly in the moist creek and river bottoms and along the margins of the woodlands. The cooler climatic conditions of the northern sections are more conducive to the growth of wild Strawberries than those in the South; for instance, the prairies of Minnesota grow more thrifty and larger berries than those of Texas. Under cultivation the Strawberry is somewhat subject to the same conditions as when growing naturally, but the principle of conservation of moisture by tillage has enabled man to do much that nature could not; in growing Strawberries. Water is most essential in the culture of this fruit. The soil should not be wet, but it must be moist or the plants will not thrive; nor will they bear fruit abundantly or of good size and quality with a meager supply of water. During the fruiting season there is a heavy draft upon the plants for water with which to fill the berries to their proper size. Over most of the Plains region there is a sufficient amount of rainfall to produce good crops of Strawberries in ordinary seasons, provided proper care be given to tillage. Nearly all the failures to grow reasonably good crops are due to neglect of this all-important matter. The drier the climate or the season the more heed should be given to tillage.

The mere setting of plants and giving them ordinary care is not sufficient for the production of a really profitable Strawberry crop in the open prairie country. It may suffice where the rainfall is not only abundant but regular; but where the rains are fitful and often very scanty, especially in the latter part of the summer, this will not do. The tillage should not be deep, but very frequent. Once each week during the growing season will be sufficient. The finer the surface soil is pulverized, the less water will escape from the subsoil, and this is the principal point to be attained so far as the purposes of tillage are concerned. Rich soil is beyond doubt one of the prime requisites of Strawberry culture. This is not difficult to find in most parts of the prairie regions. Some of it lies too flat for the best results and some is too steep, but very little is either too stiff or too sandy.

The Strawberry is especially adapted to field culture. As the Plains country slopes up to the Rocky Mountains the climate becomes drier until there is so very little rain that nothing but a scant native vegetation will grow without irrigation. The soil is for the most part rich enough for Strawberries, and where water is applied in proper quantity as fine berries can be grown as in any part of the humid regions. As a matter of fact, there...
seems to be more certainty in growing Strawberries under such conditions than in regions where the crop must depend upon rainfall. Some varieties that are usually a failure because of their deficient root-system, such as Juconda, are thus enabled to flourish to such a degree as to be among the most profitable. Whatever may be said of other parts of the continent of North America, it is an indispensible fact that the Plains region is very good for Strawberries. Good judgment in the selection of proper locations and the right varieties, thorough preparation of the soil and good culture will be abundantly rewarded.

H. E. Van Deman.

The Strawberry on the Pacific Coast. — California conditions include both those most favorable and most trying for the growth of Strawberries. There are situations where, through local topography and proximity to the ocean, winter temperatures are very seldom too low for the growth and fruiting of the plants and where, by summer irrigation to maintain this continuous activity of the plants, it is possible to gather fruit every month in the year. This fact is not, however, made of much commercial account, nor is it widely true that one can have Strawberries all the year round in the open air. It is true, however, that even on the lowlands, where the commercial crops are chiefly grown, the winter is so mild that Strawberries begin to ripen in shipping quantities as early as March and by proper cultivation and irrigation the fruiting is continued until late in the autumn, and the grower has therefore a very short period available. The trying condition for the Strawberry is found in the long, dry summer, which enforces dormancy as early as June on light loams in the more arid localities of the interior. Such soils become dry and hot to a depth of several inches in spite of surface cultivation and cause the dwindling and death of a shallow-rooting plant like the Strawberry, unless frequent irrigation is begun in time. This trouble is less acute on more retentive soils in regions of lower summer temperature and greater rainfall, and plants in such situations may survive the summer dormancy, but it is true that everywhere in California and even in the more humid states on the north that Strawberry-growing without irrigation results either in failure or only partial satisfaction and the terrain is seldom to be commended. It is, however, so easy, usually, to secure the small amount of water necessary for home production, and the plant when fairly treated is so highly productive, that a general exclamation to Strawberry-growing on an irrigation basis is fully warranted.

There are several species of Strawberries indigenous to California, and they are of both litoral and alpine types. Some interest has been shown in development of cultural varieties from these species, but no commercial significance has as yet attached to them. The varieties chiefly grown are different from those popular at the East. New varieties from the eastern states and from Europe are freely tried, but few are successful and therefore a little popularity after abandonment of the birthplaces. A striking instance of this fact is the continued popularity of Longworth Prolific, Sharpless, Monarch of the West, Wilson, Albany, etc. Longworth has survived more than thirty years' continued growing. Other popular varieties are Melinda, Jessie, Triomphe de Gand, Brandywine, Marshall, Lady Thompson, etc. Early cultivation in Southern California has been largely planted in southern California but not always successfully, though it does well near the coast. The Arizona Everbearing is par excellence drought- and heat-resistant and is constantly increasing its area in interior situations. It has endured neglect which has actually compassed the death of other varieties. The Australian Crimson is a popular market variety in southern California, of which the first plants came from the southern hemisphere, but it has some appearances of being a re-named American variety.

The growth of Strawberries is almost wholly in flat rows, the rows usually occupying dry ridges; only sufficiently elevated to allow the slightly depressed intervals to serve as irrigation ditches and as walks during picking. The slight elevation of the plants also assists in surface-drainage, when heavy rains fall during the early part of the fruiting season, and this promotes early growth and fruiting of the plants. Where the soil is too coarse to permit free rise of water from the depressed ditches the conditions are reversed and low fencerows are made to inclose blocks of plants which are irrigated by flooding the inclosures. In the chief commercial regions a low loam is used and irrigation from the small ditches on both sides of the ridges, which are about 2 feet wide, is the ruling method. Nearly level land is selected and grading is done before planting to reduce dry knolls and fill low places so that the water will flow slowly and will evenly moisten the whole field. Subirrigation by the has been often advocated but never has been employed to any extent.

One of the chief Strawberry-shipping districts in central California is characterized by a shallow loam underlaid by an impervious indurated clay or hard pan, which prevents the percolation of the irrigation water and enables growers to maintain a large acreage by means of the small water supply secured by windmills. In this case water is applied very frequently, even oftener than once a week in some cases, but the total amount for the season is small. Quite in contrast to this is the growth of the flat loams where water sinks so rapidly that the plants suffer, although water is almost constantly running in the ditches. In such cases mulching and sprinkling are the rule. Nor is it unusual, and these are too costly except on a small scale for home supply. The largest producing districts have soils midway between the extremes above noted, viz., deep, retentive loams, situated rather low in the valleys and with irrigation available either by ditch system or by wells both flowing and pumped. The pump wells require usually only a short lift, and abundant water is secured cheaply by the use of modern pumps and motors.
In addition to supplying the home markets, which are very good, California strawberry-growers find a good outlet for the fruit all through the region west of the Missouri river, and California supplies the southern portion of this district, while the growers in central California, chiefly near Florin in Sacramento county, make large shipments eastward as far as Colorado and northward to all the great interior states and to Oregon, Washington and British Columbia before the locally grown fruit in those regions is available.

The states of Washington and Oregon in their areas lying west of the Cascade mountains have conditions excellently suited to the growth of the Strawberry. Their conditions more nearly resemble those in the eastern states than any other part of the coast. The cooler weather and more abundant moisture give a better spring season than that of California, but the season is on the whole much shorter because of the longer winter. Irrigation is also necessary in most places for continued fruiting during the summer. The most famous district is Hood River, Oregon, where arid conditions east of the Cascade mountains are modified by western influences which reach through the gap in these mountains where the Columbia river flows through. Irrigation is regularly employed and a large commercial product grown. The varieties chiefly grown in this region and in adjacent parts of Washington and Idaho are of local origin, the Hoo River (Clark Seedling) and Magoon Seedling being widely approved. These, Sharpless, Wilson, Haverland, Crescent, Cumberland, Jnemuda and Parker Earle are also commended by growers in the northwestern states.

E. J. WICKSON.

The Forcing of Strawberries for a Winter Crop has not as yet become of any great commercial importance in North America. Some gardeners grow a few potted plants for either Christmas or Easter decoration. Very few, if any, commercial growers are forcing Strawberries exclusively to any profitable extent. The few Strawberries that are forced are grown either in pots or planted out on benches. The former method is the one generally employed. There are several good reasons for this, some of which are: first, the confinement of the roots; second, the ability to ripen the crowns in the fall; third, the control of fertilizers and liquid manure; fourth, the privilege of having the crop grown in several houses at one time or brought from a coolhouse into heat; and fifth, the opportunity to supply particular demand of the potted plants or their fruits. The first expense of the pot method is considerably more than when the plants are grown in the benches, but after the pots are once purchased the cost of each method shall be about the same.

The pot method as practiced at Cornell University is about as follows: As early in the spring as possible large plants are set in well-enriched soil. The first strong runners made by these plants are secured and potted. Numerous 2- or 3-inch pots filled with good soil are plunged to the rim along the Strawberry row. The runners are trained to these pots, and a small stone is placed on each runner to keep it from growing beyond the pot. When the pot is filled with roots the young plant is cut from the parent stock, the pots lifted and taken to the potting shed or other convenient place, where they are at once shifted into the fruiting pots (usually a 6-inch pot). The soil used at this time should be three parts fibrous loam and one of good sand. This potting soil should have mixed with it bone-meal or dissolved rock at the rate of about one pint to two bushels of soil. Ample drainage should be given, as through the season of ripening the crowns and the following forcing period a large quantity of water must be given and none should be allowed to stand around the roots.

The pots should then be plunged to near the rim in some coarse material, preferably coal ashes, which, if deep enough to extend from four to six inches below the plunged pots, will prevent the earthworms from entering the pots. The use of a frame in which to plunge the pots is recommended for protection against heavy rains or early frosts. Attention to watering is all that will be necessary through the growing season. Late in September or early in October the pots will be filled with roots and the plants will have attained their full growth. At this time larger and danner crowns will be had by careful attention to watering and subsequent drying off to almost the wilting stage than by watering the plants up to the time of freezing weather. The drying process seems to represent the late fall season and causes the plant to store up material in the crowns of an earlier period. At the coming of cold weather the soil in the pots may be allowed to freeze. It is very desirable that the soil be on the dry side before freezing, for if the ball of earth is wet there is danger of breaking the pots when the cold becomes intense. The period of forcing from the time the frozen plants are brought in until the ripening of the fruits will be about eight weeks. The time will vary slightly under different conditions of heat and sunlight. When first brought in, the plants should be cleaned of all dead or diseased leaves. The pots should be plunged to near the rim in some material that will retain moisture, e. g., tan bark or coal ashes. The benches or shelves should be as near the glass as convenient. A thorough spraying with

Bordeaux mixture or some other fungicide should be made at once. For the first few days the house should be held at about 35°, with little if any rise through the day. After a week a rise of 10° may be given. At the end of the second week 50° at night, with a rise of 10-15° through the day, will be about right.
Strict attention must be given to syringing the foliage every pleasant day. Keep the walks wet until the time of blossoming. This moisture keeps down the red spider. At blossoming time the house should be allowed to dry out, and a free circulation of air should be maintained through the middle of the day, in order to ripen the pollen. It is necessary to pollinate each flower by hand. The pollination may be done in the middle of the day while the houses are dry. A small camel-hair brush is useful for distributing the pollen. A ladle or spoon should also be provided in order to carry the surplus pollen. The surplus pollen may be used on varieties that are pistillate or do not have pollen enough to set their own fruits. Six to eight fruits are enough for a 6-inch pot. When these are set the remaining flowers should be cut off, in order that the entire strength of the plant may go to swelling the chosen fruits. After swelling begins, liquid manure should be given. During the first week give one dilute application. After this give two applications a week, increasing the strength of the manure liquid each time. Well-rotted cow manure or sheep droppings furnish good material for this purpose. When the fruits are coloring the liquid manure should be withheld and only clear water given. As they swell, the fruits will need support, and the best method of furnishing this is probably by using small-meshed window-screen wire cut into suitable squares. These squares may be laid on the pot, under the clusters of fruits. They hold the fruits away from the sides of the pots, protect them from any water or liquid manure that is given the plants, and enhance the beauty of the potted plant. After one fruiting, the plants are worthless.

C. E. Huns.

STRAWBERRY BUSH. See Eryngium.

STRAWBERRY GERANIUM. Saxifraga sarmentosa.

STREPTOCARPUS

STRAWBERRY-RASPBERRY. Rubus rosatilus.

STRAWBERRY TOMATO. Physalis Alkekengi and other species of Physalis.

STRAWBERRY TREE. Arbutus Unedo.

STRELTZIA (after the wife of King George III, Charlotte Sophia, of the family Mecklinburg-Strelitz, a patron of botany). Scorlihinales. Bird of Paradise Flower. A South African genus of 4 or 5 species of perennial herbs, with generally large, long-petioled leaves and nodding flowers: rhizome subterranean or produced into a large woody stem: pedicels short: spathe long or short, peduncled. Strelitzia Reginae requires a good strong soil, a copious supply of water and considerable sunlight. It is a serviceable plant for house decoration or for the porch or lawn in summer. It will endure much neglect, but unless well cared for it may fail to bloom regularly and well. A night temperature of 50° is sufficient. This plant may be induced to set seed if the flowers are hand-fertilized.

A. Plant nearly stemless.

Regina, Banks. Bird of Paradise Flower. Fig. 2432. About 3 ft. high: roots large, strong-growing: lvs. oblong, about 1 ft. long, stiff, concave; leaf all radical, twice to three times as long as the lvs.; scape higher than the lvs.: spathe about 6 in. long, nearly horizontal, purplish at the base, about 6-fl., the lvs. orange and blue-purple. Winter. B.M. 119, 120.

AA. Plant with woody stems.

b. Fls. pure white.

Augusta, Thunb. (S. augusta, D. Dietr.). Becoming 18 ft. high: lvs. at the summit of the stem, 2-3 ft. long, oblong, acute; pedicle 4-6 ft. long: peduncle short, from a leaf-axil: spathe deep purple; lvs. on short purple pedicels, all parts of the flower pure white; petals round at the base. B.M. 4167, 4168.

Bb. Fls. pale blue and white.

Nicolai, Regel & C. Koch. Resembling S. Augusta in habit and foliage, but the fls. and spathe are much larger and the petals are bastantly combined and blue in color. B.M. 7008.

F. W. BARKLEY.

STREPTOCALYX (twisted calyx). Bromeliaceae.

There are 7 species of Streptocalyx according to Mez (DC. Monogr. Planaer. Vol. 9) of Brazil. The genus differs from Bromelia in having strongly branched and broad sepals and long corolla-tube. No species are in the American trade, but S. Fìrátenbergi, Mörr., is described in horticultural literature (sometimes as seen F. Xírátenbergi, Mörr. & Wittn.)). It is a stemless pineapple-like plant, with 30-40 rigid lanceolate leaves in a dense rosette: cluster a central dense panicle 1-1½ ft. long, with many 2-sided spikes of rather dull flowers.

STREPTOCARPUS (Greek compound meaning twisted fruit). Gesneriaceae. Cape Primrose. In October, 1820, there bloomed at Kew a most interesting gloxinia-like little plant, seeds and specimens of which had been collected in South Africa by Bowie, on the estate of George Rex, at Knysna. The plant was described as Dicygocarpus Rexii. It is a stemless plant, with one or rarely two, long-tubular nodding pale blue flowers on each of several short scapes, and with several clustered root-leaves. It proved to be a profuse bloomer and easy to grow. "So abundantly does it produce seed," wrote W. J. Hooker, in 1830, "that new individuals come up as weeds in the neighboring pots, and a succession of flowers may be obtained at almost every period of the year." In 1828, John Lindley made the genus Streptocarpus for this plant, calling it S. Rexii, the name it now bears. It appears to have been nearly thirty years after the introduction of S. Rexii that another Streptocarpus bloomed in England. This second species was S. polyantha, which may be taken as the type of a group that has one leaf lying on the ground and from the mid-
Streptocarpus

rib of which arise successive several-flowered scapes. The introduction of this curious plant seems to have received the interest in Streptocarpus, an interest that has been kept alive by the frequent introduction of other species. The chief stimulus to the systematic breeding of these plants seems to have been the introduction of S. Drumii, said by J. D. Hooker to be "quite the monarch of its beautiful genus" (but now excelled by S. Wendlandii). Seeds of this species were sent to Kew in 1884 by E. G. Dunn, of Cape Town. It is one of the monophyllous section to which S. polyantha belongs. In the meantime, S. pareitflora, a species allied to S. Rezii, had been introduced from the Cape region. With the three species, S. Rezii, S. pareitflora and S. Drumii, W. Watson, of the Royal Gardens, Kew, set to work systematically to breed a new race of Streptocarpus, and his efforts were crowned with success. When the hybrids came to notice in 1887, the Gardener's Chronicle made the following comment on the value of the work: "The results are very striking, and we can hardly doubt that Mr. Watson has set the foundation of a new race of plants, parallel in importance to the Achimenes and Tydeas." Several hybrid races have now been produced and several interesting species have been introduced from the wild, so that Streptocarpus seems to be destined to become a very important and popular garden genus.

Bentham and Hooker's treatment divides the Gesneraceae into two great tribes: Gesneraceae, with ovary more or less inferior and fruit a capsule; Cyrtandrae, with ovary superior and fruit sometimes a berry. The latter tribe, the species of which have been monographed by C. B. Clarke in vol. 5 of De Candolle's "Monographiae Phanerogamarum," contains the genera Streptocarpus, Episcia, Cyrtandra, Eschymanthus, Runcenda, and others. The Streptocarpuses are stemless or nearly stemless herbs, bearing 1 or more tubular nodding fls. on short scapes that arise either from the crown of the plant or from the midrib of a flat prostrate leaf: corolla-tube cylindrical, the limb 5-lobed and somewhat 2-lipped; perfect stamens 2, included; pistils with ovary linear, usually hairy, with style as long or shorter than the ovary, and stigma capitate or indistinctly 2-lobed: fr. a linear 2-valved capsule, the valves twisting. The flowers are usually showy, blue or lilac, rarely yellow. The species are of three groups: the stemless monophyllous species, with one prostrate leaf from the midrib of which the scapes arise (this leaf is really an enlarged cotyledon, the other cotyledon not enlarging); the stemless species, with several or many radical more or less primula-like leaves (whence the English name "Cape Primrose"); the stem-bearing species, with opposite caulin leaves. The cultivated species chiefly represent the first two sections. In the American trade, only four specific names occur, S. Rezii, S. Galpinii, S. Drumii, and S. Wendlandii; but since the hybrids represent several other species, these additional species are inserted in the following account. Streptocarpus is an African genus. The stem-bearing section is confined to central Africa and Madagascar, and the others to South Africa. Clarke's Monograph, 1885, describes 19 species, but S. Drumii, S. Wendlandii, S. Galpinii and others have since been discovered. There are 25-30 known species.

Streptocarpuses are not difficult plants to grow. They are usually raised from seeds, the seedlings blooming in 8 to 15 months from starting. The seeds are very small, and care must be taken not to cover them too deep. Give an open sunny place in an intermediate temperature. They are not stove or greenhouse plants. Of the new hybrid forms, seeds sown in February or March should produce plants that will bloom the following fall and winter; after blooming, the plants may be discarded, for better results are usually secured from new plants than from those more than one season old. The season of most profuse bloom is summer, but the bloom continues until winter. The monophyllous species can be propagated also by cuttings of the leaf. Some fanciers of Cape Primroses advise propagating select types by leaf cuttings or by division.

A. Streptocarpus species, or those forms introduced from the wild.
B. Leaf one, prostrate on the ground, usually very large.
C. Fls. red.

Drumii, Hook. f. Soft-hairy: leaf becoming 3 ft. or even more in length and 16 in. wide, thick-nerved, red-dish tomentose beneath, rounded at base, obtuse at apex, coarsely toothed: scapes several to many, in a row beginning at the base of the leaf, erect, 1-5 ft. tall, many-flowered: corolla long-tubular, curved, 1 1/2 in. long, the limb narrow, bright rose-red. Transvaal. B.M. 50000. G.F. 2:122. —A very floriferous species, one plant sometimes bearing more than 100 flowers.

cc. Fls. blue, mauve or lilac.

Saundersii, Hook. Hairy: leaf 1 ft. by 9 in., cordate, obtuse, coarsely serrate, yellowish green above and purple-rose beneath: scapes 10-16 in. tall, bearing a compound cyme of large drooping blossoms: corolla 1 1/2 in. long, funnelform, the limb broad but not equaling the nearly straight tube, light blue, with 2 purple spots in the throat. Natal. B.M. 50001. F.S. 17:460. —Named for W. Wilson Saunders, through whom it was introduced.

2433. Streptocarpus Wendlandii (X 1/2).
STREPTOCARPUS

polyantha, Hook. Haired: as compared with *S. Saundersii*, the leaf is smaller and the fls. bluer and borne in a compound racemose panicle: corolla-tube curved, shorter than the large, white, spreading-toothed pale blue limb. Natal, Orange Colony. B.M. 4565.

Galpin, Hook. Haired: leaf ovate-oblong, obtuse, entire: sepals several to many, glandular-pubescent; fls. short and broad, being nearly or quite bell-shaped, the limb broad and subequal, rich mauve, with a white eye. Transvaal. B.M. 7230. G.C. III. 11:123.—Named for Ernest E. Galpin, who discovered the plant.

Wendlandii, Damman. Fig. 2433. Haired, usually bearing a rosette of very small lvs. at the base of the radical one; leaf broad, often becoming 24 x 30 in., sometimes narrower, rounded at both ends, crenate-nudate, red-purple beneath: sepals several, forked, bearing paniculate racemes: corolla-tube about 1 in. long, curved, pubescent, the limb large and oblique, with broad entire lobes, the whole effect violet-blue and whitish. Transvaal, Natal. B.M. 7417 (part of which is copied in Fig. 2432). G.C. III. 22:275. Gr. 45, p. 511; 50, p. 591. J.H. III. 28:222.—Probably the finest species yet introduced.

BB. Leaves several, rising from the crown.

Rexii, Lindl. Fig. 2434. Haired: lvs. ovate-oblong, 6-9 in. long, short-stalked, obtuse, crenate: sepals several, 3-5 in. tall, 1-dld.; or rarely 2-dld.: fls. 2 in. long, 2-3 in. wide, the tube downy and nearly white, the large spreading limb pale blue to purple. S. Afr. B.R. 14:1172. B.M. 3005. L.B.C. 14:1283.

parviflora, E. Mey. Soft-hairy all over except the corolla: lvs. ovate, obtuse, sessile or nearly so, or more, appressed to the ground: sepals several, 6-10 in. tall, reddish, bearing coriaceous racemes: fls. small, the corolla-tube about 1/2 in. long and purplish and curved, the spreading broad limb nearly white and with orbicular lobes. Cape. B.M. 7095.

2435. Streptocarpus Kewensis (X 1/2).

lutea, Clarke. Lvs. erect and elongate-oblong; fls. smaller and usually fewer, yellowish, the corolla-lobes narrower and the tube relatively broader. Transvaal. B.R. 14:1172. B.M. 3005. L.B.C. 14:1283. (as *S. parallela*).—The two species were confused until separated by Clarke in 1883. It appears that this plant, rather than the true *S. parallela*, was one of the parents of the hybrid *S. Watsonii* (see W. Watson, G.F. 3, p. 699).

AA. Streptocarpus hybrids, of garden origin. (For colored pictures of modern hybrid types, see Gr. 29:545; H. 881; 50:6192.)

Kewensis (*S. Rexii* x pollen of *S. Dunaii*). Fig. 2435. "It has two or three large oblong or elongate-ovate bright green leaves, which, however, do not attain such large dimensions as in *S. Dunaii*; flower-stems numerous, and 6-8 fls., forming a tolerably compact mass of fls.; corolla 1-1 1/2 in. long and 1 1/4 in. wide, resembling a bright mauve-purple, striped with dark brownish purple in the throat." N. E. Brown. G.C. III. 21:247. I.H. 3:123.

Watsonii (*S. Interx* x pollen of *S. Dunaii*). "The single leaf is similar to but rather smaller than that of *S. Kewensis*. It is exceedingly floriferous, having numerous flower-stems, bearing 10-16 fls. about 1 1/4 in. long and 1 in. in diam., of a bright rose-purple, with a divided throat striped with brownish purple." N. E. Brown. G.C. III. 22:215. I.H. 38:134.—One of the finest of garden forms. Said to be sterile with its own pollen.

Dyeri (*S. Wendlandii x S. Dunaii*). Leaf single, 2 ft. long and 15 in. wide, olive-green above and violaceous beneath, soft-hairy; sepals 1-2 ft. or more tall, bearing many long-tubular red-purple flowers. G.F. 5:7.—One of W. Watson’s hybrids.

Brianti (*S. Rexii x S. polyantha*). Fls. larger than those of *S. Rexii*, 4-6 on each scape, mauve-blue, with whitish yellow throat.

S. biflora, Duch., mentioned only in horticultural literature, and perhaps a garden form. It is of the *S. polyantha* type, with several blue fls.— *S. biflora-polyanthus*, Duch., is a hybrid of *S. biflora* and *S. polyantha*, with several large light blue fls. P.S. 21:2429.— *S. caulicola*, glandular-pubescent, with opposite elliptic-oblong entire hairy lvs., the stem swollen, the fls. small (1/2 in. across) and pale lilac. Transvaal, Cape. B.M. 6849.—S. caulicola var. Rexii: sepals several, bearing 2 nodding pale lilac fls., with corolla 2 1/2 in. long. S. Afr. B.R. 13:121—S. Grossii, Hort. is a hybrid of *S. Saundersii* x pollen of *S. Rexii*; dwarfer and more compact than *S. Saundersii*, the scapes many-fld. fls. pale lilac. G.C. III. 17:593. Said to have been the first hybrid Streptocarpus. Raised by Mr. Green, Penhill Court, Surry, England, in the garden of Sir George Macleay.—S. Kirkii, Hook. f. is one of the caulicola section, with opposite petiolate coriaceous-obovate subulate lvs., and many-flowered clusters of pale lilac fls.; the corolla being about 1/2 in. long. Transvaal, Cape. B.M. 6792—S. Lichtensteiniana, Hort. Hybrid of *S. Wendlandii* x *S. Watsonii*. Lvs. 2, one prostrate and the other smaller and erect; fls. numerous, blue-blue.— *S. multiflora*, Hort. One of Laing’s (England) types, a seedling of *S. Rexii*, with several large bluish purple fls., with darker lines in the throat. G.C. III. 18:211. I.H. 45, p. 67.

STREPTOPUS [Greek, twisted stalk: referring to the peduncles]. Lilitaceae. Twisted stalk. A genus of 3 or 4 species of perennial herbs, from the temperate regions of Eun, Asia, and N. America, with aspect of Polygonatum, from which it differs in having a 3-elephant style and perianth in separate segments. Woodland plants with slender branching stems: lvs. ovate, clasping or sessile, prominently nerved; fls. rather small, rose or white, nodding, slender-pedicelled; solitary or in pairs in the axils of the leaves: fr. a many-seeded berry. The closely related genus Diapensia has terminal flowers, while those of Streptopus are axillary.

A. Fls. purple or rose.

roseus, Michx. Rootstock short, stout: stem 1-2 ft. high; lvs. sessile, 2-4 in. long; peduncles less than 1 in. long, mostly 1-dld.; fls. about 4 1/2 in. long; berry red, 3/4 in. thick. May-July. Moist, rich woods in the northern states. B.B. 1:433.

AA. Fls. greenish white.

amplexifolius, DC. Rootstock short, stout: stem usually taller than *S. roseus*; lvs. clasping, 3-6 in. long; peduncles 1-2 in. long, usually 2-dld.; fls. about 1 1/2 in. long; berry red. May-July. Moist rich woods, northern U.S. and Canada south to N. C. and New Mexico. B.B. 1:422.

STREPTOSOLEN [Greek, streptos, twisted, solen, tube, with reference to the form of the corolla-tube]. Solanaceae. Lvs. on long petioles, ovate, acute at both ends, entire, bullate-roseous: fls. rich orange-colored, pedicellate, in terminal coriaceous panicles: calyx tubular-campanulate, shortly 3-elephant; corolla-tube narrowed, widening above, spirally twisted below; petals 5, broad; perfect stamens 4. A monotypic genus from the United States of Colombia.
STREPTOSOLEN

STREPTOPODODENDRON

Elliptic-lanceolate, serrulate, coriaceate at base, sessile, variegated with iridescent tints of blue and lilac, short, purple beneath; fls. in erect spikes, 1½ in. long, pale violet; calyx unequally 5-lobed, lobes linear, obdurate; corolla-tube curved, ventricose, limb of 3 short, broad, ovate lobes. Burn. II. 19:687. B. M. 19:275. —Used for bedding.

STREPTOSOLEN

STREPTOSOLEN

STREPTOSOLEN

trees with bipinnate foliage, numerous leaflets, and small
fls. borne in axillary, cylindrical spikes. Fls. sessile, 5
merous; petals often connate to the middle, valvate;
stamens none, free; pod linear, compressed, thick.
Here belong S. Guianensis and S. Hortibraviana, both of
which are known as Aucalis; the latter as A. pulcherrima.
Neither species is known to be cult. in America.

STUARSDA (in honor of John Stuart, Earl of Bute, a
patron of botany; 1718–1792). Sometimes spelled Stew-
arton. Ternstroemiæ. Ornamental deciduous shrubs
or trees, with alternate, short-petioled serrate leaves
and large showy white flowers solitary on short stalks
in the axils of the leaves, followed by capular fruits.
S. pentagyra and S. Pseudo-Camellia are hardly as far
north as Mass., while S. Malachodendron is tender
north of Washington, D. C. They are very desirable
ornamental plants, with handsome bright green foliage
which turns deep vinos red or orange and scarlet in
fall, and they are very attractive in midsummer with
their white cup-shaped flowers, which are in size hardly
surpassed by any others of our harder shrubs. The
Stuartias thrive in deep, rich, moderately moist and
porous soil, preferring a mixture of peat and loam, and,
at least in more northern regions, a warm, sunny position.
Prop. by seeds and layers; also by cuttings of half-
ripened or almost ripened wood under glass.

Five species occur in N. Amer. and E. Asia. Shrub
or trees, with smooth flaky bark; fls. axillary or subter-
tinal, with 1 or 2 bracts below the calyx; sepals and pet-
als 5 or sometimes 6, the latter obovate to almost orbic-
ular, usually concave, with orenulate margin, connate
at the base with each other and with the numerous sta-
mens; styles 5, distinct or connate; fr. a woody, usually
hirse capsule, loculically dehiscent into 5 valves; seeds
1–4 in each locule, compressed, usually narrowly
winged.

A. Styles united; petals always 5.

b. Stamen purple, spreading: capsule subglobose.

Malachodendron, Linna. (S. Virginica, Car.). Shrub,
6–12 ft. high; Ivs. oval to oval-oblong, acute at both
Gn. 1:135; 18, p. 626; 34, p. 280. G.C. II, 8:433.—
This species has the largest and showiest flowers.

STURTEVANT, EDWARD LEWIS, agricultural ex-
perimenter and writer, was born in Boston, Mass., Janu-
ary 25, 1842, and died at South Framingham, Mass., July
STYRAX

20. 1898. Though holding the degree of M.D. from the Harvard Medical School, Dr. Sturtevant never practiced the profession of medicine, but devoted his life to agricultural work, first specializing on Ayrshire cattle, then on potted ferns (Asplenium and Nephrolepis) and muscariens; and afterward devoting particular attention to the modifications which cultivated plants have undergone as shown by such records as occur in the older books. In connection with these studies, Dr. Sturtevant brought together a rare collection of books dealing with plants published before the time of Linnaeus. Among which, with his index cards and herbarium, is now preserved at the Missouri Botanical Garden in St. Louis, Mo.

As first director of the New York Experiment Station, at Geneva, Dr. Sturtevant drew the broad plans on which the successful work of that establishment has been conducted and which have served largely as models for subsequently organized agricultural stations over the country. He was a man of active mind, and his career is suggestive of worthy work to an unusual degree. A biographical sketch and a list of his principal writings are printed in the Tenth Report of the Missouri Botanical Garden.

WM. TRELEASE.

STYLOPHORUM (Greek, style and bearing, in reference to the persistent style). PAPIRUS. A genus of probably 3 species of perennial herbs, one American and the others from southeastern Asia and Japan. Herbs with stout roots; ks. yellow or yellow-white; Ivs. lvs. lobed or cut; fls. yellow, red, or yellow; fruits solitary or clustered; sepal 2-4; petals 1; stamens numerous; placentae 2-4; style distinct; stigma 2-4-lobed, radiate; capsule linear or ovoid, dehiscent to the base.

Stylophorum. Nutt. (Papaver Stylphorum, Hort.). CHLANSENE POPPY. Fig. 2438. A hardy perennial about 1 ft. high, forming large clumps; stem with 2 lvs. at the summit; Ivs. light green, pinnately parted; fls. yellow, 2 in. across, in clusters of 3-5. May, June. Moist shade, W. Pa. to Wis. and Tenn. B.B. 2:122. J.H. III. 34:175. An attractive plant of easy culture in any rich, rather loose, moist soil in either shade or open, but preferably in partial shade.

W. F. BARKLEY.

STYRAX (ancient Greek name of Styrax officinalis). Styracea. STYRAX. Ornamental deciduous or evergreen trees or shrubs, saccate or entire leaves and white often pendulous flowers in axillary clusters or terminal racemes, followed by drupaceous dry or fleshy fruits. S. Observa, Americanum and Styraciflua are the hardest and stand the winter in sheltered positions as far north as Massachusetts; S. grandifolia is hardy about Philadelphia and S. Cali- forniae only south. The Storaxes are handsome shrubs of graceful habit, usually loose and spreading. Their flowers are numerous, white and mostly fragrant. They are well adapted for borders of shrubberies or as single specimens in the lawn, and thrive best in a light, porous soil. Prop. by seeds soon after ripening and by layers; sometimes grafted on Halesia tetraptera.

About 60 species in the tropical, subtropical and warm temperate regions of America, Asia, Europe and Africa. Trees or shrubs: lvs. short-stalked, exstipulate, more or less covered, like the florescence, with stellate hairs; ks. white, obscurely capitate, 2-4-toothed or truncate; petals 5, connate only at the base; stamens 10, inserted at the base of the corolla and usually somewhat connate below; ovary superior, often united at the base with the calyx, 3-loculed at the base, 1-loculed at the apex; style slender; fr. a drupe, mostly subglobous, fleshy or often dry with desiccant pericarp, 1-2-seeded, with large, subglobose seeds. Styrax Beauxain yields a resin, called beauxain resin; Styrax Benzoin yields a resin, called benzoin; Styrax Benzoin, a resin, called benzoin; Styrax Benzoin, a resin, called benzoin; styrax, a similar gum-resin, was formerly obtained from S. officinalis, but the styrax of to-day is a product of Liquidambar.

A. Fls. in young-fld. clusters, or on young branches, in 1-3 in. long.
B. Young branches, petals and racemes grayish tomentose.

grandifolia, Ait. Shrub, 4-12 ft. high: lvs. oval to oblong, shortly acuminate, usually narrowly toward the base, denticulate or almost entire, glabrous above, grayish tomentose or pubescent beneath, 2-5 in. long; fls. fragrant, in loose racemes 3-6 in. long or sometimes in clusters; corolla fully ½ in. long, with spreading, oblong petals; fr. subglobose, about ½ in. across. May. S. Va. to Fla. L.B.C. 11:1016 (poor). B.B. 2:599.

B. Young branches, petals and racemes soon glabrous.

Obasisia, Sieb. & Zucc. Shrub or small tree, 30 ft. high: young branches and petals covered with a quickly disappearing floccose rusty tomentum; Ivs. or-biangular to broadly ovate or ovate, abruptly acuminate, usually rounded at the base, remotely dentate above the middle and sometimes triscipuate at the apex, glabrous above, pubescent beneath, 6-10 in. long; fls. fragrant, in racemes 3-7-8 in. long; raceme glabrous; pedicels and calyx finely tomentose; corolla ¼ in. long, with slightly spreading obvate-oblong petals; fr. ½ in. long, ovoid, pointed. May. Japan. S.Z. 1:46. B.M. 7699. G.C. III. 4:131 (not correct in regard to habit). A.F. 12:30. M.D. 1:1898:16.

AA. Fls. in few-fld. clusters or on young branches: lvs. 1-3 in. long.
B. Petals 5-8: branches and lvs. beneath pubescent.

California, Torr. Shrub, 5-8 ft. high: lvs. broadly oval or ovate, obtuse, entire, stellate pubescent, at least when young, 1-2½ in. long: fls. in few-fld. tomentose clusters; pedicels about as long as calyx; corolla ¼ in. long, with 5-8 oblongaceous petals; stamens 10-16, with the filaments pubescent and connate about one-third. April. California.

B. Petals 5: lvs. almost glabrous, acute.

C. Pedicels about as long as calyx, puberulous.

Americana, Lam. (S. globarum, Cav. S. levi- gigahum, Ait.). Shrub, 4-8 ft. high: lvs. oval to oblong, acute at both ends or acuminate, entire or serrulate, bright green and almost glabrous, 1-3 in. long; fls. nodding, in few-fld. clusters; pedicels about as long as calyx or little longer, puberulous; corolla about ¾ in. long, almost glabrous, with spreading or reflexed, lanceolate-oblong petals; calyx-teeth minute, acute. April-June. Va. to Fl., west to Ark. and La. B.M. 921. L.B.C. 10:969. B.B. 11:552 (as Halesia pavifrons).
S. Bœnoz, Dryland. Small tree, allied to S. Japonica; its stellate-tomentose beneath, also pedicels and calyx. Malay Archip.;—S. officinalis, Linn. Closely allied to S. Californica; petals 5-7; stamens connate only at the base. Mediter. region. —S. plantanifolia, Engelm. Ailed to S. Californica: almost glabrous; ivy, undulate or irregularly sinuate lobed. Texas. —S. puterulenta, Michx. Low shrub, allied to S. americana; Asian elyceoid-oolong, acuminate, distichous ser-rote: flat, short-pediciled, in 5-10-1d. short raceme; calyx and pedicels tomentose. E. India.

ALFRED REEDER.

SUGAR. Another name for Sugar.
Austalian undershrubs and herbs, differing from Coletona chiefly in smaller stature and the large lateral stigmas. Flowers pea-like, in axillary racemes, purple, blue, red, yellow or white, often showy; standard or vexillar, large and showy, orbicular; wings oblong, twisted or falcate; stamina 9 and 1: fr. a turbid or inflated pod, which is sometimes divided by a partition and sometimes with the upper suture depressed; seeds small and kidney-shaped; lvs. unequally pinnate, usually with several or many small leaflets. Now and then various species are seen in the collections of amateurs or botanic gardens, and 8 species are offered by one German dealer, but by far the most popular kind is S. galgegalia, var. albiflora.

*galgegalia, R. Br. (Vicia galgegalia, Andr. Colatha galgegalia, Sims. S. Osborni, Moore). Small, glabrous, attractive shrub, with long, flexuous or half-climbing branches: lfs. 5-10 pairs and an odd terminal one, small, oblong and obtuse or somewhat emarginate; racemes axillary and mostly exceeding the foliage, bearing rather large deep red lfs.; pod 1-2 in. long, much inflated, stipitate. Australian. B.M. 792. — Swaniono *galgegalia* is an old-time garden plant, blooming freely in a cool or intermediate house along with carnations and roses. It thrives well either as a pot-plant or in beds. It is hardy at San Francisco. It is a nearly continuous bloomer. Cuttings taken in late winter bloom in summer; these plants may then be transferred to the house for winter bloom, although maiden plants are to be preferred. By cutting back old plants, new bloom may be secured. Cuttings grow readily. The plant is easy to manage. The original form of Swanisono is little known in cultivation, but the advent of the white form has brought the species to the fore.

*Var. albiflora, Lindl. (var. alba, Hort. S. albiflora, G. Don.) Fig. 2440. Flowers pure white. B.F. 12:994. L.R.C. 17:1845. A.J. 8:1173; 10:611; 11:1186. Gg. 5:183. — In north America this is now one of the most popular white florists' flowers for use in winter decorations. It has been called the "Winter Sweet Peach" because of the shape of the flowers, but it has no fragrance. The delicate bright green foliage affords an excellent contrast with the pure white flowers. This variety is often grown at the end of a rose or carnation house, or trained on a trellis. It likes abundant sunlight, rich soil and liquid manure. When allowed too much root room the plants become very large and are slow to bloom, wherefore a large pot or tub is preferable to the border.

*Var. violacea, Hort., has rose-violet lfs., and is somewhat dwarf. S. corollifolia, Salsify, probably represents this form or something very like it. B.M. 12:994. *S. corollifolia* is an older name than *S. galgegalia* and if the two names are considered to represent the same species the former should be used.

*Var. rosa, Hort., has pink flowers.

*S. persadi, Hort., is called a "garden variety" by bow authorities. Var. alba is described in R.H. 1856, p. 562, and var. carninosa in the American trade.

L. H. B.

SWALLOW THORN. *Hippophae rhamnoides.*

SWAN RIVER DAISY. *Brachycome iberidifolia.*

SWEET ALYSSUM. See *Alyssum vulgarium.*

SWEET BASIL. See *Basil.*

SWEET BAY of general literature is *Laurus nobilis.* In America, *Magnolia grandiflora.*

SWEET BRIER. *Rosa rubiginosa.*

SWEET CICELY, or **SWEET-SCENTED CHERVIL** (*Myrrhis odorata.* Soop., which see), indigenous to Europe upon the banks of streams, is a graceful, hardy perennial 3 ft. tall, with very large leaves, grayish green, much-divided leaves, hairy stems and leaf-stalks, small, fragrant white flowers, and large brown seeds of transient vitality. The leaves, which have an aromatic, anise-like, sweetish flavor and odor, characterize of the whole plant, are still occasionally employed in flavoring soups and salads, though their use as a culinary adjunct, even in Europe, is steadily declining. In American cookery, the plant is almost confined to our unassimilated, distinctly foreign population. Though easily propagated by division, best results are obtained from seed sown in the autumn either spontaneously or artificially; the seedlings, which appear in the follow-

![Image](2440. Swanisona galgegalia var. albiflora (X 5).)

ing spring, are set 2 ft. apart each way in almost any ordinary garden soil. Sown spring-seed frequently fails to germinate. When once established common care will be sufficient.

M. G. KAINS.

SWEET CLOVER. *Melilotus alba.*

SWEET FERN. *Myrica Gale.*

SWEET FLAG. *Acorus Calamus.*

SWEET GALE. *Myrica Gale.*

SWEET GUM. *Liquidambar.*

SWEET HERBS. The term "Sweet Herbs" has long been applied to the fragrant and aromatic plants used in cookery to add zest to various culinary preparations, principal among which are dressings, soups, stews and salads. At the commencement of the nineteenth century many were to be found in gardens and kitchens that now have been dropped entirely or have but very limited use. Perhaps no group of garden plants during this time has been marked by so little improvement. Except in parsley, very few distinctly new or valuable varieties have been produced or disseminated. This is mainly due to the prevailing ignorance of their good qualities, to which ignorance may be charged the improper handling, not only by the grower, but by the seller and often by the final purchaser. With the public
SWEET HERBS

duly awakened to the uses of herbs, improvements in growing, handling, and in the plants themselves will naturally follow to the pleasure and profit of all.

In this country the herbs best known and appreciated are parsley, sage, thyme, savory, marjoram, spearmint, dill, fennel, tarragon, balm and basil, arranged approximating in their order of importance. Since parsley is more extensively used as a garnish than any other garden plant, it is grown upon a larger scale than all other herbs combined. Hence some seedsmen do not rank parsley with sweet Herbs. Sage is the universal flavoring for sausage and the seasoning par excellence for rich meats such as pork, goose and duck. It is more widely cultivated than thyme, savory and marjoram, which impart more delicate flavors and are more popular for seasoning mild meats, such as turkey, chicken and veal. With the exception of spearmint, without which spring lamb is gathered on a dry day after the dew is off, dried in current of warm, not hot air, rubbed fine and stored in air-tight vessels.

For specific information see articles on the following:
- Anise, Angelica, Balm, Basil, Caraway, Catnip, Coriander, Dill, Fennel, Horehound, Hyssop, Marigold, Marjoram, Mint, Parsley, Peppermint, Sage, Saffron, Savory, Tarragon, Thyme.

SWEET LIME. See Lime.

SWEET MARJORAM. See Origanum.

SWEET PEA (Lathyrus odoratus. See Lathyrus for botanical account. For structure of the flower, see Legume), Figs. 2411-41. For its beauty and fragrance, the Sweet Pea is the queen of the large genus to which it belongs. Long a common garden annual, within recent years it has been brought to a high degree of development, until it ranks with the most popular garden favorites. It is also grown for high-class exhibitions and floricultural competition.

Its early botanical history has been traced back to 1550. The whole history of the Sweet Pea is elaborately treated by S. P. Dickes, of London, in American Gardening, for July 24, 1857. The origin of the Sweet Pea is divided principally between Sicily and Ceylon, the original purple variety being indigenous to the former island and Sardinia. Sicily was also the native habitat of the white variety, but all obtainable testimony credits Ceylon with the original pink and white variety known as the Painted Lady. Thence came the original red out of which the crimson-scarlet sorts have come. Father Francisca Cupani, a devout Italian monk and enthusiastic botanist, is credited with being the first cultivator of this flower. In Sicily, in 1780, and the seed of the purple variety was sent by him to England and elsewhere. The seed of this flower became an article of commerce as early as 1780. In 1793 a London seed catalogue listed 3 varieties, the black, purple, scarlet, white and Painted Lady. About 40 years later the striped and yellow are found named on the list. Nilly until 1860 do the many-fertilized varieties, of which a blue-edged variety was offered, since known as Butterfly. In 1865 Invincible Scarlet won a certificate. In 1868 Crown Princess of Prussia appeared in Germany, and soon after followed a better shade in what was afterwards named Princess Beatrice. Several others of less value helped to prepare the way for the modern Sweet Pea as it has come from the skilled hands of Henry Eckford, the prince of specialists in this flower.

About 1876 Henry Eckford, of Shropshire, England, after long experience and signal success as a specialist in other florists' flowers, took up the Sweet Pea. He began with the 6 or 7 common sorts, working patiently by means of cross-fertilization and selection for seven years before he had anything of merit to offer. By that time he began to get new colors and a somewhat improved size and form. Orange Prince, the dark maroon Bow rattan, and the deep bronze-blue of Indigo King, were among the cheery signs of his success in originating colors. But his novelties did not meet with popular appreciation till about 1890, when their merit of size and grandiflora form and originality of color began to excite a new interest in this flower, especially in America. Up to 1898 Eckford put out about 75 varieties, the product of 22 years of patient labor. A large percentage of his introductions has received certificates and awards of merit from the Royal Horticultural Society and at other English shows. Laxton, of England, and J. C. Schmidt, of Germany, are among those who have done special work in originating varieties.

At the time when this new interest in Sweet Peas awoke in America the increased demand for the seed led to the successful experiment of growing it in California. The demand soon increased till 125 tons of this seed were produced by the California seed-growers, and now practically the world's supply comes from that source. This also led to the production of American novelties in this flower, the extensive seed-growers having unequaled opportunity for finding new sorts and also of making them by cross-fertilization. The American novelties have the advantage of being introduced with stronger seed than the Eckfords. The complete list of varieties in 1886 numbered about 150 named sorts.

The colors now represented are white, light primrose,
Plate XL. Sweet Pea. Lathyrus odoratus.
primo-rose-cream, buff-cream, buff-pink, various shades of light pink, flesh-pink, rose-pink, several shades of bright rose, scarlet, crimson-scarlet, rich blood-red, light blue, mauve-blue, dark blue, lavender, salmon-pink and also light rose, with more or less rich infusion of orange, purple, magenta, maroon with brassy cast or rich velvety effect, and shades of violet. All of these are found in passably good sorts and also in contrasted and blended colors, and all these colors are now found in stripes and flakes. In 1880 the first dwarf Sweet Pea called Cupid was found in California, the white first appearing; and now practically all colors have been found in this diminutive form. In this form of sporting the plant totally abandons its vine habit, making a mat of dwarf foliage, the blossoms being of the usual size, but with very short stems.

The best canons of judgment gives no encouragement to the so-called "double" Sweet Pea, the grandiflora single form being the approved type, as it certainly is the most graceful and best adapted to the flower. The highest form of development which the Sweet Pea takes is first in bringing the single flower to the best grandiflora size and form, and then in adding to the number of flowers on the stem. The improved Sweet Pea now takes on 4 blossoms to a stem to some extent, and even 5 blossoms to a true single stem are not unknown. The length and diameter of the stem are also important in determining merit. Stems 14 in. long are occasionally exhibited, and the flower cannot be said to have high culture unless they are well towards 8 inches in length. The finest grandiflora type of blossom has a standard which when pressed out will be nearly circular and will cover a silver dollar. The finest exhibition stock will now show some blossoms that measure 1½ in. across.

Now that this flower is grown for the highest competitive test of skill, the rules for judging an exhibit are of importance. Although no scale of points has received general recognition, yet, allowing that each variety must be judged according to the correct individual type under which it was introduced, size of blossom, color, form, substance, number of blossoms on the stem and size of stem, are the essential points. The retrograde of stock is easily shown by the loss of full rounded outline, reflected standard and deteriorated substance. Descriptive terms have been adopted by the growers to some extent, e.g., blossoms take the old common form, or are small expanded, bold expanded, hooded, notched, shell-shaped, or grandiflora. Position of blossoms on the stem is also a point aimed at by the specialist.

A good degree of success is now reported from ordinary gardens everywhere in the growing of this flower. Yet since it has been brought to its present highly hybridized and developed stage some of its hardy habits that formerly made it easy to grow have been reduced. Closer attention must now be paid to such rules of culture as have been long neglected. The soil must be well enriched with manure or compost. The planting should be in the fall, and the seed being in as soon as the frost is out. This first planting should be covered one inch, the place where the row comes being hoed over about three inches to hold moisture. A later planting needs to be covered with three inches of soil. Slow

germination and almost a standstill condition through the month of May is better than any forcing process. Only the thinnest top-soil should be disturbed in hoeing and no soil filled in earlier than June, if at all. Cutworms must be shown no quarter. A light mulch is excellent for shading the ground. Whatever support is given the vines must be strong and six feet high. A wire trellis answers well, but good birches give the vines a chance to ramble and they are cooler and more airy. Rows should run north and south. All the strength of the vines should be conserved by keeping the pods removed.

W. T. Hutchins.

California's Contributions to the Sweet Pea.—The pink and white Sweet Pea, or, as it was popularly known, the "Painted Lady," was an old-time garden favorite which was greatly esteemed by flower lovers for its beautiful coloring and delightful fragrance. This type, with the old style white-flowered kind and a few small-flowered sorts of dull and unattractive coloring, constituted for many years the entire assortment of varieties known to gardeners. When any one spoke of the Sweet Pea the Painted Lady was understood, in the same way that in speaking of a tea rose the favorite Safrano was the variety always referred to. In the past twelve years all this has been changed by the wonderful improvements made by specialists in the development of this flower and its consequent popularity. Our list of varieties of the tallest-growing or running type now numbers over 180 varieties.

This great improvement is due primarily to the work of Henry Eckford, of England, who has improved the Sweet Pea mainly by selection. The Laxtons also sent out a number of crosses, which were very distinct in coloring but of small size, and though the colors were rich they were not attractive. Owing to the climatic conditions under which he worked and his greater interest in the improvement of the flower, Mr. Eckford has not produced seed in sufficient quantities to greatly cheapen the price, and this element of popularity has been supplied by our own wonderland of flowers—California. In California, finely milled seed can be produced in such large quantities that in two
years after Mr. Eckford's introduction of a new variety our seedsmen are able to offer the seed at a price within the reach of every vender. For a soil outlay these novelties can be planted in masses unthought of by European gardeners.

California has done much more than this for the Sweet Pea, however. The Sweet Pea likes a cool soil and climate, the vines shriveling up during midsummer and succumbing to the red spider during the hot, dry weather which prevails over a very large portion of our country. To a certain extent, therefore, the popularity of this flower has been confined to the cooler northern states. In the effort of nature to adapt the plant to climate, the native cuphead tubers, an entirely distinct type of growth, soon appeared in the California fields, having a low, compact, spreading habit. The dense, deep green foliage lying closely to the soil serves to match, shade and protect the strong network of roots lying beneath the surface. This type is known as the Cupid Sweet Pea. That it is apparently due to climatic influence is readily shown by the large number of distinct varieties we now have with this type of growth, many of which originated directly from the tall varieties, and not from sports of the original Cupid. This Cupid Sweet Pea succeeds excellently in hot, dry weather, and exposed dry locations where success with the tall varieties is exceptional. Conversely, the Cupid type does not succeed in cool, moist locations where the tall sorts do best, as the dense foliage does not dry out readily and is inclined to mildew.

Two other distinct types have been originated in this country, the Bush Sweet Pea, which stands half-way between the Cupid and tall Sweet Peas in growth, needing no trellis or support but with the foliage held well above the soil and the flower-stems of greater length than in the compact Cupids. This type is also especially adapted to hot weather and dry soils, having a splendidly developed system of fine fibrous roots. The second type is the result of breeding and selection, as exemplified in Burpee's Earliest of All, which has the true vine-like or running growth, but grows only 18 inches high and comes in full flower greatly in advance of the taller varieties of Sweet Peas without any sacrifice of size in the flower or length in the stems. With this variety and early planting a great show of flowers may be had even in the southern states. Its early flowering habit makes it the most desirable of all varieties to grow under glass for winter flowering. Heretofore, the enthusiasm for Sweet Peas has been mainly in the cooler northern states, but with fall planting of the tall sorts and the adoption of the Cupid and Bush varieties for summer flowering in the hotter locations, there is no reason why they cannot be grown under more widely varying conditions than any other popular flowers.

E. D. DARLINGTON.

SWEET POTATO. Ipomoea Batatas, which see for botanical account. An edible tuberous root, much prized in South America, a staple article of food in all the southern states, and also much consumed in the North. The Sweet Potato plant is a trailing vine of the morning-glory family. The branches root at the joints. The color of the potato, Fig. 2445, are borne close together under the crown and unlike the common potato they do not bear definite "eyes." The varieties differ greatly in length of vine and the "vineless" Sweet Potato has a bushy habit. Good commercial varieties are well cared for rarely bloom, and even then the flowers may not produce seed. The plant is tender to frost. The species is widely distributed in tropical regions but is supposed to be of American origin. It has been cultivated from prehistoric times by the aborigines. The plant is exceedingly variable in its leaves (Fig. 2446), and the varieties are sometimes classified on the foliar characters. In the southeastern states the word "potato" usually means sweet potato, the potato of the North being known as " Irish, " compared.

The Sweet Potato crop amounts to fifty million bushels annually. Large quantities are grown in the Carolinas, Georgia, Texas, Alabama, Mississippi, Virginia and New Jersey, but the crop is limited to the northern states. In California the yield is also large, particularly in the interior valleys and in places removed from the influence of the coast climates. The Sweet Potato is propagated by means of its tubers, usually from the slips or cuttings which arise when the tubers are planted in the ground, which also propagate when the cuttings or slips taken from the tips of fresh runners. A bushel of ordinary Sweet Potatoes will give from 3,000 to 5,000 plants, if the sprouts are taken off twice. An average good yield of Sweet Potatoes is 25 bushels per acre. Yields twice as high as these are sometimes secured.

In the northern states amateurs occasionally grow Sweet Potatoes of the southern types in a small way on ridges in the garden, but it is usually for the pleasure of the experience rather than for profit. A warm, sunny climate, long season, and some care in the supply of moisture in the growing season and a less supply when the tubers are maturing—these are some of the requirements of a good Sweet Potato crop. The crop should be gathered immediately after the first frost. In the South a soft and sugary Sweet Potato is desired. In the North a firm, dry, mealy tuber is the prevalent type. Certain varieties of Sweet Potatoes are called "yams" in the South, but this name belongs historically to a very different kind of plant, for an account of which see Dioscorea.

There are two special American books on Sweet Potatoes, by Fitz and Price. For history, see Starrett in Amer. Nat., Aug., 1891, pp. 698, 699. Some of the most important bulletins are Farmers' Bull. 26, U. S. Dept. Agric. and Ga. 25 by Hugh N. Starnes. Md. 59 and 60 deal with the insects and diseases.

L. H. B.

COMMERCIAL CULTIVATION OF THE SWEET POTATO. — The cultivation of the Sweet Potato is confined almost exclusively to the southern states. While it is true that the Sweet Potato occupies large areas in New Jersey and is also planted more or less extensively throughout portions of Illinois, Indiana and Ohio, by far the greater bulk of the crop is to be found below the 38th parallel of latitude. Hence the cultural details here given, as well as the memoranda on diseases, are compiled from a strictly southern standpoint. Methods vary but little. Local environment enters less as a factor into Sweet Potato culture than into any other horticultural industry of the country. For this reason it is remarkable that there should be such extraordinary variations in type as are everywhere noted, and for which local environment, if anything, could be held responsible. It is an obvious position that without apparent cause any given "variety" so-called—more correctly, perhaps, "selection"—will develop, when transferred a few hundred miles from its place of origin, after a few years of cultivation in the hands of half a dozen different growers, just that many distinct types, each differing materially from the original in its more important characteristics—produce, size, shape and health of the tubers. This difference extends, sometimes, even to a change in the form of the leaf itself from possibly an ovate shape with margin entire and with no more trace of a lobe than an apple leaf to the suddent carrot-shaped or even to one deeply cleft or indented. See Fig. 2416.
Propagation is effected altogether by means of shoots, mostly those from the root. While blooms are often found on the vines—particularly in the extreme South—their presence is imperfect. No ovaries ever develop. Therefore the remarkable series of rapid transformations observable in the Sweet Potato must be credited entirely to an action of the persistent tendency in the plant to bud—in effecting which it must be admitted to be a remarkable kaleidoscope.

Propagation.—"Draws," or developed sprouts from root-buds, supply the readiest and, indeed, the only practicable means of propagation. Tubers of the last season's crop are "bedded" for this purpose: that is, an outdoor beth is constructed in which the tubers are placed in a single layer, close together, and covered with several inches of soil early in spring. In a few weeks the latent buds of the tubers, under the stimulus of the heat from the fermenting manure, will have sprouted, and by the time all danger from frost has passed a dense growth of "draws," or "slips" will cover the bed. These are removed from the tubers, set by hand in the field in rows four feet apart—the plants eighteen inches, generally, in the row. The size of the bedded tubers does not affect the crop. As good results are obtained from small tubers. Even the smallest tubers or "strings" consistently planted year to year, produce as heavily as the choicest selections. This is but logical if we remember that the potato is merely a large, heavy, fleshy root, and heavy tubers, when sprouted, should have little direct tendency to produce a crop of corresponding size, particularly when the subsequent cultivation is indifferent.

For later plantings the "bed" may be supplemented by cutting "slips" 12 or 14 inches long from the young vines after growth commences in the row, and using them as "draws." While the "slips" do not live quite so readily as the rooted "draws," they are said to make smoother and more swiftly tubers—due, no doubt, to the outdoor "hatching" method of the mycelium of the black rot is not conveyed from the bed to the field.

Soil and Fertilization.—Although a gross consumer of nitrogen, the Sweet Potato cannot advantageously occupy "bottomland." With this reservation it may be said that almost any land will produce potatoes. Yet a light, sandy loam is best. Stiff, red soil is to be avoided, as it the potato splits, cracks and "roughens," by reason of the suspension and sudden resumption of growth during variable weather. The most approved fertilizer formula has been found to be, per acre, about as follows: Lbs.

Nitrogen (ammonium equiv. 50 lbs.)	40
Phosphoric acid	30
Potash	30

This requirement would be met by a compound of:

High-grade acid phosphate	640
Nitrate of soda	290
Sulfate of potash	100

Total: 1,090

Cottonseed meal has been found in many localities preferable to sodium nitrate, as it is not so readily soluble and therefore more gradual and continuous in action through the season. It may be substituted in the formula for sodium nitrate in the ratio of two pounds for one. Potassium muriate produces as heavy a crop as potassium sulfate, but the latter considerably increases the expense. This method the mycelium of the black rot is not conveyed from the bed to the field.

Potash, if the kainit may be substituted in the proportion of four pounds of kainit to one of either potassium sulfate or muriate. Stable manure of normal composition produces excellent Sweet Potatoes, but is, of course, too variable in character and too uncertain in quantity to be generally available. A mixture of manure employed in Sweet Potato culture would occupy too much space. They are, moreover, too familiar to require repetition. Yet it is desirable to call especial attention to certain points which have hitherto been insufficiently published. First among these is the practice of insured planting. Against this tendency earnest protest should be entered. It is the cause of much loss. When an early market crop is not the object there is no need for haste in putting out the draws, since the season is abundantly long for leisurely planting, even in June, after oats and wheat are harvested. If planted in May, or earlier, with the long southern season, the crop is likely to mature before the approach of cold weather permits the proper housing. The consequent usual result is a "second growth," which predisposes the tubers to the inroads of the "soft rot," which causes great loss.

A deep, mellow soil-bed, with an extended season, unquestionably will produce more and larger, better tubers. Shallow preparation will yield an earlier crop. It follows that the deeper the soil the earlier the planting may be effected.

Pest and Disease.—Were it possible to successfully and inexpensively preserve through the winter the Sweet Potato crop, southern agriculture would be practically revolutionized. Land capable of producing a bale of cotton, worth, say 400, will readily yield 500 bushels of potatoes, at half the cost for cultivation, worth, at 30 cts. per bns., 800. This the planter would gladly take, at harvest time, but there is then no market at any price. Yet six months later he cannot supply the demand at 60 cts., or $810 per acre. These figures are conservative. Even on poor soil, producing 500 pounds seed cotton (one-third of a bale) per acre, the yield in Sweet Potatoes—100 bushels, a very small output—could be sold in the spring for 800 were it possible to successfully keep the tubers through the winter. Many succeed in so doing, and reap the reward, but it is still an unsolved general problem. Methods, too, are variable in the extreme—and this is the one notable exception to the rule of uniformity prevailing in Sweet Potato culture. Climate and local environment seem here to play an important part, and measures of preservation found successful in one place prove entirely unserviceable in another—personality, even, as pertaining as a general problem, one man finding wherever another, by the same methods, succeeds. Many ways have been devised and practiced, some simple, some elaborate; but each said by its enthusiastic originator or advocate to be absolutely infallible.

Nothing has yet been found that will effectually supersede the well-known popular method of "banking" or "hilling" in quantities of from 30 to 50 bushels, according to the local customs which prevail in each community. The ordinary practice is to heap the tubers in a central pile around a perforated wooden drum, covering them with a few inches of dry pine straw, then a layer of corn stalks, and finishing with three inches of dry sand and afterward two or three inches of clay or other stiff soil. The hill may be constructed either under shelter or out-of-doors. If the latter it is well to protect with a covering of boards to keep off the rain, though not absolutely necessary.

Diseases and Maladies: A few of the most important maladies of the Sweet Potato—the cause, indeed, of nine-tenths of the loss experienced in attempts to winter the crop—will be noted in the probable order of their importance:

(a) Soft Rot (Rhizopus nigricans): This is the most common form of rot, and the one that produces the most damage. It is due to a fungus mold on abraded places, chiefly of the tuber, especially when the potatoes
are stored in large bulk, without sufficient opportunity to dry out. It is perhaps the main cause of loss with stored potatoes, developing rapidly and immediately, under favoring conditions, and reducing, sometimes in a few weeks, the entire contents of a bin or hill mass of corruption, emitting a most disgusting odor. A few simple remedial measures will greatly reduce loss from this cause; (1) Dig only when soil is dry. (2) Dig before tubers become sappy from a "second growth," (3) Remove all affected tubers before storing. (4) Use padded baskets in handling to avoid bruising. (5) Store in small bulk and keep dry and well ventilated.

(Black Rot (Ceratocystis fimbriata):) The fungus producing this affection does not depend so much on the conditions of moisture and abranst, and is slower in making its appearance than is the soft rot, continuing to develop, however, all through the winter and often completing the destruction the other has begun. It is all the more to be feared because it is not so immediately noticeable, and tubers containing its germs are more likely to be housed. The black rot does not produce a pulpy mass, though effectually destroying the entire tuber. It frequently makes its appearance on the young draws at "setting-out time." Remedies: Careful selection — 1st, of sound tubers for bedding; 2d, of perfectly healthy draws for setting; 3d, where these conditions cannot be fully complied with, by planting the bulk of the crop with cuttings from the vines, thus minimizing the damage. The use of copper sulfate, or any of the standard fungicides, either as a spray or for soaking the tubers, is not advisable for, since the mycelium of most of the fungi causing decay in the Sweet Potato is lodged in and protected by the interior cells of the tuber, surface treatment would prove more or less futile.

(Soil Rot (Acremonium Potatost):) This fungus, as its name implies, is a resident of the soil rather than of the tuber, and hence cannot be readily guarded against. It is responsible for most of the decay observed in the crevices or cracks of spadable tubers. Sudden expansion of vegetable tissue due to a resumption of rapid growth when wet weather follows a period of drought, particularly when the soil is a stiff clay, produces the primary "cracking" and the spores of the fungus, finding a ready lodgment, start the process of decay. As for remedies, heavy applications of sulfur to the soil have been found to check its ravages in a measure, but this method of operation is not practical. That is to say, while checking the fungus the result is not commensurate with the cost. The surest preventive—and this is true for any and all rots—is rotation. The same areas should never be planted in potatoes two years in succession, nor should the same spot be used twice for a hoed in to furnish draws, even at the cost of great inconvenience in estimating the bed in another place.

(Other Fungi:) Several other fungi are serious enemies of the Sweet Potato, as the stem rot, white rot, dry rot, potato scurf, leaf blight, etc.; but their ravages will not compare with the damage produced by the first three—soft rot, black rot and soil rot.

As for the first three, it matters little to the practical grower whether or not he is able to distinguish one from another. After the conditions favoring the spread of one or more of these have been permitted to develop and the resulting decay once appears, it is usually too late to put remedial measures into effect. Remedy, in this case, must precede manifestation of disease. Every possible precaution should be observed at one and the same time against all. Proper preventive effort during harvesting will be found a sure guarantee against loss from decay than the most elaborate structure or the most carefully detailed method of housing yet devised. And when thorough and enforced, little apprehension need be felt as to results, no matter what plan of preservation is adopted.

To this end the following summary of procedure will be found serviceable:

(a) Rotate the crop. Never plant twice in succession on the same land.
(b) Rotate the bed. Never use old soil or old manure a second season.
(c) Dig only when the soil is dry.
(d) Dig before tubers are rendered moist and sappy by a "second growth," and to this end never plant too early in spring.
(e) Use padded baskets in handling to prevent bruising and abrasion.
(f) Handle with scrupulous care.
(g) Reject all affected tubers before storing.
(h) Store dry, in small bulk; if in bins erect bulkheads and use flues for ventilation.
(i) Use only perfect tubers for bedding, rejecting any showing symptoms of decay.
(j) Use only healthy and unaffected draws for setting.
(k) When drawn in bed are affected with diseased roots (black rot) and cannot be thrown away, plant in a separate plat and take cuttings from their vines later for the main crop.

Varieties.—Since new varieties of the Sweet Potato can originate only by bud variation, it is a marvel where and how all of the different types arise. The writer has personally cultivated and tested some fifty odd kinds, and there doubtless exist, in all, far up to the number still increasing. But one uniform method of classification exists—that by the "leaf" into tribes, falling under the three heads, "Leaves entire," "Leaves cleft"—commonly termed "round-leaved," "shredded," and "split-leaved," respectively. Of these the second type is the most numerous, containing probably two-thirds of the entire list.

As for the best variety, the "all-round" potato has not yet been found, nor is it likely to be, since such a type should be a tremendous yielder, of first quality, a safe keeper, and free from disease. No potato embodies, superlatively, all of these characteristics. All of the heaviest yields belong, unfortunately, to the "milky" or "turpentine" group—as Norton, Hayman, Southern Queen, White St. Domingo, Early Golden, etc.—and their sandy consistency prevents them from keeping well, while their quality is uniformly poor. Regarding quality, however, tastes differ. The northern market prefers a dry, mealy potato, represented by the Jersey or Nansemond strain. The southern market, on the other hand, demands a rich, sugary potato, like the Georgia or Yellow Yam, which is generally considered

SWEET POTATO

2446. Leaves of Sweet Potato. Adapted from Bulletin of the Georgia Experiment Station.
SYMPHORICARPOS

SYMPHORICARPOS in Europe is Acer Pseudo-platanus; in America Platanus occidentalis. The Sycomore of the ancients was a kind of fig known as Pharao's Fig, Sycomora antiquorum, or better Ficus Sycomorus.

SYMBIOSIS is the intimate association of two or more distinct organisms, with benefit to one only, or to both; commensalism; consortium; copartnership. In this association each organism is called a symbiont.

According to the character of the union, several kinds of symbiosis have been recognized: (1) Mutual antagonistic symbiosis (mutual parasitism), when two organisms are foes of each other, as certain bacteria and animals, the latter showing a "natural resistance," also the sympotism of certain lichens with lichens, (2) Antagonistic symbiosis (true parasitism), when the host is partly or completely killed by the parasite, as the potato and the rot fungus (Phytophthora infestans); or galls (hymenostoma) produced on the host as in the black knot of plums; and in higher plants, which live at the expense of others, as the mistletoe (green) and the dodder (chlorophyllus). (3) Mutual symbiosis, when there is often reciprocal advantage; (a) nutrition, when one symbiont nourishes the other without apparent receiving any return, as the mycorrhiza and the roots of forest trees; (b) mutualism, when a mutual benefit results from the union of two organisms capable of living separately, as the bacteroid and the roots of the Leguminos; (c) individualism, when the symbionts are so intimately connected in their growth as to suggest a single individual, as the union of alga and fungus to form a lichen. (4) Protosymbiosis, the first nurse relationship, as in the lichen Leucidea intimans, which eventually gets its nourishment by means of a liger, a different lichen. (5) Contingent symbiosis, when one symbiont lives in the interior of another for shelter, as Nostoc in the tissues of Hepatica, Lenna, Cynics, Gunnera; and Anaboa in Azolla.

JOHN W. HARKHIBBER.

2447. Symporicarpos racemosus (X 1/2).

SYMPHORICARPOS (Greek, fruit borne in clusters). Caprifoliaceae. Shrubs with simple, opposite, oval, entire and exstipulate lvs.; fls. small; calyx 4-5-toothed; corolla campanulate or bell-shaped, 4-5-lobed on short pedicels; stamens 5, exerted; stigma capitulate; fr. a 4-lobed, but 2-seeded berry. About 10 species.

These little American shrubs are all excellent plants for covering the ground under trees, for massing in the lower parts of beds or borders, or for detached groups where something low is desired. They will thrive in almost any soil from heavy clay to dry gravelly banks. Their habit of suckering enables them to cover the ground rapidly and effectively. All have a tendency to retain their fruit until it is forced off, and one species retains its foliage. For these reasons they are pleasing additions to the winter landscape. Of easy propagation by suckers, seed or cuttings.

a. Fruit white.

b. Stem and style included.

raceremosus, Michx. Snowberry. Waxberry. Fig. 2447. A shrub 2-6 ft. high; lvs. smooth, entire or sometimes repand or even lobed; fls. rose color, in a loose, and often leafy raceme; stamens and style included; fr. globose, white, persistent. July, Aug.
SYMPHORICARPUS

Var. pauciflorus, Robbins, is of smaller growth and has fewer fruits. Mn. 2, p. 10. B. B. 3:236.

Stamens and style exerted.

occidentalis, R. Br. WOLFBERRY. This may be considered as the western form of our eastern species, but it is less attractive than the preceding, as it is less fruitful and the individual berries are not as clear and waxy. Lvs. ovate: fls. in spikes, both terminal and axillary; stamens and style exerted: fr. the same dimensions as white, July, Mich., north and west. G. F. 3:297. B. B. 3:236. A shrub of about the last and closely resembling it, the exerted stamens and style being the most obvious distinction.

AA. Fruit red.

vulgaris, Michx. INDIAN CURRANT. CORAL BERRY, Fig. 2448. Lvs. ovate: fls. in dense axillary and terminal spikes; style and stamens included: fr. dark red, July. Along rivers and rocky places N. J. to Dakota, south to Ga. and Tex. Mn. I, p. 81. Gn. 31, p. 290. — A rather more compact bush than the two previously described species. Valuable because of its abundant persistent fruit and foliage. Var. variegatus, Hort., has the leaves marked white and yellow and is the same as for *folia variegata*. Var. gloriosus, Hort., is a form with longer terminal spikes.

JOHN F. COWELL.

SYMPHYANDRA (Greek; *auther grown together*).

Campanulaceae. *Sympyandra Holmiana* is a hardy perennial herb, 1-2 ft. high, with pendulous bell-shaped flowers 1½ in. long and an inch or more across. The fls. are borne in a large leafy panicle. Under favorable conditions in England this plant has maintained a succession of bloom from July to December. T. D. Hatfield finds that in this country "the plant is liable to exhaust itself in blooming, thus behaving like a biennial. It has large, bushy roots, needs a dry position and leaves itself."

Sympyandra is a genus of about 7 species of perennial herbs found in the region of Asia Minor. Its special botanical interest lies in the fact that the thorns are grown together into a tube, which character tends to annul the distinction between the Campanula and Lobelia families. Otherwise the genus is much like Campanula.

Generic characters: cactex thick: lvs. broad, usually corolate, dentate; radical lvs. long-stalked; stem-lvs. few or small; fls. white or yellowish, usually nodding, crenate or loosely paniced; indescience centrifugal; calyx-tube adnate, hemispherical or top-shaped, with or without reflexed appendages between the lobes; corolla bell-shaped, 5-lobed; ovary 3-loculed.

Hoffmann. Pant. Much branched, pilose; branches decumbent; lvs. oblongulate, acute, doubly dentate; calyx with large, leafy, corolate segments, hemispherical tube and no appendages; corolla hairy inside. Bosbin. B. M. 798. Gn. 57, p. 263. G. C. Ill. 4:761. — This desirable bellflower has been cult. by amateurs in the East. It sometimes spreads rapidly in half-shaded rockeries and sows itself.

SYMPHYTUM (Greek, *to grow together, in reference to the supposed healing virtues*). Borraginaceae. COMFREY. About 16 species of perennial herbs from Europe, Asia and N. Africa, with usually tuberous roots: lvs. simple, often decurrent, and with rather small yellow, blue or purplish flowers pedicelled in terminal, simple or branched cymes: calyx 5-cut or parted, lobes linear; corolla tubar, lobes very short and nearly erect; stamens 5, attached to the middle of the corolla-tube, included: nuts 4; seeds nearly globular. Self easy culture in any good soil. The shade of overhanging trees is not objectionable. When grown for the beauty of the variegated foliage the flowering stems may be removed with advantage.

AA. Lvs. not decurrent on the stem.

asperrimum, Donn. Prickly Comfrey. Fig. 2449. A hardy perennial, more vigorous than *S. officinale*, often 6 ft. high; lvs. ovate-lanceolate, prickly on both sides; fls. reddish in the bud, becoming blue, smaller than in *S. officinale*. June, July. Caucus. B. M. 929. — Var. variegatum, Hort., has leaves distinctly margined with yellow.

J. B. KELLER and F. W. BARCLAY.

SYMPLOCARPOS. See Spathegemo.

SYMPLOCOS (Greek, *symploces*, entwined or connected, the stamens being connate at the base). Including *Hopea* and *Lodhra*, Styracaceae. Ornamental deciduous or evergreen trees or shrubs, with alternate, entire or serrate lvs., and usually white fls. in racemes or panicles, rarely solitary, followed by berry-like, black, red or blue fruits. Only the deciduous *S. eratogoides* is hardy north; it is a shrub with abundant white fls. in spring and bright blue fruits in autumn. It thrives in well-drained soil and sunny position. The half-evergreen *S. tinctoria*, which seems not hardy north of its natural habitat, prefers moist soil and shadiy situation. The evergreen species are all tender and little known in cultivation. Prop. by seeds, which usually do not germinate until the second year, and by green-wood cuttings under glass; also by layers.

About 160 species widely distributed through the tropical regions except Africa; only a few outside the tropics. Mostly trees: fls. in terminal or axillary racemes or panicles, rarely solitary; calyx 5-lobed; corolla 5 parted, often almost to the base; stamens numerous, usually connate at the base; style filiform: ovary 2-5-lobed, inferior: fr. a drupe, with 1-5-seeded stones. Several have medicinal properties; *S. tinctoria* yields a yellow dye.

SYMPLOCOS

2449. *Symplocos asperrimum.* (X ½.)

cratageoides, Buch.-Ham. (S. parviflora, Wall. *Lodhra eratogoides*, Deccan.). Deciduous shrub or sometimes tree, attaining 40 ft., with slender, spreading branches, forming an irregular open head; young
SYRINGA

SYRINGO

(Syrian, said to refer to the cohesion of the ovaries.) _Arbor._ About 10 species of tropical American wood, climbing or creeping plants, with milky juice and stems rooting at the nodes: _S. ivatagata_, becoming with age peduncled 5-sepaled, with a persistent accrescent sheath: _peduncules short_; spathes whitish or yellowish; tube small, ovate, persistent: _spadix shorter than the spathe_; _staminodes fls._, 3-4-stamens, pistillate fl., with oblong-ovoid 2 or abortively 6-lobed _ovary_; _seeds solitary in the locules_, _obovate_ or _oblong_, _black_. All the _Syringa_ are monocarpic in Latin to _D._

CONIVENTIFOLIUS. _Engl._ (S. ambifolia, _Bull._), has whitish _stems_ and lateral _nerves._ _Offered by John Saul, 1856, presumably as a tender foliage plant._

F. W. BARCLAY.

SYRINGOSPERMA (Greek, together and little door or valve, the valves of the capsule long adhering to the short phalangeous axis). _Scrophulariaceae._ Six species of rarely herbaceous perennials, native perennials, _Syringa vulgaris._ _S. polyphyllus_ is a _fruit_ bearing several _pods_ about a foot high. _The fruit_ is usually about 5 in. long with about 40 _seeds_ and each 3/4 of an inch across. In England this fruit is considered a winter _fruit_, but in America, not the seeds are _seeds_, but the _natives_ are coniforous trees. In their _region_ they are _summer-fruit_ bearing plants with small _fruit_, or _fruit_ that is _rare_ or _fruit_ that is _fruit_. _Syringa vulgaris_ is a _fruit_ bearing plant. _Offered in 1858 by Edward Gillett._

M. J.

SYRINGA (of doubtful meaning; probably from _spring_, ripe, because pipes are easily made from the _spring_ stems of _Philadelphus_ by removing the _buds_, and the name _Syringa_ has been originally applied to _Philadelphus_, but was transferred afterwards to _Syringa_, _Oleaceae._ _Lilac_. Ornamental deciduous shrubs or rarely trees, with opposite, _petiole-sepals_ and _corolla-labes_, _seeds_ in the _cells_ and _capsule_ 2-lobed instead of _spermatheca_. _Syringa vulgaris_ and _Syringa_ are _hardy_ species. _Syringa_ var. _Eumol_ is somewhat tender north.
The Lilacs are very showy in bloom, especially when massed in groups, and these as a rule are the more effective the fewer different varieties they contain. The mixing of species and varieties differing in habit and bloom will spoil the effect, and so do too great a variety of colors. Some species, as the tree-like S. Japonica, S. Pekinensis and S. villosa, are more handsome as single specimens on the lawn. S. Japonica is the only tree of the genus; it attains a height of 30 ft. S. vulgaris, A. S. Amurensis and Pekinensis sometimes grow into small trees or at least large shrubs 10-20 ft. high. S. Persica is the smallest species and seldom exceeds a few feet. The first in bloom is S. oblata, followed closely by S. vulgaris, Chinesis, pubescens, Persica, villosa and Joshow; and the middle of June S. Amurensis and Pekinensis come into bloom, followed at the last by S. Japonica, which blooms in the North in the beginning of July. S. Amurensis and Pekinensis sometimes bloom sparingly a second time in fall. The foliage is bright green and handsome, but drops comparatively late, and early in fall, especially in the case of S. Japonica, without assuming any fall coloring as a rule. In May the foliage becomes to a deep vinous red and remains until November. In S. Pekinensis it is retained until late in fall and finally turns purplish blue or turns pale yellow.

The foliage is not much attacked by insects, but a fungus, Microspora alni, late in summer often covers the whole foliage of S. vulgaris and also of S. Chinesis and Persica with a white mealy tuft, while S. oblata is but rarely troubled with this fungus and the other species never. Much damage is sometimes done by a borer, Trechilium dendraria, which lives in the stems and stalks of S. vulgaris, but is rarely found in any other species.

After blooming, the inflorescence should be removed if possible and the pruning be done as far as necessary. Pruning in winter or spring would destroy a large part of the flower-buds for the coming season. Lilacs grow in almost any kind of soil, but a rich and moderately moist one is the most suitable. They are easily transplanted at any time from fall to spring. S. vulgaris and its numerous varieties are the most popular of the Lilacs on account of their early and profuse blooming, their sweet fragrance and the variety of colors ranging from dark purple to lilac, pink and white. The double-flowered varieties keep the blossoms longer, but the panicles are less graceful and they usually do not bloom as profusely as the single ones; they also remain mostly dwarfer and have a more compact habit. The faded fis, do not fall off, but remain on the inflorescence; this gives the plant a very unsightly appearance if the faded panicles are not removed. W. J. Stewart suggests a word of warning against Lilacs not on their own roots, because of the attacks of borers and the bad habit of suckering in some cases.

Some of the best single-flowered vars, are the following:

Single-flowered Lilacs.

White: Alba grandiflora; Alba pyramidalis; Fran Bertha; Dammann; A.F. 12:1074; Madame Necker; Marie Lemoine, one of the very best, B.H. 29:135; Princess Marie.

Blue, lilac or pink: Ambroise Verschaffelt, pale pink; Dr. Lindley, pinkish lilac, F.S. 11:181; Géant des ha-tailles, bluish lilac; Gehendaver Heyrd, light lilac; Gigantea, bluish red; Gloire des Montins, pale pink; Gloiath, purplish lilac; Lovamuna, light pink; Macrostachys, light pink (Princess Alexandra is a favorite variety of this class in America); Sibiriaca, purplish lilac; Triamoniana, bluish lilac.

Red: Aline Mocquerais, dark red; Charles X (Carol), dark lilac-red, A.F. 12:1076; F. 1873, p. 76; Marylen-sis, sometimes called Rubra de Marley, lilac-red; Rubra intybus, purplish red.

Dark purple: Philemen; Ludwig Späth (Andenken an Ludwig Späth, Louis Späth), very large panicles, the best of the dark vars

Double-flowered Lilacs.

White: Madame Abel Châtenay, compact panicles; Madame Casimir-Perier, large, graceful panicles, one of the best; Madame Lemoine, large, dusky panicles; Obelia; Virginite, white and pink.

Blue, lilac or pink: Alphonse Lavallé, bluish lilac, A.F. 12:1077; Belle de Nantes, pink, with white center; Charles Baltet, lilac-pink; Comtesse, lilac, A.F. 12:1074; Doyen Keteler, lilac-blue; Jean Bart, pinkish violet; Lamarck, pale lilac, large, rather loose panicles; Lemoinei, lilac-pink, B.H. 28:174; Leon Simon, changing from pinkish to bluish lilac. (See Fig. 68, Vol. II, p. 606.)

Purple: Charles Joly, dark purplish red, one of the darkest; Comte Horace de Choiseul, lilac-purple; La Tour d'Auvergne, violet-purple.

The Lilacs have been favorite forcing plants in France for more than a century and are among the most important cut-flowers during the winter season in France as well as in Germany and England. They are on the market from the end of September until they bloom outdoors. Charles X is considered one of the very best for forcing. Marylen-sis, Marie Lemoine, Alba virginialis, Ludwig Späth and other varieties are also good for forcing. Of the double-flowered varieties the following have proved adapted for forcing: Madame Casimir-Perier, Madame Lemoine, Charles Baltet, Jean Bart, Leon Simon, Chinesis duplex and others. Either grafted plants or plants on their own roots are used. Both force equally well, but grafted Lilacs can be grown into plants well set with flower-buds and suited for forcing in two or three years, while plants intended from cuttings require four to six years. Marylen-sis is always used on its own roots and prop., either by seeds, cuttings or division. Special attention must be given to pruning in order to have well-branched plants of good, compact habit. (See Fig. 67, Vol. II, p. 606.) The Lilac has noth the commercial importance for forcing in America that it has in Europe, but the appreciation of it for winter bloom is on the increase in this country.

Lilacs are generally forced in pots, being potted usually in July or in the forepart of August, that they may fill the pots with new roots before winter. Some grow-
Syringa may be propagated by seed, which is sown in spring. This method is usually practiced only with the more common typical species. The many varieties and rarer kinds are usually propagated by hardwood cuttings under glass in June (or in early spring from forced plants), by hardwood cuttings, by grafting and also by suckers and division, especially in the case of S. Chinesis, Poiacis and vulgaris.

As a stock S. vulgaris is mostly used and sometimes Ligustrum. S. Japonica will probably prove to be a good stock. S. villosa, though readily growing from seed and of vigorous habit, is not to be recommended. Budding in July and August is the most extensively practiced method. Grafting is done either in April or May in the open or in February or March in the greenhouse on potted stock. Almost any kind of grafting may be employed, as the Lilac unites readily. Crown-grafting is to be preferred in order to avoid the troublesome suckers. Plants intended for forcing but deficient in flower-buds are sometimes grafted in October or early in November with branches well set with flower-buds and forced in January or later.

About 11 species from southeastern Europe to Himalayas and Japan. Lvs. exstipulate, deciduous, evergreen only in S. sempervirens; fls. in panicles: calyx small, campanulate, 4-toothed; corolla salverform, with cylindrical tube and 4-lobed limb; mens 2: ovary 2-lobed: fr. a leathery, oblong or oval capsule, loculicidally dehiscent, with 2 winged seeds in each locule. Fig. 2449. In S. sempervirens (not yet introduced), the capsule is fleshy, one-seeded and drupe-like.

ALFRED REINER.

Forcing Lilacs. — Most of the Lilacs used by American commercial florists for forcing are imported. Care should always be taken to procure pot-grown plants, that is, plants that have been grown in pots the previous summer. The florist who wishes to grow his own plants should lift them in the field in April or before the growth starts and pot them without losing much root. Plunge them cut-edges during summer and give them plenty of water. This treatment will insure a good growth and the

of the albuminoids in the plant has been stated recently by other botanists also.

Rather dry in fall, so that the wood may ripen thoroughly and early. When the leaves have fallen off, the plants are stored away in convenient places, where they are sheltered from severe frost. Sometimes the Lilac, especially Marlyensis, is forced from balls of earth which are not potted, but this does not always give satisfactory results.

About three to four weeks is required to force the plants into bloom with the temperature recommended below. The first day after bringing the plants into the forcing room, a temperature of 55–60° may be given, gradually raising to 70–78° and maintained as equally as possible until the panicles are fully developed and the first flowers begin to expand; then the temperature is lowered to 60–65°, and when the panicles are about half open the plants are transferred to a cool greenhouse. Hardening-off is essential to ensure good keeping qualities of the flowers. The red-flowered varieties are often forced in darkened rooms in order to have the flowers blanched or only slightly colored. The shade of color depends entirely on the time when full light is given and also on the temperature. Show plants in pots should be grown in full light to have the foliage well developed. While the temperature is higher than 76°, frequent syringing is necessary. It is, of course, possible to force Lilacs in a lower temperature, and this will be even advisable if the longer time required does not count. Full advice for commercial Lilac forcing is given by Fr. Harms in "Flieder und Asparagus," a book devoted almost exclusively to Lilac forcing.

Interesting experiments recently conducted have shown that the Lilac is more readily forced when the plants are subjected to the influence of ether during forty-eight hours shortly before forcing. An account of these experiments by W. Johannsen is entitled "Das Ætherverfahren beim Frühstreichen mit besonderer Berücksichtigung des Fließers." That the ether has a particular effect on the metamorphosis and regeneration

2492. Syringa vulgaris, the common Lilac (X 3/4).

2493. Capsule of Syringa vulgaris (X 3).

2494. Winter twig of Syringa vulgaris (X 3/4).
check the plants receive from lifting will induce them to form new flower buds. These plants will force with the greatest certainty. It is well to allow five weeks for the earliest forcing. A strong heat is necessary, beginning at 60° for the first few days and increasing to 75° or 80°, with a daily watering and syringing several times. After the flowers begin to open the syringing can be discontinued and when fully expend the plants are better removed to a cool house, where they will harden off and be much more serviceable when cut. As the season advances, say March and April, less heat is needed, and will then force in any ordinary house where the night temperature is about 60° F. The Persian Lilac on account of its abundance of bloom and delicate truss is very desirable, but this must be forced almost in the dark to produce white flowers. Marie Le Geye is for all purposes the most useful Lilac which the undersigned has used for forcing.

INDEX.

alba, 4, 6, 7, 8.	Josikaea, 1.	
argentea, 11.	isochroma, 8.	
aurea, 2.	ligastrina, 10.	
aureo-variegata, 2.	Mandshurica, 10.	
Chinensis, 7.	Metensis, 7.	
carnea, 6.	oblatia, 4.	
dubia, 7.	ovalis, 3.	
duplex, 7.	pallida, 1.	
Emodi, 2.	pekinensis, 9.	
filicifolia, 8.	pendula, 9.	
hyacinthiflora, 5.	Persica, 8.	
japonica, 11.	plena, 5, 6.	
	1. Josikaea	2. villosa
A. Tube of corolla much longer than calyx; anthers sessile, not exerted.	1. Josikaea	2. villosa
B. Panicles on leathery branches, usually terminal; lvs. whitish beneath.	3. pubescens	
C. Stamens inserted near the middle of the tube.	7. Chinensis	
D. Under side of lvs. glabrous throughout; middle of the tube, beneath, and near the base.	Persica	
E. Shape of lvs. oval, broad, or orbicular.	5. hyacinthiflora	
4. oblatia	6. vulgaris	
F. Shape of lvs. roundish or broadly ovate.	7. Chinensis	
5. hyacinthiflora	Persica	
6. vulgaris		
G. Shape of lvs. ovate-lanceolate.	7. Chinensis	
7. Chinensis		
8. Persica		
AA. Tube short, little longer than calyx; anthers exerted; fls. white, ligustrina.		
B. Base of lvs. usually narrowed.	9. Pekinensis	
C. Plant a shrub	9. Pekinensis	
1. Josikaea, Jacq. Shrub, attaining 12 ft. with upright, stout, terete branches; lvs. broadly elliptic to oblong, acute at both ends, finely ciliate, dark green and shining above, glabrous or pubescent on the midrib beneath, 2¾–5 in. long; lvs. violet, short-pedicelled or almost sessile, clustered, in rather narrow panicles 3–7 in. long; stamens inserted somewhat above the middle of the tube; sepals half-upright, June. Hungary. B.M. 729. R.H. 20:1736. —Less handsome than most other species, but valuable for its late blooming season. Var. pallida, Hort., has pale violet lvs.; var. rubra, Hort., reded violet.	10. Amurensis	
1. Josikaea	10. Amurensis	
11. Japonica		
2. villosa, Vahl, not Deene, nor Hooker, nor Koehne. Figs. 2450, 2451. Bushy shrub, 8 ft. high, with rather stout, upright, terete and warty branches; lvs. broadly elliptic to oblong, acute at both ends, finely ciliate, bright green and dull above, pubescent on the midrib or glabrous beneath, 3–7 in. long; lvs. pinkish lilac or whitish, short-pedicelled, in broad or somewhat narrow panicles, 3–7 in. long; stamens inserted near the mouth; sepals half-upright. May, June. China to Himilayas. The common form, var. rosea, Corni (S. Bretschneideri, Decne.),		
2. villosa, Vahl, not Deene, nor Hooker, nor Koehne. Figs. 2450, 2451. Bushy shrub, 8 ft. high, with rather stout, upright, terete and warty branches; lvs. broadly elliptic to oblong, acute at both ends, finely ciliate, bright green and dull above, pubescent on the midrib or glabrous beneath, 3–7 in. long; lvs. pinkish lilac or whitish, short-pedicelled, in broad or somewhat narrow panicles, 3–7 in. long; stamens inserted near the mouth; sepals half-upright. May, June. China to Himilayas. The common form, var. rosea, Corni (S. Bretschneideri, Decne.),		
2455. Syringa Perovskia, one of the common Lilacs (X 5%).		

The earliest of all to bloom and handsome, with its vinous red foliage in fall. Var. alba, Hort., has white flowers.

5. hylaeniniflora, Hort. (S. oblata x vulgaris). Intermediate between the parenta, with broadly ovate Ivs., turning purplish in fall. Only known in the double form, var. plena, Lemoine. Many or perhaps most of the newer double-flowered vars. have originated by recrossing this form with vars. of S. vulgaris.

6. vulgaris, Linn. Figs. 2353, 2454. Upright shrub or small tree, 20 ft. high; Ivs. ovate, truncate or slightly cordate, acuminate, bright green, 2-4 in. long; fls. lilac-blue, blue, purple or white, in large panicles. May. South-eastern Europe to Caucasus and Afghanistan; sometimes escaped from gardens in the eastern states. B.M. 183. Gn. 53, p. 156. M.D.G. 1899:205. —The most important of the older original vars. are the following: Var. alba, Dietr., branches yellowish gray; fls. white: buds yellowish green; blooms a week earlier than the other vars. A.F. 12:1881. Var. carnea, Dietr. Fls. blue, in rather loose panicles. Var. purpurea, DC. (var. ribea, Loud.). Fls. purplish red, in large and rather dense panicles. Here belong also var. Marlyensis, Hort., and Charles X. Var. violacea, Dietr. Fls. violet-lilac, in rather loose panicles. Var. plena, Hort. With double fls. There are several vars. with variegated Ivs., but these are hardly worth cultivating.

8. Persica, Linn. Fig. 2455. Shrub, attaining 5-10 ft., with slender, arching branches: Ivs. lanceolate, acuminate, 1½-3 in. long; fls. pale pink or white, in rather loose, broad panicles, about 3-4 in. long; pedicels as long or longer than calyx. May, June. Caucasus to Afghanistan. B.M. 186. —Var. alba, Loud. (S. Steinrungi, Hort.). Fls. white. Var. laemmata, Vahl (S. platyphyllos, filiflorus and pinulata, Hort.). With pinately lobed or pinnatifid Ivs., of dwarfer habit and with smaller panicles. R.H. 1875, p. 452, 453; 1883, p. 89; 1901, pp. 40, 41.

TABEBUIA (Brazilian name). *Bignoniaceae*. Ornamental evergreen trees with opposite, long-petioled, simple leaves and showy flowers in terminal, few-flowered racemes. Only *T. leucophylla* seems to be introduced. It requires the same cultivation as the tropical species of *Tabebuia*, which see. The genus comprises 5 or 6 species, inhabitants of tropical America, closely allied to *Tecoma*, but, according to recent monographs, chiefly distinguished by the simple leaves and the irregularly splitting tubular calyx; formerly also species with digitate foliage were included, for which see *Tecoma*.

ALFRED REDFIELD.

TABERNÆMONTANA (J. T. Tabernæmontanus of Heidelberg, physician and botanist, author of Kranz-
buch mit Kunstlichen Figuren; died 1590). *Apeoganæae*. A genus of more than 100 species of trees or shrubs widely distributed in tropical regions. Lvs. opposite, penni-nerved: lvs. white or yellow, in terminal or sometimes apparently but not truly axillary tyms: calyx usually short 5-lobed or parted; corolla salverform; stamens inserted on the corolla-tube, included; berries large and globose or oblong, simple and recurved. See *Gononia* for distinctions from this genus.

A. Fls. white.

coronaria, Willd. *Cræpæ Jæsine*. *Nerko’s Crown*. A tender shrub, 6-8 ft. high: lvs. glossy green, oblong to ovate, white, fragrant to the touch; flowers long, 1-2 in. across, in 1-flowered clusters in the forks of the branches; petals crimped on the margin, whence the common name. Cult. in India but native country unknown. Var. *Bæpælo*-

pleno, with canals, somewhat larger, very sweet-scented flowers, seems to be far more common in cultivation. P.M. 16:354. B.M. 1865 (as *Nerium coronarium*).

—Cult. in the more southern states and also in greenhouses. Also known as *Adam’s Apple* and *East Indian Rosebay*.

AA. Fls. yellow.

T. *Cavatsi*, Regel. See *Gononia Kammasi*.

F. W. BARCLAY.

The East Indian Rosebay, *Tabernæmontana coronaria*, is one of the best ornamental shrubs for subtropical gardens. This species and *T. Cavami*, referred to this work to *Gononia*, flourish everywhere in Florida from Jacksonville southward. If they receive proper attention, tiny cuttings soon develop into dense, bushy plants 3-5 ft. high, covered with deliciously scented flowers throughout the summer. Indeed the plants are so densely covered with buds and flowers that it is often difficult to find a sufficient supply of cuttings for propagation. *T. coronaria* has larger leaves than *T. Cavami* and the flowers are much like those of the double white oleander, while *T. Cavami* has smaller and blossoms. Both do well under the same treatment. In order to enjoy the beauty of the East Indian Rosebay to its fullest extent, it must be planted in rich, sandy soil, not too wet and not too dry, and in a place fully exposed to the sun. Only very strong pot-grown plants should be set out in the garden. This should be done during the rainy season. Avoid breaking the ball in transplanting. It is use-

less to transplant in November, the time most evergreens and other plants are most successfully set out. The plants at this season have no time to become established before the first sharp frost comes, and a weakened *Tabernæmontana* is usually killed outright by even a slight frost. Just before Christmas all the plants of this nature (bougainvilleas, conatrums, *Poiteana regia*, *Tristium conferta*, grevilleas, eucalypti, etc.) are banked about 18 inches to 2 feet high with dry sand, and they always come through without much damage. In April or even earlier, the banking is taken away and the plants cut back to sound wood. The *Tabernæmontanas* look best in groups by themselves or in front of other glossy-leaved evergreens.

H. NEHRING.

TAGAMAHAC. *Papulus balansamifera*.

TÁCGA (Malayan name). *Tabææae*. A genus of 9 species from tropical regions. Perennial herbs from a tuberous or creeping rhizome with large, radical, petio-

led leaves and umbels of hurst brown or greenish flowers in a dense umbel borne on a long, rigid scape. The flower-cluster is subtended by a few, nut-like, leaf-like or colored bracts, and intermixed with the flowers are more or less numerous, long and conspicuous, sterile, filiform pedicels, which usually droop be-

low the flower-cluster.

A. Lvs. much lobed.

pinmatfida, Jack. Tender perennial herb, about 2 ft. high: rootstock globose, becoming 1 ft. through: lvs. large, usually 3-branched, the divisions pinnately cut or divided, the ultimate lobes sometimes irregular and unequal but usually ovate to lanceolate: lvs. glossy, 8 lines across, many with the sterile pedicels purplish: berry nearly globose, 1 in. through. *Afr*. India and Australia. B.R.C. 7:692. B.M. 7299; 5300. —According to Von Mueller’s Select Extra-tropical Plants, the Fij בארץ is prepared from the tubers of this species. The plant thrives even on the sand-shores of tropical countries, and it is not unlikely that it will endure a temperate climate.

AA. Lvs. not lobed.

cristata, Jack. (*Alicia cristata*, Knuth). Rootstock a short conic caudex, marked with leaf-scars; lvs. 1-2 ft. long, oblong, acuminate, dark purplish green: scape longer than the lvs. Ti dark purplish in. across, on a somewhat one-sided umbel, with numerous pale sterile pedicels 8-10 in. long: involucral bracts 4, conspicuous, the inner elliptical, narrowed to a petiole, the 2 outer ovate. *Malaya*. B.M. 1509. P.S. 9:800. B.M. 45. 435. 49. p. 421. —H. requires, according to *Gn. 45*. 4. 415. 415. 415. a good, rich, open soil, with ample drainage, plenty of water, and a store temperature. During the winter season the plant should be kept in a state of partial rest.

F. W. BARCLAY.

TACSONIA (from the Peruvian name of one of the species). *Passifloraceae*. From Passiflora, Tacsonia differs in having a long-tubular calyx, styles 3, stamens and petals 3 or 5, the latter never wanting, corona of tubercles or very short threads, and in a short reflexed crown near the base of the flower-tube. However, the line of demarcation between the two genera is often not well marked and Harms (Engler & Prantl’s “Pflanzen-

familien“) unites Tacsonia with Passiflora. Masters accepts (Trans. Lit. Soc. 27) 25 species of true Tac-

sonia, relegating the intermediate forms largely to Pas-

siflora. Other the species have been discovered subse-

quently, making the total number in the genus above 30. The species are all South American, inhabiting the Andes. They are tender-climbing shrubs or herbs, re-

quiring the treatment given Passiflora. Tacsonias are cultivated freely in the open in middle and northern California.
TACSONIA

A. Fils. orange or rosy orange.

Parrita, Mast. Lvs. deeply 3-lobed, glabrous above and plicate beneath, the lobes narrow and entire; stipules entire, subulate-acuminate; fl. with a long and slender tube, glabrous, swollen at the base; sepal and with points, rosy-orange; petals oblong and flat, shorter than the sepals, orange; corona double, the outer row of tooth-like projections. Colombia. G.C. H. 17:292. 1.H. 35:41. Named for Senor Parra, through whom it was introduced.

AA. Fils. scarlet or rose-colored.

B. Bracts beneath the flower not united.

c. Lvs. simple or not lobed.

insignis, Mast. Philos: lvs. ovate-lanceolate, subcordate, laciniate, or bilobed above and red downy beneath, the stipules dissec; fl. about 6 in. across, violet, rose or crimson; tube cylindrical, swollen at the base, downy; sepal about twice longer than the tube, lance-oblanceolate, spurred at the end; petals similar in shape, obtuse: corona of one series of short threads, blue and white. Probably Peruvian. G.C. 1873:1113. F.S. 20:2083-4. B.M. 6669.

c. Lvs. 3-lobed or divided.

d. Foliage glabrous at maturity.

Van Volxemii, Hook. Fig. 2457. Stems slender and slightly pubescent; lvs. cordate-ovate in outline, deeply 3-lobed, the lobes long-lanceolate-acuminate, serrate: fls. 5-7 in. across, bright red with short green calyx-tube that has a swollen base, the acute calyx-lobes red externally; corona an inconspicuous toothed rim. Colombia. B.M. 5571. G.C. 1860:171. Probably the best known species and handsome, but less showy than some others.

Janesoni, Mast. Lvs. sub- orbicular, 3-lobed, glabrous: fl. large, bright rose or cherry red, with a cylindrical tube 4 in. long. Peru.

d. Foliage downy beneath at maturity.

Exoniensia, Hort. (hybrid of T. Van Volxemii and T. mollissima). Fig. 2455. Lvs. downy, cordate, ovate-oblong, divided nearly to base into 3 lanceolate, serrate segments: fls. 4½-5 in. across; sepals brick red outside, brilliant rose pink within; throat violet; tube white inside, 2½ in. long. Resembles T. Van Volxemii in having peduncles as long as lvs.: linear stipules; free downy bracts; filamentous corona near base of tube and violet color of throat.—Resembles T. mollissima in having downy lvs., long flower tube, color of fl. and aristate sepal.

d. Bracts beneath the flower more or less united.

c. Leaf-lolhes short and obtuse.

manicata, Juss. Pubescent. lvs. broad-ovate to orbicular-ovate in outline, about 4 in. long, the oblong obtuse serrate lobes reaching to the middle of the blade; fl. 4 in. across, bright scarlet; tube ¾ in. long, inflated and ribbed at the base; corona double, the outer series composed of blue hairs. Colombia and Peru. B.M. 6129. P. ignea, Hort., is a form of this species.

c. Leaf-lobes long-acute.

mixta, Juss. Glabrous or somewhat pubescent; lvs. orbicular-ovate, thick, 3-lobed to the middle, the lobes long-acute and serrate; fl. 3½ in. across, rose-pink, the oblong sepals not equaling the green scarcely saccate tube; corona a short multiple rim or disk. Andes.

mollissima, HBK. Pubescent; lvs. cordate-ovate in outline, very pubescent beneath, the lobes extending nearly to the base of the blade and ovate-lanceolate in shape and serrate, stipules lanceolate; fl. about 3 in. across, rose-colored, the green tube exceeding the sepals and swollen at the base; corona a short rim. Andes. B.M. 4187. B.R. 32:11. F.S. 2:78. S. tubiflora, offered in California, is said to be similar to this, but of deeper shade.

Smythiana, Hort. Seedling of T. mollissima or hybrid with it, with very brilliant orange-scarlet or rosy-crimson fls. G.C. III. 12:704.

T. Rochenani, Lem. See Passiflora vitifolia, p. 1222. I.H. 14:309. T. floribunda was once advertised in the American trade, but it was probably not the T. floribunda, Masters of Colombia.—T. pinatiflora, Juss. Resembles T. mollissima, but the bracts are free; stipules pinnate: fls. rose-colored. Chile. B.M. 4062. B.R. 18:1530. L. H. B.
TAGÉTES (Tages, an Etruscan god). Compositae. Marigold. A genus of some 30 species of tropical American herbs. In opposite, pinnately cut or rarely simply serrate: fls. of various sizes, yellow or orange, marked in some species with red. The popular annual species known as "American" and "French" Marigolds have been derived respectively from T. erecta and T. patula, both of which are native to Mexico. According to Sweet's Hortus Britannicus, these two species were introduced into cultivation in 1596 and 1579.

For garden purposes Tagetes may be divided into two groups, based upon habit of growth. T. erecta and patula are upright and somewhat open growth; while T. patula and signata are spreading and bushy, the lower branches lying close to the ground and often rooting. The French Marigolds, T. patula, are valuable bedding plants. Good garden forms are of even height and bushy, compact growth, with a mass of good foliage and well-colored flowers appearing continuously from June until frost. In raising plants, it is preferable to grow them in pots, as this practice seems to check the plants sufficiently to cause them to bloom at a small size and more plentifully during the early summer months than if they were raised with unlimited root room. They should be planted about 1 ft. apart. This species also makes attractive specimens in small pots in a few weeks from seed. Mixed seed of the double sorts will give a large percentage of good double flowers, while the seed of special named double sorts is remarkably fine. Some of the single forms are very finely colored.

The African Marigolds, T. erecta, are not well suited to bedding purposes, the growth being too open, but for the mixed border or shrubbery they are excellent late-blooming subjects. This species should be grown with plenty of root room, air and rich soil from start to finish if the largest and most double flowers are desired. The African Marigolds are very useful as cut-flowers except under circumstances where their odor is objectionable.

For Pot Marigolds, see Calendula.

a. Fls. generally marked with red.

patula, Linn. French Marigold. Fig. 2459. A hardy annual, usually about 1 ft. high and much branched from near the base, forming a compact, bushy plant: lvs. darker green than in T. erecta, pinnately divided; lobes linear-lanceolate, serrate; fls. smaller than in T. erecta and borne on proportionately longer peduncles. B.M. 156; 3899 (as T. erythrophyllon).—Both the single and double forms are grown. The species is very variable as to the color markings of the flowers, which range from almost pure yellow to nearly pure red.

AA. Fls. not marked with red.

b. Lvs. pinnately divided.

c. Rays numerous.

erecta, Linn. African Marigold. Fig. 2460. A hardy annual growing about 2 ft. high, erect, branched: lvs. pinnately divided, segments lanceolate-serrate: fls. 2-4 times as large as in T. patula and of one solid color, the typical color, according to De Candolle, being a lemon-yellow. —The rays are sometimes rather two-sided and in one of the garden forms they are quilled.

The color ranges from a light sulfur-yellow to a deep orange, many of the light yellow shades being rare amongst flower colors. This is the common marigold of old gardens in America. Foliage very strong-scented.

c. Rays few, usually 5.
signata, Bartl. An annual branching species: lvs. pinnately divided into usually 12 oblong, linear, sharply serrate segments, the lower teethawned: rays 5, yellow, roundish-ovulate. Var. punina, Hort., a dwarf, bushy form, usually less than 1 ft. high, seems to be the only form in the trade. The flowers are bright yellow and small but numerous.—The species is suited for massing or for borders.

b. Lvs. lanceolate, simply serrate.

Lucida, Cav. Sweet-scented Marigold. A tender perennial plant, entirely distinct from the foregoing annuals in the sessile, lanceolate lvs. and small, usually 2-3-rayed fls. in dense, terminal corymbs. The flowers have a much more agreeable odor than the other species cultivated. Chile. B.M. 740. R.H. 1895, p. 505.—Sometimes used as a substitute for Tarragon, which see.

T. huerre is a species discovered about 1809 by T. S. Brandegee in Lower California. It makes a compact bush 4-5 ft. high, bearing a profusion of yellow flowers borne in winter. Small plants flower well in pots. See G.F. 9-07.

F. W. BARCLAY.

TALÁUMA (South American name). Magnoliaceae. Talauma Hodgsoni is an excellent, magnolia-like, tender evergreen tree with cup-shaped flowers fully 6 inches across and 4 inches deep. It blooms in April. The flowers have a spicy odor, hard, this rather flaky texture, and the glistening purplish blue of the sepals contrasts
finely with the ivory white of the petals. This species is a native of the Himalayas, a region which is perhaps richer in handsome magnolia-like trees than any other area of equal extent in the world. Hooker ranks this species second in beauty only to Magnolia Campbelli. T. Hodgsoni grows at an elevation of 5,000 to 6,000 feet.

This fine tree has been cultivated at Kew and perhaps elsewhere in Europe, but never in America, so far as is known. Time and time again seeds were received at Kew from India, but they never germinated, the reason being the rapid decay of thealbumen, involving that of the embryo. The trees now cultivated in Europe have been derived from young plants sent from India in Wardian cases at considerable expense and risk.

Talcoma is closely allied to Magnolia, but the carpels are indesicuous and deciduous, while those of Magnolia dehiscence dorsally and are persistent. Talcoma is a genus of about 15 species of trees and shrubs, mostly natives of the tropics of eastern Asia and South America; also Japan. Leaves, inflorescence and seeds as in Magnolia: sepals 3; petals 6 or more in 2 or more whorls; stamens very numerous, in many series: ovaries indefinite, 2-ovuled, spiked or capitate; carpels woody, separating from the woody axis at the ventral suture and leaving the seeds suspended from the latter by an elastic cord.

Holigsoni, Hook. & Thom. Tender, evergreen tree. 36-60 ft. tall, producing large, and fls. at the same time: lvs. 8-26 x 1-3 in., obovate-oblong, cuneate or obtuse, leathery, glabrous: fls. solitary, terminal; sepals 3-5, purple outside; petals about 6: fr. 4-6 in. long. Himalayas, B.M. 7992.

TALNACUM (possibly a native name in Senegal. Per-}nulata). A dozen or more species of flax-like herbs widely scattered in the warmer regions. With age they sometimes become woody at the base. Lvs. alternate or subopposite, flat: fls. small, in terminal cymes, racemes or panicles, rarely solitary, axillary or lateral; sepals 2; petals 5, hypogynous, ephemerum; stamens 5-many; ovary many-ovuled: style 3-cut or 3-grooved at apex: capsule globose or ovoid, chartaceous, 3-valved; seeds subglobose or laterally compressed, somewhat kidney-shaped, shining.

patens, Willd. Erect subshrub; stem almost simple, 1-2 ft. high, leafy to the middle, where the panicle begins: lvs. mostly opposite, oval, abruptly tapering at the base: panicle terminal, long, leafless, bearing di-}chotomous cymes: fls. earlike; petals 3 lines long; stamens about 15-20. West Indies and east coast of S. America to Buenos Ayres. Var. variegatum, Hort. ("Talnacum variegatum," Hort. Banilla variegata, Hort.), is the plant described as Sweet Malabar Vine in Vol. 1, page 136, of this work.

W. M.

triangulare, Willd. Lvs. alternate, obovate-lanceo-}late: cymes coriaceous: pedicels 3-cornered (in T. patens they are filiform): fls. red or white. West Indies, Brazil, Peru. Var. crassifolium, Hort. (T. crassifolium, Hort.), is said to be taller and more branched: lvs. larger, often coarser and more ovate.

Talinum patens, var. variegatum, is a handsome greenhouse shrub, with foliage marked white and some-}times also pink. The young stems are pink and succu-}lent, but they become woody with age. The plant is allied to Portulaca and will endure much heat and drought, but is very impatient of overwatering and lack of drainage. The plants bloom freely, the fls. be-}ing small, light pink and followed by small, yellow cap-}sules filled with an indefinite number of little brown seeds. Some prefer to retain the sprays of blossom, but to make the best show of foliage the flower-shoots should be cut off as soon as they appear. Talinum is a satisfactory house plant. It should be placed in a window with a northern exposure or in some other shady position. Talinum may also be planted out during the summer.

W. C. STEELE.

TALIPOT PALM. See Corypha umbraculifera.

TALLOW SHRUB. Myopria ceavera. TALLOW TREE. Chinese. Sapium sebiferum.

TALLOW WOOD. Eucalyptus microcarpa.

TAMARACK. See Liquor.

TAMARIND. See Tamarindus.

TAMARINDUS (From Arabic, meaning "Indian date").

Loganobium, The Tamarind, Fig. 2461, is an exceptionally beautiful and useful tropical tree. It attains a great height, has acacia-like foliage and yellow flowers about an inch across in clusters of 8 or 10. The Tamarind is cultivated everywhere in the tropics but its native country is uncertain, probably either Africa or India. As an ornamental shade tree it is considered by travelers as one of the noblest in the tropics. Hooker

has well described its "vast, dense and heavy head of branches, thickly clothed with light and feathery foli-}age." The Tamarind is grown out of doors in southern Fla. and Calif., and young plants are said to be desir-}able for the decoration of windows and conservatories in northern countries.

The pods of the Tamarind, which are thick, linear and 3-6 in. long, contain a pleasant acid pulp much used throughout the tropics as the basis of a cooling drink. The pulp is also used in medicine, being rich in forms and buttery acids. It is laxative and refrigerant, and is also used to prepare a gargle for sore throat. The pulp of the Tamarind is generally called the "fruit" or "Tamarind" and the pod is spoken of as the "shell." In the East Indies the shell is removed and the pulp simply cut into a mass. The Tamarinds of the Malay Archipelago are considered better than those of India. They are preserved without sugar, being merely dried in the sun. They are exported from one island to another and when sent to Europe are cured in salt. In the West Indies the fruit is prepared by removing the shell and placing alternate layers of fruit and sugar in a jar and then pouring boiling syrup over the mass. McFadyen says that in
order to prevent fermentation, the first syrup, which is very acid, is poured off and a second is added. Also that an excellent preserve is imported from Coroag, which is made from the unripe pod preserved in sugar with the addition of spice. The East Indian Tamarind has long pods; the West Indian, short ones.

The Tamarind tree yields a handsome furniture wood. It is yellowish white, sometimes with red streaks, hard and close-grained; heart-wood dark purple brown.

Botanically, the flower of the Tamarind is rather difficult to understand. It is far removed from the sweet pea type, which is the one a commoner commonly thinks of as typical of the legume family. At first glance it is a pale yellow flower about an inch across with 6 or 7 petals, of which 3 are veined with red. On closer study it seems that 3 of the showy parts are sepals, which are all pale yellow. The three red-veined parts are petals, while the other two petals that the student expects to find, are reduced to mere bristles hidden in the flower at the base of the standard tube. Only 3 of the stamens are fertile, the other 6 being small and rudimentary. These floral characters distinguish Tamarindus from allied genera, of which only Schoutia seems to be cult, in America.

Tamarinds can be raised from cuttings but more easily by seeds, although they are of slow growth.

Indica, Linn. \(T. \) officinalis, **Hook.** Tamarind. Fig. 2461. Tender evergreen tree, attaining a height of 80 ft., with a circumference of 25 ft.; lvs. abruptly pinnate; lfts. 20-40, opposite, oblong, obtuse; fls. pale yellow, the petals veined with red. B. M. 4563. - The fls. are said to vary to white or pinkish.

W. Harris, E. N. Reasoner and W. M.

TAMARISK. See Tamaric.

TAMARIX (ancient Latin name). Tamarisceae. Tamarix. Ornamental shrubs or trees, with minute, alternate, scale-like leaves and small, usually light pink flowers in racemes or terminal panicles, followed by small capsular fruits. None of the species are quite as hardy north, but **T. gallica**, **gallica** and **parviflora** are fairly hardy as far north as Mass. The Tamarisks are all of graceful and distinct appearance, with light and feathery foliage and large, loose panicles of pinkish flowers. Several of the species bloom late in summer and are a welcome addition to our autumn flowering shrubs. As they are inhabitants of the warmer and more arid regions they are well adapted for countries of similar climate conditions. They are also excellent for seaside planting. They grow well in saline and alkali soil and thrive in the very poorest and salt water. Propagated by seeds, which are very fine and should be only slightly covered, or by cuttings the ripened wood or greenwood cuttings under glass.

About 60 species from the Mediterranean region to E India and Japan. Shrubs or trees: lvs. alternate, scale-like, often amplexicaul or sheathing; fls. small, short-pedicelled, terminal, racemose, 4-5: petals usually 4-5, rarely 6-12, sometimes tightly connate at the base: ovary one-celled, surrounded at the base by a disk; styles 2-5 fr. a capsule, dehiscent into 5 valves; 1-many, many, with a tuft of hairs at the apex. Several species have medicinal properties and yield dye-stuffs. The punctures of an insect, **Occlus muppinus**, cause _T. manilensis_ to produce short ones.

**T. Germanica**. Linn., is now referred to the genus Myricaria, which is chiefly distinguished by the 10 stamens connate one-third to one-half, and by the 3-ovary, 10-seeded style. Ten species are known, all shrubby or suffrutescent, with the fls. in terminal, often panicked racemes. _M. Germandica_, Desv., is a glabrous undershrub, 4-6 ft. high, with upright, wand-like branches: lvs. minute, bluish green, lanceolate, glandular-dotted: fls. light pink or whitish, in 4-6 in. long terminal racemes, usually with lateral ones at the base; stamens connate about one-half. _M. and S. Eu., W. Asia. M. dubruiica_, Ehrenb. (Tamarix Dubruiica, Willd.), is very similar, but racemes usually solitary and stamens connate only one-third. Dahurica, Transbaikalia. The culture is the same as of Tamarix; the soil sandy, moist soil.

INDEX. (s. t. refers to supplementary list.)

Africana. 1. _Dahurica, see parviflora._

Aureas. 1. _Narbonnensis._

Aurea. 6. _Linn._

Argentea. 7. _Gallica._

Articulata. 8. _Parviflora._

China. 9. _Pallatis._

Curripa. 10. _Pig._

Chinensis. 11. _Purpurea._

A. Fls. 4-merous: robert lateral on last year's branches.

_B. Petal spreading, persistent._________a. parviflora._

_BB. Petals erect, deciduous._________b. tetrandra._

AA. Fls. 5-merous, usually in terminal panicles.

B. Lvs. glabrous.

_C. Petals deciduous._________c. Gallica._

_CC. Petals persistent._________d. Racemes lateral._

DD. Racemes panicked, terminal.

_E. A tree._________e. Chinensis._

_FF. A shrub._________f. Odessana._

BB. Lvs. pubescent.

G. 6. hispida.

1. **parviflora**, DC. \(T. \) tetradra var. parviflora, Boiss. and Kotschy. Fig. 2462. Shrub or small tree, 15 ft. high, with reddish brown bark and slender spreading branches; lvs. ovate, acuminate, semi-amplexicaul, scarsious at the apex when older; fls. pink, very short-peduncled, slender in racemes about 3 in. long along last year's branches; petals spreading, persistent; calyx very small, sometimes only 3-parted; styles usually 4, each shorter than the ovary. May-July. S. E. Eu. F. S. 9:588. R. H. 1835:401. - Often confounded with the following species, also with _T. Africana_ and _Gallica_ and cult. under these names. _T. tetrandra_, var. _purpurea_, probably belongs here.

2. **tetrandra**, Pall. Shrub or small tree, attaining 12 ft., with almost black bark: lvs. ovate-lanceolate, somewhat narrowed at the base, with diaphanous margin; fls. light pink or almost white, in racemes 1-2 in. long along last year's branches; disk purple, deeply 4-lobed; styles usually 4, about as long as ovary. April-May. S. E. Eu., W. Asia. - Doubtful whether in cultivation in this country; all plants seen under this name by the writer belong to the preceding species.

3. **Gallica**, Linn. \(T. \) dentata, Pall. \(T. \) arborea, Sieb. T. Camphorata, Willd. \(T. \) Anglica, Webb._ Shrub or small tree, with slender spreading branches; lvs. dull green, closely imbricated, rhombic-ovate, acute or acuminate, keeled, semi-amplexicaul, with scarious margin; fls. white or pinkish, almost sessile, in slender, panicled racemes; seeds brown, with minute, thread-like filaments dilated at the base; disk usually deeply 5-lobed; styles 3. May-July. W. Eu. Mediterranean region to Himalayas; naturalized in S. Texas. Gn. 34, p. 329. - Var. **Indica**, Ehre. \(T. \) Indica, Willd._ With slender, upright branches; lvs. dull green: racemes longer and slenderer; fls. pink; disk obscurely and

2462. *Tamarindus parviflora.* **(X 3/4.)**
TARAXACUM

8. Professional... In this connection, the role of medicinal and biological properties of various species of the genus Taraxacum is of great interest.

TARAXACUM (Taraxacum vulgare, Linn.), Fig. 2404. A coarse-growing, herbaceous perennial naturalized from middle Europe, and a familiar occupant of our old gardens, waste places and roadsides. Its common name is derived from althea, immortality, an idea suggested to the ancient Greeks by the characteristic permanent possession it takes of the soil. Its annual, upright, usually unbranched stems, which rise about 3 ft. from the perennial root, bear greatly divided, deeply cut, compound, bitter, aromatic leaves and rather dense corymbs of numerous small yellow flower-heads which appear in midsummer. The seed, which is small, is marked by 5 rather prominent grayish ribs and retains its vitality for about two years. Formerly its leaves were in great favor as a seasoning for various culinary preparations, especially puddings and omelettes, used now almost obsolete. By the medical profession, its tonic and stimulating properties and its efficacy in hysterical anddropical disorders are still recognized, though other medicines are more popular. In domestic practice it played an early role as an anthelmintic and stomachical and is still somewhat popular as a local agent to relieve the pain of muscular rhenatism, bruises and chronic ulcers. The wild plants usually satisfy all demands, but when no wild supply is at hand seed may be used to start the half-dozen specimens that a family should need. Easily started, readily transplanted or divided, Tansy requires no special care in cultivation except to keep it clear of weeds and to prevent its spreading and thus becoming troublesome as a weed. It will thrive in almost all soils and situations that are not too wet. For botanical account, see Taraxacum.

TAPE GRASS. Vallisneria.

TAPIOCA. See Manihot.

TAMARIX (ancient name of doubtful origin, probably associated with supposed medicinal properties). Compositae. Dandeline. Low nearly or quite stemless herbs of cold and temperate regions, mostly of the northern hemisphere. The plants are exceedingly variable and there are consequently great differences of opinion as to the number of species. Bentham &
Hooker would reduce them to about 6, and others would retain 25 or more. *Taraxacum/*s are distinguished by having large many-flowered ligulate yellow heads solitary on naked and hollow scapes; involucre with one inner series of erect narrow bracts and outer calyx-like spreading sometimes reflexed bracts; pappus simple and capillary, borne on a slender beak terminating a fusiform elongated angled achene; flowers opening in sunny weather.

The common Dandelion is *Taraxacum officinale,* known also as *T. esculentum.* See *Dandelion.* It varies immensely in stature and form of leaves, as shown in Figs. 2465-68. For history, see Sturt's *Proc. Linn. Soc.* 1883:233. From the common Dandelion it differs in having smaller sulfur-yellow heads, smaller and very deeply cut leaves, outer involucral scales not reflexed and somewhat glaucous; achenes red or red-brown and shorter beaked; pappus dirty white. It is known to occur in New England, New York and Pa.; perhaps naturalized from Europe.

TARE, TARES. To the modern English farmer the word “Tare” means the common vetch, *Vicia sativa,* although the term is also applied loosely to other species of *Vicia* and *Lathyrus,* particularly *Vicia hirsuta.* The celebrated passage in Matthew xiii. 25, “His enemy came and sowed tares among the wheat,” refers probably to the darnel, *Lolium temulentum.* The original Greek word in Matthew is Zizania, a name which in botany refers to the wild rice, *Darnel* belongs to the grass family and its seeds were long thought to stupefy those who ate them unwarily. Recent investigations have proved that darnel seeds have no narcotic properties.

TARRAGON (*Artemisia dracunculus,* which see) is a close relative of wormwood (*A. absinthium,* which see) in the composites of the Caspian Sea region and Siberia, and is cultivated as a culinary herb in western Europe. Its lanceolate, entire leaves and small, inconspicuous and generally sterile blossoms are borne upon numerous branching stems, 2-3 feet tall. Its green parts, which possess a delicate, aromatic flavor, are among the best used for seasoning salads and for flavoring vinegar, pickles and mustard. The essential oil of Tarragon and Tarragon vinegars are articles of commerce, the crop being grown extensively in southern France for this purpose. The former is obtained by distillation of the green parts, the latter by simple infusion in vinegar. The best time to gather the crop for distillation or infusion is when the first flowers begin to open, since the plants have then a larger percentage of oil than before or after. From 500 to 600 pounds of green parts will provide an ounce of essential oil, and other conditions, are needed to produce one pound of oil.

As cultivated Tarragon rarely produces a crop set winter, is propagated by cuttings of both old and green wood and by division of the roots. Cuttings may be taken at any convenient time, but the best time for division is when the plants have just commenced to grow in the spring. Taupe-nous and wet soils should be avoided and only loams of medium texture and of poor quality in sunny situations chosen. The plants may be set, either in the spring or in the autumn, one foot apart and cultivated like sage or mint. The flower-stems should be removed as soon as seen, as this will force greater growth of leaves, etc. The green parts may be gathered at any time, after the plants have become established, and used fresh. Dried Tarragon is nearly as useful as green, but there is little market for it, less even than for the leaves. At the approach of winter, especially in cold and snowless climates, the stems should be cut down and the plants covered with litter or leaves. The position of the beds should be changed every three or four years. Tarragon is less cultivated in America than it deserves. Most of our Tarragon vinegar comes from France.

Tagetes lucida is much like Tarragon in flavor and has been used as a substitute for it.

TASMANNIA (after Abel Jansen Tasman, Dutch captain who discovered Van Diemen’s Land or Tasmania), *Magnoliaceae.* This genus is included in *Drimys* by Bentham and Hooker. A small genus of tender evergreen aromatic trees or shrubs with simple, short-petioled leaves with transparent dots and terminal clusters of greenish yellow, rose or white flowers.

Drimys aromatica, F. Muell. (*T. aromatica,* R.Br.), is a shrub or small tree cult. in a few north-
TAXODIUM (alluding to the similarity of the foliage to that of Taxus). Glyptostrobus, Schubertia, Calit-

TASSEL FLOWER. See Emilia flower and Brickellia.

TAU-KOK BEAN. See Dolichos.

TAXODIUM.

Forms in. Occasionally Ivs. but be

gose or ovate cones not exceeding 1 in. across. The Bald Cypress, T. distichum, is well known in cultiva-
tion and is hardy as far north as New England. It is a very desirable tree for park planting. Its light green

nating in long, horizontal roots. From these roots spring the peculiar cypress knees, pyramidal projections
ances composed of a very light, soft, spongy wood and spongy bark. These sometimes attain a height of 10 ft.
and with age usually become hollow. From the under side of the horizontal roots large anchor-roots are sent
perpendicularly into the earth and help to anchor the tree firmly in the swampy yielding soil. The knees are
believed by some to be formed for the purpose of strengthening this root-system, since they are chiefly
found opposite to the anchor-roots, but their main purpose is probably to bring air to the roots during the
several weeks or months when the swamps are covered

with water. The knees always grow high enough to rise
above the surface of the water (see, also, G.F. 3, p. 21, 22, 57).

The Bald Cypress thrives best in moist, sandy soil,
but usually also does well in drier situations. The habit
seems to depend somewhat on the degree of moisture;
in drier soil it is easily worked, pyramidal, in moist soil broader and more spreading. Prop-
agated by seeds sown in spring and the varieties
by grafting on seedling stock early in spring in the
greenhouse; also by cuttings in sand constantly saturat-
ed with water or grown in water alone, under glass.

Three species in North America and China. Lvs. alternate, linear, usually 2-ranked, falling
off in autumn or the second year together with the
short lateral branchlets; fls. monoeious, small; staminate fls. catkin-like, consisting of spirally arranged anthers, with 4–9 anther-cells, bearing two ovules inside at the base: cone glo-
bose or nearly so, maturing the first year, consisting of spirally arranged woody scales en-
larged at the apex into an irregularly 4-sided thick
with a nuero in the middle and toward the base
narrowed into a slender stalk; 2 triangular,
winged seeds under each scale; cotyledons 1–9.

The Bald Cypress is one of the most valuable
or evergreen trees of North America. The wood is
brown, light and soft, close and straight-grained,
but not strong; it is easily worked, durable in the
soil and much used for construction.

distichum, Rich. (Cypresia dis-
ticha, Linn. Schubertia disticha, Mirbel). BALD CYPRESS. DECIDUOUS CYPRESS. Fig. 2600. Tall, deciduous

tree, becoming 150 feet high, with a buttressed trunk usually 4–5, but
sometimes attaining 12 ft. or more in diameter, usually hollow in old age; bark light cinnamon-brown, flaky;
branches erect or spreading, distichously ramified, forming a narrow pyra-
midal head, becoming at maturity broad and rounded, with slightly pend-
ulous branches; lvs. narrowly linear, acute, thin, light green, 3/4–4 in. long;
panicles of the purplish staminate fls.
4–5 in. long; cone almost globose, rugose, about 1 in. across and destin-
ute of nueros at maturity; seed ½
in. long, March–May. Del. to Fla., west to Mo. and Tex. S.S. 10:537.
Ging. 2:223; 5:1. G.M. 39:875. M.
B.0. 1896:363. S.H. 2:541. — An interesting natural variety is:
Var. imbricatum, Nutt. (T. distichum
Sinuise poudru, Lodd. T. distichum, var. poudru, Carr. Glyptostrobus

poudru, Endl. G. Simons, Hort.).

2608. Variation in foliage of the common Dandelion.

All leaves drawn to the same scale.

feathery foliage and the narrow pyramidal habit which it
usually retains in cultivation give it a very distinct
appearance. In its native habitat it forms in old age a
broad, round-topped head sometimes 100 ft. across and
has the trunk much enlarged at the base by huge, often
hollow buttresses projecting in all directions and termi-

Smaller tree, with slender upright or often pendulous
branches clothed with spirally arranged, needle-shaped, more or less upright and appressed lvs. Occasionally
found wild with the type and often cultivated. B.M.
5660. P. 1871, p. 60.

A great number of garden forms have been described,
of which the following are the most important: Var. fastigiatum, Knight. With slender, upright, virgate branches sparingly ramified. Var. microphyllum, Carr. Shrub, with short spreading branches; the lateral branchlets with typical foliage, those of the longer branches gradually passing toward the end into small, scale-like, imbricate leaves. Var. nanum, Carr. Dwarf shrub, sparsely branched, with numerous short branches. Var. nutans, Ait. Branches spreading, long and slender, nodding at the tips. Var. pendulimum novum, F. Smith. A graceful form with slender, pendulous branchlets. Var. pyramidalum, Carr. Shrub, with short ascending branches.

2469. Bald Cypress - Taxodium distichum. (Natural size of lvs. is 1/4-1/2 inch long.)

ALFRED REHDER

TAXUS (ancient Latin name of the Yew). *Conifera.* Yew. Ornamental evergreen trees or shrubs, with 2-ranked linear leaves, scented flowers and fruits, and black berry-like red fruits. The best known species is *T. baccata,* which is hardy as far north as Rhode Island and northwestern New York, while *T. cuspidata* and *T. Canadensis* are considerably harder and thrive as far north as Canada; the other species are little known in cultivation. The Yews are very desirable evergreens for park plantings; they are densely clothed with dark green foliage and the pillistate plants are particularly beautiful in autumn when loaded with scarlet fruits. They are well suited for hedges and easily trimmed into any desired shape. They were formerly much used for fantastic topiary work (see e.g., G. C. H. 2:264, 265).

That the typical tree-like form of the Yew is nowadays not much planted is chiefly due to its slow growth, but the numerous mostly shrubby garden forms are popular plants for small gardens. The Yews thrive best in a moderately moist sandy loam and endure shade well. Large plants may be successfully transplanted if it is possible to secure a sufficient ball of earth with the roots. Prop. by seeds, which do not germinate until the second year, and by cuttings taken early in autumn and kept during the winter in a cool greenhouse or frame; the varieties also often by grafting on the type in early spring in the greenhouse, or sometimes by layers. Plants raised from cuttings grow much slower than grafted ones and cuttings of the type rarely grow into trees but usually into low-spaying shrubs (see M. G. 1895:265).

Six species are known. They are distributed through the northern hemisphere and in America south to Mexico. They are all very closely allied and could be considered geographical varieties of a single species.

Trees or shrubs: lvs. linear, without resin-dots, pale or yellosish green beneath, usually 2-ranked; fls. usually dioecious, solitary and axillary, rarely terminal, small, appearing in early spring; staminate globose, composed of 4-8 stamens each, with 3-8 anther-cells attached to the peltate connate; pistilate consisting of a single terminal ovule with several bracts at the base; seed a body not surrounded or inclosed by a flesh-colored, flat, shaped scarlet disk; ovoidelens two. The wood is heavy, hard, close-grained, strong, elastic and of reddish color. It is highly valued for cabinet-making and turning, and before the invention of gunpowder was in great request in England for the manufacture of bows. The foliage is poisonous to horses and cattle but the berries are not.

2470. Old English Yews that have reached maturity. - *Taxus baccata.*

suspidda, Sieb. & Zucc. (T. baccata, var. suspidda, Carr.). Trees, attaining 50 ft., with a trunk usually 2 ft. size.
in diameter; dark bright red: branches ascending; lvs. usually falcate, thickish, distinctly and abruptly mucronate, dark green above, pale fulvous green or pale green beneath. 5½-1 in. long; fr. like that of T. baccata, japon. Very similar to T. baccata, but branches more upright, stouter and lvs. somewhat broader, more abruptly mucronate and thicker in texture. Var. nana, Hort. (T. baccata, Hort., not N.): is a dwarf compact form with shorter branches forming a broad, open, pyramidal head; lvs. sharply pointed, dark yellowish green, ½ in. long. Brit. Col. to Calif. S.S. 17: 381. Probably as hardy as T. baccata.—T. floridana, Chapm. Bushy tree, 25 ft. high or sometimes shrublike: lvs. slender, 5½ in. long, dark green. Fla. S.S. 13: 515.

ALFRED REHDER.

TEA. The Tea plant is described in this work under Camellia Tea, together with its varieties Bohea and vividish, of which the former was supposed to yield black Tea and the latter green Tea. Both kinds can be produced from either variety, the difference lying in the process of manufacture. Tea is an agricultural rather than a horticultural crop. It is fully treated in general cyclopedias and elsewhere. For these reasons no general article on Tea is here included. The following article gives an idea of the present condition of the tea-growing industry in America. The Tea plant is shown in Fig. 2472.

L. H. B.

AMERICAN TEA. — Previous to the inauguration of the Pinehurst experiment in South Carolina, it had been abundantly demonstrated that parts of the southern states were well adapted for the growth of these varieties of the Tea plant which do not require a tropical climate; and before the Civil War many families supplied themselves with Tea grown and made at home, the result of the distribution of oriental Tea seed throughout the southern states by the national government. But it remained to be solved whether Tea might be produced on a large scale at a profit. The Pinehurst experiments have shown that American tea-gardens are capable of yielding as much as the average rhanches, and that the quality of the leaf is not less satisfactory.

The advantages in favor of raising Tea in this country are the avoidance of long transportation, which generally induces deterioration in quality; security from the interference of war with the importation of foreign Teas; and the protection of the industry by a duty which shall offset the difference in the price of labor. That some sorts of Tea do not keep well, that the high “firing” of Tea to prevent mildew, necessarily deprives it of much of its flavor, and that for these reasons the best of the oriental Teas are rarely exported, least of all to the healthy, civilized region, affording lucrative employment to thousands of Europeans and natives. As much can be brought about in many neglected parts of the southern states; but probably, as was the case in Assam, only through the long category of persistent labor, severe trials, frequent mistakes, temporary depressions and final success.

The disadvantages which operate against the establishment of an American Tea industry are, chiefly, an insufficient rainfall, the higher price of labor, and the conversion of tea-drinkers to the taste of a new sort of Tea. Of secondary importance is the disinclination of capital to embark in the undertaking which, although apparently new, has, undeservedly as we think, the stigma of previous failures. Further experiments to relieve the burden of the above objections will, it is believed, pave the way for a hearty endorsement of the practicability of the industry, and then there will be no withholding of the requisite means.

The Pinehurst experiments have shown, other things being equal, the dependence of the productiveness of the tea-plant upon an abundant supply of moisture, whether of precipitation or perspiration, or by artificial irrigation. The yearly rainfall in the oriental Tea countries varies from 60 to 150 inches, and even more. Almost all of it occurs in the leaf-producing months; whereas here the aqueous precipitation, during the same season amounts to about thirty inches. It becomes necessary, therefore, that the American tea-planter should conserve and supplement this supply to the utmost, by a system of tillage which shall absorb and yield to the plant as much as possible; by the distribution of the trenches and the terracing of the land with a view to preventing the degradation of the surface and the loss of water during the heavier rains. These objects are largely attained by placing the tea-gardens on well-drained, flat lowlands or former pond-lands. Very recently special attention has been paid to the United States, are facts sufficiently well known as to require no elaboration in the present article. The present condition of China and the fear that a devastating war may at any moment invade the tea-producing provinces, seriously threaten the Tea supply from that country. Again, friction among the world-powers may at some future time entangle the United States in war with a strong naval power, in which case it is easy to foresee that competition with the multiples might be arrested and our supply of oriental Tea cut off. Or the outbreak of some such vegetable disease as that which not many years ago destroyed the coffee industry in Ceylon might readily sweep over the tea-gardens of Eastern Asia; and if wholly dependent upon them, the world might be deprived of its cup of Tea. It becomes, therefore, a question of national importance to provide against these contingencies.

To these advantages should be added the diversification of our industries, supplying easy and healthful occupation to thousands of needy people, especially women and children, who are well adapted for the generally light labor involved in the growth and manufacture of Tea; and converting countless acres of now idle land into blooming and remunerative tea-gardens. Where in Assam was once a dismal jungle, the home of the tiger and cobra, and full of deadlier fevers, almost uninhabited by man and practically worthless, is now—thanks to the tea-industry—a fertile, comparatively

2471. Spray of Taxus Canadensis (X ½).
artificial irrigation of tea fields, whereby it is designed better approximate to the oriental supply of water during the cropping season, although, of course, it will be needless to attempt to imitate the tropical deluges which not only run off from, but with the soil.

The selection of the most suitable location for the establishment of a tea estate, becomes, then, of the greatest importance. The choice of fertile, flat lands, underlain by a porous subsoil, susceptible of irrigation by gravity, as a safe-guard against droughts, will obviate the necessity of applying artificial enrichment, of underdrainage, and of diverting by applied power the water needed for irrigation. By a careful observance of these details and the selection of the right sort of seed, the American tea-garden may be made to yield as much or more than the parent bushes from which it sprung. And as the successful commercial tea estate must be on a large scale, like similar undertakings in sugar, whether beet or cane, it will be necessary to consider the means of transportation and accessibility to markets, abundant supply of labor and healthfulness of situation.

The part played by purely manual labor in the cultivation and manufacture of black Tea upon the best equipped British tea estates in India, is being steadily encroached upon by mechanical appliances until now it has been almost relegated to its last functions of planting and leaf-picking, where it is probably secure. It is true that the cultivation of the soil on the above-mentioned gardens largely depends on manual labor with the hoe, spade and fork. This is the natural sequence of the heavy rains which otherwise demote them of a uniformly well-pulverized surface soil. By avoiding hillsides and by planting sufficiently far apart it is possible to use plows and cultivators, and thus reduce the cost of cultivation. As yet no mechanical contrivance has been found for dispensing with human labor in the pruning of the tea bushes and the gathering of the leaf. But a ten cent duty on foreign Tea should in many sections of the southern states somewhat compensate for the difference in the cost of these operations here and in the Orient. The testimony before the U. S. Labor Commission has shown where the negro population is congested, their wages, beyond a scanty supply of food and clothing, are strictly nominal.

very recently the manufacture of green Tea has required a large amount of handwork for the roasting and rolling of the leaf. But most recently it has been demonstrated at Pinehurst that by a high quality may be made solely by machinery, by means of the "Rotary Withering," invented by the writer, in conjunction with the previously employed rolling and drying machinery. And thus, by a series of mechanical operations, not only should the production of Tea on a scale commensurate with the cost of such an establishment, be made cheaper, but the product should be more uniform and free from the possible contamination of frequently unclean hands (and feet!).

It was to be expected that the different climatic conditions should exert their effect on the foreign tea plants and somewhat change their product. This experience has been the rule with Tea, and it has cost a considerable, oftentimes dishheartening, effort to translate the knowledge thus acquired. But were the production of American Tea to suddenly rise into the millions of pounds, it would most certainly have to fight against the prejudice of taste and the established trade in Asiatic Teas. The natural deficiency in the grainy and heavy adaptation to already formed habits of taste and a lowering of price. Time, study, perseverance and patience are necessary demands, but success seems to be reasonably assured.

It should not surprise any one familiar with the Teas consumed in the United States and Great Britain that the sorts most highly valued in the Orient, the product of one thousand or more years of discrimination and so highly prized as often to be commercially unattainable, rarely commend themselves to the tea-drinkers in the former countries.

For nearly ten years the experimentation at Pinehurst was mainly carried on without outside assistance. The National Department of Agriculture, however, contributed very much toward the success of their product, seed, publication of reports and other important ways; and for the past two seasons has rendered most effective pecuniary aid, under the direction of the Secretary of Agriculture, the Hon. James Wilson, who has enlisted the interest and support of Congress in the work. The proprietor of Pinehurst appreciates most deeply this assistance, both in money and sympathy, which he recognizes as being indispensable for the ultimate inauguration of the hoped-for industry. Under the instructions of the United States Department of Agriculture he will diligently continue the experiments which seem most calculated to produce at low cost the medium grades of both black and green Teas, not losing sight, however, of the possible growth and manufacture of the finer varieties.

The first tea plant in this country was set out by the French botanist, Michaux, about 1800, at Middleton Barony, on the Ashley river, distant some 15 miles from Charleston and 10 from Pinehurst plantation. As seen a few years since, it had grown into a small tree about 15 feet high. The reports of the U. S. Patent Office and the Department of Agriculture record the results of many subsequent attempts to introduce and cultivate the tea plant in the southern states. In 1848, Mr. Julius Smith, of Greenville, S. C., being convinced from the letters of his daughter, then in British India, of the feasibility of raising Tea in this region, began his well-known experiments in this direction. In spite of many trying difficulties, they were diligently prosecuted to the time of his death, which occurred a few years later. It required only slight encouragement from the Government, by the distribution of plants and seeds, to call into active participation the ardent of many experimenters living in a climate particularly favorable for the outdoor cultivation of the Camellia Japonica, Azalea Indica, and many other subtropical plants. The Scotch botanist, Mr. Robert Fortune, was employed by the Government to gather Chinese tea seed, which was distributed in 1858 and 1859 throughout the southern states. The outbreak of the Civil War, shortly thereafter, seriously interfered with the prosecution of these
experiments. Nevertheless, the resultant patches and larger gardens unquestionably produced Tea of fine flavor, although very generally devoid of that strength of liquor which latterly, and especially since the introduction of the Ceylon Teas, appears to constitute a most desirable quality for many consumers. It may be presumed, however, that this failure in power of was largely due to defective curing and particularly to inadequate rolling of the leaf, in consequence of which the cup qualities of the Tea were not fully developed.

So far as is known, it remained for the National Department of Agriculture to begin, twenty years ago, the first serious attempt to produce American commercial Tea. Unhappily, the retirement from office of Commissioner Wm. G. Le Duc, to whose great interest and able management the Tea plantations in India, especially the little known, Amhoinensis, were largely indebted and whose seed was obtained and the gardens established; the great distance of the station from its source of control (Washington), as also the unfavorable opinion of a subsequent commissioner as to the ultimate success of the undertaking, combined to cause the total abandonment of the Government of the tea-gardens which it had established on the same "Newington" plantation that embraced the adjoining site of the later formed Pinhurst estate.

The Pinhurst investigation owed its origin to the belief that the previous attempts to demonstrate the feasibility of American Tea culture had been arrested before reaching definite conclusions. More careful cultivation and manipulation, the result of protracted observation, with the consequent production of a higher class of Teas, might reverse the generally entertained opinion that the cultivation of Tea, as an industry in this country must always prove a failure. It was hoped that the success in this field of agricultural enterprise would furnish employment for thousands who are now idle and give a value to vast acres of present worthless land, and under management the soil and climate and labor. It was obviously desirable to conduct experiments with as many varieties of seed and on as different sorts of soil and location as possible. To this end, partly by the kind assistance of the U. S. Department of Agriculture and partly by purchase from domestic and foreign producers, a considerable variety of seed, representing many of the choicest sorts of Tea, was obtained. Gardens were established on flat and on rolling land, in drained swamps and ponds, and on sandy, clayey, loamy and rich bottom soil.

It was from the outset expected that many of these attempts would prove either partially or wholly unsuccessful, but with very few exceptions the gardens are fully answering the expectations. The annual crop has gradually, but steadily, grown from less than one hundred pounds to 5,000 pounds of dry Tea. Several years of experimentation have developed the importance of pruning in keeping with the local climate. The hopefully criminal trial occurred on February 14, 1899, when the thermometer fell to zero, Fahrenheit—the lowest recorded temperature in 150 years of observation. With comparatively few exceptions the tea-gardens escaped serious injury, although followed by a diminished yield for two years in some instances. A Rose (Assam Hybrid) tea garden at Pinhurst is shown in Fig. 2473.

CHARLES U. SHEPARD.

TEA, OSWEGO. Mouarda didyma.

TEA, PARAGUAY. Tria Paraguayensis.

TEASEL. The species of Dipsacus. See p. 491 and Fig. 719.

2473. Assam Hybrid Tea garden at Pinhurst, South Carolina.

TECOMA (abridged from the Mexican name Tecomaxochitl). Including Campsis, Campsis, Cowalca, Pandorea, Stenolobium and Tecomaria, Bigoniaceae. Trumpet Vine. Ornamental evergreen or deciduous, climbing or upright shrubs, or sometimes trees, with opposite, odd-pinnate or digitate leaves and showy white, yellow, scarlet or violet flowers in panicles or racemes, followed by mostly elongated cylindrical pods. Most of the species are suited only for greenhouse cultivation in the North, or for outdoor cultivation only in subtropical or tropical regions. The hardiest species is T. radicans, which may be grown as far north as Massachusetts, at least in sheltered positions. The closely allied T. grandiflora is somewhat more tender. The latter, as we have already said, may be grown as bushy specimens and will bloom freely on the young shoots, even if cut back almost to the ground by frost. Such plants can be easily protected during the winter by laying them down and covering them with earth.

The following are well suited for cultivation in the southern states and California or in the North in the cool greenhouses and will stand a little frost: T. austriaca, Copepsis, jassonoides, molis, Ricinus, Sambucus, and stana. T. Ambolens, lanteola and tecumseh can be grown only in tropical or in the warm greenhouses. The Tecomas, with the exception of the first 3 species described below, are very ornamental climbing plants. T. radicans is particularly adapted for covering walls and rocks, as it climbs with rootlets and clings firmly to its support. The Tecomas require rich, rather moist soil and sunny position. Propagated by seeds, by hardwood cuttings under glass, or by hardwood and also by root-cuttings and layers. See, also, Bigoniaceae for culture.

The genus contains more than 100 species, chiefly natives of tropical and sub-tropical America, also found in Polynesia, S. Asia and Africa. Climbing or upright shrubs, sometimes trees: Ivs. odd-pinnate or digitate, opposite, estipulate; fls. in racemes or panicles; calyx campanulate, 5-toothed or irregularly 2-5-toothed; corolla funneliform, with 5- or rarely 4-lobed limb; stamens 4, 2 longer and 2 shorter; style slender; ovary 2-loculed,
surrounded at the base by a disk: fr. an elongated capsule, loculecilly dehiscence, with 2 valves separating from the septum, to which the seeds are attached; seeds numerous, compressed, with 2 large, thin wings. The genus is divided into several natural subgenera, which are considered by some botanists as distinct genera.

Alfred Rehder.

2474. Tecoma Smithii (× ½).

Trumpet Vines in the South.—All the Tecomas, the climbing species as well as those growing in bush form, are very successfully cultivated in Florida, being well adapted to the soil and climate, but most of them, to do their best, need to be planted from the start in rich soil, and in addition they should be well fertilized at least once a year. They prefer a fertilizer rich in nitrogen, and a heavy mulch will also prove very beneficial. The bushy kinds can be grown in groups or as single specimens on the lawn, while the rampant climbing species, such as *T. radicans* and *T. grandiflora*, should be grown on posts and tall stumps, or they may be trained over small oaks, persimmon trees or catalpas. *T. Capensis*, a half-climbing species, is effectively used for decoration of the veranda, its graceful silvery flowers contrasting well with the exquisite blossoms and the tropical foliage of the allamandas, thumbergas and Clerodendron Thompsonii, which all flower at the same time. *Tecoma Stans* and *T. grandiflora* are the two showiest species of the genus, the latter being a climber, flowering abundantly in May and June, while the first one is a large-growing bushy species opening its immense corymbs of vivid yellow flowers the latter part of November and early in December. The Yellow Elder, *T. stans*, grows exceedingly well on high pine-land and is perfectly at home in Florida, attaining an immense size if well fertilized and mulched, dense masses 18-25 ft. high and as much through being not at all rare. This Tecoma is the glory of the south Florida gardens in autumn, as is the beautiful *Boulinia purpurea* in April, never failing to call forth enthusiastic admiration from all beholders. No shrub is better adapted for the new settlers in the sandy pine-land gardens. When covered with its large, fragrant flowers it is visited by numberless hummingbirds and insects. Owing to its rapid growth and dense foliage from the ground up, the Yellow Elder, the Yellow Rain Tree, and the Yellow Elder Vine may be readily trained against unsightly fences and buildings. This Tecoma ripens its seed so abundantly that hundreds of seedlings come up around the old plant. The value of this shrub, blooming so late in autumn, cannot be overestimated.

T. mollis, incorrectly known to the trade as *T. stans*, var. *relutina*, also does well, but being a native of Guatemala it is much less hardy than the former. The growth is more upright and stiff, the leaves are larger, less serrate and much darker green and the flowers, which are borne in terminal panicles, are smaller and without fragrance and the color is a much lighter yellow. It also flowers several weeks earlier than *T. stans*. The foliage looks crimped and often blackish, being attacked by a kind of aphid and by several fungi.

T. Smithii is said to be a hybrid between *T. mollis* and *T. Capensis*, raised near Melbourne, Australia, by Mr. Edwin Smith. The plant comes true from seed, and seedlings flower when about a year old, beginning to open their large clusters of yellow and reddish trumpets in April and continuing with short intervals until cut down by frost in December.

The Cape Honeysuckle, *T. Capensis*, is another species which grows most luxuriantly in Florida gardens and in those all along the Gulf Coast. It is usually grown on trellises or verandas and plazas with a southern exposure. Of all the species this is the best and most suitable for verandas, being a dense and compact grower, evergreen, almost constantly in flower, easily kept in health and readily trained into shapely specimens. If the long shoots are cut back severely, the plant can be easily trained into shrub form. These long shoots, usually lying flat on the ground, readily strike root and form an excellent material for propagation. *T. Capensis* and *T. Smithii* are the only Tecomas which grow and flower fairly well as pot-plants in northern greenhouses. They need good soil and rather large pots to do well. If not kept and lose most of their foliage and look poor and unshapely.

The Chinese Trumpet Creeper, *T. grandiflora*, is the most floriferous and gorgeous of all the climbing species. In the writer’s garden a large pine stump, about sixteen feet high, in May and June is completely covered with masses of brilliant fiery orange-scarlet flowers which can be seen at a distance of half a mile. The flowers are much larger, more brilliant and much more abundantly produced than those of our native *T. radicans*. While all the other Tecomas are almost free from the attacks of insects, this one is infested by the Chinese trumpet creeper caterpillar, which devours the leaves greedily. The huber grasshoppers also attack the lower foliage. *T. grandiflora* grows well in the poor sandy soil, perfecting luxuriant growth of fifteen to twenty feet tall and well fertilized. Like our native species, this one is deciduous.

Our native Trumpet Creeper, *T. radicans*, is very common in the southern woodlands and fields. There is a great variety in the brilliancy of the blossoms. This is an excellent plant for covering the bare trunks of palmettos.

The Wonga-Wonga Vine, *T. australis*, is rather difficult to grow on high pine-land, as it needs a soil rich in humus. In rich soil, however, and liberally fertilized it is a rampant grower with beautiful dark green glossy foliage. The flowers are interesting but comparatively small, and not showy. However, the species is worth cultivating for foliage alone. It must be well taken care of and well watered during the dry September months or it will dwindle away in a very short time.

The Bower Plant of Australia, *T. jasminoides*, is a small, rampant climber, reeking in the Florida sun and shine, but it needs a very rich soil and during dry weather an abundance of water. A heavy mulching also proves very beneficial. Plants only two feet high have flowered profusely. In good soil it grows in one season 20-30 ft. high, clambering from tree to tree.

T. Mackenii, from Natal and Caffrarian, demands a very rich soil and a heavy mulch of stable manure. Its leaves easily drop from the woody branches after a
cold night, and 6 or 7 degrees of frost kill the plant down to the ground. For this reason the vine should be banked with dry sand every year and if killed down to the ground it must be cut off immediately or the entire plant will be lost. Plants raised from seed received under the name of *T. Ricinofolia*, from Italy, are much harder and more floriferous than those obtained from seed imported from South Africa, but the flowers of both are exactly alike. In order to flower profusely this species must be planted in the full sun. It usually requires a few years before it starts into a vigorous growth, and it rarely flowers before its fifth year or before it has attained considerable size. In Florida, *T. Mackensi* should be planted on tall stumps, or on arbors and shrubs by itself, never mingled with other species. This species is properly *T. Ricinofolia*.

T. filicifolia, from the Fiji Islands, has never flowered in the writer's garden and is cut down by frost almost every winter, but it is a strong grower and worth planting for the foliage alone.

T. Tabuliforma has proved to be a very poor grower and is very difficult to keep healthy for any length of time. Apparently not in the trade.

H. NEHRING.

INDEX.

(Joining some names from other genera. s. l. = supplemental list.)

A. Habit upright.

B. Foliage digite: fls. pink.
 C. Panicles few-flowered
 D. Lvs. glabrous
 E. Lvs. pubescent
 F. Lvs. oblong-obovate

B. Habit climbing or prostrate, rarely suberect.

B. Stamens exserted. (Tecoma.) 6. *Capensis.*

B. Stamens included. (Tecoma.) 6. *Capensis.*

D. Pairs of lfts. 2-5.

D. Fls. in racemes, orange, red or scarlet. (Teoma.)

E. Lvs. serrate: racemes terminal.

F. Corolla - tube much longer than calyx.

F. Corolla-tube little exserted.

E. Lvs. entire or serrate: racemes axillary. 9. *Acantholobium.*

D. Fls. in terminal panicles, whorled or light pink (Panuloria.)

E. Margin of lfts. serrate.

D. Margin of lfts. entire.

D. Corolla 1½-2 in. long. 12. *Jasminoides.*

C. Pairs of lfts. 9-12. (Campsis.)

1. *Leucokéxylon*, Mart. (Bignonioidae leucokéxylon, Linn.). Evergreen tree: lvs. digitate; fls. 5, rarely 3, long-stalked, ovate to oblong, acuminate, entire; fls. in many-flled, terminal panicles; corolla funnelform-campanulate, with short tube and large, spreading lobes, rosy pink; calyx campanulate, obscurely 2-lobed, almost truncate. Guatemala.

2. *Rosen*, Bertol. (Tabebia rosen, DC.). Evergreen tree: lvs. digitate; fls. 5, rarely 3, long-stalked, ovate to oblong, acuminate, entire; fls. in many-flled, terminal panicles; corolla funnelform-campanulate, with short tube and large, spreading lobes, rosy pink; calyx campanulate, obscurely 2-lobed, almost truncate. Guatemala.

4. *Mollis*, Humb. & Bonpl. (T. velutina, Lindl. *T. stans*, var. velutina, Hort.). Similar to the preceding, but pubescent, with long-ovate, acuminate, less deeply serrate or almost entire, villous pubescent on both sides or only beneath, 2½ in. long; fls. like those of the preceding, but little or not at all fragrant. Mexico to Chile and Peru.

5. *Smithii*, W. Wats. Fig. 2474 (adapted from The Garden). Upright shrub: lvs. odd-pinnate; fls. 11-17, oblong, obtuse or acutish, serrate, 1½-2 in. long; fls. in large, compound panicles, some 8 in. long and as broad; corolla tubular-funnelform, with 5 reflexed rounded lobes, bright yellow tinged with orange, 1½-2 in. long. Sept.-Jan. Introduced from Australia and supposed to be a hybrid of *T. mollis* and *Capensis*, G. C. H. 11. 6449. Gn. 18700. H. 45: 25, 107; Gr. 44, p. 52. G. M. 36: 627. — Blooming in the greenhouse in winter and well suited for cultivation in pots.

7. *Radicans*, Juss. (Bigonioidea radicans, Linn. *Campsia radicans*, Pur.). TRUMPET CREEPER. TRUMPET VINE. TRUMPET HONEYSUCKLE. Figs. 2475, 2476. High-climbing shrub, climbing with rootlets; lvs. odd-pinnate; fls. 9-11, oval to ovate-oblong, acuminate, serrate, dark green above, pale and pubescent beneath, at least along the midrib, 1½-2½ in. long; fls. in terminal racemes; corolla tubular-funnelform, with 5 broad spreading lobes, usually orange with scarlet limb, 2½-3 in. long, tube almost thrice as long as the 3-teeth calyx; cylindrical-oblong, keeled along the sutures, stalked.
and with a bath at the apex, 3-5 in. long. July-Sept. Pa.
Hort. (var. grandiflora atropurpurea, Hort.). With
large, deep scarlet fls. Var. speciosa, Hort. Scarcely
eliding, usually forming a bush with long and slender
branches; lfts. small, oval, abruptly narrowed into
a slender point often ¾ in. long; fls. orange-red, with
rather straight tube; limb about ½ in. across. Var.
precox, Hort. With large scarlet fls.

8. grandiflora, Del. (T. Chinesis, C. Koch. Bignonia Chinesis, Lam. Campsis adscens, Lour.). CHINESE TRUMPET CREEPER. Fig. 2477 (adapted from Gardening). Climbing shrub, with few or no aerial
rootlets; lvs. odd-pinnate; lfts. usually 2-3 oval to ovate-lanceolate, serrate, glabrous beneath, 1½-2½
long; fls. terminal racemes; corolla funnelform-campanulate, shorter and broader than that of the preced-
ing species, scarlet, about 2 in. across; calyx 5-lobed
to the middle, about as long as the tube of the corolla:
high-growing and sometimes shrubby; flowers when
quite small and can be grown as a pot-plant, also suited
for forcing. Var. atroanguinea, Hort. With deeper
scarlet fls. Var. Thunbergi, Hort. (T. Thunbergi, Sieb.).
Fls. bright scarlet, with very short tube and reflexed
lobes. Often a var. of T. radicans is cult. under the
name T. Thunbergi. There are probably also hybrids
of this and the preceding species. Var. precox is ad-
versted.

9. Ambinæus, Blume. Evergreen climbing shrub;
lvs. odd-pinnate; lfts. 3-7, stalked, elliptic-ovate, acuti-
nate, sinuate or almost entire, puberulous beneath,
3-3½ in. long; fls. in lateral racemes, corolla tubular-
funnelform, with erect or slightly spreading 5-lobed
limb, red, 3-4 in. long. Ambinæa.

Pandorea Riossaliana, Boll.). Evergreen climbing shrub:
lvs. odd-pinnate; lfts. 7-11, short-stalked, elliptic-
-ovate, acute or acuminate, serrate, dark green above,
pale beneath, glabrous, about 1 in. long; fls. in loose,
terminal panicles; corolla funnelform, campanulate,
with spreading 5-lobed limb, light pink, striped red,
2 in. long; calyx 5-toothed: fr. linear, terete, 10-12 in.
long. S. Africa.

11. australis, R. Br. (Bignonia Pandoræ, Sims.) WONGA-WONGA VINE. Evergreen high-climbing shrub;
lvs. odd-pinnate; lfts. 3-9, elliptic-ovate to ovate-lan-
ceolate, acuminate but bluntly pointed, entire or
sometimes coarsely cre-
rated, shining above, gla-
broous, 1-2½ in. long; pan-
icles many-fl.; corolla funnelform-campanulate, with
5-lobed spreading limb, yellowish white, spotted violet in
the throat, ½ in. long; fr. ob-
long, pointed, 2-3 in. long. Spring. Australia. B.M.
815. G. N. 27, p. 94.

12. jasminoides, Lindl. (Bignonia jasminoides, Hort.). BLOWER PLANT OF AUSTRA LIA. Evergreen climbing shrub: lvs. odd-
pinnate; lfts. 5-9, almost sessile, ovate to lanceolate,
acuminate but bluntly pointed, entire, glabrous,
1-2 in. long; panicles rather few-fl.; corolla funnelform-campanulate, with large spreading 5-
lobed limb with crenate lobes, white, rosy pink in the
throat, 1½ in. long; calyx small, 5-lobed. Aug.-Oct.

2477. Tecoma grandiflora
on a clothes post.

18. filicifolia, Nichols. (Campsis filicifolia, Van Geert). Climbing evergreen shrub: lvs. odd-pinnate,
2-3 in. long; lfts. 19-25, ovate, with short slender
stem; on each side, the larger lobes sometimes dentate. Fiji
Islands. F. 1874: 280.

tree, about 20 ft. high; lvs. digitate, with 7 oblong-
obovate leaves, pubescent above, brownish beneath;
fls. in terminal panicles, subcampanulate, emarginate,
with yellow spots on the lower lobes. Mexico. T. chrysanthia, DC. (Tabebuia chrysanthaa,
Nichols.). Evergreen tree: lvs. digitate, with 5 ovate entire, tomentose:
fls. in terminal racemes, yellow,
funnelform, 2 in. long. Caracas.

— F. fulens, Don (Tecomaria fulens, Ball.). Evergreen upright shrub to 15 ft. high; lvs. odd-pinnate, with
9-13 small oval, toothed lfts.; fls. in
terminal panicles, tubular-funnelform, slender, yellow, tinged red, 1½
in. long; stamens slightly exerted.
Fern. B. M. 1866. P. S. 11:110. — T. ser-

2476. Trumpet Vine —

Tecoma radicans (X 34).

TECOPHILIA (named for Tepocphila Billotti, daugh-
ter of a botanist), Humophoraceae, Chilian CROCUS.
Two Chilean bulbs early-flowering plants, useful for
pots or for forcing, one of which is Erythronium, the
bulb dealers. They look like blue crocuses. They are
steakless plants, with 1-5 fls., petals and linear or
lanceolate leaves arising from tuberous roots. The
flowers are blue, campanulate, with 6 segments, 3 per-
fect stamens and 3 staminodia, a single style and a 3-
lobed ovary. The botanical position of Tecophila is
open to discussion, but the inferior ovary seems to take
it out of the Liliaceae, with which it has been placed
by some writers. They are useful plants for blooming
in pots indoors early in spring. T. violaeformis, Bertero,
does not appear to be introduced. The one in cultura-
is cyanococcus, Levy. (sometimes written T. cyano-
coccus). Scapes 1-5, erect, 3-6 in. high, 1-fl.; lvs.
2-3, linear-campanulate and undulate; fl. azure-blue
with white throat, about 1½ in. long, with a narrow
tube and obvate segments. Var. Leichtlinii, Hort.,
has fls. deep blue with no trace of yellow; said by
some to have a white center. Var. Brebula, Baker (not
known to be in the trade), has longer pedicels, longer
and narrower scarcely undulate lvs., and narrow oblong
segments. Species hardy at New York City in protected
places, but usually the plants do not thrive more than a
year or two. It is further south. Blooms very early in spring. Fls. violet-scented.

L. H. B.
TELEDIA (J. G. Teede, German botanist, who lived some time in Portugal and died at Sarinaia). *Soroph- mithridaceae*. Two species of South African plants, with pink 5-lobed fls. 5-7 in. across. They are tender to frost, and are introduced to southern California in 1896, and Franceschi records that it blooms all the year. The larger-flowered species, *T. phusaeus*, seems not to be known to the American trade. Both plants emit the rank horridous smell peculiar to hemi-halae, when their foliage is bruised, and *T. phusaeus* has the same sort of greasy pubescence. The plants hardly seem worth cultivating in northern greenhouses. When they were new to cultivation they were supposed to be biennial herbs, but Bentham and Hooker call them shrubs. Franceschi writes: "*T. lucida* acts like an annual in southern California. It is rather pretty but weedy. It seeds freely. Seems to prefer half shade. The smell of the foliage is very objectionable."

Generic characters: caulis deeply 5-angled; corolla-tube cylindrical; lobes 5, rounded, subequal; stamens 5, disynamous, included; anther-cells parallel, distinct: ovules numerous in each locale: berries subglobose, indehiscent.

W. M.

TELANTHERA (name refers to the fact that all ten parts of the staminal cup are equally developed). *Amaraeae*. ALTERNANTHERA. Apparently all the Alternantheras used by gardeners as bedding plants belong to the genus *Telanthera*, which is distinguished from the true genus Alternanthera by having 5 anther-bearing stamens and 5 elongated antherless staminodia united into a cup or tube. In Alternanthera the tube is short or almost absent, the anther-bearing stamens sometimes less than 5, and the staminodia short or none. Of Telantheras there are 40 to 50 species, mostly herbs, in tropical America and one in western Africa. The leaves are entire, ovate to elongated, opposite: fls. small, usually in dense heads in the axis, white or sometimes colored, perfect, each subtended by 2 bractlets.

The Alternantheras of gardeners are much used in carpet-bedding and for ribbon-borderers, because of their low, compact growth, the bright colors of the foliage, which holds its character throughout the season, and the ease with which they withstand shearing. They are usually kept within six inches of the ground. They are tender to frost, and grow best in warm sunny places. The flowers are inconspicuous and of no account to the gardener. They comprise the stock plants for the foundation work in carpet-bedding.

The plants are propagated by cuttings or division. In either case, they must be carried over winter in the greenhouse or in hotbeds, preferably in the houses at the North. The plants should be kept at 60° or 65° during winter, and rather dry to hold them more or less dormant. Place them where they will receive only enough light to keep them healthy. (1) Cuttings are usually made in August from strong plants growing in the open. The cuttings can be struck in shallow flats and then wintered in these flats without transplanting. The cuttings should be well established before winter sets in, else they will remain weak. In March or April they may be potted off, preparatory to using them in the open. (2) Division is usually preferred by gardeners who have much bedding to do. The plants are lifted after the first frost, cut back to three or four inches long, and planted in flats. In March or April, the plants are divided and the parts (with the old roots shortened) are potted or transplanted to other flats. However grown, the plants should have four to six weeks in a hotbed if possible, before they are placed in the open ground. Even in the warm greenhouse they usually make slow growth in March and April.

The botanical status of the garden Alternantheras is imperfectly understood, and the garden needs careful study from living plants. Various garden names cannot be accounted for at present. The common garden Alternantheras appear to have issued from the three following Brazilian species.

A. **Lvs. essentially lanceolate or elliptic.**

amexa, Regel. Fig. 2478. Very dwarf: lvs. long-lanceolate or oblong-lanceolate, sometimes elliptic, acuminate, very short-petioled, the under color mostly green but veined and blotched with red and orange; fl.-heads sessile, single, in pairs or 3's, and terminal. I. H. 12:1417; 15:558.—To this apparently belong the garden names *amexa*, *spectabilis*, *sessilis*, *rosen*. Reinhart.

ann. Lvs. essentially apatulate.

Bettzichiana, Regel. (Alternanthera paronychioides, Hort.). Fig. 2478a. Lvs. narrow, spatulate, gradually narrowed into a long petiole, orange-red shaded with green; fl.-heads sessile, single, in pairs or 3's, terminal and axillary. I. H. 12:445.—To this species appear to belong the garden names *picta*, *triplicata*, *aurora*, *aurora nana compacta*, *paronychioides*, *versicolor aurea* and *p. major Kuntzii*, *magmatica*.

versicolor, Regel. Fig. 2478c. Usuately becoming taller, much branched, and apparently less used for carpet-bedding than the others; lvs. round-spatulate, narrowed into a short petiole, the colors mostly in shades of copper-red or blood-red, with patches of green between the veins: fl.-heads sessile, single or in pairs. I. H. 12:1416.—*T. ficoidea* is probably to be referred here.

L. H. B.

2478. Spray of Telanthera amexa; also leaf outlines of (a) *T. amexa*, (b) *Bettzichiana*, (c) *T. versicolor*.

TELEGRAF PLANT. *Desmodium ganu*. **TELEKIA** is referred to *Buphthalum*. *T. speciosa* in *H. spectabilis*.
TELFAIREA (Charles Telfair, 1778-1833, Irish botanist; died in Mauritius.). *Cucurbitidae.* Telfairea is an annual growing from tropical Africa, with digitate leaves, large, purple-fringed flowers of curious appearance, and huge gourds which sometimes weigh as much as 60 pounds and contain 100 to 200 edible seeds. It has been cultivated in English gardens as a single shoot attaining a length of 56 ft. in a year or so. The male and female fls. are borne on separate plants. The species is too rampant for the ordinary conservatory. It was introduced into southern California in 1909, presumably for its economic interest. The seeds are roundish, about an inch across, and the kernels are sweet to the taste, and are said to be as good as almonds. The negroes of tropical Africa boil and eat them. These seeds also yield an abundance of oil which has been said to be equal to olive oil.

The fruit becomes 1½-3 ft. long and 6 in. wide. It is oblong in shape, has 10-12 deep furrows and is always green. Both male and female fls. are 5-lobed, copiously fringed and purple in color, the females somewhat brownish, with a circular green throat, while the males have a 5-pointed star of green in the middle. The male fls. are about 2 in. across, females 4 in. across, with an ovary 2 in. long. The foliage has an unpleasant smell when bruised.

Telfairea is a genus of only 2 species, both tropical African, and very much alike. The two species are distinguished by the venation of the ivy, *T. pedata,* which is pinnate, while *T. occidentalis* has 3 nerves originating near the base of the leaf. Generic characters: male fls. in racemes; corolla rotate; stamens 3; ovary 3-celled; female fls. solitary: ovary 3-5-celled; ovules in one series on the innermost septa: seeds fimbriate-coated. See Cogniaux, D.U. Mon. Phaner. Vol. 3, p. 349.

pedata, Hook. Root stout, fleshy; stem perennial, 2½ ft. long, long-stalked, 1½-2½ ft. in long, long-toothed; fls. and fr. described above. Zanzibar. B.M. 1861 (*Fennelia pedata*) 2750, 2752. W. M.

TELLIMA (anagram of Mitella). Saxifragaceae. Tellima is a genus of 8 species of perennial herbs which are the western representatives of the Bishop's Cap or Mitella familiar to lovers of wild flowers in the East. They have tuberous rootstocks. Most of their fls. are from the roots. Strong plants send up numerous stems one or two feet high, bearing racemes of small white, pink or red flowers. They are choice subjects for wild gardening, being valued for their tufted habit, pretty fls., and for the airy grace of their inflorescence. On close inspection the fls. are seen to be beautifully fringed or fringed in their niter. *Tellima grandiflora* is the largest Tellima, and is probably the most desirable species. It is practically the only kind known to European gardeners. It has one-sided racemes about 6 in. long, containing as many as sixty fls., each a quarter of an inch across or more. It blooms in early spring and the fls. change from greenish to pink or red. It is not as showy a plant as *Hexchera saracenica.* Tellimas are supposed to be hardy in the eastern states. They require dense shade. A few kinds have been offered by specialists in native plants and are obtainable from western collectors. The plants are called "Star Flowers" in California.

Tellima differs from Mitella mainly in the capsule, which is 2-beaked in Tellima, not beaked in Mitella. Calyx bell-shaped or top-shaped; petals inserted in the same plane, with 2 or 3 extensions; the others 4-lobed, sometimes entire; stamens 10; ovary 1-lobed: seeds numerous.

A. Petals pinnately cut into long, thread-like segments.

b. Fls. not fragrant.

br. Fls. fragrant.

odorata, Howell. Height 1-2 ft.: fls. broadly coriaceous, oblong lobed and crenately toothed: fls. red. Wet places near Columbia river.

TEMPLETONIA. See Conservatory and Greenhouse.

TELopea (Greek; seen at a distance). Proteaceae. *Telopea speciosissima* is one of the showiest shrubs of New South Wales. It grows 6-8 ft. high and has dense terminal globular heads of rich crimson. These heads consist of 2 or 3 in. across and 3 or 4 in. deep and bear a rough resemblance to a florist's chrysanthemum. The showiest parts, however, are involucral bracts. This plant is known as the Waratah. It is one of the most distinct and beautiful wild plants of Australia, and has been introduced to the United States.

The flowers are said to have been seen near the coast of Queensland, but it is not known whether they are to be had in cultivation. It is a very showy plant, and is very desirable for greenhouse and garden culture. It has been cultivated under the name *Tulipanum.*

AA. Petals pinnately 3-7-parted.

parviflora, Hook. Height ½-1½ ft.: radical fls. mostly 3-5-parted or divided, the divisions narrowly cuneate or ovate. The fls. are borne in racemes once or twice 3-flowered or more, about 2 in. long and narrow, sometimes white; petals with a slender claw, the limb pinnately 3-7-parted. Brit. Col. to Utah and Colo.

TELopea (Greek; seen at a distance). Proteaceae. *Telopea speciosissima* is one of the showiest shrubs of New South Wales. It grows 6-8 ft. high and has dense terminal globular heads of rich crimson. These heads consist of 2 or 3 in. across and 3 or 4 in. deep and bear a rough resemblance to a florist's chrysanthemum. The showiest parts, however, are involucral bracts. This plant is known as the Waratah. It is one of the most distinct and beautiful wild plants of Australia, and has been introduced to the United States.

The flowers are said to have been seen near the coast of Queensland, but it is not known whether they are to be had in cultivation. It is a very showy plant, and is very desirable for greenhouse and garden culture. It has been cultivated under the name *Tulipanum.*

TELEGRAPHIA (J. Templeton, botanist of Belfast. early part of nineteenth century). Leguminosae. The CORAL BEAK of Australia, *Templetonia retusa,* is a tall shrub with showy scarlet fls. 1½-1½ in. long. The flower presents a very different appearance from the papilionaceous or sweet pea type, the floral parts being all rather narrow and about the same length, with the standard strongly reflexed. This plant was formerly cult. in European greenhouses, where it generally flowered in April or May. It was usually planted in the greenhouse border rather than in pots and was thought to prefer a compost of peat and loam. It was slowly propagated by cuttings and went out of fashion along with Australian shrubs in general. It has lately been ordered for outdoor culture in southern California, where many choice plants of its class are being cultivated. *T. retusa* is probably the most desirable species of the genus.

Generic characters: shrubs or subshrubs: lvs. when present alternate, simple, entire; fls. axillary, solitary or 2 or 3 together, red or yellow: standard orbicular or oblongate, usually reflexed; wings narrow: keel as long as the standard or shorter; stamens all united in a
TENNESSEE is in the area Records particularly fruits. It is the proper some The these taken of valley adapted to the 2.000 tons of soils above the horticulture. The most important cultivated varieties. Wild grapes abound throughout the state. Plums are also found in profusion; and the Wild Goose variety is said to have originated in Tennessee. Other wild fruits are dewberries, cherries, crab apples, Juneberries, pawpaws, persimmons, and huckleberries. Of the nuts, chestnuts are most plentiful, especially in the billy and mountainous sections. The chinkapin flourishes in East Tennessee. Black walnuts are exceedingly numerous. Pinon thrive in the low sections, Hazelnuts, and butternut or white walnuts, are also plentiful.

Some of the native seedling fruits are highly valued. This is especially true of apples, peaches and strawberries. Many well-known varieties introduced from other states are not satisfactory. As a rule, the introduced kinds are not so well adapted to the climate and soils as those of local origin. This fact is becoming

The Unaka region, on the eastern border, contains about 2,000 square miles. Some of the peaks are over 6,000 feet above sea-level, and the average elevation is 3,600 feet. The soils are gravelly and thin, but contains areas that are fairly productive. Apples are grown to a limited extent.

The valley of East Tennessee is the next division. It contains 9,300 square miles and an average elevation of 1,000 feet. The soils are generally well adapted to fruits. Records taken at Knoxville during a period of twenty-six years show an average annual rainfall of 59.92 inches.

A thousand feet above the valley of East Tennessee lies the Cumberland Tableland, containing 5,100 square miles. This section for the most part is sterile, the soils being sandy and thin. There are, however, areas of land which produce fruits and vegetables of the highest quality. The climate is particularly healthful.

West of the Cumberland Tableland are the Ridge South Highland, which has an area of 9,300 square miles and an average elevation of nearly 1,000 feet. This territory possesses a great variety of soils, some of which are highly fertile and well suited to orcharding. Numerous streams cut the land into valleys, which are generally deep and narrow.

The Central Basin, in which Nashville is situated, contains 6,450 square miles, with average elevations of 200-300 feet above the general level. The soil is fertile and well adapted to small fruits and vegetables. The average annual rainfall at Nashville is 49.35 inches.

The next natural division is the valley of the Tennessee river. It has an elevation of about 300 feet and an area of 1,200 square miles.

The Plateau, or Slope, of West Tennessee is the most important horticultural region commercially in the state. It contains 8,500 square miles and has an average elevation of 300 feet. The soils are generally light, four years usually cultivated, and demand careful treatment to prevent serious damage by washing.

The last natural division, the Mississippi bottoms, has an area of 320 square miles and an average elevation of 200 feet. It is used for for horticultural purposes.

The possibilities of Tennessee for the cultivation of fruits and nuts are evidenced by the profusion of these products in a wild state. Wild strawberries are found throughout the state. Blackberries thrive everywhere. In favorable localities they attain a very large size, surpassing in this respect some of the cultivated varieties. Wild blackberries are found in large quantities in many sections. Red and black raspberries grow in most parts of the state; and in some sections the best of the wild blackberries when transplanted to the garden, give better results than any of the cultivated varieties. Wild grapes abound throughout the state. Plums are also found in profusion; and the Wild Goose variety is said to have originated in Tennessee. Other wild fruits are dewberries, cherries, crab apples, Juneberries, pawpaws, persimmons, and huckleberries. Of the nuts, chestnuts are most plentiful, especially in the billy and mountainous sections. The chinkapin flourishes in East Tennessee. Black walnuts are exceedingly numerous. Pinen thrive in the low sections, Hazelnuts, and butternut or white walnuts, are also plentiful.

Some of the native seedling fruits are highly valued. This is especially true of apples, peaches and strawberries. Many well-known varieties introduced from other states are not satisfactory. As a rule, the introduced kinds are not so well adapted to the climate and soils as those of local origin. This fact is becoming

The Unaka region, on the eastern border, contains about 2,000 square miles. Some of the peaks are over 6,000 feet above sea-level, and the average elevation is 3,600 feet. The soils are gravelly and thin, but contains areas that are fairly productive. Apples are grown to a limited extent.

The valley of East Tennessee is the next division. It contains 9,300 square miles and an average elevation of 1,000 feet. The soils are generally well adapted to fruits. Records taken at Knoxville during a period of twenty-six years show an average annual rainfall of 59.92 inches.

A thousand feet above the valley of East Tennessee lies the Cumberland Tableland, containing 5,100 square miles. This section for the most part is sterile, the soils being sandy and thin. There are, however, areas of land which produce fruits and vegetables of the highest quality. The climate is particularly healthful.

West of the Cumberland Tableland are the Ridge South Highland, which has an area of 9,300 square miles and an average elevation of nearly 1,000 feet. This territory possesses a great variety of soils, some of which are highly fertile and well suited to orcharding. Numerous streams cut the land into valleys, which are generally deep and narrow.

The Central Basin, in which Nashville is situated, contains 6,450 square miles, with average elevations of 200-300 feet above the general level. The soil is fertile and well adapted to small fruits and vegetables. The average annual rainfall at Nashville is 49.35 inches.

The next natural division is the valley of the Tennessee river. It has an elevation of about 300 feet and an area of 1,200 square miles.

The Plateau, or Slope, of West Tennessee is the most important horticultural region commercially in the state. It contains 8,500 square miles and has an average elevation of 300 feet. The soils are generally light, four years usually cultivated, and demand careful treatment to prevent serious damage by washing.

The last natural division, the Mississippi bottoms, has an area of 320 square miles and an average elevation of 200 feet. It is used for for horticultural purposes.

The possibilities of Tennessee for the cultivation of fruits and nuts are evidenced by the profusion of these products in a wild state. Wild strawberries are found throughout the state. Blackberries thrive everywhere. In favorable localities they attain a very large size, surpassing in this respect some of the cultivated varieties. Wild blackberries are found in large quantities in many sections. Red and black raspberries grow in most parts of the state; and in some sections the best of the wild blackberries when transplanted to the garden, give better results than any of the cultivated varieties. Wild grapes abound throughout the state. Plums are also found in profusion; and the Wild Goose variety is said to have originated in Tennessee. Other wild fruits are dewberries, cherries, crab apples, Juneberries, pawpaws, persimmons, and huckleberries. Of the nuts, chestnuts are most plentiful, especially in the billy and mountainous sections. The chinkapin flourishes in East Tennessee. Black walnuts are exceedingly numerous. Pinon thrive in the low sections, Hazelnuts, and butternut or white walnuts, are also plentiful.

Some of the native seedling fruits are highly valued. This is especially true of apples, peaches and strawberries. Many well-known varieties introduced from other states are not satisfactory. As a rule, the introduced kinds are not so well adapted to the climate and soils as those of local origin. This fact is becoming
tion: English walnuts, paper-shell pecans, Paragen chestnuts, and Japanese persimmons grafted on the common persimmon.

R. L. WATTS.

TEN-O'CLOCK. Orthogalum umbellatum.

TEN-WEEKS STOCK. Matthiola incana, var. annua.

TEOSINTE is an annual grass of immense value for forage in the South. It is very much like maize in general appearance and in the structure of the flowers, but differs in not forming an ear, the slender jointed spikes being free from one another. By many botanists it is considered the original form of maize. It is known to catalogues as Zea mexicana, Dur., but is properly Euchloa Mexicana, Schrad., for the botany of which see B.M. 6414, where the plant is called Euchloa luxurians. The plant is pictured in Bull. 14, Div. of Agrost., U. S. Dept. of Agric., and in Farmers' Bulletin No. 102, from which a few points are here abstracted.

Teosinte probably produces a greater bulk of fodder per acre than any other grass. At the Louisiana Experiment Station it yielded the enormous amount of 59 tons of green forage per acre; this crop was sold in the field to dairymen for $3.50 a ton. The plant grows 8-12 ft. high, and tillers freely, sending up 29-50 stalks from the base. One hundred and twenty stalks from one seed have been recorded. It may be cut several times during the season, but nearly as good results will be obtained from a single cutting made before there is any frost. The stalks are tender and there is no waste in the fodder when dry or green. One pound of seed to the acre, planted in drills 3 ft. apart and thinned to a foot apart in the drill, is recommended. Teosinte is a native of the warmer portions of Mexico and Central America. The seed rarely matures north of southern Florida.

F. LAMSON SCRIBNER.

TEPHROSI A (Greek, tephros, ash-colored, hoary; referring to the foliage). Leguminosae. Tephrosia Virginiana is a hardy perennial herb which grows 1-2 ft. high, has many narrow, ash gray leaflets and flowers about as large as sweet peas, velvety white, marked with purple. The plant grows in dry sandy soil over a wide range in the U. S. and blossoms in June. The racemes and flowers may contain 50 to 100 flowers, each ½-3 in. across. This species is offered by collectors of native plants. In spite of the large size of the flowers, the species is not likely to become a garden favorite, as the colors are somber and the flowers are more or less hidden amid the foliage. In some English works this plant is sometimes rated as half-hardy.

A much showier species is T. macrantha, a Mexican shrub 6-10 ft. high, which bears its large purple and white flowers to the number of 60 in a diffuse panicle about a foot long. It was collected by C. G. Pringale, but it is doubtful whether the plant is in cultivation. It would be a handsome addition to southern shrubberies.

TERATOLOGY: that part of the biological sciences which deals with and the phenomena of the whole body or any of its organs. These, by comparison with the normal forms, are called malformations or monstrosities. Malformations among plants are due to a disturbance of the ordinary course of the growth and development of the organisms. Such a derangement of function may be looked upon as disease. The malformation may be occasioned by merely local disease, or it may be a symptom of general disease. Malformations may be brought about by: (a) the direct influence of external physical conditions; (b) by the action or presence of some other organism—plant or animal; (c) by the operation of unknown internal causes. The experimental study of the causes of malformations is yet in its infancy, and in only a few cases can specific explanations of their origin be given. Having once occurred, malformations may be inherited and the form, at first unusual, may be fixed by selection and become characteristic of a race. Thus the cockscomb (Celosia cristata) shows a hereditary and fixed fasciation; and double flowers are so common as hardly to be esteemed malformations.

The distinction between malformation and variation is very indefinite. On the one hand, the various forms of root, stem, leaf and flower in cultivated plants are extraordinary as compared with the wild types from which they were derived, but having diverged from the type by relatively small increments, they are not looked upon as monstrosities.

Suddenness of appearance, therefore, is one of the criteria of malformation. Even with this criterion it is quite impossible to distinguish variations of the plant kingdom from malformations of the animal kingdom as we know it today. In all instances of malformations, in which they can be studied, there is a sudden change in the development of the embryo, or in which the development is arrested at an earlier stage than in the normal species. The phenomena which are associated with malformations in the plant kingdom are: (1) a sudden appearance, increasing in frequency; (2) these phenomena do not occur in the progeny of normal parents; and (3) unexplained.
mon on conifers (especially Abies) and some deciduous trees. Similar deformations are sometimes due to insect agency, or to unknown causes. For example, a simple inflorescence may develop flower-clusters instead of the simple flowers, e.g., in the common plantain.

3. Proliferation is continued growth of the axis or the development of a branch from growing points which usually either do not form or remain dormant. For example, the growing point of the axis is usually obliterated in the formation of the pistil, but in the blackberry it frequently continues its growth through the flower and may even become a leafy shoot beyond the fruit. Proliferation may also occur by the continued growth of the axis through a compact flower-cluster, like the head of Compositae; or by the development of branches in the axis of the petals and sepals, e.g., in cauliflower, or the rose shown in Fig. 2182. Some double flowers are made "extra double" by this sort of proliferation. Proliferous embryos have been found in the anther, a smaller embryo lying between the seed-leaves of the larger, and sometimes a third within the second. They are quite separate at maturity. When proliferous branches show a tendency to separate easily and to develop roots, or when they become bulb-like, so that they reproduce the plant readily when separated, the plant is said to be viviparous.

4. By various causes complete non-development of organs (suppression) may occur; or an organ may be arrested at any stage of its growth or be dwarfed. Correspondingly, extraordinary growth of any part (hypertrophy) is common. The pear, apple area-strow, or the rose shown in Fig. 2182. Some double flowers are made "extra double" by this sort of proliferation. Proliferous embryos have been found in the anther, a smaller embryo lying between the seed-leaves of the larger, and sometimes a third within the second. They are quite separate at maturity. When proliferous branches show a tendency to separate easily and to develop roots, or when they become bulb-like, so that they reproduce the plant readily when separated, the plant is said to be viviparous.

II. Alteration of Form, involving no considerable change in nature or function of the organs.

1. Fasciation in stems (Fig. 2183) produces a broadened and fluted form, often curved in crozoner-like fashion. The apex is furnished with several buds (rarely only one), and the arrangement of the leaves is quite anomalous. Fasciation is especially common in rapidly growing stems when an abundant supply of both water and food is available. Asparagus, dandelion and sucker shoots arising from trees after topping or severe pruning, frequently furnish examples. Although the fasciated stem seems to have been formed by the early union of several stems, this is rarely the case; rather the growing apex develops extraordinarily in one (transverse) dimension or organizes several buds which grow in unison.

3. Longitudinal growth in stem parts which normally remain short leads to the unusual separation of the leaves. This is especially noticeable when the floral leaves become thereby more or less widely separated. This is likely to be accompanied by transformation of the floral into green leaves, and sometimes by proliferation.

3. Unequal growth lengthwise produces apparently twisted stems, with irregular displacement of the leaves. Such displacement is especially noticeable when it affects whorled leaves, the whorls being stretched out into irregular spirals. Unequal growth in two dimensions by the tissues of a leaf produces the "curly" or crispat leaves, characteristic of many cultivated plants. Fig. 1207, Vol. 2.

4. Local deformities, such as swellings, tubercles and galls of various forms, are usually due directly to the presence of a plant or animal parasite. Fungi, either inhabiting the particular region deformed, or more widely spread through the plant and forming reproductive bodies at the seat of the swelling, occasion excessive growth of some or all of the tissues. The "black-knot" on cherry and plum trees, the "plum pockets," the tubercles on the roots of cipers, peas and their kin, are a few out of the hosts of deformities of this kind, due to plant parasites, and known by various names. Many insects, either in the course of feeding on plant juices, or by laying eggs on or in plants, or by reason of the temporary occupation of the part by the larval insect, bring about the formation of galls of various kinds on leaves, stem, or roots. The malformations produced are of the most varied shapes. Sometimes they are merely the production of an unusual number of hairs of special form; sometimes a leaf bulges out at one spot to form a deep pocket or pouch; sometimes the blade of a leaf is rolled or folded, with or without thickening; all degrees of thickening or outgrowths are produced, from a slight tumor to a perfectly globular apple-gall or even a cylindrical tube-gall; sometimes a bud has the number of its scales greatly increased to form a one-like gall; or a flower is distorted until its nature is almost unrecognizable. The variety of form is almost as various as the insects and plants concerned. Indeed, the same insect at different stages of its development may produce galls of different sorts on the same plant. All orders of true insects except the Orthoptera and Neuroptera may produce galls, but by far the larger number are due to the gall-flies and saw-flies of the order Hymenoptera. The gall-apples of the oak, the prickly galls of the rose, the irregular brown swellings on canes of the blackberry, and the smooth gall-apples of the willow leaves and twigs are well-
known examples. The gall-gnats among the true flies (Diptera) also produce a large variety of malformations, of which the cone-like galls resulting from deformed buds of the willow and the goldenrod are best known. Plant lice (Aphides) are responsible for the large smooth red galls on the petiole of sumac, and for the flattened serrated galls on elm leaves. The fusiform galls on stem of goldenrod and asters is caused by the larva of a moth. In addition to true insects, the mites produce almost as great a variety of galls, pouch-galls and leaf-rolling being especially conspicuous. The cause of these deformities is sometimes the chemical stimulus produced by the injection of substances ("poisons") at the time of egg-laying by the parent, in which case the gall develops around the egg; sometimes it is the mechanical stimulus due to movements of the larva, together with the chemical stimulus from its various excretions, in which case the gall develops after the hatching of the egg.

5. Branching of leaves is not infrequent, and its cause is unknown. "Four-leaved" clovers offer well-known examples, and the normal number of leaflets is often increased to six or even more. Fig. 2484 illustrates leaf-branched dahlia. Branching in the plane of flattening, both in foliage leaves and petals, has also been observed, and the branch described as an "outgrowth."

6. Peloria. When usually irregular flowers, such as those with some spurred or saccate petals or sepals, develop all the parts of each set alike, thus becoming radially symmetrical, the phenomenon is called peloria. It was first observed by Linnaeus in Linaria vulgaris, Fig. 2485, and the term peloria, derived from the Greek word for monster, was given by him. Flowers often become peloric on account of changes in their relations to light, but other causes certainly cooperate. A reverse change, by which radial flowers become syzygomorphic, occurs in many Composite when the corollas of disk florets become strap-shaped, as in the cultivated asters and chrysanthemums, but no notice seems to have been taken of it as a malformation. Sometimes all spurs fail to develop. Figs. 2486-7.

III. Transformation of Organs: i.e., alterations more profound than those of form, which result in the production of organs different from those which normally occupy the position; often called metamorphosis. (The term substitution would be preferable at present, because non-committal as to processes and causes.) It is common to speak of progressive and retrogressive metamorphosis, but these terms involve assumptions as to the origin of foliage leaves and floral parts which are not justifiable in the present state of knowledge. Transformations occur chiefly in the region of the flower, though they are not found exclusively there. Examples are to be found in the development of leaves or leaflets as tendrils (Fig. 504); of sepals as petals; and of petals as stamens or pistils. These transformations are usually more or less imperfect. On the other hand, the pistils and stamens often develop as petals (Fig. 367), and the many double flowers owe their fulness chiefly to such transformations, though other changes may cooperate as noted above. Fig. 2488. Petals may develop as sepals, bracts, or even imperfect foliage leaves, while sepals and bracts frequently become foil.
ose. Indeed, all parts of the flower, even to the orules, may appear as green leaves of more or less irregular shapes. To this category belong the so-called green roses, which are not uncommon.

IV. CONSCIOUSNESS. The actual unison of parts may take place in the course of their development, though usually the apparent unions are to be explained quite otherwise (see Flower, p. 392), also Fig. 749 (after Dudley).

The above include only the more common malformations, but on account of the extreme senility of plants to their environment and their great plasticity, all kinds of strange and curious deformities are possible. Malformations have little or no significance in elucidating the obscure problems connected with the historical origins of organs, or with their homologies, though many arguments, more ingenious than sound, have been based upon them.

The most important general works are the following: Moquin-Tandon, "Eléments de tératologie végétale," Paris, 1841; Masters, "Vegetable Teratology," London, 1869; Penzig, "Pflanzen-teratologie," Genoa, 1895-4; and in the latter the whole literature to date is cited. CHARLES REED BARNES.

TEREBITH N

TREE. See Pistacia Terebinthus.

TERMINALIA (alluding to the leaves being borne on the terminus of the shoot). Combréccoli. Nearly 100 trees or shrubs, with mostly opposite leaves which are sometimes crowded at the tops of the branches, giving them a whorled appearance. The flowers are small and sessile, mostly green or white, borne mostly in long spikes, perfect or polygamo-dioecious; petals none; calyx tubular and constricted above the ovary, the upper part urn-shaped or bell-shaped and 5-lobed; stamens 10, in 2 series; ovary 1, with a long style, 1-located. The fruit is a compressed winged nut-like body containing a large and often edible seed. Terminalia is a tropical plant, chiefy of the Old World. One of them, T. Catappa, is widely cultivated in tropical countries. Two other names have appeared in the American trade: T. elegans, which is Polyxenes procincta; and T. elliottii, which is unknown to the writer and which is very likely to belong to some other genus.

Catappa, Linnaeus. Tropical Almond, Dem-

bark Almond. Myrobalan. Fig. 7490. Tall deciduous tree (sometimes 80 ft.), with leaves and branches in horizontal whorls or layers: lvs. broadly obovate-obtuse, the narrow base slightly surdose or cordate, simple and entire, very shining, 6-9 in a cluster, 5-9 in another.

2487. Normal coneflower, with spurs present.

2488. Transformation of organs in a tulip flower.

TESTUDINARIA. (name explained below). Dioscorides.

TESTUDINARIA (name explained below). Dioscorides. The Hottentot's Bake, Tortoise Plant or Elephant's Foot, is a curious South African plant with a great globular yam-like bulb or rootstock which sometimes attains a diameter of 1 ft. and a weight of a hundred pounds. Half of this rootstock lies above ground and looks something like the back of a tortoise, whence the generic name Testudinaria. The popular name "Elephant's Foot" refers to the uneven and maw-
sive appearance of the same thing. From the top of
the rootstock grows a twining vine which attains a
height of 8-10 ft., flowers from July to Nov., and dies
down each season. The plant twines by means of the
roots and gives rise to a tuft of short, reddish, flower-
tips of the slender branches. It is a weak-looking
plant, a tender annual, which should never be allowed
to become potbound, as this will immediately bring
them into flower and fruit and thus stunt their further
growth, as well as greatly shorten their period of pro-
ductiveness. Well-grown plants should be ready for
use by June 1 and, if they continue vigorous, nearly a
peck of greens can be gathered from each plant once a
week until heavy autumn frosts. These will be large
enough for use toward the end of June. Annual crops
are thus grown on the same ground several successive
seasons with no care except removing old plants and
keeping the new ones free from weeds.

For the forcing house crop, seed should be sown
during July in seed-beds where the plants remain un-
til the latter part of September, when they should be
taken directly to the benches and will be ready for use early
in November. It is best to set the plants about 18 in.
apart in benches at least 6 in. deep. No further atten-
tion is necessary except to give plenty of water, and
under good conditions a peck of greens will be produced
once a week on 4 square feet. November to May
inclusive. A crop may also be grown beneath the
benches near the walks, as well as in the grogory bor-
ders. Space that cannot be used for other purposes
may thus be utilized to very good advantage, though
they will not produce as abundantly.

This crop may also be grown in houses with portable
roofs by starting the plants during summer in houses
with the roofs removed, the roofs being replaced on
the approach of cold weather. The plants will con-
tinue producing the entire winter and, following spring,
when they should be uncovered and will reproduce
themselves in the same manner as the summer crop.

H. C. Inrsu.
TETRAMICRA

Greek words, referring to the "four small divisions of the author." *Orchidaceae.* A genus of small terrestrial or epiphytic herbs of slender habit bearing racemes with few pretty fls., produced in spring. The erect stems, which are not pseudobulbous, grow from a rhizome and are slender and a slender but rigid, terminal raceme; sepals and petals nearly equal, spreading; labellum joined to the base of the column; lateral lobes small, spreading or semi-cylindric, middle lobe large, entire, contracted at base, column with 2 wide wings; pollinia 4 perfect and 2 imperfect. Six species in Brazil and West Indies. C. for Legis (p. 872).

bicolor, Ralfs (Leptotes bicolor, Lindl.). Lvs. solitary on the short stem, semi-cylindrical, with a furrow in front, 3-4 in. long; raceme few-fl., shorter than the lvs.: sepals and petals white, linear-incurved, over 1 in. long; lateral lobes of the lip small, folding over the column; terminal lobe oblong-lanceolate, bright rose, with white tip and margins. A pretty plant. B.R. 19:1735. A. F. 6:653. Var. glaucophylla, Hook. Lvs. glaucous. B.M. 3754.

HENRICH HASSELBRING.

TETRANEMA (name refers to the four stamens). *Scrophulariaceae.* A single little Mexican perennial herb, with many nodding purplish flowers crowded on the tops of radical scapes, and grown under glass in indoor nurseries. True stem very short, almost none; lvs. crowded at the crown or opposite on the very short stem, obovate or oblong-obovate, shallowly crenate-dentate; fls. purple or violet spotted with lighter color in the throat; calyx 5-parted, the segments narrow and acute; corolla long-tubular, 2-lipped, the upper lip emarginate, the lower longer and 3-lobed; stamens 4; stigma capitate; fr. a 2-valved capsule. *T. Mexicanum.* Lvs. with the only species, known as "Mexican Foxglove" and formerly as *Pentstemon Mexicanus.* The pretty flowers are borne in profusion on the summits of slender purple scapes 6-8 in. high. Although essentially a summer bloomer, with good care it may be made to flower most of the year. It is usually regarded as a houseplant, but it makes a good window plant and is easy to grow. Plants continue to bloom year after year. Prop. by seeds.

L. H. B.

TETRATHECA (Greek, 4-celled; referring to authors). *Tremandraceae.* T. ericifolia is a beach-like Australian shrub which grows about a foot high and bears in July numerous 4- or 5-petaled pink fls., which open only in sunlight. The fls. are borne on slender pedicles which are solitary in the axils. This plant is cult. in S. Calif., having been introduced about 1860 by Mrs. T. B. Shepherd, who recommends it both for outdoor culture and for pot culture in the greenhouse, and says that the pink fls. are pink or white, ½-¾ in. across.

Tetrapheca is the largest genus of the family Tremandraceae, of which a short account is given under *Plaghoea.* It is an Australian genus of subshrubs or trees. Eleven species are differentiated in Flora Australiensis 1:129 (1863). They vary greatly in foliage, the lvs. being alternate, whorled or scattered, heart-like and entire, or flat and toothed, or reduced to minute scales. Genetic characters: stems apparently in a single series, the authors continuus with the filament, 2-celled, or 3-celled with 2 of the cells in front of the 2 others, more or less contracted into a tube at the top: capsule opening only at the edges: seeds appended.

In European greenhouses all the plants of this family are considered difficile or difficult. They are treated like many other Australian beach-like plants, being potted in fibrous peat and silver sand and watered carefully at all times. It is said that only soft rain or spray should be used. They are usually propagated by greenwood cuttings, but in California the seeds are offered.

ericifolia, Sm. This species is distinguished from its congeners by its lvs., which are mostly verticillate and sheathing. Heart-like, tender, creeping shrub, much branched and diffusely; sepals not reflexed: ovary with 2 superposed ovules in each locule or rarely a single ovule attached below the top of the locules. Very abundant about Port Jackson, N. S. Wales.

W. M.

TEUCHARIA (Teezer was the first king of Troy). *Labiatae.* Germanum, the hundred or twelve perennial herbs or undershrubs, mostly of the Old World, four of which are offered in the American trade. Lvs. opposite, entire or dentate: fls. mostly purple or pinkish, in whorls forming a terminal 4-fld. spike, calyx campanulate or tubular, more or less equally 5-toothed, 10-nerved; corolla with lower lip, and the upper lip very small or split, and in the leafy racemes of 4, or in 2 pairs, extended through the split or notch in the short upper lip. The Germanums are hardy herbs, with aromatic foliage, suitable for the wild garden or rockwork. They are little known botanically.

A. *Fls. in distinct 2-6-fld. whorls, forming a lax terminal inflorescence.*

Chamädrys, Linn. One to 2 ft. tall, from a decumbent base, branching, with age becoming woody below, pubescent or villous: lvs. ovate or oblong, petioled, incise-crenate, entire at the base, somewhat crenate beneath, the floral ones smaller and scarcely dentate: fls. bright rose, with red and white spots, ¾ in. long, rather showy, in many 2-6-fld. whorls. Europe.—A good border plant for late summer bloom.

AA. *Fls. solitary or not more than 3 at a whorl, forming a long terminal spike.*

Cannadkum, Linn. Erect, 1-3 ft. tall, soft-pubescent or crenate: lvs. oblong, with 1 lower lobe, lanceolate, sharp serrate: fls. purple to cream-color, the corolla about ½ in. long, the calyx crenate and the 3 upper lobes obtuse. Low ground, eastern states, from north to south. Offered by: 6 ft. 8 ½ ft. — Offered by: Millet & Hook. Useful for soil grounds and moist borders. In general habit resembles a Stachys.

AAA. *Fls. on opposite axillary 1-fld. peduncles.*

Chrobias, Linn. Shrubby, 2-3 ft., wide-branched: lvs. ovate, obtuse, entire, white or brown-pubescent beneath: fls. on 1-fld. peduncles which are shorter than the calyx, blue, forming terminal or lateral clusters. Europe.—Recommended for dry places. Has a long blooming season.

bicolor, Smith. Dwarf, herbaceous, glabrous: lvs. ovate, oblong or lanceolate, obtuse, entire or incised, green: fls. blue and white, on axillary 1-fld. peduncles. Chile.—Offered in S. Calif.

L. H. B.

TEXAS HORTICULTURE IN. Fig. 292. The climatic belts of the state are distinctly marked and extremely different in character one from another. They may be designated as follows:

1. The Gulf Coastal Plain.
2. The East-Texas Forest Region.
3. The Red River Valley.
4. The Black Waxy Prairies.
5. The Brown or Chalky Plains.
6. The Pecos Valley.

1. The Gulf Coastal Plain, extending out 50-75 miles from the Gulf of Mexico, varies in altitude from a few feet along the low sandy beach, to 50 and rarely 100 feet inland. Its surface in places is timbered with live-oak and pino, but mostly it is a level, black sandy prairie. The streams are bordered in southeastern Texas with timber and undergrowth of many species, including the grand magnolia, holly, palms and many other beautiful flowering trees, shrubs and perennial herbs. The rainfall in the southwestern extension of this belt is much less than in the eastern, where it averages above 50 inches annually. Climatic and cultural conditions vary accordingly. In trucking, celery, cabbage, strawberries, tomatoes and melons are the leading items. On the southern end of Padre Island, near Brownsville, lamas, oranges and pineapples are grown to some extent. Figs flourish everywhere in the coast country. The canned-fig industry is developing and promises to become very profitable. Strawberries grow to perfection, and similar varieties are marketed in considerable quantities. The Le Conte, Keiffer and Garber pears do better in this region than elsewhere. Some of the Chinese Ching group of peaches,
also the Honey and Pecan types, succeed well. Japanese plums, persimmons, and various American and foreign fruits succeed in the places required, those belonging to phylloxera-resistant roots, which are found in the numerous wild vines of the state.

Ornamental horticulture, in all its branches, is here characterized by a profusion and luxuriance of growth and foliage and flower of a semi-tropical nature. Ever-blooming roses continue to flower most of the winter. Broad-leaved evergreen trees and shrubs, known in the tropics, canory flowers, and others here seen in well-appointed private grounds and in parks and cemeteries. Cape jasmine hedges, with their dark glossy green leaves and golden yellow, sweet-smelling, perpetual flowers, are very popular. Commercial plant- and cut-flower growers do a good business in the cities of Galveston and Houston. During the winter holidays they collect from the woods great quantities of long ("Spanish") moss, holly, magnolia, mistletoe, palmetto, smilax, etc., and ship to northern cities for decoration purposes. In May and June they send to northern florists great numbers of cape jasmine and magnolia flowers.

2. The Great East Texas Forest Region lies just north of the eastern end of the Coastal Plain, the city of Bethesda, well-situated in the southern extremity. Extending westward from the Sabine river on the east to the Navasota river on the west, over 150 miles, and northward to Red river about 300 miles, narrowing somewhat at the mouth of the Sabine, is one of the grandest and richest forests in America. Three species of fine timber pines are most abundant. Numerous oaks, hickories, elms, maples, beeches, white and black walnuts, gums, poplars, pecans, lindens, magnolias, holly, persimmons, sassafras, and numerous handsome shrubs and perennial flowers are found almost everywhere, but especially along the streams. The soil is generally very sandy, underlaid with red and yellow clay, and well adapted to fruits of almost all kinds. The altitude varies from 100 to 600 feet. The rainfall is ample—from 40 to 60 inches annually—the climate is very mild, and altogether it is an almost ideal land in which to live easily and have a very paradise of a home, with a moderate activity of mind and body. Owing to the great lumber-mill interests, and lack of market facilities, nearly all horticultural pursuits have been overshadowed until recently. But at Palestine, Tyler, Troup, Longview, Nacogdoches and some other points, large commercial peach orchards, berry plantations and canneries have been in very successful operation for a number of years and these interests are rapidly increasing. Railroad facilities and trade are such that either East Texas has a very bright horticultural future. Trucking of nearly all kinds, and fruit-growing, with berries, peaches, plums, apples (especially in northern parts), and pears, continually find their way natural conditions. Until recently the settlers of this region were almost entirely from the older southern states and not very enterprising, yet very sociable, and their houses, yards and gardens are of the southern type. They earnestly desire enterprising, intelligent people from the North and East to take up their excellent, though cheap lands, and improve them.

3. The Red River Valley is a long extension to the westward—some 250 miles—of the soil, climatic and forest conditions of East Texas, excepting the pines, gums, and some other trees in its western parts. But, as the Red river runs eastward in a broad, deep, heavily timbered valley, its southern bluffs, some 5 to 10 miles wide, enjoy peculiar immunity from late frosts. It is by far the most rural and pastoral, bordering Arkansas, and peaches have not failed entirely in fruit during the twenty-five years of residence of the writer and family.

With the exception of a few of the tenderer shrubs, everything is grown here as well as in East Texas, and apples, grapes and some other fruits grow better and are of much finer color and flavor than in the air atmosphere. In this belt belong the cosmopolitan little cities of Texarkana, Paris, Sherman, Denison and Gainesville, in which are found many beautiful residences, magnificent homes, and delicious berry plantations. Railway facilities are excellent, and good markets lie in every direction. Trucking is also extensive. Cut-flower and general nursery business flourish. The pear appears to thrive everywhere, not at all clannish, but sociable and enterprising, with the northern types prevailing and northern ideas generally appear in the architecture and gardening, yet the fine samples of the southern style are not infrequent.

Similar conditions prevail in some parts of the Trinity River valley as along Red river, especially about Dallas and Fort Worth; a good part of the region is characteristic of the southern type. These three cities nestle in the heart of the next great division.

4. The Black Waxy Plains Region of Texas lies next to East Texas on the west and to the Red River Valley on the south, extending west to about 96° and south to within 150 to 100 miles of the Gulf, a broken irregular arm of the East Texas region extending southwardly between it and the Coastal Plain. This region has an altitude in its southern portions of 400 to 300 feet and rises in the northwest to 1,000 feet or more. The rainfall varies from 50 inches or more in its eastern parts to 30 inches in the western parts. The foundation is white, chalky lime-rock, the soil very black, sticky and exceedingly rich, highly adapted to fruits, grains, and pasturage, but not suitable for more fruits. The stone fruits and blackberries do best. Onions are largely grown in Collin county, of which Denison is the capital. Most sheep are raised.

The Bermuda grass flourishes in Texas wherever grass can grow and is the almost exclusive lawn-grass. Very handsome yards are made by some of the farmers and townswomen and towns and cities; and farmers in Texas have done little or nothing to beautify their homes horticulturally. Nowhere is this more apparent than in the Black Waxy Lands, the home being generally surrounded by corn-stooks, cotton-bins, and exposed farm machinery. There are splendid exceptions to these, demonstrating that very beautiful homes can be made even in the black lands of the state, where the richest general farming region exists.

5. The Brown, or Chocolate Plains Region of Texas, devoted principally to grazing and small grains, lies to the westward of the Black Land Region, about 200 miles wide by 600 long, extending from Oklahoma on the north to the Rio Grande on the south, running from 1,000 feet altitude on the south and east to 3,000 feet on the west, where it ends suddenly against the cliffs of the still higher Staked Plains Region.

Horticulture is in its infancy in all this vast semi-arid, high, rolling prairie country, and can do little without irrigation. Yet not unduly discouraging, and in a high degree growing, and when this region has been irrigated, the South Staked Plains will furnish beautiful grounds surrounding their homes, and grow their home supplies of very fine fruits. Of commercial horticulture there yet is none. The same may be said of the Staked Plains, but its soil, well adapted for irrigation, makes a country almost a dead level, except where canals have cut into it, its altitude from 3,500 to 4,500 feet, its climate dry and very saline, irrigation in a small way is sustained from driven wells, which strike plenty of water at 10 to 20 feet. Stock-grazing is the only commercial occupation. Five or six counties northwest from Austin, in the central parts of the Chocolate Belt, are very broken, hilly and picturesque, well adapted to fruits. Nearly every home here is supplied with fruits, but stock-grazing is the chief occupation.

6. The Pecos Valley lies just west of the Staked Plains, and east of a spur of the Rocky Mountains. In places it is irrigated, as at Roswell and Carlsbad, New Mexico, and Pocos City. Irrigation is considerable in this valley, especially at Roswell and Pecos City. At the latter place is a vineyard of 40 acres of the vinifera variety, plants doing finely or their own roots and very profitable, as the fruit goes to market in northern cities before any grapes are ripe in California. A vast mountain and desert land, a dry plains region extends from the Pecos to the Rio Grande, devoted to goats, sheep and cattle, yet at Ft. Davis, on a beautiful mesa, some 3,000 feet altitude, among mountains 2,000 to 4,000 feet higher, vines, peaches, grapes, and beautiful homes, and fruits do finely, as there is sufficient rain.
fall and the air is very pure, so that diseases are almost unknown.

7. The Rio Grande Valley is much warmer in the same latitude than the Pecos valley, otherwise the horticultural conditions are pretty much the same.

At El Paso and Ysleta, a little way south on the Texas side, considerable quantities of vinifera grapes of table varieties are grown under irrigation and shipped to other Texas and to northern cities in Aug and September. Pears and plums are also grown to some extent. Farther down on the Rio Grande, at Del Rio, Eagle Pass and Laredo, grapes, figs and onions are considerably grown and shipped to the larger Texas cities and the North. The grapes are of the Old World varieties, and ripen in June; consequently have no competition and bring fine prices. The conditions are such that immense quantities of these grapes of this class can be grown in this part of Texas as in the best regions of California, and the cost of getting to market is not more than half as much. Undoubtedly the triangular region between San Antonio, Laredo and Del Rio will in the near future have extensive commercial vineyards of vinifera grapes.

The Spanish taste in home grounds among the wealthy of southwestern Texas, who are chiefly stock-growers and merchants, prevails largely. It consists of a plaza, or open square in the center of the residence, having fountains (where water is to be had abundantly), and borders, beds and vases of rare tropical and subtropical flowers, shrubs and fruits. Around this highly artistic garden the house is built, often of adobe, sometimes of stone, cut and carved, in large rooms adjoining and opening into each other, all on the ground-door and one large door opening out to the street or small front yard from a big hall, sometimes having grand arches and marble columns. No windows are in the outside walls, except perhaps in the front, the rooms all being lighted from within the plaza. Thus great seclusion is secured and a perpetual conservatory scene is had from every room. Pavement walks, usually covered, run around the plaza next the rooms and similar walks cross through the plaza.

The plaza-park prevails also in the finer hotels, as seen in San Antonio; and these, on an enlarged scale at various places in the denser parts of the city, give a very refreshing appearance. In the central and western parts of the state the northern and eastern style of park, cemetery and private grounds decoration is mostly copied, as is also the architecture. Some very creditable examples are seen in Dallas, Waco, Austin, Paris, Sherman, Gainesville, Fort Worth and other places.

There are numerous small, and a few fair-sized nurseries scattered over the state, chiefly in the Red River Valley and eastern Texas, as at Houston, or near there, Brenham, Austin, Dallas, McKinney, Ft. Worth, Denison, Bonham, Paris, Tyler, Gainesville.

Plant and cut-flower business is developing rapidly in the larger cities.

Seed business is almost entirely commercial or jobbing, few being engaged in growing seeds of any kind as a business and the supply comes from northern and eastern growers.

The Texas State Horticultural Society, organized in 1883 or 1884, is in a flourishing condition and meets annually with the Texas State Farmers’ Congress, at College Station. There are several local horticultural societies in the state, and some 40 or 50 Fruit and Truck-Growers’ Associations for commercial purposes, with one general head to look after freight rates, distribution of products and placing in market. No state aid is given to any of the horticultural societies, yet during the last twenty-five years great developments in various lines of horticulture have been made. Along with these developments have come varieties specially suited to the climates and soils, as few of the eastern...
THALICTRUM

(T. Thunb., a German naturalist, and author of Sylva Herculina, a catalogue of the plants of the Harz mountains; died 1588.) *Seittanthera.* About 7 species of tender American perennial, stemless, marsh herbs with large, long-petioled, often canna-like leaves and long scape-bracted large panicles of spikes of usually purple flowers. Fils. commonly 2 together in a 2-valved spathe; calyx minute; corolla tubular, with 6 divisions, of which the 3 inner are unequal; style thick, spirally twisted; stigma 2-lobed, the lower lip long and pendulous: capsule inflated, 1-seeded, 1-seeded.

A. Plant covered with a white powder.

B. *Thalictum divaricata,* Champl. Stemless; pedicels longer than in *T. dealbata*; lvs. banana-like, 1-3 ft. long, oblong-ovate; scape 5-10 ft high; panicles 2-4 ft. wide; spikes zigzag, pendulous. Sept., Oct. Ponds, Aplachioela, Fla.—According to R. E. Biss, this magnificent native ornamental-leaved marsh plant thrives in garden soil with canna and lily plants. Does well under cultivation in southern California.

F. W. BARDAGL.

divaricata. Champl. Stemless; pedicels longer than in *T. dealbata:* lvs. ternately compound and decomposed; stems alternate; ils. dioecious, polygamous, or perfect in some species, rather small, generally greenish white or sometimes purplish or white in a paniculate or loose race; sepals 4 or 5, deciduous; petals wanting; stamens many, showy; carpels usually few, 1-seeded. This group includes several forms which are well suited for the mixed border and rock garden. The robust forms are desirable for the wild garden. Many are very hardy, and only the more southern forms of those given below are at all tender. Thalictrums are valued for their feathery heads of flowers, contrasting with their handsome stems and leaves, which are often of a purple cast. They may be propagated by seed or by division of roots in early spring, just as growth begins. Any good loamy soil will suit them if well drained.

The latest monograph of the entire genus was published in 1885, by Lecoyer, in Bull. Soc. Roy. de Bot. de Belgique, where he describes 69 species. In 1886 Wm. Trelise published a fine treatment of "North American Species of Thalictrum" in Proc. Soc. Bost. Nat. Hist. 22:267-300, in which he recognized 11 species and 4 varieties of northern Mexico. His treatment is rather closely followed by Robinson in Gray's Syn. Flora, 1886. Since that time at least 10 new species have been described—chiefly from Mexico—several of which are by J. N. Rose, in Cont. U. S. Nat. Herb. 5:185, Oct. 31, 1899. All North American forms were treated by the present writer in *Man. Bot. Studies,* Aug. 1900. Besides several native species, about 5 have been introduced to our gardens from other countries.

INDEX.

<table>
<thead>
<tr>
<th>Species</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>adiantifolium</td>
<td>3</td>
</tr>
<tr>
<td>adiantodes</td>
<td>3</td>
</tr>
<tr>
<td>angustifolium</td>
<td>3</td>
</tr>
<tr>
<td>Chefurini</td>
<td>10</td>
</tr>
<tr>
<td>Cornetti</td>
<td>7</td>
</tr>
<tr>
<td>Delavari</td>
<td>9</td>
</tr>
<tr>
<td>dioica</td>
<td>8</td>
</tr>
<tr>
<td>ajacce saccata</td>
<td>1</td>
</tr>
<tr>
<td>ajacce stalked, widely spreading, straight along dorsal margin</td>
<td>2</td>
</tr>
<tr>
<td>ajacce stalked, widely spreading, straight along dorsal margin</td>
<td>2</td>
</tr>
<tr>
<td>ajacce stalked, widely spreading, straight along dorsal margin</td>
<td>2</td>
</tr>
<tr>
<td>ajacce stalked, widely spreading, straight along dorsal margin</td>
<td>2</td>
</tr>
<tr>
<td>ajacce stalked, widely spreading, straight along dorsal margin</td>
<td>2</td>
</tr>
<tr>
<td>ajacce stalked, widely spreading, straight along dorsal margin</td>
<td>2</td>
</tr>
<tr>
<td>ajacce stalked, widely spreading, straight along dorsal margin</td>
<td>2</td>
</tr>
<tr>
<td>ajacce stalked, widely spreading, straight along dorsal margin</td>
<td>2</td>
</tr>
<tr>
<td>ajacce stalked, widely spreading, straight along dorsal margin</td>
<td>2</td>
</tr>
<tr>
<td>ajacce stalked, widely spreading, straight along dorsal margin</td>
<td>2</td>
</tr>
</tbody>
</table>

A. Fils. perfect.

B. Filaments widened near the authors: authors orate, obtuse.

C. Ajacce sessile, in a head; orate-oblong

D. Ajacce stalked, widely spreading, straight along dorsal margin

E. Ajacce stalked, widely spreading, straight along dorsal margin

F. Ajacce stalked, widely spreading, straight along dorsal margin

G. Ajacce stalked, widely spreading, straight along dorsal margin

H. Ajacce stalked, widely spreading, straight along dorsal margin

I. Ajacce stalked, widely spreading, straight along dorsal margin

J. Ajacce stalked, widely spreading, straight along dorsal margin

K. Ajacce stalked, widely spreading, straight along dorsal margin

L. Ajacce stalked, widely spreading, straight along dorsal margin

M. Ajacce stalked, widely spreading, straight along dorsal margin

N. Ajacce stalked, widely spreading, straight along dorsal margin

O. Ajacce stalked, widely spreading, straight along dorsal margin

P. Ajacce stalked, widely spreading, straight along dorsal margin

Q. Ajacce stalked, widely spreading, straight along dorsal margin

R. Ajacce stalked, widely spreading, straight along dorsal margin

S. Ajacce stalked, widely spreading, straight along dorsal margin

T. Ajacce stalked, widely spreading, straight along dorsal margin

U. Ajacce stalked, widely spreading, straight along dorsal margin

V. Ajacce stalked, widely spreading, straight along dorsal margin

W. Ajacce stalked, widely spreading, straight along dorsal margin

X. Ajacce stalked, widely spreading, straight along dorsal margin

Y. Ajacce stalked, widely spreading, straight along dorsal margin

Z. Ajacce stalked, widely spreading, straight along dorsal margin

AA. Plant not powdery
THALICTRUM

1. petaloideum, Linn. Stem round, nearly 1 ft. high, almost naked: lvs. 3-5-paired; lfts. smooth, ovate, entire or 3-lobed: fls. corymbose, perfect; sepals white, round; filaments pink; anthers yellow; fr. ovate-oblong, flattened, sessile, pilose. June, July. N. Asia. B.C. 9:891. — Not yet in American trade lists but well worth cultivating.

2. sparsiflorum, Turez. Stem erect, sulcate, 2-4 ft. high, branching, usually glabrous; lvs. trilobed, upper ones sessile; lfts. short-stalked, round or ovate, variable in size and shape of base, round-lobed or toothed: fls. in leafy panicles on slender pedicles, perfect; sepals obvate, whitish, soon reduced; filaments somewhat widened; anthers very short: akene short-stalked, obliquely ovate, flattened, dorsal margin straight, 8-10-nerved; style persisting. N. Asia, through Alaska to Hudson Bay, in mountains to Colorado and southern California.

5. purpurascens, Linn. (T. purpureum, Hort.). A polymorphous species, allied to T. polygamum: stem 3-6 ft. high, branching above, leafy, pubescent or glabrous, sometimes glandular: lfts. larger than in that type: fls. in a long, loose, leafy panicle, polygamo-dioecious; filaments narrow; anthers rather long, taper-pointed: akene slightly stalked, ovoid, glabrous or pubescent, with 6-8 longitudinal wings; style slender, persistent; stigma long and narrow. Canada to Fls., west to the Rockies. June-Aug.

6. polygamum, Muhl. Tall Meadow Rue. Erect, 3-8 or more ft. high, branching and leafy, smooth or pubescent, not glandular: lvs. three to four times terete or terminally pinnate; lfts. oblong to oblongate, bases variable, 3-5 apical lobes: fls. in a long, leafy panicle, polygamo-dioecious; sepals white; filaments broadened when young; anthers short: akene ovoid, stipitate, 6-8-winged or ribbed, with stigmas as long, which become curled. July, Aug. Low or wet grounds, Canada to Fls., westward to Ohio.

7. aquilegifolium, Linn. Feathered Columbine. Fig. 2921. Stems large, hollow, 1-3 ft. high, glaucous; lvs. once or twice 3-5-paired; lfts. stalked or the lateral ones nearly sessile, slightly lobed or obtusely toothed, smooth, suborbicular: fls. in a corymbous panicle, dioecious; sepals white; stamens purple or white; fr. 3-angled, winged at the angles. May-July. En., N. Asia. B. M. 1818; 2825 (as var. formosum). G. N. 47, p. 357; 59, p. 117. — The old name T. Cornuti, Linn., may be a synonym of this, and if so it is the older name, being published on a preceding page, but T. Cornuti was described as an American plant, while T. aquilegifolium is not. As the description and old figure of T. Cornuti do not agree with any American plant, the name may well be dropped. Those plants advertised as T. Cornuti are probably T. aquilegifolium or T. polygamum.

8. dioicum, Linn. Rather slender, 1-2 ft. high, glabrous: lvs. three to four times 3-paired; lfts. thin, orbicular, several-lobed or revolute, bases variable: fls. in a loose, leafy panicle with slender pedicles, dioecious; stamens much longer than the greenish sepals; anthers linear, obtuse, exceeding their filaments in length: akene ovoid, nearly or quite sessile, longer than their styles, with about 10 longitudinal grooves. Early spring. Woods, Labrador to Alas., west to the foot of the Rockies.

9. venulosum, Trelease. Allied to T. dioicum: stem simple, erect, 16-20 in. high, glabrous, glaucous, bearing 2-3 long petioled lvs. above the base; lvs. three to four times 3-paired: lfts. short-stalked, rather firm, rounded and lobed at the apex, veiny beneath: fls. in a simple panicle, dioecious, small; sepals ovate; stamens 10-20, on slender filaments; anthers oblong, slender-pointed: akene nearly sessile, 2 lines long, ovoid tapering to a straight beak, thick-walled and 2-edged. 8. Dak. westward and southward in the mountains.
THALICTRUM

11. **occidentale**, Gray. Allied to *T. dioicum* which it closely resembles, but it is more robust and taller: lvs. glandular-puberulent; akenes long, slender, thin-walled, 2-edged, ribbed, not furrowed.

12. **Fendleri**, Engel. Fig. 294. A variable species. Plants 1–3 ft. high, rather stout and leafy; lvs. four to five times plumatid, upper stem-lvs. sessile; lfts. rather firm, ovate to orbicular, usually with many shallow rounded or acuminate lobes; bases variable: lfts. dicesecous, in rather compact panicles; stamens many, anthers long; akenes nearly sessile, obliquely ovate, flattened, 3–4 ribs on each face. July, Aug. W. Texas to Montana.

K. C. Davis.

THAMNOCÁLAMUS. See Bamboo, p. 127.

THAMNÓPTERIS (Greek, bushy fern). *Polypodiaceae*. A genus of simple-leaved ferns growing in crowns, sometimes united with Asplenium. The elongate indusia are in parallel rows on the veins of the banana-like lvs., often extending nearly to the margins. The veins are free below but are united at the apex by a transverse intramarginal vein.

Nidus, Presl. (*Asplenium* and *Thamnópteras Nidus-Avis*, Hort.). Bird's Nest Fern. Lvs. bright green, growing in a crown, 2–4 ft. long, 3–9 in. wide, the midrib rounded and usually green. Japan, East Indies. *T. strictum*, Hort. (*Asplenium strictum*, Hort.). is a more slender, upright form said to be a garden hybrid between *T. Nidus* and *Sclopendrium crispum*.

T. Australásicum, Hook. Differs from the above in its midrib, which is keeled on the back and often black. Sometimes regarded as a variety. Australia.

L. M. Underwood.

THÁSPIUIM (name a play upon Thapsia, another genus of the same family). *Cameliífera*. MEADOW PANSY. A genus of hardy perennial herbs of eastern North America with ternately divided leaves (or the lower undivided), and terminal umbels of yellow or purplish flowers.

náureum, Nutt. Stem branching, 1½ ft. high; root-lvs. mostly cordate; stem-lvs. ternate; lfts. ovate to lanceolate, serrate; lfts. yellow. June, July. Var. **trifoliátum**, Coul. & Rose, with erect lvs. or lfts., is a common western form. Var. **atropurpureum**, Coul. & Rose, lfts. dark purple. The species is of easy culture in any ordinary soil. In the wild state the plant grows in at least partial shade. Well-grown plants, especially of var. *atropurpureum*, make attractive specimens.

F. W. Barclay.

THEOBRÓMA. Commercial Cacao or *Cocoa* is produced by trees belonging to the Linnaean genus Theobroma. The estates devoted to its culture are usually known as "Cacao plantations" and are largely on the increase in all suitable climates, owing to the increased demand for the manufactured article in the different forms in which it is now prepared for consumption. The larger proportion of commercial Cacao is produced by *Theobroma cacao*. Other species native to central America and the West Indies are *T. pentagona*, *T. spe-
THEOBROMA has been cultivated for its seeds, T. cannabinus and T. cacao. Theobroma speciosa, and (T. pentagona, Dietr.) is sometimes referred to as a native, but does not appear to have been recorded by modern writers for Central America and the West Indies.

Theobroma pentagona is a species which in vigor of growth and productive capacity resembles to a very large degree the generally cultivated varieties of T. cacao, but it differs in the flowers, in the size of the beans, and especially in the shape of the pods. The beans are larger in size than those of T. cacao, fully equal if not superior in flavor, and are capable of being worked up in the same way as the commoner species. This kind is known on the mainland as "Alligator" Cacao, from the fancied resemblance of its skin to the hide of an alligator. The outline of the pod is not very easily broken, and does not afford such good protection to the interior as the harder shell possessed by T. cacao. In Niasagura T. cacao and T. pentagona are grown together, and the produce is mostly a mixture of the two species. From the presence of T. pentagona, it is possible that hybridization may have taken place between two species. It has been noted that the pods of T. cacao produce much larger seeds or beans in Nicaragua than in countries where this species is not grown in company with T. pentagona: and the beans of the two species are almost impossible to distinguish when cured together. The production of Nicaragua plantations also requires much less time for fermentation than the produce of Grenada, Trinidad or Venezuela, some forty-eight hours being the usual period, while more than four times that number of hours will be required for the proper fermentation of the produce of the last mentioned countries.

Theobroma speciosa is a plant that produces the "Monkey Cacao" of the mainland. This is never made into market Cacao, as it is very inferior in quality and has a disagreeable flavor. The pods are hard, much corrugated, warty, and of a dirty brown color when ripe.

There is a very distinct species in every way. The leaves are large, and in the juvenile stages of growth are broadly cordate in form, and only assume the mature or oblong form on reaching the third or fourth year’s growth. The pods are oval, ribbed and netted, hard and woody, with an outer shell half an inch in thickness which can only be cut with a saw. The seeds are oval, much flattened, with a hard, hard and smooth exterior. The interior is white, and has a somewhat nutty flavor. They are used in sweetmeats in the same way as almonds, but cannot be made into confectionery fit for the manufacture of chocolates. This species, though without doubt a true Theobroma, is very distinctly different from any of the varieties of T. cacao which produce commercial Cacao. This variety of cacao is known in some parts of Central America by the names of "Wariba," "Tiger," and "Pastate" Cacao.

Many names have arisen for the varieties of Theobroma Cacao which are in cultivation, as many as forty having been listed by a Trinidad cultivator of large experience. Looking at the matter from a practical point of view, all these are merely strains of the one species, produced by natural cross-fertilization of the older types. According to Hart’s Cacao, 1909, there are but three major strains or classes of T. cacao, respectively called "Criollo" and "Caco." The type of the first is found indigenous in Trinidad and various places on the mainland, its distinctive characteristic being its broad, thin, flat and finely ribbed shell, together with its white or whiteish seeds or beans, which are mild in flavor and somewhat rounded in form. The "Criollo" is the rough, coarsely corrugated, or verrucose pod, containing large flatish seeds, of a purplish color. It is a tree having greater vitality than "Criollo," and gives a much larger crop. "Forester's" and "Arragonese" Cacao, and this variety was first introduced into the United States by Arragonese Capuchin Fathers about 1777. (De Vertuiel, History of Trinidad, 1841.)

"Caco" is the third form, its chief characteristics being the vigor of its growth and its small flat and strongly flavored bean. By some it is considered as a degraded form of Forastero.

While the above gives a vague sketch of the chief characters of the principal types, it must be understood that there are varieties intermediate between the forms;

The truth is that both fruits grow from 10-35 ft. tall.

In fact, on the majority of estates it is impossible to find any two trees exactly alike in all their botanical characters, occurring, without doubt, from the uninterrupted cross-fertilization which has taken place. Still, each country appears to maintain certain characters more permanent than others, and thus secures for itself a name upon the markets of the world. It is probable that this is due, in a measure, to the unconscious preference taken by some to distinctive features of the produce by the continuous cultivation of a fairly fixed strain which has arisen. It may also be due in some measure to the influence of climate and environment. Certain it is, however, that there are today strains of Cacao which are possessed of distinctive characters, not readily produced by any process of preparation in places other than that in which they are grown. A fine set of illustrations of varieties common to different countries has lately been published in a work by Dr. Paul Preuss, who recently traveled in Cacao-producing countries on behalf of the German government.

These different brands are bought by manufacturers and blended to suit their particular market, but there are certain kinds possessing special flavor which are readily sold at high value. The value of the commercial product fluctuates and the price rules considerably lower than some years ago. Whether this results from increased production or from a deterioration in the quality cannot be ascertained. It is clear that if cultivators grow Cacao for seed without regard to the best rules of selection, the quality must deteriorate. What mitigates this fact is that all the Cacao world has, up to a recent date, followed the same practice. The process of grafting, to which the Cacao tree readily submits, as was recently proved in Trinidad, will enable operators to make large fields of the choicer varieties, and it may be confidently expected that in a few years a great improvement will be shown in the various grades placed upon the market. But little Cacao is manufactured in the countries where it is grown, except for home use, and then generally in a crude manner.

Chocolate is the term used for sweetened and hardened preparations of the roasted and ground Cacao bean, with
the larger proportion of the original fat retained, while the so-called "Cocoa" preparations are the same material in fine powder, sweetened or unsweetened, but with the greater proportion of the Cacao fat extracted. This fat, when clarified, is a pure white substance, almost as hard as beeswax, and is used in many pharmaceutical preparations. Chocolate and Cocoa are both made from the beans or seeds of Theobroma Cacao and T. constricta, and only differ in the method of preparation.

The word "Cocoa" is a market corruption of the original Spanish "Cacao," which was adopted by von M. Bentham as a generic name but has since been displaced by the Linnaean Theobroma.

J. H. Hart

THEOCHRASTE (Theophrastus was a Greek naturalist and philosopher, 372-283 B.C.). Mysiriaecae. According to Bentham & Hooker, this genus has but a single species, T. jussiest, of San Domingo. J. De ca serve, in Annexes des Sciences Naturelles for 1876 (ser. 6, Bot. 3) contrasts three species. Pax, in Engler & Prantl’s "Pflanzenfamilien," written later than either of the above, recognizes four species. Five names occur in the American trade; only one of which is a true Theophraste according to either of the above authorities. This is T. jussiest. Three of them are to be referred to the related species Clavija, and one of them (T. imperialis) is now regarded as a species of Chrysophyllum (of the family Sapotaceae). The chief technical differences between Theophraste and Clavija are in the flowers. In Theophraste the corolla is strongly indrical and shallowly 5-lobed; staminodia attached on the base of the corolla: fr. large, many-seeded. In Clavija the corolla is suborbicular and deeply 5-lobed; stamidia attached on the tube of the corolla; fr. 1, many-seeded. Theophraste itself includes a glabrous shrub with erect, nearly simple stem, the simple lvs. crowded at the ends of the branches, the fls. large, white, in racemes. The fls. are perfect and gamopetalous; calyx and corolla with 5 divisions that are imbricated in cultivation, the corolla bearing a corona in the throat; stamens 5, fixed at the bottom of the corolla-tube: pistil one, with short style and capitulate stigma. Fr. fleshy and apple-like, many-seeded. The species referred to Theophraste in the American trade are handsome large-flower plants for warm-weather culture. An allied genus is Jaucinia, which see.

The following cultural note is probably applicable to the various species cultivated under the name of Theophraste: According to T. Bentham in Ginn. 1:985, T. imperialis is of easy culture, enduring a winter temperature of 45° without injury but making the best growth with 70° night temperature and 10° rise during the day. It has the reputation of being almost impossible to raise from cuttings. A plant that has become too large may have part of the top cut off and all the buds removed from the branches to within a few inches of the ground, which operation causes the plant to sprout from the base. One only of the sprouts should be left; when it is well started the old stem may be cut down and after waiting until a little more growth has been made the plant should be taken from the pot, and be cleaned of soil and dead roots and repotted.

A. Juice milky.

imperialis, Linden (properly Chrysophyllum imperialis, Benth.). Lvs. obovate-oblong to oblong-oblancoellate, 3-5 in. long on large plants, small, in pedunculate clusters on the lower branches: fr. 5-angled, nearly globose, 1-2 in. thick. Brazil. B.M. 6821. 1:821, 1818.—This species has been cultivated extensively in the United States during the nineteenth century as Theophraste, but upon flowering in European gardens was found to belong to Chrysophyllum, a genus of the family Sapotaceae.

AA. Juice not milky.

b. Corolla mostly deep but the limb shallow-lobed: fr. many seeded (Theophraste).

C. Truss or stem not spiny.

jussiæ, Lindl. Lvs. linear-spatulate, about ½ ft. long and about one-sixth as wide, obtuse, strongly spinose-dentate, with black-tipped teeth, the midrib very strong and the secondary ones confluent at the margins: inflorescence racemose, the racemes axillary and loose-flowered: fls. rather long-pedicled, bracteate, the calyx-lobes ovate and erosive-dentate, the corolla tubular-campylaceous, white, the corona annular and entire, San Domingo. G.C. 111: 2429.—It is not known to the writer whether the plant in cult. in this country under this name belongs to this species or one of the two following.

fusca, Deene. (T. Jussiæ, Hort.). Stem simple, with ash-gray bark: lvs. linear or linear-spatulate, 18 to 20 in. long and about 2 in. wide, obtuse, varying from purple to red; racemes crowded and somewhat powdery: inflorescence terminal and corolla-like, compact, the branches 3-flowered: fls. short-pedicled, campylaceous and corolla with a petaloid and suborbicular, and equalling the corolla-tube, the corona 5-lobed. San Domingo. B.M. 4291 (as T. Jussiæ).—The name T. fusca is known not to occur in the American trade.

macrophylla, Hort. (properly Clavija grandis, Deene.). Lvs. large, obovate: spatulate and obtuse, entire or shinate-repand; petiole thick and dark violet, the secondary nerves slender and simple or forked; fls. orange-yellow, in short, erect racemes; calyx-lobes orbicular and nearly globose, the corona 5-lobed. Brazil. B.M. (as Clavija macrophylla) 5829.

cc. Lvs. acute.

longifolia, Jacq. (properly Clavija ornata, D. Don). A tender tree, often 20 ft. high; lvs. crowded, subverrucitellate, oblong-oblancoellate, narrowed at the base, mucronate, spinulose-dentate, 1½-1½ ft. long, about 9 in. wide: racemes 4-10 in. long, usually pendulous: fls. fragrant, saffron-colored. Peru. B.M. 4822. 1:23174.

latifolia, Willd. (properly Clavija latifolia, C. Koch). A tender tree; lvs. obovate, petiolate, narrowed at both ends, mucronate-serrate: racemes erect, W. Indies.—The species seems to be imperfectly known to botanists.

L. H. B.

THERMOPSIS (Greek,]jpine-like). Leguminosae. A genus of about 13 species of perennial herbs native to North America and northern and eastern Asia. They are erect plants with large, 3-foliate, stipule leaves and showy yellow or purple flowers in terminal or axillary racemes. The following species are all handsome hardy perennials bearing yellow flowers in early to late summer. They are not particular as to soil or position, but best in a deep, light, well-drained soil. They are generally deep-rooted plants and endure drought very well.

Propagation may be effected by division, especially in T. montana, T. tabacea and T. rhombifolia, which spread extensively by the root, but in general the better way is by seed, although the seed is rather slow to germinate and should be sown as soon as ripe or in the spring with some heat.

A. Pod strongly recurved.

THERMOPSIS

AA. Pod straight or only slightly curved at the apex.

Plant 3–5 ft. high.

Caroliniana, M. A. Curtis. Stem stout, smooth, simple; lvs. long-petioled; lfts. oblong-obovate, silky beneath; stipules large, clasping; raceme 6–12 in. long, erect, rigid, many-fl.; pod in 2 in. long, erect, villous and hairy. June, July. Mix. of N. C.

bb. Plant 1–3 ft. high.

c. Stipules longer than the petiole.

montana, Nutt. Plant 1½ ft. high, somewhat silky-pubescent; lfts. oblong-obovate to oblong, 1½ in. long; lfts. in long spikes; pod straight, erect, pubescent. May, June. Western states. B.R. 1811. B.R. 15:1272 (both erroneously as T. fabacea). Sometimes called “Buffalo pen” in the west.

c. Stipules shorter than the petiole.

d. Racemes axillary.

fabacea, DC. Resembles T. montana and has possibly been confounded with it in the trade. It differs in having more spreading pods and larger and more compressed seeds. May, June. Siberia.

DO. Racemes terminal.

T. Casshmiriana, Hort. Saul, does not appear to be known to botanists.

J. B. Keller and F. W. Barclay.

THESPÉSIA (Greek, dívías: application doubtful). Malvaceae. A genus of a few species of tall trees or shrubs native of tropical Africa, Asia and the islands of the Pacific. They have the aspect of Hibiscus and can be distinguished by the conical stigmas, more woody capsule and the obvoid compressed seeds.

pappina, Soland. A small tree with the younger portions covered with pelial scales; lvs. long-petioled, ovate, cordate, acuminate, 3 in. across; lfts. axillary, 2–3 in. across, yellow. Trop. Asia, Africa and the islands of the Pacific. —Cult. in S. Calif., where, according to Franceschi, it succeeds only in warm and moist locations. He also notes the lts. as varying from yellow to purple.

F. W. Barclay.

THEVETIA (André Thevet, 1502–1590, a French monk who traveled in Brazil and Guiana and wrote a book on French Guiana in which the plant is mentioned). Apocynaceae. A tropical American genus of about 7 species of trees or shrubs with alternate, 1-nerved or lightly penierved leaves and rather large yellow flowers and drooping cyms.

Thevetia neriifolia, the Yellow Oleander of Florida gardens, is a very ornamental small evergreen shrub, growing luxuriantly in rich, sandy soil, not too moist and not too dry, ultimately attaining a height of 6 to 8 feet and almost as much in diameter. The foliage is abundant, light glossy green and reminds one of the oleander, but the lvs. are narrower. The pale yellow flowers are abundantly produced. The fruit, which is of the size and somewhat of the form of a hickory nut, is regarded as poisonous by the negroes. The Thevetia can stand a few degrees of frost, but it was killed outright on February 7, 1855, when the thermometer went down to 18° F. If banked with dry sand in fall it does not suffer much, though the top may be killed.

AA. Lvs. 5–10 in. long, about 2 in. wide

nitida, DC. A tender shrub; lvs. oblong-lanceolate, acuminate, margin revolute; fls. rather large; corolla white, with a yellow throat. West Indies; cult. in southern Calif.

AA. Lvs. 3–5 in. long, less than ½ in. wide

neriifolia, Jess. Known locally in Florida as "Trumpet Flower" and more correctly as "Yellow Oleary or Yellow Oleary an." A tender shrub; lvs. linear, shining, margins revolute; lfts. about 3 in. long, yellow, fragrant. West Indies, Mexico. B.R. 2309 (as Cerbera Thevetia). —Cult. in S. Fla. and S. Calif. —This is a serious weed. W. Barclay and H. Nehrling.

THIMBLEBERRY. Rubus occidentalis and odostomus.

THIMBLEBERRY. All fruit grows larger and better, and often becomes more highly colored, other things being equal, when it has an abundance of readily available food. The supply of crude food material may be increased by allowing room enough to each plant and by enriching the soil and keeping it sufficiently moist. The plant may set so many fruits, however, that it may not possibly grow all of them to large size even though an abundant supply of crude food material is readily available. The leaves build up the crude materials taken from the soil and air into organic connective which the plant must have to sustain its life and support. The fruit-grown often fail to recognize that the fruit depends upon the leaves most directly for elaborated food, which alone can nourish it. It is nevertheless true; and for this reason, even when there is no crop on the rest of the tree an over-planted branch needs to have its fruit thinned to secure the highest possible number of fine large fruits.

By reducing the number of fruits the proportion of elaborated food for those which remain is increased. Sometimes checking the too vigorous growth of the vegetative parts is also resorted to for the same purpose. The latter practice is properly considered under the subject of Pruning; the former may be treated under the topic of Thinning Fruit.

In its broad significance Thinning Fruit includes not only picking off some of the immature fruit, but also any pruning of bearing wood to reduce the number of fruits which a plant is allowed to produce. Such pruning should normally be done when the plant is in a dormant condition. It may be performed on grapes in autumn as soon as the leaves fall. It is then easy to cover the vines if winter protection is needed. The more hardly or late ripening fruits may be attended to at any time when the leaves are off; the more tender fruits should be left till the severities of winter have passed, so that the amount of bearing wood which is taken off may be varied in proportion to the loss of fruit buds by winter injury. The work on peaches and apricots is thus sometimes deferred till the trees bloom, or even later.

The sooner a fruit can be relieved from struggling with other fruits for its food the better its chances are for reaching extra large size. It is, therefore, best to reduce the amount of bearing wood before the blossoms open, as much as can safely be done.

Perhaps a method of thinning orchard fruits by treating the open blossoms with some spray mixture may eventually be perfected. This would give the fruit the advantage of an increased food supply from the time the blossoms opened. It is known that such treatment may prevent the setting of fruit. It remains to demonstrate whether a judicious use of this method the setting of fruit too abundantly may be prevented. If this can be done successfully, the thought of picking off immature fruit might be thus avoided.

To avoid the extra labor which would be required by thinning immediately after the fruit sets, it is customary to defer the work till the weaker fruits drop.
THINNING FRUIT

Very often the mistake is made of deferring it too long. The labor spent in late thinning is usually wasted so far as improving the grade of fruit is concerned. Although the yield is thus lessened, the ripe fruit generally averages but little if any larger than unthinned fruit.

No definite rule can be given as to the amount of fruit to be left in thinning. This should be determined according to the environment, vigor and productive habits of the plant. Generally speaking, fruits should be thinned so that those which are left are separated from each other by a distance of at least three times the diameter of the largest fruits at maturity. Under irrigation, or where a constant plentiful supply of soil moisture can be depended on, the number of fruits which the plant may be allowed to bear is much greater than, in some cases even twice as great, as the same plant could bring to large size if it were located on drier soil. Fig. 2497 shows the stage of development of peaches for early thinning and indicates the percentage removed and distance apart of those which are left.

Immature plants should not be allowed to bear a full crop. It is generally best that the plant carry but few fruits for the first crop. Afterwards it may be thinned more heavily, till finally, when a vigorous mature plant is developed it may safely bear a full crop. In consequence of overbearing, immature plants are often so weakened that they are easily winter-killed; or they may be left in an unhealthy condition from which they do not recover in several years if at all. In thinning fruit on immature plants, the natural ability of the plant and the influence of environment should be even more carefully considered than with mature plants. This work requires skill and good judgment, which can only be acquired by experience, study and careful observation.

The question of what kinds of fruit it is best to thin should be considered briefly from the standpoint of the commercial grower. If the markets which are accessible do not pay more for the better grades of fruit, there can be no profit in thinning except in preventing the breaking down of the tree by heavy crops and, possibly, from increasing the tendency to annual bearing. The crop of thinned fruit may sometimes exceed the measure that the unthinned fruit would yield, but not enough to pay for the cost of thinning if the crop is sold at no advance in price over unthinned fruit.

Where fancy prices are obtained they are brought by evenly graded packages of the larger specimens. Varieties which at their best run small or medium size do not usually pay for thinning. It does not pay, for instance, to try to increase the size of Damson plums by thinning them. Plums like Lombard or Burbank, which have medium to large fruit, may pay for thinning.

Fig. 2497 shows the improvement in size attained by thinning the Burbank. Those plums which at their best produce very large fruit, such as Wickson, Diamond and fruit usually give better returns for thinning. With all kinds of fruit, thinning may be expected to return most profit when practiced on varieties well adapted for fancy trade.

An exceeding large crop of fruit may so exhaust a tree that it either fails to fruit the next year or produces less than an average crop. Such a result is more often seen with some kinds of fruit than with others, and different varieties of the same kind of fruit may vary much in their natural tendencies in this direction. By judicious selection of varieties and by skillful management much may be done towards securing more regular bearing and no abundant crop. Thinning fruit has a place in the management of the commercial fruit plantation, along with the maintenance of soil fertility, til- lage, pruning and cultivating. It is a mistake to depend on thinning alone for results which may with difficulty be obtained by all these methods combined. In some careful experiments vigorous, mature, well-nourished trees on which the fruit had been systematically thinned annually yielded more regularly than corresponding trees on which the fruit was not thinned. In other cases the beneficial effects of thinning were unmistakably apparent in somewhat increased fruitfulness the following season. The profit from thinning fruit in any one season comes largely from the increased amount of the better grades of fruit which are obtained by the process. The yield the succeeding year may or may not be greater because the fruit was thinned.

S. A. BEACH.

Thinning Fruit has now come to be an established horticultural practice with those who cater to the best markets and aim at the highest ideals in fruit culture. Thinning assists the grower in securing several results, chief among which are the following: (1) in maintaining the vigor of the tree; (2) in producing fruit of maximum size, appearance and quality; (3) in securing annual crops instead of alternate, and (4) in preventing the spread of parasitic diseases.

It does not pay to thin all classes of fruits. Only early or fancy varieties of apples will yield the cultivator for the expense and labor of thinning, though it usually pays to pick the earliest varieties successively, removing the largest and best colored specimens first, which in effect is a process of thinning. Standard pears are to be classed with apples; dwarf pears are partly thinned by winter pruning, and partly by the removal of surplus fruit in summer. Stone fruits pay for thinning more amply than other kinds. Peaches and plums may be thinned by winter pruning, but this is often inadequate. Our best peach-growers now thin to 6 and 8 inches apart and find that when this is coupled with high culture the results are usually satisfactory. Whether it will pay to thin plums or not will depend upon the variety and the market. The Japanese varieties are much improved in appearance and quality by judicious thinning. The larger varieties of the domestics may under favorable circumstances be profitably thinned, but the smaller varieties of nates and domestics must be determined by the individual grower. Many varieties have a tendency to overbear; these should be thinned in the interest of the health and vigor of the tree. Thinning the crop and bringing it to a more ample size of bunch and berry, there is little or no money in the operation, except where the fruit is grown for a very special market or for exhibition. Profuse yields should be accomplished by close winter pruning. Strawberries are thinned by special methods of culture, such as growing in hills and narrow matted rows. The way in which the operation is performed varies somewhat with
Plate XLI. Prominent American Horticulturists
THORBURN most Scotchman, have a different Penny this native root-cutting. Gilbert live the country of plant. Leaves W. ovaries by cemed; THISTLE. a plant

The next edition, called the "eighth revised," appeared in 1875, and had nearly 600 octavo pages and over 500 engravings—not to mention the numerous highly pictorial hindings; and this was followed, ten years later, by a revised reprint in plainer and more tasteful style, illustrated with the largest number of engravings yet reached. 519. This edition, the last issued during the life of the author, sold well, like all the others, and was long out of print and much sought for. A so-called "twentieth" edition appeared in 1884, enlarged by Mr. William H. S. Wood, a lifelong friend of the author, with the assistance of a number of high authorities, appeared in 1897, and contains over 700 pages. Personally Thomas was one of the most loved of men. A consistent but very liberal-minded member of the "orthodox" branch of the Society of Friends, he exemplified in a marked degree the peculiar virtues of that sect which so greatly command, for the adherents of that simple and unobtrusive faith, the respect and admiration of those who know them. Gilbert M. Tucker.

THORBURN, GRANT (Plate XL), founder of the seedhouse of J. M. Thorburn & Co., New York, and Horticultural author, was born in 1773 in Dalkeith, Scotland, and early came to New York to seek his fortune. His father was a wrought-nail maker and the son engaged in the same trade in this country. He soon married, and his wife attended to the business in Nassau street, near Liberty, for the selling of "tape, ribbons, thimbles, thread, scissors, and Oxford's needles." The living rooms were in connection. "A glass window opened opposite the fireplace, where she was dumpling or broiled the steak with one eye, and kept a world on the store with the other." The introduction of cut-nail macaroni deprived yiling Thorburn and his House, and the establishment of a promising grocery business on the corner of Nassau and Liberty streets took away his customers. He therefore gave attention to other means of livelihood. The women of the city had began to show a taste for flowers. These were sold in pots, and the pots were sold by grocers. In the fall of 1892, there being various pots in his stock, Thorburn thought to attract the attention of purchasers by painting the pots green. Four pots were first painted. They sold quickly. Then he painted twelve. They sold; and thus the pot business grew. Thorburn had been in the habit of buying his meat at the Fly Market, at the foot of Maiden Lane. In April, 1803, he bought a rose geranium there, thinking to be able to "sell them" for fourths which were sold with muslin binding; was put next day a customer bought both pot and plant; and Thorburn quickly returned to the market and bought two more plants. These sold; and thus the plant business grew. The man, George Inglis, of whom Thorburn bought the plants, was also a Scotchman, and it was soon agreed that one should grow the plants and the other sell them. But the customers also wanted the roots of the plants, and they asked for seed; and as there was no
seed store in New York, it was arranged that Inglis should grow seeds also. This was in 1805; and in that year Inglis, as an experiment, had grown a lot of seeds. Thorburn bought these seeds for $15; and thus arose the first regular seed store in New York, and one of the first in the United States.

The seeds and plants continued to sell, and Thorburn was obliged to import seeds. In 1865 or 1866 he obtained a catalogue of William Malcolm & Co., London, the first plant catalogue he had ever seen, and he then published one of his own. This led to more pretentious writing, and "The Gentleman and Gardener's Calendar" was the first outcome. The third edition of this, in 1821, by "Grant Thorburn, Seedman and Florist," contains the advertisement of "G. Thorburn & Son," dealers in seeds, implements and rural books.

Grant Thorburn was a prolific writer for the current press on a variety of topics, under the nom de plume of Laurie Todd. He was a unique character, and his history,—"mixed with much fiction," as he himself says,—was the basis of John Galt's tale in three volumes (London, 1830) of "Lawrie Todd, or Settlers in the Woods." Thorburn left a most interesting autobiography, which was published in New York in 1852. He died in New Haven, Conn., January 21, 1863, at the age of 90. The portrait in Plate XI is reproduced from his autobiography.

L. H. B.

THORN. See Crataegus. Christ'a T. is Paliurus Spinus-Christi. Jerusalem T. is Paliurus Spinus-Christi; also Parkinsonia aculeata. Swallow T. is Hippophae rhamnoides.

THORN APPLE. Datura Stramonium; also Crataegus.

THORN BROOM. Ulex Europaeus.

THOROUGHWORT. Eupatorium perfoliatum.

THRIFT. Armeria.

THRINAX (Greek, fan). Palmae. About 30 species of fan palms native to the West Indies and Florida. Spineless palms: trunks low or medium, solitary or cespitose, ringed below, clothed above by the fringed leaf-sheaths: lvs. terminal, orbicular or truncate at the base, flabellately plicate, multifid; segments unduplicate, bidual; rachis short or none; ligule free, erect, concave; petiole slender, biconvex, smooth on the margin; sheath usually beautifully fringed: spadix long; axis clothed with tubular sheaths; papery-coriaceous, split: fls. on rather long, slender pedicels, the pedicel with a caudacious base at the fr. the size of a pea. For the new Porto Rican species, see Cook, Bull. Terr. Bot. Club, Oct., 1901.

One of the best groups of palms for pot-culture. The species are of slow growth, but succeed with indifferent care. They are mostly of elegant form and habit. A good specimen is shown in Fig. 2499.

For T. Choco, see Acanthoriza Choco.

A. Under surface of leaves green.
B. Ligule with a blunt appendage at the middle
1. radiata
Bb. Ligule bluntly deltoid
2. parviflora
Bbb. Ligule obsolete, truncate
3. Barbadosensis
AA. Under surface of leaves silvery or glaucous.
Bb. Leaf-segments connivent at base, A. angusta
BB. Leaf-segments connivent for one-third their length
1. excelsa
BBB. Leaf-segments connivent for one-half their length
2. multiflora

1. radiata, Lodd. (T. elegans, Hort.) Caudex short: lvs. green, glabrous or slightly puberulous beneath; segments united to or beyond one-third; ligule broadly rounded, with a short, blunt appendage at the middle.

Cuba to Trinidad.

2. parviflora, Swz. Caudex 10-20 ft. tall: lvs. 10-25 in. long, minutely pubescent, becoming glabrous, green beneath; segments united one-fourth or one-sixth their length; ligule bluntly deltoid, 1½ lines long. Bahamas, Jamaica, Florida. S.S. 18:460.

3. Barbadosensis, Lodd. Trunk middle-sized: lvs. green, glabrous; segments united at the base; ligule obsolete; truncate; spadix paniculate; berry polished, ½ in. thick. Barbados.

4. angusta, Lodd. Caudex 15-35 ft. high, 2½ in. thick; lvs. shorter than the petiole, silvery gray beneath; segments united at the base; ligule concave, semilunar, coarse. West Indies.

5. excelsa, Lodd. Lvs. pale green above, hoary-glaucous beneath; segments united one-third; ligule bluntly deltoid; sheath densely but-lanate. Jamaica, British Guiana.

6. multiflora, Mart. (T. graninfolia, Hort.). Stem medium, 6-8 ft. high; sheaths ragged, fibrous, irregularly reticulate, tomentose; young lvs. white woolly-tomentose; blade equaling the petiole, biconvex; segments united one-half their length, ensiform-acuminate, rather strict, glaucous beneath; ligule transversely oblong, sulcate, 3-lobe, Rhatt. 1. H. 31:542.

8. T. Morisonii, Wendl. A native of Anguilla, grows 1-3½ ft. high, and has lvs. which are glaucous beneath. Segments free for about two-thirds or three-fourths their length. Lately offered in Fls. 90. C. III. 11:143.

JARED G. SMITH.

THRYPTOMENE (Greek word said to refer to the low heath-like appearance of the plant). Myrtaceae. About 18 species of heath-like shrubs from Australia, with small, opposite leaves and small or minute flowers, which are solitary in the axis or fascicled.

Mitchelliana, F. Muell. A compact, bushy shrub with slender branches: lvs. oblong, flat, ⅓-⅜ in. long: fls. in the upper axis solitary or in clusters of 2 or 3, white. Offered in southern Calif. Introduced by Mrs. T. B. Shepherd, who says the plant rarely exceeds 4 ft. in height, blooms in midwinter and is good for cut-flowers.

THUJA. See Thuya.

THUJOPSIS. See Thujaops.

THUNBERGIA (after Karl Peter Thunberg, professor of botany at Upsala and successor to Rudbeck and Linnaeus; died 1812) Acanthoriza. Mostly tall perennial greenhouse climbers producing flowers in great profu-
sion: lvs. opposite; fls. blue, yellow, purple or white, solitary and axillary or in racemes; calyx annular and caryilly lobed or toothed or 10-15-toothed, surrounded by 2 large bracts which often inclose also the corolla-tube; corolla trumpet-shaped, with a spreading limb, tube curved or oblique, often compressed, enlarged toward the mouth; stamina 4, didynamous, fixed near the base of the tube, elements thickened at the base.

Above are easily raised from cuttings or layers in summer. T. erecta is not a climber but has a somewhat struggling habit. It has small, dark green lvs, and large, deep purplish blue glaucous-fls., which are white at the base. There is a pure white variety of it. It blooms all summer and autumn. It is readily raised from cuttings during the rainy season.

H. NEHLING.

INDEX.

a. Fls. axillary, solitary.
 1. affinis.
 2. alata.
 3. alba. 2.
 4. abutilo.
 5. aurantia.
 7. chrysops, 5.

b. Fls. irregularly toothed.
 6. petiolas winged.
 7. laurifolia.

cc. Petiolas not winged.

D. Color of fls. white: corolla-llobes truncate and sinuately toothed at the apex.
 1. fragrans.

DD. Color of fls. blue (white only in variety).

E. Plant suberect.
 4. erecta.

EE. Plant climbing.

F. Throat of the corolla yellow.
 5. chrysops.

FF. Throat of the corolla white, fls. grandiflora.

AA. Fls. in terminal or axillary racemes (see also T. grandiflora).

B. Color of fls. blue.
 7. laurifolia.

BB. Color of fls. yellow.
 8. Myosorensis.

BBB. Color of fls. scarlet.

1. affinis. S. Moore. A rambling shrub, 10-12 ft. high, smooth: branches 4-angled: lvs. short-petioled, elliptic, acute, entire: fls. 2 in. across, deep-purple-blue, with a yellow throat. Summer. Trop. America. B.M. 6975. G.C. III. 2:461. G.M. 12:291. This plant is closely allied to T. erecta, from which it differs by its entire lvs. and larger fls., which are about twice the size of those of T. erecta. When grown in a pot the plant forms a compact shrub, but when given more room it is a rambling climber.

2. alata. Boj. Fig. 2590. Stem square, climbing-hairy: lvs. opposite, triangular-orate, hastate, repand-toothed, rough-pubescent, tomentose beneath; petiolas winged, about as long as the lvs.; fls. solitary, on axillary peduncles; calyx very small, surrounded by 2 large inflated bracts; corolla-tube somewhat inflated than the involucre, dark purple within; limb round, oblique, of 5 rounded segments, buff or cream-colored. S.E. Africa. B.N. 2591. P.M. 2:2. B. 5:238 (not good).

G.C. 11:1945.—A person who cultivates this plant may also be treated as an annual greenhouse plant. Usually propagated by seeds. It is used either as a greenhouse climber or to grow on trellises outdoors. Outside it flowers mostly in August, but by propagating at various times they may be had in blossom nearly the whole year in the greenhouse. There are many varieties, some of which have been described as species.

H. NEHLING.

INDEX.

a. Fis. axillary, solitary.
 b. Lvs. irregularly toothed.
 c. Petiolas winged.
 d. Petiolas not winged.

D. Color of fls. white: corolla-llobes truncate and sinuately toothed at the apex.
 e. Fis. fragrans.

DD. Color of fls. blue (white only in variety).

E. Plant suberect.
 f. Erecta.

EE. Plant climbing.

F. Throat of the corolla yellow.
 g. Chrysops.

FF. Throat of the corolla white, fls. grandiflora.

AA. Fis. in terminal or axillary racemes (see also T. grandiflora).

B. Color of fls. blue.
 h. Laurifolia.

BB. Color of fls. yellow.
 i. Myosorensis.

BBB. Color of fls. scarlet.

1. affinis. S. Moore. A rambling shrub, 10-12 ft. high, smooth: branches 4-angled: lvs. short-petioled, elliptic, acute, entire: fls. 2 in. across, deep-purple-blue, with a yellow throat. Summer. Trop. America. B.M. 6975. G.C. III. 2:461. G.M. 12:291. This plant is closely allied to T. erecta, from which it differs by its entire lvs. and larger fls., which are about twice the size of those of T. erecta. When grown in a pot the plant forms a compact shrub, but when given more room it is a rambling climber.

2. alata. Boj. Fig. 2590. Stem square, climbing-hairy: lvs. opposite, triangular-orate, hastate, repand-toothed, rough-pubescent, tomentose beneath; petiolas winged, about as long as the lvs.; fls. solitary, on axillary peduncles; calyx very small, surrounded by 2 large inflated bracts; corolla-tube somewhat inflated than the involucre, dark purple within; limb round, oblique, of 5 rounded segments, buff or cream-colored. S.E. Africa. B.N. 2591. P.M. 2:2. B. 5:238 (not good).

G.C. 11:1945.—A person who cultivates this plant may also be treated as an annual greenhouse plant. Usually propagated by seeds. It is used either as a greenhouse climber or to grow on trellises outdoors. Outside it flowers mostly in August, but by propagating at various times they may be had in blossom nearly the whole year in the greenhouse. There are many varieties, some of which have been described as species.

Var. clausa, Clarke, is glabrous. B.M. 1881. L.B.C. 20-1915. Var. vestita, Clarke, is more hairy and the flowers are not fragrant.

4. erécta, T. Anders. (Megéviá erécté, Benth.) Shrub, 2-4 ft. high, with loose spreading branches, half-crescent; lvs. opposite, petiolate, ovate or suborbicular, smooth, entire or minutely toothed; fts. 3 in., white or yellow in the throat, borne in axillary whorls or in a raceme in which they are also clustered or whorled; corolla with a wide, oblique trumpet-shaped tube and a large 5-lobed limb. India. B.R. F.S. 12:4275. Gu. 12, p. 420; 30:563 and p. 283. R.H. 1660, p. 342. J.H. III. 28:2345. Gm. 3:395.—Perennial greenhouse climber, flowering profusely in winter. Propagated by cuttings.

8. Mysorénsis, T. Anders. (Hexachétris Mysolénsis, Wight.) Climbing shrub, with long, slender branches; lvs. opposite, petiolate, oblong-lanceolate, acuminate, entire or somewhat distantly toothed; racemes long, pendulous; fts. yellow, 2 in. across, the tube enclosed by the spathe-like bracts; limb 4-lobed, the upper lip concave, with reflexed sides; throat of 5 equal, spreading lobes. India. B.M. 4786. F.S. 8:752. S.M. 2. p. 130.—A tall greenhouse climber which flowers, according to treatment, at all seasons.

9. coccinea, Wall. (Hexachétris coccineá, Nees.) A very tall climber; stem much branched, 4angled; lvs. short-petiolate, variously shaped, the lower broadly ovate, with a hastate or cordate base and the upper ovate, cordate, all angularly toothed or the upper entire; fts. in terminal or axillary racemes, 1-3 ft. long; bracts large, inflated, as long as the tube; limb scarlet, of 5 reflexed emarginate lobes; throat orange. Autumn and winter. India. B.M. 5124. L.B.C. 12:1193. F.S. 25:2447. R.H. 1896, p. 197.

HEINRICH HASSELBRING.

THUNIA (Count Thun-Tetscheh, who had an important collection of orchids about the middle of the 19th century), Orchidáceae. A small genus of which the present only 5 species are known. These are tall plants with annual leafy stems terminating in a raceme of showy flowers. The genus was formerly united with Phains, from which it differs by the terminal inflorescence. Sepals and petals similar, spreading; labelium convolute over the column, spurred, ornamented with several crests consisting of lines of fleshy hairs; pollinia 8; fts. subtended by large membranous bracts.

The species of Thunia occur in northern India, Burma, and in the S. Himalaya region ascending to a height of 6,000 ft. The culture of the Thunias is very simple. They begin growth naturally at the end of February or early in March. As soon as new growth is visible the plants should be given new material, consisting of fibrous peat or fern-root and sphagnum mixed with loam and some sand and potsherds for drainage. In their native home the plants are said to be epiphytic, and when treated as terrestrial orchids their native habit may be imitated by setting them well above the pot, which should not be too large. For the first 4-6 weeks until the young roots have made good growth, it is necessary to apply water sparingly. Thunias are very rapid-growing orchids and may be liberally supplied with liquid manure until the end of the flowering season, which occurs about the middle of August. Soon after this the leaves fall. The old stems winter in this condition and serve to feed for the rapid growth of the next season, but although they remain on the plant two years they form no leaves the second season. During the resting period they should be kept in a rather dry atmosphere and be given only enough water to prevent the stems (pseudobulbs) from shriveling. This is one of the few orchids which can be profitably propagated by cutting the old stems into lengths of about 6 in. and rooting them in sand or sphagnum. When rooted the young plants may be potted in the usual way. A temperature of 60°-65° is favorable during the growing season.

álba, Reichh. f. (Phélos álba, Lindl.). Fig. 2502. Suberect, 2-3 ft., clothed with sheathing, oblong-lan-
THURBER, the New whatever 335.

THURBER, George (Plate XLI), botanist, naturalist and editor, was born in Providence, R. I., September 2, 1821, and died at his home near Passaic, N. J., April 2, 1886. He obtained his early education at the Union Classical and Engineering School of his native city. Afterwards he served an apprenticeship as pharmacist, at the termination of which he began business for himself in partnership with Joshua Chapin. During these years he devoted himself eagerly to the study of chemistry and natural sciences in general, but especially to botany, so that at an early age he was already well known as one of the most prominent botanists of the country. This brought him in close intimacy with Drs. John Torrey, Asa Gray, George Engelmann, Louis Agassiz and other eminent scientists, whose warm friendship he enjoyed until his death. In 1850 he obtained the appointment as botanist, quarter-master and commissary of the United States Boundary Commission for the survey of the boundary between the United States and Mexico. During the following four years his botanical work consisted mainly in the exploration of the native flora of the known border regions. His herbarium collected there comprised a large number of species new to scientists, some of which have been named after their discoverer, *Geraniu* *Thurberi* being one of the most important; it is now cultivated for its fruit in the desert regions of North Africa. This historical herbarium formed the subject of Dr. Asa Gray's important work "Planta Nova Thurberianae," published by the Smithsonian Institute. After his return to New York in 1853, Dr. Thurber received an appointment to the United States Assay Office, of which Dr. John Torrey was the assayer. In this position he remained until 1856, when owing to his strong sympathies with Gen. John C. Fremont, who was the first presidential candidate of the Republican party, he preferred to resign rather than sacrifice his principles. This incident well illustrates his perfect candor and characteristic, uncompromising spirit. Upon being offered free contribution to the Buchanan campaign fund, he inquired: "Is this an invitation to demand?" He was informed that it was a demand, and at once tendered his resignation. During the following three years he was connected with Dr. John Torrey and the College of Pharmacy of New York city as lecturer on botany and materia medica. In 1859 he was appointed professor of botany and horticulture at the Michigan Agricultural College, which position he held for four years. Here his wide and varied knowledge, of which he had ready command, his alertness of brain, clearness and vigor of speech, humor and enthusiasm made him a successful and ideal teacher. Many of his students and those who studied under his direction are now filling important professional and editorial chairs throughout the country. This position he resigned in 1862 to accept—on the urgent invitation of Orange Juli, the publisher—the editorship of the "American Agriculturist," which he held to within a few years of his death, when failing health prevented him from continuing his ardent labors. In this position he found his most congenial work and the real mission of his life, for which his previous training, his vast and varied knowledge of natural sciences, arts and industries, his quick perception and rare judgment as to cause and effect had fitted him so admirably. Few men have exerted so powerful and effective an influence on progressive horticulture and agriculture as has Dr. Thurber. During his connection with the "American Agriculturist" he was a most painstaking and scrupulous editor and would not accept any article or statement about the correctness and accuracy of which he was not fully convinced. In order to convince himself of his own satisfaction of the value of new plants, fruits and vegetables, he established an extensive experimental and botanical garden in connection with his home on the Passaic river, which he named "The Pines," after a clump of tall white pines growing in front of it. The results of these observations and experiments formed the basis of a regular and valuable series of "Notes from the Pines." But in no part of his editorial work has he taken so much delight as in the "Doctor's Talks," and thousands of now-gray-haired men and women will long hold in grateful and affectionate remembrance "The Doctor," who through his letters to the "boys and girls" has added so much to the delights of their childhood days. Although Dr. Thurber was never a man who had no children, he was always fond of young people and was never happier than when he could teach and assist them in whatever lay in his power. The amount of his writings in the "American Agriculturist" during the twenty-two years of his connection with it was enormous, but as his name but rarely appeared with his articles it would be impossible to estimate the aggregate work and the "Doctor" wrote the stamp of accuracy of detail and naturalness of style. While in Michigan he revised and partly rewrote Darlington's "Agricultural Botany," which was published under the title of "American Weeds and Useful Plants." He wrote also the entire botany of Appleton's "New American Encyclopedia." An important part of
his contributions to horticultural literature consisted in editing, revising and bringing out the horticultural and agricultural books of the Orange Judd Company. After the death of Dr. Torrey, he was elected president of the Toronto Botanical Club. He was also president of the New Jersey Horticultural Society; vice-president of the American Pomological Society for New Jersey; and honorary member of many scientific societies throughout the world. The honorary title of doctor of medicine was conferred upon him by the University of

2503. Typical form of Thuja occidentalis (X 1/3).

Medical College of New York. During the latter years of his life he suffered severely from chronic rheumatism, which finally resulted in heart degeneration and his death. Personally, Dr. Thurber was one of the most genial of men, gentle, sweet-tempered, with a considerable share of good-natured humor, always ready to help those whom he felt needed assistance, liberal-minded and generous to a fault; but a relentless foe to frauds, shams and impostors of every kind.

F. M. HEXAMER.

THUYA (Thuya or Thuya, an ancient Greek name for a resinous tree or shrub). Also spelled Thuya or Thuya. Including Biota. Consilvus. Arborvitae. Ornamental evergreen trees or shrubs of narrow pyramidal habit, with much ramified branches, the branchlets arranged froad-like, flattened and clothed with small scale-like leaves; the fruit is a small strobile or cone not exceeding 1 in. in length. The well-known T. occidentalis is hardy north and also T. japonica. T. gigantea and several forms of T. orientalis are hardy as far north as Mass. Thuyas are favorites for formal gardens. They are all of regular, symmetrical habit. Their numerous garden forms vary greatly in habit and in color of foliage. For planting as single specimens in parks they are mostly too stiff and formal, but they are well suited for massing on borders of streams or lakes. The most beautiful and the most rapidly growing species is T. gigantea. Thuyas are well adapted for hedges and wind-breaks. They bear pruning well and soon form a dense hedge. They thrive best in somewhat moist, loamy soil and are easily transplanted. Prop. by seeds sown in spring. The varieties, especially those of T. occidentalis, are usually prop. by cuttings taken late in summer and kept during the winter in a cool greenhouse or frame; also by grafting on seedling stock in summer or early in spring in the greenhouse. The tars. of T. gigantea and T. orientalis are usually grafted, since they do not grow readily from cuttings, except the juvenile forms of the latter, as var. demissa and Meldenian. Consult Retisepturn.

Five species occur in N. America, E. and Cent. Asia. Resinous trees with short horizontal, much ramified branches; the branchlets flattened and froad-like arranged; lvs. deccussate, scale-like, appressed, usually glandular on the back; fs. monocious, globose, small, terminal on short branchlets, staminate yellow, consisting of usually 6 opposite stamens, each with 2-4 anthers; pistillate consisting of 8-12 scales in opposite pairs, of which only the middle ones, or in the section Biota the lower ones, are fertile, each scale with 2 ovules inside at the base: strobiles globose-ovate to oval-oblong, with 2 var. seeds 1½ in. long; brownish yellow; seeds 1½ in. long. New Brunswick to Manitoba, south to N. C. and III. S.S. 10:532.-Much used for telegraph poles. A great number of garden forms, about 50, are in cultivation. The best known are the following: Var. alba, Nichols. (var. albo-spica, Beissn. Var. Queen Victoria, Hort.). Tips of young branchlets white. Var. argentea, Carr. (var. albo-variegata, Beissn.). Branchlets variegated silver-white. Var. aurea, Nichols. Broad bushy form, with deep yellow foliage; also var. Barrowii, Douglas' Golden and Meehan's Golden are forms with yellow foliage. See also var. laterae. Var. aureo-variegata, Beissn. (var. albo-maculata, Hort.). Foliage variegated with golden yellow. Var. conica densa.

2504. Seeding of Thuja occidentalis (X 1/3).

occidentalis, Linn. Common Arborvitae. Etymologically but commonly called White Cedar (which is properly Chamaecyparis). Figs. 2503-5. Tree, attaining 60 ft. and more, with short horizontal branches ascending at the end and forming a narrow pyramidal, rather compact head; lvs. ovate, acute, usually glandular, bright green above, yellowish green beneath, changing in winter usually to dull brownish green; cones oval to oval-oblong, about 1½ in. long; brownish yellow; seeds 1½ in. long. New Brunswick to Manitoba, south to N. C. and III. S.S. 10:532.-Much used for telegraph poles. A great number of garden forms, about 50, are in cultivation. The best known are the following: Var. alba, Nichols. (var. albo-spica, Beissn. Var. Queen Victoria, Hort.). Tips of young branchlets white. Var. argentea, Carr. (var. albo-variegata, Beissn.). Branchlets variegated silver-white. Var. aurea, Nichols. Broad bushy form, with deep yellow foliage; also var. Barrowii, Douglas' Golden and Meehan's Golden are forms with yellow foliage. See also var. laterae. Var. aureo-variegata, Beissn. (var. albo-maculata, Hort.). Foliage variegated with golden yellow. Var. conica densa.

2908. Thuya occidentalis, var. ericoides (x 1/2). Var. gigantæa, Nutt. (T. plicata, Don. T. Mücezizii, Dongl. T. Lobbii, Hort.) Tall tree, attaining 200 ft., with short horizontal branches often pendulous at the ends, forming a narrow pyramid; trunk with a much buttressed base and clothed with cinnamon-red bark; branchlets slender, regular and closely set; ivy bright green and glossy above, dark green beneath and with whitish triangular spots; ivy, of vigorous shoots ovate, acuminate, glandular, of the lateral branchlets acute and scarcely glandular; cones cylindrical-ovoid, little over 3/4 in. long; scales 8-10, elliptic-oblong, usually the 3 middle pairs fertile; seeds winged, notched at the apex. Alaska to northern Calif. and Mont. S.S. 10:533. G.C. III. 21:235. G.F. 4:116. Var. aurea, Beissn. With yellowish foliage. Var. græcella, Beissn. Smaller tree, with more slender branchlets and smaller foliage of paler green.

2909. Thuya occidentalis, var. ericoides (x 1/2). Japónica, Maxim. (T. Ståhletstil, Carr. T. gigantæa, var. japonica, Franch, & Sav. Tungypis inedivis., Gord.) Similar to the preceding but lower, usually only 20-30 ft. high; branchlets more irregularly set, thicker and less compressed; ivy, ovate, obtusish, thistelk, lighter green above, darker beneath and with whitish triangular spots; cones ovate, little over 3/4 in. long; scales 8, ovul, usually the two middle pairs fertile. Japan. G.C. III. 21:258. R.H. 1886:169.

22. Cones upright, the thickened scales with a prominent horn-like process below the apex; seeds wingless; branchlets ravished in a vertical plane with both sides alike. (Biot.) oriental, Linn. (Blüte orientalis, Endl.) Pyramidal or bushy tree, attaining 20 ft., with spreading and ascending branches; branchlets thin; ivy, rhombic-ovate, acute, bright green, with a small gland on the back; cones globose-ovate, 3/4-1 in. long; usually 6 ovate scales, each with a horn-like process, the uppermost pair sterile. From Persia to E. Asia, in Japan probably only cult. There are many garden forms, of which the following are the best known: Var. atrovittatænsis, Carr. Dwarf, irregularly and not horn-like branching; branchlets nearly quadrangular, slender, dark green. R.H. 1861, p. 230. Var. aures, Hort. Low,
THUYA

THYME

Thymus (Greek, Thymus-like). Conifer. Evergreen ornamental pyramidal tree or shrub, with spreading branches, the branches arranged in a front-like fashion, much flattened and clothed with scale-like glossy green foliage. Thyopopylis is one of the most beautiful Japanese conifers, and is well adapted for transplanting as a single specimen on the lawn wherever it can be grown successfully. Its heart is as far north as Mass., but usually suffers from summer drought. It thrives best in a sheltered and shaded position and in moist loamy soil, and seems to grow to perfection only in cool and moist climates. Prop. by seeds, also by cuttings and by grafting like Thuya. Plants raised from cuttings usually grow into bushy, round-headed plants. Plants grafted on Thuya are said to be short-lived. Seedlings are therefore to be preferred. The genus contains only one Japanese species, closely allied to Thuya and chiefly distinguished by the 4-5 ovules under each scale. The yellowish white, close and straight-grained wood is very durable and is used in Japan in boats and bridge-building.

dolobratia, Sieb. & Zucc. (Thuya dolobrata, Linn.). Pyramidal tree, attaining 30 ft. or sometimes shrubby: branches irregularly whorled or scattered, horizontally spreading and often nodding at the ends: branches one-fifth to one-fourth in. broad; lvs. glossy green above, marked with a broad white band beneath, those of the upper and under side obviate-oblong, obtuse, adnate except at the apex, the lateral ones spreading, ovate-lanceolate and curved (hatchet-shaped); obtusif; scales of staminate fs. 6-10, much thickened at the obliquely pointed apex, the middle ones fertile and with 3-reunited seeds, each scale. Japan. S.E. 2:119, 120. G.C. II. 18:356. — Var. nanus, Sieb. & Zucc. (T. latifrons, Lindl.). Dwarf form, with more slender and narrower branches of a lighter green. Var. variegata, Fortune. Type of branches creamy white. T. borealis, Hort.—Chamaecyparis Nutens.—T. Staudilahi. Gord.—Thuya Japonica. Alfred Rehder.

THYMUS. See Thymus.

THYMUS, WATER. See Elodea.

Thymus (classical name of doubtful origin, perhaps from the Greek for incense). Labiate. Thyme. Probably about 50 species, although more have been described, all natives of the Old World and chiefly of the Mediterranean region. They are low, half-shrubby perennials, although usually herbaceous or nearly so in the North. Lvs. small, opposite, simple and mostly en-

tire. The calyx is ovate or hairy, hairy in the throat, 5-toothed and 2-lipped, about 10-15-nerved, usually declined in fruit; corolla small, 2-lipped, the upper lip 2-toothed and erect, the lower one 3-cleft and spreading; stamens 4, mostly in 2 pairs and usually exerted. The flowers are mostly in shades of blue or purple, but are sometimes white; they are borne in whorls, forming a terminal spike or head-like cluster. Thymes are erect or prostrate plants with strong mint-like odor. Most of the species are grown as a ground cover on banks, in borders or rockwork. The creeping or prostrate habit, ability to persist in dry places and poor soils, and the colored or woody foliage of some species make them adaptable to a variety of uses. The common T. Serpyllum is evergreen. T. vulgaris is the Thyme of sweet herb gardens, being prized in cookery. All Thymes are easily propagated by means of division, although seedlings may sometimes be used to renew plantations of some of the species, particularly of T. vulgaris. Several names occur in American catalogues, all of which seem to be referable to three species, one of which is not a true Thyme. See Sage, where general culture of such herbs is given.

Vulgaris, Linn. Common Thyme. Plant erect, the base sometimes decumbent, 1-2 ft., the branches stiff and woolly, usually white-pubescent: lvs. sessile, linear to ovate-lanceolate, acute, the margins more or less revolute: fs. small, lilac or purplish, in terminal interrupted spikes. S. En.—An old garden plant, being grown as a sweet herb. The leaves and shoots are used for seasoning. It is well to renew the plants from seeds every two or three years. There are varieties with broad and narrow leaves.

Serpyllum, Linn. Fig. 2508. Mother of Thyme. Creeping Thyme. Creeping, wiry-stemmed, slightly pu-
bescent: lvs, small, seldom ¾ in. long, narrow-oblong to oval to nearly ovate, obtuse, narrowed into a distinct petiole, the margins sometimes slightly revolute: fls. minute, lilac, much shorter than the lvs., in axillary whorls. Proper parts of Europe, Asia, and N. Africa. —A common plant in old gardens, prized as an evergreen edging and as cover for rockwork and waste places; it also runs wild. The leaves are sometimes too lax for seasoning, as those of T. vulgaris are. The nodes are short, making it a very leafy plant. Variable. Some of the cult. forms are: var. cirrhitodorus, Hort. (T. cirrhitodorus, Schreb.), the Lemon Thyme, has small, strong-veined lvs. and a pronounced lemon odor. Var. montanus, Benth. (T. montanus, Waldst. & Kit. T. Chamissoa, Fries), has larger lvs. and longer, somewhat ascending branches. Var. lanuginosus, Hort. (T. lanuginosus, Schk.), is a form with small roundish lvs., and a pubescent-gray covering, making it a handsome plant for edgings. Var. aureus, Hort. Foliage golden, particularly in spring. Var. argenteus. Hort. Lvs. variegated with silvery white. Var. variegatus, Hort. White-variegated lvs. Var. cocinoides, Hort. Fls. numerous, scarlet. There is a form with white fls. (see Gt. 45, p. 168). All forms are hardy.

Corsičus, Pers., is properly Calanittha Corsica, Benth. Prostrate, small, glabrous or nearly so: lvs. very small, 2 lines or less long, nearly orbicular, petiolate: fls. small, light purple, in whorls, the floral leaves similar to the others. Corsica.—A good little plant for edgings, with very aromatic heritage.

L. B. H.

THYRSCSTACHYS (Greek, thyrsus and flower). Acanthaceae. About 20 species of tropical American herbs or shrubs with opposite, often large leaves and red, tubular flowers in fascicles which are arranged in a terminal simple or panedical thyrsus. Calyx short, 5-parted; corolla long-tubular, the limb 4-cleft, slightly 2-lipped; stamens 2; staminodia 2, at the base of the filaments: capsule oblong; seeds 4 or fewer by abortion.

Schomburgkianus, Nees (T. rivulans, Planch.). Fig. 2509. A shrubby plant, becoming 6 ft. high: lvs. oblong-lanceolate, nearly sessile; racemes 8-10 in. or even 3 ft. long from the upper axils, slender, drooping: fls. tubular, red, about 1½ in. long, pendulous. Dec.-March. Colombia. B.M. 4851. R.H. 1822:160. Gm. 42, p. 482. F.S. 7:722. P. W. BARCLAY.

Thyrsacanthus Schomburgkianus is a fine old greenhouse favorite which has of recent years fallen into undeserved neglect. It deserves a place in every good general collection. It is chiefly admired for its umbrellalike habit and pendulous grace of its long sprays of slender red, tubular flowers. Like many other acanthodians, it becomes leggy and weedy in old plants, even if cut back severely. Hence, plants are rarely kept after the second season. The culture of Thyrsacanthus is easy. It is an ideal plant for a genera collection, as it requires no special treatment. Some English writers advise a stove temperature, but the undersigned has grown it for many years in a coolhouse. Ordinary potting soil such as suits geraniums will do for Thyrsacanthus. It flowers about April and remains in bloom a long time. Cuttings may be made at any time in early spring and will produce flowering plants 2-2½ ft. high the first season. After flowering, they should be cut back severely. It is not desirable to have more than one plant in a pot, nor should the young plants be pinched the first season, as the umbrelliform form is preferable to that of a compact, much-branched bush. The pendulous habit of Thyrsacanthus has suggested to some gardeners the use of this plant for hanging baskets and brackets.

ROBERT SHEAR.

THYRSSTACHYS (Greek, thyrsus and spike). Gramineae. T. Simomensis is a tall Indian bamboo which has been offered in southern California since the article Bamboo was written for this work. As the plant is not included in Mifflin's Bamboo Garden, its horticultural status is uncertain. Franceschi writes that the plant is rather tender at Santa Barbara. The genus belongs to a subtribe of bamboos of which Dendrochamnus is the type. This subtribe is distinguished by having 6 stamens, a 2-keeled pales and the pericarp free from the seed. For generic characters of Thyrostachys, see the Flora of British India 7:397 (1867).

Thyrostachys is a genus of 2 species of arboreal bamboos native to Upper Burma and Siam. The stems and sheaths are long, thin and persistent, with a long, narrow blade. The lvs. are small or moderate-sized. As nearly as may be judged from the only available description, this species could be inserted at the bottom of page 126 of this work, being distinguished from species 12 and 13 by the narrowness of the lvs.

Stiaménas, Gamble. A tender, deciduous, "giant bamboo," with very graceful tufted stems 25-30 ft. high and 1¼-3 in. thick. Stem sheaths waved and truncate at the top, 3-11×4½-8 in.; auricles short-triangular; blade narrowly triangular; lvs. small, narrow, linear, 3-6 × ½-1 in. Siam.

W. M.

2509. Thyrsacanthus Schomburgkianus (X 3/4).

TIARELLA (Latin, a little thorn or thorn, in reference to the form of the pistil). Saxifragaceae. False Miterwort. A genus of 6 species of slender perennial herbs, of which 4 are from North America, 1 from Japan and 1 from the Himalayas. Low-growing plants, with most of the leaves radical and long-petioled, simple or serrate, lobed or even 3-foliolate, with white flowers in terminal, simple or compound racemes: calyx-tube but slightly adnate to the base of the ovary; petals 5, entire; stamens 10, long; capsule superior, compressed, with 2 unequal lobes.

a. Lvs. simple.

b. Petals oblong.

cordiolaria, Linn. Foan Flower. Fig. 2540. A handsome native perennial, forming a tufted mass, 6-12 ft. high, of broadly ovate, lobed and serrate leaves and simple, erect racemes of white flowers borne well above the foliage in May. Fls. about ½ in. across; petals oblong, clawed, somewhat exceeding the white calyx-lobes. In rich, moist woodland, Nova Scotia to Ontario, south to Ga. Gm. 23, p. 21; 32, p. 511; 53, p. 456; 55, p. 48; V. 11:35.—An elegant plant well worthy of general cultivation. It is a lover of cool, shaded places and of rich, moist soil. It will, however, do well in ordinary soil and flower freely in a half-shaded place, but the varied leaf-markings of bronzy red and other signs of luxuriance are not brought out to their fullest
TIARELLA

Alaska. probably rarely Coreopsis. makes Ore. tall, showy ft. few culti-
a 8-merous; hardy y. fuller AA. in has tender the violet or reddish bracts villous round panicles. from warmer mucece. house mens plants noisseurs.

compared Lasidndra, Aps & semidecandoa, having species. small. Ivs. usu.
ally 1, rarely 2-3: panicle loose; petals small. W. Amer.—The lobing of the Ivs., according to Bot. of Calif., varies so that it may pass into the next species.

AA. Les. 3-folliolate.

F. W. BARCLAY.

TIBOUCHINA (native name in Guiana). Melody-
adena. A genus of about 125 species, native to the warmer parts of North and South America but mainly from Brazil. Shrubs, herbs or climbers, with usually large ovate or oblong, 3-5-ribbed Ivs. and purple, rose, violet or rarely white Ivs., either solitary or in terminal panicles. Fls. 3-merous, rarely 4- or 8-merous; calyx ovoid or bell-shaped, the lobes as long as or longer than the tube; petals oblong, entire or reflexed; stamens twice the number of the petals, nearly equal or alternately unequal; ovary free: fr. a capsule, 5-4-valved. D.C. Mon. Phaner. vol. 7.

semidecandra, Cogn. [Lasidndra semidecandra, Linden & Seem. Pleromoa semidecandrum, Hook.]. Fig. 2511. A tender shrub: Ivs. ovate or oblong-ovate, 2-6 in. long, round at the base, short-petioled, densely setose above, villous beneath, not foveolate, 5-nerved or 3-nerved; bracts broadly suborbicular, somewhat rounded at the apex and shortly apiculate, margin not translucent: fls. reddish purple to violet, often 5 in. across, solitary and terminal or 1 ft. terminal and 2 in the upper axils on the branchlet; stamens purple; style scutellate. Brazil, B.M. 5721; 4142 (as P. Korthiana). F.S. 23:2430. Ga. 49:321. F. 1898:193. I. H. 16:594.

Var. floribunda is more suited to pot culture in pots and flowers more freely when small than the type. Lasidndra, or Pleroma splendens, Hort., should be compared with this. T. semidecandra is a plant of easy culture that has been highly praised by several con-

nisseurs. Cuttings struck in April will give bushy plants for fall and winter blooming. Handsome specimens may be had by keeping the same plant two or three years, training it to wires or stakes in a cool-

dhouse where it has plenty of root room. The flowers

last but a day or so, but new ones open up every day and the flowering season lasts for several weeks. Plants may also be used for summer bedding. They are seldom out of bloom. The species is much esteemed in Florida, where it makes a showy shrub 8 ft. high. It endures a few degrees of frost with impunity, and even if cut down it sprouts readily.

TIGRIDIA

TIGRIDIA (tiger-like; referring to the peculiarly marked flowers). Iridaceae. Eight or ten species of cornus plants ranging from Mexico to Peru and Chile, and making very showy summer-blooming plants. Bulbs tunicate. Stem erect, unbranched, a few inches to 2½ ft. tall, with a few narrow plicate leaves at the

2510. Tiarella cordifolia (X 34).

2511. Tibouchina semidecandra (X 3).
TIGRIDIA

base and 2 or 3 smaller ones higher up; spathe 1 or 2, leaf-like, each bearing one or few blossoms. Flowers in shades of yellow, orange or purplish, variously spotted, often very showy; perianth wide-spread, with no tube, the segments 6, in two dissimilar series, conic into a broad cup at the base; stamens 3, the filaments united into a long cylindrical tube including the style; pistil with 3-lobed, long style, with three 2-parted branches. Tigradia Pavonia, from southern Mexico, was in cultivation in Europe in the sixteenth century. L’Hérit described it in 1576. The young Linnaeus referred it to the genus Ferraria, and some of the Tigridias are yet cultivated under that name. Ferraria, however, is a South African genus, and all the parts of the perianth are nearly equal. T. Pavonia is cultivated in many forms, and is the only common species in gardens. The flowers of all Tigridias are fugitive, lasting only for a day. See Baker, Irideæ, 67 (1892).

Tigridias are tender "bulbs" requiring the treatment given Gladiolus. Plant in well-prepared soil when settled weather comes, 2 or 3 inches deep and 4 to 8 inches apart. The principal blooming period is July and August. Allow the corms to remain in the ground until danger of frost approaches, then store in a dry place where dahlia or gladioli will keep. See that the corms are dry before being placed in storage. Prop, by corms and seeds. Best colors are got in warm weather.

A. Fls. large (often 4 in. or more across); the two rows of perianth-segments very dissimilar; stigmas decurrent. (Tigridia proper.)

Pavonia, Ker-Gawl. Tiger flower. Shell-flower. Fig. 2512. Erect, usually unbranched, 1½ to 2½ ft. tall, glabrous, with several sword-shaped, strongly plicate, long-pointed leaves, the spathe-leaves 3-5 in. long; fls. produced in succession through the warm season, very large and showy, in some forms 5 and 6 in. across, oddly marked, with a cup-shaped or saucer-shaped center and wide-spread limb formed by the obovate outer segments which are bright red on the limb, and purple, yellow or red-spotted on the claw; inner segments panniform (fluted-shaped), about half the length of the outer ones, the blade ovate-acute, orange-yellow and copiously spotted. Mex. and Guatemala.

B. M. 523 (as Pavonia Tigridea). 1.H. 38:142. Var. conchiflora, Hort. (T. conchiflora, Sweet), has bright yellow flowers. Var. Watkinsoni, Hort. (var. albula, Hort. T. conchiflora Watkisson, Paxt.). Raised from seeds of var. conchiflora pollinated by T. Pavonia before 1810, by J. Horsefield, Manchester, England. Horsefield is quoted as follows by Paxton: "In habit and strength this hybrid resembles T. Pavonia, the male parent; but in color and the markings of the flower it resembles T. conchiflora, the female parent; the large outer sepals, however, are of a very deep yellow, inclining to orange, and sometimes elegantly streaked with red lines; whilst the spotted center equals, if not surpasses, the brilliancy of either of the species. One of its greatest merits is being so free a bloomer, and as easy to cultivate and increase as T. Pavonia, whereas T. conchiflora is rather delicate, increases slowly, and is easily lost." Dutch bulb dealers still offer it. P.M. 14:51. Var. álba, Hort., has white fls., but has red spots in the throat. Var. álba immaculata, Hort., is a spotless white variety, a sport from var. álba. Gn. 49, p. 361. Var. lávata, Hort., has pale yellow fls., with red-spotted center. Gn. 59:1674. Var. Canariensis, Hort., is also a pale yellow-flowered form, but named as if an inhabitant of the Canaries. Var. Íonea immaculata, Hort., has pure yellow spotless flowers. Var. rosea, Hort., has rose-colored fls., with yellow variegated center. Var. blácea, Hort., has lilac fls., with spotted center. Gn. 45:555. Var. speciosa, Hort., is a partially dwarf form with deeper red color, the interior of the cup being similar in color to the limb. Described in 1843. Var. grandiflora, Hort., has flowers much like those of T. Pavonia itself except that they are larger and brighter colored. Gn. 14, p. 263. Identical with this, or a hybrid of it, are the forms known as Wheeler’s convexa, splendidiss. Most of the marked departures in colors of Tigridia Pavonia are recent. In catalogues the above names often appear as if they were species names.

Pringlei, Wats. Distinguished by Sereno Watson, the author of the species, as follows: "Very closely related to T. Pavonia, and if color alone were to decide, it might be considered a variety of it, though differing markedly even in that respect from the old species. The base of the sepals is blotched (rather than spotted) with crimson, with a border of orange, the reflexed blade being of a bright scarlet-red. The petals have the base blotched and coarsely spotted with crimson, with a well-defined, deeper-colored, brownish-mar-
TITRIGIA

AA. Fls., relatively small; the two rows of segments differing least in size; stipules capitate, or at least not strongly decurrent. Subgenus Botanica.

buccifera, Wats. About 1 ft. high, slender, branching, glaucous; Ivs. very narrow, strongly plicate; fl. 2 in. across, the cup pale greenish yellow, dotted with purple, the obovate-shape blade of the outer segments light purple; inner segments "folded together in such a manner as to form a sunken longitudinal tube down the center, the dilated sides at the outer end of the tube approaching each other in the form of two check-like prominences,— these are colored white, purple and yellow, while the small rounded terminal blade is a deep purple." Miss of Jalisco, Mex. G.F. 2:413. Offered in 1889 by Horsford.

T. airtrix, Hort. is Cypella plumbea, but it is not in the American trade. See page 429. — T. Hortigca, Roelz. is Hydrorania Van-Houtte. See page 757. — T. Meleagris, Hort. is also a Hydrorania (H. Meleagris, Lindl.), but is not in the American trade. B.R. 2:39. — T. violacea, Schiede. One of the Beutonia section; slender, narrow Ivs. Fls. 2 in. across, violet, spotted at the base; inner segments small, cup-pointed. Mex. B.M. 7356.

TILIA (the classical Latin name). Tiliaeae. LIME. LINNEN, BASSWOOD. WHITWOOD. Trees distributed generally throughout the northern temperate zone, with soft, light, white or light-colored wood, tough fibrous inner bark, serrate alternate petiole, mostly coriaceous Ivs. and caducous stipules; inflorescence cymose, the peduncle attached to, or adnate with, for about half its length, a ligulate membranaceous bract: fls. small, yellowish; sepals 5; petals 5; stamens many, with long filaments nectariferous; fr. globose, nut-like. In some species, small petaloid scales are found among the stamens.

The soft white wood of several species is in great demand for making fruit, hard and other light packages, and for the facility with which the wood is cut into veneers rendering it admirable for such use. The fibrous inner bark is used as a tying material and in the manufacture of Russian bass or bass mats. Extensively planted as an ornamental tree and for bee pasture. As a source of honey supply perhaps no other plant excels it, as under favorable conditions the nectar sometimes drips from the flowers in a shower.

Nearly all the species are of rapid growth and not very particular as to soil. Propagated by seeds, layers or grafting. In layering, it is usual to twist the branch layered before covering it. The method known as "stooling" is also employed. In order to effect this a tree is cut close to the ground and the "stools" or suckers are banked up with earth until they root, when they are severed from the old stump and planted in the nursery rows. Rare varieties are usually increased by budding or grafting.

Much confusion exists in the trade names, especially in the European varieties. This is no doubt largely due to the fact that at least three species have been sent to this country under the name of T. Europaea.

INDEX

TILIA

a. Fls. with petaloid scales at the base of petals twice; stipules capitate, or at least not strongly decurrent.

b. Lvs. echiniform to tumescence beneath.

c. Fr. with 5 oromorns.

d. Cymes 4-fl., fr. with no cavity at the base

1. petiolaris

d. Cymes many-fl., fr. with a cavity at the insertion of the pedicel

2. Mandshurica

c. Fr. without brorns.

d. Shape of lvs. orbicular, obtuse, or elliptic acuminate

3. tomentosa

d. Shape of lvs. ovate, gradually acuminate

4. heterophylla

e. Winter buds pubescent; lvs. ovate; fr. not ribbed

5. platyphylls

f. Lvs. glabrous beneath, except tufts in the axils of the veins; fr. without ribs.

c. Under side of lvs. green.

d. Branches bright yellow or red in winter; lvs. very glossy above, rather leathery

10. dasystyla

d. Lvs. green beneath, except tufts in the axils of the veins; fr. without ribs.

c. Under side of lvs. green.

d. Branches bright yellow or red in winter; lvs. very glossy above, rather leathery

11. vulgaris

c. Under side of lvs. glaucous

12. mimifolia

2. Mandshurica, Rupr. & Maxim. Tree, attaining 50 ft., with spreading, often somewhat pendulous branches: lvs. large, 3-8 in. long, orbicular to broadly ovate, coriaceous or truncate at the base, rather coarsely and remotely serrate with spreading teeth; floral bract adnate almost to the base of peduncle; fr. globose, thick-shelled, with 5 furrows and a slight cavity at the insertion of the pedicel. E. Asia. — A variety has the lvs. edged with yellow or a lighter green.

3. tomentosa, Moench. (T. argentea, DC. T. alba, Waldst. & Kt.); and probably another species, T. alba, var. speciophylleis and T. alba, var. pyramidalis, Hort.). WHITE OR SILVER LINDEN. This is the larger "White Lime" of Europe. Tree, 40 ft. high with upright or ascending branches forming a pyramid; wood dense and compact; lvs. suborbicular, 3-5 in. across, unequally cordate, serrate, densely white-tomentose beneath; blade 3-4 times longer than petiole; fr. tomentose and slightly ribbed. Very variable in time of flowering. Eastern Europe. — This is a very distinct and striking species.

4. heterophylla, Vent. (T. alba, Michx., not Alt.). Tree, attaining 70 ft.; lvs. very large, 5-8 in. long, smooth and shining above, whitish and tomentulose beneath; floral bract short-stalked; fr. globular, not
TILLAGE

TILLAGE. The working or stirring of the land, in order to improve it for agricultural purposes, is known by the general name of tillage. There is a tendency to use the word cultivation for these operations. Tillage is a specific technical term, and is to be preferred. In the easterly discussions of scientific matters, as applied to agriculture in recent years, there is danger of forgetting that the fundamental practice in all kinds of farming is, after all, the tillage of the land. The knowledge of the importance of this branch has developed into one of the world’s history. In fact, it is only within the latter part of the century just closed that the real reasons for

2514. Basswood or American Linden — Tilia Americana. (X 3/8.)

ribbed. July. Alleghany. S.S. 1:27.—This has been sent out as T. macropphyllata, a name that properly belongs to a large-leaved var. of T. americana.

5. Miqelliana, Maxim. Tree, attaining 100 ft., with usually an oblong head; lvs. ovate, truncate or slightly cordate at base, gradually acuminate, rather coarsely serrate with irregular teeth; 4th in. long, pubescent above, tomentose below, the cyme to very large, fr. globose, thick-shelled, slightly ribbed, 5-ribbed only at the base. Japan. G.F. 3:114.

6. pubescens, Alt. (T. Americana, var. pubescens, Loud.). Similar to the better known T. Americana, but a smaller tree: winter-buds finely pubescent; lvs. smaller, obliquely truncate at the base, glabrous above; pubescent beneath: floral bract usually rounded at base; fr. globose. June. Long Island to Fla., west to Tex. S.S. 1:26.—Less ornamental than T. Americana and but rarely cult.

7. Americana, Linn. (T. Caroliniana, Hort.), American Linden. Basswood. Fig. 2514. Stately tree with large coriace; lvs. shining above, usually smooth except for the tufts of hairs in the axils of veins: floral bract very large, tapering to a more or less stalked base: fr. ovoid, tomentose. July. E. N. Amer. S.S. 1:24. Mu. 6:153.—This is our most common American spirea; and the one most frequently planted. Variable in its habit, size and shape of lvs., and in the color of its bark. As a forest tree it was formerly abundant in the eastern and middle states, but with the gradual destruction of the forests and the greatly increased demand for its white wood for manufacturing purposes, good specimens are becoming scarce, and the source of supply is constantly moving westward. Vars. in the trade are macrophylla, Hort., a large-leaved form; Moltkei, Hort., a very strong-growing large-leaved form which originated in cultivation in Europe. What is sold sometimes as T. Americana, var. pendula, is a form of T. petiolaris.

8. Mongolica, Maxim. A slender tree with very small orbicular or ovate lvs., truncate at the base, usually 3-lobed, cuspidate, coarsely serrate with acuminate teeth, glaucous beneath or green on vigorous shoots: cyme rather dense, with the stalk naked at the base. E. Asia.

9. platyphyllata, Stee. (T. gmnulifolia, Ehl.). This is the broad-leaved Linden of European plantations and probably the largest. It attains 90 ft. Lvs. large, green, pubescent, often on the upper side to some extent, unequally cordate, petioles and veins hairy: fr. 5, rarely 1, angled, tomentose, thick-shelled. This is the species most commonly sold here as T. Europaea, and the earliest to flower. June. Eu. G.F. 2:256.—The following varieties in the American trade seem to have been developed here: pyramidalis, an upright grower with reddish shoots; rubra, bark of branches very red; aurea, with yellow bark on branches; lacinata and lacinata rubra, with deeply cut young and reddish young bark; sulphurea, probably the same as aurea; vittifolia, the vine-leaved Linden with lobed leaves.

11. vulgaris, Hayne (T. Europata, Hort., in part). This species grows nearly as large as T. platyphyllata, has large unequal or oblique coriace lvs., smooth and green on both sides; tufts of hairs in axils of veins which are fr. globous or oval, tomentose, shell-thick in June. July. Eu. G.F. 2:256.—This is said to be the celebrated species of Berlin and is often sold in this country under the form of T. Europata. It is a weak and ten days later in blooming than T. platyphyllata, and about the same number of days earlier than T. Americana.

TILLAGE is properly the term used to describe the cultivation of land. Tillage improves land in many ways. It divides and pulverizes the soil, gives the roots a better "pasture," as Till puts it, increases the depth of the soil, and improves its physical condition with respect to warmth and dryness.

Tillage also saves moisture by deepening the arable soil so that moisture is held, and also by checking evaporation from the surface by means of a thin blanket or mulch of pulverized carb. that is made by surface-working tools. Water is lost from the soil by under-drainage and by evaporation from the surface. The more finely the soil is pulverized, within certain limits, the more water it will hold. Its capillary power is increased. As the water evaporates from the surface, the moisture is drawn up from the soil surface so that there is a more or less constant flow into the atmosphere. If any foreign body, as a board or a blanket, is spread on the land, the evaporation is checked. A similar result follows when the soil is covered with a layer of dry ashes or sand or seaweed. Very similar results are also secured when the surface is made fine and loose by means of frequent shallow tillage. The capillary connection between the surface soil and the under soil is thereby broken. This surface soil itself may be very dry, but it serves as a blanket or mulch to the soil beneath and thereby keeps the under soil moist. In many instances this conservation of moisture by frequent shallow tillage is the chief advantage of the cultivation of the land during the growing season.

Land that is well tilled has different chemical relations from that which is neglected. Nitrification, decomposition and other chemical activities are hastened. The stores of plant food are rendered available. The soil is made more productive.

The first requisite for the growing of the plant is to have the soil in such condition that the plant can thrive in it. It is only when the land is well tilled and prepared, or when its physical condition is nearly or quite perfect, that the addition of concentrated fertilizers may be expected to produce the best results. The fertilizing of the land, therefore, is a secondary matter; tillage is primary.

The ideal tillage of the land is that which is practiced by the gardener when he grows plants in pots. The soil is ordinarily sifted or riddle so that unnecessary parts are removed, and most of it is brought into such condition that the plants can utilize it. The gardener adds leaf-mold or sand or other material, until the soil is brought into the proper condition. He also provides drainage in the bottom of his pots or boxes. Often the gardener will produce as much from a handful of soil as a farmer will produce from a bushel.

TILLANDSIA (Elias Tillands was professor of medicine at the University of Albo, Sweden; in 1673 made a catalogue of plants of the vicinity of Albo.) *Bromeliaceae.* Tillandsias are mostly epiphytes, or the mud and epiphytes in the tropical American forests. They are all to be collected and are well adapted to cultivation in large greenhouses. They are all to be added to the small flower gardens of the rich and the large flower gardens of the rich and the wealthy.

T. zebra, which is properly *Cryptanthus zonatus* (fig. 2515). This is an odd plant, producing flowered spikes and leaves, which are whitish beneath and brown-barred above, and small clusters of white flowers. See p. 494, where other kinds of *Cryptanthus* in the American trade are described.

Tillandsias are grown both for foliage and for flowers. The foliage is usually scarify and sometimes blotched. Many of the species are very showy when in bloom, sending up strong central clusters of blue, violet, red, yellow or white flowers. In nature, the seeds are carried in the wind by means of the soft hairs, and find a foothold on trees, where the plants grow. The species, however, grow on the ground. In cultivation, most of the species are treated as pot-plants. The growing season is summer. In winter the plants are kept nearly dormant, although not completely dry. They need a warm temperature and plenty of light while growing. Give a soil rich in potash. In some cases sphagnum may be added to advantage; also by seeds. For further cultural notes, consult Billbergia. Other bromeliaceous genera described in this book are *Bromelia,* *Echeveria,* *Karatas,* *Cryptanthus,* *Ananas,* *Ficusina,* *Puya,* *Guamia.*
TILLANDSIA

A. Plant-body stiff and nearly or quite erect.

b. Stamen shorter than the petals.

c. Fls. few in the cluster.

recurvata, Linn. (T. Bértrami, Ett. at least in part). A few inches high, tufted, with scurfy terete or filiform recurved 2-ranked lvs.; fls. 1-3 on a spike that is sheathed at the base but naked above, the corolla blue and exceeding the calyx. Florida to Argentina and Chile.

c. Fls. many, distichous.

Aceps, Lodd. (Vriéiäa aceps, Linn.). Erect, the flower-stem 6-12 in. tall and bearing a spike with large distichous green bracts from which small blue fls. emerge; lvs. stiff, about 1 ft. long, dilated and striped at the base: fls. 2 in. or less long, blue or purple, the petals much exceeding the calyx. Costa Rica, Trinidad. L.B.C. 8:71.

e. Stamen longer than the petals.

bulbosa, Hook. Small scurfy plant a few inches high, the stem swollen at the base; lvs. 3-5 in. long, much dilated and clasping at the base and terete above; fls. few, in racemose short spikes, long and narrow, the much exerted but not spreading petals purple. Var. picta, Hook., has the upper lvs. and bracts scarlet. S. Fla. to Venezuela. B.M. 4288. F.S. 3:221.

cc. Fls. not prominently swollen.

d. Lvs. linear or filiform from the base or abruptly from a dilated base.

polystachya, Linn. (T. angustifolia, Swartz. T. perrisi, Baker). Lvs. rostrate, tepaloid or scurfy, curved, equaling or exceeding the stem: inflorescence compound, somewhat paniculate, the lateral spikes shorter than the central ones, the bracts distichous and pointed and little exceeding the calyx: fls. blue. S. Fl. to Brazil.

tenuiflora, Linn. (T. caripitó, Leeote, not Cham. & Schlecht. T. Bértrami, Ett. in part). Plant less than 6 in. tall, reddish, clustered: lvs. awl-shaped and erect, nearly terete, conecave at the base, scurfy: fls. few in a simple or somewhat compound spike, the blue petals exceeding the bracts and recurving at the apex. Fl. to Brazil.

dd. Lvs. gradually narrowed from a broad base.

fasciculata, Swartz (T. bracteata, Chapm. T. glaucopha, Baker. Vriéiäa glaucopha, Hook.). Tall, strong species with stem 2 ft. tall: lvs. 1-1½ ft. long, conecave or channelled above, erect or ascending, scurfy and bluish; stem longer than the lvs. and branched, the branches or spikes bearing distichous keeled acute mostly greenish and red-tinged bracts: fls. narrow, exserted, blue. S. Fl., West Indies and Central Amer. B.M. 4415. F.S. 5:432.—Very variable.

urticílá, Linn. Plant 2-3 ft. high: lvs. glaucous and scurfy, becoming subulate and recurved at the summit but much dilated and imbricated at the base and forming pockets that hold water: inflorescence branched, the fls. far apart on the branches: fls. pale blue (pale colored forms), narrow, the petals twice longer than the sepals. S. Fl. to S. Amer. B.K. 9:710 (as T. flexuosa, var. paniculata). For full description of this species, together with plates, see Trel.ense, 5th Rept. Mo. Bot. Gard. (1894).

TILLANDSIA

T. usneoides, Hort., is Pfitzner's muscina. T. muscosa, Hook., is Pfitzner's Bovaleana. The name T. muscosa has occurred in the trade, but the plant is unknown to the writer. This little 'dozen or so, has been introduced sparingly to cultivation, but does not appear to be in the trade. It was discovered in Hernandez county, Fla., in 1887 by Dr. W. P. Wilson, of the University of Florida, as follows: "Stem simple, very short (about 1/2 inch): lvs. numerous, 1 to 3 or 4 inches long, gradually narrowed from the clasping base to the long attenuate apex. A few colored above, more or less hoary, with minute appressed, pellate, brown-centered scales; peduncles very slender, with 2 distinct bracts, probably 1 to 3 ft.: lvs. and cauline parts not seen."

This is Sereno Watson's original description, 1888. See Mun, p. 2, 189, and 6, 4, for pictures of what is supposed to be this species. The name was applied to a plant, identified as T. usneoides, by two Florida botanists, R. L. Caly and E. W. Zebadu, Hort., is properly Guzmanii Zahnii. Mez. Tuffed, branching from the base, balsamous throughout: lvs. 1 ft. long, about 1 in. broad, crimson striped and yellow: inflorescence paniculate, subtended by scarlet bracts: fls. yellow. Costa Rica. B.M. 5099, as Carnaguta Zahnii. In the trade.

The following names are accounted for under Vriesia: carinata, tenacralis, guttata, hieroglyphica, pittiacina, Saundersi, splendens, tessellata, zebrina (in part).

L. H. B.

TIMOTHY. Phleum pratense.

TINANTIA fagar, Scheld., sometimes is seen in old gardens but is not in the trade. It is a tradescantia-like herb from tropical America, with blue fls. in branched terminal clusters, 1-2 ft. Grows outdoors and out. Known also as Tradescantia erecta, T. mutata, T. tallotibia. B.M. 1340. B.R. 17:1403. L.B.C. 13:1390.

TIPUANA (name apparently Latinized from a Bra- zilian name). Leguminosae. A genus of 3 species of handsome South American trees with odd-pinnate lvs., numerous alternate lf-st., and showy yellow or purplish fls. in loose, terminal panicles. Here belongs the plant recently introduced to southern Calif. as Macaronesia Tipus, which Franceschi says yields one of the rose-woods of southern Brazil.

speciosa, Bentho. (Macaronesia Tipus, Bentho.). Tac- clement, T. erecta, T. Fls. oblong, emarginate, very short, entire, 1 inch in. long; veins somewhat parallel: standard broadly orbicular: wings very broadly ovate, much larger than the keel; pod velvety. S. Amer.

TIPULARIA (Latin, Tipula, a genus of insects, al- luding to the form of the flower). Orchidaceae. Includes 2 species of small terrestrial orchids in N. America and the Himalaya region. Herbs with solid bulb, having several generations connected by offsets: leaf solitary, basal, appearing in autumn long after the flowering season: fls. in a long, loose, terminal raceme, Odourless, noanding; sepals and petals similar, spreading; label- 3-lobed, produced into a long spur behind; column erect, wingless or narrowly winged.

HEINRICH HASELBERGER.

TOAD FLAX. Linaria vulgaris.

TOADSTOOL. Consult Mushroom and Fungi.

TOBACCO is considered to be an agricultural rather than a horticultural crop and hence is not treated at length in this work. See Nicotiana for an account of the cultivated species of the genus to which Tobacco belongs.

TOCÓGA (Tococo is the native name of T. Guatemal- sina). Melastomaceae. A genus of 38 species of tropical shrubs native to the northern part of South America, including several handsome foliage plants for the house. Their beauty is similar to that of the well-known Gyaophyllum, for which see Micia. The lvs. are usually amplex, petiolate, membranous, rarely leath- ery, entire or denticate, usually green, large, borne in terminal or sometimes axillary panicles, white, red or rosy, 5-merous, rarely 6-merous; stamens 10; ovary 3-loculed, rarely 5-loculed.

plaat, Breitn. (Spergulariaceae. Nand.). Short-stemmed plant with succulent, somewhat tortu- ous stem: lvs. broadly ovate, minutely dentate-elliptical, 5-nerved: fls. rosy or red: ovary 5-loculed. Colomb. , Venezuela: Costa Rica. — Cogniaux puts this spe- cies in a section characterized by having the lvs. desti- tute of vesicles and the calyx not winged. In this sec- tion it is unique by reason of its 5-merous bracts with long bristles, especially at the nodes: the other spe- cies of the section have shrubby and glabrous branches. A very beautiful plant, but considered to be difficult to grow.

W. M.

Toecoca requires a warmhouse temperature, with shady and fairly moist place. Use leaf-mould mixed with fibrous loam, and provide ample drainage. It is best propagated from what are called split joints, or eyes, with the leaf rolled up, and inserted in thumbnail-pots in fine sand with a little gravel; then insert not in sand or coco fiber, with bottom heat of 75-80°. Cover with hell- glass or other inclosure to exclude air and to keep a fairly moist (but not wet) condition. In about two months the cuttings will have rooted. The wood for propagating should be well ripened.

H. A. SIEBRECHT.

TODDALLA (Koka Toddall, Malabar name of T. acu- bata). Batraceae. About 8 species of trees, shrubs and climbers native to the Old World tropics. Includes Puget Coloma. Lvs. alternate; lfts. in 3's, shining, leathery, full of line veins, glandular-dotted, with a wavy vein inside: lfts. 3-fac margined: fls. small, composed of an inflorescence panicle 4-5 inch; petals 4-5, valvate or imbricate; sta- mens as many, or twice as many, as petals: ovary 4-5- loculed; stigma petals: fr. hard, coriaceous, globose, permanently synuous. In Todallina proper the petals are valvate, and the stamens as many as the petals; in the subgenus Vepris (name altered from repres, bram- ble) the petals are imbricate and the stamens twice as many as the petals.

lanceolata, Lam. (Tipus lanceolata, A. Juss.). Small tree or large shrub, erect, without prickles, entirely glabrous: petioles 1-2 in. long; lfts. oblong-lanceolate, 6-12 in. long, acute, entire, waved at the edge, 5-1 in. broad: panicles axillary and terminal, the fls. a line long, imbricate; stamens 8, in the male fls. ex- fr. the size of a pea. 4-lobed, fleshy, gland- dotted, Mauritius, Mozambique, Cape. Int. by Rea- soner Bros., 1861.

W. M.

TODEA (Tode, a German botanist). Osmundaceae. G. W. C. PERN. A genus of ferns related to Osmunda but with the sporangia borne on the under surface of the leaf. The last three species, although frequently united with Todea, more properly form a distinct genus Nep- tophteria, differing widely in habit from the other Todea; they form delicate foliage plants resembling the filmy ferns in habit. For culture, see Ferns.

a. Texture leathery: lvs. bipinnate.

b. Texture papery: lvs. bipinnatifid.

c. Texture thin: lvs. with linear divisions.

d. Lvs. tripinnatifid.

hymenophyllodes, Rich. & Less. (T. pelllicida, Hook.). Lvs. 1-2 ft. long, 8-13 in. wide; pinnae erect spreading, sometimes 2 in. wide; sori closely placed, often covering the whole under surface at maturity. South Africa to New Zealand.

superba, Col. Lvs. 2-4 ft. long from a woody condestum, pinnae often crisped, the lower gradually reduced; rachises densely tomentose. New Zealand.

BB. Lvs. bipinnate.

Fraser, Hook. & Grev. Lvs. 1-2 ft. long, from an erect woody caulis 18-24 in. high, lowest pinnae nearly as large as the others: rachis narrowly winged, naked. Australia.

L. M. UNDERWOOD.

TOLMIEA (Dr. Tolmie, surgeon of Hudson Bay Co., at Puget Sound). Saxifragaceae. A genus of one spe- cies, a western relative of the Bishop's Cap or Miellia.
and with the same style of beauty. It is a perennial herb 1-2 ft. high, with loose racemes of small greenish or purplish flowers. The species seems to have been cult. several years ago and was offered in the eastern U. S. for western collectors. It is probably hardly and doubtless requires some shade.

The flower is obovate: calyx yellowish-green, gibbous at base, 5-lobed, the tube in age longitudinally splitting down one side; petals 5, threadlike, inserted in the sinuses of the calyx, recurved, persistent; stamens 3; ovary 3-celled, with 2-petalled placenta. This plant has been described under Tiarella and Heuchera, which it resembles in foliage and inflorescence. It seems to be the only plant of the Saxifragce tribe that has 3 stamens.

Menziesia, Torr. & Gray. Perennial herb, 1-2 ft. high, with slender creeping rootstocks and some summer runners: Ivs. round-cordate, more or less lobed and crenately toothed, slender-stalked, all alternate, those of the stem 2-4 in number: raceme ¼-½ ft. long: fls. and capsule nearly ½ in. long, greenish or tinged purple. Forests of Mendocino Co., Calif., to Puget Sound.

Propagates naturally on the sand dunes at the apex of the petioles of the radical Ivs, and rooting when these fall to the ground.

W. M.

TOMATO (Plate XLII). The Tomato is *Lycopersicon esculentum* (which see), one of the solanum or nightshade family and closely allied to the potato. In fact, the potato and Tomato can be grafted on each other with ease, although they will not cross. The graft produces no practical results, however (see Bull. 61, Cornell Exp. Sta.). The Tomato is grown more extensively in North America than elsewhere in the world, and the varieties have here reached a higher degree of perfection. The American standard or ideal is a Tomato that is nearly globular, solid and "smooth" (that is, not wrinkled). Figs. 2518-20. The flat and wrinkled Tomatoes (Fig. 2526; 2331, Vol. II) are now little grown in this country. These forms are little adapted to canning, to which use enormous quantities of Tomatoes are put, and they do not satisfy the popular ideal or desire. The old-time pear, cherry, and plum forms (Figs. 2321, 2322) of Tomatoes are still grown for curiosity and also for the making of pickles and preserves, but their field culture is relatively not important. The currant Tomato, grown for ornament and curiosity, is *Lycopersicon pimpinellifolium* (Fig. 2323). It sometimes by adventitious buds, produced at the apex of the petioles of the radical Ivs, and rooting when these fall to the ground. The Tomato requires a warm soil and climate, a sunny open position, and a long season. The plants are usually grown in beds or dike, being transplanted to the open as soon as settled weather comes. The plants are usually set from 4-5 feet apart each way and are allowed to grow as they will, finally covering the ground. For home use, however, the plants are often trained, in order to forward their ripening and to secure larger and better colored fruits. The best method is to train to a single stem, as recommended for forcing below. The stem is supported by a stake or perpendiculer wire or cord (Fig. 2324); or sometimes it is tied to the horizontal strands of a trellis. This single-stem training requires close attention, and if the time cannot be spared for it, the vines may be allowed to lie on an inclined trellis or rack. This rack training keeps the plants from the ground and thereby allows the individual fruits to develop perfectly and also checks the spread of the fruit-rot; but it usually does not give such perfect fruits as the single-stem training, since the number of fruits is limited in the latter. The most serious general difficulty in Tomato growing is the rot of the fruit. This usually causes most damage, following close, wet weather when the fruit is ripening. It is particularly prevalent on plants crop cover the ground thickly with foliage and do not allow it to become dry on the surface. Usually it does not seriously lessen the crop beyond a few pickings; and if the plants are brought into bearing early and conditions for subsequent bearing, the percentage of total injury is greatly reduced. The Tomato is tender to frost. The green fruit remaining when frost kills the plants may be ripened in tight drawers or cupboards, if it is nearly or quite full grown. The Tomato is probably a short-lived perennial; but in cold climates it is grown as an annual from seeds.

L. H. B.

General Advice on Tomato Culture. — The Tomato comes from tropical America and in its natural habitat the conditions of temperature and moisture during the entire growing season are constantly favorable for its rapid development. The plant is adapted to such conditions, and if we are to have the best possible results with it under cultivation we must provide them and see that it has a steady and unchecked growth from the germination of the seed to the ripening of the fruit. It is true that the plant will live through considerable degrees of cold, wet, drought and other untoward conditions, and often seemingly recover from their ill effects and make a vigorous growth. But we believe it is true that any check in the growth of a Tomato plant, particularly if it occurs when the plant is young, will surely lessen the quality and lower the quality of the fruit produced. This is a strong statement, but we are convinced of its truth by scores of experiences like the following: Two adjacent fields of similar character were set with plants from the same coldframes. Those in one field were carelessly set out just before a cold, dry wind-storm and received a check in transplanting, the effect of which was evident for at least ten days; but the plants ultimately became as large as those in the second field, which had been kept in the coldframe during the storm and were set out rather more carefully than the first lot, but six days later. They suffered scarcely perceptibly from the transplanting, and actually commenced a new growth sooner than those set six days earlier. The subsequent treatment of the two fields was as nearly identical as possible; but the second field yielded over 100 bushels per acre more fruit than the first and it was so superior in quality that, sold by the same man in the same market, it brought an average of nine cents per package more money. We were familiar with the fields and their treatment, and know of no reason for the difference in results except the check that one lot received at transplanting. All our experience with Tomatoes convinces us that the first and great essential to the best results is a steady constant growth from start to finish, but more especially when the plant is young. This
leads to a method of culture which differs somewhat from that usually recommended. We plant the seed in flats placed in a greenhouse or hotbed, some forty to fifty days before we think the plant can be set in the field without danger of frost, or what is quite as bad, a cold, dry windstorm. As soon as the plants can be handled (which ought to be ten or twelve days from the sowing of the seed), we transplant into other flats or into coldframes, setting them 2 to 4 inches apart according to the space available and the desired size of the plants when set in the field. We have never failed to get better results from plants which had been transplanted but once (and that when very small) and had been kept in constant growth, than from those which were started earlier and kept of a practical size for setting in the field by repeated transplanting and pruning.

We aim to give the young plants light, heat, water, and above all air, in such proportions as to secure a constant and steady growth, forming stocky, vigorous
depth working until, at the time the plants are set, it is a deep bed of mellow, friable soil. We begin cultivating the day after the plants are set, running the cultivator as deep as possible, and go through again every two or three days, as long as the plants will permit; but we aim to make each cultivation shallower than the preceding one until it becomes a mere stirring of the surface soil.

When quantity and quality are of little importance compared with earliness, the best results are obtained by a method almost the opposite of that given above. The seed is sown very early so that, though growth is kept in check by crowding and acidity of the soil, the plants have set the first cluster of fruit, which is sometimes nearly full grown by the time danger of severe freezing is past, and the plants are then set in the field much earlier than recommended for general early setting. Furrows are opened running east and west and the plants set in slanting to the south, so that the fruit is just above the surface, with a bank of earth on the north side, and the roots are no more than normal depth. So treated, the plant will ripen the fruit already set very early, but the subsequent crop is of very little value.

When quality is of first importance, staking and pruning is essential, as in this way much better fruit can be grown than can be produced on unpruned vines allowed to trail on the ground, particularly if in a field at all cold. When the plants are to be staked and pruned they may be set as close as 20-40 inches apart. We have obtained the best results from the use of a single stake, some 2 inches square and 5 or 6 feet long, to each plant. As soon as the plant shows its first cluster of flowers it divides, and the two branches are allowed to grow, being tied to the stake as necessary; all branches starting below the division are cut or pulled off, and any above are cut off just beyond the first leaf or cluster of blossoms. Most of the fruit produced in the Gulf states for shipment north is grown in this way.

For market or for canning and pickling, quantity and quality of crop and cheap production are of prime importance, and the best results are obtained by following the general cultural directions as just given. As the gathering of the crop is one great element of its cost, we have found it profitable to set 15 to 20 rows and then omit one to form a driveway, at the same time omitting every sixth or eighth plant in the row to form a cross-walk. This facilitates the distribution of the empty, and the collection of the full crates, and enables one to gather the fruit with less injury to the vines; consequently one secures nearly as much marketable fruit, particularly if it is gathered green for pickling, as if the entire space was covered.

Although the tomato has been in cultivation a much shorter time than most of our garden vegetables, there have been developed a great many varieties, differing materially in habit of vine, size, form and color of fruit as well as other qualities; and these differences are divergent, and individual taste and the demands of different markets so varied, that it is difficult to classify the varieties or arrange them in order of merit.

The early-crop sorts are of two types, one represented by Early Minnesota, with a vigorous vine producing in abundance large clusters of small, round, smooth fruits which ripen early but are too small for market; the other represented by the Atlantic Prize, in which the vine is short-lived, lacking in vigor, and produces very early-ripening fruit, too rough to be salable after the smoother sorts reach the market.

Of varieties for a general crop there are quite a number, varying greatly in type and quality, from the Optimum of medium size, perfect form, fine flavor and brilliant vermilion-red color, through the larger Favorite and Matchless, to the perfect-shaped, large-sized, late-ripening Stone; or if one prefers the purple-red, from the Acme through the Beauty to the later Buckeye State.

If one prefers the dwarf-growing plants, we have the purple-fruited Dwarf Champion or the fine-flavored and beautiful red Quarter-Century. Coy will vary and to meet individual tastes we have the immense and solid Ponderosa and the Honor Bright, which can be
shipped long distances almost as readily and safely as the apple and move so that the peach, and which, picked and stored on shelves, will prolong the season of fresh Tomatoes from one's own garden till Christmas time. And to please the eye we have the Golden Queen, of clear yellow with a beautiful red check, or the White Apple—nearly white—or the Peach, covered with bloom and as beautiful in color as a peach. For picking we have the Red Plum and Yellow Plum, the Red Pear-shaped, the Yellow Pear-shaped, the Red Cherry and the Yellow Cherry, and the cherry-like exquisite-flavored Burbank's Preserving. Every season there are new and more or less distinct varieties added to the lists; and truly of the making of new varieties of Tomato, like the making of books, there is no end.

W. M. TRACY.

Tomatoes Under General Field Conditions.—Tomatoes should be started in hotbeds. To make the beds, select a sheltered place on the south side of a barn or erect some shelter on the north side from where the hotbed is to be made. Dig a hole about a foot deep, 8 feet wide and as long as needed; 18 feet long will give room enough to grow plants for twelve acres of Tomatoes. Use fresh stable manure; cart it out in a pile and let it lay three or four days, then work it over until it gets good and hot, then put it into the hole prepared for it, 8 x 18 feet, about 18 inches thick. Then place the frame, 6 x 16 feet, on the manure; that will leave one foot manure outside of the frame; by this means the heat will be just as great at the edge of the bed as it is in the middle. Then place 4 or 5 inches of dirt on the manure and let it lie for a couple of days to allow the dirt to get warm. The sash is put on as soon as the dirt is placed. When the dirt is warm, rake it over to get it nice and fine, then sow the seed in drills which are made about 2 inches apart by a marker. Sow the seed by hand; the sash is then put on close to the dirt; at the lower end of the bed the frame is made 3 inches higher at the end next to the bank so the water will run off; the bed is banked up all around so cold can get in. This will keep warm and the seed will soon come up. After the plants are up nicely, they will need some air that they may become hardened and grow stockily. Ventilating can be done by raising the bottom of the sash and putting a block under them while the sun is hot; but do not neglect to lower them at night. When the plants are four or five weeks old, and about 2 inches high, transplant the first into a bed that has a little room on the bottom and 4-6 inches of dirt on top. Use sash over this first bed, as the weather is quite cold at night. Do this in order to get the early plants in the field. Transplant the remainder into coldframes and use coverings or shutters made of boards. Transplant all in rows 6 inches apart and 2 inches in the row. Keep them in these beds until planted in the open fields. When there is a frost in the morning and plants are large, take off the covering early in the morning that the frosty air may harden the plants while they are in the bed. Sometimes the plants are in blossom before they can be set in the fields. Never pinch a plant back. A good-sized plant is from 4-6 inches high and stocky; the stronger the plant, the earlier will be the crop. The main point is to get the plant strong before it is set in the field, then it will not stop growing, while a slender, weak plant will not start to grow as soon. Transplanting the plants from the sowing bed into the cold beds helps the plants, and they will produce earlier fruit than those set in the fields from the hotbeds. Take them up with a trowel that all of the dirt possible may go with them from the bed into the field. In case the ground is dry, take a large box with clay in it and make a regular mud, dip the plant into it, then put the plant in the box. One can leave them there for a day or two before setting them in the field.

Prepare the ground about the same way that farmers prepare corn ground. Have it well tilled, then mark it off 4 x 6 or 5 x 6, and when the ground is very rich 6 x 6 feet, and set the plant in the cross. Use the hands to fill the dirt around the plant. Set the plants that are transplanted under sash first, as they are the oldest and strongest. These can be handled, when set, as will be the rest, then fill that bed with plants again, as plants may be needed for replanting in case cutworms or other causes destroy some of the first setting.

Never put manure under the plants set in the field. The best way to manure the ground is a year before, for some other crop, such as cabbage, potatoes or pickles; then you can grow Tomatoes several years after. Never put Tomatoes in ground prepared with fresh manure, for the manure burns the roots and causes trouble, and the flavor of the Tomatoes is not so good. As soon as a field of Tomatoes is planted, go over the area with hoes and draw up some soil to the plant, and fill in around the plant with earth so it will not get dry into the roots. After the plants begin to take root, go through the field both ways with the cultivator, and keep this up during the season. One cannot cultivate them too much. Some farmers think that because there are no weeds growing around the plants they need very little cultivating; but this is a mistake. When the season is dry they need more cultivation in order to keep up the moisture.

Half-bushel baskets are very useful in picking Tomatoes. Our own practice is to take about six rows in a piece and throw the vines of a row around so that we can drive a team through the field. If the rows are 6 feet apart a team can go through without destroying many Tomatoes. In that way one can pick more Tomatoes in a short time because he does not have to carry them so far. Have boxes alongside where the team will go and the Tomatoes are carried to these bushed boxes, and when the team comes are loaded and driven to the factory. Picking is done mostly by children. A man is with them who keeps account of what they pick and gives them instructions in picking.

H. J. HEINZ Co.

Tomato Cultivation in the South.—The Tomato is one of the most representable of market-garden vegetables. It is of greater relative importance in the South than in the North. Essentials of habit and cultivation do not materially differ in either section. While by no means a
gross feeder, the plant demands a fairly good soil, light, porous and well drained; and is grossly responsive to indiff erent and ill-drained, though acutely sensitive to the slightest variations of soil and climate. Underfertilized it is unprofitable; too liberally manured, espe- cially with muck, tends to an overgrowth of the non-fruiting end, and produces an abundant but unpalatable and astringent fruit, which is subject to excessive invasions from bacterial and fungous diseases. Similar results follow from wet seasons or too heavy soil, while drought or insufficient nourishment entitles it to the shelter of a: To steer a middle course between these extremes is diffi cult. It is, on the whole, safer to underfertilize than to overfertilize—to select a moderately dry, sandy loam, well manured at the last season, and give sparingly the action of fertilizer, or none at all for the present crop—to risk underproduction rather than invite overproduction. A few cases are on the far side of the fence, in a well-rotted stable manure, reinforced by a top-dressing of superphosphate in early spring, gives excellent results on the borderlands of the cold area. Of course with trellis crossing plowing is impossible.

Under either system pinching back weak or inco- mpetent laterals is necessary. All lower laterals when stake-training is used, are removed from the ground until a main stem is established, which is trained spirally around the stake and secured with rafia, after which laterals are still shortened from time to time, as occasion requires. This also insures that the fruit, which is of such a size and that the plant is sometimes restricted to one stem for "fruiting" results. When no support is used only the most stocky and fungus-resisting varieties should be planted and severely pruned while young, to form, as far as possible, an upright, rigid growth. This is the most common method and probably the most profitable also, when land is cheap and the grower is not readily discouraged by damp and decay and his vigorous and determined in the use of the mieux imprad-grand. It is certainly the most economical form of cultivation everywhere, at least to outward appearance.

Without his spray-cart and fungicide the tomato-grower is lost—and knows it! The sprayer has hence become an indispensable adjunct to the plant, by means of which most of the fungus and bacteroid affections of the plant may be, if not altogether prevented, at least held in hand and damage reduced to a minimum. It must be kept going resolutely and continuously from the first sprout to the first fruit, but the preparations consist of an admixture of 4 ounces Paris green to each barrel of Bordeaux mixture to hold in check insect depredators, later sprays to be made with Bordeaux lime type.

Second Crop.—A peculiar advantage of the Tomato over other transplanted truck crops is its ready dispo- sition to grow from cuttings, thus obviating the neces- sity for re-seeding. For a second or fall crop, as with the cabbage. The cuttings afforded by the trimmed laterals strike root vigorously, and thus afford a ready means for filling vacancies in the plant immediately upon their occurrence; and, since the plant from cuttings begin to fruit as soon as they start growth, a continuous success- sion may be obtained from early summer until the plants are cut short by frost in the fall—an economic consideration of vast importance.

Marketing.—While no particular state or section of the South altogether monopolizes the northern markets, and many trucking centers from lower Texas and Florida to Norfolk and Memphis successfully forward their shipments in greater or less quantity, the Florida crop is probably the earliest, largest and best known, though heavy shipments are made to western cities from Louisiana and Mississippi, while the middle and eastern states are supplied, after the Florida shipments have ceased, by the truckers of Savannah, Charleston, Wil- mingston and New Bern, which latter group is well known in the regular "six-basket carrier" need for Georgia
peaches, and forwarded by "ventilated fast freight." This is due to the early spring demand, but the fruit ripens unevenly and is frequently unsatisfactory at the expected fancy figures on account of its appearance.

A growing tendency has been lately manifested to ship the fruit in coloring, after careful and systematic grading, in "four-basket carriers" by refrigerator cars. Despite the extra cost of icing and the later shipment, quality and prices are thereby more satisfactorily maintained and the northern public will soon insist altogether on this more rational method being put into practice universally. The sorting and grading cannot be carried too far, since the culls and second-class fruits are equally as good for the canneries as first grades and hence the standard of excellence may always be maintained without material loss.

Fungi Diseases.—Of the fungous affections of the Tomato, damping-off in the seed-bed is the first to be noted, and is familiar to all. Provoked by excess of moisture, warm and confined air, it may be controlled by withholding water from the young plants except at midday, stirring the soil to break up and destroy the mycelium of the fungus, and otherwise thoroughly ventilating.

Milder, *Cladosporium fulvum*, is a common malady in the South during wet seasons, and may be easily recognized by the continuous and successive death of the foliage from below upward along the main stem, and the great effort of the plant to set new leaves and branches above, thereby maintaining its life at the expense of production. Steady spraying with Bordeaux mixture is the remedy.

Florida blight, an undetermined species of *Sclerotium*, is less common, though sometimes quite serious. It produces a wilted appearance in the plant somewhat resembling that caused by the "bacterial blight," and like it generally causes death. The peculiarity of this fungus consists in the fact that the greater portion of its life is passed under ground and it is hence unaffected by fungicides applied to the foliage. Even when applied to the surface of the ground beneath the plant Bordeaux mixture is of little value, since the precipitate formed by the copper salt in suspension is more or less arrested or strained out by the soil as the liquid filters through. The ammoniacal solution of copper carbonate, and caustic soda, are not liable to this objection, and may be used as remedies with fairly satisfactory results.

Leaf curl, scab, and early blight is also well known and while it seldom, if ever, completely destroys the plant, yet it greatly reduces its productiveness and is all the more insidious from the fact that it frequently escapes notice until it reaches an advanced stage. It is a form of vegetable dropsey due to too much soil moisture, unequal vegetable foods or excessive pruning—one or all. Cessation of pruning prolonged by deep cultivation will arrest the malady, to a great extent, as the plants will thus be given an opportunity to set foliage, thereby affording breathing surface sufficient to transpire or pass off the surplus moisture. The feeding power of the roots should be reduced and evaporation stimulated from the soil. Possibly a light application of superphosphate at time of cultivation would also prove beneficial.

Black rot, or blossom end rot, a widespread affection causing great loss of fruit, and quite familiar to all, seems to have long been erroneously ascribed solely to one of the forms of *Microsporum*—the familiar early blight of the potato—and *Bordeaux mixture* is consequently suggested as a remedy. Recent investigations by Earle seem to indicate that the real cause of the malady is no fungus but a bacillus, incapable, or at least, unable, of penetrating the outside tissues of the fruit, but rapidly developing on abraded surfaces or in insect wounds of any kind.

2523. Foliage of the two cultivated species of Tomato. *Lycopersicum pimpinellifolium*—Current Tomato—above; *L. esculentum*—common Tomato—below. (× 1 1/2.)

The boll worm appears to be an active agent in its distribution, while thrips and other wandering insects largely assist in spreading or disseminating the bacilli. Hence fungicides would prove of little avail in controlling the bacterial agencies, which seem to work in conjunction with the fungus heretofore regarded as alone responsible for this malady. We must therefore look for its complete subjugation only to those preventive measures which have been found efficacious in other forms of bacterial disease in plants. These are detailed in the next paragraph, which covers the worst malady known to the trucker.

Bacterial blight, *Bacillus solanacearum*, is by far the most difficult to control of all the affections of the Tomato. When this peculiar form of wilt puts in an appearance the grower is always thrown into more or less of a panic. The malady progresses rapidly. The foliage soon yellows and shrivels, the stems parch and contract, and death follows swiftly. As with most bacterial diseases, an effective remedy is yet to be found. At best, preventive measures only can be adopted. Since it has been found that certain insects—among them the Colorado beetle—assist in disseminating the bacilli causing the trouble it is evident that all leaf-devouring insect
pests should, as a primary procedure, be eradicated, as far as possible, from the Tomato plot. This at once suggests the importance of crop rotation as a second step, and thereafter, in sequence, the destruction of affected vines and conspicuous vegetable matter, the selection of areas not recently planted with solanaceous crops, and finally the importation of non-solanaceous plants as well as Tomatoes from districts known to be exempt from the blight.

Insect Pests.—While these are relatively numerous, their ravages are much less of a menace to the grower than either the fungous or the bacterial maladies. Only the more important are here mentioned.

First, the boll worm, Heliothis armigera. As the problem of the damage done by this insect is of almost equal interest to the cotton planter and the Tomato trucker, the corn grower, too, being largely concerned, it might well be left in their hands for solution, but for the fact that the loss to the trucker is not confined to the direct depredation of the worm itself, but a pathway is thrown open to the subsequent invaders of the bight bacillus, as stated. It is on this account that the trucker’s interest in the “boll worm” is paramount. Unfortunately no adequate remedy beyond hand-picking, the use of corn as a “trap-plant” and the destruction of wormy fruit has ever been suggested.

Of the various cut worms and wire worms almost the same might be said, omitting the interest of the cotton planter. Remedies are equally illusory. Except the plant-dressing with a bit of shingling and cabbage leaves or dough poisoned with Paris green and deposited at night about the plant, nothing of value has ever been suggested.

Hand-picking for the great, green, sluggish tobacco worms, Phlegmaticulis Carolinae, usually proves effectual, in combination with the process of poisoning followed by the use of a solution of copper and sugar deposited each afternoon, at dusk, in the corolla of the Jimson weed, Datura Stramonium, which the tobacco moth frequents.

The flea beetle, Phyllostreta citrate, pinholing the foliage in flurried, cloudy weather and thereby assisting the invasions of fungi and bacilli, is sometimes repelled though not destroyed by Bordeaux mixture.

Nematode galls, Fig. 214, p. 154, caused by the “vinegar cells,” Heteroderes va dioxidea, which affect cotton, peas and certain other garden plants, frequently do much damage to the Tomato. They can be avoided only by rotation of area and preventing the continuity of any of their host plants—particularly cowpeas.

After all, the chief injury wrought by insects upon the Tomato consists not so much in the direct depredation as in the incidental transfer of bacterial germ through their agency. Boll worms, thrips, Colorado and flea beetles, and other forms relatively innocuous in themselves, become, for this reason, a serious menace. Were their complete extirpation possible, the commercial prospects and possibilities of the Tomato plant would be infinitely improved. HUGH N. STARNES.

Tomato Growing Under Glass.—The Tomato is now one of the most popular vegetable crops for forcing. It is grown to a considerable extent near most of the large eastern cities. Very often it is grown in connection with carnations or other plants. The houses may be used for carnations during the winter season and for Tomatoes in late winter and early spring when the outside temperature is too warm. In many cases, however, houses are used almost exclusively for Tomato growing. The forced crop usually comes into market during holidays and runs until May or even June. The winter season, usually relatively light and the Tomatoes small. The crop that matures when the days are long, from April on, is much heavier and the fruits are considerably larger. Nearly all the better yields and large specimens that are reported in the public press are secured in the later crops.

Many Tomato growers aim to have crops from two sets of plants. One set of plants produces a crop in midwinter or somewhat later, and the other set comes into bearing in April or May. These crops may be raised in different houses, succeeding other plants. If they are grown in boxes, however, they may be handled in the same house, the pots for the second crop being set between those of the first crop before that crop is off. In many instances, however, only one crop is grown; that is to say, the effort is made to secure a more or less continuous picking from one set of plants running over a period of two months or more.

The Tomato requires a uniform and high temperature and is very subject to diseases and difficulties when grown under glass. There are many risks in the business of Tomato growing in winter. It is probable that there is no money to be made from it when the price falls below thirty cents per pound, and the profit, taking all things into consideration, is not much below forty cents.

Tomatoes are generally grown on benches or in solid beds, preferably the former. Sometimes they are grown in boxes 10 or 12 inches square or in 10- or 12-inch pots, but greater care is exercised to grow them in this way and the expense is also increased. Plants may be raised either from cuttings or from seeds. Seedlings are usually preferred in this country. It requires from four to five weeks to secure ripe Tomatoes after the seeds are sown. The young plants are usually started in flats and are then transplanted to other flats or, preferably, to pots. They should be stocky and well grown and about 6 or 8 inches high when they are placed in the beds.

Sometimes the old plants are cut down at the base and one or two of the stem covered with earth; the top then renewed itself, particularly if cut back, and a new crop of fruit is produced. Plants can be kept in bearing for two seasons. Healthier plants and better results are usually secured, however, when new plants are used for each succeeding crop, although time may be saved by the laying down process.

As grown in this country winter tomato plants are usually trained to a single stem, being supported by a cord that runs from near the base of the plant to a support overhead. In this system of training the plants may stand 2 feet apart each way or even less. The side shoots are pinched out as fast as they appear, the main central shoot being allowed to grow and it is loosely tied to a cord or wire as it ascends. Usually the main stem is stopped when it reaches about 5 feet in height. Some persons prefer to start 3 to 5 stems from near the crown of the plant and to connect the same by tying. When this is done the plants should stand from 2 to 3 feet apart
either way. This system is seldom used in American commercial Tomato growing, however. The soil should be much like that which is adapted to the growing of Tomatoes out of doors. It should be well enriched with a good manure and also with some commercial fertilizer which is relatively rich in the mineral elements. Care should be exercised that the soil is not secured from a Tomato field, for in that case diseases are likely to be brought into the house. Every effort should be employed to cause the plants to grow continuously. Plants that become root-bound or yellow and pinched cannot be expected to give good results.

Some bottom heat should be applied. If the soil is as shallow as 4 inches, care should be taken that pipes are not too close to the bottom of the bench or that the heat is not too great. From 6 to 8 inches is a better depth for soil on Tomato benches, and the pipes for carrying steam should be several inches beneath the bottom. The temperature of the house at night should not fall below 60°, although a lower temperature than this, providing the house is dry and the plants are not growing very rapidly, may result in no appreciable harm. It is better, however, to maintain a temperature of 65° at night. The day temperature should run from 75 to 85°. The house should have an abundance of light and should be high enough only to allow the plants to have free head-room.

The Tomato plant is very likely to grow too rapidly when it is given too much water and the temperature is too high. This is particularly true in the dull cloudy days of midwinter. The plant then fills with moisture, becomes soft and flabby and is likely to develop the ocellus, or droopy. This disease manifests itself in brown elevations on the stems and in the curling of the leaves.

When a plant is once seriously affected it is worthless. The preventive is to keep the houses well ventilated and relatively dry in spells of dark weather. This caution applies particularly to the dullest and damper parts of the house.

The tomato flower needs hand-pollination to enable it to set fruit. The pollen will ordinarily discharge readily if the flower is jarred quickly at midday when the sun is shining and the house is dry. When the flowers are ready for hand-pollination a bright day should be looked for and the house should not be watered that morning. The pollen is jarred into a spoon or a watch-glass, and into this pollen the protruding stigma of the flowers is rubbed. It is necessary to apply an abundance of pollen in order to secure large and well-formed fruits. The pollinating should be done freely and with great thoroughness, as upon this operation depends the chance of securing a full and good crop. One can rarely expect to secure from a whole house an average of more than 3 to 4 pounds of fruit to a single plant for the winter crop when the plants are trained to a single stem. Similar plants fruited in April or May, however, may produce considerably more than this. As the fruit clusters begin to get heavy, they should be supported by cords secured to the main stem (Fig. 2525).

Many varieties of Tomatoes force with ease. There are few which seem to be especially forcing varieties. Usually a Tomato of medium height and of large size and one that is rounded and with few creases or angles is to be preferred. The varieties of Tomatoes that are in favor for forcing are constantly changing and it is advisable to give a list here.

The Tomato is beset by several difficulties when grown under glass. One of the most serious is the root-gall, which is due to a nematode worm. In the northern states where the soil may be frozen there should be little difficulty with this pest. After the crop is off in early summer all the soil should be removed from the house, as the soil should be thoroughly washed with lye. The new soil should be such as has been thoroughly frozen. The practice of mixing old forcing-house soil with the new soil is very likely to perpetuate any root-gall difficulty that may have been introduced into the house. When once plants are affected with the root-gall they cannot be saved. The Tomato rust, which is characterized by fomu- gous spore-patches on the under sides of the leaves, may be held in check by spraying with Bordeaux mixture, or other fungicide. There are several forms of blight which are apparently bacterial troubles. These seem to follow unsanitary conditions of the house, as too close temperature, too little light, too much moisture at the root, and the like. They are characterized by various degrees of curling and blackening of the foliage and young growth. There is no remedy. Infected plants should be destroyed and as a safeguard, the soil in which they grow should not be used again in the house. The rot of the fruit is often serious in Tomato houses. The cause of this is not definitely known. After the rot has proceeded to a certain stage, filamentous fungi develop, and these were formerly considered to be the cause of the trouble. The only remedy so far known for rot in houses is to

2526. Sculptures from a Theban tomb "of the 18th or the beginning of the 19th dynasty."

From Dauhery's " Lectures on Roman Husbandry. " "The plough itself is nothing more than a modification of the hoe, which was first dragged along the ground by manual labor, before the force of oxen was substituted." (See Tools, page 185.)
give attention to the general sanitary conditions of the place and to pick off the injured fruits as fast as the disease develops.

L. H. B.

TOMATO. Husk T. is *Physalis pubescens*. Strawberry T. is *Physalis Alkekengi* and *pubescens*.

TOMMASINIA. (Tommasini, a magistrate and naturalist of Trieste). Umbelliferae. Two species of herbs allied to Pene cladum and Angélica. Bradley and Hooker attach it to *Pene cladum*. In the breaking up of that genus (see *Pene cladum*), this group would seem to be best treated as a distinct genus, following Koch, Boissier and others. It has the habit of Angelica. From *Pene cladum* it differs chiefly in having the petals involute on the margin. *Involucre none; involucel many-leaved; margin of carpels dilated: fts. somewhat polygamous. One species, T. verticillaris, Bertol. (Parthenium verticillare, Koch. Angelica verticillare, Linn.), is advertised in this country as a lawn plant. It is a hardy perennial, about 1 ft. tall; its with many small yellow-green flowers, 3-pinnate, the leaflets ovate, acute-serrate and the lateral ones often 2-lobed and the terminal one 3-lobed, the petiole much dilated at base. Piedmont region, S. Europe.

L. H. B.

TODDART TREE. *Eucalyptus gomphocephala*.

TOOLS. The American farmer is known by his tools and machinery. Labor costs much and land costs little. The

Dray Plough, which is good to be used for mery Clays in Winter; but is not so proper to be used in Sussex.

A No. 5. The Figure of a single'd Wheel'd Plough, used in Sussex.

A No. 6. The Figure of the Northdownshire Wheel Plough, which is of the easiest Draught; proper for any Grounds, except mery Clays, which are apt to close the Wheels. The several Parts of this Plough, being understood, will explain to us the Use of the other Ploughs. A is the Plough Beam, B the Handle, Tail, Stilts, or Staves, C the Neck, or Share Beam, D the Earth Board, Mould Board, Farrow Board, Shield Board, E the Sheath, F the Share Iron, G the Coultor, H the Plough Pin and Colar Links, I the Plough Pillow, K the Wheels."
American is inventive. The result is that there is a tool to expeditious and lighten almost every labor. The effort of each man is multiplied. Not only are the American tools numerous and adapted to almost every agricultural labor, but they are trim, light and comely in design.

A tool is properly a hand implement, used to facilitate mere manual labor. A machine is a contrivance, usually more elaborate, that multiplies and transmits power or motion. Yet tools and machines merge so completely that it is impossible to make a definite category of one or the other. The word implement is more generic, and applies to any intermediary device by means of which a man accomplishes a given work. The phrase "agricultural implements," as used by tradesmen, usually refers to both tools and machines. In general discussions the word tool is used somewhat indefinitely, as in this sketch; but even then it does not include complicated machinery.

The tools used by horticulturists can be thrown into four general categories:

1. Tools for tilling the land, as plows, harrows, rollers, cultivators, weeder, rakes. See Tillage.
2. Tools to facilitate various handwork, as seed-sowers, transplanters, markers, pruning implements, and most greenhouse devices.
3. Tools or machines to facilitate the destruction of insects and fungi, as fumigators, syringes, spraying devices. See Spraying, Insecticides, Fungi.
4. Tools or vehicles for transporting, as carts, harrows.

In the multiplicity of tools, one is often at a loss what to purchase. The buyer should have a definite idea of the kind of labor that he needs to have performed, and he should then consider how well adapted the tool may be to perform that labor. Once purchased, the tools should be cared for. A tool shed or room is the greatest convenience and often the greatest economy. Labor is expedited and annoyance saved if each tool has its place. Every farm or garden should be provided with a room that can be warmed in cold weather, in which repairs can be made on tools and machinery. No general farm barn is complete without such a room. The care of tools not only contributes to the longevity and usefulness of the implements themselves, but it sets distinct ideals before the farmer and thereby is a means of elevating him in the greater the variety and the higher the quality of the tools the more alert the user of them is likely to be. One should look up the new ideas in tools each year as he does in markets or crops. The advertising pages of rural papers are suggestive in this direction.

The original tool for opening or tilling the ground appears to have been a forked or crotched stick, one prong of which was used as a handle and the other as a cleaving instrument. From this the hoe and the plow appear to have developed. Fig. 2520. The hoe and the plow are still the fundamental or primary tillage tools, one being for hand-work essentially what the other is for team-work. As the philosophy of tillage has come to be better understood, these tools have been greatly modified and varied. It is interesting to know that the plow was not perfected until within a century. It is doubtful if the invention of one of the most important machines of modern times has really meant so much for the welfare of the race as the birth of this humble implement. To many persons is ascribed the credit of the invention of the modern plow, for the implement seems to have originated independently in different countries, and even in America there are various contestants for the honor. Thomas Jefferson, Charles Newbold, David Peacock, and others have received the honor, but there is reason for ascribing the modern type of plow to Jethro Wood, of Scipio, Cayuga county, New York. The years 1814 and 1819 are the dates of his most important patents, although the latter is usually regarded as the Natal day of the implement. Wood was born in Massachusetts in 1774 and died in 1845 or 1846. (See "Jethro Wood, Inventor of the Time Plow," by Knowlton, Chicago, 1882.) The study of plows is a curious and profitable undertaking, and one that still needs to be prosecuted. Some of the forms of plows, ancient and modern, are shown in Figs. 2527-30.

The large-area farming of North America and the appreciation of the principles that underlie tillage have resulted in the invention of a large number of surface-working tillage tools. These inventions are particularly important in orcharding, as they enable the grower to maintain the necessary surface mulch (see Tillage and Ornamental) with a small amount of labor and without training the trees too high. There are now many cultivators and harrows which cover a wide swath and which are adapted to the light stirring of the surface soil without the turning of furrows and the riding of the land. Fig. 2531. One who is contemplating a serious study of tillage tools should familiarize himself with the inventions of Jethro Tull, before the middle of the eighteenth century. Tull devised implements to facilitate the tillage of plants when they were growing in the field.

In hand-tillage tools the greatest recent advancement is in the development of the wheel hoe. Fig. 2532. This light and simple tool, usually with adjustable blades, performs the labor of many sets of fingers and does the work more effectively so far as tillage is concerned. It also enforces better initial preparation of the land in order that it may do its work more perfectly; and this remark will also apply to the modern seed-sowers. Fig. 2533.

Unfortunately, there is no recent American book that discusses the principles underlying the application of farm tools and machinery. Practically, our only sus-

2520. The perfected American plow.
tained effort in that direction is Thomas’ “Farm Implements and Machinery,” 1839 and 1869. Useful handbooks illustrating various farm devices are “Farm Conveniences” and Martin’s “Farm Appliances,” both published by the Orange Judd Company.

L. H. B.

TORREY

TORREYA (after Dr. John Torrey, one of the most distinguished of the earlier American botanists: 1796-1873). Syn., Typhon, Carya torreyana. Conifer. Ornamental evergreen trees, with innumerable shored branches, clothed with yew-like, two-ranked, dark green foliage; the fruits are drupe-like and about 1 in. long. The Torreys are but little known in cultivation and rarely seen in a flourishing condition. The southern

AA. Fls. mainly blue or white.

Asiatica, Linn. Annual, erect or diffuse: stem quadrangular; lvs. ovate or ovate-lanceolate, long- acuminate, serrate, obtuse, not cordate at the base, rough to the touch; peduncles axillary, single-flowered: corolla large; tube dark purple; limb 4-lobed, of a delicate pale purple-blue, with a dark blotch on 3 of the lobes, without a yellow eye; stamina 4, the 2 longer with a subulate spur. India. B. M. 4249.

Fournier, Linden (T. edentula. Hort., not Benth.). Fig. 2534. Low, bushy, usually annual, becoming nearly 1 ft. high; stem 4-angled; lvs. petioled, cordate-lanceolate, 1-1½ in. long, crenate-serrate; petiole ½ in. long; corolla-tube narrow, yellow; corolla-limb 2-lipped, the posterior lip not cut, pale blue, the anterior 3-lobed; lobes round obtuse, dark purplish blue, the anterior lobe marked with a yellow blotch. I.H. 23:249. R. H. 1876, p. 463. B. M. 6747.—Var. alba, Hort. (var. White Wings) has pure white flowers. A. F. 5:401. G. M. 30:87. Var. grandiflora has somewhat larger fls. and is more free-flowering. In the neighborhood of Philadelphia, self-sewn seed sometimes germinates in the spring; also seeds of T. flava. B. M. 4249.

Torenia Fournieri in Florida is an excellent substitute for the pansy, which is cultivated only with difficulty so far south. Young plants come up by the hundreds around the old plants from self-sown seed during the rainy season. The species can also be propagated with great ease by cuttings. The Torenia shows its full beauty when planted in beds, or borders or in masses in front of small ever- green shrubs. It flowers abundantly throughout the summer, and even late in fall isolated flowers may be found. The best results are obtained by treating it as an annual. Any good and rich light soil seems to meet its requirements. It succeeds almost everywhere but prefers shade and moisture. It even grows luxuri- antly in wet places along ditches and water-courses where forget-me-nots grow in the North. If such localities, however, are very shady, the flowers, though much larger, are neither pro- duced as abundantly nor are they colored so brightly as in sunny situations. On the other hand, it is sometimes found in such dry positions, where only eacti and yuccas manage to live, that one can scarcely understand how it is able to succeed. In good soil the Torenia attains a height of from 8 to 10 inches, and when planted about 8 inches apart soon cover the ground enti- tally. There is already a great variety in colors, but the typical plant has beautiful light blue and royal purple flowers, with a bright yellow throat, in texture rivalling the most exquisite velvet. H. Neiling.

TORNILLO. See Prosopsis pubescens.

flava, Buch.-Ham. (T. Bidentata, God. & Pot.) Usually decumbent and creeping: lvs. 1-2 in. long, ovate to oblong, coarsely crenate; petiole half as long as the blade or less; fls. axillary and solitary or scattered at the ends of the branches in pairs on an erect racio; evo-

2531. Two types of tools for preparing the surface soil. The spike-tooth and spring-tooth hoes.
T. taxifolium survives the winters in very sheltered positions in the vicinity of Boston, but T. Californiae is not hardy north. The Japanese T. mucronata is probably the hardiest and most desirable species, but seems not yet to have been tested north. Torreyas will probably grow best in shaded and sheltered positions and in a somewhat moist loamy soil. Prop. by seeds; also by cuttings and by grafting on Cephalotaxus. Plants raised from cuttings grow very slowly and usually remain bushy. For cions, terminal shoots should be selected.

There are 4 species in N. America and E. Asia. Trees, rarely shrubs; lvs. 2-ranked, linear or linear-lanceolate, with 2 narrow glaucous lines beneath, becoming fulvous with age; when bruised the foliage emits a disagreeable odor; fls. dioecious, rarely monocious; staminate fls. ovoid or oblong, composed of 6–8 whorls of stamens, surrounded at the base by bud-scales; pistillate fls. consisting of a solitary ovule surrounded at the base by a fleshy aril and several scales; fr. drupe-like, consisting of a rather large seed, with thick woody shell entirely covered by a thin fleshy aril. The hard, strong and close-grained wood is valued in Japan for cabinet work and building. It is very durable in soil in this country it has been used for fence posts.

Rhusy was recently been taken up as the proper name for this genus, since the name Torrey was used for other genera before being applied to this; but there are good reasons why some of these older Torreys can stand, and no useful purpose can be served by replacing the present name.

a. Lvs. linear, about 1/3 in. broad or less.

b. Length of lvs. 2 1/2–5 1/2 in.

taxifolia, A. Nutt. (T. taxifolium, Greene). Fig. 2335. Tree, attaining 40 ft., with spreading, slightly pendulous branches, forming a rather open pyramidal head; bark brown, tinged orange; lvs. linear, acuminate, dark or dark yellowish green above, with narrow white line beneath, 1 3/4–2 in. long; fr. oblong, dark purple, 1–1 1/2 in. long. Fig. S.S. 10:512.

AA. Lvs. lanceolate, one-sixth in. broad or somewhat less.

mucronata, Sieb. & Zucc. Tree, usually 30 ft., but occasionally 80 ft. high, with spreading branches, forming a compact head, sometimes shrubby; bark bright red; lvs. lanceolate, acuminate, rigid and spiny pointed, very dark green above, with 2 white lines beneath, 2 1/2–1 1/2 in. long; fr. ovoid, oblong, less than an inch long. Japan. S.Z. 2:129. R.H. 1873, p. 315. — The Chinese T. grandifolia. Ficus is very similar in foliage, but said to lack the disagreeable odor of the other species. R.H. 1879, p. 173. G.C. II. 22:681.

ALFRED REICHEN.

TOXOLOY (Bee-wood, from the Greek). Urticaceae.

Osage Orange. One species, a thorny North American small tree, much used for hedges. Formerly known by Nuttall's name Macera (named for Wm. Macare, American geologist), but Rafinesque's Toxylon has a year's priority. The orange-like, inedible fruit is familiar to children. See Fig. 2536. The tree thrives in moist and rich or in ordinary or dry soils. Its roots do not rise.
are voracious feeders and rapidly deplete the soil.
Hardy as far north as Massachusetts. A tree with deciduous, simple, alternate, petiolate, entire leaves and milky sap; branches, particularly the lower, best with elliptic, slightly acuminate, straight, axillary pines 2-3 in. long; flat minute, dioecious, apetalous, axillary, appearing in May to June, the staminate borne on the short spur-like branchlets of the previous year, racemose, pedicillate, pedunculate; calyx 4-parted, with its segments valvate; stamen 4, the pistillate borne on branches of the current year, sessile, capitate; peduncle short, the 4-decif calyx inclosing the sessile ovary: style simple, filiform, long and exserted; ovary superior, one-loculed; species solitary: fr. a dense aggregation of enlarged, fleshy calices into a globose syn carp with a mammallate surface; light green or yellowish in color; syn carp 4-5 in. in diameter, falling as soon as ripe in the autumn.

2536. Osage Orange—Toxylon pumiferum (X 1-3).

Before the advent of wire fences the Osage Orange was an extremely valuable hedge plant, meeting general requirements better than any other plant suitable to our climate. It is used considerably, and where properly attended to from the start makes a hedge in a short time of a fairly defensive nature. Most dealers in tree seeds keep seeds of the Osage Orange, and those who grow the plants procure the seed in spring, drilling it in rows. The Osage Orange grows readily from seed, even when the latter is a year old. The sowing in rows gives the seedlings a chance to become stocky by fall and plants two feet high the first year are not uncommon. These one-year-old plants are quite good enough for hedging. Nurserymen who grow them for sale usually dig the plants in the fall, storing them away in a cool cellar, the roots buried in sand. They are then sorted into two grades, which compose first- and second-class plants. At the time of grading, the tops are chopped off somewhat, leaving about six inches of length only. This fits them for planting without more cutting.

The place where a hedge is desired should be well cleared of all weeds. If cultivated for a year in advance, so much the better, as it will make the keeping down of weeds a much easier task.

There are two ways of planting a hedge: viz., single row and double row. The double row is made by setting the plants nine inches apart each way, the plants in the second row coming between those in the first row, forming a zigzag line. The single row, however, is good enough, and is much easier to cultivate and keep clear of weeds. In single rows set the plants six inches apart.

The soil need not be rich for the Osage Orange. The plant is a strong grower naturally, and soil in fair condition will give a growth more tractable to form a good hedge than a rank growth from rich soil.

When dug the Osage plants have very long roots, and the budding of the may be checked advantage. If the plants are held in bunches and the roots chopped to an even length the setting will be an easy task, and there will have been already cut off if treated in the way above suggested.

Beyond cultivation of the plants, nothing is required the first year. By fall a good growth should have been made, and towards spring this should be cut back, leaving about six inches of the young growth. The season following more care must be given to forming a hedge. When in full growth, say in July, shear off the tops of the plants. Then will come the side shoots which will form the base of the hedge. Another light trimming should be given when growth is over for the season, to bring the plants into a hedge shape. Much the same work will be required every year—a trimming when growth is in full swing to make the hedge bushy, and another later on to shape it.

The proper shape for a hedge is the conical form, though it may be flat-sided or in any shape desired, provided the upper branches never overlap the lower.

Of late years a system of planting the Osage Orange differing from the one described has been followed by some. Strong two-year-old plants are procured and are planted in a slanting position. As the new growth is made it rises in an upright way as usual, and this produces a lattice-like appearance of the branches, and a very strong hedge. It is certainly stronger than a common hedge, and yet one common one properly looked after forms a defensive fence, meeting all requirements, and costs not nearly as much as the other. See Hedges.

Joseph Meehan.

TRACHELIEUM (Greek, trachelos, neck; from its supposed efficacy in diseases of the throat); CAMPANULATA, THRASTATWORT. A genus of perennial herbs or low shrubs with usually somewhat simple stems and terminal panicles of small blue flowers. The species are native to the Mediterranean region of Europe. Calyx aldehyde: lobes 5, narrow; corolla narrowly tubular; stamens free from the corolla: capsule nearly globose; seeds small.

cordifolium. Linn. A half-hardy biennial or perennial, 1-3 ft. high: lvs. ovate, acuminate, usually serrated, or entire, blue or white, in dense, terminal cymes, in late summer. Shaded places in S. Europe. B. R. 1: 72. G. N. p. 81; 47, p. 303; 51, p. 84.—An attractive late-flowering perennial suited to culture as an annual. According to G. N. p. 181, the species is fairly hardy in England, but young plants are more floriferous than old ones. Seed may be sown in March. The plant is easily propagated by cuttings. According to G. N. p. 303, plants from cuttings are dwarfer than seedlings.

P. W. Barclay.

TRACHELOSPERMUM (Greek, referring to the fact that the seed has a neck); Apocynaceae. Trachelospernum is a genus of 8 species of climbing shrubs, native to eastern Asia and Malaya. They have opposite lvs. and white or purplish fls. in lax cymes. Generic characters: calyx 5-seeded, globose or salver-shaped; mouth constricted; lobes oblique, overlapping to the right, twisted to the left; stamens inserted above the middle of the tube; anders convolute and adhering to the stigma; ovary 2-celled, the base: disk annular or of oblong glands; carpels 2, distinct, many-ovuled.

t. Jasminoides, the Star Jasmine, is a tender, evergreen, shrubby climber from China, with fragrant, white, 5-lobed flowers. It is a favorite in the South, where it is grown out of doors and known as the "Confederate Jasmine." In northern conservatories it is generally known under its synonym, Rhynechospermum. Handsome specimens may be grown in large tubs, making dense bushes 3 or 4 ft. high and as much in diameter. In May such specimens are cut down to 6 inches high and fill a greenhouse with their delightful fragrance. The blossoms are about an inch across, 5 or 6 in a cluster, pendulous, and of a very spirited appearance, which is largely due to the conical, acuminate, 3-5-rayed-mar-
TRACHELOSPERMUM

TRACHYCARPUS

The writer knows of two large specimens trained to a bush form that are the chief adornment of a cool greenhouse from late April to early July. Every year they are loaded with flowers throughout the month of May. The specimens require considerable room, and the gardener is sometimes compelled to keep them in a cold pit until the chrysanthemum season is over, although this treatment is not to be advised.

Jasminoides, Linn. (Rhychoporum jasminoides Lindl.) Star Jasmine. Also called "Confederates," "Malayan" or "African Jasmine." Fig. 2537. Tender, evergreen, climbing shrub described above: Ivs., short-stalked, ovate-lanceolate, acute, glabrous; peduncles much longer than Ivs.; calyx-tubes reflexed; corolla-tube contracted below the middle; several jagged scales at base of corolla: 5 large glands at base of ovary, 2 united. 3 frc. Southern China. B.M. 1157. Org. 5:132. Gn. 41 p. 397. — Var. variegatum, Hort., has Ivs. of green and white, tinged red. [Robert Shore and W. M.]

Star Jasmine (Trachelospermum jasminoides) is a very choice and beautiful woody climber for the South. Being a native of the southern part of China, it is well adapted to the climate of the extreme South. It commences to bloom early in April and the last flowers can be enjoyed in May. Even in October and November one may find numerous scattered flower-clusters. When in full bloom the plant seems to be covered with a white sheet, the flowers almost hiding the dark green foliage and filling the air for many yards away with a peculiar and most delicious fragrance. The Star Jasmine is beautiful even without flowers. It is not easily propagated and therefore it is not a common plant in gardens. Even plants with good roots require a great deal of intelligent care, and it is no easy matter to bring transplanted specimens into a flourishing condition. It should be transplanted into the garden in November or December, pot-plants always being preferable for this purpose. The soil should be kept moist all the time, and especially during the dry spells in April and May. If the soil is not naturally rich a moderate amount of fertilizer should be applied. When once established, the plant does not need any more care than the Carolina jasmine (see Gelsemium). In summer, during the rainy season, a mulch of grass and fresh cow manure is exceedingly beneficial. It is best grown on a trellis of two, three or even four posts about ten feet high with strong galvanized wire all around; or strong laths can be used in stead of wire. If the specimen is a strong and healthy one it will soon cover the trellis in a dense tangle of mass and the new shoots will gracefully protrude to all sides. The propagation is best affected in Florida by layering, and strong plants can be raised in this way in about two years.

H. Nehering.

2538. Fortune's Palm—Trachycarpus excelsus (or T. Fortunei). The leaves finally become 5-5 feet across.

and western parts of England. In some sheltered spots in these favored regions it has flourished remarkably year after year. It is also called the Chusan Palm.

For practical purposes Trachycarpus is best considered a genus of four species, two of which are natives of the Himalayan region and two native respectively to China and Japan. The Himalayan species have their trunks clothed with the old leaf-sheaths, while the far-eastern species have beautiful, smooth, polished trunks. In each group one species has the tips of the leaf-segments pinnulate and the other has them straight. These are the most obvious and important differences to the horticulturist, except that T. Fortunei is the hardest of the whole genus. The differences above cited mark extreme types only. Intermediates occur. Much study has been given to this genus of palms and many characters to separate four species have been proposed at various times and subsequently abandoned. The latest botanical conception of the group (Becari and Hooker in the Flora of British India, 6:436 [1894]) unites the Himalayan species into one and the far-eastern forms into another. In support of this view may be urged the important facts that smooth-trunked forms have lately been discovered as far west as Upper Burma, and also that the straight-tipped Japanese form may be merely cultivated or run wild in Japan. Its origin and nativity are not yet certain. Both points of view are given on the next page, each being given for its own point of view. The horticultural account is based upon Hooker's notes in B.M. 728, and the botanical is taken from the Flora of British India. Some botanists prefer the masculine case endings, others the feminine.

Fortune's Palm is grown indoors and outdoors in America wherever palms are grown, but it is not one of the most popular species with northern florists. It seems to reach perfection in California, where it is one of the most popular of all palms. Ernest Braunton writes that it is hardy throughout the southern half of the state, where it is commonly known by the appropriate name of Chinese Windmill Palm. It attains a height of 30 ft. Braunton adds that it is harder than the native Washingtonia and will stand more abuse. It grows well near San Francisco. A new palm has recently come into California under the name of Chamaerops or Trachycarpus Phædorium, a name unknown to botany. All the specific names cited in the synonymy below have also been combined with Chamaerops.

Generic characters: spadix many, interfoliar, stout, branched; spathes embracing the peduncle and branches of spadix; coriaceous, compressed, tomentose; bracts and bracteoles minute; fls. small, polygamo-monoecious; scales 3, ovate; petals 3, broadly ovate, valvate; stamens 6; carpels 3; stigmas 3, recurved; ovules basilar; drupes 1-5, globose or obovoid: seed erect, ventrally grooved: albumen equal.
Horticultural View of Trachycarpus.

A. Trunk clothed with old leaf-sheaths.

Himalayan species.

B. Tips of leaf sheaths: leaves, velutinous beneath………………………Martianus

BB. Tips of leaves: straight……………………..Fortunei

AA. Trunk not clothed with old leaf-sheaths.

Chinese and Japanese species.

B. Tips of leaves: pendulous…………………Fortunei

BB. Tips of leaves, straight…………………exclusus

Following is the Latest Botanical View of Trachycarpus.

Martianus, H. Wendl. (T. Khasianus, H. Wendl. T. Griffithi, Decne.). Trunk for the most part naked, annulate; flowers, fr. solitary, sessile; drupe oblong, equally rounded at both ends; seed grooved throughout its entire length; embryo opposite the middle of the groove. Himalayas. B.M. 728. R.H. 1879, p. 212.

exclusus, H. Wendl. (T. Fortunei, H. Wendl.). Fig. 2338. Trunk clothed throughout the old leaf-sheaths: fr. clustered.

2539. Three kinds of Wandering Jew.

A. **Trachycarpus fortunei** is not a popular florist's plant for three reasons: First, it is not as beautiful as *Livistona Chinensis*; second, it is a slower grower, and this is an unpardonable fault to the average florist; third, there is a greater demand, generally speaking, for plume-leaved palms than for fan-leaved palms. The undersigned has not seen a plant of it for several years, but it was cult. in America more than 20 years ago. It is dwarf in habit, rather slow growing, the foliage dark green and somewhat stiff, and in texture decidedly tough. In a young state it bears much resemblance to *Livistona australis*, though the latter is more spiny and has longer footstalks.

W. H. Taplin.

TRACHYMENE (Greek, rough member). Alluding to the fruit). *Unbeillifera*. A genus of 14 species, 12 of which are Australian annual, biennial or perennial herbs, usually bissect, with ternately divided leaves and blue or white flowers in terminal clusters. Calyx 6-lobed, minut: petals entire, obtuse, imbricated: fr. compressed. Flora Australiensis, Vol. 3.

TRADESCANTIA (John Tradescant, gardener to Charles I.; died about 1638). *Commelinaceae.* *Spiderwort.* Thirty-six species are admitted by C. B. Clarke, the latest monographer, 1881 (DC. Monogr. Phaner. 3). This enumeration does not include *T. Regis* and other recent species. They are all American, ranging from Manitoba to Argentina. In habit they are various, varying from erect bushy species to trailing plants rooting at the nodes. The plants are more or less soft and sneezingly trifoliate leaves, a usually not fleshy. The leaves are alternate, sheathing, varying from ovate to long-linear-linearaculate. The flowers vary from red to blue and white, sometimes solitary but usually in simple cymes or umbels; sepals and petals each 3, free, the sepals sometimes colored; stamens 6, in some species the alternate ones shorter, the filaments usually more or less beard at the base or above: ovary 3-lobed, with 2 ovules in each locale, the style single; fr. a 3-lobed dehiscing capsule. The genus *Zelina* usually confounded with this by gardeners, housekeepers, among other things, in having a tubular perianth.

To horticulturists, *Tradescantias* are known as hardy herbs, coolhouse plants and warmhouse plants. *T. Virginiana* is the best known of the hardy species, standing the climate of the northern states. The Wandering Jew of greenhouses and hanging baskets, usually known as *T. trifidus*, is partly *Zelina anisiana* and partly *Zelina pendula*, *T. Regis* is perhaps the best known warmhouse species at present, although various species may be expected in botanical gardens and the collections of amateurs. The glasshouse species are essentially foliage plants. Several species have handsomely foliaged leaves. All *Tradescantias* are free growers, propagating with ease from cuttings of the growing shoots.

A. Plant prostrate, rooting at the joints.

fluminensis, Vell. (T. manidula and T. albiflora), Kauh. *T. ripens*, *T. ripens villosa*, *viridis*, *viridis villosa*, *prostrata*, *prostrata*, *striga*, Hort. *T. trifidus*, Hort. In part, Wandering Jew in part. Figs. 2539-41. Glabrous, with shining stems and leaves, the nodes conspicuous, trailing, or the ends of the shoots ascending; frs. ovate-cuneate, with distinct petiole, ciliate at the very base, the sheaths 1/4-1/5 in. long; frs. white, hairy inside, the 6 stamens all alike, borne several together in a sessile cluster subtended by 2 unequal lvs. or bracts, the pedicels not exceeding 3 in. long. Central Brazil to Argentina. One of the commonest of greenhouse and basket plants. In greenhouses, usually grown under the benches. When the plants grow very vigorously and have little light, they are usually green, and this is the form commonly known as *Virens*. There are forms with frs. striped yellow and white, but these colors usually do not hold unless there is abundance of sunlight. In light places, the lvs. become red or purple beneath. Very easily propagated by cuttings or pieces of shoots at any time of the year. The plant needs plenty of moisture in order to grow vigorously. Three plants are known as Wandering Jew, and although they belong to three genera, it is not correct to tell them apart when not in flower (Fig. 2539). These plants are *Tradescantia fluminensis*, sheaths hairy or ciliate only at the top, frs. white; *Zelina pendula*, sheaths hairy throughout or at least at base and top, lvs. redder beneath and almost colored above, frs. rose-red; *Commelinia uniflora*, sheaths glabrous, frs. blue. The two first are tender to frost; the

2540. Flower of Tradescantia fluminensis. Natural size.
TRADESCANTIA

last is hardy in the open ground in central New York. All of them are used for baskets and vases. The two first are best known and are the plants commonly known as Wandering Jew. All of them may have striped foliage. See Commelina and Zebrina.

AA. Plant erect, or ascending from a decumbent base.

b. Species grown primarily for the colored foliage: greenhouse kinds.

c. Stem none, or scarcely rising above the ground.

1. uselata, Lodd. (properly Pyreheuma Loddigei, Hassk.). Stemless, brown-tomentose or hairy; lvs. ob-long-ovate, entire, about 2-nerved, short-petioled; fls. blue or blue-purple, 1 in. or more across, borne in the midst of the lvs. on very short pedicels, stamens 6.

cc. Stem evident, usually branching.

d. Lvs. distichous (in 2 rows).

dd. Lvs. not 2-ranked.

E. Stamm all equal and similar.

Warscewicziana, Kunth & B.ouché (Dichorisandra Warscewicziana, Planch.). Fig. 2342. Dichorisandra-like, having a stout caudex or trunk, marked by leaf-scarrs and finally branching: lvs. green, stiffish, 1 ft. or less long, clustered at the top of the stem, recurving, lanceolate-acuminate: fls. blue-purple, numerous in small crowded clusters along the branches of a panicled-like cluster. Guatemala. B.M. 5838. R.H. 1866, p. 136.

TRAGOPOGON

bb. Species grown as border plants for their flowers: native kinds.

c. Umbels sessile.

Virginiana, Linna. COMM. STRANDTOVOERT. Erect, branching, 1-3 ft., glabrous or nearly so: lvs. conspicate, very long linear-lanceolate (6-15 in. long), clasping: um- bels several-fl., terminal, the pedicel recurving when not in bloom: fls. violet-blue, in various shades, 1-2 in. across, produced freely nearly all summer. N. Y. to S. Dakota, Va. and Ark. B.M. 165; 3546 (as T. cavi- ciliata). L.B.C. 16:1513 (elata). - An exceedingly variable plant. Var. occidentalis, Britt., is in the trade. It has much narrower lvs. and smaller fls. and is usually dwarf. There are several horticultural forms. Var. alba has white fls. B.M. 3001. Var. asteroides has bright red fls. Var. carlen has bright blue fls. Some of these forms would better be regarded as species. See Rose, Contr. Nat. Herb. 5:264.

brevicaulis, Raf. Villos, 1 ft. or less high, sometimes nearly acaulescent: lvs. mostly from near the ground, linear-lanceolate, more or less ciliate: fls. about 1 in. across, blue or rose-purple. Ky. to Mo.

cc. Umbels pedunculated.

L. H. B.

TRAGOPOGON (Greek for goat"s beard). Composite. Goats' Beard. Between 30 and 40 species of erect bi- cental or perennial herbs with narrow grass-like leaves and heads of yellow or purple flowers, belonging to the Ligulate section of the composite family (tribe Cichori- aceae). Florses perfect, with slender style-branches and sagittate authors; pappus composed of bristles in a single series and mostly raised on a beak; involucres cylindric or nearly so, with approximately equal bracts in a single row. The Tragoagos are mostly weedy plants with a tap-root. They are native to northern Europe, northern Africa and central and southern Asia. One of them is cultivated for its edible tap-root (salsify) and another is now a frequent weed in this country. The flowers of these open only in the moring.
TRAGOPOGON

porrifólius, Linn. SALISY. VEGETABLE OYSTER. OYSTER PLANT. Figs. 2238, 2543. Tall strict biennial, sometimes 4 ft. high when in bloom, glabrous: fls. showy, closing at noon or before, the outer rays exceeded by the involucres scales: peduncle thickened and hollow beneath the heads. S. Eu. Naturalized in many parts of the country, often becoming a persistent weed. See Salsify.

AA. Flowers yellow.

praténsis, Linn. GOAT'S BEARD. More or less branched, 3 ft. or less tall: outer rays exceeding the involucres scales: peduncle scarcely swollen. A weed from Europe.

L. H. B.

TRAILERS. See Vines.

TRAILING ARBUTUS. Epigera repens.

TRAILING ECHINIA. Cissus discolor.

TRAILING. See Priming.

TRANSPERSION is the process by which water is given off in the form of vapor from leaves and stems. Instead of a circulation of the sap in plants similar to the movements of the blood of animals, water containing mineral salts is taken in at the roots in liquid form and carried upward to the leaves through the woody tissue, and then evaporated, leaving the mineral or ash behind in the leaf, where it serves in making food. The chief purpose of transpiration is, therefore, to carry a stream of mineral food from the soil to the green parts of the plant, although it also serves to aid in the exchange of gases with the air, and preserves more equable temperatures of the body of the plant.

Minerals may be absorbed by the plant only in very dilute solutions. Hence, it is necessary for the plant to lift several thousand pounds of water to the leaves in order to obtain one pound of minerals. After the mineral-laden water reaches the green organs, it is of no further use and must be evaporated. It is estimated that 98 per cent of the energy received from sunlight by the plant is used in this important work. That an enormous amount of work is performed by the plant in transpiration may be seen when it is known that a single sunflower plant will transpire a pint of water from its leaves in a single day, and about seventy times this much in the course of its development. A birch tree with 200,000 leaves will transpire from 700 to 1,000 pounds of water daily in the summer. A single oak tree will throw 120 or 130 tons of water into the air during the course of a season, and an acre of beech trees containing 400-600 specimens will transpire about 2,000,000 pounds in a single summer.

To determine the exact amount of water transpired by a plant, a specimen not more than a yard in height growing in a pot may be used. Set the pot on a square of oil-cloth, then bring the cloth up around the pot and tie closely to the stem of the plant. This will prevent evaporation except from the shoot. Now set the prepared plant on one pan of a scale, together with a small measuring glass, and balance. Allow the plant to remain in the warm sunshine for eight hours, then pour water into the measuring glass until the scale shows original position or reading. The water in the glass will represent the amount of transpiration.

To demonstrate that water vapor does actually come from the leaf, cut off a small leafy shoot of any convenient plant and thrust the base of the stem through a piece of card-board into a tumbler, the exposed part of the shoot with another tumbler and set in a warm, light place. Moisture, which could have come only from the leaves, will soon gather on the glass.

Some transpiration occurs over the entire surface of the plant, although only about one-thirtieth as much is given off by a stem as from the same amount of leaf surface. The leaves are specially adapted to carry on this function. The interior of the leaf is made up of a great number of loosely arranged cells which evaporate water into the air between them. The air in the leaf communicates with the atmosphere through openings called stomata, which are generally placed on the lower side of the leaf. Consequently the watery vapor diffuses out through the stomatal opening. The stomata are controlled by guard-cells which may completely close them up, and the action of the guard-cells is under the control of the plant. When the plant is losing too much water the stomata close; and they are variously affected by winds and sunshine. Species growing in very dry localities adapt themselves to the conditions by building only limited surfaces from which transpiration may take place and by reducing the number of stomata. The excretus is an example of this type, and this plant transpires only about one three-hundredth as much water as a leafy plant of the same volume. As might be expected, the character and amount of the mineral salts in the soil also affect the amount of transpiration.

D. T. MACDOUGAL.

TRANSPLANTING is a general term used to designate the removal of living plants whereby they may become established in new quarters. Transplanting may be performed when the plant is in a dormant condition, as in winter, or when it is still actively growing. Some herbaceous plants are usually the only ones that are transplanted when in a growing condition, and this only when the plants are living under special garden conditions where they may have the best of all possible care and be watered and shaded as necessary. From transplanting to watering and shading. Considered from the standpoint of the plant, transplanting is always a violent operation, for it destroys a considerable part of the root system, loosens the plant's attachment to the soil and arrests for the time being a large part of its progressive vital activities. In order to overcome these dangers the earth into which the plant is set should be well prepared and moist, so that the plant may quickly reestablish itself; part of the top usually should be removed in order to lessen transpiration, and with succulent and growing plants some shade should be provided for a time. The deeper and finer the soil, and the greater the quantity of moisture it holds, the more successful the transplanting operation will be, other things being equal. The operation is also more successful in humid regions, as in the Atlantic states, than it is in dry regions, as on the plains and westward. In the more arid parts of the country transplanting is performed, whereas as possible, and in the part great quantities of annual and other garden plants are transferred from seed-beds to the open ground.

The successful planting of any transplanting is in part on the condition of the plant itself. The younger the plant, as a rule, the better it withstands the opera-
transplanting. Herbaceous or growing plants that are relatively short and stocky and compact in growth transplant better than those that are long, leggy and weak. The stocky plants are better able to withstand the vicissitudes of inclement weather when they are transferred from a protected place to the open air, and if they possess recuperative power to make new roots and to attach themselves again to the earth. Many plants may be "hardened off" or gradually inured to sun and cold before they are transplanted, but more frequently a given plant is transplanted the more readily it endures transplanting. The root-system becomes close and compact and there is relatively less injury to the roots at each subsequent removal, providing a long interval does not take place between the operations.

The success of transplanting also depends to some extent on the weather at the time the removal is performed. If cool, cloudy and damp weather follows the transplanting, the plants are much more likely to live. Plants usually establish themselves more quickly in freshly turned soil, because it contains a relatively large amount of moisture. In order to bring the earth into contact with the roots, it should be firmly closed about the plants. This packing of the soil tends to bring the subterranean moisture upwards where it may supply the roots; it also tends to increase evaporation from the surface of the soil and thereby to waste the water, although much of the moisture is utilized by the plants as it passes upwards. In order to prevent the escape of moisture from the surface of the soil, it is customary to cover the ground with a mulch, from one to three inches in depth, of litter, sawdust, leaves or coarse manure. When practicable the water may be saved by keeping the surface well tilled, thereby providing a mulch of earth.

In dry weather it may be advisable to water newly set plants, particularly if they are green and growing fast, as tomatoes, cabbages and other annuals. The watering may best be done at nightfall. The water should be applied in a hole or depression about the plant or at one side of it, rather than on the surface; and the following morning the loose, fresh earth should be drawn over the roots in order to provide a surface mulch and to prevent the soil from packing.

All kinds of plants can be transplanted, but some of them do not transplant with great difficulty. In these cases the special skill which is born of experience with these particular plants must be invoked for success. The difficulties are of various kinds. In some cases the difficulty may be a tap-root system, as in the case of the black walnut and the hickories. In these instances the plant may be prepared a year or two in advance by severing the tap-root some distance below the ground by means of a spade or other sharp instrument that is thrust underneath the crown. In other cases the difficulty is the inability of the plant to make new feeding roots quickly, as in some of the asiminas or papayas. Such plants often may be treated like the tap-rooted plants; that is, the long, cord-like roots may be severed at some distance from the crown a year or two before the plants are to be removed. In other cases the inability to be transplanted is probably due to the excessive rate of transpiration from the foliage. In these instances cutting back the buds and providing shade may contribute to success. In some cases the difficulties are so great as practically to prohibit transplanting.

So-called transplanting machines have been perfected within the last few years for setting small herbaceous stuff, as cabbages, tobacco and tomatoes. These are really vehicles, drawn by horses, that open a furrow and drop a small quantity of water when the plant is inserted in the furrow by the hands of an operator who rides on the machine. The plants, already prepared for setting, are carried in a tray or hopper, and the operator places these between guards which automatically measure the distance. These machines are particularly valuable in large areas where great quantities of plants are to be set, and also in hard and dry land where it is difficult to make the proper openings with the hand and also otherwise to supply the plant with sufficient water. For most small plants that are to be reset in small quantity, the dibber is a most useful implement to expedite the operation. Fig. 2545.

Plants grown in pots and small shallow boxes transplant more readily than those grown in the open soil. Particularly is this true of pot-grown plants, for the base or slope of the pot allows the ball of earth to be "knocked out" readily. See Potting. Special transplanting boxes are on the market, to be used instead of pots, for purposes of economy. These boxes are usually made of thin basket stuff and are thrown away when the plants are taken from them for transplanting. Fig. 2415. The seeds are sown directly in these boxes. Melons, cucumbers and other plants that are difficult to transplant are often grown on pieces of inverted turf, taken from old pastures.

In the case of large trees and shrubs, success often may be attained by transplanting in the winter, when a ball of frozen earth may be removed. Fig. 2546. It is usually better to give the transplanting of large trees into the hands of an expert, than to attempt to perform it with unskilled help and inefficient appliances. Only a small proportion of the efforts in transplanting very large trees are really successful. The trees may live for several years and yet never fully recover nor make satisfactory subjects. The surest and best results are usually secured only when the trees are nursery-grown and have been transplanted two or three times within a few years of their final removal. There are some species that remove from the wild with relative ease when they are of large size, among which are elms, maples, pin oak, basswood; but the large number of species do not readily remove, and the attempt to complete the removal, Fig. 2546, it is sometimes said that a plant cannot recover from the transplanting operation, that the severing of the roots inflicts injuries that are not outgrown, and that a new type of root-stuff does not appear to be ungrounded. In many cases the plant does not regain itself, but these instances are probably due to lack of skill in the operation rather than to any inherent difficulty in the transplanting process itself. But even if the transplanting process were to be found to be theoretically injurious, nevertheless it must be employed in the practice of modern horticulture.

L. H. B.
Transplanting Large Trees (Plate XLIII).—The principles of transplanting large or small trees are the same, excepting as regards the machinery of transportation. Types of machinery for moving deciduous trees may be classified as follows:

The most primitive device is a two-wheeled cart with a pole. The tree is dug, and the cart is secured to it with the trunk resting in a notch in the axle or bolster, and the pole lashed up among the branches. The tree is pulled over and dragged root foremost.

In a modification of the above, a platform under the ball connects the rear axle, bearing the tree, with the front axle. Of this type are the Hall, Estes, Santimer, Rutherford and other patents. In one form the tree is loaded top foremost, and by means of a turn-table above the rear axle, swung around to position. These machines usually carry a ball of earth and roots, 7 to 9 ft. in diameter, cut shorter on the side next to the platform.

For moving trees in an upright position, there are low platform trucks, and trucks with two high perches. In the latter, one perch or a section of the axle is removed to admit the trunk between the perches. This form is used in England; also a similar one in which the tree is swung vertically beside the axle of a two-wheeled cart drawn by one horse. When carried vertically, the tree interferes with electric wires and the tops of other trees, and the roots are injured by the platform or other support. It is not practicable to carry a spread of 20 to 40 ft. of roots between the wheels.

House-mover’s rigging is adapted to moving trees for short distances, but is so slow that the fine feeding roots outside the central ball of earth are likely to dry out, and get broken by the work.

Trees are carried horizontally with the trunk resting on two benches on a low truck. The tree may be tipped over on the benches by tackle, or loaded and unloaded by derrick. The derrick legs usually interfere with the full circle of roots, and as the derrick has to be set up twice for each tree moved, the operation is slow, and, with the tree swinging in midair, somewhat dangerous.

For moving trees a few feet, a derrick may be used with or without small wheels in the base of the derrick legs. Many kinds of machines may be used, but in order to make this discussion concrete, the following account has reference to the device shown in Plate XLIII. Other successful moving operations are shown in Figs. 2547, 2548.

For operating the mover shown in Plate XLIII, the tree, of say 14 to 26 in. diameter of trunk, is dug by starting a circular trench with a diameter of 30 to 40 ft. An under cut is made beneath the roots with a light prospecting pick, and the soil picked out and caved down with a spading fork or picking rod, the points of which are rounded to avoid cutting off the roots. The loose dirt is shoveled out of the bottom of the trench. The roots, as uncovered, are tied in bundles with lath yarn and bent up, out of the way of the diggers. See Fig. 2549. If the roots are to be out of the ground over one day in dry weather the bundles may be wrapped in clay mud, damp moss, or burlap. When the digging has progressed to within 4 to 8 ft. of the center, the tree is slightly tipped over to loosen the central ball, which clears from the subsoil near the extremities of the downward roots. On sand or hardpan subsoil this is at a depth of 2 to 5 ft. In deep soil it may be necessary to cut some downward roots. A ball of earth is left in the center from 3 to 12 ft. in diameter, or as heavy as can be drawn by four to eight horses. This ball is not essential with deciduous trees, but it is easier to leave it than to remove and replace the soil. With fine-rooted trees like the red maple it is difficult to pick out the soil, while with coarse-rooted trees, like the beech, in gravelly soil, the ball drops to pieces.

For loading, the cradle which is pivoted above or back of the axle is swung over to the tree, the trunk having first been wrapped with enunciating covers. The trunk is clamped to the cradle by chains and screws without injuring the bark. By means of a screw 9 ft. long operated by a ratchet lever or hand brake wheel, the cradle lifts the tree from the hole and swings it over in a horizontal position. Pulling in the same direction, by tackle fastened in the top of the tree, aids the work of the screw.

After the tree is loaded, the roots on the under side of the axle are tied up to the perches. The front wheels are on pivots; therefore the roots are not broken by the swinging of the axle. The roots are drawn aside to put in the pole and driver’s seat. Planks are placed under the wheels, and the mover is pulled out of the hole by tackle.

The hole to receive the tree is prepared with a layer of soft mud in the bottom, which partly fills the crevices as the tree is lowered into it. The weight of the tree is not allowed to rest upon and crush the downward roots, but is supported by the mover until fine earth is packed in. Soil is worked down between the roots in the form of a mound by means of a stream of water and packing sticks. One man shoveling, two or three with packing sticks, and one with hose is the right operation until the center is made solid. The packing sticks are 2 in. in diameter, 6 ft. long, and pointed at one end and round at the other. The side roots are next unwrapped and covered at their natural depth.

2547. A large tree removed from its place. The roots are now to be wound in burlaps or other material.

While the tree is horizontal, it may be most conveniently pruned. The outside should be cut back 1 to 3 ft., cutting to a crotch or bud, and the remaining twigs thinned out about one-third. Hardwood trees and trees with few roots need the most severe pruning.
The soil should be friable loam, not baking clay nor sterile sand, and it should be made fertile. The surface should be covered with a soil or straw mulch 3 inches deep and the earth kept moist by watering once a week or less frequently, as required. The roots may be dam-
aged by too thick mulch, deep planting, excess of water or lack of drainage, all of which exclude the air. Decaying manure and caustic fertilizers in direct contact with the roots are injurious.

The tree may be secured by guy wires. Anchor posts are set slanting, 4½ ft. in the ground, with a crosspiece just below the surface. Two to six strands of No. 11 galvanized steel wire are used. The wire is run from the post, through a piece of hose around the tree, and back to the post. It is twisted tight, with two sticks turning in the same direction and moving toward each other. To prevent the sun from drying out the bark on the south side of the tree, the trunk should be wrapped with straw, especially thin-barked trees, like beech and silver maple.

The best trees for moving are those with abundant small roots. These have fibers branching from them which take in the water and plant-food. The large roots in the center of the root-system are conduits for the sap, and braces for the tree. Trees which transplant successfully are the maple, horsechestnut, elm, catalpa, ash, linden, willow, poplar and pin oak. Trees with few fine roots and hard wood, as the hickory and white oak, are difficult to transplant with good results, as well as the tender-rooted trees like magnolia, tulip-tree, etc. Young trees, grown in the open, are much better for moving than those in the woods. The roots are more numerous, and not mixed with the roots of other trees, the bark is thicker and does not dry out so quickly, the branches and twigs are closer and better developed to stand exposure, and may be thinned out without destroying the beauty of the tree, and more plant-food is stored for the new growth of leaves and roots. A young tree of large size is better to move than an old tree. In friable loam the roots are straighter and tougher and less liable to injury in digging, than in hard or rocky soil.

The popular prejudice that moving large trees is an ultimate failure, or that small trees quickly overtake them, arises from moving trees 1 to 2 feet in diameter with 6 to 8 feet diameter of roots. As this mass of roots is mainly the large roots, and from 70-90 per cent of the feeding roots are lost, the tree, after sending out the leaves with its stored plant-food, fails to support all the foliage and bark. In successive seasons its branches die, or the growth is short and yellow and the bark dies on the south side.

For moving large coniferous evergreens, it is usually considered necessary to keep a ball of earth intact. The foliage is constantly transpiring, and if the roots become dry, the sap does not flow again. As it is not generally feasible to move balls of over 12 feet diameter and 3 feet in depth, the size of evergreens which it is practicable to transplant is smaller than of deciduous trees.

The digging is started as in Fig. 2550. The flexible roots are wrapped against the ball by twisting them with a cord, and the large, stiff roots are cut off. The ball may be held by frost, or by upright staves, iron bands, or irons in the form of a pot split in halves and held by bolts or clamps. The best method is the use of a canvas band, wider than the depth of the ball, cut to fit. It has draw ropes operated by a windlass, which firmly compress the earth, without damaging the small roots wrapped against the ball. A hammock consisting of several ropes to distribute the pressure, is attached to a windlass. A platform is placed with a chisel edge in the under cut. By means of the windlass, the ball is cut off from the subsoil and the platform, with the tree, loaded upon a truck.

In planting, the hammock is reversed and holds the ball, while the platform is pulled out by the windlass, leaving the tree in the hole. By this method, trees 25-40 feet high and 12-12 inches in diameter may be moved. Trees grown in fertile clay loam are best for transplanting, but with care the canvas will hold balls of sand or gravel. Root-pruning, one or more years pre-
TRANSPLANTING

HENRY HICKS

Another View of Transplanting Large Trees.—The modern demand for immediate effect in landscape work has been met by the successful transplanting of large trees. The method employed about Chicago differs somewhat from that in vogue in the east. This is due to a considerable degree to the condition of the soil in which the trees are found.

Select a shapely tree with well-balanced crown and which has stood in the open so that all its branches are equally thriving. A bushy top is preferred that the necessary amount of trimming can be done by thinning out whole branches and not disturbing the terminal shoots, thus preserving the original outline of the tree. Crowded forest trees are too tall and it is difficult to get the sap to carry to the top.

A light sandy soil often produces fibrous roots spreading over a large area, but this generally slips off in transplanting and, if frozen, cracks badly when the ball is rolled. When resetting a tree, care must be taken to sift in new soil between the fine hair roots and get it in direct contact with each rootlet, because if crowded together the roots are likely to rot. When practical, it is undoubtedly best to move the roots in their native soil. A hard ball can be rolled at will and easily supports the weight of the trunk, which otherwise would crush the roots when rolled or handled. The prevailing soil about Chicago is two feet of rich black loam and a subsoil of clay. This is ideal for giving plenty of fibrous roots near the trunk, and a bed to the ball of earth enclosing the roots, without waiting for the ground to freeze. This allows a longer planting season and makes it easy to have loose soil to tamp around the tree.

After the tree has been dug loose, rock back and forth, filling under it each time with soil, until the whole ball is standing flush with the surface. It depends upon the weight of the load what style of a wagon is to be used. A hardwood tree of thirty inches in diameter weighs, with proper ball, about fifteen tons. This is the limit of practical construction for a low-hung stone truck. Simply pull the tree over and rest it on the high support over the rear axle and with block and tackle roll the ball on the wagon. When at the desired location roll off again, letting the ball rest on the ground before dropping into the hole. A counter check should be maintained to keep the tree always under control. Straighten up and thoroughly tamp so as to anchor it well and the work is complete.

TRAPA (name explained below). Ongnagrécion. Trapa natans, the WATER CHESTNUT or WATER CALTREPS, is an interesting plant for the aquarium. It has two kinds of leaves. The submerged ones are rosettes of long, slender and feathery. The floating lvs. form a loose rosette. The leafstalks are swollen and spongy near the apex. The fruit is about 3/4 in. across and has 4 spinescences angles. It is roasted and eaten in some parts of Europe like the common chestnut. The Indian species, T. bispinosa, is said to yield very large and sweet nuts which are commonly sold in the East under the name of Singshara Nut. The name Trapa is abbreviated from colocarpa, which is the same as caltrops, an instrument of war used to impede the progress of mounted warriors. It had 4 spine-like projections, like the fruit of the Water Caltrops.

bispinosa, Roxb. SINGHARA NUT. Petiole of floating lvs. 4-6 in. long, woody; blade 2 x 3 in., slightly crease in the upper half, very villous beneath; fr. 3/4 in. thick, with 2 of the spines sometimes absent. Indus, Ceylon.

* W.M.*

Trapa natans is one of the daintiest aquatics in cultivation. It is perfectly hardy and very desirable for aquaria, pools, ponds or tub culture. Its beautifully mottled or variegated foliage is very attractive. The flowers are white, small and inconspicuous. The fruits are very large in comparison with the flowers and leaves, but they are hidden beneath the foliage until they ripen, when they drop off. They are good to eat raw, like chestnuts, and are a sweet and roots palateable before the shell becomes hard. The nut is not likely to become of commercial importance in America. The seeds drop from the plant and remain in the pond all winter.

* WM. TRICKER.*

grándis, Nutt. (Lá recommend.—Hook. A. grándis, Dietr.). Much like the above species. Lvs. membranaceous, more deeply lobed, often to the base, thin, sparsely hairy beneath along the ribs; reticulations less distinct: styles longer and somewhat curled. Wash., Idaho, Brit. Col.

* K.C. DAVIS.*

TRAVELER’S JOY. *Clétialis vitába.*
TRAVELER'S TREE

TRAVELER'S TREE. See Ruscus.

TREASURE VINE. Name proposed by J. L. Childs for Hidalgoa Werckle or Childsia Werckle.

TREE. Candelabrum, or Chandelier T., Pandanus Candelabrum.

TREE OF HEAVEN. See Ailanthus.

TREES. Plate XLIV. Figs. 2551-2566. What is a tree? is a question to which it is not easy to give a short and well-defined answer. The same species may assume a tree-like habit or remain shrubby, according to the climatic conditions, soil and other circumstances. Usually a tree is defined as a woody plant rising from the ground under normal conditions with a single stem and attaining a certain height, fixed by some at 20, by others at 15 feet, or even less. A more exact definition has been given by B. E. Fernow: "Trees are woody plants the seed of which has the inherent capacity of producing naturally within their native limits one main erect axis continuing to grow for a number of years more vigorously than the lateral axes and the lower branches dying off in time."

Trees are the most prominent feature of the vegetable world and surpass all other organic beings in height, magnitude and longevity. The greatest height known has been reached by Eucalyptus amygdalina of Australia, of which trees have been observed that were 470 feet high. In length, but not in body and longevity, even this tree is surpassed by some giant floating alga said to attain the length of 900 feet, and by some climbing palms of Java attaining, sometimes, 600 feet. Following Eucalyptus amygdalina is probably Sequoia sempervirens, which attains 325 feet and occasionally

2551. A pasture elm.

gigantea 35 feet, in Taxodium distichum 50 feet, and somewhat less in Adansonia digitata.

The age attributed to many of the tallest trees is based more or less on speculation, and opinions often differ widely. Adansonia digitata is believed to reach 6,000 years of age, Adansonia digita 5,000, Taxodium mucronatum and Platanus 4,000, Cupressus sempervirens and Taxus baccata 3,000, Calitoma sativa, Quercus pedunculata, Sequoia gigantea and Cedrus Libani more than 2,000 years.

Although the trees are the most conspicuous features of the vegetable kingdom, they represent only a small percentage of it as regards the number of species. In the United States, where about 550 trees occur, they represent only about 3½ per cent of the whole phanerogamic flora, in Europe even less. As a rule, towards the tropics the number of tree-like species increases, towards the arctic regions it decreases. Remarkably rich in trees is the flora of Japan, where the proportion of trees to the whole phanerogamic flora is more than 10
per cent, which percentage surpasses by far that of any other country in the temperate regions.

Trees belong to many different natural orders, but of the orders of monocotyledonous plants only a few contain trees and none of them is hardy north. None of the larger orders contains trees only, but there are some which consist exclusively of woody plants and include a large proportion of trees, as Coniferae, Cupuliferæ, Salicaceae, Juglandaceæ, Magnoliaceæ, Sapindaceæ, Ekegnæaceæ, Hamamelidaceæ, Lauraceæ, Anacardiaceæ, Ebenaceæ, Styraceæ and others.

The uses of trees are manifold, and a country from which the forests have been destroyed becomes almost uninhabitable and worthless to mankind. The forests furnish wood and timber, exercise beneficial influences on the climate, act as regulators of the water flow, prevent erosion and also the removal of soil by the wind. Besides furnishing wood and timber, many trees yield other products of great economic importance, especially the numerous kinds bearing fruits. The esthetic value also of the tree must not be underrated, though it cannot be counted in money.

The science of trees and shrubs is dendrology. The art of growing trees is arbiculture, of which silviculture is a branch and deals with the rearing and maintaining of forests and the producing of wood crops. Orchard culture is a branch of arbiculture or of horticulture and deals with the cultivation of fruit trees; it is usually included under pomology, which comprises both the science and practice of fruit-growing. As ornamental subjects, trees are more permanent, easier of cultivation and cheaper in the long run than herbs. It is curious to note how little attention the average gardener who has the care of a park or garden gives to the most prominent feature of his domain. He usually knows fairly well the greenhouse plants and his herbaceous perennials, which cost most in time and money, but the trees and shrubs he often hardly deigns to look at. This is apparently due to the fact that after being once planted, and often not by himself, the trees and shrubs do not need his perpetual care and usually grow without his aid and interference.

To the landscape gardener a thorough knowledge of trees is absolutely essential. He ought to know the ornamental properties of the trees, their rate and mode of growth, their peculiarities in regard to soil, situation and climate. As the trees are, after the surface of the ground, the most permanent element of the landscape, they ought to be planted with careful deliberation as to the intended artistic effect and their fitness to the soil and climatic conditions, for mistakes in planting of trees are afterwards not easily corrected and rarely without injury to the original artistic design. The available number of trees from which selection may be made is large. There are in American and European nurseries and gardens more than 600 species in cultivation which are hardy in the northern and middle states. About 210 of them are American, almost 200 from eastern Asia, about 100 from Europe and 70 from western and central Asia. About 40 natural orders are represented, of which the most important are the Coniferae, Cupuliferæ, Salicaceæ, Rosaceæ, Leguminosæ, Juglandaceæ, Sapindaceæ, Urticaceæ, Magnoliaceæ and Oleaceæ. The number of all the cultivated varieties and garden forms is, of course, considerably larger than that of the botanical species and may be estimated at about 3,000. Comparatively few horticultural varieties are found in American nurseries as compared with European, but this need not be regretted, as horticultural varieties are mostly merely curious or monstrous forms. In planting, one must rely chiefly on the types and use the horticultural varieties sparingly, for restfulness should be the prevailing character of the masses and groups of trees.

The fundamental purposes of trees in landscape gardening are to furnish the great masses of foliage which frame and divide and partly constitute the views and landscape pictures, to emphasize the elevations of the ground, to vary the sky-line, to screen or block out unsightly objects, to enhance the beauty of buildings,
and to furnish shade and shelter. The enjoyment the trees give by beautiful flowers, various foliage, splendid autumn tints, and ornamental fruit is more incidental, though of great value and worthy of careful consideration. The trees should be selected for planting in accordance with the natural and intended character of the scenery, whether it be more or less wild, and the care taken in selection must be as much as possible consistent with the possibilities of the locality. The great diversity of trees and plants that are adapted for shelter should be known to the person planning the landscape, and careful thought given to the selection of trees and plants, so as to have them hardy and easy to procure.

It is essential that the trees should be well adapted to the climate and soil, and in this respect a careful observation of the natural tree growth of the locality will give many good hints. Other considerations are the height the trees attain, the character of growth, color and effect of foliage, flowers and fruits, autumn tints and winter effects. Concerning the general rules which govern the selection of trees for planting and which are principally the same as for herbs and shrubs, much other information may also be found in the articles on Landscape Gardening, Park, Shrubbery and Herbs.

Selections of Trees for Special Purposes.—The following lists include trees of proved hardiness and are not intended to be complete but merely suggestive, and chiefly for the northeastern states.

1. Trees with Showy Flowers.

A. Blooming in early spring before or with the leaves.

<table>
<thead>
<tr>
<th>Species</th>
<th>Flower Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer rubrum</td>
<td>bright red</td>
</tr>
<tr>
<td>Amelanchier Canadensis</td>
<td>white</td>
</tr>
<tr>
<td>Cornus Canadensis</td>
<td>red, pink</td>
</tr>
<tr>
<td>Cornus Mas</td>
<td>yellow</td>
</tr>
<tr>
<td>Magnolia soulangeana</td>
<td>white to purple</td>
</tr>
<tr>
<td>Prunus Avium</td>
<td>pink, white</td>
</tr>
<tr>
<td>Prunus americana</td>
<td>pink, white</td>
</tr>
<tr>
<td>Prunus Davidiana</td>
<td>pink, white, earliest of all Prunus</td>
</tr>
<tr>
<td>Prunus pendula</td>
<td>pinkish, branches pendulous</td>
</tr>
<tr>
<td>Prunus persicarius</td>
<td>white to pink</td>
</tr>
<tr>
<td>Pyrus baccata and other species</td>
<td>white to pink</td>
</tr>
<tr>
<td>Salix (staminate plants with yellow catkins)</td>
<td></td>
</tr>
</tbody>
</table>

AA. Blooming late in spring after the leaves.

<table>
<thead>
<tr>
<th>Species</th>
<th>Flower Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesculus Hippocastanum and other species</td>
<td>white or red</td>
</tr>
<tr>
<td>Catalpa speciosa</td>
<td>white</td>
</tr>
<tr>
<td>Chastadictis tinctoria</td>
<td>white</td>
</tr>
<tr>
<td>Cornus Kousa</td>
<td>white</td>
</tr>
<tr>
<td>Fraxinus Ornus</td>
<td>white</td>
</tr>
<tr>
<td>Laburnum</td>
<td>yellow</td>
</tr>
<tr>
<td>Magnolia lutea</td>
<td>yellow</td>
</tr>
<tr>
<td>Prunus serotina</td>
<td>white or light pink</td>
</tr>
<tr>
<td>Pyrus salicina</td>
<td>purple</td>
</tr>
<tr>
<td>Tamarix parviflora</td>
<td>pink</td>
</tr>
</tbody>
</table>

AAA. Blooming in summer and autumn.

<table>
<thead>
<tr>
<th>Species</th>
<th>Flower Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aralia chinensis</td>
<td>white</td>
</tr>
<tr>
<td>Castanea americana</td>
<td>white, July</td>
</tr>
<tr>
<td>Helianthus annuus</td>
<td>yellow, July, Aug.</td>
</tr>
<tr>
<td>Nectaris viscosa</td>
<td>white, July, Aug.</td>
</tr>
<tr>
<td>Robinia neomexicana</td>
<td>light pink, Aug.</td>
</tr>
<tr>
<td>Sophora japonica</td>
<td>light pink</td>
</tr>
<tr>
<td>Syringa japonica</td>
<td>white, July</td>
</tr>
</tbody>
</table>

2. Trees with Showy Fruits.

<table>
<thead>
<tr>
<th>Species</th>
<th>Fruit Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer rubrum</td>
<td>scarlet</td>
</tr>
<tr>
<td>Aesculus Hippocastanum</td>
<td>scarlet or orange</td>
</tr>
<tr>
<td>Cornus florida</td>
<td>scarlet</td>
</tr>
<tr>
<td>Coriaria myrtifolia</td>
<td>yellow or violet-purple</td>
</tr>
<tr>
<td>Fraxinus americana</td>
<td>yellow</td>
</tr>
<tr>
<td>Liquidambar (scarlet)</td>
<td></td>
</tr>
<tr>
<td>Nyssa sylvatica</td>
<td>scarlet</td>
</tr>
<tr>
<td>Oxydendrum arboreum</td>
<td>scarlet</td>
</tr>
<tr>
<td>Quercus alba</td>
<td>white</td>
</tr>
<tr>
<td>Quercus coccinea</td>
<td>scarlet</td>
</tr>
<tr>
<td>Rhus (mostly scarlet)</td>
<td></td>
</tr>
<tr>
<td>Sassafras</td>
<td>orange and scarlet</td>
</tr>
</tbody>
</table>

3. Trees valuing for Foliage Effects. (See also Section 5, Evergreens, below.)

A. With colored foliage.

<table>
<thead>
<tr>
<th>Species</th>
<th>Foliage Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer Negundo var. argenteo-variegatum</td>
<td>variegated</td>
</tr>
<tr>
<td>Acer negundo var. aureo-marginatum</td>
<td>yellow</td>
</tr>
<tr>
<td>Acer palmatum var. atropurpureum</td>
<td>purplish</td>
</tr>
<tr>
<td>Acer platanoides var. Keltensbechi</td>
<td>dark red in summer</td>
</tr>
<tr>
<td>Acer platanoides var. Schwickeri</td>
<td>bright red in spring</td>
</tr>
<tr>
<td>Acer Pseudoplatanus</td>
<td>World's</td>
</tr>
<tr>
<td>Betula alba</td>
<td>var. purpurea</td>
</tr>
<tr>
<td>Populus alba</td>
<td>var. nigra</td>
</tr>
<tr>
<td>Populus deltoides var. aurea</td>
<td>one of the best yellow-leaved trees</td>
</tr>
<tr>
<td>Quercus robur</td>
<td>var. atropurpurea</td>
</tr>
<tr>
<td>Quercus petraea</td>
<td>var. cordifolia</td>
</tr>
<tr>
<td>Salix alba</td>
<td>var. argentea</td>
</tr>
<tr>
<td>Tilia tomentosa</td>
<td>white</td>
</tr>
<tr>
<td>Ulmus campestris</td>
<td>var. argentea-variegata</td>
</tr>
</tbody>
</table>

AA. With large, bold foliage.

<table>
<thead>
<tr>
<th>Species</th>
<th>Foliage Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer robustum</td>
<td>white</td>
</tr>
<tr>
<td>Acer saccharum</td>
<td>scarlet</td>
</tr>
<tr>
<td>Cornus florida</td>
<td>scarlet</td>
</tr>
<tr>
<td>Cornus Serpens</td>
<td>scarlet</td>
</tr>
<tr>
<td>Fraxinus americana</td>
<td>yellow or violet-purple</td>
</tr>
<tr>
<td>Liquidambar (scarlet)</td>
<td></td>
</tr>
</tbody>
</table>

AAA. With small narrow or finely cut foliage.

<table>
<thead>
<tr>
<th>Species</th>
<th>Foliage Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer palmatum var. dissectum</td>
<td>dissectum</td>
</tr>
<tr>
<td>Acer platanoides var. lutescens</td>
<td>lutescens</td>
</tr>
<tr>
<td>Acer saccharum</td>
<td>scarlet</td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>var. alba</td>
</tr>
<tr>
<td>Betula alba</td>
<td>var. alba</td>
</tr>
<tr>
<td>Fraxinus americana</td>
<td>var. purpurea</td>
</tr>
<tr>
<td>Gleditsia triacanthos</td>
<td>var. silvestris</td>
</tr>
<tr>
<td>Ilex opaca</td>
<td>var. glabra</td>
</tr>
<tr>
<td>Magnolia grandiflora</td>
<td>var. lutea</td>
</tr>
<tr>
<td>Magnolia liliiflora</td>
<td>var. liliiflora</td>
</tr>
<tr>
<td>Magnolia obovata</td>
<td>var. liliiflora</td>
</tr>
<tr>
<td>Magnolia schillingsii</td>
<td>var. liliiflora</td>
</tr>
<tr>
<td>Magnolia soulangeana</td>
<td>var. liliiflora</td>
</tr>
<tr>
<td>Magnolia virginiana</td>
<td>var. liliiflora</td>
</tr>
<tr>
<td>Magnolia x liliiflora</td>
<td>var. liliiflora</td>
</tr>
<tr>
<td>Magnolia x soulangeana</td>
<td>var. liliiflora</td>
</tr>
</tbody>
</table>

4. Trees with Brilliant Autumnal Tints.

<table>
<thead>
<tr>
<th>Species</th>
<th>Foliage Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer rubrum</td>
<td>scarlet</td>
</tr>
<tr>
<td>Acer saccharum</td>
<td>scarlet</td>
</tr>
<tr>
<td>Cornus florida var. sericea</td>
<td>scarlet</td>
</tr>
<tr>
<td>Cornus Serpens</td>
<td>scarlet</td>
</tr>
<tr>
<td>Fraxinus americana</td>
<td>yellow or violet-purple</td>
</tr>
<tr>
<td>Liquidambar (scarlet)</td>
<td></td>
</tr>
</tbody>
</table>

5. Evergreen Trees.

A. Conifers (see also Vol. 1, p. 358).

<table>
<thead>
<tr>
<th>Species</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies</td>
<td>evergreen</td>
</tr>
<tr>
<td>Chamaecyparis</td>
<td>evergreen</td>
</tr>
<tr>
<td>Juniperus virginiana</td>
<td>evergreen</td>
</tr>
<tr>
<td>Picea</td>
<td>evergreen</td>
</tr>
<tr>
<td>Pinus</td>
<td>evergreen</td>
</tr>
<tr>
<td>Pseudotsuga</td>
<td>evergreen</td>
</tr>
<tr>
<td>Thuja</td>
<td>evergreen</td>
</tr>
</tbody>
</table>

AA. Broad-leaved evergreens (only flex opaca and Rhododendron hardy north).

<table>
<thead>
<tr>
<th>Species</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex opaca</td>
<td>evergreen</td>
</tr>
<tr>
<td>Magnolia lutea</td>
<td>evergreen</td>
</tr>
</tbody>
</table>

Rhododendron maximum.
6. DECIDUOUS TREES VALUED FOR THEIR WINTER EFFECTS.

- Acer Negundo (branches light green).
- Acer Pennsylvanicum (striped bark).
- Betula nigra (tasty reddish brown bark).
- Betula papyrifera (smooth, silvery white bark).
- Crataegus viridis (red fruit).
- Fagus sylvatica (keeps its dead leaves).
- Gleditschias (large, flat pods).
- Hippophae rhamnoides (yellow berries).
- Liquidambar (sorky branches).
- Prunus americana (scarlet or yellow fruit).
- Quercus alba, pedunculata and tinctoria (keep their leaves).
- Quercus macrocarpa (sorky branches).
- Rhus typhina (scarlet fruit).
- Salix vitellina (yellow fruit).
- Sorbus Americana and Aucuparia (scarlet fruit).

7. VERY TALL TREES.

- Gleditschia triacanthos.
- Juglans nigra.
- Liriodendron Tulipifera.
- Picea excelsa.
- Fraxinus Strobus.
- Platanus occidentalis.
- Populus balsamifera.
- Populus deltoids.
- Quercus macrocarpa.
- Quercus palustris.
- Quercus rubra.
- Quercus velutina.
- Taxodium distichum.
- Ulmus Americana.

8. COLUMNAR OR NARROW PYRAMIDAL TREES.

- Abies (most species).
- Acer nigrum, var. monmentale.
- Betula alba, var. fastigiata.
- Carpinus Betulus, var. fastigiata.
- Chaenomepsis Lawsoniana.
- Chaenomepsis Nutkaensis.
- Juniperus communis, var. Svecica.
- Juniperus Virginiana, especially var. pyramidalis.
- Liriodendron Tulipifera, var. pyramidalis.
- Picea (most species).
- Populus alba, var. Bollena.
- Populus nigra, var, Italica.
- Quercus pedunculata, var. pyramidalis.
- Taxodium distichum (especially var. imbricatum).
- Taxus baccata, var. fastigiata.
- Tsuga.
- Ulmus campestris, var. montiorumalis.
- Ulmus scabra, var. fastigiata.

9. WEEPING TREES.

- Acer saccharinum, var. Wier.
- Betula alba, var. pendula.
- Fagus sylvatica, var. pendula.
- Fraxinus excelsior, var. pendula.
- Fraxinus parvifolia, var. pendula.
- Prunus pendula.
- Prunus serotina, var. pendula.
- Quercus pedunculata, var. Duvescii.
- Salix vitellina, var. pendula.
- Salix Balsamica.
- Salix ibex.
- Sorbus Aucuparia, var. pendula.
- Tilia petiolaris.
- Ulmus scabra, var. pendula.

10. CITY TREES (See also No. 11).

- Allianthus glandulosa (pistol tree).
- Carpinus.
- Crataegus Oxyacantha.
- Fraxinus Americana.
- Fraxinus excelsior.
- Gleditschia triacanthos.
- Platanus orientalis.
- Populus deltoids.
- Populus nigra, var. Italica.
- Prunus serotina, var. borer.
- Robinia pseudoacacia (often attacked by borer).
- Sophora japonica.
- Ulmus Americana.
- Ulmus campestris.
- Tilia kordata.

11. SHADE AND AVENUE TREES.

Besides the trees enumerated under city trees, No. 10 (which are to be recommended as street trees in the cities), the following trees are good avenue subjects:

- Acer platanoide.
- Acer rubrum.
- Acer saccharinum.
- Acer negundo.
- Aesculus carnea.
- Aesculus Hippocastanum.
- Catalpa speciosa.
- Celtis occidentalis.
- Fagus sylvatica and F. sylvatica.
- Liquidambar sylvatica.
- Liriodendron Tulipifera.
- Quercus alba.
- Quercus coccinea.
- Quercus imbricaria.
- Quercus palustris.
- Quercus Phellos.
- Quercus rubra.
- Tilia Americana.
- Tilia cordata.
- Tilia Ulmifolia.

12. TREES FOR SEASIDE PLANTING.

- Allianthus glandulosa.
- Crataegus Oxyacantha.
- Eriogonum angustifolia.
- Hippophae rhamnoides.
- Juniperus Virginiana.
- Picea alba.
- Pinus Lariota.
- Pinus rigida.
- Pinus sylvestris.
- Populus deltoids, var. Carolinensis.
- Populus Tremuloides.
- Quercus rubra.
- Salix alba.
- Salix Aucuparia.
- Sassafras officinale.
- Tamara.

13. TREES FOR DRY SITUATIONS AND WARM CLIMATES.

- Acer campestris.
- Acer Ginnala.
- Alnus rugosa.
- Betula alba.
- Cornus Mas.
- Eriogonum angustifolia.
- Fraxinus pubescens.
- F. pyramidalis.
- Populus deltoids, var. Carolinensis.
- Populus tremuloides.
- Quercus coccinea.
- Quercus rubra.
- Quercus Primis.
- Quercus velutina.
- Ulmus eurystoma.

14. TREES FOR WET SOIL.

- Acer rubrum.
- Acer saccharinum.
- Abies grandis.
- Alnus maritima.
- Betula alba.
- Betula nigra.
- Chaenomepsis phaeoidea.
- Pinus densiflora.
- Pinus rigida.
- Pinus sylvestris.
- Quercus coccinea.
- Quercus rubra.
- Quercus Primis.
- Quercus velutina.
- Ulmus eurystoma.

ORNAMENTAL TREES FOR THE MIDDLE SOUTHERN STATES.

I. DECIDUOUS TREES. Acer saccharinum (A. dasyacarpum) and A. Negundo, the latter extensively used for street planting: - Dryadoderes papillosus, formerly planted along streets, but objectionable because of the many suckers which it produces, is also B. Kazhoki.

- Cercis Canadensis. Valuable as an early spring-blowing tree.

- Catalpa. One of the most distinct trees: an excellent shade tree.
trees

south as an ornamental tree, because of the repeated attacks of caterpillars. The latter are frequently used for fish bait. — *Chladastis visetoria*. Very desirable as a flowering lawn tree. — *Cordus florica*. The white-flowering species is among the most attractive of our early spring-blooming trees and is largely used in landscape work. The pink- and red-flowering forms are exceedingly beautiful. — *Crapejas*. Taking into account the various shapes, the foliage and the bright colored fruit in full and winter, the best are: *C. cordata* or Washington Thorn, *C. arborescens*, *C. pathulina* and *C. asteroidis* or Apple Haw. — *Chilopsis integrina*, known as *C. visetoria*, is one of the best for dry soils. The typical species produces lila-colored flowers, but several forms have lately been produced with flowers ranging from light lila to lilac-purple with yellow stripes inside. A pure white-flowering form is very striking but is of more dwarf habit. — *Diospyros Virginiana*. Sometimes planted for shade or for its fruit. Adapts itself to nearly all soils. There are many forms varying both in the foliage and size and shape of fruit. — *Pagus ferugionus* is frequently used for street planting in sandy soils. The red-leaved forms of the European species are of little value south, the purple tint of the foliage fading to a dull green at the approach of warm weather. — *Fraxinus americana* and *F. pubescens*. Both thrive best in rich soils and are very desirable for street planting, being seldom attacked by insects. — *Ginkgo* or *Salisburia* is sometimes used for avenues and street planting where a rigid pyramidal tree is required. The foliage is one of its attractions, being shaped like the Maidenhair fern. — *Gleditschia triacanthos*. The fertile tree is sometimes planted for its large falcate pods, which are relished by many for the succulent acaculated pulp. The finely pinnate foliage is very ornamental. — *Halesia tetraptera*. In the middle sections of the South and in rich, dry soils it grows to a small tree, but in the mountain districts in rich soils along the water-courses, trees 40 to 50 feet high are frequently found. Valuable for landscape planting. — *Hicoria* or *Carya*. The pecan is the best southern nut tree and is very largely planted for its nuts. It is often planted in avenues for its beauty. — *Hicoria myriphylloides* is scarce, but its foliage is more attractive than that of any other species. — *Hernia dulea*. The foliage and the fleshy red pecan nuts in autumn make it an excellent shade and ornamental tree. — *Jasminum* spp. are the most valuable ornamental period during February. *J. Scabellata* is a very ornamental tree and very productive at an early age. — *J. chrysanthemum* is suited only to the mountain regions of the South. — *Kalmia angustifolia*. Very desirable for its plentiful foliage and panicles of yellow flowers, which

2554. A tree growing in the open, with full rounded head.

are succeeded by bladder-like fruits. — *Lagerstromia Indica*. The Crape Myrtle is one of the most characteristic features of southern homes. It has become almost naturalized south. If trained to a single stem it will form a tree 25 to 30 feet high; otherwise it affects the bush form. It is conspicuous for its shining brown bark and the profusion of its beautifully crimped and fringed flowers, which are produced from April until August. The colors vary from a pale to a dark pink, purplish red, pure white and glowing crimson. No other flowering tree can surpass it in beauty, and by a judicious selection of the various colored flowers a grand effect is produced in landscape work. — *Liquidambar Tulipifera*. One of the most valuable and rapid-growing shade and ornamental trees; thrives best in rich soil. Trees taken from woods transplant badly. They should be grown in nursery and occasionally transplanted until sufficiently large for using in street planting. — *Liquidambar*. A most symmetrical shaped tree; adapts itself to all soil; valuable for street planting. Some trees assume a deep purple or crimson tint in the foliage during autumn, others a golden yellow. — *Magnolia*. Of the native deciduous species, *M. acuminata* is the most desirable for street and avenue planting. All the species are voracious feeders and thrive best in rich soils. *M. macophylla*, or Umbrella Magnolia, seldom grows beyond 25 feet, but is conspicuous for the length and size of its leaves. This tree is called Umbrella Tree south, whereas this name applies to *M. tripetala* at the North. *M. Franzi*, Earl-aved Magnolia or Wahoo of the western North Carolina mountainers, is also a very ornamental tree. *M. tripetala* is objectionable in gardens owing to the unpleasant odor of its flowers. Few Chinese species, with the exception of *M. hypoleuca*, attain the size of a tree. *M. Virgina* and *M. Soulangeana* can be trained to a single stem and made to attain a height of 15 feet. All the other varieties may be classed as shrubs. The flowers are often injured by late spring frosts. — *Melia Azedarach* (Prick of India, Chinaberry). Almost naturalized south. It is of very rapid growth and begins to flower at an early stage. The flowers are delightfully fragrant with the perfume

2553. A pasture maple, in autumn, showing the strong framework.

and economic trees and is extensively planted for avenues. The Persian or English walnut and its many forms are being largely planted than of old, but are often injured by late spring frosts following a warm
of the lilacs. Extensively planted for shade trees. The umbrella form, known as Texas Umbrella, assumes a dense, spreading head with drooping foliage. It is of unique appearance and can be used with great effect in landscape work.—Marina. *M. rubra* is frequently planted for shade; it is valuable for its wood, which is of great durability for posts. *M. alta* is naturalized in many sections. A form of *M. rubra* discovered in middle Georgia some years ago and called Stubbs from the discoverer, produces enormous crops of large, rich vinous fruit. This and the Hicks and Multicaulis (latter of Chinese type) are often planted for feeding poultry and hogs. They should not be planted near dwellings, owing to the dropping of the fruit.—*Viburnum opulus*. Only desirable in landscape work for the brilliant red tint of its autumn foliage.—*Oxydendrum*.

2555. Apple, one of our most picturesque trees.

Arboreum. Desirable for its flowers and highly colored autumn foliage.—*Parkinsonia aculeata*, Retama or Horse bean of southern Texas. A small tree with green bark, feathery foliage and yellow flowers. Valuable for shrubbery.—*Pandorea imperialis*. Rapid-growing, almost naturalized in some sections of the South. The foliage in young trees is very large. Flowers pale violet, very fragrant, in long panicles; they open before the leaves appear.—*Peach*. There are many ornamental varieties which are exceedingly handsome while in bloom, especially the double-flowering crimson, white and pink; others are desirable for their peculiar growth, as *Pyramidalis*, which is so erect as a Lombardy poplar. Weeping, willow-leaved and golden-leaved varieties are interesting.—*Pears*. Hortiana or Chelseas plum are sometimes planted for ornament, though commonly for fruit. *P. virginiana* is abundant everywhere but not valued owing to being usually infested with tent caterpillars. *Pyrus* (Crataegus) is the best purple-leaved tree for the South, as it retains its color during summer.—*P. rubra*. This very ornamental small tree is seldom seen under cultivation, as it grows naturally in very wet and swampy soils.—*P. occidentalis*. One of the most desirable trees for street planting.—*Poplar*. The foliage of *P. deltoides* or *Monolitor*, commonly known south as cottonwood. It is of rapid growth and grows in nearly all soils that are not too arid. All southern native larches, except the Poplar, but the stock is not always true to name.—*Picea abies* (latter is Caucasion Wing-fruited Valuyat, is a very rapid grower with drooping branches and pinnate foliage. Very ornamental when covered with pendulous racemes of small winged nuts, which, however, are of no economic value.—*Quercus*. Nearly all the oak trees appropriate for the middle and southern sections are found more or less abundant in the middle South, but the most valuable purely southern species are as follows: *Q. Phellis*, or Willow Oak, with lanceolate leaves; *Q. nigra*, with leaves almost perennial, oblong and obtusely lobed. Both are largely planted for streets and shade, as they grow very rapidly and in almost any soil. *Q. Rubra*, *Q. Phellos* and *Q. Muhlenbergii* undesirable. *Q. Virginiana*, or Live Oak, is a very large tree, seldom exceeding 50 feet in height but covering a large circumference. It is native aberghia to the seacoast and adapts itself to inland sections, where it does not attain the great size of the coast region. There is no southern tree, except *Magnolia grandiflora*, that is more admired, especially when planted in avenues.—*Sapindus* (latter is so named from the tree a unique appearance. Requires rich soil and is valuable in landscape work.—*Symposium tenuifolia*. Not common. Could be available for street planting, the foliage of *Populus*. A large tree occasionally found in rich soils along the seacoast. Differs little in general from *T. Americana*, but seems to be a better suited to the middle South. Very desirable for street planting or shade. *Taxodium*, or *Maclura*, is naturalized in many sections of the middle South. Grows to a height of 30 feet and the fertile trees are very ornamental when laden with their large, globar fruit. The wood is often used for posts and takes a beautiful polish.—*Ulmus Americana* is perhaps more largely planted for streets and avenues than any other deciduous tree.—*Viburnum prostratum* (Blow or Possum Hove). In very rich soils occasionally attains a height of 15 to 20 feet. The dark blue berries are retained during winter. Desirable for shrubbery.

II. BROAD-LEAVED EVERGREEN TREES. *Cassina japonica*. Although these magnificent plants are usually seen in bush form, they can be trained to single stems and attain a height of 20 or more feet in the coast region, where they have found a congenial soil and climate. The typical single red variety, a tree which is growing at Charleston, S. C., and planted in 1808, being the first introduced, is now upwards of 150 years of age. The double-flowering sorts, while usually of vigorous growth, do not attain the size of the single red.—*Cinnamomum Camphora*. In southern Louisiana and middle Floridas trees five feet in height or more are grown. In the middle South they affect the bush form or when trained to single stems seldom exceed 15 to 20 feet. For the extreme South it is recommended for street planting.—*Cyclia racemiflora*. Specimens are occasionally found on shady banks of streams, where the soil is very rich, that will grow 20 feet high, but the tree form must be secured by pruning. The foliage assumes a bright red or bronze hue in winter.—*Eriobotrya japonica*. Flowers produced in January, and if not frost-killed are followed by a golden yellow plum-like fruit of good flavor. Reaches a height of 20 or more feet in the coastal belt.—*Gordonia Laviflora*. A stately tree found only in shallow swamps or torry soils. The roots spread almost entirely near or upon the surface of the ground, which makes it difficult to transplant trees taken from the woods. Trees grown from seed in pots are best for planting, but a rich moist soil is necessary to their growth.—*Ilex*. I. opaca and I. Duram are among the most valuable evergreen trees, the former being the best where a large tree is desired. Specimens taken from the woods should not exceed one foot in height, as larger sizes very often fail, most always in the middle best where a large tree is desired. Specimens taken from the woods should not exceed one foot in height, as larger sizes very often fail, most always in the middle.
Magnolia. M. grandiflora is justly considered the glory of southern broad-leaved evergreen trees. There are many forms, based on the size and shape of the leaves and the flowers. The stamens white flowers, which are seen from May until August and occasionally upon some trees as late as October, vary from 4 to 12 inches in length. The flowers are fragrant. — Osmanthus fragrans, var. ruber and O. Aquifolium, var. latifolius, can be trained to single stems. The flowers of the first are delicately fragrant and produced twice a year. — Persica Carollinensis. Plant for shade in rich soils in the coast belt. — Physocarpus serrulata, or Chinese Evergreen Thorn, has white flowers and dark red autumn foliage. — Prunus Carolinensis. Known south as Carolina Cherry, Carolina Laurel, Mock Orange, etc. One of the most ornamental southern trees. — Quercus Rubra. Acorns were distributed by the U. S. Patent Office in 1860 and many large trees are now found in several sections of the South, where they have fruits. Some small plantations are made for the purpose of producing cork. It grows well in comparatively poor and stony soils. — Sabal Palmetto is now freely used for street and avenue planting on the coast. It is conspicuous for its tropical appearance. It is not successful further than 40 miles from the seashore.

III. Conifers or Narrow-Leaved Evergreens. — Abies. Of this section few specimens are found below the Piedmont region. Occasionally the Norway spruce grows to a moderate size. — Cedrus Deodara. An admirable tree and of rapid growth; 40 to 50 feet. — C. Atlantica, 25 to 30 feet. — Cunninghamia Lusonica. Foliage resembles an Araucaria. — Cupressus. C. sempervirens has many forms, from the compact, spiral or shaft-like shape to more spreading habit. C. Lawsoniana of Cypress of Goa, has numerous forms with foliage of an ashy green and pendulous branches, to others of a more dark tint and rigid form. Of Chamaecyparis Lawsoniana there are endless forms, from a compact, erect habit and vivid green foliage to those of open or pendulous shape and with glaucous or golden foliage. C. thyoides has varied less in its seedlings. — Juniperus. The Irish Juniper is of fine pyramidal form, and reaches a height of 15 feet. — J. excelsa, Choisina and thurifera differ in the tint of their foliage and are all of tall growth. — Libocedrus decurrens. The California arbor-vite, with its graceful feathery foliage and conical shape, is one of the most ornamental of conifers. — Piceas. Few of the exotic species are suitable to the South. Picea abies, or Picea Pina, is undoubtedly the best adapted to the middle South of all kinds. — Pholidoptera is a valuable group of Japanese Cypress, but with the exception of B. obtusa, Fullerii, plumosa and squarrosa B. Pina, all are of dwarf habit. — Thuya. The Asiatic section is better adapted to the middle South than the American species. Of the former the best forms are known to nurseries as B. pyramidalis and var. occidentalis, reaching a height of 15 to 18 feet. B. japonica, var. filiformis (Thuya orientalis) is a remarkable variety, with thread-like foliage and compact habit to 10 to 12 feet.

In the foregoing list of Conifers no mention is made of species or varieties of low or shrub-like growth, such as Podocarpus, Cephalotaxus, Thuya, and Schizopitys, of which there are many good specimens in various parts of the south. Araucaria are also omitted, owing to their liability of failure from extreme heat or other unfavorable climatic conditions. This applies also to Sequin, and Frenelus (properly Calitris); these frequently make an extraordinarily

2256. Picturesque old apple trees.
It eventually merges into the great body of forest trees lying on the easterly side of the Mississippi valley. The trees which have come upon the Plains by this route are the common red cedar, papaw, half a dozen willows, one cottonwood, basswood, two or three elms, blackberry, mulberry, three ashes, wild apple, four species of hawthorns, Juniper, wild cherry, choke cherry, wild plum, coffee bean, honey locust, red-hud, sycamore, two species of buckthorns, buckeye, one maple, box-elder, sumach, two species of walnuts, five oak species, nine or ten oaks, ironwood, blue beech, and one birch. But ten species of trees have come from the Rocky Mountain forests, and these have made much less impression upon the forests of the Plains than those which came from the eastern forests. In this list are the hull-pine, the western red cedar, four species of cottonwoods, the buffalo berry, a maple, and two birches.

Although the present forest area of the Plains is not relatively great, it is large enough to be seriously considered in regard to its preservation. There is danger that with the habits acquired by our people in the thickly wooded portions of the United States of cutting down forest trees wherever found, much of this small forest area will be destroyed. It is much easier to preserve an area of forest land than to create it anew. First, all forest fires must be kept down. Where a mass of woodland adjoins the open prairie, fireguards should be made so that the fires will not sweep into the forest growth. The greatest destruction of the forests of the Plains in the past has been fire, as it swept over the prairies into woodland. Second, it is absolutely necessary to keep out certain kinds of stock. Swine, if herded in large numbers, will inevitably destroy the trees. They prevent the growth of small trees, and eventually destroy those of larger growth.

Cattle, in large numbers, are equally destructive. In fact, where the attempt is made to preserve uninjured the trees in a forest it is necessary to keep out stock of all kinds, excepting possibly during limited portions of the year. Third, it is necessary to cut out the trees for use with great care. A forest should be a permanent crop, and the cuttings should be made so that the forest as a whole is not injured. Trees should be cut here and there in such a way that the young trees which are left have an opportunity for growing into usable timber.

Care should be taken to encourage the tendency to spreading which is so strong in nearly all parts of the Plains. By little care every present living forest area may be made to extend itself spontaneously, or nearly so. The forest should be effectually inclosed by a fence placed at some distance from its outer border, leaving a strip of unoccupied land between the trees and the fence. This will grow up with weeds, and mingled with these will be the seedling trees springing from the seeds blown or carried from the forest area. In this way the border of the forest will be gradually extended. This can be helped by plowing up these inclosed belts of land, giving better opportunity for the starting of seedling trees. With the weeds and little trees will spring up shrubs of various kinds. These need give no trouble, for this is merely nature's way of regaining possession of the soil. Little if any cultivation need be given to such a nursery belt, as the weeds which spring up, while usually, will serve the useful purpose of sheltering the little trees, and eventually the trees will rise above, and choke them out. Grass, however, forming a tough sod, is harmful to the little trees, far more so than the ordinary weeds.

There are many places where actual planting must be resorted to. In looking about for a site for the new forest plantation, we must remember that the best conditions for tree growth are usually to be found near the natural forests. Where there are natural forests the planting should be around their borders, so as to extend them in much the same way as indicated in the preceding paragraph in regard to natural spread. If there are no natural forests at all it is necessary to select the more favorable places for planting. Where the natural forests on the Plains occupy the depressions rather than the hill-tops or the slopes of the hills, we are given a hint as to what we must do. Wherever the land slopes into a depression one may find favorable conditions for growing trees. These depressions, generally called "draws," may be filled with trees, and when one acre of a growth of a few acres is secured it will not be difficult to extend the forest far up the slopes. On the western portions of the Plains similar sites might be taken under the irrigation ditches. In the selection of trees for the forest areas we should also take a hint from nature. The rule, which is a very excellent one for the plainsman to follow, is to plant on his farm the kinds which he finds in the nearest forest, and to give his planted trees as nearly as possible the same conditions as those under which they grew in the native forest. On the eastern third of the Plains, the walnut, white oak, shell-bark hickory, white elm, red elm, hackberry, white ash, wild cherry, catalpa, and honey locust are recommended for planting. On the extreme eastern portions bordering the Missouri river, many more kinds can be planted, but as we pass westward toward the borders of the Sand Hill region the list grows smaller. On the neutral Plains the list is reduced, and also somewhat changed in species. The two elms may be planted, as also the hackberry, the green ash in place of the white ash, wild cherry, honey locust, and in many places the bull-pine. On the western Plains, especially that portion lying west of the main body of the Sand Hills, and having an elevation above the sea level of from 2,000 to 4,000 feet, the list is still smaller. The white elm is still included, also the hackberry, the bull-pine, and in many places the red cedar.

The trees mentioned are of the more durable and profitable kinds. But on all parts of the Plains people
must often have quick-growing trees which soon produce fuel, but which have little, if any, value for other purposes. In the eastern part of the Plains the black willow, almond willow, common cottonwood, silver maple, and box elder are useful trees for this purpose. We should not condemn the use of these easily grown soft-wooded trees. A forest is a crop, and there is no reason why a farmer may not plant a more quickly growing crop if he wishes, but he should at the same time plant the more enduring kinds given in the preceding lists. On the central Plains the quickly-grown trees may include the same willows and cottonwood and also the box elder. The silver maple will not do well in the greater part of this central region. On the western Plains the list is essentially the same as for the central portion: namely, the willows, cottonwood, and the box elder, to which may be added, here and there, one or more of the western species of cottonwood.

Now for the horticultural point of view. About the country homes the first trees are usually cottonwood, silver maple and box elder, followed later by green ash and white elm. Very commonly the red cedar is planted with the first mentioned species, and often Scotch and Austrian pines are soon added. It must be remembered that the settler’s house on the Plains stands in the open instead of being hemmed in by forest trees, as in the eastern portions of the American continent. The settler’s problem is to surround his house with trees, not to clear the trees away. In towns and cities the cottonwood, silver maple and box elder are generally the pioneer trees, since they produce a shade sooner than any others, and later these are gradually replaced by green ash and white elm. Hackberry, black walnut and buttonwood are occasionally planted with good success. The species which are most largely used for wind-breaks for orchards and other plantations are common cottonwood, willow (a variety of Salix alba), silver maple and box elder. The first mentioned, because of its easy propagation, rapid growth and extreme hardiness, is the favorite tree for this purpose. Where landscape gardening is attempted, the Scotch and Austrian pines, Norway spruce and red cedar are generally used, and these are often added one or more species of the Rocky Mountain spruces. The most generally used deciduous tree for this purpose is the white elm (which here attains to a singular beauty of form and foliage), to which are occasionally added box oak, black walnut and Russian olive (Elagnus), and in proper situations, the white willow. The coniferous trees of greatest value for ornamental purposes on the Plains are the Austrian pine, Scotch pine and red cedar. With proper care these may be grown on all parts of the Plains where water enough to maintain life may be obtained. On the extreme eastern border the Norway spruce and even the balsam fir have proved valuable. Among deciduous trees the white elm holds first place, followed by the hackberry (which is not as much planted as it deserves) and the green ash.

C. E. BRUES.

Trees Grown for Shade and Ornament in California. — The mild and equable climate of California allows a wide range of available species from which to select trees for shade, ornament and shelter. On account of the long rainy season, the low humidity of the atmosphere, and the relatively high mean, and freedom from low winter minima in temperatures, the trees which thrive best in middle California are those indigenous to the arid and semi-arid warm-temperate regions of the globe, e.g., southern Australia, the Mediterranean region, South Africa, northern Mexico and Chile. Many of the temperate humid regions also thrive in this state, particularly in the relatively humid climate of the coast, and are offered by our nurserymen. Several of the species mentioned in this list are not described in this Cyclopaedia, as they did not appear to be in the general trade when the pages were written.

I. THE SPECIES MOST EXTENSIVELY PLANTED. — The three following are the trees most frequently met with as shade and ornamental trees in middle California:

1. Eucalyptus Globulus.
2. Cupressus macrocarpa.
3. Pinus radiata.

The relative abundance of the succeeding species is only approximately indicated by their sequence.

4. Robinia pseudoacacia, probably more widely distributed and occurring in more remote and out-of-the-way places than any other species (except, perhaps, Eucalyptus Globulus). The seeds may have been brought across the Plains by the earliest settlers at the mines.
5. Melia Azedarach, var. umbraculiforis.
7. Schinus Molle.
8. Aceria melanoxylon.
9. Acacia mollissima.
10. Magnolia grandiflora.
12. Washingtonia robusta.
13. Cordylines australis and other species.
15. Arcearia excelis.
17. Juglans Californica and spp.
18. Ulmus racemosa and spp.
20. Salix Babylonica.
11. Trees Being Most Extensively Planted at the Present Time.—The following list, arranged in sequence according to the actual number of sales made during the planting season of 1890-1901, is compiled from data furnished by John Rock, of the California Nursery Company, at Niles. The percentages refer only to the seventeen species here enumerated, and not to the total number of trees sold by the nursery, which has a large and varied assortment of species many of which are more suitable and more effective than those for which there is, at present, the greatest demand.

<table>
<thead>
<tr>
<th>Tree Name</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus Globulus</td>
<td>33.24</td>
</tr>
<tr>
<td>Cupressus macrocarpa</td>
<td>26.45</td>
</tr>
<tr>
<td>Eucalyptus viminalis</td>
<td>15.60</td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>4.07</td>
</tr>
<tr>
<td>Molla Azedarach, var. umbraeplumosa</td>
<td>2.75</td>
</tr>
<tr>
<td>Phoenix Canariensis</td>
<td>2.71</td>
</tr>
<tr>
<td>Acacia mellanxylon</td>
<td>2.20</td>
</tr>
<tr>
<td>Acacia mohiliensis</td>
<td>1.76</td>
</tr>
<tr>
<td>Robinia pseudoacacia</td>
<td>1.63</td>
</tr>
<tr>
<td>Magnolia grandiflora</td>
<td>1.00</td>
</tr>
<tr>
<td>Acer saccharinum</td>
<td>1.43</td>
</tr>
<tr>
<td>Juglans Californica</td>
<td>1.14</td>
</tr>
<tr>
<td>Acer Negundo, var. Californicum</td>
<td>0.89</td>
</tr>
<tr>
<td>Populus deltoides Carolinensis</td>
<td>0.81</td>
</tr>
<tr>
<td>Ulmus Americana</td>
<td>0.81</td>
</tr>
<tr>
<td>Betula alba</td>
<td>0.81</td>
</tr>
<tr>
<td>Washingtonia filifera</td>
<td>0.65</td>
</tr>
</tbody>
</table>

III. Selections for Special Purposes.—The diversity of choice, rendered possible by the extent of desirable material that is available, makes it somewhat difficult to readily select the most suitable species for various specific purposes. The following classified lists are intended as suggestions to aid in making a suitable selection; they are almost entirely restricted to species offered in the California trade, and are intended to be suggestive only, and not by any means complete. New species and varieties are constantly being added to the nursery stocks, some of which will be found particularly well adapted to certain conditions of climate and soil, and will doubtless replace others now in use.

2561. Leaning tree in a clearing, showing its effort to regain itself by producing upright branches.

1. For Subtropical Effect.—That there is in California strong appreciation of subtropical effects in gardening is shown by the great demand for dracaenas and such large-leaved plants as palms, magnolias, bananas and rubber-trees. That the effect produced by the planting of such trees so often fails to be satisfactory is largely due to one or both of two causes,—either unsuitable location of the specimens or choice and association of unsuitable species. To prevent a repetition of the first-named error, the prospective tree-planter is recommended to consult the article on Landscape Gardening in Volume II; and to avoid the second, a selection from the following list is suggested, with the addition of such large-leaved herbaceous plants as canna, colocasia, cynaras, falken, Gummarae scabra, pampas grass, veratree, agaves, yuccas, aloes, Woodwardia radicans and Rodgeria polypylla, together with such shrubby plants as bamboo, giant reed, the choicer varieties of castor-bean, Semeo grandifolius, Polygynom Sarathinense and P. Sieboldii.

A. Small Trees or Tall Shrubs.

<table>
<thead>
<tr>
<th>Tree Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthopanax richinfolium</td>
<td>Erythea armata</td>
</tr>
<tr>
<td>Aralia Chinesis, var.</td>
<td>Fatsia japonica</td>
</tr>
<tr>
<td>Aralia Chinesis</td>
<td>Fatsia japonica</td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td>Fatsia japonica</td>
</tr>
<tr>
<td>Aralia spinosa</td>
<td>Musa ensata</td>
</tr>
<tr>
<td>Aralia hirta</td>
<td>Phytolacca dioica, var.</td>
</tr>
<tr>
<td>Chamaecyparis humilis</td>
<td>Rhododendron multiflora</td>
</tr>
<tr>
<td>Dicksonia antarctica</td>
<td>Rhododendron multiflora</td>
</tr>
<tr>
<td>Eriobotrya japonica</td>
<td>Rhododendron multiflora</td>
</tr>
<tr>
<td></td>
<td>Rediun zanthebrownei</td>
</tr>
</tbody>
</table>

AA. Larger Trees.

<table>
<thead>
<tr>
<th>Tree Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalpa bignonioides</td>
<td>Jubaea spectabilis</td>
</tr>
<tr>
<td>Catalpa ovata</td>
<td>Livistona australis</td>
</tr>
<tr>
<td>Catalpa speciosa</td>
<td>Magnolia grandiflora</td>
</tr>
<tr>
<td>Cordyline australis</td>
<td>Ptelea tricolor</td>
</tr>
<tr>
<td>Cordyline Bankii</td>
<td>Phoenix canariensis</td>
</tr>
<tr>
<td>Cordyline indivisa</td>
<td>Phoenix dactylifera</td>
</tr>
<tr>
<td>Cordyline stricta</td>
<td>Phoenix reclinata</td>
</tr>
<tr>
<td>Corynocarpus lancea</td>
<td>Phoenix sylvestris</td>
</tr>
<tr>
<td>Erythea edulis</td>
<td>Phytolacca dioica</td>
</tr>
<tr>
<td>Eucalyptus calophylla</td>
<td>Trachycarpus flexuus</td>
</tr>
<tr>
<td>Eucalyptus ficifolia</td>
<td>Trachycarpus flexuus</td>
</tr>
<tr>
<td>Ficus Carica</td>
<td>Washingtonia filifera</td>
</tr>
<tr>
<td>Ficus macrophylla</td>
<td>Washingtonia robusta</td>
</tr>
</tbody>
</table>

Eucalyptus Globulus can also be used effectively if cut down periodically when the felse plates begin to appear; it will continue to shoot up vigorously from the same root for several years. Eucalyptus robusta is useful for screen purposes if cut out before it becomes straggling.

2560. Picturesque field pine, remnant of a forest.
TREES

2. Trees with Ornamental Flowers.—In making the following grouping, arranged according to relative hardiness, it has been impossible to give precise information as to the exact degree of frost-tolerance of the several species, as we can find but meager published data on the subject.

A. Susceptible to light frost.

The following would probably succumb to a temperature of 23° Fahr.: Acacia Baileyana.

Eucalyptus calophylla, Eucalyptus ficifolia, Jacaranda ovalifolia.

AA. Susceptible to heavy frost.

The following are not likely to stand a temperature of 20° Fahr. Some of them may succumb at 25° Fahr., particularly while young:

Acacia Baileyana, Acacia cyanophylla, Acacia data, Acacia falcata, Acacia longifolia, Acacia mollissima, Acacia sericifolia, Acacia pendula, Acacia salicina, etc.

AAA. Hardy.

Acacia gynantha. Acacia earnea. Acacia Hippocastanum, Albizia Jolliflora, Catalpa bignonioides, Catalpa ovata, Catalpa speciosa, Ceris Canadiensis, Ceris Silicquatum, Crategus mollis, Crategus monogyna (var. Paulii, panicula, alba plena, etc.), Kerreventia paniculata, Laburnum vulgare, Ligustrum Tupilfera, Magnolia acuminate, Magnolia grandiflora, Magnolia Kobus.

3. Trees with Colored Foliage.

A. Glacoun.

Acacia Baileyana, Acacia dealbata, Acacia glaucescens, Acacia salicina, Erythrea armata, Esacalyptus Gloriosula (pallidiana to produce suckers),

BB. Hardy.

Cedrus Atlantica, var. glauca, Cedrus Deodara, var. glauca, Picea pungens, var. eurycarpa.

AA. Purple or bronze.

B. Susceptible to 25° Fahr.

Ricinus Camboglensis, Ricinus communis, var. Gibbosi.

BB. Hardy.

Acet pistranoides, var. Reitenbachii, A. pistranoides, var. Praun sericifera, A. pistranoides, var. atropurpurea, Fagus sylvatica, var. purpurea, Fagus sylvatica, var. purpurea.

4. Wide-spreading Trees for Shade, Mostly with Rounded Outline.—It frequently happens that the owner of a garden desires a wide-spreading tree in the back or one corner of his domain, under which to swing a hammock on a hot day; such trees are also useful in the school yard, affording welcome shade in which the children can eat their lunch.

A. Deciduous, all hardy.

B. Growth rapid or medium.

C. Suscetters likely to be troublesome.

Populus alba, Robinia Pseudacacia, Ulmus Americana, Ulmus racemosa.

cc. Suckers not troublesome.

dd. Requiring a great deal of water.

bb. Growth somewhat slow.

Aer campestre, Aesculus carnea, Aesculus Hippocastanum, Carpinus Betschus, Castanea sativa, Fagus sylvatica, var. purpurea, Juglans Sieboldiana, Liriodendron Tulipifera, Melia Azedarch, var. umbra,

AA. Evergreen.

B. Growth rapid; trees susceptible to 25° Fahr.

Acacia mollissima.

bb. Growth somewhat slow: trees hardy.

Arbutus Menziesi, Picea Pinea, Ficus Carica, Olea Europaea, Schinus Molle.

5. Ornamental Trees affording but Little Shade.

A. Outline oblong or nearly columnar.

b. Deciduous.

Populus nigra, var. Italicus.

BB. Evergreen.

Capreussem sempervirens, Cupressus sempervirens, var. fastigiata, Juniperus communis, var. Hibernica, Taxus baccata, var. fastigiata.

AA. Outline conical or spiral, usually pointed.

b. Conifere, with mostly narrow leaves.

cc. Deciduous: hardy.

Larix decidua, Larix leotopilus, Taxodium distichum.

cc. Evergreen.

D. Susceptible to severe frost (probably about 20° Fahr.).

Agathis robusta, Araucaria Bidwillii, Araucaria Brasiliana, Araucaria Cookii,

DD. Hardy.

Abies Balsamica, Abies Cephalonica, Abies Concolor, Abies arborescens, Abies nordmanniana, Abies Pinsapo, Cupressus Atlantica, Cupressus Deodora, Cupressus Libani, Cupressus copholotaxus drupacea, Cupressus copholoxus Fortunelii, Chamaecyparis Lawsoniana, Cryptomeria Japonica, Cryptomeria Japonica, var.iegens, Cunninghamia Sinesis, Cupressus Goveletana, Cupressus macrocarpa, var. Guadalpens, Libocedrus Chilensis, Libocedrus deodara, Picea Alpina, Picea Engelmannii,

BB. Foliage broad.

c. Deciduous; hardy.

Betula alba, Betula butea, Betula lutea, Betula papyrifera, Betula populifolia,

dd. Hardy.

cc. Suckers also troublesome.

dd. Requiring a great deal of water.

Aer macrophyllum, Aer Negundo, var. Californicum,

B. Reitenbachii, Aer planatonoides, var. Reitenbachii,

dd. Growth somewhat slow.

Aer campestre, Aesculus carnea, Aesculus Hippocastanum,

cc. Suscetters not troublesome.

dd. Requiring a great deal of water.

Aer macrophyllum, Aer Negundo, Aer Negundo, var. Californicum,

B. Reitenbachii, Aer planatonoides, var. Reitenbachii,

dd. Growth somewhat slow.
TREES.

d. Susceptible to severe frost (probably 20° Fahr. and less).

Cinnamomum Camphora, Grevillea robusta,
Corynocarpus banksii, Styrax diversifolia,
Cryptocarya dielsii, Tristania conferta.

b. Hardy.

Acacia melanoxylon, Laurus nobilis,
Cercis lanatissima, Pittosporum eratophillum,
Eucalyptus calophylla, Quercus Suber,
Eucalyptus coriacea, Unletabbaria Californica.

AAA. Outline more or less rounded, but trees not as wide-spreading nor as shade-giving as in class 4.

b. Deciduous.

c. Susceptible to frost (25° Fahr.).

Phytolacca dioica.

cc. Hardy.

Æsculus glabra, Juglans Californica,
Fraxinus Americana, Juglans nigra,
Fraxinus excelsior, Koelreuteria paniculata,
Fraxinus Oruus, Paullownia imperialis,
Gymnocladus Caesalplnes, Robinia pseudacacia.

BB. Evergreen.

c. Probably susceptible to severe frost (20° Fahr. or less).

Acacia cyanophylla, Eucalyptus flocculosa,
Alnus sylishus, Eucalyptus Glaucina,
Bassia spinosa, Eucalyptus pandura.
Eucalyptus calophylla, citriodora,
Eucalyptus coriacea, Eucalyptus robusta,
Eucalyptus coriacea, Hymenophorya flavum,
Eucalyptus corymbosa, Maytenus boaia.

cc. Hardy.

Acacia pycnantha, Jubaæ spectabilis,
Eucalyptus angustifolia, Phoenix canariensis,
Eucalyptus Gunnii, Phoenix reclama,
Eucalyptus leucoxylon, Phoenix sylvestris,
Eucalyptus obliqua, Pittosporum englerioides,
Eucalyptus rostrata, Pittosporum tenuifolium,
Eucalyptus radii, Pittosporum undulatum,
Eucalyptus viminalis.

AAA. Drooping trees.

b. Deciduous.

Acer saccharum, var. Wirri pedunculata,
Betula alba, var. pendula elegans,
Betula alba, var. pendula laevis,
Betula alba, var. pendula pubescens,
Youngi, Crataegus monogyna, var. pendula,
Fagus sylishus, var. pendula,
Fraxinus excelsior, var. aurea pendula,
Fraxinus excelsior, var. pendula,
Juglans regia, var. pendula,
Larix monticola, var. pendula,
Laburnum vulgare, var. pendula,
CC. Evergreen.

Schinus Molle.

BB. Evergreen.

Morus alba (Tea's Weeping), Populus grandidentata, var. pendula,
Prunus fruticosa, var. pendula,
Prunus fruticosa, var. pendula,
Quercus lobata,
Salix Babylonica,
Sals Babylonica, var. Lickii,
Sophora Japonica pendula,
Sorbus Amurensis, var. pendula,
Thiæ Americana, var. pendula,
Thuja Europæa, var. pendula,
Ulmus americana, var. pendula,
Ulmus campestris, var. pendula,
Ulmus montana, var. pendula,
Ulmus glabra, var. pendula,
Ulmus montana, var. pendula.

6. Trees for Streets, Avenues and Roadsides.—The number of tree species suitable for street planting is limited by the necessarily heavy restrictions, as to height, spread, sewer-penetration and sidewalk-raising, imposed by municipal street departments. In European cities the first-named objections are overcome by means of frequent and systematic pruning to a uniform standard; where this necessity can be obviated by the selection of trees which naturally keep within the desired bounds, the labor of maintaining them in a slightly condition is minimized and the result much more pleasing. For town streets not more than 60 feet in width, it is important to have trees that will not give too much shade and prevent the rapid drying of the roadway after showers, nor be so tall nor wide-spread as to obstruct the view and shut out sunshine reaching the adjacent houses dark, cold and damp. On this account trees with narrow or pyramidal outline are in many cases preferable to those with wide-spread habit, and, generally speaking, deciduous trees are more suitable than evergreen, although at the time of losing their leaves they make more litter. Exception may be made in favor of such evergreen species as certain palms and cordylines, some acacias and a few other species mentioned below.

It is not wise to use trees of very rapid growth on town streets; they soon become too large and require frequent trimming, which is usually equivalent to mutilation, and are likely to interfere with sewers.

It cannot be said that street planting in California towns has, in most cases, been satisfactory. In spite of the much larger variety of suitable materials than is available in most of the states, there are few examples of good street planting to be met with. In most of our towns the eye is greeted with a few straggling trees, of which perhaps not more than two are of one kind, recalling Professor Waugh's apt simile of "nine monotonously different buttons in a row down the front of a Prince Albert coat." There are many pleasing exceptions, however, although few are entirely satisfactory. The repeated attempts to improve the appearance of a town by planting trees along the streets should be encouraged on every occasion, and the object of this article is to render

2562. Weeping elm, type of a grotesque horticultural variety.

Ulmus sabina var. horizontalis.

2563. Cordyline australis.

Often called Dracaena Palm. California.
assistance by pointing out how some of the mistakes may be avoided. The unsatisfactory results of street-planting, so often met with, can generally be traced to one or all of three causes:

1. Selection of unsuitable species.
2. The mixing of several species on the same block and even in front of the same lot.
3. Crowding the trees.

This last-mentioned source of trouble is perhaps the cause of more failure than the first. When trees are once growing, few persons have the heart to thin out the specimens to the proper distance apart; finally a newcomer, without personal feeling in the matter and noting only that there is too much shade and too little light, cuts down the whole row and a gap is left in what may have been a fairly uniform block. Spreading avenue trees of large size should not stand closer than 50 ft. apart; smaller trees, on narrower streets should have 40 or at the very least 30 ft., unless they are slender species such as cordylines or washingtonias, when
TREES

20 ft. may be sufficient. As a rule, three small trees to a 50-foot lot will be found ample, and the center one of these three should be taken out when they begin to meet at the sides; if the whole street is planted uniformly with the same species, and at this same distance, the result will be much more pleasing than if four or five trees are planted in front of every house.

A. For city and town streets.

B. Small trees suitable for streets 60 ft. wide or less.

C. Deciduous.

D. Growth rapid or moderate.

Betula alba, Kaeltrenera paniculata.
Betula lutea, Melia Azedarach var. unbraciflorum.
Betula populifolia, Paulowna imperialis.
Calipso bignonioides, Rhus typhina.
Catalpa ovata, Sorbus Aucuparia.

DD. Growth slow.

Crataegus mollis, Ginkgo biloba.
Crataegus monogyna, Crataegus monogyna.

EE. Evergreen trees other than palms and arborescent Liliceae.

Acer Baileyana, Acer cerrifolia.
Acer magnoliaefolia, Magnolia virginiana.
Acer falcata, Piptoporum eugenoides.
Acer lineata, Piptoporum tenuifoliolatum.
Acer longifolia, Sterculia diversifolia.

DD. Growth slow.

Abietkyx excelsa, Abies grandis.
Bursaria spinosa, Myoporum hannah.
Cinnamomum cinnamomum, Myoporum laetum.
Eucalyptus ellei, Olearia Europa.
Eucalyptus filifera, Washingtonia filifera.
Lagunaria Americana, Washingtonia robusta.

BB. Larger trees for streets, avenues and boulevards 80 to 100 ft. wide.

C. Deciduous.

D. Growth rapid or moderate.

Acer saccharinum, Platanus orientalis.
Craxinusa Americana, Quercus pedunculata.
Fraxinus velutina, Robinia pseudoacacia.
Cinnamomum Cinnamomeum, Ulmus campestris.
Hickory Pecan, Ulmus americana.

DD. Growth slow.

Gleditschia triacanthos, Tilia americana.
Liriodendron Tulipifera, Tilia Europaea.
Sophora Japonica, Ulmus americana.

CC. Evergreen.

D. Palms and bananas.

Erythrea absoluta, Trachycarpus excelsus.
Livistona australis, Washingtonia filifera.
Musa Ensete, Washingtonia robusta.

DD. Evergreen trees other than palms and bananas.

Acer rubrum, Eucalyptus fraxinifolia.
Acer melanoxylon, Eucalyptus polyanthema.
Acer pycnantha, Eucalyptus ruifolia.
Angophora intermedia, Eucalyptus sideroxylon.
Angophora subvelutina, var. pallens.
Eucalyptus angustifolia, Ficus macrophylla.
Eucalyptus calophylla, Syzygium laurifolia.
Eucalyptus corymbosa, Tristania conferta.

EBB. For avenues and boulevards without sidewalks or with wide spaces between sidewalk and driveway.

For this purpose almost any of the larger and more ornamental species enumerated in the other lists may be selected. Spreading coniferous trees, with broad bases (such as Sequoia gigantea, etc.) can often be used to advantage, as well as the wide-spreading feather-palms (Phoenix and Juba).

AA. For country roads.

B. Deciduous.

Acer campestris, Lithocarpus Tulipifera.
Acer macrophyllum, Paulownia imperialis.
Acer Negundo, Phyllocladus dioica.
Acer Negundo, var. Californicum.
Acer planifolium, Quercus lobata.
Acer saccharinum, Quercus pedunculata.
Eucalyptus calophylla, Robinia pseudoacacia.
Eucalyptus calophylla, Sophora Japonica.
Eucalyptus capelitata, Tristania conferta.
Eucalyptus cornuta, Ulmus campestris.
Eucalyptus diversicolor, Ulmus americana.
Eucalyptus leucoxylon, Ulmus campestris.
Eucalyptus rostrata (Fig. 2556), Ulmus americana.

BB. Evergreen.

Acer melanoxylon, Eucalyptus ruifolia.
Acer mollis, Eucalyptus viminalis.
Arbutus Menziesii, Ficus macrophylla.
Cinnamomum cinnamomum, Olea Europa.
Crypotelemma Japonica, Pinus radiata.
Eucalyptus botryoides, Quercus sirhier.
Eucalyptus calophylla, Schinus Molle.
Eucalyptus capelitata, Sequoia gigantea.
Eucalyptus diversicolor, Sequoia sempervirens.
Eucalyptus leucoxylon, Sterculia diversifolia.
Eucalyptus rostrata, Sterculia diversifolia.

7. Trees which have been tried but have proved unsatisfactory. — There are many species which have failed to give satisfaction in some localities because of local peculiarities of climate or soil; there are some, also, which have proven unsatisfactory on account of habit, etc.; from among these may be mentioned:

Eucalyptus robusta, a species which is exceedingly handsome as a young tree and has been extensively planted along road sides and streets in the warmer parts of the state; when mature it becomes straggling and exceedingly brittle, breaking up in an unsightly manner.

2565. Phoenix Canariensis, one of the best palms for outdoor planting. Berkeley, California.

Eucalyptus corokiaezy also becomes straggling and unsightly with age.

D. Hibiscus Molle should be avoided in the Citrus belt, as it is found to harbor and become a nursery for scale insects. As a street tree it is also unsatisfactory, becoming too large and straggling and requires too much pruning to keep it within bounds. The more surface roots often break cement and asphalt sidewalks.
TREES

Melia Azedarach, var. umbraefi/ornis, is found unsatisfactory in the immediate vicinity of the coast; as a sidewalk tree it is exceedingly aptly where losing its leaves, and is often much subject to scale insects.

Acacia melanoxylon is generally debarred by the Citrous belt, as a breeder of scale; when mature it is said to suffer quickly from the effects of drought. In the moister climate of the immediate vicinity of the coast, near San Francisco, however, it proves entirely satisfactory.

Populus alba, Robinia pseudoacacia and Ulmus racemosa are exceedingly troublesome when used as sidewalk trees on narrow streets; their surface roots often break the cement or asphalt sidewalks, and the suckers come up in the midst of lawns several yards away from the parent tree.

Ficus macrophylla is another tree injurious to sidewalks.

Eucalyptus Globulus, and in fact almost all species of the genus, are frequently debarred by town ordinance from growth within 60 or even 70 feet of a sewer, on account of the remarkable length and penetrating power of their roots.

Pan troca imperialis is sometimes objected to on account of the somewhat untidy appearance of the persistent seed-pods, which require no little labor if all are to be removed after flowering.

Grevillea robusta has brittle wood and is usually much broken in heavy winds, but can be used with satisfaction if kept well cut back.

The species of Phoenix and Jubaea should be avoided on account of their low, wide-spreading habit, except for avenues and boulevards where there is no sidewalk or where there is from 20 to 30 feet a space between sidewalk and drive way.

Ailanthus glandulosa has a bad reputation on account of its disagreeable odor, but as this is only found in the staminate trees, it can be avoided by planting the pistillate (fruit-bearing) trees only.

8. Trees for Alkali Soils.—There are many places in those parts of the state that enjoy a high temperature and low rainfall, where the percentage of alkali salts in the soil is too great for the cultivation of most of our ornamental trees, and where it is very important that some shade-producing species be grown.

a. Tolerant of strong "black" alkali (Sodium carbonate).

The most alkali-tolerant tree of those yet tested is Koelreuteria paniculata, a small species 15 to 20 feet high, with feathery, pinnate leaves and ornamental yellow blossoms.

AA. Tolerant of medium alkali (chiefly "white" salts).

Ailanthus glandulosa, Albizia-lebophylla, Casuarina equisetfolia, Eucalyptus angophora, var. angustifolia (apparently the least sensitive of the Eucalypti).

AAA. Only fairly tolerant.

Acer macrophyllum.

Cinnamomum Camphora, Cedrela trichachos, Ulmus spp.

Washingtonia filifera.

aaa. Tolerant and found unsuitable.

Most of those trees of the humid regions, e.g., British states and N. Europe, which have been tried on alkali soils, have been found to remain dwarf and stunted. This is particularly true of Liriodendron tulipifera, Quercus pedunculata and species of Tilia.

With the exception of those named above, the following additional information on the alkali tolerance of ornamental trees has been brought to light through the investigations of Dr. R. H. Longbridge of the Agricultural Experiment Station at Berkeley, and has courteously been placed at my disposal.

Total amount of salts actually found in the upper four feet of soil in which the following trees were growing, expressed in pounds per acre:

Type of soil in depth of feet.

Koelreuteria paniculata ... 15
Platania orientalis 25
Eucalyptus amygdalina ... 20
Eucalyptus angustifolia ... 20
Washingtonia (species not stated). . . . 15
Phoenix dactylifera 5
Cinnamomum Camphora 15

Jos. Burt Day.

IV. TREES FOR SOUTHERN CALIFORNIA.—Street Trees.

Sterculia diversifolia, Australian Bottle Tree; Ailanthus melanoxylon, Blackwood Acacia; Cinnamomum Camphora, Camphor Tree; Sterculia nodiflora, Australian Flame Tree; Eucalyptus robusta, Swamp Nebognay Gum; Grevillea robusta, Silk Oak; Ailanthus dealbata, Black Wattle; Jacaranda ovalifolia: Liquidambar Japonica; Japan Privet; Pisoni roslata, Monterey Pine.

The above are the best ten trees for street purposes, but among these might be placed Corylus americana and C. invervillea, and several kinds of palms. One deciduous tree is much used—Melia Azedarach, var. umbraefi/ornis, the Umbrella Tree. Though less known or used, Eucalyptus catophyila is by far a better street or sidewalk tree than E. robusta. Very few others than those noted do well in this climate. Any extension of the above list must be made almost entirely

2366. One of the gum trees—Eucalyptus rostrata.

Eleven years planted; 65 feet high. California.
through palms, eucalypti and acacias, among which there is plenty of room for personal preference.

TREES

Frequent species: Araucaria excelsa, Norfolk Island Pine; Araucaria bidwillii, The Bunya

Bunya, Lambertia floribunda, Calamandra Camphora, Campion Tree; Ficus macrophylla, Rubber Tree; Ficus elastica (where hardy), Rubber Tree; Sterculia acerifolia, Australian Plane Tree; Magnolia fothered, Bull Bay; Sequoia gigantea, California Big
TREES

This list contains mainly the most ornamental trees that must be excluded instantly if all our giant trees were included. The ornamental eucalypti and acacias would at least treble this list, and the palms alone would easily double it. Ernest Braenton.

TREE TOMATO. See Cyphomandra.

TREFOIL. See Clover, Trifolium.

Trevesia (after the family Trevesi di Bonfili of Natal, patrons of botany). Araliaceae. A group of small trees or shrubs from tropical Asia and the islands in that region, with large lvs. either palmately cut or simple and digitately or punnetted compound, and flowers quite large for the family and borne in panicked umbels: petals 8-12, valvate, somewhat thick; stamens 8-12: ovary 8-12-loculed: fruit large, ovoid, Greenhouse subject.

Pulaea, Vits. (Gaultheria palma, Roth.). A small tree, with the ends of the branches sparingly prickly and the young parts tomentose: lvs. crowded at the ends of the branches, 1-1½ ft. across, palmately 5-9-lobed to below the middle; petioles 1-1½ ft. long; panicles long-peduncled: umbels 6 in. through, long-peduncled: fls. 1 in. across, greenish white. Himalayas.

F. W. Barclay.

TRICALYSIS (Greek, triple calyx; true of some species). Rubiaceae. Here belong the two shrubs from Natal which are cult. in S. Fls., under the name of Kraussia. When Kraussia was written for this Cyclopedia the undersigned treated it in the manner suggested by Bentham and Hooker, Index Kewensis and Flora Cappensis. Since then the writer has had access to the Flora of Tropical Africa, which throws a new light on the relationship of these plants. In Vol. 3 of that publication Kraussia is made out to be a section of Tricalysis characterized by having the calyx limb 4-lobed; the other species have a truncate calyx-limb which is either or nearly so. Tricalysis is a genus of erect or climbing shrubs, with small axillary flowers. It contains a few species from Natal and Madagascar in addition to 21 from tropical Africa. The two species mentioned below have funnel-shaped fls., which are about a quarter of an inch long. Their color is not stated; it is probably white. The fls. are borne in clusters, which are much shorter than the leaves. They are not clear why these plants should be cultivated at all. They bloom in S. Calif., but have not bloomed in S. Fla.

Generic characters of Tricalysis: calyx-tube in many species 6-ft at the base with a single or double epi-

TRECH"NOS (Greek, hairy: alluding either to the plant in general, due to its short hairs of the genus of 47 species of Australian herbs or shrubs, often hairy, with alternate narrow or rarely obovate leaves and pink or straw-colored flowers in terminal simple spikes or heads, with slimy, drooping, rather long tube short; segments 5, equal, linear, rigid, usually flumose; stamens 5, but usually 1-3 of them small and antherless: fr. an indehiscent ule.

Exaltatella, Benth. (Pitcllina exaltatella, Nees). A tender perennial, 2-3 ft. high, erect, usually branching above: lower lvs. 2-5 in. long, obovate-lanceolate rather thick, contracted into a long petiole; upper lvs. smaller: spikes erect, long-penduncled, at first ovov-conical, becom-

TRICHOMUS (Greek, hairy: alluding either to the plant in general, due to its short hairs of the genus of 47 species of Australian herbs or shrubs, often hairy, with alternate narrow or rarely obovate leaves and pink or straw-colored flowers in terminal simple spikes or heads, with slimy, drooping, rather long tube short; segments 5, equal, linear, rigid, usually flumose; stamens 5, but usually 1-3 of them small and antherless: fr. an indehiscent ule.

TRICHOMUS. A section of Dipodi.

TRICHORIS (Greek, hairy: alluding either to the plant in general, due to its short hairs of the genus of 47 species of Australian herbs or shrubs, often hairy, with alternate narrow or rarely obovate leaves and pink or straw-colored flowers in terminal simple spikes or heads, with slimy, drooping, rather long tube short; segments 5, equal, linear, rigid, usually flumose; stamens 5, but usually 1-3 of them small and antherless: fr. an indehiscent ule.

TRICHORIS (Greek, hairy: alluding either to the plant in general, due to its short hairs of the genus of 47 species of Australian herbs or shrubs, often hairy, with alternate narrow or rarely obovate leaves and pink or straw-colored flowers in terminal simple spikes or heads, with slimy, drooping, rather long tube short; segments 5, equal, linear, rigid, usually flumose; stamens 5, but usually 1-3 of them small and antherless: fr. an indehiscent ule.

TRICHORIS (Greek, hairy: alluding either to the plant in general, due to its short hairs of the genus of 47 species of Australian herbs or shrubs, often hairy, with alternate narrow or rarely obovate leaves and pink or straw-colored flowers in terminal simple spikes or heads, with slimy, drooping, rather long tube short; segments 5, equal, linear, rigid, usually flumose; stamens 5, but usually 1-3 of them small and antherless: fr. an indehiscent ule.

TRICHORIS (Greek, hairy: alluding either to the plant in general, due to its short hairs of the genus of 47 species of Australian herbs or shrubs, often hairy, with alternate narrow or rarely obovate leaves and pink or straw-colored flowers in terminal simple spikes or heads, with slimy, drooping, rather long tube short; segments 5, equal, linear, rigid, usually flumose; stamens 5, but usually 1-3 of them small and antherless: fr. an indehiscent ule.
TRICHOMENAE.

TRICHOMANES (Greek, soft hair). *Hymenophylaceae*. A genus of finely furred distinguished by its tubular, cup-like indium and filament elongate receptacle. Fig. 2567. Very delicate in texture and capable of being grown successfully only under shaded glass. Over 100 species are known. Various species may be found in the collection of fanciers, but the following appear to be the only ones regularly in the American trade. For culture, see Ferns.

radicans, Swz. Lvs. 2-8 in. long, 1-1 1/2 in. wide, bipinnatifid; pinna ovate, obtuse; indium terminal, on short stipes. Tropical regions, extending into our southern states as far as Kentucky.

P. rostrata (T. doreia, Hook.). Lvs. 12-18 in. long, 6-12 in. wide, tri-quadrupinnatifid; pinna ovate-lanceolate; sori 2-12 to a pinnule, small, axillary; indium with a much dilated sori. Tropical America.

L. M. UNDERWOOD.

TRICHONEMA. See *Romulea*.

TRICHOPILIA (Greek, hair and cup; the anther is concealed under a cap surrounded by three tufts of hair). *Orchidaceae*. About 20 species, ranging from Mexico to South America. Pseudobulbs crowded on the short rhizome, flattened, and often elongate, 1-lvd., surrounded with dry scales at the base; lvs. large, solitary, erect, fleshy, keeled; fls. abundantly produced on short, nodding or decumbent scapes; sepals and petals narrow, spreading, often twisted; labellum large, forming the most conspicuous part of the flower, united with the column below, lateral lobes convolute, middle lobe spreading; anther bent over; pollinia on a triangular caudicle; columnum horizontally winged. The flowers keep fresh a long time, both on the plant and when cut. Handsome orchids, usually grown in pots, although epiphytal. They need an intermediate or greenhouse temperature. If grown too warm, they suffer. Prop. by division.

fragrans, Reichb. f. (*Pilena fragrans*, Lindl.). Pseudobulbs clustered, flattened, 3-4 in. long, 1-lvd.; lvs. oblong-lanceolate, acute, 6-8 in. long; scape pend. 1 ft. long, about 6-fld.; fls. on pedicels 3 in. long; sepals and petals spreading; labellum long, 2½ in. long, wavy and twisted, greenish white; lobe folded over the column, spreading in front, and somewhat lobed, white with a yellow stripe in the throat. Summer. Colombia. B.M. 2059. Pfl. sll. (as T. fragrans).

nobilis, Reichb. f. (*Pilena nobilis*, Reichb. f. *T. candida*, Linden). Pseudobulbs large; lvs. broadly oblong-acute; fls. white; sepals and petals linear-oblong, acute, 2 in. long, scarcely twisted; labellum large, white with a yellow spot in the throat. Venezuela. I.H. 1875; 21 (as *T. fragrans*).—Var. nobilis, Lindl. Pseudobulbs oblong, compressed, somewhat curved, 2-4 in. long; lvs. solitary, oblong, acute, 6 in. long; fls. solitary, on decumbent stalks shorter than the lvs.; sepals and petals linear-lanceolate, 2 in. long, spirally twisted, brown with yellowish margins; labellum forming a tube around the column, upper portion expanded, 4-lobed, white with crimson spots, becoming entirely crimson within. Fls. profusely in summer and sometimes again in winter. Mexico. B.M. 3739. B. & R. 22:1805. F.C. 3:101. B. 3:122.—Var. alba is advertised.

suavis, Lindl. Fig. 2568. Pseudobulbs thin, compressed, 2 in. long; lvs. broadly oblong, 8 in. long; scape pendent, about 3-fld.; fls. on long, curved stalks, large; sepals and petals lanceolate-acuminate, wavy, nearly straight, 2 in. long; white or cream-colored; labellum large, projecting forward, white or cream-colored, spotted with pale purple, yellow in the throat; limb large-lobed, wavy and crenate. Mar. June. Cent. America. B.M. 4654. P.S. 8:761. R.H. 1859, pp. 229, 221, 1857, p. 454. Gm. 4, p. 511; 35, p. 185; 48, p. 79; 51, p. 571. R.B. 23:236. G.M. 38:281.—Var. alba, Warner. Fls. white with a yellow spot in the throat of the labellum.

crispa, Lindl. This plant was described by Lindley in Linden's catalogue. It is closely related to *T. marginata*,...
which is sometimes classed as a variety of *T. crispa*. The following description is taken from Watson's *Orchids*. *Pseudobulb* ovate, flattened, 2-3 in. long, dark green, 1-2 in. wide, leathery, 6-8 in. keeled, pointed: flower-spike basal, drooping, short, 3-fld.; fls. with pedicels 2 in. long; sepals and petals spreading, 2½ in. long, ½ in. wide, wavy-edged, twisted, brownish yellow; lip folded over the column spreading in front, 1½ in. across, colored deep crimson with a white margin. May, June. Costa Rica.

Heinrich Hasselberg.

TRICHOSANTHES (Greek, *hair* and *flower*; alluding to the fringed edge of the petals). *Cucurbitaceae*.

Snake Gourd. About 40 species of climbing herbs, annual or perennial by tuber-like roots, natives of southeastern Asia and Australia. They are tender plants with usually large, roundish, lobed leaves and white axillary flowers. The male fls. are usually in racemes, while the female are nearly always solitary. The fruit is often ornate, and highly colored. In *T. aristata* it is exceedingly long, having been noted over 6 ft. in length.

Calyx long, tubular, 5-toothed: petals 5, united at the base, ovate to lanceolate, broadly fimbriate: stamina in the male flower. D. C. Mon. Planer, 3:351. The plants flower in July from seed sown in March. They may be treated as tender annuals.

A. *Bracts small or none on the racemes of male fls.*

B. *Fruit ovoid.*

cucumeroides, Maxim. Root fleshy, tuberous: stem slender, 12-15 ft.; fls. ovate in outline, 4-6 in. long, more or less apically 3-5-lobed, margin crenate: peduncle bearing the male fls. 1-4 in. long, and 5-15-fl.; petals about ½ in. long, oblong, acute, longingly fringed: fr. oblong, shortly rostrate, nearly 3 in. long, vermilion-colored. Japan. Offered by importers of Japanese plants.

bb. Fruit oblong.

Angulus, Lindl. (*T. calibrina*, Jacq.). *Serpent* or *Snake Gourd*. Stem slender, tall-growing: fls. nearly circular in outline, 2½ in. across, 3-7 lobed; lobes round; margin undulate or wavy; peduncle bearing the male fls. 4-10 in. long, 8-15-fl.; body of petals oblong, less than ½ in. long, fringes ½ in. long: fr. slender, contorted, often exceeding 3 ft. in length. India. B. M. 722. B. R. 32:18 (as *T. calibrina*). R. H. 1839, p. 595.

Aa. *Bracts large on the male raceme.*

B. *Calyx-segments entire.*

cc. Lvs. lobed.

Kiriwili, Maxim. (*Epipomum vitifolium*, Naud.). Perennial root tuber-like: stem annual, high climbing; 20-30 ft.; fls. nearly circular in outline, 3-8 in. across, deeply 5-7-lobed, the lobes oblong, acute, coarsely serrate: racemes bearing the male fls. 4-8 in. long, 3-8, rarely only 1-fl.; petals triangular-wedge-shaped, deeply cleft and the segments much cut and bristly fimbriate, ovoid, somewhat acute: base shortly attenuate, yellowish, orange about 1 in. long, ⅔ thick. Mongolia.

dd. Lvs. not lobed.

cordata, Roxb. (*T. palmata*, Wall.). Root tuberous: stem robust, high climbing; fls. wide, ovate-acuminate, acute or shortly acuminate, 5-8 in. long, rarely somewhat angled or obscurely lobed: margin slightly dentate: peduncle bearing male fls. 5-8 in. long, 4-8-fl.; calyx-segments finely acute: fr. globose, red, orange-striated, not acute at the apex. India.

Bn. *Calyx-segments toothed.*

bracteata, Vogt (*T. palmata*, Roxb.). Stem stout, climbing to 30 ft.; fls. broadly ovate in outline, sebaceous above, usually deeply 3-7-lobed; lobes acute; margin dentate: peduncle bearing the male fls. 4-8 in. long, 5-8-fl.; fr. globose, red with orange stripes about 5 in. long. India.

F. W. Barclay.

TRICHOSA (Greek, *hair* and *ornament*). Orchidaceae. Sepals and petals similar, erect-spreading, the lateral pair forming a distinct mentum with the projecting foot of the column; labelium 3-lobed, the lateral lobes erect, convolute over the column, middle lobe with longitudinal ridges: stems slender, 2-ftd.; inflorescence racemose. Resembles Calogyne.

sulivis, Lindl. Lvs. lanceolate, undulate, 3-nerved; fls. in a terminal raceme, white, yellowish or purplish, fragrant; sepals ovate-oblong, streaked with purple; disk yellow, middle lobe with several crenate ridges. Himalaya. B. T. 28:21.

T. oblongo-marginata of the trade is unidentified, **Heinrich Hasselberg.**

TRICHOSTEMA (Greek, *hair* and *stamen*; referring to the filaments). *Labiate*. *Blue Curls*. A genus of semi-perennial plants, mostly low, aromatic, annual herbs with entire leaves and blue flowers; *T. oblongo-marginata* is 1-2 ft. high, with the tube shorter than the limb. Offered by some dealers in native plants.

For fuller account, see Gray's *Flora of North America.*

A. *Calyx bell-shaped, regular, almost equally 5-cleft.*

lanatum, Benth. A perennial shrubby plant with rosemary-like leaves and clusters of fls. in a naked terminal thyrs: lvs. narrow linear, 1-nerved, sessile, margins revolute: calyx and corolla covered with dense violet or purple wool; corolla ½ in. long. S. Calif. A very handsome as "Shrub. Known as "Ramara."

AA. Calyx oblique, 2-lipped.

TRICYRTIS (Greek, *three covocitica*; referring to the nectar-bearing sacs at the base of the three outer perianth-segments). *Liliaceae*. "Toad-Lilies," as the Japanese call them, are autumn-blooming perennial herbs with 6-parted fls., which are generally an inch across, and of whitish color, spotted with purple. They are very distinct members of the lily family by reason of their season of bloom, quaintly spotted flowers, and the prominent nectar sacs mentioned above. They are not bulbous plants, but have a short rootstock emitting tufts of branched fibers. All the species are desirable, but it only one can be afforded the amateur should select *T. hirta*, var. *wagneri*. *T. hirta* is perfectly hardy and has more fls. and larger ones than the other species, and with good management it blooms in September. Sometimes, however, it blooms so late that its flowers are prematurely destroyed by frost. For this reason some gardeners prefer to grow the plant in pots, which may be brought indoors when the fls. are at their best. The variety *wagneri*, which differs from the common form in having darker colored spots, is said to bloom two or three weeks earlier than the type and can therefore be recommended to lovers of choice hardy plants, but with one reservation: it should not be placed in the ordinary flower border where it will have to struggle against stronger-growing plants. It should be established in a bed where the plants need not be disturbed for years. Half a dozen plants in a circular bed could be made by division to spread into a solid mass in the course of a few seasons. Such a mass is much more desirable than one plant each of all the kinds. The bed should be made in a slightly shaded position. For soil, try a light fibrous loam mixed with leaf-mold and sand. An English expert, W. Goldring, has suggested as a companion to the *Toad Lilies*, either Lady Slippers (*Cypripedium spec- tabile*) or Wood Lilies (*Trillium grandiflorum*). This happy idea is worth a trial, as the species named bloom at different seasons and would probably not compete with one another. In this connection, the leaves of *Tricyrtis* often do not remain in good condition throughout the season.

Tricyrtis is a genus of 6 species native to Japan, China and the Himalayas. The plants average 2 or 3 ft. in height and have numerous lvs., green on both sides and with many parallel nerves, fls. bell-shaped, then spreading; perianth-segment: outer lvs. ovary sessile, 3-celled; ovules crowded, superposed; capsule leathery, 3-valved; seeds minute. *Tricyrtis* is one of the aberrant types of the lily family. It is placed by Bentham and Hooker in the Uvularia tribe.
TRICYRTIS

in which it is the only genus with a septiodel capsule. Monographed in Latin by J. G. Baker in Journ. Linn. Soc. 17:163 (1880). In this account the lvs. of T. macro-poda are said not to be stem-clasping, but in B.M. 5355 they are described and figured as stem-clasping.

All the names given below are American trade names, except T. flavus, Formosana and latifolia. The writer has been tempted to include these, partly because there has been no account in English of all the species, but chiefly because they are desirable plants likely to come into cultivation.

A. Base of lvs. not stem-clasping.
AA. Base of lvs. clasping the stem.
BB. Stem pilose, with spreading hairs.
CC. Stem not prominently hairy, puberulous or very slightly pilose.
DD. Spots rather large.
EE. Style as long as the stigmas. 5. latifolia
FF. Style half as long as stigmas. 6. macropoda

Formosana, Baker. Stem flexuous, 1 ft. high; lvs. sessile, oblong-lanceolate, wedge-shaped at the base: fls., few in a lax corymb, whitish purple, scarcely spotted. Formosa.—Unique by reason of its lvs. not being stem-clasping.

2509. Tricyrtis hirta (x 5).

flava, Maxim. Stem dwarf: lvs. oblong-lanceolate: fls. racemose, yellow, not spotted. Seen by Maximo-wicz in the gardens of Yedo only.

pilosa, Wall. Stem 2–4 ft. high, very slightly pilose: lvs. oblong; fls. numerous, loosely corymbose, whitish, with large purple spots; style half as long as the stigmas.

latifolia, Maxim. Stem glabrous, flexuous, 2–2 ft. high: lvs. broadly oblong or the uppermost ovate: fls. few in a terminal corymb, whitish, with minute purple spots; style as long as the stigmas. Japan.

macropoda, Miquel. Stem 3–3 ft. high, puberulous above: lvs. oblong: fls. in a loose corymb, whitish, with minute purple spots: style half as long as the stigmas. Bloom in June and July, according to J. B. Keller. Japan, China. B.M. 654 (segments broadly ovate, deciduously yellow, spotted red and veined red near tips).—In F.S. 18:1820 is figured a plant with sessile lvs. striated with white, and no fls., which he refers to T. macropoda. This was sent out by Van Houtte as T. hirsuta, but it is a glabrous plant and probably lost to cultivation.

T. grandiflora, Hort., should be compared with T. hirta, var. maculata. It is a name scarcely known to botany. Ellwanger & Barry say it has orbiculate, fragrant fls. in Oct. and Nov. (Baker says the genus has no fragrant fls.) Kregel says that T. grandiflora has white fls., modified with black.

W. M.

TRIENTALIS (Latin for the third of a foot; referring to the height of the plant). Primulaceae. STAR FLOWER. CHICKWEEP-WINTERGREEN. A genus of two species of low, glabrous, hardy perennial herbs: stems simple, with small scales on leaves below and a whorl of one to three leaves at the base of short spikes. This genus has been treated as a section of Trientalis Linn., but the plants are very different, and are best left as a distinct genus.

A. Lvs. acuminate at both ends.
BB. Stem naked below, 3-15 dm. at the summit: lvs. lanceolate; divisions of the white corolla finely acuminate. Damp woods, Labrador to Va. V. 8:330.
CC. Lvs. obtuse (acute in var. latifolia).

Europaea, Linn. Stem either naked or with a few scattered lvs. below the cluster of obvallate or lanceolate, oblong, obtuse or abruptly somewhat pointed lvs.: divisions of the white or pink corolla abruptly acuminate or mucronate. Alaska, Eu. and Asia.—Var. arctica, Linn., a dwarf: lvs. 1 in. long, decreasing below; spikes 1-2 dm. white. Var. latifolia, Torr. Stem naked below the cluster of 4-7 oblong-obovate, or oval, mostly acute lvs.: corolla white to rose-red. Woods, western California to Vancouver’s Island.

F. W. Barclay

TRIFOLIUM (name refers to the three leaflets). Leguminosae. Clover. Trifolium is a large genus, comprising between 200 and 300 species, mostly abundant in the north temperate zone. They are low herbs, with digitately 3-foliate (rarely 5-foliate) lvs., stipules adnate to the base of the petiole, and small papilionaceous flowers mostly in dense terminal heads or spikes. The calyx is 3-toothed, the 2 upper teeth sometimes connate; petals 5, mostly white, rarely yellow, more or less adnate to the base of the stamen-tube; stamens 9 and 1, ovary small, ripening into a little few-seeded, mostly indehiscent pod. The flowers are usually in shades of red and running into white, rarely yellow.

The Closers are very important agricultural plants, but they have little distinctly horticulural value except as cover-crops and green manures. See Clover, P. 252. For the role of Closers as nitrogen-fixers, see Legumes, p. 897. The species described below are offered mostly as forage plants. Many Closers are perennial, although they are of relatively short life, so that frequent resowing is necessary for the plants to be kept in robust condition. Some of the species are annual, and these tend to become weeds. All are propagated readily by means of seeds; but as the seeds are small and oily, they may not germinate well in dry, hot soils. Three annual yellow-flowered species are weeds in some parts, particularly in the East, where they have been introduced: Europe: T. ageratif, Linn., Yellow or Hop Clover, with oblong-obovate sessile lfts.; T. procumbens, Linn., the Hop Clover, more spreading; lfts. obvallate and the terminal one stalked; T. dubium, Slath., with lfts. truncate or emarginate at apex and the terminal one stalked. A silky-pubescent white-fl. annual species, from Europe, T. arvense, Linn., is the Rabbit-foot
Clover of fields and waste places. The T. odoratum of some seedsmen is evidently Melilotus. Allied genera are Lespedeza, Medicago and Melilotus.

a. Flowers in a long spike.

incarnatum, Linn. Crimson or Scarlet Clover. Fig. 499, Vol. I. Annual, erect, 1-3 ft. high, soft-hairy: Ivs. long-stalked, the ft. broadly obovate and dentate and sessile or nearly so by a cuneate base, the stipules large and thin and veiny and somewhat toothed: heads becoming 2-3 in. long, very dense; fls. sessile, bright crimson and showy, the calyx sharply-toothed and hydridum, Linn. Alskie or Swedish Clover. Ascending or nearly erect, 1-3 ft. high, branching, glabrous: Ivs. long-stalked, the ft. obolate and serrulate, stipules ovate-lanceolate and thin: heads small and loose, nearly globlarr, long-stalked: fls. rose-colored or sometimes white on the top of the head. Eu. B.M. 5702.—A good forage plant; also naturalized. Thrives best on moist lands. Very hardy. Perennial.

c. Individual fls. pedicled.

pratense, Linn. (T. pratense pérdání, Hort.). Common Red Clover. Pea-Vine Clover. Cow-Grass. Fig. 2571. Ascending and somewhat hairy, 1-1 1/2 ft.: Ivs. long-stalked, the ft. oval or obovate and sometimes notched at the end and the blade marked with a large spot, the stipules broad but with a bristle point: heads globular-ovate, sessile; fls. red-purple. Eu., but everywhere introduced, and much grown for pasture hay, and green manuring.

média, Linn. Mammoth or Zigzag Clover. Stout and less erect: Ivs. oblong and entire and without spots: heads usually stalked, and fls. rather darker colored. Eu., and introduced, and much grown by farmers.

d. Plant annual.

resupinatum, Linn. (T. supinatum, Willd.). Annual, diffuse or trailing glabrous plant: ft. obvate and serrate and as long as the petiole, the stipules lanceolate-sessile: heads globose, with rudimentary involucres: fls. purple. Greece, Egypt to Persia.—Grown for ornament.

TRIFOLIUM

Figure 2570. Trifolium repens—the White Clover (× 16).

hairy. S. Eu. B.M. 328.—An escape in some places. Now much used as a cover-crop in orchards. See Cover Crop. It is very showy when in bloom. If seeds are sown at midsummer or later, the plants may be expected to survive the winter and bloom early in spring.

rubens, Linn. Perennial, 20 in. or less tall, in clumps, the stems erect: Ivs. short-stalked, the ft. oblong-lanceolate and strongly dentate, the stipules long-lanceolate: heads usually in pairs, becoming 3-4 in. long: fls. purplish red, showy.—Eu. Attractive ornamental species. The heads become silky after flowering. There is a white-ft. form.

AA. Flowers in globular or oval heads.

B. Corolla yellow.

filiforme, Linn. Yellow Suckling Clover. Annual, of diffuse growth: Ivs. obovate or obolate, somewhat dentate, the terminal one stalked, the stipules broadly ovate: petioles long and filiform, bearing sessile yellow ft.s, in umbel-like heads, the calyx-lobes unequal. Eu.—Sometimes used for forage or grazing.

BB. Corolla white or ochroleucus (yellowish white).

Alexandrinum, Linn. Egyptian Clover. Annual, with few appressed hairs, the stems tall, erect or ascending and branching: Ivs. numerous, the ft. oblong or lanceolate and somewhat dentate, the stipules lanceolate-subsutate and partly free from the petiole: head stalked or sessile, ovate, becoming oblong-conic in fr.: fls. ochroleucous. Egypt, Syria, etc.

Pannonicum, Jacq. Hungarian Clover. Perennial, very hairy, the stems usually simple, 2 ft.: Ivs. lance-oblong and subacute to retuse, ciliate and entire, the stipules narrow and longer than the short petiolae: heads ovate-oblong stalked; ft.s pale yellowish white or cream yellow. Eu., Asia.—Handsome plant for the border; also recommended for forage.

repens, Linn. White Clover. Fig. 2570. Low creeping glabrous perennial: Ivs. long-stalked, the ft. obolate and obscurely toothed, the stipules small and scale-like: heads long peduncled from the ground, small and loose: fls. white, fragrant. Eu. and thought to be native in the northwestern part of the U. S. and in Canada, but naturalized everywhere.—Much used in lawns, and in some parts prized for pasture. There are forms with red and purplish foliage. This is thought by most authorities to be the shamrock of Ireland. A form of it is offered by Blane, as T. minus, "the genuine Irish shamrock." See Shamrock.

BBB. Corolla rose-tinted or red.

c. Individual fls. pedicled.

hybridum, Linn. Alskie or Swedish Clover. Ascending or nearly erect, 1-3 ft. high, branching, glabrous: Ivs. long-stalked, the ft. oborate and serrulate, stipules ovate-lanceolate and thin: heads small and loose, nearly gloular, long-stalked: fls. rose-colored or sometimes white on the top of the head. Eu. B.M. 5702.—A good forage plant; also naturalized. Thrives best on moist lands. Very hardy. Perennial.

cc. Individual fls. sessile.

d. Plant perennial.

pratense, Linn. (T. pratense pérdinia, Hort.). Common Red Clover. Pea-Vine Clover. Cow-Grass. Fig. 2571. Ascending and somewhat hairy, 1-1 1/2 ft.: Ivs. long-stalked, the ft. oval or obovate and sometimes notched at the end and the blade marked with a large spot, the stipules broad but with a bristle point: heads globular-ovate, sessile; fls. red-purple. Eu., but everywhere introduced, and much grown for pasture hay, and green manuring.

média, Linn. Mammoth or Zigzag Clover. Stout and less erect: Ivs. oblong and entire and without spots: heads usually stalked, and fls. rather darker colored. Eu., and introduced, and much grown by farmers.

d. Plant annual.

resupinatum, Linn. (T. supinatum, Willd.). Annual, diffuse or trailing glabrous plant: ft. obvate and serrate and as long as the petiole, the stipules lanceolate-sessile: heads globose, with rudimentary involucres: fls. purple. Greece, Egypt to Persia.—Grown for ornament.

L. H. B.

TRIGONELLA (Latin, a little triangle; probably referring to the shape of the fls.) Leguminoseæ. Includes Fenugreek, which see. Trigonella is a polymorphic genus of about 50 species widely scattered in the eastern hemisphere. The genus belongs to the Trifolium tribe of the legume family, being distinguished from the clovers and allied plants mainly by the fact that the Ivs. are pinnately trifoliolate and by the obtuse keel of the flower. The infrorossence and pod are also various to be described here. Bentham and Hooker divide the genus into 6 sections, of which Fenugreek and other species form a section characterized by having whitish, subsessile fls. and a thick, oblong or linear pod which has a long beak and obliquely longitudinal veins.

Fenam-Griecum, Linn. Fenugreek, which see. White-ft. annual, 1-2 ft. high, blooming in June and August. Distinguished from other species in its section by the erect, unbranched stems and obvate ft.s, which are obscurely dentate. Stipules lanceolate-falcate, entire: calyx plicate: pods falcate, twice as long as the beak. Eu. Orient.

W. M.

Figure 2571. Day and night positions of red clover leaf; unfolding young leaf at the right.

TRILISA (angram of Liatris). Compositæ. Here belongs a native American herb known as the Vanilla Plant, from the odor which the leaves emit when bruised. It is not, however, the vanilla plant of commerce (see Vanilla). Trilis is a genus of two species
closely related to Liatris. The species are autumnblooming plants 2–3 ft. high, with numerous small flowers of white or purple. They differ from Liatris as follows: The roots are fibrous (those of Liatris being tuberous); the inflorescence is panicked instead of racemose or spike-like, and the involucral bracts are in only 2 or 3 series, while those of Liatris are in many series. Trillium is not so well known to gardens as the Blazing Star. Although a native of the low pine barrens of Florida, and L.sessile, or panicled in. proper Liatris. recurvatum, ft. white the L.B.C. propagated is they should be treated as the L.B.C. and thrive by division or by seeds sown in autumn. It is more fully described in our native botanies.

odoratissima, Cass. (Liatris odoratissima, Michx.). VANILLA PLANT. Also called Carolia Vanilla, Dog’s-tongue, etc. Rather stout, glabrous, perennial herb, 2–3 ft. high: lvs. thick, entire or sometimes dentate, obtuse, 4–10 x 1–1½ in., oblong, ovate or oval; inflorescence corymbose panuliform; fls. heads about ½ in. long. Aug., Sept. B.B. 3:319. The other species (T. procumbens, Cass.) has a similar range and is distinguished by its viscid-pubescent stem and thyrsoid-paniculate inflorescence.

W. M.

TRILLIUM (Latin, trilium, triple: leaves and floral parts in threes). W.B. ROBIN. BIENTHOIN. WHITEWOOD LILY. GROUND LILY. Twelve species of tuberous-rooted spring-flowering herbs in North America, and about half as many more in Asia from Himalaya to Japan. All the American species and none of the others are in the trade in this country. The stem is simple and erect, 3-leaved near the summit and bearing one flower with 3 green sepals, 3 white or colored distinct petals, 6 short stamens, and a 3-lobed ovary which ripens into a red or purple berry-like fruit. For a botanical account of the American species, see S. Watson, Proc. Amer. Acad. Arts & Sci. 14 (1879).

Trilliums are amongst the most characteristic of American woods. The best known species is T. grandiflorum, which ranges from Canada to the mountains of North Carolina and extends westward beyond the Great Lakes. All Trilliums delight in moist, rich soil. They thrive in woods mold. The root is a deep-seated perenni- dical tuber or rhizome (Fig. 2572). It is customary to transplant Trilliums from the woods in which they grew. This is because the plants can be found readily at that time and because the desire to grow them is strongest when the plants are in bloom. It is better to transplant in midsummer, or later, however, when the growth is completed, although the plants are difficult to find after the tops have died. The bloom is made largely from the energy stored in the tuber the previous season. After flowering, the plant stores energy for the succeeding year. By midsummer this work is accomplished and the tops die; then the plants are at rest and they are in proper condition to be moved. However, good results are sometimes obtained by mov- ing them in spring. These remarks will apply to most early spring-blooming small herbs, (like Trilliums a rich, deep, rather moist soil in partial shade. Plant deep. A colony will last for years. Trilliums force well. See Forecing. Plants may be propagated by seeds when as soon as ripe. Blooming plants may be expected in two or three years. Trilliums are among the choicest of all early spring plants, and they should be more common in gardens. They can be made to thrive well in borders about city yards. They may also be colonized in grass where the lawn mower is not used. Best results are usually attained, however, when they are planted alone in masses. Trilliums are amongst the relatively few plants that are very showy and yet not coarse.

2572. Vertical rhizome of Trillium (X 3).
petals narrow and erect, the sepals narrow and reflexed. Woods, Ga. to Minn., Miss. and Ark.

6. petiolatum, Pursh. Stem scarcely arising above the ground; lvs. ovate-elliptic to reniform, with stalks as long as the blade or even longer (blade 3-5 in long); fls. purple, the petals 1-2 in. long and narrow-oblong-elliptic, the sepals erect. Idaho, Ore., and Wash. Little known in cult.
TRILLIUM

BB. Flowers stalked.

C. Pedicel longer than the flower: lvs. nearly or quite sessile.

7. grandiflorum, Salsib. Figs. 554 (Vol. II). 2573, 2574. Stout, 1 ft. or more high: lvs. broad-ovate or rhombic-ovate, narrowed to both ends, often wavy; fls. erect or nearly so, pure white, changing to rose pink as they fade, 2-3 in. long, the petals broadly oblanceolate and spreading and much longer than the sepals. Quebec to Minn., Fls. and Mo. B.M. 555 (as T. erythrocarpum), L.B.C. 14:1349, Gn. 29, p. 257; 36, p. 594; 49:821, G.M. 33:131. Mu. 4:17. A.G. 17:243, Rug. 4:305; 6:161.

TRIPHASIA

12. paucilimum, Michx. Small, usually not 1 ft. high: lvs. lanceolate or oblong, obtuse, sessile: fls. pale flesh color, less than 1 in. long, on a short erect pedicel, the petals lanceolate and exceeding the obtuse sepals.

TRIÓSTEUM (same shortened by Laménes from Triosteospermum, which is from Greek for three long seeds), Cupriotilactis, Peverwort. Horse Gentian. A genus of 3 species of coarse perennial herbs, of which 2 are American and 1 Himalayan. Stems simple: lvs. rather large, pinnately veined, rarely orbicular; fls. dull-colored, sessile, solitary or in small clusters in the leaf-axils, followed by orange or reddish fruits.

TRIPHASIA (triplo: alluding to the make-up of the flowers), Potamopularis. A small sappy shrub, grown for hedges and for ornament, and sometimes for its small berries, which are used for preserves: lvs. alternate, sessile, dark, evergreen, trifoliate, with small oval lateral leaves and much larger ovate central leaflet; thorns slender, about ½ in. long, one or two in the axil of each leaf: fls. white, about ½ in. long, solitary, or in 3-fl'd. cymes, axillary; calyx cupulate, 5-4-lobed; petals 3-4, linear-oblong, free, inarticulate; stamens 9, free, inserted along a fleshy disk: ovary ovoid, 3-loculed; fr. a small 1-3-seeded berry; seeds oblong, exalbuminuous, immersed in mucilage: testa sessile, embryo often with unequal plano-convex cotyledons. Only one species.

TRIPHASIA (triplo: alluding to the make-up of the flowers), Potamopularis. A small sappy shrub, grown for hedges and for ornament, and sometimes for its small berries, which are used for preserves: lvs. alternate, sessile, dark, evergreen, trifoliate, with small oval lateral leaves and much larger ovate central leaflet; thorns slender, about ½ in. long, one or two in the axil of each leaf: fls. white, about ½ in. long, solitary, or in 3-fl'd. cymes, axillary; calyx cupulate, 5-4-lobed; petals 3-4, linear-oblong, free, inarticulate; stamens 9, free, inserted along a fleshy disk: ovary ovoid, 3-loculed; fr. a small 1-3-seeded berry; seeds oblong, exalbuminuous, immersed in mucilage: testa sessile, embryo often with unequal plano-convex cotyledons. Only one species.

TRIPHASIA (triplo: alluding to the make-up of the flowers), Potamopularis. A small sappy shrub, grown for hedges and for ornament, and sometimes for its small berries, which are used for preserves: lvs. alternate, sessile, dark, evergreen, trifoliate, with small oval lateral leaves and much larger ovate central leaflet; thorns slender, about ½ in. long, one or two in the axil of each leaf: fls. white, about ½ in. long, solitary, or in 3-fl'd. cymes, axillary; calyx cupulate, 5-4-lobed; petals 3-4, linear-oblong, free, inarticulate; stamens 9, free, inserted along a fleshy disk: ovary ovoid, 3-loculed; fr. a small 1-3-seeded berry; seeds oblong, exalbuminuous, immersed in mucilage: testa sessile, embryo often with unequal plano-convex cotyledons. Only one species.

TRIPHASIA (triplo: alluding to the make-up of the flowers), Potamopularis. A small sappy shrub, grown for hedges and for ornament, and sometimes for its small berries, which are used for preserves: lvs. alternate, sessile, dark, evergreen, trifoliate, with small oval lateral leaves and much larger ovate central leaflet; thorns slender, about ½ in. long, one or two in the axil of each leaf: fls. white, about ½ in. long, solitary, or in 3-fl'd. cymes, axillary; calyx cupulate, 5-4-lobed; petals 3-4, linear-oblong, free, inarticulate; stamens 9, free, inserted along a fleshy disk: ovary ovoid, 3-loculed; fr. a small 1-3-seeded berry; seeds oblong, exalbuminuous, immersed in mucilage: testa sessile, embryo often with unequal plano-convex cotyledons. Only one species.

TRIPHASIA (triplo: alluding to the make-up of the flowers), Potamopularis. A small sappy shrub, grown for hedges and for ornament, and sometimes for its small berries, which are used for preserves: lvs. alternate, sessile, dark, evergreen, trifoliate, with small oval lateral leaves and much larger ovate central leaflet; thorns slender, about ½ in. long, one or two in the axil of each leaf: fls. white, about ½ in. long, solitary, or in 3-fl'd. cymes, axillary; calyx cupulate, 5-4-lobed; petals 3-4, linear-oblong, free, inarticulate; stamens 9, free, inserted along a fleshy disk: ovary ovoid, 3-loculed; fr. a small 1-3-seeded berry; seeds oblong, exalbuminuous, immersed in mucilage: testa sessile, embryo often with unequal plano-convex cotyledons. Only one species.
TRIPHASIA

in greenhouses. Produces an abundance of elliptical or nearly globose, gland-dotted red berries about 3/4-3/4 in. across. They are sweet and agreeable and are said to be delicious when preserved. In trade catalogues the names Triphasia aurantiola and T. trifoliata are sometimes erroneously applied to the hardy trifoliolate orange (Citrus trifoliata). In the U.S., little known except in S. Fla. It withstands some frost.

H. J. WEBBER.

TRIPASCUM (Greek, tribe, to rub or to rub; probably alluding to the case with which the fertile spike can be broken up). Gramineae. Species 2 or 3, of the warmer parts of North America, one extending north to central U.S. and in many places furnishing considerable native fodder. Fls. monoeccious, 5 in the same spike, the staminate above; spikes terminal and axillary; staminate spikelets 2-fl., in pairs at each joint; pistillate single, 1-fl., imbedded in each joint of the rachis, so that the smooth carthaginaceous and the outer lemma form a nearly cylindrical mass. At maturity the pistillate spikes separate into the joints.

dactylioides, Linn. (T. elodea and T. Deltipila of the trade); Gama Grass. Sisake Grass. Calms in bunches, 4-7 ft.; spikelets 2-3 at summit and often single from the upper axils. Moist soil, Coon., Hi., Kans, and southward.—A wild fodder grass, sometimes cultivated for the same purpose and also in gardens as a curiosity. Raised from seed, or more certainly from cuttings of the rootstocks.

A. S. HITCHCOCK.

TRISTAGMA (Greek, three drops; alluding to the three nectar glands of the ovary). Including Stephanothidion. Liliaceae. A genus of 2 species of bulbous plants from Chile. Radial lvs., few, narrowly linear; scape naked, bearing rather numerous salver-shaped pedicellate fls. in an umbel; perianth-tube cylindrical, sometimes with a crown in the throat; lobes 6, spreading, nearly equal; stamens 6; ovary sessile, 5-loculed, ovoid. Fall-blooming bulbs.

nivalis, Poepp. (Milla nivalis, Baker). Lvs. 6-9 in. long, about 2 lines wide; scape slender, about 1 ft. long; fls. 1 in. wide; 2-8 in an umbel, the segments linear and greenish; crown none.—Offered by Dutch bulb growers.

T. narcissoides, Bentb. & Hook., does not appear to be in the Amer. trade. It is 1 ft. or more high, with short narrow-linear lvs., and white fls. bearing a bright orange narcissus-like crown of 3-6 broad unequal more or less connate scales.

E. W. BARCLAY.

TRISTANIA (in honor of Jules M.C. Tristan, 1776-1831, a French botanist). Myrtaceae. A small genus of subtropical evergreen Australasian trees or small shrubs. Lvs. alternate or rarely opposite, somewhat whorled; lvs. axillary, pedunculate, cymose, often fragrant; bracts ovate or caducous; calyx tube turbinate-campanulate, lobes 5; petals 5, spreading; stamens numerous, united in bundles opposite the petals: capsule 3-leaved, many-seeded, partly exerted or inclosed; seeds numerous, wingless, usually linear-cuneate. Cultivated as greenhouse shrubs in N. Europe; hardy in Calif. north to San Francisco, also in Fla. Propagated by half-ripened cuttings in sand under glass, or by seeds.

conferta, R. Br. (Lophostemon arboreaeus, Schott.). Brisbane Box. Fig. 2578. An emulous tree attaining 150 ft.; young shoots and calyx horn-pubescent; lvs. 3-6 in. long, ovate-lanceolate, glabrous, usually crowded at the ends of the branches and apparently verticillate; fls. mostly on the branches well below the lvs.; petals about 7/2 in. long, white and spotted, fringed. Queensland. B.R. 22:1839 (as T. macropylata).—A handsome evergreen shade tree, valuable for avenues in hot, dry regions, as it withstands great drought; it also produces timber valued for strength and durability. Much grown in New South Wales as a boulevard tree. Hardy in middle California, withstands an exceptional temperature of 20° Fair. at Berkeley.

JOSEPH BURRT DAVY.

TRISTANIA (three and complete; referring to the 3-numeros fls.). Liliaceae. Tristania has been referred to Milla and Brodiaea; but when the group is restricted to the South American species, it seems to be advisable to keep it distinct. In Brodiaea proper the pedicels are articulated at the apex; in Milla and Tristania they are not articulated. In Milla the stamens are inserted in one series in the throat of the perianth; in Tristania they are distinctly in two series in the tube of the perianth. See Brodiaea and Milla.

About 16 Tristanias are known (see Baker, G.C. III. 26, p. 459). These are of two series,—those with perianth-tube usually as long as the segments, and those with tube shorter than segments. To the former section belongs the common T. uniflora, the only species in general cultivation. The species are native to the Andes and Argentina as far east as Buenos Ayres. They are all low grass-leaved bulbous plants, hardy or half-hardy, useful for planting in the border or for spring blooming in pots. Sometimes the odor is unpleasant.

uniflora, Lindl. (Milla uniflora, Grah. Brodiaea uniflora, Baker). Spring Star-flower. Fig. 2579. Lvs.
TRITELEIA

narrow-linear, 1 ft. or less long; scapes 8 in. or less tall, bearing a bract-like spathé towards the top: d. 1 (rarely 2), 1–1½ in. across, pale lilac or pale blue, with pointed segments violet-striped through the center. Argentina. B. R. 23:1821, B. M. 3527, H. B. 1839, pp. 350-351. Gorg. 256. – Hardy in most of the northern states, although it does not persist long. Grown chiefly as a pot-plant for spring bloom. Var. caulescens, Hort., has porcelain-blue flowers. There are other horticultural forms. T. violacea, with "delicate violet flowers," is probably a form of this species rather than the T. violacea, Kauth, a Chilean species.

L. H. B.

TRITHRINAX (apparently triplo Thrinax; application not obvious). Palmæcæ. Four species of South American fan palms, one of which was offered for cult. in Fla. in 1889 and is now advertised in southern California. The genus belongs to the Coryphæna tribe and is distinguished from allied genera chiefly by the following characters: ts., hermaphrodite; petals imbricate; leaf-segments narrow-linear, to 2½ ft. long, distinct, terminal in fruit. T. Brasiliensis is a little-known palm. It seems to have been confused in the trade with Thrinax Neomona, which is referred in this work to Acanthophora Chuce. The leaf-segments of the former are bised; of the latter apparently not. André says the species described below is unique by reason of its sheaths at the base of the leaves. These, he says, "are composed of fibres which are at first parallel and longitudinal, then obliquely intercrossed and finally placed at right angles like the mats of palms in which the coffee of the Antilles and Bourbon is exported. At the summit these narrow strips unite and form a series of very long, robust, recurved spines which are evidently designed to protect the ds. and fruits against climbing animals."

W. M.

TRITICUM (old Latin name for wheat). Gramignæ. The genus as now limited comprises two sections, Ephelis, with 12 species of southern Europe and Asia, one of which is thought by some to be the original of our cultivated wheats; and Triticum proper, which includes our cultivated wheats and spelt, that are referred by Hackel to 3 species. Annual grasses with flowers in a terminal spike. Spikelets 2-5-fl., placed flat-wise, singly on opposite sides of a zigzag rachis; empty glumes ovate, 3-many-nerved, these and the fl. glumes more or less awned: grain free. Three species of our cultivated wheats are:

monococcum, Linna. One-grained Wheat. Spike compact, the joints readily separating at maturity; spikelets with one awn and usually maturing but one fruit. – The wild form occurs in southern Europe. Cultivated from prehistoric times but now only to a limited extent, and mostly for mush and "cracked wheat," and for fodder.

Polonicum, Linna. Polish Wheat. Spike very large, compressed, mostly blue-green. – Original form unknown. It is thought to be a true species because it rarely produces fertile crosses with T. sativum, as is also the case with T. monococcum, while the races of T. sativum among themselves produce fertile crosses. Cultivated in Spain, but not extensively elsewhere.

sativum, Linna. Wheat and Spelt. Hackel divides the numerous varieties into 3 races: (a) Spelt (T. spelta, Linna.). Spikes loose, 4-sided; rachis articulate at maturity. (This race and the next are easily distinguished by the fact that the grain does not fall out when threshed.) One of the oldest of the cultivated grains, the culture of which has decreased till now it is grown only to a limited extent, mostly in the more drier districts of Europe. (b) Empers (T. dioecum, Schrank.). Spike very dense, laterally compressed, rachis articulate at maturity. This species is usually crossed towards the d. 1 Spelt and its cultivation is now confined to certain countries of S. Europe, where it is used chiefly for mush and in making starch. Both of these races are being raised in this country by the Department of Ag-

rulture, and they may prove valuable in the drier regions, (c) Wheats. Rачhis not articulate at maturity. Grain easily falling out when threshed. There are 4 or more or less well-marked sub-races. (1) English Wheat (T. turgidum, Linna.). Empty glumes sharply keeled at base; grain broadly truncate above; leaves usually velvety; flour poor in gluten. To this belong the Miracle or Egyptian Wheats (T. compitum, Linna.), having branched spikes, which originated as a sport. (2) Hard or Flint Wheats, Macaroni Wheats (T. durum, Desf.). Empty glumes sharply keeled at base; grain narrow and tapering, very hard; awns long and bristly like barley, in some varieties black. Cultivated in Mediterranean countries, especially for making macaroni and similar products, and in Russia, where it is used for making bread, when it is mixed with 10–25 per cent of soft red wheat. (3) Dwarf and Hedgehog Wheats. Empty glumes keeled only in upper half. Spikes short and dense, only 5–4 times longer than broad; culms rigid. Grown in mountainous regions of Europe, Chile and Abyssinia. The awned kinds are called Hedgehog wheat. (4) Common Wheat (T. vulgare, Vill.). Glumes as in preceding, but spikes longer and looser. There are many varieties grown in this country, – some naked or awnless ("smooth"), others awned or bearded, some with glumes smooth, others with glumes pubescent ("velvet chalk"). Spring wheats are planted in the spring and winter wheats in the fall, the former group of varieties being grown in the more northerly regions.

A. S. Hitchcock.

TRITOMA. See Kniphofia.

TRITOMIA (name explained as follows by Ker-Gawler, its author: "Name explained in the signification of a vase or weathercock; in allusion to the variable direction in the stamens of the different species"). Including Monbretia, Irisææ. BLAZING STEAR. A genus of South African bulbs (plants rarely cormous), allied to Crocosmis, Acidanthera, Sparaxis and Gladiolus. Baker admits 31 species (Handbook of the Irideæ, 1892). Few of these are in general cultivation, although many of the species have been introduced at one time or another. Those of the Monbretia class are showy, hardly summer-flowering bulbs, to be handled like Gladioli; or they may be left in the ground perma.

2559. Tritellia uniflora (X 3).
TRITONIA

Truly if given protection of mulch in cold climates. As far north as New York and Mass., however, they are usually best wintered in damp (not wet) earth indoors. The best known kinds are *T. crocosmaflora* and *T. Pottsii*. Most of the Latin names in catalogues belong to these, as *salpistra*, *Tigridia pyramidalis*, *aethiorum*, *crapea*, *moriniana*. To gardeners, Tritonias are usually known as Montbretias. Garden Tritonias grow 1 ft. or more tall, producing several to many showy flowers of a yellow, orange or red color, and bearing several stiffish linear or sword-shaped leaves. Corms small, covered with strongly reticulated sheaths or tubes. The perianth is tubular, with a spread-

corn, and few or several firm narrow lvs.; fl. about 1 in. long, bright yellow tinged red, the tube broadly funnel-shaped and petal longer than the oblong unequal ascending segments, the stamens about half the height of the limb. Natal, Transvaal, etc. B.M. 672. G.C. III. 7:301, showing how the corms form one above the other.

crocosmaflora, Lemoine (*T. Pottsii* x pollen of *Crocosmia aurea* [Fig. 582, Vol. 1]). Fig. 2581. Slender, much branching, erect, plant 3-4 ft. high with many sword-shaped lvs., and loose, more or less dis-

tichous racemes: fls. 2 in. across, orange-crimson, with a slender curved tube nearly or quite equaling the oblong spreading segments. R.H. 1883:124. Gn. 25:236. 31:598. G.M. 36:484. *Crocosmia aurea* was introduced (into England) in 1847, and *Tritonia Pottsii* (into Scot-

tland) in 1877 by G. H. Potts. Victor Lemoine, Nancy, France, hybridized the two, and the product, *T. croco-

maflora*, bloomed in 1886. This hybrid is now the most popular of Tritonias (or Montbretias).

T. aurea, Pappe. See *Crocosmia aurea*. *T. crispa*, Ker-

Gawl. Ft. white or pale pink, with oblong oblong segments, and with crisped lvs. B.M. 678.—*T. deusta*, Ker-

Gawl. Diffs. from *T. crocata* in having a purple-

black blotch on the sepal, and the outer segments. B.M. 662.—*T. lutea*, Ker-Gawl. Fts. bright yellow, the segments oblong and the 3 lower ones with a calyx in the throat; lvs. very short. B.R. 9:747.—

T. hyalina, Baker. Diffs. from *T. crocata* in hav-

ing the perianth segments narrow at the base, and part into a claw with hyaline margin. B.M. 784, as *T. Fenestrata*—*T. lineata*, Ker-Gawl. Fts. white or pink, with short oblong segments and protrud-

ing anthers, of the shape of gladiolus flowers. B. M. 457 (as *Gladiolus luteus*).—*T. scolica*, Baker. Small and slender; ft. pink, with wide-flaring nar-

row segments, lila-like. E.M. 629 (as *D. polystes*).—*T. sceraticra*, Ker-Gawl. Lvs. very short: ft. red or copper-colored, the 3 lower segments with a calyx on the claw. B.M. 369 (as *Gladiolus segetum*).—*T. undulata*, Baker. Lvs. short and narrow, much crisped: ft. pink, with oblong equal segments. B.M. 368 (as *D. crispa*).—*T. viridis*, Ker-

Gawl. Lvs. plate or crisped, linear; fls. green, with neatly equal oblanceolate segments. B.M. 1355.—*T. Willwood*, Baker. Lvs. very narrow linear; racemes simple or forked, lila, few-fl.: ft. white, tinged with purple, the segments oborate-cuspidate.

Var. albilabris, Gray. (T. americana, Hook.) Much like the type but usually lower, more slender; fls. usually 5; fls. pale or white; petals nearly equaling the stamens. Mountain tops, Colo., northward and westward.

aestivis, Lindl. Plant only 3 or 4 in. high; lvs. as in the above, or only 5-parted; fls. lemon-yellow, spreading, on stems hardly reaching from the ground; sepals 9, nearly lanceolate, acute, sometimes toothed; petals spatulate, shorter than the stamens. Northern India. B.R. 29:32.

Europeus, Linn. (T. globulosus, Lam.). Stems erect, 15 in. or more high, often branching; lower lvs. petiolar, others sessile; fls. only 5-parted, lobed, cleft and toothed, those of the root-leaves on short petioles; fls. of a lemon-yellow color, solitary or in twos, 1-2 in. across, globular in form; sepals 10-15, ovate; petals spatulate, often longer than the stamens; fr. much as in T. laxus. Wet upland meadows of N. Eu. May–July. Gn. 40:816. – Var. Loddigesii, Hort., has deep yellow fls.

Asiaticus, Linn. Fig. 2582. Plant much like T. Europeus, often taller, the smaller bronze-green lvs. more finely lobed and cleft. fls. a rich orange color with sepals spreading. May. Siberia. B.M. 235. – The blossoms of this are usually better suited for cut-flower purposes. The plants thrive best and produce richest colors if partially exposed to the sun. T. giganteus, found in garden lists, is a very tall form of this species. T. japonicus, Hort., with large orange fls. in early spring, is by some referred to this species. K. C. Davis.

2583. Tropaeolum tricolorum. (X ¾).

TROPEOLUM (from Greek word for TROPHY: the leaves are shield-shaped and the flowers helmet-shaped). Geraniaceae. NASTURTIUM. About 40 species of soft- growing herbs, mostly climbing, of South America, chiefly of the cooler parts of Peru and Chile. They are grown for their showy old flowers. The common species, T. minus and T. majus, are also grown for their young pods and seeds, which are made into pickles. The peppery-tasting leaves are sometimes used like cress, in salads, whence the name "Indian cress" in England. In America this use of the plant is little known. Certain kinds, particularly T. tuberosum, pro-

duce edible subterranean tubers. The flowers of Tropaeolum are very irregular: sepals 5, connate at the base, the posterior one produced into a long slender spur: petals 5 (sometimes fewer by abortion), usually narrowed into distinct claws, the two upper ones smaller or otherwise dissimilar and inserted in the mouth of the spur; stamens 5, unequal, with declinate usually curving filaments; pistil with one style and a 3-lobed ovary, which ripens in 3 1-seeded indehiscent carpels (the carpels constitute the "seed" of commerce). The flowers yellow or orange, rarely blue or purplish, are usually narrowly and thorny, though often lobed or even usually petaloid, or petty; stipules none or very small. For references to recent botanical literature on Tropaeolum, see F. Buchenau in Engler’s Bot. Jahrb. 26, p. 580.

Tropaeolums thrive in any warm, sunny, fairly moist place. The tops are tender to frost. For early effects, seeds may be started indoors in pots or boxes. The common climbing species are T. majus and T. Lobularum, both of which are very useful for window boxes, balconies, for covering banks and walls, and for growing amongst shrubbery. The common dwarf species, T. minus, is earlier and usually more floriferous, and is very useful for the front row in the border. T. peregrinum, the Canary-bird Flower, is grown either indoors or in the open. Probably most species are perennial. Many of them are tuberous and withstand some frost at the root; but the half-hardy species are little known in this country.

INDEX.

atrosanguineum, 12. Lobkihian, 8. polyphyllum, 7.
azureum, 1. Lobularum, 11. speciosum, 5.
brevicaule, 4. majus, 12. tricolorum, 2.
Canariense, 9. minus, 13. tricolorum, 1.
filibracteatum, 11. pentapetalum, 6. tuberosum, 10.

A. Flowers blue.

1. azureum, Miers. Very slender glasshouse climber: lvs. peltate, 5-parted nearly or quite to the base, into narrow-ovate or oblongate divisions; fls. small, the calyx and short spur green, the wide-spreading corolla azure-blue, the petals 2-lobed or emarginate. Chile.
AA. Fls. red or yellow.

b. Petals small, protruding from the constricted mouth of the calyx.

2. tricolorum, Sweet (T. tricolor, Lindl.). Fig. 2383. Perennial from a fleshy or tuberous root, half-hardy, climbing: lvs. peltate, orbicular, divided into 6 oblong villous leaflets: fls. about 1 in. long, somewhat cornus-copia-shaped, the calyx being the conspicuous part; main part of the calyx vermilion, the short lobes purplish, the small petals yellow. Chile. B.M. 3169. B.R. 25:1935. F.S. 4:369. P.M. 2:123.—Very choice half-hardy plant and probably the best known in this country of the tuberous-rooted kinds. Usually grown indoors. Its growth is very delicate.

3. Jarrattii, Past. Much like T. tricolorum, but more robust, the fls. larger, more brilliant in color, the upper part of the calyx with bright spots of yellow, the two upper petals pencilled with brown. Chile. P.M. 5:29.

BB. Petals conspicuous and mostly wide-spreading.

c. Spur not as long as the calyx-lobes.

c. Spur much longer than calyx-lobes.

d. Lvs. parted nearly or quite to the base, or distinctly compound.

e. Blossoms essentially red.

Tropaeolum majus, the common Climbing Nasturtium. (X 1/4)

6. pendudiflum, Lam. Siender climber, the glabrous colored stems arising from a tuberous root: lvs. divided to the base into 5 oblong or obovate segments or leaflets: fls. small (about 1½ in. long), the large red spur being the conspicuous part, the lobes green, and the 2 small petals red. Argentina. B.M. 3190. B.R. 22:73.—A half-hardy species, showy because of the great number of bright small flowers.

EE. Blossoms yellow.

7. polyphyllum, Cav. Perennial, half-hardy: stem succulent, prostrate or climbing: lvs. peltate, orbicular, cut beyond the center into 7-9 narrow divisions: fls. much like T. majus in shape, but smaller; spur slender but rather short, the calyx-lobes triangular; petals unguiculate, yellow, wavy or emarginate, the 2 upper ones streaked with red. Chile. B.M. 4042. P.M. 10:175. F.S. 20:3066. G.C. II. 20:341. Gn. 45, p. 158.—It is a tuberous-rooted species, the stem naturally prostrate.

8. Leichtlini, Hort. Hybrid of T. polyphyllum and T. ciliata (see suppl. list), raised by Max Leichtlin, Baden-Baden. Much like T. polyphyllum, but the fls. of brighter color, and the lvs. larger.

dd. Lvs. lobed, the divisions usually not extending much, if any, beyond the middle, and the sinuses usually broad.

e. Petals fringed.

9. peregrinum, Linn. (T. Canariense, Hort.). Ca-

nary-Bird Flower. Fig. 2584. Annual, tall-climbing; glabrous: lvs. peltate near the margin, cordate-orbicular, divided to about the middle into 5 lobes, which are mostly apiculate; fls. canary-yellow, odd and very irregular; spur green, hooked; 2 upper petals erect and large, obovate-clawed, much fringed; 3 lower petals small and narrow and ciliate. Colombia. B.M. 1351. B.R. 9:718.—An excellent quick-growing vine, although the fls. can scarcely be called showy.
TROPICAL Fruits.

10. tuberösum, Ruiz & Pav. Root producing a pyriform irregular tuber 2-3 in. long; stem climbing, glabrous; lvs. petiolate near the base, coriaceo-orbicular, 5-lobea nearly or quite to the middle; fls. rather small, the calyx and long spur red, the petals yellow, small and nearly ciliate and little exceeding the calyx. Peru. B.M. 3774. F.S. 5:422. P.M. 5:49. R.H. 1853:341 (tubers). J.H. III. 30:288. Plant stands some frost. In Peru, the tubers are eaten, and the plant is sometimes cult, in Europe for the tubers. It appears in the Amer. catalogues of European dealers. The tubers are usually boiled.

11. Lobbiönum, Veitch. Annual, climbing, hairy all over except the under parts of the lvs. and the petals; lvs. very long-stalked, petiolate, nearly orbicular, undulate and with points on the margin; fls. large, long-spurred, orange-red, the two upper petals large, broad and entire, the three lower ones small and clavate and coarsely toothed and also fringed on the claws. Colombia. B.M. 4967. F.S. 2:67. P.M. 11:274. Var. fimbriatum, Hort., has all the petals toothed or fringed. R.H. 1836:101. —Seldom seen in its pure state.

12. mäjus, Linn. Figs. 2385, 2386. Strong-growing somewhat succulent climbing annual: lvs. petiolate, nearly orbicular and undulate-angled; fls. large, mostly in shades of yellow or orange, with straight spur, the 2 upper petals entire or undulate (not apiculate), the 3 lower ones narrower and fringed on the claws. Peru. B.M. 23:3375 (var. atrosanguineum). F.S. 12:1826 (var. atropurpureum varium). P.M. 1:176 (var. atrosanguineum). There are double fl. forms. G.C. H. 11:665. These appear to have been introduced into this country about 1885 or 6. There are also dwarf forms. —This species has been in cult. in Europe since 1684. It is the foundation of the common climbing Nasturtiums. Some of these garden forms are probably the offspring of hybridization with T. Lobbiönum.

2385. Tropaeolum majus.

13. minus, Linn. Fig. 2387. Dwarf annual, not climbing, smaller in all its parts: lvs. smaller at the ends of the veins; fls. with narrow apiculate petals. Peru.

B.M. 88. —Very likely blended with T. majus by hybridization, in garden forms.

T. digítatum, Karst. Climber, with root fibrous: lvs. petiolate, 5-7-lobed; fls. yellow, 1 in. in diam., the spur long and red, the petals thread-like. Colombia. —T. edule, Fact. Cir. 1850:101. B.M. 1580:8. Fls. orbicular, with 5 or 6 narrow lfts.; fls. in shape like those of T. majus, but smaller. Produces tuberous edible roots, Peru. F.S. 9:236. —T. Asterofolium is offered by A. Blume in 1901.—T. Lindeöni, G. Wall. Beautiful climber with large petiole, undulate lobed lvs. that are purplish beneath and beautifully veined with white above; fls. on long pedicels, the long tube red and the calyx-lobes green. Colombia. L.H. 41:367. L. H. B.

TROPICAL Fruits. Travelers hailing from the temperate zones are generally surprised and delighted, at first, with the fruits they find in tropical markets. This is due to the fact that such things are for the most part new to them. They taste everything they see and not infrequently publish their experiences in language where praise is not stinted. Some, on the other hand, rarely even try any tropical fruit with prejudice and disdain and cannot be persuaded to taste, and if eventually persuaded, only to condense with aversion.

Under such circumstances it is not to be wondered at that in some quarters tropical fruits should be held in high esteem, and in others disbelieved. All this is value. That good tropical fruits do really exist cannot be disputed, although on careful examination they are found to be few in number, and some kinds far from common even in the local markets. True tropical fruits may be described as those requiring a temperature from 16° to 32° centigrade or 60° to 90° Fahr.

Among the subtropical fruits there are some which appear to thrive in the tropics as well as in their native place, but whether this is really so may be questioned. Any differences in the conditions of the fruits on reaching the ripening stage will account for difficulties, often met with in preparing them for export. Such is the orange, for instance; it thrives well under tropical conditions and gives (when the class of plant grown has been well selected) fruit excellence in appearance, large in size, and possessing a fine flavor. If such fruit is grown for export, it must of necessity be packed at seasons of the year when our tropical atmosphere is charged with humidity to within 15 per cent of the saturation point, and this fact constitutes an important difficulty often overlooked by beginners in the export trade. Such difficulties can, however, be overcome by careful methods of packing and preparation, and by selecting fruit which ripens in the “dry season” when packing facilities are as good as those of a temperate climate. It is very doubtful, however, whether subtropical fruits grown in a humid climate can ever equal in their keeping qualities those produced in a lower temperature and drier climate. It has been proved that fruit can be safely transported to long distances if properly handled, but the treatment to be undergone differs considerably from that which the fruits of temperate climates require. Many tropical fruits are nothing more than what should be called way-side morsels, that is to say, if obtainable, they are seldom of a quality suitable for dessert, and are consumed mostly by children and wayfarers.

By selection and cross-breeding these have been much improved, and strains will probably be produced which in the future will be largely sought for, as there are good indications of success in varieties which have already appeared. This work which must necessarily be systematically adopted to sustain a regular export trade in tropical fruits, and a good start has been made from several points.
The fact is that tropical fruits with but few exceptions, have until very recently been almost exclusively grown from seed, with the natural result that variety in the quality, form, size, and color of the fruit is the universal rule; and although there are seedling strains of well-marked types, buyers know that no reliance can in the main be placed upon securing fruits of uniform quality and flavor. In the case of the orange, the class of fruit raised in some districts is good as a whole, but in others the produce is of a low grade and even in the best districts inferior fruit is allowed to develop which often spoils the better samples. This is being rapidly remedied by the planting of grafted kinds. The same variation obtains with all kinds of fruit without exception. In no fruit is this feature more clearly apparent than in the mango, Mangifera indica. Fig. 2589. Kinds exist which are

fit for the table of a king, but at the same time there are fruits grown which the poorest beggar would refuse. The variety is almost endless, and little dependence can be placed upon quality except those produced by trees grafted from selected kinds. These are now becoming more common, but as yet there are no large orchards planted with selected kinds, and consequently no regularity can as yet be expected in the quality and character of the fruit available for export. The mango, like the orange, easily yields to grafting; it grows rapidly and there is no reason why large quantities of this excellent fruit should not be placed upon the markets. The botanical departments of the British colonies, and elsewhere, have many selected kinds under cultivation and great effort is being made to induce the people to plant selected kinds, instead of the worthless seedlings. Mangos have been shipped with success from the West Indies, and there would appear to be nothing of importance to prevent their being regularly placed upon the markets of Europe and America. All that is needed is to select fine strains, known both for their keeping qualities and good flavor, and to grow them in quantities that would pay. The mango, as a rule, takes many years to establish if grown from seed; but if grafted plants are cultivated, fruit is obtained in four or five years. The Julie, Divine, No. 11 Martin, Malha, Gordon, Peters, Pere Louis, and Mango d'Or are varieties which are worthy of the table of the richest, and would be well suited for extensive cultivation for purposes of export. The people are slow to recognize the value of the art of budding and grafting, but education in this direction is rapidly extending under the auspices of the Departments of Agriculture and Education in the West Indies.

Many fruits previously unknown in northern latitudes are readily available here in small quantities, but insufficient to maintain a paying export trade. If they were grown in larger quantity and in uniform quality, there is no serious obstacle to their being regularly placed upon the northern market. The system of transportation now in use is not thoroughly efficient, but would soon adapt itself to the circumstances of a profitable trade.

The success of the banana as an export fruit has long been a recognized fact; and the trade is yearly increasing. In this case the propagation is carried on by suckers, and there is no variation in the quality of the produce; the market always gets the same quality, hence the success.

Among the best of all tropical fruits is the Mangosteen, Garcinia mangostana, native of the Straits Settlements. This has been fruiting in Malaya and Trinidad, and the fruit has been sent in good order to the English market. It is, however, slow-growing, and as yet only very few trees of it are in existence in the West Indies. It has grown well in Trinidad, and has produced excellent crops of fruit of the finest flavor and there can be no doubt that many of the islands in the West Indies are quite capable of growing this fruit to perfection; and there is no doubt that it could be carried to market without serious loss in transit.

Writings upon tropical fruits are much scattered and there is as yet no book dealing solely with the subject. The most important tropical fruits are detailed in the order of their local value in the following list (see the various entries in this Cyclopaedia).

Tropical Fruits of the West Indies and Central America:

5. Mangosteen, Garcinia mangostana. Fig. 893.
6. Sapodilla, Achras sapota. Fig. 2240.
7. Pear (Alligator Pear), Persea gratissima. Fig. 1724.
8. Sugar Apple, Anona squamosa. Fig. 94.
14. Guava, Psidium Guajava. Fig. 2008.
15. Pomme Cythere, Spondias dulcis.
17. Water Lemon, Passiflora lowriottii.
18. Star Apple, Chrysophyllum Cainito. Fig. 469.
19. Genip, Melicocca binga. Fig. 1388.

Of this list probably not more than half the number are cultivated in selected varieties, and some are mere wayside fruits, as the guava, genip and cashew. The banana, coconut and pineapple are largely exported. The mango is capable of being grown to any extent for export to temperate climates. The mangosteen is a fruit the cultivation of which should be largely extended. The sapodilla if grown from the finest selected varieties is one of the choicest of tropical fruits. It is tender when ripe but carries well when "full," a West-Indian term for maturity. The pear (Persen) is a fruit which also carries well when mature. It is what should be called a salad fruit and is eaten with pepper and salt. In the East it is often served with sherry and sugar as fruit at dessert.

The mangoes, Nos. 8, 9 and 10, are good additions to the dessert when well grown from selected kinds. The last, or sour-sop, is particularly well suited for freezing, and being considered by many as the best of all the fruit flavors for this purpose. It could be easily
exported in ice. The akeek might be exported if preserved. The part used is the large arillus attached to the seed, and it is served as a relish with fish dishes.

The governor's plum is a fruit the size of a green-gage and makes fine jellies. The easnaw is useful when preserved, but is too tender for export. The large seeds, roasted and bottled for preservation, form one of the best table nuts known. The guava can only be exported in the form of the well-known guava jelly. When a good variety is to hand the Pomea Cythere is an excellent and well-flavored table fruit. The granadilla makes excellent tea, and the water lemon is much used as dessert, having the appearance and flavor of a huge ripe gooseberry. Possibly the most desirable fruit grown in this country is

The mango is grown, and is a favorite with allclasses of plantains.

The citrus tribes are, of course, sub-tropical fruits, but it is possible to grow them to great perfection in the tropics. When grown upon the sour orange stock, these trees are capable of reaching a large size, and will afford regular crops. An excellent start has been made in many West Indian islands in the cultivation of grafted plants of the best kinds.

Trees in the tropics usually have their regular season of fruiting, but many trees, such as the mango and the orange, produce fruit out of season, or in the course of the year. Trees which fruit at such a season are generally the most inferior kinds.

Most visitors to the tropics choose this season for making their tours, and in consequence never have the opportunity of seeing or tasting the best qualities of the fruit produced, and only get inferior kinds, which the regular resident would not trouble to eat. When a mango is described as "all tow and turpentine," the writers were writing truly of the ordinary "out of season" mango, but all-the-year-round residents know that this is proverbially true, and a gentle nudge of the fingers is as the quince from a jargonelle or a pear or a crab apple from a Ribston pippin.

J. H. Hart.

Another View of Tropical Fruits. — The fruits most grown for export from the West Indies are bananas, oranges, grape fruit or pomelo, pineapples and cocoa-nuts. Others that are prized, but not exported to any extent, are mangos, grapes, star-apples, naseberries, papadili, avocado pear, granadilla, cherimoya, sweet sop and mangosteen.

Bosca. — There are between 29 and 30 different varieties of banana, and about half as many of the plantain, which is the form of banana used as a vegetable. The enormous export of over 8,000,000 bunches of bananas annually from Jamaica is almost entirely of one particular variety, which goes under various names, — "Jamaica," "Martinique," "Gros Michel," etc. A small quantity of a red-skinned variety is occasionally exported. It is prized rather for its color and effectiveness in a dish of fruit than for its quality. There are others, such as "Lady's Finger," which are superior in flavor to the Jamaica, and are destined to obtain in time such special prices in the markets. These superior varieties have mostly been collected by the Royal Gardens, Kew, from India, Straits Settlements, etc., and have been sent out from time to time to the Botanic Gardens of the West Indies.

The soil most suitable for banana culture is a deep loam with a large proportion of humus. Good drainage is essential. Bananas grow well under irrigation, but the application of the water must be carefully watched. The only disease that is known is a species of Maras-mus, a fungus that attacks the petiole of the leaf. It has not done much harm, and is not noted for anynotice except in Trinidad. Insects do not interfere with plant or fruit. Neosotode worms are known in other countries, but are not encountered in the West Indies. The flies and beetles have been reported from any part of tropical America.

Citrus Fruits (more properly sub-tropical). — Until a few years ago no attention was paid to the cultivation of any of the citrus fruits; they simply grew wild, — seeds were dropped by birds, and wherever the soil was suitable trees sprang up. Naturally many hybrids and inferior kinds exist, but the great mass of the trees have come true, and the fruit is of excellent quality. Since Florida has suffered so much in its orange-groves, cultivation in the West Indies has become general, and all the best kinds of Citrus have been imported from Florida, California and England. In Jamaica the navel orange was introduced direct from Bahia many years ago, and there is good evidence that it occurs spontaneously in the island at the most favorable elevation for the orange, — about 2,300 feet. A natural hybrid between the sweet orange and the tangarina is also known in the same district. The general excellence of the orange in Jamaica is partly due to the large numbers of grafted St. Michaels that were distributed from the Botanic Gar-
TROXYMON

1864 TROPICAL FRUITS

markets. Mealy bug attacks the cultivated pine-apple, and blight and tangle-foot occur as in Florida, but in suitable situations it grows wild without any cultivation quite free from disease.

Coconuts. — There is a large export of coconuts in the shell from the W. Indies, and in Jamaica there is a factory for making coconut oil. The palms are subject in some districts to a disease which attacks the terminal bud. So far as can be judged, it is of a bacterial nature, and probably infection is caused by beetles and other insects. In the West Indies coconuts flourish even in the interior of the islands and at a considerable elevation — 2,000 feet. They require an abundance of water at all times.

Mangos were introduced into the West Indies towards the end of the eighteenth century, and to-day they are the commonest fruits—the reason being that the seeds germinate readily and at once take root in almost any soil. The trees will grow even at elevations of 5,000 feet, but they do not bear fruit above 3,500 feet, nor do they bear at all in wet districts. There are numerous varieties, most of them being somewhat thorns, even the esteemed "No. 11" containing some thread-like fiber. In the year 1869 several of the best grafted varieties of India were imported from Bombay for the Botanic Gardens of Jamaica; these are of superior excellence and without fiber. The seedlings of these Bombay mangos do not come true, but the majority of them bear good fruit. Grafted plants are distributed from the various botanical gardens of the West Indies. Experiments in budding are being carried on with a view to bud the numerous inferior kinds. Even the coarse mangos which are worthless as fruits, if picked before ripe, make excellent tarts, preserves, pickles, etc., and there is a wide field for enterprise in utilizing such fruit in various ways.

The pineapple, cashew, ginep, naseberry or sapodilla, sweet sop, sour sop, custard apple, avocado pear, cherimoya, Spanish plum (Spindalis), Barbados cherry, papaw, Fig. 2580, cocoa-plum, star apple, granadilla,

The banana, citrous fruits, coconut, mangosteen, carambola, bilimbi, Nilgiri blackberry, tamarind, pomegrante, grape, akee, bread-fruit, and jack-fruit are introduced from other countries.

The akee, bread-fruit, jack-fruit, cho-cho (Sechium edule, Fig. 2281), ochra and avocado pear are fruits used as vegetables.

Great improvements have lately been made in the mode of packing fruits for export. The Government of Jamaica is about to appoint inspectors of fruit for export, who will stamp all packages that pass as well-graded, well-packed, etc., with the Government mark. It will be optional for exporters to take advantage of such inspection.

The Imperial Department of Agriculture in the Lesser Antilles, and the Botanic Gardens of Jamaica, Trinidad, and British Guiana are devoting a considerable amount of attention to fruit with gratifying results.

The inauguration in January, 1901, of a new line of steamers, with a subsidy of $200,000 annually, specially built for the fruit trade, and sailing direct from Jamaica to England, has already had a great effect in increasing the area under cultivation. This is only the first step in a regular and systematic export of fruit from the West Indies to Europe, and the development of the trade to an enormous extent is confidently anticipated.

WM. FAWCETT.

Botany of Tropical Fruits. All the tropical fruits mentioned above are described in this work at their proper places, with the exception of some of the following:

Barbados Cherry is Malpighia glabra, which see. Nilgiri Blackberry is Ficus duchesneanus. Ochra is another spelling for Okra.

Pomme Cythère is Spindalis duchesnei, described below. Pomme d'Or is Passiflora incarnata.

Spanish Plum. Consult Spindalis purpurea, below.

Sweet Cup is Passiflora edulis and P. maliformis.

The genus Spindalis of the family Anacardiaceae takes its name from an old Greek word used by Theophrastus for some kind of plum. It contains about 8 species of tropical trees with alternate odd-pinnate lvs., numerous opposite lfts., minute whitish lfs. and yellow fruits as large as common plums. Botanically the fruit is a fleshy drupe with a 4-5-loculed bony endocarp. The genus is distinguished by the following characters: ovary 3-5-loculed; ovule pendulous; lfs. pinnate; lfs. polygamous; stamens 8-10: styles 4-5, free at apex. The following are widely cult. in the tropics.

A. Locules of the ovary 5 (rarely 1) distant, connected only by the common base.

b. Locules of the smoothest nut conspicuous and more or less adnate.

AA. Locules of the smoothest nut conspicuous and more or less adnate.

lites, Linn., (S. Mombin, Jacq., not Linn.). GOLDEN APPLE. JAMAICA PLUM. Tall tree; lfts. 7-17, ovate-lanceolate or lanceolate or subentire or serrulate; panicle 3-1 ft. long; fr. ovoid, 2 in. long, yellow. Cosmopolitan in tropics.

BB. Racemes unbranched, few-fl., much shorter than lvs.; lfs. purplish.

purpurea, Linn. (S. Mombin, Linn., not Jacq.). SPANISH PLUM. Low tree; lfs. deciduous; lfts. 16-21, elliptic-oblong, blunting, usually serrate; fr. obovoid, 1 in. long, yellow or tinged purple. American Tropics.

TOXYMON (Greek, edible: which does not apply). Compositae. A genus of 15 species of mostly perennial, nearly stemless herbs native of North America except possibly 2 species which are South American. The spe-

2596. Papaw tree—Carica Papaya. A tropical fruit of secondary importance. (See also p. 216.) This picture shows a specimen grown in the open in southern Florida; Fig. 933 shows one grown in a northern greenhouse.

sweet cup, pomme d'or, guava, mammee and mammee supota are all natives of tropical or subtropical America or to the West at their roots are indigenous on both the mainland and some of the islands.
TROXIMON
cles are generally low-growing hardy plants with clusters of sessile, radical leaves and simple sepalss bearing a head of yellow or purple flowers in summer.

caspitulum. Purplish-red and frequently purple, entire, linear-lanceolate, thickish, 4-10 in. long; scape about 1 ft. high; fls. yellow; achenes not beaked. PRAIRIES of Ill. and Wis. to Dakota. B.B. 3:278. — Cultivation easy in any good border. Not unattractive. It has rather large dandelion-like heads of flowers in late summer. Offered by collectors.

F. W. BARCLAY.

TRUE LOVE. Paris quadrifolia.

TRUMPET CREEPER. Tecoma, especially T. radicans.

TRUMPET FLOWER. Consult Bigonia.

TRUMPET HONEYSUCKLE. Lonicera sempervirens.

TRUMPET VINE. Tecoma radicans.

TSUGA (its Japanese name). Cotulae. HEMLOCK. Hemlock Spruce. Ornamental evergreen trees of pyramidal habit, with spreading, irregularly whorled, much ramified branches clothed with small, linear, usually 2-ranked leaves and small cones which are usually freely produced, and are about 1 in. long except in one species, which has cones two or three times as large. T. Canadensis is quite hardy north and the Japanese species and T. Caro-

liniana have proved hardy as far north as Ontario. T. Hookeriana is almost as hardy. T. Mertensiana and T. Banniana are more tender. There are probably no more beautiful hardy conifers than the Hemlocks, and they must be ranked among the most ornamental and useful trees for park planting. They do not have the stiff, formal appearance of many of the conifers, but are graceful and stately at the same time. T. Mer-
tensiana is the most vigorous species and is more graceful than the Canadian Hemlock, but tenderer. T. Hookeriana is noticeable for its light bluish green foliage and the more narrow pyramidal habit. The Japanese species have very handsome dark green glossy foliage, but are of slow growth. T. Canadensis bears pruning well and is well suited for tall hedges (see Fig. 2:298). The other species will probably bear pruning well. The Hemlocks are not very particular as to the soil, provided it contains a sufficient amount of constant moisture. Tsugas are not difficult to transplant. Prop. by seed sown in spring and by grafting on T. Canadensis. The varieties and the Japanese species are also raised from cuttings. See also Cutters, Abies and Picea for cultivation.

The genus contains 7 species, natives of N. America, E. Asia and the Himalayas. Tsuga is closely allied to Abies and Picea and differs little in the structure of the fls.; the cones are very similar to those of the larch, but the lvs., though much like those of Abies in their outward appearance, are very different in their internal structure from all allied genera, since they have a solitary resin-dust situated in the middle of the leaf below the floro-vascular bundle. The light, soft, brittle and conspicuous wood is not durable and not much valued except that of T. Mertensiana, which is harder and more durable, and that of T. Sieboldi, which is esteemed in Japan for its durability. The bark is rich in tannin and that of T. Canadensis is extensively used for tanning leather.

Tsuga Canadensis should be called "Hemlock Spruce," but in common speech it is usually alluded to as "Hem-
lock." The "Hemlock" of the conifers is a poisonous umbelliferous herb described in this work as Conium maculatum.

INDEX.

T. argentea, 6. conifer. 1. hookeri, 6.
T. diversifolia, 2. patens, 1. 4. Sieboldi, 1.
T. globosa, 4. parvifolia, 4.
T. patens, 1. 4. Patensiana, 6.
T. patens, 1. 4. Roccella, 6.
T. patens, 1. 4. Serpenta, 4.
T. patens, 1. 4. Sieboldi, 1.

1. Sieboldi, Carr. (T. Aroergi, Koehne). Tree, attaining 90 ft., with spreading slender branches; branch-
lets pale yellowish brown, somewhat glossy, with reddish leaf-cushions; lvs. linear, usually broadest at the apex, emarginate, grooved and glossy dark green above, with 2 whitish lines beneath, 1/4-3/4 in. long; cone ovate, 1-1/4 in. long, the peduncle exceeding the bud-scales; bracts bifid, Japan. G.F. 10:405. — Var. hum. Endl. Dwarf bushy form, with short branches and very short crowded leaves.

2. diversifolia, Mast. (Abies diversifolia, Maxim.). Tree, very similar to the preceding, chiefly distin-
guish by the reddish brown pubescent branches; lvs. linear, emarginate or obtuse, shorter and narrower, broadest at the middle or toward the base; cone smaller, 1/4-3/4 in. long; peduncle not exceeding the bud-scales; bracts bifid, Japan. G.F. 6:493; 10:483.

3. Carolina, Engelm. CAROLINA HEMLOCK. Tree, attaining 70 ft., of more compact habit and with darker green foliage than the following; young branchlets light reddish brown, finely pubescent or almost glin-

brous: lvs. linear, obtuse or emarginate, dark green
and glossy above, with 2 whitish lines beneath, ¾-¾ in. long; cones oblong, 1-1½ in. long, peduncled, scales obsolete.

The his.

July, bluish green, or bluish white, creamy white.

Alfred Rehder.

TUBEROSE. Consult Polianthes.

TUCKER, LUTHER (Plate XL). Born at Brandon, Vt., May 7, 1802, was the founder of "The Horticulturist," and the proprietor of that magazine during the period of its greatest glory—from July, 1846, until the autumn of 1852. The statement, on page 501 of this Cyclopædia, that the younger Downing "managed "The Horticulturist" when his father was incapacitated, is incorrect, he having been the salaried editor, while the enterprise was Tucker's alone. To Downing, nevertheless, belongs all the credit for the great and distinguished interest and value of the magazine, as he conducted it according to his own ideas, with which the proprietor never interfered, the latter having indeed enough to do in putting it before the public with enterprise and vigor. It was issued simultaneously in Albany, New York, and Philadelphia, with 22 special agencies at other points, including what was then the distant western town of Cleveland, Ohio, as well as Hamilton and Cobourg in "Canada West." Luther Tucker also found work at Rochester, N. Y., October 27, 1836, the first daily paper published west of New York, "The Advertiser," which is still, under a slightly extended name, the Rochester journal; also at Rochester, January 1, 1831, "The Geneese Farmer," a weekly, the first agricultural periodical in the world written directly from the standpoint of practical experience. It has undergone some changes in name, as its scope extended far beyond the Geneese valley, and has been published in Allany since January, 1849, being now called "The Country Gentleman." This is one of the true American agronomic periodicals that were started before 1850 and outlived the nineteenth century, the others being these: "Maine (Kennebec) Farmer," 1839; "Southern Planter," 1840; "Massachusetts Plowman," 1841; "Prairie Farmer," 1845; "American Agriculturist," 1842; "Southern Cultivator," 1843; "Indiana Farmer," 1848; "Rural World," 1849. It is now (1901) published by a son and a grandson of the founder. Mr. Tucker was the descendant of a long line of landowners. The first of the name of whom anything was known was granted acres in Albany. Both of his estates, by William the Conqueror, and his descendants in the direct line down to the subject of this note were uniformly, both in England and in the American colonies, and states, country gentleman. The name of the soil. Strong rural tastes came to Luther Tucker as an inheritance, and his conception of a happy and well-spent life was a life as much as possible in the open air and devoted to the advancement of agriculture and its allied arts and the amelioration and refinement of the condition of all classes of country residents, from the proprietor to the laboring laborer. It was, therefore, natural that he should be deeply interested in the New York State Agricultural Society, which he founded at a low ebb on his coming to Albany, and of which, only a year later, he was the chairman of the board of directors and the president. The society conducted with a handsomely table service of silver, and adopted resolutions (afterwards enacted into law at the time of his death) to the effect that the first fair was to be held the next year, the prize the following year, sandwiched between the early fairs, paying the way for those that followed; was chiefly due to his unremitting exertions. He died at Albany, after a short illness, January 26, 1875.

GILBERT M. TUCKER.

TULIPA. See Tulipa.

TULIPA (originally from Persian toltin, turbinum; which the inverted flower resembles), Liséce. TULIP. Plate XLIV. Bulb tunicated, the outer tunic often hairy or woolly on the inner face: stem 3-5 in. high, usually 1-fl., rarely 2-3- or 4-fl.; lvs. linear or broad: fls. erect, rarely nodding, showy; perianth deciduous, campanulate or slightly funnel-shaped; segments distinct, often spotted or bledched at base, without pitted nectaries; stamens 6, hypogynous, shorter than perianth-segments; filaments longer or shorter than anthers; alternate or filiform; anthers dehiscing laterally; ovary sometimes narrowed at collar, rarely into a distinct style; stigmas adnate; seeds numerous, flat. Formed from Fritillaria in the absence of nectariferous pits and usually erect (never pendulous) fls., and from Erythronium in its erect, broader perianth-segments, erect fls., and usually 1-fl. stems. Native of Oriental countries, Siberia, Asia Minor, China and Japan, and naturalized in the Mediterranean countries of Europe. The genus now includes 83 species, only about half of which are in cultivation. The best known is the "Cormless" Tulip, T. Baker, in "Gardener's Chronicle," for 1885. Solms-Laubach is the leading authority on the history of the garden Tulips (see his "Weizen und Tulpe, und deren Geschichte," Leipzig, 1833). See Burbridge, Gen. Sept. 22, 1900.
Plate XLV. The Modern Garden Tulip
Cultivation.—The production of large, perfect flowers depends entirely upon a large supply of fibrous roots. Size of bulbs is not nearly so important: a large bulb can be grown on a small supply of roots.

For outdoor cultivation the bulbs should be set in September to November in New York. They should be planted before hard freezing weather comes. The soil should be sandy and well loosened to a depth of at least 12 inches, and enriched with leaf-mold and well-rotted cow manure. Fresh manure of any kind should never be used near bulbs of any sort. On heavier soils Tulips can be raised if extra care is given to insure perfect drainage. Drainage is important under all conditions. The bulbs will never prove satisfactory in low, wet situations, and if there is danger from standing water it is best to raise the beds several inches above the surrounding ground.

Plant the bulbs 4 inches deep (to the bottom of the bulb) and from 4 to 5 inches apart, depending upon the size of the plants. A handful of sand under each bulb is recommended in soils that do not already possess a proportionate of this material. The cushion of sand allows the water to drain away rapidly and at the same time insures the presence of an easily penetrable medium for the young roots. Care should be exercised to place all the bulbs at the same depth, as otherwise they will not all bloom at the same time. When the ground begins to freeze, cover the beds to a depth of several inches with leaves, dry forest litter or other light material. After danger of heavy frosts is past in spring the beds should be uncovered, and the work of preparation and planting has been well done the Tulips will require little or no further care. In England many of the bulbs of choice and delicate varieties of Tulips are protected when in flower from heavy rains and hot sun by means of light cloth screens, and are thus kept in good condition for some time.

For pot culture, a mixture of fine garden loam, two parts to one of well-rotted manure (cow manure composted for two years is best), mixed with enough clean sand to make the mass easily friable, is most suitable. If no loam can be had a mixture of well-rotted manure must be used, one part of the latter will be sufficient, in which case the addition of an equal proportion of leaf-mold will be advantageous. From 3 to 5 bulbs, according to size, to a 5-inch pot are effective. Fill the pots lightly and press the bulbs into the soil, thus bringing the base in close contact with the soil particles. Cover the bulbs with the tip and press the soil firmly all around. Water once freely and cover the pots entirely with soil, leaves or litter, so that they will be out of reach of frost, or place them in a dark cold (not freezing) cellar or potting shed until the bulbs have become well rooted, when under ordinary conditions will require five or six weeks. When the pots have become well filled with roots—the month of June—this is an explanation into the house. For the first few days at least the temperature should be moderate and even, and the atmosphere not too dry. Water freely but not to excess. Some of the varieties—especially the white thin-petaled ones—are said to resent over-watering very quickly. If raised in living rooms greater care is necessary, as the atmosphere of a living room is drier than that of a greenhouse. On cold nights the plants should be removed from exposed places where they are liable to freeze, and when the flowers appear they should not be allowed to stand in the direct rays of the sun shining through a window. Many of the hand-bouquet flowers are thus easily burned and wilted. Practically all of the early single varieties are adapted to pot culture, especially the Darwin Tulips when well rooted; but a few varieties are extremely unsatisfactory. For a succession, pot every week or 10 days from September to December or pot early and bring into the house at fortnightly intervals.

In cold greenhouses the soil should be of a light, open, fine, of fair size. Use rain water, and put in a little charcoal to keep it pure. The bulbs must be placed so that the base is just in contact with the water—not immersed in it. Place them in a dark closet for 10 days or a fortnight until the bulbs have become well rooted, then give them plenty of light and air. Avoid gaslight as much as possible, and in cold weather protect them from freezing.

Propagation.—Tulips may be increased by the side offsets, but these are not as constant as new bulbs produced within the outer tunics by means of cutting the old bulbs. Fig. 2992 shows a section of a bulb with new inner bulb and outer offset in place. The new bulb is completely enclosed in a sac which afterwards becomes the outer dry, membranous tunic. The pubescence, if any, may be found on the inside of this sac even in the earliest stages of growth. The new bulb is attached to the base of theflower-stem, immediately above the root-crown from which the former proceeds directly upward. Each new bulb—is regularly, including the outer sac, is provided with a growing tip, which often extends above ground into a leaf, each one coming up within the other. Fig. 2992 shows the separated leafy bulb-scales, and indicates the homology of tunics and leaves. Seeds among the offsets are at present mainly depended upon for the production of new varieties. These have been found susceptible to the "breaking" process, though perhaps slower to respond than the seedlings. Seed production is now practiced only in exceptional cases. The production of hybridized varieties by crossing the old forms with some of the newly introduced species is very likely a probability of the near future.

The Original Tulip.—The origin of the garden Tulip seems to be lost beyond recovery. It is often said that our garden Tulips are derived from Tulipa gesneriana, but the evidence is not sufficient to support this opinion. The Tulips of that day had been cultivated for two centuries by Europeans, and previously for an indefinite period by the Turks, from whom, of course, we have no exact records. Fig. 2991. One might study wild Tulips in their native places and compare them with descriptions without being certain of the original form which the Turks brought from the wild, simply because of the lack of records at the beginning. It is necessary to have some scientific name for the garden Tulips. The most one dare say is that the garden Tulips are chiefly referable to T. gesneriana and T. suaveolens, with the distinct understanding that these names do not represent an original wild stock.

Tulipa suaveolens requires explanation. This name, which dates from 1757, stands for a kind of Tulip discovered growing wild in southern Europe long before that date. There is no proof that it was native; the probability is that it had escaped from gardens and run wild. In 1730, it was distinguished from the other Tulips then known by the fragrance of the flowers, the earliness of bloom, slightly greater size and pubescent scape. From the early records it appears that there were fragrant, early-blooming flowers among the first Tulips received
from Turkey. This is one of the main reasons for believing that *T. suaveolens* is not native to southern Europe. At all events it is clear that *T. suaveolens* has played an important part in the evolution of the garden Tulip, the Duc van Thiol class being generally credited to this source. The distinctions between *T. suaveolens* and *T. Gesneriana* given below are those of Baker, but they do not hold at the present day. It is impossible to refer any given variety with satisfaction to either type. Some writers have said that the leaves of *T. suaveolens* are shorter and broader than those of *T. Gesneriana*. This character also fails. All grades of pubescence are present. Some pubescent plants have long leaves and odorless flowers. Others have short, glabrous leaves and fragrant flowers.

For practical purposes it may be said that most of the common garden Tulips, at least the late-flowering ones, are *T. Gesneriana*, while many of the early-flowering kinds, e.g., the Duc van Thiol class, are supposed to be derived from *T. suaveolens*. It is impossible to press much nearer the truth, as botany is not an exact science and the prototypes of the old garden favorites cannot be known completely and precisely.

Early History.—The first Tulip seeds planted by Europeans were sent or brought to Vienna in 1554 by Busbequius, the Austrian ambassador before the Sultan of Turkey. Busbequius reported that he first saw the flowers in a garden near Constantinople, and that he had to pay dearly for them. After the Tyrolese had discovered a way to Vienna the Tulip became rapidly disseminated over Europe, both by homegrown seed and by new importations from Turkey. In 1559 Gesner first saw the flower at Augsburg, and it is mainly upon his descriptions and pictures that the species *T. Gesneriana* was founded. One of the earliest enthusiasts was the herbalist Clusius, who propagated Tulips on a rather large scale. Fig. 2595. He did not introduce the Tulip into Holland, but the appearance of his specimens in 1591 did much to stimulate the interest in the flower in that country. The best of Clusius’ plants were stolen from him, as the admirers of the Tulip were unwilling to pay the high prices he demanded. After this theft the propagation of the Tulip proceeded rapidly in Holland and the country became a great favorite. The production of new varieties became a craze throughout the Netherlands, culminating in the celebrated "tulipomania" which began in 1634. The excitement continued for four years, and the best of the early bulbous flowers were sold for a single bulb of Semper Augustus. Governmental interference was necessary in order to end the ruinous speculation. After the craze subsided, the production of varieties continued upon a normal basis, and has persisted throughout the centuries in Holland, making that country the center of the bulb-growing industry of the world down to the present day.

The introduction of the Tulip into England is credited to Clusius, about the year 1577. Tulips regained supreme favor in English gardens until the beginning of the eighteenth century, when they were neglected by the rich for the many new plants from America. For a while the Tulip was considered more or less of a poor man’s flower, though it has at no time been without many staunch admirers among the upper classes.

With the Turks the narrow acuminate flower-segments were in favor, while western taste preferred the rounded forms (Fig. 2595). The Turks seem to have been satisfied with a predominance of the red and yellows, for in the first sowings of Turkish seeds the majority of the resulting blooms were of those colors. It thus came about that flowers so colored were considered common and undesirable. In the European gardens and all effort was directed to the production of the rarer white-graded varieties with finely and distinctly marked stripes, those with a sharp arched outer being the favorites. Indisputable evidence of this is seen in the old Holland "stilllife" paintings of that time, where one finds none but the rarer forms represented (Semy-Laubach). The early Tulips of direct Turkish origin had acme more or less narrow and reflexed segments. Indeed, among all the old engravings, including those of Penn and Lobel, 1576, Clusius, 1576, Do-oen, 1578, and Besler, 1613, no round-petaled forms are found. In his work, "Hortus Eystettensis," contains magnificent copper plates, the first in any book on plants. In some copies the plates are beautifully colored by hand. The 53 figures of Tulips in this grand work show how widely diversified was this flower even at that early date. In this and in Parkinson's "Paradisus Terrestris," 1629, many are figured with inner segments rounded and outer acute, but none vice versa (so far as could be seen), though that form is mentioned in descriptions. The broad, rounded, erect-petaled forms were developed later, apparently first by the Dutch growers previous to and during the tulipomania, and produced verbally by selection. This idea has held true to the present time, for the narrow-petaled varieties are practically unknown among our common garden forms; so much so that the extreme typical one has been re-mentioned in "Tulips," and referred to a separate species. In the Dutch fields they are now known as "thieves," and are destroyed as soon as they make their appearance.

Parrot Tulips became known towards the end of the seventeenth century. They were oftentimes considered

TULIPA

TULIPA

1869

TULIPA

The Tulip bulb culture in America.—From a commercial point of view the Tulip in this country has received but little consideration, which is due to the fact that its cultivation has not been considered of sufficient financial importance to warrant the undertaking, and also to the very general opinion that the industry could not be made profitable excepting in Holland and by the Dutch. There is a common notion that Dutch soil alone is adapted to the perfect development of the bulb, and that there is some secret process possessed by the Dutch alone which they will not under any circumstances reveal. Nevertheless some of our early horticulturists and florists showed conclusively that the Tulip bulbs could be grown in America even better than in Holland.

The late David Thomas, of Greatfield, near Aurora, Cayuga county, N. Y., grew from seed some of the finest bulbs ever shown in or by any other country at that early date, which was nearly sixty years ago. The writer remembers well seeing them on exhibition at the Aurora Horticultural Society and the favor with which they were received by as critical and intelligent an audience as ever gathered around an exhibition table.

The late Isaac Buchanan propagated the Tulip very successfully from offsets at his nursery in Astoria, L. I., at about the same period, and exhibited the flowers at the first spring exhibition of the first New York horticultural society, carrying off the highest honors.

Recent attempts in cultivating the Tulip in various parts of the country, particularly in the West, as an industry, have been quite successful, and the work only needs to be taken up systematically and energetically to insure success. (See Washington.)

The Tulip is not at all particular as regards soil. It will thrive in either sand or clay, but it can be profusely grown only on a light sandy soil, as in such the bulbs increase more rapidly and are larger and more attractive in appearance, the skin being of a lovely red-brownish, while those grown in a heavy soil smaller and of a dirty brown color. Nearly all the soil on the Atlantic coast from Maine to Florida is admirably adapted to commercial Tulip cultivation, as is much of the upland soil from Virginia southward, the top soil being almost identical with that of Holland, where the Tulip is almost exclusively grown.

While the Tulip loves moisture, perfect drainage is requisite to success. The best results are obtained when the soil has been made very rich for a previous crop; it must also be heavy and little what,—some root crop being preferable. The best manure is that from the cow-stall, which must be thoroughly rotted and evenly incorporated in the soil. Even though the soil be light and fine, it must be thoroughly worked before the bulbs are planted, which should be by the 1st of September. Plant the bulbs 4 inches below the surface in beds 4 feet in width, the rows 6 inches apart and the larger or stock-bulbs 6 inches apart in the rows. For propagation the largest and finest bulbs are always used, and selected by the dealers before filling orders. The sets can be planted 2 inches apart in the rows, the space to be increased according to the size of the bulb. Upon the approach of winter the beds should be given a light mulch to prevent the ground freezing below the bulb. Not that the Tulip will not endure as much frost as any hardy perennial—for it will—but nearly all bulbs make certain preparations for forcing flowers in winter, and when the soil around them is hard frozen this preparation cannot go on; consequently when growth starts in early spring it will be premature and feeble, and the result will be inferior flowers and a smaller increase.

Upon the approach of spring remove the mulch; this is all the work that will be necessary, and the surface of the soil frequently stirred with a fine rake to keep down the weeds and prevent evaporation until the flowers appear. The beginning of bloom is the

2594. The common contemporaneous garden Tulip.
all important and critical period of the season's work, when the florist's arcana must be practiced but not revealed. The great secret in Tulip propagation is now open to the world, though not popularly understood.

Propagation is effected by offsets, from the fact that varieties will not reproduce themselves from seed. The seed produces only "selfs" or Mother Tulips, which only break into variegated forms at long and uncertain periods. Consequently the flowers must be cut away as soon as they appear; if not, nearly the whole of the plant's energies would go to the development of the seed,—nature's method of reproduction,—and the bulbs produced would be small and with but few or no offsets. From nature's standpoint the bulb is of consequence as a means of reproduction or perpetuation of the species only in case of failure of seed production.

By cutting the flower-stems as soon as the flowers are sufficiently developed to show, there is no mistake as to variety, and the plant's energies are wholly directed to reproduction by offsets which, from large bulbs, are freely produced. There is a great difference in varieties in this respect. The increase is not far from tenfold annually; that is, the parent bulb will produce that number of offsets, which must be grown at least three years before they can be sold as first class.

By the cutting of the flower-stems the plant's period of development is materially shortened. The bulbs will mature at least four weeks earlier than the seeds would if permitted to mature. On Long Island the bulbs can be safely taken up and dried off within two weeks from the time the stems are cut. When the flowers are cut it will not do to leave them on the beds; they must be carried to some place where bulbs are not to be grown. If left upon the beds they will, as the Dutch say, "make the soil sick," and sound, healthy bulbs cannot again be produced on it until after a succession of grain and grasses. Tulips must not be returned to the same soil annually, a rotation of at least two other crops being necessary to the production of sound, vigorous bulbs.

A hundred thousand salable bulbs can be grown on a single acre. They require three years from the sets. The first year double that number can be grown. The average yield or output will be 66,000 bulbs to the acre.

In this country where land admirably adapted to the cultivation of Tulip bulbs can be had at not more than fifty dollars per acre, in comparison with land in Holland worth $5,000 per acre, the industry could be made a profitable one.

C. L. Allen.
TULIPA

GROUP II. Outer bulb-tunic with a few appressed hairs inside towards the top.

A. Stem pubescent.
B. Lvs. blotched with linear chestnut-brown spots; filaments not bearded at base.
BB. Lvs. not blotched; filaments bearded at base.

AA. Stem glabrous (T. Kolpakowki- skiana sometimes obscurely pubescent). 6. pulchella
BB. Lvs. ovate or broadly lanceolate.

C. Filaments bearded at base.
CC. Filaments not bearded.

3. Greigi, Regel. Height 2-8 ft.; lvs. usually 4, obscurely downy, much undulate toward cartilaginous border; perianth campyloplane, 3-5½ in. long, 3 in. across, spreading abruptly to about the middle, bright crimson with a large dark basal blotch, margined with yellow; segments uniform, ovate-cuspidate or emarginate; authors: yellow; filaments black, glabrous; ovary narrowly at collar: stigmas yellow, twice as broad as neck of ovary, red, dry. Turkestan, B.M. 6177. F.S. 31:2361. F. 1876:217—Early-blooming.

5. Kolpakowskiana, Regel. Height 12 in.; lvs. 3-4, obscurely ciliate on margin; bud nodding: perianth campanulate, 2-2½ in. long, 4½ in. across, fauldy scented, varying from bright scarlet to bright yellow, typically red with a faint yellow-black blotch at base: segments elongate, acute, the outer spreading away from the inner as the flower expands; authors: dark purple: ovary large, stout: stigmas large, crisp. Turkestan and Central Asia. 1877. B.M. 6740. Gen. 60, p. 182. —A near ally of T. Gesneriana, which it bids fair to rival in beauty and variability under cultivation.

6. pulchella, Fenzl. Height 4 ft.; lvs. 2-3, crowded and spreading close to the surface of the ground, channelled, obscurely ciliate on edges: perianth funnelform, erect, 1-1½ in. long, 2½ in. across, bright mauve-red above, passing downward into a slaty like base without any dark-colored blotch, but bright yellow at base; segments all acute, densely pilose at base: filaments linear: ovary ovoid: stigmas less than ovary-diameter. Alpine region of Chilian Taurus. 1877. F.S. 2598. —A dwarf species near to T. Hageri.

7. violacea, Boiss. & Buhse. Less than 12 in. high; lvs. 2-5, crowded: perianth campyloplane with a contrasted base, ½ in. broad, 2 in. wide, fragrant, typically bright mauve-red or rosy crimson flushed with purple, tending to white with a slight flush of red outside, with a large brown or black basal blotch, usually bordered with white; segments uniformly oblong, subacute; stamens black or purple; stigmas small. Persia. Int. to cult. 1896. B.M. 7410. Gen. 39:390.—Allied to T. Hageri and pulchella.

8. carinata, Hort. Krelage. Lvs. 3, not crowded, as long as fl. stalk, slightly undulate, slightly ciliate on edge: perianth ovate-cuspidate, yellow, 2 in. long, scarlet towards the base: perianth open-campanulate, 3 in. long, a little tinged with green just above and blending into a bright yellow basal blotch; segments acute, cuspidate; stamens yellow: ovary prismatic: stigmas white, not undulate. Habitat unknown. Vars. rubra and violacea, Hort., are offered.

9. vitellina, Hort. Lvs. 4, not crowded, as long as fl. stalk, not undulate, thinly ciliate on edge: peduncle slightly tinged with red near fl.; perianth campyloplane, 2 in. long, sulfur-yellow, no basal blotch; inner segments rounded, outer acute; filaments yellowish white; stigmas not undulate.— Said to be "hybrids between T. saccatus and T. Gesneriana." It is one of the "Cottage Garden" Tulips, a class of old-fashioned Tulips which have been preserved from oblivion in the gardens of the poor. Attempts have been made recently to restore them to popular favor. Well worth attention.

10. sylvestris, Linn. Fig. 2691. Height 9-15 in.; lvs. usually 3, at base of scape, channelled, linear-lorate: peduncle sometimes 2-fl.; in cultivation: bud nodding: perianth funnelform-campanulate, 1½-2 in. long, yellow; segments all acute, inner narrower: ovary bladderform (narrowed at collar): stigmas smaller than ovary-diameter, yellow. Said to be native in England and widely so in Europe.—In cultivation as T. Florence and T. Fiorentina, var. odorata.

12. Sprüngeri, Baker. Height 10-18 in.; lvs. 4, close together, long, linear-lanceolate: stiff: peduncle wiry, tinged with deep red under fl.; perianth open-campanulate (star-shaped), 2 in. long, bright scarlet with a somewhat dull brown basal blotch margined all around with dull orange-yellow, all blending into one another;
2600. A pan of Murillo Tulips, one of the few double varieties that are really desirable (X34).

20. Didier, Jord. Height 12-18 in.; lvs. 3-4, below middle of stem, lorate-lanceolate, finely ciliate upon upper face; perianth campanulate, 3-3¼ in. long; segments uniform, narrowed gradually to a very acute point; anthers violet; filaments glabrous; stigmas larger than ovary-diameter, yellowish.-Known in gardens only, Krelage catalogues a variety as "Cottage elegans picotee," which has larger lvs., and white flowers edged with rose, and without basal blotch. "Probably a hybrid between T. acuminata and snaevelans."

15. Kesselringi, Regel. Lvs. 4-5, crowded at base of stem, lorate-lanceolate, channelled; peduncle sometimes obscurely puberulent; perianth campanulate, 1½-2 in. long, bright yellow, flushed with red and green outside; inner segments subobtuse, outer acute; stamens bright yellow; filaments glabrous; stigmas not equal to ovary-diameter. Turkestan. B.M. 6754. 16. saxatilis, Sieber. Height 12 in. or more; stem usually branched low down and bearing 2 ft.; lvs.

TULIPA

usually 3, sometimes lowest 12 in. long; perianth oblong-funnelform, 2-¼ in. long, 3 in. across, light mauve-purple, at base bright yellow; segments pubescent at base, inner obvolute; outer oblong; anthers blackish; filaments bright yellow; ovary prismatig; stigmas small. Crete, 1878. B.M. 6754. Gt 56:1224.

17. Korolków, Regel. Height 6-9 ft. in.; lvs. 2-3, falcate, margin crisped; perianth campanulate, red, with a distinct black basal blotch; inner segments oblong, outer oblong; filaments lanceolate; stigmas small. Turkestan, 1875.

18. Kaufmanniana, Regel. Less than 12 in. high; lvs. 2-3; perianth subcampanulate, 2 in. long, 2½-4 in. across, bright yellow in original form, tinged with red outside, without basal blotch; in cultivation very variable in color and nearly always with a deep yellow basal blotch; anthers lemon-yellow, linear; filaments bright orange, linear flattened; ovary pyramidal; stigmas small in cultivated form, but described as large. Turkestan, 1877. B.M. 6677.

19. Billietiana, Jord. & Four. Lvs. 3-4, undulate, not ciliate on edge; perianth open-campanulate, 2 in. long, 3½ in. across, nodorous, bright yellow, flushed with scarlet-pink, especially outside, with obscure basal blotch striated with blue-black lines; anthers dark gray or blackish; filaments yellow, with dark striations: ovary narrowed at collar; stigmas yellow, large and crisped. Savoy, Italy. B.M. 7253. G.M. 38:311.-One of the late Tulips.

20. Didier, Jord. Height 12-18 in.; lvs. 3-4, undulate, acuminate; perianth campanulate, 2-2½ in. long, 2¼-3 in. across, bright crimson, with purple basal blotch margined with yellow or yellowish white; outer segments reflexed; stamens same color as basal blotch; ovary narrowed at collar; stigmas larger than calyx-diameter, white. Savoy, Italy and Alp. B.M. 6639.-Var. Mauriana, Jord. Lvs. narrower, slightly undulate; perianth brilliant red, with wide yellow blotch. Var. planifolia, Jord. Stem slender; lvs. narrow, not undulate; perianth dusky, faintly marked with yellowish red or blackish blotch. Var. aetulifolia, DC. A cultivated form: peduncle 3-8 in. long; lvs. oblong-lanceolate. Var. Alba, Krelage. Pedicule stiff, spotted with red; perianth light lemon-yellow, or white tinged green outside, basal blotch limited to a few dark striations; stamens same color as flower. Var. tatecans, Krelage. Lvs. 3, slightly falcate; perianth light yellowish white streaked with red, with a bluish violet, dark basal blotch; filaments colored like spot.

GROUP IV. Outer bulb-tunic pubescent inside, densely so at apex.

A. Perianth segments very long, linear and acuminate. 21. acuminita

AA. Perianth segments oblong, all uniform and acuminate. 22. retroflexa

AAA. Perianth segments all narrowly oblong; inner acute, outer rounded at top. 23. Dammanii

21. acuminita, Vahl. Figs. 2602, 2603. Height 12-18 in.; lvs. 4, lowest lancedolate, all undulated at margins; peduncle shining, perianth very open, light yellow; spotted with red lines; segments sometimes ¾ in. long, less than ¼ in. wide, with edges rolled in; stamens yellow; filaments flattened, glabrous; ovary prismatig; stigmas very large, yellow, not undulated. Turkey (1).

22. retroflexa, Hrt. Lvs. long-lanceolate, sometimes linear-lanceolate, slightly ciliate on edge, otherwise glabrous; peduncle somewhat shining; bud nodding; perianth open funnel-form, campanulate, yellow, a shade darker at base—a trace of a very obscure basal blotch; segments uniform in width, linear-lanceolate acuminate, twisted, with undulated edges; stamens yellow; filaments flattened, glabrous. -A supposed garden hybrid between T. Gesneriana and acuminata.

23. Dammanii, Regel. Height 6 in.; lvs. 4, placed whorl-like at middle of stem, linear-lanceolate, recurved, obscurely bristle-like, ciliate on margin, otherwise glabrous; peduncle glabrous; perianth spreading, star-shaped, purplish or reddish with an oblong-lanceolate black
TULIPA

without yellow border; segments narrowly oblong; filaments liliform, glabrous; stigmas broader than ovary-diameter. Mt. Lebanon, 1889. Gt. 38:1660. —Allied to T. linifolia and Maximowiczii.

GROUP V. Outer bulb-tunic please inside.

A. Lower Ivs. lanceolate

B. Lvs. slightly or not at all undulated

24. Armena

25. platystigma

26. Maximowiczii

B. Baker. Lvs. 5, crowded at base of stem, falcate, glabrous and glabrescent, slightly undulated, long, ciliate on edge all around, longer than fl. stalk; peduncle glabrescent, finely dotted, perianth open campanulate, slightly sweet-scented, 2 in. long, dark scarlet with black basal blotch margined all around with yellow; inner segments rounded, outer acute; anthers purple; filaments flat, black, not bearded. — This species is referred by Baker without hesitation to T. Gesneriana, but the plants in the trade as T. Armena differ as indicated above.

25. platystigma. Jord. Height 18 in.; stem slender, glabrous; lvs. 3-4, very much undulated; peduncle glabrescent; perianth campanulate, 2 in. long, violet-scented, magenta-red; segments ovate-oblong; claw blue tinted with a yellow spot in the middle; filaments not bearded; anthers violet-colored; ovary prismatic; stigmas very large and undulated. Frases.

GROUP VI. Outer bulb-tunic woolly at apex inside.

A. Filaments bearded at base

27. Lownei

BB. Filaments not bearded

28. Perianth crimson or scarlet, with a distinct basal blotch

29. montana

BB. Perianth yellow, without basal blotch

30. Batalini

27. Lownei, Baker. Height 2-4 in.; stem glabrous, sometimes 2-headed; lvs. 2, lanceolate, acuminate, falcate, glabrous; peduncle slender, glabrous; had slightly nodding; perianth funnelform, small, white with a bright yellow basal blotch, tinged outside with light purple or purplish pink, inner segments wider; stamens yellow; ovary narrowed at collar; stigmas very small. Mts. of Syria and Palestine, 1874.

28. linifolia, Regel. Stem somewhat shining, sometimes 2-headed; lvs. 7, linear and grass-like, spirally arranged, spreading, glabrous; perianth open-campanulate, small, bright scarlet; basal blotch bluish black; inner segments oblanceolate, outer ovate and slightly wider; anthers pinkish; filaments bluish black; ovary pyramidal; stigmas very small, yellowish white. Bokhara.

29. montana, Lindl. Height 4-8 in.; lower lvs. oblong-lanceolate, acuminate, undulated, very glabrous; peduncle glabrous; perianth campanulate, 1½-2 in. long, 2 in. across, deep crimson, paler outside; segments ovate or oblong, flat, acute, the inner often obtuse outside; filaments purplish; ovary prismatic; stigmas small. Mts. of Persia. B.R. 13:1106. — Var. Julia, K. Koeh. Dwarf, from Caucasus. Not more than 3-4 in. tall; fls. bright red, 1 in. or less long; all 6 segments obvolute and obtuse.

30. Batalini, Regel. Height 5 in.; stem glabrous; lvs. 5, crowded into a sort of whorl just below middle of stem, linear-lanceolate, glabrous, slightly undulated; perianth campanulate, slightly funnelform; segments oblong-ovate, obtuse, sometimes deeply incised on the edge near the top; filaments linear, terete, yellow; ovary elliptic-oblanceolate, compressed, trigonous; stigmas coroniform. Eastern Bokhara, 1889. Gt. 38:1607. G.C. III. 19:758.—One of the early Tulips.

2601. Tulipasylvestris, known also as T. Florentina, var. odorata (X ½).

2602. One of the acuminate-petalled forms — the old Turkish-garden ideal (X ½). No. 21.
31. *Tulipa*, Linn. Height 3-6 in.: stem glabrous or slightly phloise, usually 2-3 rd., rarely 4-5 rd.; lvs. often 2, sometimes 3, linear, long: perianth funnelform-campanulate, 1 in. long, 2 in. across, pale yellow or white inside, tinged with green or red or even purplish outside; segments acute; filaments flattened, ciliated at base: ovary narrowed at collar; stigmas small. Mts. of Central Siberia and the Caucasus. B.R. 7:355. B. M. 6318.

32. *Ciusiana*, Vent. Height 12-18 in.: stem slender, glabrous; lvs. 4-5, very long and narrow and folded double, linear-acuminate, pendent: peduncle slender, tinged with brown directly under fl.: perianth small, when open 2 in. across, funnelform-campanulate, very fragrant, bright lemon-yellow tinged with green outside, or white flushed with red; segments acute; claw bistrate on edge; stem yellow; filaments cyindric, densely bearded at base: ovary pyramidal: stigmas small, tinged with red. Portugal, through Mediterranean region to Greece and Persia. B. M. 1890.

2603. *Tulipa acuminata* (X3).

33. *Biebersteiniana*, Schult. f. Height 6 in.: stem slender, glabrous; lvs. 2-4, crowded together, long, channelled, glabrous, slightly ciliated on edge; bud slightly nodding; perianth open-campanulate, 2½-3 in. long, bright yellow tinged with scarlet-pink on edges and sometimes green outside; at base a brownish yellow discoloration; inner segments obtuse, outer acute; anthers gray; pollen yellow; filaments yellow: ovary prismatic: stigmas yellow, undulated. Asia Minor.

34. *Oculus-solis*, St. Aman. Height 12-18 in.: stem slender, glabrous; lvs. 2-4, lorate-lanceolate, acute, glabrous; perianth funnelform-campanulate, 2½-3 in. long, 4½ in. across, scentless, erect; segments very acute, the inner ones often less so; anthers yellow; filaments purple: ovary prismatic. South of France, Italy and Switzerland. B. R. 5:380 (as *T. Geneviana*).

35. *praecox*, Tenere. Height 12-18 in.: stem slender, glabrous; lvs. 3-5, lorate-lanceolate, acute, undulated at margin: perianth campanulate, 2½-3 in. long: 3 in. across, erect, scentless: basal blotch purplish black, margined with yellow; segments widely imbricated, outer slightly longer, acute, puberulent at apex; inner shorter, obtusely euspiculate: anthers yellow: filaments long, dark purple: ovary prismatic: stigmas pubescent, reddish. Italy and Southern France; also Algeria, Greece, Syria, Palestine and Persia. Very closely allied to last, and figured as such in B. R. 3:294; 14:1143; 17:375. One of the oldest known species.

GREAT VIII. Outer bulb-tunic always hairy at base inside around root-crown, and usually furnished with a few scattering hairs above, but sometimes without them.

A. Stem and lvs. pubescent 37. *suaveolens*

B. Leafy only at base of stem.

C. Lvs. lanceolate 38. *australs*

cc. Lvs. linear or lorate 39. *viridiflora*

bb. Leafy to middle of stem or above.

C. Perianth uniformly dark scarlet with a bright yellow basal blotch 40. *fulgens*

cc. Perianth uniformly blackish basal blotch, bordered with bright yellow 41. *macropelia*

ccc. Perianth variable, but with a bordered dark basal blotch 42. *Geneviana*

37. *suaveolens*, Roth. Early Garden Tulips. Height 3-6 in.: lvs. 3-4, mostly at base of stem, lowest lorate-lanceolate and broad: perianth campanulate, 1-2½ in. long, erect, fragrant, bright red or yellow or variegated; segments all acute; filaments gray: ovary prismatic: stigmas very large. Southern Russia and Southern Europe, but possibly only a naturalized form of old introduced Turkish garden varieties. F. S. 1823. B. M. 839.

39. *viridiflora*, Hort. (?) Outer bulb-tunic glabrous except around root-crown, where there is a dense fringe: stem glabrous and glaucous: lvs. lorate-lanceolate, undulated, glaucous, glaucous, edges slightly ciliated near base; lvs. large, with soft green, edged with yellow or white. Gn. 32:625. —Garden form. Bears some resemblance to a Parrot Tulip.

40. *fulgens*, Hort. Garden form. Height 8-18 in.: lvs. 3, lanceolate or oval, very wavy: perianth-segments all oblong ovate, acute; anthers yellow; pollen yellow; filaments white, flattened, glaucous: ovary prismatic: stigmas small, not wavy.

41. *macropelia*, Baker. A supposed hybrid of unknown origin: height 10-18 in.: lvs. 3-4, long and narrow, lowest long-lanceolate, flat, pendent: peduncle wiry; perianth campanulate, slightly funnelform, emitting a heavy, sweetish, unpleasant odor, bright crimson to cerise or cherry red, with a distinct, nearly black euneate basal blotch broadly margined with yellow or yellowish white at top: segments obtuse or outer sometimes acute; anthers reddish: ovary cili ate, white at base, black, violet or striated above, glaucous: ovary prismatic, cremne yellow: stigmas same color, large, slightly undulated.

42. *Geneviana*, Linn. Common Garden or Late Tulips. Figs. 2591-2609. Height 6-24 in.: stem erect: lvs. 3-4 or more, lower lorate-lanceolate or ovate-lanceolate, often undulated, glaucous, pubescence variable: peduncle erect, 1-2½ in. long, indor sorous, bright red or vari-colored, when bright red, with only an obscure basal blotch, which is usually yellow, but may be dark or even blackish or mixed, sometimes segments all obvolute-oblong, obtuse, broadly rounded at apex, often with a small cusp in the
Plate XLVI. Flat Turnips and Rutabagas.

The Turnips (Brassica Rapa) are the two tubers showing in front and on the left. The Rutabagas (Brassica Campestris) are the three top-shaped tubers, with many roots.
center; filaments glabrous, flattened: ovary prismate; stigma large and usually crisped. Origin uncertain. Introduced from the Turkish gardens in 1554. Long since hybridized and cultivated out of all semblance to any wild forms. Supposed original form (Baker) in B.M. 6139 (as T. Schrenkii). Darwin tulips (Fig. 2567) are a recent strain of long-stemmed, late, self-colored tulips.

2604. Tunicia Saxifraga. Flower about natural size.

Var. Dracantha, Baker (Fig. 2299). PARROT TULIP. Similar in habit: perianth usually yellow and red striped and spotted; segments deeply cleft and incisately dentate. F.S. 21:2211 (as T. Tuscia). Var. spatulata (T. spatulata, Bertol.). This differs from the type in its larger flower, of a brilliant red color, with a large purplish black blotch at the base of each of the segments. Italy.-Probably the largest of the wild Tulips. Catalogued by many bulb growers as "T. G. vera."

Var. Strangewayensis, Rehoul. Very large, brilliant, dark scarlet flowers, with a handsome dark basal blotch. One of the naturalized Tulips found without disposition to vary in fields near Florence, Italy. F. 1880:55. Var. Rhodo-oculara, Kredage. Deep carmine-flushed, with a slight sweetish mawkish odor, bright red, with a distinct white basal blotch; inner segments obtuse, outer acute; filaments white. T. flavus, Hort., Kredage, "is often confused with vitellina in gardens, though perfectly distinct. Flava is yellow, very robust, tall, and at least a fortnight later in blooming. Vitellina is almost white when old." Imperfectly known—T. lanata, Regel. Dwarf: fls. large, goblet-shaped, rich vermillion, with a large black spot at the base of each of the segments. Perfectly known—T. Persicoides, Willd., is a synonym of T. patens, Agaviis, a Siberian species not known to the trade. It has fls. about 3½ in. across, greenish outside, white inside, with a yellow eye. The outer segments are narrower. It is figured in B.M. 3887 as T. tricolor. T. Persica of the trade has been confused by the Dutch with T. Bresniana, Linna. The proper name of which is Basometra Colombaris, Salis. Basometra is a monotypic genus native to South Africa. There are no true Tulips in South Africa. The important generic distinction between Basometra and Tulipa lies in the dehiscence of the capsule; that of the former is septicial, that of the latter loculicidal. Basometra is figured in F.M. 76 as Melanthium uniform. It is a dwarf plant 4-5 in. high with funnel-shaped fls. about 1 in. across, yellow within, tinged with deep brownish red outside. The segments are oblong and subequal. Although a native of the Cape, the plant is supposed to be hardy.

ARNOLD V. STUBENRAUCH.

TUNA. Opuntia Uana.

TUNICA (Latin, a tunic or coat, from the imbricated involucre). Cystophyllum. Small slender herbs with linear opposite leaves, with habit of typophila, but botanically more nearly allied to Dionanthus. From Dionanthus they differ in smallness, the central flower of the cluster not bracteate, the calyx top-shaped or cylindrical rather than short-tubular and 5- or 15-ribbed, the calyx-teeth obtuse; petals 5 and styles 2. There are about 10 species in Southern Europe and in Asia. T. Saxifraga, Scop. (Fig. 2294), apparently the only species in cultivation in this country, is a tufted spreading hardy species suitable for rockwork and blooming in summer and fall (see bottom p. 737). It is a strict-stemmed perennial, growing 6-10 in. high; fls. small, with rosy white, lilac or pale purple notched petals. A recent novelty is a double flowered variety. It is more compact and dwarf than the type, and the fls. last longer. Tunicas are propagated by seeds or division. T. Saxifrages has become adventive in some parts of the east.

L. H. B.

TÚPA. See Lobelia.

TUPELO. See Nyssa.

TURK’S HEAD. Melocactus commutatus.

TURPAN (Plate XLVI) is a name somewhat loosely applied to two species of vegetables. In this country, and apparently properly, it is applied to vegetables characterized by thick light-fleshed roots that are usually more or less flattened or at least not greatly elongated, with leaves that are hairy and not glaucous. These vegetables belong to the species Brassica Rapa (see page 178). In the term is sometimes included the Swedish Turnip or Rutabaga, a plant that is characterized by having a more uniformly elongated-oval yellow-fleshed tuber with roots springing from its lower portion, a thick elongated leafy neck, and glaucous-blue leaves that are not hairy. This plant, however, is considered to be Brassica campestris. Whether these two species exist separately in wild nature is not positively known, but they appear to be well defined under cultivation. Both species tend to run wild in old fields and to lose their thickened roots. They are then sometimes, though erroneously, known as charlock. The nativity of these species is unknown, but they are almost certainly

European or Asian in origin. Characteristic tubers of these two plants are contrasted in Figs. 2605 and 2606. The former is commonly known here as “flat turnip” and the latter as rutabaga or merely “baga.” According to Vilomir, the plant that we know as Rutabaga is known to the French as chou-navet and in England as Swedish Turnip and turnip-rooted cabbage.
The the TURNIP impracticable white, not Usually Petasites impossible. species main the longer steep less TWISTED far a nips. the drills is sistent; small shrubs spring; They Rutabagas fested rely cient. beforehand the tillage is supplied or gree. the greatest needs be frozen, and are usually sown and or gree. the seeds are sown in drills which stand from 10 to 12 inches apart. In the drills the plants are thinned until they stand from 6 to 10 inches apart, depending on the variety that is to be grown. For general field operations the rows are sometimes placed as far as 50 inches apart, in order to allow horse tillage. Sometimes the late or winter crop is raised from seed sown broadcast, but this method gives good results only when the soil is well supplied with moisture, very thoroughly tilled beforehand and is free from weeds, since subsequent tillage is impossible. The seeds of Turnips and Rutabagas are of similar size, two or three pounds being required for broadcasting to the acre. When sown in drills one-half or one-third this amount may be sufficient. The yields will sometimes reach 1,600 bushels to the acre, although the average is much less than this.

The Turnip needs no special care as to cultivation. The maggots may be killed by injecting biscuid of carbon into the soil about the roots before the grubs have burrowed deeper, and the maggots are very injurious. In general field operations, however, this treatment is impracticable and one must rely on growing the crop in fields which are not infested with the maggots; that is, rotation is the chief recourse. The flea beetle may be kept in check by spraying the plants with Bordeaux mixture, or perhaps better by sprinkling them with Paris green diluted with land plaster (one part by bulk of Paris green to 50 of plaster).

Rutabagas have firmer and richer flesh than the Turnips. They are usually more prized for consumption in winter, and Turnips are usually more popular early in the spring and early fall markets. Rutabagas are also more prized for stock-feeding. They yield heavily, are rich and succulent and keep well in any ordinary cellar. Rutabagas are started in the middle or last of June in the northern states will reach their full growth by October. They are usually not harvested until heavy frosts have come. The roots of Rutabagas and Turnips sometimes persist through the winter, even though they have been solidly frozen, and send up flower-stalks in the spring; but unlike salsify and parsnips the roots should not be left in the ground to freeze if they are to be used.

L. H. B

TURNIP, INDIAN. Arisema triphylla.

TURNIP-ROOTED CELERY. See Celeriac.

TURPENTINE TREE. Sylvestris latifolia.

TURPÍNIA (Pierre J. F. Turpin, a French botanist and author). Celastraceae. About 8 species of trees or shrubs from the tropical regions of the world, with opposite abruptly pinnate or rarely simple leaves and small white flowers in spreading terminal or axillary panicles. Fls. hermaphroditic, regular; calyx 5-cleft, persistent; petals 5, roundish, sessile; stamens 5; ovary sessile, 3-lobed, 3-loculed; fr. subglobose indescendent.

ARGA. Seem. A tender shrub; lvs. simple, ovate-lanceolate, acuminate, serrate; fls. white, becoming yellowish, China. B.R. 21:1819.—Advertised in S. Calif.

F. W. BARCLAY.

TURRÉA (Turra, 1607-1688, botanist of Padua, Italy). Meliaceae. About 30 widely scattered species of tropical trees and shrubs alternate, stalked, entire or lobed lvs. and long white fls. in axillary clusters. Calyx 4-5-toothed or parted; petals 4-5, long and free; staminal tube 4-5-toothed; disk none; ovary 5-, 10- or 20-loculed; fr. obovoid-cuneate, heterophylla, introduced to S. Florida by Reeser Bros., is probably not in cultivation. It was said to be a native of Natal. The plant described is in Flora Capensis was probably imperfectly diagnosed and should be known as T. florisubula, as explained in the Flora of Tropical Africa.

A. Fls. solitary or in pairs, axillary. heterophylla. Sm., not Sonder. Lvs. more or less obovate-cuneate, 3-lobed above, varying to subretic. fls. 3½-4½ in. long. Upper Guiana. B.R. 30:4 (as T. floribunda).—Not cult.

AA. Fls. clustered at ends of branches.

florisubula, Hochst. (heterophylla, Sond.). Shrubs; foliage falls away before flowering season; lvs. ovate, acute or produced into a short obtuse point, undivided or 3-lobed; fls. clustered at ends of branches; peciule and calyces silky tomentose. Natal.

W. M.

TURTLE-HEAD. Species of Chelone.

TUSSILÁGO (Latin, tussis, cough, and ago; referring to the medicinal use of the lvs.). Compositae. Here belongs the Coltsfoot, the flowers of which look much like the dandelion. It resembles the dandelion in having scapes bearing solitary yellow flower-heads composed of rays, but the scapes are sealy and the heads are smaller, lighter colored and borne in early spring before the "main crop" of dandelions. Also the flowers close up in the hot sunshine towards noon, contrary to the customary dandelion. When the fruit is mature, they hang their heads prettily. The Coltsfoot has a downy head of fruit, but it is not as large, round and attractive as a dandelion's. After the flowers have lost their beauty, the leaves appear. They are heart-shaped and rounded at first, but as they grow they become more and more angled. They are covered with a soft cottony matting which diminishes toward the end of the season. The Coltsfoot is generally considered rather coarse and plebeian, and it is rarely offered for sale, except by collectors of wild plants. It spreads too fast to be a denizen of the flower garden, but it is desirable for wild gardening operations. It grows naturally in moist places and thrives on sheep or raw banks in the stiffest clay. A mass of its soft, cottony foliage is a pleasant and restful sight in early summer. The variegated form is more commonly cultivated than the type. Tussilago farfara, the "Winter Heliotrope," is a Petasites, which see. The leaves of the Coltsfoot are said to be used in making cigars which are smoked in caves of asthma.

Tussilago is a genus of one species. It is more closely related to Petasites than to Taraxacum. For generic description, see Gray's Manual and Britton and Brown's Illustrated Flora.

Var. variegata, Hort., has lvs. margined and more or less blotched with white or yellow. G. 37, p. 335. Lovey 56.

W. M

TUSTAN. Hypericum Androsaemum.

TWAYBLADE. Liparis liliiifolia.

TWIN FLOWER. Linnaea borealis.

TWIN LEAF. Jeffersonia.

TWISTED STALK. Streptopus.
TYDEA. Now included in *Isoloma*.

TYPHA (ancient name). *Typhaceae*. Cat-tail. Reed Mace. A genus of about 10 species of marsh plants with creeping rootstocks and erect, round stems, with long, linear sheathing leaves and monocious flowers in densely crowded, terminal spikes which are subtended by a fugacious bract.

The following are hardy aquatic or bog perennial herbs of easy culture in wet soil or in water. They spread rapidly and are likely to become too plentiful unless care is taken to pull such of them up as are not wished before they become firmly established. Forms intermediate between the following two species sometimes occur.

A. Staminate and pistillate spikes contiguously.

latifolia, Linn. Fig. 2667. Stem stout, 4-8 ft. high; Ivs. wider than in the following species, usually 1 in. wide; pistillate spikes becoming about 1 in. in diam. June, July. N. Amer., Eu., Asia. B.B. 1:62. R.B. 20:196, V. 2:197.

AA. Staminate and pistillate spikes separated.

angustifolia, Linn. Stem more slender than *T. latifolia*, 3-10 ft. high; Ivs. usually less than ½ in. wide; spikes usually longer than in *T. latifolia* and much narrower, being about ½ in. in diam. June, July. N. Amer., especially in the east and also Eu. and Asia. B.B. 1:63. G.M. 32:779.

F. W. BARCLAY.

2667. Cat-tail — *Typha latifolia*.
ÜLEX (ancient Latin name of this or a similar plant). Leguminosae. *Furze. Gorse. Whin.* Ornamental, much-branched shrubs with dark green spiny branches, usually almost leafless, and showy yellow, papilionaceous flowers which are axillary and often crowded at the ends of the branches. The Furzes are shrubs of various regions and not hardy north, but under protection they survive the winters in New England. They are valuable for covering dry sandy banks and also well suited for seaside planting. On account of their dark green branches they have the appearance of evergreen plants and they are very showy when covered with their yellow flowers. They are also sometimes used for low hedges. They prefer sandy or gravelly porous soil and a sunny position, and should be sown where they are to stand, as they do not bear transplanting well. Prop. by seeds sown in spring or by greenwood cuttings under glass; vars. and rarer kinds also by grafting in spring in the greenhouse on *U. Europaeus.* A genus of about 20 species, native of W. and S. Europe and N. Africa, closely allied to *Cytisus* and chiefly distinguished by the deeply 2-lobed calyx. Very spiny shrubs: Ivs., mostly reduced to scales, only vigorous shoots near the ground bearing fully developed Ivs.: Fls. axillary at the end of the

Europaeus, Linn. *Furze. Gorse.* Fig. 2968. Much-branched, very spiny and rigid shrub, 2-4 ft. high; branches striped, villous when young; Ivs. scale-like or narrow lanceolate, pubescent; Fls. axillary, 1-3, crowded at the end of the branches and forming racemes, corolla bright yellow, about 3⁄4 in. long, fragrant; calyx yellow, pubescent; pod oblong, 3⁄4 in. long, villous, dark brown. April, June and often again in Sept., Oct.; in Calif. almost the whole year. W. and S. Eu. F.S. 5, p. 441. — There is a variety with double flowers. None of the other species, which are all more tender, seems to be in the trade in this country.

Alfred Rehder.

ULMÁRIA (derived from *Ulmus*; alluding to the resemblance of the foliage of the common European species to that of the elm). Syn. *Filipendula.* Rosaceae. MEADOW SWEET. Hardy herbaceous perennials with rather large pinnate or palmately lobed leaves and white, pink or purple flowers in showy terminal corymbs, borne on erect leafy stems rising 1-10 ft. from a rosette of radical leaves. They bloom in early summer or midsummer and are very handsome border plants. Most of them delight in a rather moist and rich soil and are especially decorative if planted on the borders of ponds and brooklets, but *U. Filipendula* prefers drier situations and likes full sun, while most of the others also thrive well in partly shaded positions. *U. purpurea* should be mulched during the winter in the North. Prop. by seeds, sown in fall in pans or boxes and kept in the cool greenhouse, or sown in spring; also by division of older plants. Nine species in N. Asia and Himalayas, N. America and Europe. Perennials with fibrous or tuberous rootstock: Ivs. stipulate, interruptedly odd-pinnate, the terminal ft. often much larger and palmately lobed; fls. in cymose corymbs; calyx-lobes and petals usually 5; stamens 20-46, with the filaments narrowed toward the base; carpels distinct, 5-15, 1-seeded, indehiscent. Ulmaria has usually been united with *Spiraea,* but is very distinct in its herbaceous habit, pinnate, stipulate Ivs. and indehiscent 1-seeded aecios.

INDEX.

(Including names under *Spiraea.* s. l.=Supplementary list.)

alba, 5.
albicans, 2.
equato-forida, 2, s. l.
anea, 6.
Campanulata, 4.
digitata, 3.
elegans, 5.

1. *Filipendula.* Hill. (*Spiraea Filipendula,* Linn. *Filipendula horticola,* Gilib.). MEADOW SWEET. Dropwort. Fig. 2608. One to 3 ft. high, with tuberous rootstock, glabrous; radical Ivs. 6-20 in. long; Ifts. sessile, oblong, pinnately lobed and serrate, 1 in. long; fls. in a loose corymb, white, about 3⁄4 in. across, with usually 6 petals; aecios about 12, pubescent, semi-cordate; June, July. Europe, W. Asia and Siberia. — Var. floré *lavello* has double flowers, and is common.

(1878)
ULMUS

AA. Lfts. few, the terminal one much larger and palmately 3-9-lobed.

b. Lateral lfts. 3-5-lobed.

2. róbra, Hill (Spiraea lobata, Gronow. Spiraea palmita, Linn. Filipendula lobata, Maxim.). Queen of the Prairie. Height 2-8 ft.; lvs. glabrous and green on both sides or whitish tomentose beneath; terminal lfts. 3-5-lobed, large, ovalate, coarsely doubly serrate; fls. white, in rather dense paniculate cymes: akones about 10, semi-cordate, almost glabrous, twisted. June-Aug. Europe. W. Asia to Mongolia; naturalized in the eastern states. B.B. 2:224.—Var. aurea variegata, Hort., has the lvs. variegated with yellow. Var. hóre piéno. Fls. double.

U. angustifólia, Rehd. (Spiraea angustifolia, Torel. Filipendula angustifolia, Maxim.). Similar to F. lobata; fls. white; lvs. glabrous or whitish tomentose beneath. Oldfarkia, Millions—F. vestita, Rehd. (Filipendula vestita, Maxim. Spiraea vestita, Wall.). Similar to F. Camtschtica, but only 1 ft. high and lvs. grayish tomentose beneath; fls. white. Himalaya. B.R. 2:8 (as S. Kamtschatka, var. Himalensis).

ALFRED REEKER.

ULMUS (ancient Latin name of the Elm). Ulmáceae, tribe Ulmea. Elm. Ornamental deciduous, rarely half-evergreen trees, sometimes shrubby, with alternate, short-petioled, serrate lvs., and with inconspicuous, generally greenish brown flowers appearing mostly before the leaves. Most of the cultivated species are hardy north, but U. crassifolia and alba are tender; U. parviflora and U. sectóma are of doubtful hardiness, although they have persisted near Boston. The Elms are mostly tall and long-lived trees and very valuable for park planting and for avenue trees, especially U. Americana, which is the favorite tree for street planting and as a shade tree for dwelling houses in the northeastern states. It is the most characteristic tree of this region and one of the most beautiful. Its habit is at once majestic and graceful, and the widespread head, borne usually at a considerable height on a straight and shapely trunk, affords ample shade and shelter. Besides the American Elm several other species are used as avenue trees, as Ulmus latéa, var. montana and the European U. campestris and sectóma. Of U. campestris, the var. sectóma, Cornubiensis and vestita are among the best for street planting; of U. sectóma, the var. vestita, var. argéntina, and U. campestris, var. monuméntalis, with horizontal limbs forming widespread tiers; U. sectóma, var. pendulá, with long, pendulous branches. U. campestris, var. umbraéllifólia, with a dense, globose and rather small head, may be used as a large screen-tree for formal gardens. Several species and var. are interesting in winter on account of their branches being furnished with broad corky wings. The foliage of most species turns pale yellow in fall, but that of the European species remains green much longer.

Unfortunately many insects and fungi prey upon the Elm, especially on the American Elm. One of the most destructive is the elm leaf-beetle, Galúterus xanthóreus, which devours the foliage. To keep it from the trees, hang the trunks a few feet above the ground with

2609. Ulmária Filipendula (plant about 2 feet high).

Commonly known as Spiraea Filipendula, One of the plants called Meadow Sweet.

3. palmita, Focke (Spiraea palmita, Pall. Filipendula palmita, Max. Spiraea digítata, Wildl.). Height 2-3 ft.; lvs. whitish tomentose beneath or glabrous; terminal lfts. 9-10-parted; stipules large, semi-cordate; fls. pale pink at first, changing to white; akones 5-8. July. Siberia, Kamtschatka and Sooehalin.—This species is but rarely cult.; the plant common under the name Spiraea palmita belongs to F. purpurea.

bb. Lateral lfts. none, or few and ovate.

4. Camtschtáica, Rehd. (Spiraea Camtschtáica, Pall. Spiraea gigantea, Hort. Filipendula Camtschtác, Maxim.). Height 5-10 ft.; lvs. glabrous or villous beneath, often with rufous veins; terminal lft. very large cordate, 3-5-lobed, with broadly ovate, doubly serrate lobes, terminal lfts. usually none; stipules large, semi-cordate; fls. white; akones usually 5, ciliate. July. Manchuria, Kamtschatka.

5. purpüreà, Rehd. (Spiraea palmita, Thunb. Filipendula purpüreà, Maxim.). Height 2-4 ft.; glabrous; terminal lft. very large, cordate, 3-7-lobed, with oldling, acuminate, doubly serrate lobes; lateral lfts. none or few, oblong-ovate; stipules narrow; fls. carmine or deep pink, in large paniculate cymes with crimson peduncles and stamens; akones usually 5, ciliate. June-Aug. Japan. B.M. 5726. I.H. 15:577. F.S. 18:1851. Gb. 17:36.—This is undoubtedly the finest species of this genus. It is also sometimes grown in pots and forced. Var. álba, Hort., has white fls. and var. élegáns, Hort., white fls., with red stamens and usually several lateral lfts.; the latter is said to be a hybrid. R.B. 4:41.

2610. Flowers of American Elm — Ulmus Americana (x ½).

2611. Fruit of Ulmus Americana. (x 2.)
cloth covered with a sticky substance, which prevents the ascent of the wingless female. Spray a borers, *Superpus tridentata*, sometimes does considerable damage to the wood. The Elms grow best in rich and rather moist soil, and the American Elm especially requires on such a soil to attain its full beauty, but some species, as *U. racemosa* and *U. alata*, do well in drier situations. Elm trees are not difficult to transplant, and rather large ones may be moved successfully if the work is done carefully. They bear pruning well, but generally do not need much attention of this kind.

Propagated by seeds ripening usually in May or June and saved at once. Most of the seeds will germinate after a few days, but some remain dormant until the following spring. Increased also by layers, which are usually put down in autumn and are fit to be removed in one year, but must not be moved for light soil is best for this method. Trees raised from layers are said to bear seed less early and less profusely and are therefore especially recommended for street trees, as the foliage of trees that fruit slightly or not at all is larger and more abundant. Dwarf forms of *U. campestris* and also *U. parvifolia* and *pamila* may be raised from Greenwood cuttings under glass. The method, however, is not as readily if taken from forced plants. *U. campestris* and some of its variants, are also propagated by suckers. In nurseries most of the varis, are propagated by grafting, either by budding in summer or by chips or splice-grafting in spring outdoors or on potted stock in the greenhouse.

About 18 species of Ulmus are known, distributed through the colder and temperate regions of the northern hemisphere, in North America south to southern Mexico, but none west of the Rocky Mts., and in Asia south to the Himalayas. Trees with watery juice: *Ivs. short-petioled, usually unequal at the base, with caudate stipules; fls. perfect or rarely polygamous, apetalous, in axillary clusters or racemes; calyx campanulate, 4-9-lobed, with an equal number of stamens (Fig. 2610): ovary superior, with a 2-lobed style, usually 1-loculed and with 1 ovule; fr. a slightly compressed dry nubil, not year by year barked, and rather membranous wing all around. Figs. 2611-16. The wood is heavy, hard and tough and often difficult to split. It is especially useful in the manufacture of wagon-wheels, agricultural implements and for boat-building. The inner mucilaginous bark of the branches of *U. fulva* is used medicinally and that of some Chinese species is made into meal and used for food. The tough inner bark of some species furnishes a kind of bax which is sometimes woven into a coarse cloth, especially that of *U. campestris*, var. *lacintata*, in Japan.

INDEX.

| alata, 4. |
| alba, 1. |
| American, 1. |
| American, 1. |
| Austratic, 7. |
| argentee-virginea, 7. |
| *aspidentifolia*, 6. |
| *stropparanus*, 6. |
| aereus, 1. |
| Belgica, 6. |
| Berardi, 6. |
| Campiondowia, 6. |
| campists, 7. |
| *cortinifolia*, 7. |
| Cedar, 10. |
| *Chinesia*, 9. |
| *cilatia*, 2. |
| Clemmeri, 7. |
| *cortinifolia*, 7. |
| Corky barked, 1, 7. |
| Cornis, 7. |
| Cornus, 7. |
| corylifolia, 7. |
| crassata, 10. |
| crispa, 6. |
| cucullata, 7. |
| Dampieri, 6. |
| Doras, 6. |
| discar, 1, 2. |
| elongatis, 6. |
| Ezomumis, 6. |

| fastigiata, 6, 7. |
| Feathered, 1. |
| fulva, 5. |
| *glabra*, 6, 7. |
| Guernsey, 7. |
| *Henderi*, 7. |
| *horiztonalis*, 7. |
| *Japonica*, 7. |
| Kelatia, 7. |
| *lincita*, 6. |
| *lvs. 2, 7. |
| *lobata*, 7. |
| *Loros, 7.|
| *V. H. Voort*, 7. |
| major, 7. |
| *microphylla*, 7. |
| *minor*, 7. |
| *montana*, 6, 7. |
| Monotoma, 7. |
| *horizontalis*, 7. |
| *myrtifolia*, 7. |
| *nana, 16. |
| netera, 7. |
| parvifolia, 8, 9. |
| pedunculata, 7. |
| pedunculata, 1, 6, 7, 8. |
| piantea-ramosa, 8. |
| *Pittleri*, 6. |
| *pumila*, 6. |
| *purpurea*, 6. |
| *purpurea*, 6. |
| *racemosa*, 2, 3. |
| Red, 5. |
| Rock, 3. |
| *Rosacesia*, 7. |
| *rubra*, 6. |
| Raepullan, 7. |
| *Samos*, 7. |
| *serrata*, 6. |
| *serrata*, 6. |
| *scolica*, 6. |
| *Scotch*, 6. |
| *serotina*, 11. |
| *slippery*, 6. |
| *Silicium*, 8, 9. |
| *striata*, 7. |
| *suberosa*, 7. |
| *superba*, 6. |
| *suralosa*, 7. |
| *tricuspi*, 7. |
| *tridens*, 6. |
| *tricerva*, 6. |
| *Turkestanica*, 7. |
| *umbrosea*, 7. |
| *vegeta*, 7. |
| *viminalis*, 7. |
| *vulgari*, 7. |
| Water, 6. |
| White, 7. |
| Wyke, 6. |

A. Blooming in spring, before the Ivs.; calyx not divided below the middle.
B. Fils, on slender pedicela, drooping; fr. calyx.
C. Fr. glabrous except the calyce marginis; branches without coryck wings... 1. *Americana*
D. Fr. pubescent; branches often with coryck wings... 2. *pubesculata*
E. Racemos... 3. *raccoena*
F. Alata...
G. Fils. short-pedicled in dense clusters, not pubescent... 4. *parvifolia*
H. Fils. shortly serrate; small, almost equal at the base... 5. *fulva*
I. Branches glabrous or pale pubescent; fr. quite glabrous... 6. *suberosa*
J. *Lvs. doubly serrate; fr. pubescent*... 7. *crassifolia*
K. *Lvs. simply serrate, small, almost equal at the base*... 8. *pumila*
L. Blooming in the fall; calyx divided below the middle.
M. Fils, simply serrate; small, ericot, glabrous... 9. *parvifolia*
N. Fils. double serrate; fr. pubescent... 10. *crassifolia*
O. *serotina*

1. *Americana*, Linne. (U. alba, Rafn.). *White Elm*. WATER ELM. AMERICAN ELM. Figs. 2610, 2611, 2617, 2618. Tall, wide-spreading tree, attaining 120 ft., usually with high, light, leafy crown which in late summer or early fall, is an agreeable sight, and in the evening is a beautiful and also in spring outdoors or on potted stock in the greenhouse. *U. Americana*, *campestris* and *scabra* are used for stocks.

2. *pedunculata*, Fong. (U. lvs., Pull. U. fles., Pull. U. M., n. b. thon. Thomas). Trees with spreading branches, forming a broad open head; branches pubescent, usually before the second year; buds glabrous, acute; *Ivs. oval or oblong, very unequal at the base, acuminate, shortly doubly serrate, usually glabrous above, pubescent beneath, 2-4 in. long; *fls. slender-pedicelled*; calyx with 5-8 exserted stamens: fr. ovate, notched, the...
incision not reaching the nutlet. Middle Europe to western Asia.—Rarely cultivated and with less valuable wood. The trunk and the limbs are, as in the American Elm, often clothed with short branchlets.

3. raceosa, Thomas, not Koch. Cork Elm. Rock Elm. Fig. 2612. Tree, attaining 100 ft., with short spreading branches, forming an oblong round-topped head; branchlets pubescent usually until the second year and mostly irregularly corky winged when older; buds acute, pubescent; lvs. oval to oblong-obovate, unequal at base, broadly oblate to oblong-obovate, abruptly acuminate or sometimes 3-lobed at the apex, sharply and doubly serrate, rather than ovate-oblong, pubescence beneath, 2-4 in. long; fls. in slender pendulous racemes; calyx 5-8-exserted stamens; fr. oval or obovate, with a shallow notch at the apex, pale, pubescent, ½-¾ in. long.

Quebec to Tennessee, west to Nebraska. S.S. 7:312.

4. alata, Michx. Wahoo or Winged Elm. Fig. 2613. Tree, attaining 50 ft., with spreading branches forming an oblong, round-topped or rather open head; branchlets almost opposite very broad wings; branchlets almost glabrous: buds acute, glabrous; lvs. ovato-oblong to oblong-lanceolate, often falcate, acute or acuminate, doubly serrate, subelliptic, glabrous above, pubescent beneath, 1½-2½ in. long; fls. in short, few-flowered racemes; stamens usually 5; fr. elliptic-ovate, with narrow wing and with 2 incised horns at the apex, villous, ½ in. across. Va. to Fla., west to Ill. and Tex. S.S. 7:313.—Handsome round-headed trees, sometimes used as an avenue tree in the southern states; not hardy north.

5. fulva, Michx. (U. rübræa, Michx.). Slippy Elm. Red Elm. Figs. 2014, 2015. Tree, attaining 70 ft., with spreading branches, forming usually a broad, open, flat-topped head; branchlets pubescent; lvs. oblong to ovate-oblong, very unequal at base, long-acuminate, doubly serrate, of firm texture, very rough above, pubescent beneath, 4–7 in. long; fls. in dense clusters; stamens 5–9; fr. orbicular-oval, little notched at the apex, ½ in. across. Quebec to Fla., west to Dakota and Tex. S.S. 7:314. Em. 2:834.—The reddish brown pubescence of the bud-scales is very conspicuous in spring, when the buds are unfolding. An allied species similar in foliage and fr. is U. elliptica, Koch (U. Henneri, Späth. U. Sikhrien, Hort.), a native of western Siberia, Turkestan and Persia, with longer and larger lvs. and grayish pubescent buds.

branchlets pubescent: buds pubescent, rather obtuse; lvs. very short-petioled and unequal at base, broadly obolate to oblong-obovate, abruptly acuminated or sometimes 3-lobed at the apex, sharply and doubly serrate, rather than pubescent beneath, 2-4 in. long; fls. variously notched; stamens 5-6, little exserted; fr. oval or roundish obovate, little notched at the apex, with the seed in the middle, ½-1 in. long. Europe to Japan.—A variable species of which many forms are cultivated; the following are some of the most important: Var. atropurpurea, Späth. With dark purple foliage. Var. Belica, Hort. Of vigorous growth, forming a broad pyramidal head; lvs. dark green. Var. crispa, Loud. (U. pyramidalis, Hort.) A rather slow-growing form with narrow oblong curved lvs. incisedly serrate with twisted teeth, giving the margin a fringed appearance. Var. Dampieri, Koch. Similar to var. fastigiata, but with slender branchlets, smaller and lighter foliage. Var. Dampieri Wredel, Hort. Differ from the foregoing by its yellow young leaves. M.D.G. 1895:160. Var. Dovii, Hort. Of vigorous growth and upright pyramidal habit. Var. fastigiata, Loud. (U. pyramidalis, Hort. U. Erosus, Hort.) Of vigorous growth, forming a broad pyramidal head; lvs. broadly obovate, 3- or sometimes 5-lobed at the wide apex, large, light green; branchlets little pubescent, lvs. smooth. E. Asia. Var. nana, Hort. Dwarf form. Var. pedunculata, Loud. (U. Campion, Hort.) Dwarf form. Var. pedunculata, Hort. Pyramidal tree of vigorous growth with deeply serrate lvs. often purplish when unfolding. Var. purpurea, Koch. Lvs. purple when young, changing to dark green. Var. superbæ, Hort. Of vigorous growth, with large and long, dark green leaves. Var. tricolor, Hort. (U. triserrulata, Hort.). Lvs. ovate-oblong, 3-lobed at the apex. Var. atropurpurea, Späth. With dark purple foliage. Var. Belica, Hort. Of vigorous growth, forming a broad pyramidal head; lvs. very short-petioled, broadly ovate to oblong-obovate, unequal at the base, acuminate, doubly serrate, usually glabrous and smooth above at length, pubescent or glabrous beneath, 1½–5 in. long; fls. short-petioled; stamens 4-6; fr. obovate, with the nutlet much above the middle, reaching almost to the incision at the apex. Middle Europe and northern Africa to Japan. Em. 2:356. M.D.G. 1900:577. This tree is often planted as an avenue tree; it succeeds very well and fine old trees may be occasionally seen in the northeastern states. The foliage remains green several weeks longer than that of the American Elm. U. campestris is still more variable than the foregoing species and four vars., very distinct in their extreme forms and sometimes considered distinct species, can be distinguished.

Var. vulgaris, Planch. (U. vulgaris, Ehrb. U. vulgaris, Mill.) Small tree or shrub, with often very strongly pubescent branchlets: lvs. broadly oval or rhombical obovate, rough
above, pubescent beneath, 1-3 in. long: fls. with 5-6 stamens; fr. oblong-ovate-oblong.

Var. major, Planch. (U. major, Smith, not Reichb. U. sylvia, Mill. not Huds. U. carpophylia, Lindl.). Tree without suckers; branches spreading, sometimes pendulous, not corky: lvs. ovate or obovate to oblong-oblong, glabrous and smooth above, glabrous or pubescent only at the veins beneath, 2-4 in. long: fls. distinctly petiolate, with 5-6 exerted stamens; fr. obovate.

Var. Japonica, Sarg. in herb. Tree, attaining 80 ft.: branches light yellowish gray, covered with short pubescence when young; petioles densely pubescent, ½ in. long: lvs. oblong-obovate, glabrous above, grayish pubescent beneath, 1-6 in. long: fls. almost sessile. Japan. G.F. 6:327. - This form very much resembles the American Elm in habit, foliage, and pubescence, but the fls. and fr. are like those of U. campesiatica; it may prove to be a distinct species.

8. pumila, Linna. (U. microphylla, Pers. U. Sibireca, Hort.). Small tree or shrub, with slender pubescent, sometimes pendulous branches; lvs. sub-elliptic to elliptic-lanceolate, short-petioled, acute, firm, dark green and smooth above, pubescent when young beneath, ½-2 in. long; fls. short-pedicelled, red. Anthers: fr. obovate, with the nutlet somewhat above the middle, inclued at the apex reching about half way to the nutlet. Turkestan to Siberia and N. China.—A graceful small hardy tree. (U. pubescens, Hort. U. pumila, penda, Hort. P. pumila, penda, Hort.), has smaller, more pendulous branches. U. pinnato-ramosa, Beeck, with the slender branches very regularly pinately branched, is probably only a form of this species.

9. parvifolia, Jacq. (U. Chinchinsis, Pers.) CHINESE ELM. Half-evergreen small tree or shrub, with spreading pubescent branches; lvs. ovate to oblong or oblong, very short-petioled and little unequal at base, acute or obtuse, subcoriaceous, glabrous and glossy above, pubescent beneath when young, usually glabrous at length, ½-2 in. long; fls. short-pedicelled in clusters; stamens 4-5, much exerted; fr. oblong or elliptic, notched at the apex, with the seed in the middle, ½-5 in. long. July-Sept. N. China, Japan.—Has proved hardy nearly Boston.

10. crassifolia, Nutt. CEDAR ELM. Tree, attaining 50 ft., with spreading limbs and slender, often pendulous branches, often furnished when older with 2 opposite corky wings; lvs. short-petioled, ovate to oblong-oblong, usually very unequal at the base, obtuse or acute, doubly and obtusely, sometimes almost simply serrate, subcoriaceous, somewhat rough and lustrous above, pubescent beneath, 1-2 in. long; fls. in few-flowered short racemes; stamens 5-8, little exerted; fr. oblong-elliptic, pubescent, somewhat notched, ½ in. long. Aug. Miss. to Ark. and Tex. S.S. 7:315.—Tender north.

11. serotina, Sarg. Tree, with short spreading and pendulous branches, often furnished with irregular corky wings; lvs. oblong to ovate, unequal at the base, acuminate, doubly serrate, glabrous and lustrous above, pubescent on the veins beneath, 2-3 in. long; fls.
ULMUS

in 3½-1 in. long pendulous racemes; calyx 5-6-parted to the base; fr. elliptic, deeply notched, densely ciliate, ½ in. long. Sept. Tenn. to Ga.; sometimes planted in avenues in Ga.; has proved hardy at the Arnold Arboretum, Boston.

UMBELLULARIA (from Latin umbella, a sunshade; having reference to the form of the inflorescence). Lauraceae. CALIFORNIA LAUREL. A monotypic genus, comprising a single Pacific coast tree with alternate, simple, exstipulate lvs.; fls. small, greenish, in simple pedunculate umbels, which in the bud are surrounded with an involucre of 6 caducous bracts; petals none; stamens 9; filaments with an orange-colored gland at base; anthers opening by uplifted valves; fr. a subglobose or ovoid drupe with hard endocarp. Propagated by seeds.

2630. California Laurel—Umbellularia Californica (× ½).

Californica, Nutt. (Oreodaphne Californica, Nees). Fig. 2630. Handsome evergreen tree, 20 to 30 or even 80 to 90 ft. high, with erect or suberect slender branches, conical outline and dense foliage; lvs. containing a highly aromatic and volatile essential oil, and burning vigorously in the camp fire, even while green; fls. fragrant; drupes at first yellowish green, becoming purple when ripe. Dec. to May.—One of the most abundant and characteristic of Californian trees, common in moist places, particularly along streams in the Coast Range foothills and mountains, and attaining its greatest size in the cool, fog-moistened alluvial valleys of the coast of northern California and southern Oregon; it is but rarely seen in the drier interior valleys of the state. It often crowns the highest points of the coast range hills, up to about 3,500 feet altitude and far from the nearest spring or other visible sign of moisture, but in such cases the rock strata are nearly vertical and easily penetrated by the long roots which are able thus to reach hidden supplies of water. In such places it usually forms dense clumps or thickets of shrubs or small trees which are frequently shorn by the cutting ocean winds as though by a gardener's shears, suggesting its adaptability for clipped-hedge and wind-break work. The wood takes a beautiful polish and is considered "the most valuable wood produced in the forests of Pacific North America, for the interior finish of houses and furniture," for which purposes it is extensively used. It is also used in boat-building for jibs, bits, cleats, cross-trees, etc. The branches are occasionally used for poles for chicken-roosts, as the strong odor, pervading wood and bark as well as leaves, is said to keep away lice. The leaves are used for flavoring soups and blanemanges but are too strong to give as agreeable a flavor as those of Larrea nobilis or Pinarus Lagooceous. The tree is sometimes cultivated for ornament in south European parks and gardens. Professor Sar gent describes it as "one of the statelyst and most beautiful inhabitants of the North American forests, and no evergreen tree of temperate regions surpasses it in the beauty of its dark dense crown of lustrous foliage and in the massiveness of habit which make it one of the most striking features of the California landscape and fit it to stand in any park or garden."

JOSEPH BURT DAY.

UMBRELLA LEAF. See Diphygidea.

UMBRELLA PINE. Sciadopitys.

UMBRELLA PLANT or UMBRELLA PALM. Cypers alterulativa.

UNGNADIA (Baron Ungnad, ambassador of Emperor Richard II to the Ottoman Porte, who in the year 1576 introduced the common horse chestnut to western Europe by sending seeds to Clusius at Vienna). Sapindaceae. A genus of one species, the Mexican Buckeye, a small tree closely related to the horse chestnut but with foliage like a hickory, the lvs. being alternate and pinnate, and rose-colored fls. which are borne in small lateral clusters or simple corymbs, appearing with the lvs. in early spring. The seed, or "bean," has a sweet taste but is considered emetic and poisonous. The fruit does not have a prickly husk like the horse chestnut; it is a smooth, leathery capsule and strongly 3-lobed. The fls. are about ½ of an inch across, polygamous, 4-petaled, and the staminate ones have 8 stamens. For fuller account, see Sargent's Silva.

speciosa, E n d l. Spanish or Mexican Buckeye. Commonly a slender deciduous shrub, 5-10 ft. high or sometimes a small tree: wood brittle; lvs. alternate, odd-pinnate; fls. 5-7, ovate-lanceolate, staminate. Common in southwest Texas; winter-kills in northern Texas at a temperature of zero. S. S. 4:73. F. S. 10:1039. G. 19, p. 399.—Int. by F. J. BEREKMAN.

W. M.

UNICORN PLANT. Martynia prosoebenda.

UNIOLA (an ancient Latin name of some unknown plant; derived from unus, one, and said to have been applied by Linnaeus to this genus on account of the union of the glumes). Gramineae. Perennials with creeping rootstocks. Species 5, all American. Spikelets broad and very flat, in loose panicles, several fls., with some of the lower glumes empty; glumes rounded, nerved, pointed, but awnless. Cultivated for the ornamental panicles, which are suitable for dry bouquets.

latifolia, Michx. SPIN-GRASS. Fig. 2621. Culms 2-4 ft.; lvs. broad and flat, often 1 in. wide; spikelets large and thin, at maturity drooping on slender pedicles, forming a very graceful and ornamental panicle. Pa. to Kan. and southward.—Often grown in hard borders. One of the best of our hardy native, perennial grasses.

paniculata, Linn. SEA OATS. Culm taller, 4-8 ft.; lvs. narrow and convolute; spikelets narrower, upright on short pedicles, forming an elongated panicle. Sand-hills along the seashore of the southern states. A. S. HITCHCOCK.

URARIA (Greek oura, tall, referring to bracts). Leguminosae. Eight species of perennial herbs with woody bases, all of which are accounted for in the flora of British India. They have 1-9 fls., and very numerous, small or minute fls. in racemes. Standard broad; wings adhering to the obtuse keel; stamens diadelphous: ovary sessile or short-stalked, few-ovuled: style indexless; pod of 2-5 small, turgid, 1-seeded, indehiscent fruits, often placed face to face.

The following species is the most desirable of the genus. It grows about 5 ft. high and is crowned by a single terminal raceme sometimes 2 ft. long, densely
URARIA

found a yellow G.M. dozen URCEOLINA or A s^ft. Ivs. hydrid 459. the funnelform, branched, long bloomed lug.

... the shape of its flower is so singular a mixture of the two as to be very different in appearance from either. The hybrid lacks the beautiful staminal cup of Eucharis, and has a distinctly bell-shaped perianth. The showy part of Urceolina is the urn-shaped portion of the flower, the spreading tips being very short. The perianth of Eucharis is funnelform, the spreading petals being narrow and showy. The perianth-tube and ovary of the hybrid are like those of Urceolina, the ovary being deeply 3-lobed instead of globose as in Eucharis. The pedicels are ascending, as in Eucharis, not pendulous as in Urceolina. The appendages at the base of the stamens are more distinctly marked than in either of the parents.

The parents of Eucharis belong to the Panarcatium tribe, characterized by having the stamens appended toward the base and often united into a distinct cup. Twelve of the 17 genera in this tribe are from the Anes and 8 of these, including Eucharis and Urceolina, have broad and petioled lvs. and the ovules are superposed. Eucharis and Urceolina have a long, slender tube which is suddenly swollen above. The flowers of Eucharis are white and those of Urceolina colored, but the essential difference between the two genera lies in the stamens, which are minutely appended in Urceolina, while in Eucharis they are quadrate and sometimes united to make a cup.

This bigeneric hybrid was introduced to the trade under the name of Eucharis chlorinated, but the changes wrought in the structure of the flower by the cross are so great that Dr. Masters was justified in giving the plant a new genus.

URCEOLA (Latin, pitcher; alluding to the pitcher- or urn-shaped flowers). Amaryllidaceae. A genus of 3 species of South American bulbous herbs, with thin oblong to long lanceolate, petioled leaves and a naked scape bearing an umbel of pendulous red or yellow flowers. Perianth-tube often narrow and often somewhat stem-like at the base, suddenly dilated; stamens inserted at or below the throat of the tube, indistinctly appendiculate at the base.

The species of Urceolina are attractive plants and easily grown, flowering every year, but for some reason they are rather scarce. The bulbs are about 3 in. across and during the growing season have 1 or 2 lvs. The plants flower in December. After flowering the bulbs may be removed from the stove to the intermediate house and placed in a spot where they will be kept dry. Just before growth begins in the spring the bulbs should be taken out of the pots and the exhausted soil removed. The bulbs may then be replaced, one bulb in a 5-in. pot, using clean pots, plenty of drainage material and a rich, light, porous soil. Place the top of the bulb level with the soil. Remove the pots to the stove, and as soon as growth begins water freely. In the fall when the lvs. turn yellow, water sparingly and finally withhold water altogether. The flower scape appears a few weeks after the lvs. disappear.

A. Fls. red.

miniatum, Benth. & Hook. (Pentandria miniatum, Herb.). Bulb about 1½ in. through; lvs. produced after the fls., short-petioled, about 1 ft. long; 1½ in. wide, narrow at both ends; scape over 1 ft. long; lvs. 2-6, bright scarlet. Andes of Peru and Bolivia. B.R. 25:88. R.B. 23:489.—Offered by Dutch bulb-growers.

2621. Uniosia latifolia (X 1/2). (See page 1881.)
URSINIA

pëndula, Herb. (U. aires, Linn.). Bulb about 1½ in. through; lvs. 1-2 to a stem produced after the fls., oblong, acute, 1 ft. long by 4-5 in. broad; scape about 1 ft. long; fls. 4-6, bright yellow tipped with green. Andes of Peru. B.M. 1861, G.C. III. 12:311.

F. W. Barclay and Robert Cameron.

URSERA (meaning not obvious). Urtericoles. About 18 species of shrubs and small trees, rarely subshrubs, native to tropical regions, with alternate lvs., entire or variously cut, palmately or pinnately nerved, and numerous small lvs. borne in cymes which are often repeatedly forked. DC. Prod. vol. 16, part 1, pp. 88-98 (1869). The following has been offered in America as an ornamental greenhouse shrub.

aloeaeololia, Gaud. (Urterico Carexololoria, Jacq.). Tree or shrub; lvs. broadly ovate, acuminate, basal sinus wide and open, crenate-dentate: fls. dicoccious, in regularly dichotomous cymes; male cymes 1-6 times dichotomous, stinging or not, rose-colored; female lvs. many times dichotomous, the fls. solitary or in 3's. Trop. America.

W. M.

URGINA (from the name of an Arabian tribe in Algeria). Lilliaceae. The Sea Onion, known to drug stores by the name of Squill, and to gardens as Urigina maritima, is a bulbous plant native to the Mediterranean region, which grows 2 or 3 ft. high and has a long raceme of small, whitish, 6-parted flowers. The raceme is often 1½ ft. long and contains 50-100 or more fls. each ⅜ in. across. It has the same style of beauty as Ornithogalum pyramidale but unfortunately it is only half-hardy, as an ornamental plant it is little known in America. The name seems not to appear in American catalogues, but the Dutch bulb-growers offer the bulbs in at least 5 sizes. A planteromeously called Sea Onion is Ornithogalum caudatum. There is considerable difference of opinion as to when the Sea Onion blooms, but the plant is generally considered an autumn bloomer, and it is clear that the leaves appear after the flowers. In England the plant is said to have flowered as early as July and August. Baker writes that the lvs. appear in winter. Some English cultivators say the lvs. appear as early as October and November; others say not until spring. The plant grows near the seashore and inland, in dry sandy places from the Canaries to Syria. It is also found in South Africa, which is unusual, as the North and South African species of any genus are not usually identical.

The proper name of the Sea Onion is Urigina Scilla. The plant is closely related to the genus Scilla, but in the opinion of the undersigned it is much closer to Ornithogalum, especially in habit, in florescence and color of flowers. The seeds of Urigina are numerous in each locale (in the Sea Onion 10-12), strongly compressed and winged; in Ornithogalum and Scilla they are not compressed or winged and in Scilla they are solitary or few in each bottle. Urigina is a genus of 40 species of bulbous plants native to the eastern hemisphere. Typically, the species have narrow or forate lvs., which follow the fls., and racemes of many flowers, mostly pale yellow or rosy lvs., each segment of which is keeled with green or purplish. Monographed by J. G. Baker in Latin in Journ. Linn. Soc. 13:213 (1873). At that time Baker recognized a total of 24 species, but in Flora Capensis 6:162 (1896-97) he describes 27 species from South Africa alone.

The bulbs of Urigina are collected in large quantities in the Mediterranean region for the drug trade. They sometimes attain a maximum weight of 15 pounds. The bulbs contain about 22 per cent of sugar and are used in Sicily in the manufacture of whiskey. Squills have emetic and cathartic properties. Syrup of squills is a popular elixir medicine. The bulb, as it appears in the wholesale drug market, has been deprived of its outer scales and cut into thin slices, the central portions being rejected.

Scilla, Steinh. (U. varia

SQUILL. Height 1-3 ft.; bulb 4-6 in. thick; lvs. appearing after the fls. inordinate, somewhat fleshy and glaucous, glabrous, 1½ ft. long, 2-4 in. wide above middle: racemes 1-1½ ft. long, 1-1½ in. wide, 50-100-fl.: fls. ⅜ in. across, whitish, with the oligo segments keeled greenish purple. Autumn. Canaries to Syria, S. Africa.

B.M. 936 (as Ornithogalum Squillae).

W. M.

URSINA (John Ursins, of Regensburg, 1668-1666; author of "Arborcum Biblium"). Compiscia (more belongs the hardly annual known to the trade as Spheno
gyne speciosa). It grows about a foot high, has finely cut foliage and yellow or orange flower-heads 1½-2 in. across. The heads have about 22 rays. Both yellow and orange-colored flowers are sometimes found on the same plant. When well managed it blooms all summer. It is supposed to be a native of the Cape. It has been in cultivation since 1836 but was not correctly described until 1887. It is much praised by connoisseurs, though it is not known to the general public. It seems to have enjoyed a longer continuous period of cultivation than many other showy composites, in which the Cape is wonderfully rich, particularly in subshrubby kinds. In Flora Capensis, vol. 3 (1864-65); Sphenogyne and Ursina are treated as separate genera, the distinctions being as follows: the acene is cylindrical in Sphenogyne, but oblate or pear-shaped in Ursina, distinctly tapering to the base; the pappus is uniseriate in the former, biseriate in the latter; the inner series consisting of 5 slender white bristles. In the course of time these distinctions have been dropped and Sphenogyne included in Ursina.

Ursina is a genus of about 60 species, all native to S. Africa. One species, U. amma, is also found in Abyssinia. The species are annuals, perennials or subshrubts: lvs. alternate, serrate, spiny, or pinnatisect; rays the same color on both sides or purplish brown beneath; involucre hemispherical or broadly campanulate; achenes often 10-ribbed. For further particulars, see Flora Capensis, vol. 2. There are said to be many other desirable species besides the following:

pulchra, N. E. Br. (Sphenogyne speciosa, Knowles & Westc.). Annual, 1-2 ft. high, with lvs. bipinnately

1885
dissected into linear lobes and yellow or orange f.
heads 2 in. across: rays about 22, 3-toothed, spotted
purple-brown at base; stem glabrous, branched; lvs.
alternate: sepals nearly leafless, about five times as
long as the involucral 4-rayed; scales increasing in
size from the base, outer rows with a brown scarios
border, inner with a white scarios border. F. C. 2:77.
1883:445.

W. M.

ÚRTICA (Urticaceae) is the genus containing the net-
tles. For U. Carecasa, see Ureæ. U. nicae is Ranie or Silver China Grass, properly Bahmeria nicae,
which see. As Ranie is a fiber plant, not a horticu-
tural subject, it is not fully treated here, the
student being referred to the publication of the office of Fibe

UTAH, HORTICULTURE IN. Fig. 2623. While the area
in Utah devoted to fruit-growing is very small
compared to the area of the whole state, there are few
states in the Union which surpass Utah in the number of
kinds of fruit grown. But the northern part of the
state, in the vicinity of the agricultural college at Lo-
gan, the fruits of the cooler temperate regions flourish,
most varieties of apples and pears succeeding well, and
many sorts of plums and cherries thriving and even the
hardier peaches giving a fair number of crops as com-
pared to the years of failure. The chief difficulties here
are, first, the short season, which does not admit of the
ripening of fruits that require more time for their de-
development than the Concord grape, for example, and
second, the great liability to late spring and early au-
tumn frosts.

Throughout the entire state the annual rainfall is
very light, and what little precipitation there is falls for
the most part during the winter season in the form of
snow, so that practically no fruit is grown within the bor-
ders of the state without irrigation, and this is a factor
which determines to a very great extent the sections and
even the particular localities devoted to fruit-grow-
ing. The conditions in the Cache valley illustrate this
point. This region is a mountain valley lying in the
heart of the Wasatch range of the Rocky Mountains in
the northern part of the state, and is some 60 miles
long by 12-18 miles wide. The soil of this entire valley
with the exception of a few alkali areas and some hilly
districts, is well suited to fruit-growing, but the rivers
which irrigate the valley lie from the eastern side, and as
the land slopes from both sides to the center of the valley it is impossible to
conduct the water on to much land that might otherwise be profitably used for fruit.
Artesian wells supply water to some lands to which the river waters cannot be
brought, but here again the difficulty is that com-
paratively few sections of the state are blessed with the
possibility of having artesian wells.

The earlier Mormon settlers of the state inaugurated
a system of irrigating canals, which, considering the
means at their command, were wonderfully effective.
More recently, the Bear River Canal Company of the
northern part of the state and several other large cor-
porations have expended great sums of money in putting
in dams and digging canals, by means of which large
areas of land which had previously grown nothing but a
good quality of sage-brush have been changed into good
farms. In order to increase the sale of these lands
many orchards have been set. These operations have
served as a wonderful stimulus to the fruit-growing
industry.

In all the northern portions of the state where late
frosts are likely to occur and injure the fruit crop, what
are known as the "canon winds," become very impor-
tant factors in the success of fruit plantations. These
winds begin blowing daily about eight o'clock in the
evening and continue all night and until six or nine
o'clock the next morning. They are almost as regular
as clockwork. They come from the canons and blow
with such force as to necessitate steps to protect all orchards within a mile or two of the canon's
mouth. But gradually they spread out over the lower
lands in a fan-shaped area, their force lessening as the
distance from the cañon increases, though still suffi-
ciently strong to prevent the cold air from settling and
producing frost. So marked is their influence upon the
occurrence of frosts that it is no uncommon thing after
a cold night to be approached in the morning to find
that while the plantations in the districts influenced by the cañon
winds have come through without injury, yet just
around a spur of the mountain out of reach of the wind,
the blossoms have nearly all been injured. Perhaps in

time satisfactory varieties may be developed which will
bloom late enough to avoid this danger, but as yet the
problem of frosts is even more difficult to solve than
that of water.

Another factor which has contributed in the past
toward restricting the areas devoted to fruit is the
manner in which the early settlements in the state were
located. The pioneers settled in villages, each man
being allotted a small piece of land on which the home
was built and the garden and small family orchard
established. Then on the outskirts of this village, and
extending sometimes as far as ten miles from it, were
located the farms proper, which were allotted to the
residents of the village, so that even in what may be
called the strictly farming districts of the state the people
lived in villages and drove out to cultivate their
farms. Naturally the fruit plantations which needed
the personal and constant oversight of the owner to in-
sure a crop or at least a harvest, were confined to the
plantation in the village and the farm was given over
to grains and hay crops. It is only in the comparatively
few districts where the village system did not obtain, or
within more recent years when it has been somewhat
abandoned, that the larger available areas of the farms
have encouraged the planting of larger orchards.

So far as most insect pests are concerned, the Utah
fruit-grower is neither more nor less fortunate than his
brothers of other states. It is true there was a time
when the general isolated position of the state seemed
to warrant the belief that it would escape from the in-
roads of many of the pests which troubled growers else-
where, but with the advent of better transportation
facilities and the increase of fruit plantations, the
standard insect enemies have one after another entered
the borders of the state. But, on the other hand, in
the matter of fungous diseases the state is singularly fortu-
tune, there being in most sections comparatively little
trouble from them. Doubtless the dry atmosphere of Utah
is responsible for this.

It seems probable that the state will never enjoy a
large local market, though the mining industry will in-
sure a fair one, but its mountain climate seems to give
a superior quality to the fruit grown and with the more
general adoption of better methods the reason why fruit-growing in Utah should not take its place as
one of the chief branches of the agriculture of the state.

F. C. BARS.

Another View of Utah.—In Cache valley, apples,
apricots, American plums and sour cherries do exceedingly
well. Peaches are grown there in a small way. The
temperature in winter is often lower than 20° below
zero, and that, together with late frosts, is the reason of
the failure of the peach crop. In 1899-1900 the lowest
temperature was 10° below zero, and the following win-
ter the lowest temperature was about 2° below zero, and
each of these winters was followed by a full crop of
peaches.

In the valley next south of Cache valley, peaches and
apricots are grown very successfully at Brigham City.
At Ogden there are a few of the European grapes, but
they are protected during the winter by being laid down
and covered with earth. Even with this protection the vines
are badly damaged by freezing, as is indicated by large,
ceary swellings often called black knot of the grape. Sweet cherries and native grapes do very well in certain localities in this section. There are a few hardy almond trees near Ogden. Further south, at Provo, there is at least one vineyard of Vinifera grapes in
which the vines are pruned similar to the Californian
system, except that the trunks are only a few inches high.
These vines are protected with a covering of earth during the winter. Apples and pears do very well from Cache valley in the north, through the portions mentioned above, to Provo, and for some distance far
southeast. It is very probable that all hardiest varie-
ties of apples and pears would do well in Beaver, Iron
and Sevier counties, but as yet very little has been done
with them because of the long and extremely cold win-
ters. In many portions of these counties the elevation is
6,000 feet.

The climate of Washington county in the southwest-
er corner of the state, is very mild, but is so
mild as that of most of southern California. The tem-
perature in winter occasionally reaches zero. Vinifera
grapes, figs, pomegranates and almonds grow there suc-
cessfully without artificial protection. No attempt is
made to grow oranges and lemons. Peaches and apric-
ocut grown to perfection in this region when any atten-
tion is given to the trees. This section was Utah's most
noted fruit district from ten to twenty years ago, but
so little care has been given to fruit trees that the orchards have gone to ruin. At present the principal occupation there is the growing of alfalfa and stock, but the improved methods of fruit-growing will prob-
ably be practiced soon. For further notes on fruit-
growing in Utah, see Hedrick, Proc. Amer. Pomological
Society, session of 1899, p. 225.

C. P. CLOSE.

UTRICULARIA (Latin, a little boy or skin; referring
to the bladders). Lentibulariaceae. BLADDERWORT.
Utricularia is a genus of herbaceous plants possessing
little bladders which trap small aquatic animals. The
bladders have a valve-like door through which the ani-
mals enter when looking for food or when trying to
escape from other creatures. The bladders are most
numerous and effective in the species which float in
stagnant water. They are fewer in the marsh-inhabiting
species. The terrestrial kinds often have minute, de-
formed and useless bladders. The aquatic species are
distinguished by much dissected lvs, with thread-like
segments, a type of foliage serration which is unknown in
and other floating plants of widely different families.
They are quite devoid of roots. The terrestrial kinds
are common in the tropics and are characterized by
erect foliage of the ordinary type. These often form
little tubers by which they may be propagated. Our
native aquatic species propagate themselves by seeds
and also by winter-buds. (A winter-bud of another
aquatic plant is figured under Elodea, p. 228.)
The aquatic species are sometimes cultivated in
aquaria, but their flowers are not showy, nor are those
of any of the hardy kinds. The showy species are the
terrestrial and epiphytic kinds of the tropics. These,
for complexity of floral structure, beauty of color and
lasting qualities, vie with certain orchids. In fact, they
are generally grown by orchid lovers in orchid houses.
Perhaps the most desirable of the genus are U. mont-
tana, Eustresii and longifolia, each of which represents
a different color. Well-grown baskets of these plants
have numerous scanty buds of flowers, and this fact makes
the growth of these plants very desirable. In the mini-
ature gardens of greenhouse lovers, Eustresii is grown
in pots, and the plants are kept almost constantly wet
during the growing season and until the flowers are
grown. During the winter they are rested, being kept in a cooler place and
given just enough water to keep the tubers from shriveling.

The epiphytic species deserve a word. Those who
are familiar with bromeliaceous plants know how the
water gathers in the axis of the leaves. These bromel-
iiads are themselves often epiphytic, perching on high
trees in moisture-laden tropical jungles. In the minia-
ture gardens supplied by the leaf-axes of Vriesea and
other bromeliads live certain Utricularias with fully
developed and effective bladders. Occasionally they
send out a long "feeler" or runner-like shoot which

The characteristic feature of the genus is the little
bladders by which the plants are furnished. These bladders
are really leaves of a very minute and simple type, and
are specialized for the purpose of trapping aquatic
animals. The animal, after entering the bladder, is
drugged down by the use of a digestive fluid secreted
within, and is unable to escape. In this way the plant
prospers in water where other aquatic plants do not
flourish. Some of the species are terrestrial and are
found in rocks and gravel in various parts of the world.

The flowers are small, and the fruit is dry and
 commodious. The seeds are winged, and are dispersed by
the wind. The genus is cosmopolitan, and is found in
all parts of the world. It is a large and important
genus, and contains many species of economic impor-
tance. The bladders are used in the preparation of
various medicines, and are also employed in the manu-
facture of certain dyes. The genus is of particular
interest to botanists, as it affords a good illustration of
the evolution of aquatic plants, and is therefore of
considerable value in the study of plant morphology.

2024. Utricularia longifolia (X 1/4).

Utricularias have numerous slender, wiry scapes bear-
ing one or many flowers. Calyx large, 2-parted or
2-lobed; corolla with a spur which is usually long
and curved under the fl.; posterior lip erect, entire, emargi-
nate or 2-fid; anterior lip often large, broad and showy,
sprawling or reflexed, entire, crenate or 3-lobed, or the
middle lobe various. About 150 species.
UTRICULARIA

montānā, Poir. Tropical American epiphyte, with clusters of tubers ½–¾ in. long, minute, deformed, useless bladders and large white fls., with a yellow palate, the fls. 1–4 on a scape, each 1½ in. across. Lvs. 4–6 in. long, elliptic-lanceolate. Trunks of trees, West Indies and S. Amer. B.M. 5925. F.S. 19:1942. 1½ ft. tall.—A lovely species.

bifida, Linn. Terrestrial species from tropical Asia, with minute bladders and small yellow fls. resembling a diminutive Linaria or Butter and Eggs. Lvs. densely matted, erect, thread-like, 1–2 in. long: fls., yellow, with an orange pale, ½ in. long, 3 in. in a raceme: pedicels drooping in fruit. India, Malay, China, Japan, Philippines. B.M. 6669.—Once cultivated at Kew.

janthīna, Hook. Epiphytic Brazilian species growing in the leaf axils of a bromeliad (Vriesia), with kidney-shaped lvs. and beautiful pale blue or lilac fls., 1½ in. across, ornamented by 2 vertical yellow lines on the palate edged with dark violet. Lvs. with stalks 4–6 in. long and blades 2½–4 in. across: scape about 6-fld.; upper lip hemispheric, arching; lower lip transversely oblong, entire. B.M. 7466.—Int. by Sander, 1882. "Janthina" is the same as "janthina," meaning violet-colored.

reniformis, A. St. Hil. Brazilian species found in sphagnum bogs, having kidney-shaped lvs. and rose-colored fls., with 2 darker lines on the palate: upper lip truncate, emarginate; lower lip 3-lobed, the lateral lobes broad, the middle much shorter and scarcely produced. Brazil. Once advertised by John Saul, but probably lost to cultivation. Very large for the genus, the lvs. 3½–4 ft. long and scapes 1½–2 ft. high.

Humboldtii, Schomb. Guiana species, with long-stalked, cordate or obcordate, mostly solitary lvs. and dark purple-blue fls. 2½ in. across, with a triangular lower lip. Scapes about 5-fld. F.S. 13:1396.—One of the showiest species. Commonly cult. in Eng., apparently not in America.

Enderelli, Relchb. Epiphytic Costa Rican species, with lvs. about 3½ in. long, solitary lvs. and pale lilac fls. 1½–2 in. across, with a yellow palate: lvs. 1–3 in. long, narrowly elliptic-lanceolate: scape about 5-fld. B.M. 6056. Var. major, Hort., introduced by Sander, is said by Pitcher & Mundo, 1895. A deciduous species found at altitude of 2,000 feet.

longifolia, Gardn. Fig. 2624. A Brazilian species, the typical form of which is perhaps not in cultivation. U. Perpétua, Hort., introduced by Sander, is said by the Kew authorities to be a form of this species and the same the plant figured in Gn. 52:1132 (adapted in Fig. 2624) under the erroneous title of U. latifolia. It has beautiful violet-purple fls., nearly 2 in. across, with a yellow palate. Lvs. lanceolate, erect: scapes 12–20-fld. and fls. last well. G.C. III. 13:713.

W. M. UVELÁRIA (Latin, west, palate, referring to the hanging flowers). Liliaceae. BELLWORT. "WILD OATS" in some parts. A genus of two species of very graceful woodland, perennial herbs native to North America. The plants grow about 1½ in. high, with a number of clustered slender stems which are forked and leaf-bearing mainly above. The foliage is of a delicate green, which with the terminal, narrow, bell-shaped, drooping flowers make the plants elegant though not showy. The species are perfectly hardy and easy of cultivation in any light, rich soil and a shady situation. They do well north of a wall in a well-prepared border and in such a position they far exceed the plants of the woods in luxuriance. Strong roots may be slowly forced for spring flowering. For distinction from Oakesia, see that genus, to which some of the plants commonly known as Uvelarias are referred.

2625. Bellwort—Uvelaria perlfoliata (X½%).

grandiflora, Sm. Stems 1–1½ ft. high, with 1 or 2 lvs. below the fork: lvs. oblong, oval or ovate, somewhat acuminated; fls. pale yellow, 1½ in. long; segments usually smooth on both sides; stamens exceeding the styles: capsule obtusely 3-angled, truncate. May, June. Rich woods, Quebec to Minn. south to Ga., Tenn. and in. B.B. 1:140.

AA. Lvs. not pubescent beneath.

perlfoliata, Linn. Fig. 2625. Stems more slender than in U. grandiflora, with 1–3 lvs. below the fork: lvs. oval, oblong or oval: fls. pale yellow, about 1 in. long; segments glandular papillose within; stamens shorter than the styles: capsule obtusely 3-angled, truncate. May, June. Rich woods, U. S.

J. B. KELLER and F. W. BARCLAY.
V

VACCINIUM (classical Latin name of the European Whorleberry; etymology uncertain, Ericoideae, including Bilberry, Blueberry, Huckleberry, Whorlberry, Cranberry. Branching shrubs, creeping vines or small bushes. Flowers: actinomorphic, hermaphrodite, borne in open clusters, racemes, panicles or clusters, sometimes solitary in the axil, mostly peeling off slendery red or blue. Ovary bearing blue, black or red berry-like fruits, mostly edible; calyx 4-5-toothed, adherent to the ovary, persistent, forming a crown-like appendage to the fruit; corolla in various shapes, usually campanulate, cylindraceous or urn-shaped, rarely subglobose, 4-5-toothed or cleft; stamens twice as many as the lobes of the corolla, distinct, included within the corolla-tube or exserted; stigmas often 2-awned at the back, the cells separate and prolonged upward into tubes at the apex, opening by terminal pores or chinks; pistil single, with a 4-5- or 8-10-loculed ovary, which is glabrous or hairy. Flowers borne in spring with or before the leaves; berries ripe in summer and autumn, sweetish or sometimes acid, mostly edible. The genus includes about 125 species of wide geographic distribution, extending from the arctic circle to the high mountains of the tropics; most common in North America and the Himalayas. With very few exceptions (e.g., V. corymbosum, V. arboreum, and V. G. in Madagascar) the genus is unrepresented in the southern hemisphere and in the lower regions of the tropics. There is much confusion in the popular names applied to these fruits. The terms "Bilberry" and "Whorleberry" usually mentioned as "common names" by American writers are seldom or never heard among the people. The true "Bilberry" or "Huckleberry" is often used indiscriminately for plants of this genus and for the Gaylussacias. In the central states the term "Huckleberry" is usually applied to **V. corymbosum**, while "Blueberry" is given to the low-growing species, like **V. Canadensis** and **Pennsylvanicum**. In New England, "Huckleberry" is reserved for **Pennsylvanicum**, the lower growing species as above, and "High-bush Blueberry" to **V. corymbosum**. The red-berried species are, in general, referred to as "Cranberries.

American fall landscapes are brightened in October and November by reason of their bright foliage, many of the species of Vaccinium may be included,—the brilliant red, crimson and orange colors of the berries much longer than the bright-green leaves of a majority of other plants. Of the ornamental species none are more strikingly beautiful late in the autumn than the common High-bush Blueberry, **V. corymbosum**. When well grown it is a stout, thick, spreading bush 8-10 ft. high. The plant is beautiful when in flower; the fruit is attractive and of the best quality, and the bright scarlet and crimson effects in late autumn, rivaling the sumach in brilliancy, are unsurpassed. As an ornamental plant the species deserves a place in every garden. **V. Pennsylvanicum** also brightens waste places for a short time, but drops its foliage too early to be worthy of planting as an under-shrub. The same is true of **V. Canadensis**, which is in many respects similar. **V. stamineum**, though early deciduous, is attractive when in bloom and throughout the summer, by reason of its graceful habit. Though usually found on gravelly soil, it will thrive in any good garden soil and is less susceptible to organization than many shrubs specially suited for densely shaded situations. It has the peculiarity of never forming a true flower-bud, the blossom being open from the first. **V. arboreum** forms a low, spreading shrub, struggling to be of value except in masses at the South. **V. hirsutum** is as beautiful in its autumn coloring as is **V. corymbosum**, and, like that species, retains its foliage late in the season. **V. Vitis-idaea** and **V. alpinum**, with their shining box-like foliage, are effective as edging for the shrubbery border.

In the wild state the Blueberry was originally wilder of notice than was the blackberry, raspberry or currant, but the natural supply is so abundant that little attention has been given to garden cultivation. At the Maine Agricultural Experiment Station systematic work is in progress, and several instances of successful amateur cultivation are reported from Massachusetts. The plants of some species are very susceptible of improvement under good cultivation; the best in order of merit being **V. corymbosum**, **canadensis** and **Canadensis**. The bushes should be transplanted in the fall and treated much the same as currants. Any good garden soil is suitable.

Of all the American species used for food, the most important are **V. corymbosum**, **Pennsylvanicum**, **Canadensis** and **vacillans**. The first of these, the High-bush Blueberry, or Swamp Blueberry, or "Huckleberry" of the middle west, is of firm texture, good size and excellent flavor. The shrub is easily transplanted, grows rapidly on any good soil, and more than any other species shows a marked tendency to vary in the size, shape and quality of its fruit. It is the natural starting point in attempts to add the Blueberry to the list of cultivated fruits. During the past few years it has received considerable attention as a table fruit, especially in New England. The other species named grow mostly on uplands, — **V. Pennsylvanicum**, especially, on dry sandy "barrens" — and form the bulk of the Blueberry crop as seen in the cities or at the canning factories.

In many of the northern and eastern states—particularly in New England, New York, New Jersey, Michigan and the mountain districts of New England and West Virginia—there are many thousand acres of land, worthless for agricultural purposes, which after the pine is removed send up an abundant growth of Blueberry bushes, alders, poplars, gray birches and aspens. These lands are, for the most part, considered as public property and are recklessly burned over by irresponsible parties to promote the growth of the Blueberries. In New England, particularly in Maine, the management of such lands has been systematized and Blueberry canning has become an important industrial operation. In some instances the whole business is under the management of the landowners, but in most cases the land is divided into several tracts, each of which is leased to some responsible party who assumes the whole care of burning, keeping off trespassers, harvesting and marketing the fruit; the owner, in such cases, receiving as rental one-half cent per quart for all fruit gathered. Pickers receive 1½-3 cents per quart. Those who lease the land and haul the fruit to canning factory or station for shipment receive 2½-1 cent per quart. These rates are determined in accordance with the market value of the crop.

Every year a certain section of each lease is burned over. This burning must be done very early in the spring, before the soil becomes dry; otherwise the fire goes too deep, the humus is burned from the ground and most of the bushes are killed. Many hundred acres on what shall be the best part of the Blueberry plains have thus been ruined. The method most commonly used in burning a given area is for the operator to pass around the section to be burned, dragging after him an ordinary torch or mill-lamp. He then retraces his steps and follows over the burned area, setting new fires in the portions which have escaped and back-firing if there is danger of spreading unduly over areas which it is desired to leave unburned. A device occasionally used consists of a piece of ⅜-inch gas pipe, both ends of which are cut short, the end being set at an angle of about 60°. The end opposite the bent part is closed with a cap or plug and in the other end, after filling the pipe with kerosene, is placed a plug of cotton waste or tow. This device is by many
VACCINIUM

VACCINIUM largely kept V. is plants, three as mallet. propagation. the Maine's four fibrous The is $1.90. the house e., the house again keep burned. 11890.

the fruit is taken to the factories for canning. Early

in the season, however, before the factories are opened, a considerable amount is shipped to the larger cities for use while fresh. This fruit is usually shipped in quart boxes, as shown in Fig. 2627.

All of the early fruit is picked by hand and only ripe berries are gathered. Later in the season, particularly on "old burns," i.e., on areas which will have to be burned over the next year, the fruit is gathered with a "blueberry rake." This is an implement somewhat similar to the cranberry rake in use on Cape Cod, and may be likened to a dust-pan, the bottom of which is composed of stiff parallel wire rods. See Fig. 2628. The fruit may be gathered much more quickly and more cheaply by means of the rake. The bushes are, however, seriously injured by the treatment. In no case should the rake be used in gathering the High-bush Blueberries. As the berries are gathered they are passed through a fanning mill to eliminate leaves and twigs before being sent to the canning factory. At the factory they are again submitted to a much stronger winnowing. This is the only preparation required for market.

The financial importance of the Blueberry industry is very difficult to estimate at the present time. In Maine the canning of Blueberries is largely in the hands of a few packers. The largest of the factories has a daily capacity of 700 bushels and the average annual output is 8,500 cases of 2-dozen cans each, representing 6,250 bushels of fresh fruit. The average price per case for the canned fruit is $1.50. The value of the annual product of this one factory is not far from $15,000. The total canned product of Maine's "Blueberry barrens" in 1899 was about 50,000 cases and the price per case was $2.25, making the value of the Blueberry crop in this one small section considerably more than $100,000. In northern Michigan the annual ships

ments are from 3,000-5,000 bushels. In New Jersey, Pennsylvania and West Virginia large quantities of the fruit are gathered from the plains and mountains, but the work is not systematized.

White or pinkish fruits, instead of the usual deep blue-colored berries, are not uncommon in certain lo
calties. In some cases these are albino forms; in others the color is due to a fungus. Albino forms of V. Myrio
tithus were recorded as early as 1763 by B. Botanists. They are supposed to have burned. V. Myr

426. "Buckboard" used in Maine to carry Blueberries from the fields to the cannery.

in the season, however, before the factories are opened, a considerable amount is shipped to the larger cities for use while fresh. This fruit is usually shipped in quart boxes, as shown in Fig. 2627.

All of the early fruit is picked by hand and only ripe berries are gathered. Later in the season, particularly on "old burns," i.e., on areas which will have to be burned over the next year, the fruit is gathered with a "blueberry rake." This is an implement somewhat similar to the cranberry rake in use on Cape Cod, and may be likened to a dust-pan, the bottom of which is composed of stiff parallel wire rods. See Fig. 2628. The fruit may be gathered much more quickly and more cheaply by means of the rake. The bushes are, however, seriously injured by the treatment. In no case should the rake be used in gathering the High-bush Blueberries. As the berries are gathered they are passed through a fanning mill to eliminate leaves and twigs before being sent to the canning factory. At the factory they are again submitted to a much stronger winnowing. This is the only preparation required for market.

The financial importance of the Blueberry industry is very difficult to estimate at the present time. In Maine the canning of Blueberries is largely in the hands of a few packers. The largest of the factories has a daily capacity of 700 bushels and the average annual output is 8,500 cases of 2-dozen cans each, representing 6,250 bushels of fresh fruit. The average price per case for the canned fruit is $1.50. The value of the annual product of this one factory is not far from $15,000. The total canned product of Maine's "Blueberry barrens" in 1899 was about 50,000 cases and the price per case was $2.25, making the value of the Blueberry crop in this one small section considerably more than $100,000. In northern Michigan the annual ship-

ments are from 3,000-5,000 bushels. In New Jersey, Pennsylvania and West Virginia large quantities of the fruit are gathered from the plains and mountains, but the work is not systematized.

White or pinkish fruits, instead of the usual deep blue-colored berries, are not uncommon in certain lo-

INDEX

albifrons, 18.
americana, 18.
amblystegia, 10, 11.
ambrosioides, 24.
ambrosia, 10.
abelia, 19.
acerosum, 10.
andromeda, 13.
aphyllolepis, 18.
corymbosum, 18.
corymbosum, 19.
corymbosum, 10.
corymbosum, 11.
corymbosum, 12.
corymbosum, 29.
corymbosum, 22.
erythrocarpus, 5.
cerasus, 17, 18.
hibiscus, 5.
macrovagrum, 3.
malacophyllum, 25.
malus, 10.
myrtillus, 5.
mageritum, 18.
myrtillus, 1.
nitidum, 6.
ocotysolea, 16.
orsietum, 12.
parvifolium, 4.
pennsylvanicum, 11.
psidium, 17.
pyriforme, 3.
pyriformis, 17.
Vitis-idea, 3.

2625. Blueberry rake.
VACCINIUM

BOTANICAL CLASSIFICATION.—In the following scheme the species are separated on the basis of natural characters. When two closely related forms occur over wide range in latitude, however, the assigned differences are liable to fail at some point. The key will be found useful in determining herbarium specimens.

A. Ovary 4-5-loculated (rarely 8-10-loc. in V. hindsiana). B. Stamens long-exserted.
 c. Filaments villous. 5. erythrocarpum
 cc. Filaments glabrous. 1. Oxycoecus
 d. Stamens very slender, creeping. 1. oxycoecus
 dd. Stamens stout, with ascending branches. 2. macrocarpon

BR. Stamens included.
 c. Filaments glabrous or pubescent.
 d. Corolla commonly 4-flowered; stamens 8...21. uliginosum
 dd. Corolla commonly 6-flowered; stamens 10.
 e. Plants dwarf, a foot or less high. 10. compactum
 f. Branchlets not angled. 10. compactum
 ff. Branches sharply angled. 9. Myrtillus

EE. Plants taller, 1-2 ft. high.
 f. Margin of leaves sharply serrate. 15. myrsinoides
 ff. Margin of leaves entire (except in V. ovalifolium).
 g. Length of lvs. 1-2 inches. 16. ovalifolium
 gg. Length of lvs. 1/2-3/4 inches. 4 parvifolium

CC. Filaments plain.
 d. Twigs red. Here probably belongs. 22. erythrorum
 dd. Twigs not red.
 e. Stamens 10; ovary 5-loculated. 23. ovatum
 ff. Branchlets pubescent. 20. erassifolium

EE. Stamens 8; ovary 4-loculated. 3. Vitis-Idea

AA. Ovary 10-loculed (sometimes imperfectly so).
B. Authors with 2 auras on the back.
 c. Stamens included. 24. arborum
 cc. Stamens exerted. 25. stamineum

BR. Authors aroless.
 c. Foliage evergreen, coriaceous.
 d. Calyx-teeth roundish and very dense. 6. nitidum
 dd. Calyx-teeth acute. 7. Myrsinoides

CC. Foliage deciduous (sometimes hairy so in southern forms).
 d. Corolla cyllindraceous. 17. virgatum
 dd. Corolla short and usually broad.
 e. Branchlets hirsute. 14. hirsutum
 ee. Branchlets glabrous or glaucous (except in V. Canadense).
 f. Lvs. glaucous and pale beneath.
 g. Fruit blue. 8. vacillans
 gg. Fruit black. 12. nigrum
 hh. Lvs. slightly pubescent both sides. 13. Canadense

FF. Lvs. glabrous, often hairy on midrib beneath.

G. Margin of lvs. bristly-serrulate...11. Pennsylvanicum
GG. Margin of lvs. entire or at most ciliate.

HH. Berry blue, glaucous. 18. corymbosum

HorticulCIAL CLASSIFICATION.—The following key to the more commonly known species is based upon horticultural or garden characters:

A. Species cultivated chiefly for fruit.
 B. Color of fruit red.
 C. Stems slender, trailing; evergreen.
 D. Apex of leaves acute. 1. oxycoecus
 DD. Apex of leaves obtuse or rounded. 2. macrocarpon

CC. Stems shorter than those of the preceding; branches erect, tufted...

3. Vitis-Idea

CCC. Stems erect, much taller, 2-10 ft.
 D. Lvs. small, 1/2-3/4 in. long. 4. parvifolium
 DD. Lvs. larger, 1-1/2 in. long. 5. erythrocarpum

BB. Color of fruit blue or black.
 C. Plant lax, 1/2-3 ft. high.
 D. Foliage evergreen.
 E. Lvs. small, 1/2-3/4 in. long. 6. nitidum
 EE. Lvs. larger, 1-1/2 in. 7. Myrsinoides

DD. Foliage deciduous.
 E. Surface of lvs. glabrous.
 F. Lvs. pale beneath, not shining above (See also No. 12).
 G. Here might be sought V. hindsiana, var. pallidum, No. 18.
 H. The lvs. not paler beneath.
 GG. Lvs. in fascicles or short racemes.

HH. The lvs. paler beneath. 11. Pennsylvanicum
 H. The lvs. not paler beneath. 12. nigrum

EE. Surface of the lvs. hairy.
 F. Ovary and fr. glaucous....13. Canadense

FF. Ovary and fr. hairless.

CC. Plant taller, 2-12 ft. spreading.
 D. Fls. solitary in axils.
 E. Lvs. sharply serrate. 15. myrsinoides
 EE. Lvs. entire or slightly serrate. 16. ovalifolium

DD. Fls. in racemes or corymbs.
 E. Racemes elongated on naked branches...17. virgatum
VACCINIUM

1. Oxyccocus, Linn. Small CRANBERRY. CRANBERRY of the Old World. Stem creeping plants with short, diliform stems 4-10 in. long; lvs. ovate acute or acuminate, ½ in. long, with revolute margins; pedicels 1-4, terminal: corolla deeply 1-parted, the lobes reflexed; authors exerted, with very long terminal tubes: berry red, globose, ½-⅓ in. in diam., 1-seeded. Spaghnum swamps in subarctic and alpine regions. Though smaller, its fruit is by many considered superior to that of the next.

2. macrorcarpum, All. LARGER AMERICAN CRANBERRY. Stems slender, creeping, elongated (1-4 ft.), the flowering branches ascending; lvs. oblong or oval, obtuse or retuse, ⅛-⅔ in. long, Whitened beneath; pedicels several, axillary and lateral: berry red or reddish, globose or pyriform, ½-1 in. long. N. America. B.M. 2886. Em. 2:458. See Cranberry.

VACCINIUM

New England, Minn. and Brit. Col. B.B. 2:580. L.B.C. 7:616 (as var. major); 11:1623 (as var. minor).—The fruits, which are rather larger than currents, acid and somewhat bitter when uncooked, are largely used in the more northern regions for tarts, jellies and preserves, or as a substitute for the common cranberry. According to Macoun, the fishermens families along the Gaspé coast and the north shore of the Gulf of St. Lawrence gather the fruit of this species in large quantities for their own use and for sale, calling it "Low-bush Cranberry." Throughout the whole of northern Canada hunters and trappers, as well as the native Indians, have frequently to depend upon it for food. It is valuable for the shrubbery border, where the strong contrast of the dark green foliage and the bright-colored persistent fruit is very striking.

4. parviolium, Smith. Shrub, 6-12 ft. high, straggly with slender, glandular-twisted stems: lvs. oblong or oval, obtuse, entire, dull or pale, ¼-⅔ in. long: fls. solitary in the axils; corolla glabrous, nearly white; calyx 5-toothed: berries light red, rather dry. New England, Minn., and Brit. Col. B.B. 2:580. L.B.C. 7:616. L.B.C. 11:1623 (as var. minor).—The fruit is allied to Vaccinium membranaceum, and is much valued as a substitute for Vaccinium macrocarpum in the northwestern provinces, where it is considered to be a better berry for the table than Vaccinium macrocarpum.

5. erythrocarpon, Michx. Shrub, erect, divergently branching, 1-4 ft. high: lvs. oblong-lanceolate, acuminate, serrate, thin, ½-3 in. long; pedicels solitary, axillary, bracteal; corolla flesh-colored, ⅛ in. long, 4-leaf, revolute; berries globose, ½ in. in diam., 1-seeded. Sphagnun swamps in subarctic and alpine regions. Though smaller, its fruit is by many considered superior to that of the next.

7. Myrtenites, Linn. Low, evergreen shrub erect or creeping, with smooth branches: lvs. thick, coriaceous, shining above, obturate or oblong: fls. in fascicles on short racemes, the almost persistent bracts as well as the roundish or oblong calyx-teeth redish; corolla and stamens campanulate, 3-toothed; berry "somewhat pear-shaped, black." Fla. and Ga. —Near to or passing into V. Myrtenites.

8. vacillans, Kalm. Low BLUEBERRY. BLUE HUCKBERRY. Erect, glabrous: lvs. ovate or oval, entire or sparingly serrate; fls. in rather loose clusters, generally on leafless summits of twigs: corolla campanulate or cylindraceous, contracted at the mouth: berry large, blue, with much bloom, of excellent flavor, ripening with V. Cyanococcus. Dry, sandy, or rocky places. N. Amer. B.B. 2:579. Em. 1:84. —One of the most common species of the northern and central states, particularly west of the Alleghenies. The fls. are quite showy, while the fruit is particularly valuable.

9. Myrtillus, Linn. WHORTLEBERRY. BLUEBERRY. Low shrubs, glabrous: lvs. ovate or oval, serrate, conspicuously veined, ⅘-⅞ in. long; calyx almost entire; berries black, nodding. Mountainous regions, N. Amer., Eu., Asia. —The most widely distributed species and very generally used as an article of diet and in the making of drinks, particularly in the Old World. It is from this species that the common name Whortleberry is derived. Not of special importance in America.

10. caespitosum, Michx. Dwarf BLUEBERRY. A dwarf tufted shrub, 3-12 in. high, nearly glabrous throughout: lvs. ovate, obtuse or acute, serrate, shining on both sides: fls. solitary; corolla obvoid, pink or white, slightly 5-toothed (rarely 4-; berries large, globose, blue with bloom, sweet. N. Amer. B.B. 2:576
B.M. 3429.—It is doubtful if varieties can be distinguished. Var. arbuscula, Gray, passes into the ordinary form; while var. angustifolium, Gray, and conciliatum, Nutt., are found to be simply forms produced by shade. The last form, particularly, is common in New England, and early in the season the lvs. are of the ordinary obvolute type, while later they become elongated. Recommended by Warren H. Manning for the rock garden.

11. Pennsylvaniaicun, Lam. LOW BLUEBERRY. Fig. 2630. A dwarf shrub, 6-15 in. high; lvs. membranaceous, oblong-lanceolate or elliptic, distinctely serrulate with bristle-pointed teeth, mostly shining on both sides but often hairy on midrib beneath; fls. on short pedicels; corolla campanulate-cylindrical, short; berries large, globose, bluish black with bloom, sweet, the earliest to ripen north. N. Amer. B.M. 2434. B.B. 2:575. Em. 2:456. Rep. Mo. Exp. Sta. 1898:171. — Var. angustifolium, Gray. A dwarf form, with more decidely lanceolate lvs. Lake Superior and northward.—This species is extremely variable in size and shape of fruit and flowers, but with the exception of the variety noted and the black-fruited form often associated with it, which is set off as V. nigram, the variations do not appear sufficiently constant to warrant making separations. In general, the plant is of low, semi-prostrate habit, is extremely prolific and thrives on dry, sandy hills. It furnishes the bulk of the Blueberries found in the eastern markets. When mown down or burned, the new erect shoots produce, the following year, a long, spike-like mass of bloom and fruit which may be stripped off by hand. Because of its character and early-ripening habit, it is known on the Blueberry plains as "Early Sweet" or "Low Sweet."

12. nigram, Britton. LOW BLACK BLUEBERRY. Low shrub, similar to V. Pennsylvaniaicum, and often associated with it; lvs. oblong-lanceolate to ovate, finely serrulate, green above, pale and glaucous beneath; fls. few in the clusters, white or cream-colored, appearing earlier than those of V. Pennsylvaniaicum; berries rather small, black without bloom. Dry rocky soil. N. Amer. B.B. 2:579. Rep. Mo. Exp. Sta. 1898:171. — This species is distinguished from the preceding by the glaucous under surfaces of the leaves and by the characteristic shining black fruit. It is usually found in colonies in the same situations as V. Pennsylvaniaicum, but occasionally the two species will be found intermingled.

13. Canadense, Richards. CANADA BLUEBERRY. Erect shrubs, 1-2 ft. high, the crowded branches downy-pubescent; lvs. oblong-lanceolate or elliptic, entire, downy on both sides; corolla short, open-campanulate, greenish white, often tinged with red; berries globose or oblate, blue with much bloom, of excellent flavor. Low woods, Hudson Bay to Bear Lake and eastern Rocky Mts.; south to New Eng. nts. of Pa. and Ill. B.M. 3446. B.B. 2:578. — This species, commonly known as "Velvet Leaf" or "Soup Top" because of the character of its foliage and the somewhat acid fruit, usually grows in rather moist, rocky, not swampy, localities. The fruit is larger and more acid than the other low forms and matures from one to three weeks later. It is not so popular in the general market as the sweeter kinds, but it is very prolific and its lateness in ripening is a point in its favor.

14. hirsutum, Buckley. HAIRY HUCKLEBERRY. BEAR HUCKLEBERRY. Low shrub, 1-2 ft. high; stems green, grooved, obscurely 4-angled, those of the current year covered with stout, spreading white hairs; lvs. ovate, entire and, together with the pure white campanulate corolla, the calyx and the dark blue globose fruit, hirsute. Very local in N. C., Ga. and Tenn. G.F. 2:365. — This species, discovered about 1840, was lost sight of for half a century until rediscovered by Sargent and transferred to the Arnold Arboretum. It is readily distinguished by the hairy flower and fruit. The fruit is described as fully as large as that of Vaccinium resinosa, shining black, and of an agreeable flavor. Under cultivation it does not so densely hairy as in the wild state. Gives promise of being valuable under cultivation as one of the latest of its kind to ripen, at the Arnold Arboretum the best period of fruitage being the middle of August, berries remaining into September.

15. myrtillodes, Hook. An erect, branching shrub, mostly glabrous throughout, the twigs slightly angled; lvs. oval, oblong or ovate, and glaucous green on both sides but not shining, 1-2 in. long; calyx entire; corolla depressed-glular, yellowish or greenish white; berries large, oblate, black, rather acid. Lake Superior westward. B.M. 3447. — The berries are large, ½-¾ in., oblate, with broad calyx, of excellent flavor; much relished by the natives of the northwest.

16. ovalifolium, Smith. A slender, straggling, branched shrub 3-12 ft. high, with slender more or less angled branches: lvs. oval, oblong or ovate, and glaucous green above, glaucous beneath: fls. solitary, on short, recurved pedicels; corolla glabrous-ovoid: berry large, ½-¾ in., bluish purple, with bloom. Woods, Quebec to Mich., Ore., and Alaska. B.B. 2:577. — This species is very abundant in the northwest, forming a large part of the undergrowth along the southern coast of Alaska (Pasmenter). The berries, rather larger than those collected in great quantities by the Indians, who use them fresh and dry them for winter. The exceptionally large berries and vigorous habit of this species suggest its value for cultivation and particularly for crossing with the low-growing species, such as V. Pennsylvaniaicum and Canada.

17. virgatum, Ait. A shrub 3-12 ft. high, with slender green branches, the young twigs puberulent: lvs. narrowly oval-lanceolate, acute, often mucronate, entire or minutely serrulate, green and glaucous above, pale or glaucous beneath, ½-2 in. long; fls. in short racemes on naked twigs, appearing before the lvs.; corolla nearly cylindrical, white or pink: bracts small, deciduous: berry black, with or without bloom. Swamps, southern Va. to Fla. and La. B.B. 2:577. B.M. 3522. B.R. 4:392 (as V. tagetoides) .—The distinction between this species and the next is very slight. It is probable that, possibly excepting var. tenellum, this is only a southern form of V. Corymbosum and should be reduced to varietal rank.

Var. tenellum, Gray (V. tenellum, Ait., not Pursh). A low form, mostly less than 2 ft., with smaller lvs. and nearly white fls. in short, close clusters. Southern Va. to Ark., Fla. and Ala.—Probably a distinct species.

18. corymbosum, Lam. HORN-BUSH BLUEBERRY. SWAMP HUCKLEBERRY. Fig. 2631. A tall, bushy shrub, 4-12 ft. high, with yellowish green warty branch-
2631. High-bush Blueberry — Vaccinium corymbosum.

21. uliginosum, Linn. Bog Blueberry. A stiff, much-branched shrub ½-2 ft. high; lvs. thick, obovate or oval, pubescent or #, ½-1 in. long, nearly sessile; fls. 2-4 together, or sometimes solitary; calyx 4-parted, sometimes 5-parted; corolla urn-shaped, 4- or 5-lobed, pink; stamens 8-10; berries bluish black, with bloom.

24. arboreum, Marshall. Sparkleberry. Spreading shrub or small tree, 6-25 ft. high, with glabrous or somewhat pubescent branches; lvs. thinnish, coriaceous, smooth and shining above, oblong to oblong-lanceolate, dark green above, densely pubescent beneath, entire, acute, often mucronate: fls. in short racemes, appearing with the lvs.: berry black, without bloom, sweet. Moist woods and swamps, near the Blueberry barber.

25. staminosum, Lind. Deerberry. Squaw Huckleberry. A divergently branched shrub, 2-5 ft high, with pubescent or glabrous twigs: lvs. oval to oblong-lanceolate, acute, entire, pale, glaucous or sometimes slightly pubescent beneath, 1½-3½ in. long, ⅓-⅔ in. wide; flowers rather numerous, in large leafy-bracted racemes; corolla white, 5-lobed; berry small, globose, rather astringent. Sandy soil along river banks, Fla., and Miss. to N. C. and W. Va.

26. vulgarissimum, B.B. 5-8 ft high, with pubescent or glabrous twigs: lvs. oval to oblong-lanceolate, acute, entire, pale, glaucous or sometimes slightly pubescent beneath, 1½-3½ in. long, ⅓-⅔ in. wide; flowers rather numerous, in large leafy-bracted racemes; corolla white, 5-lobed; berry small, globose, rather astringent. Sandy soil along river banks, Fla., and Miss. to N. C. and W. Va.

VAGARIA (meaning obscure). Amaryllidaceae. A single species, a bulbous autumn-flowering plant from Syria with strap-shaped leaves produced after the flowers, which are quite freely produced in 6-8-flowered umbels on naked scapes about 1 ft. high; perianth-tube short, funnel-shaped at the apex; segments equal, lanceolate; stamens inserted on throat of tube; filaments quadrate; ovary globose, 3-loculed, with 3-5 valves in each locale.

davalliana, Herb. Bulb globose, about 1½ in. through: fls. white. Offered by European bulb-growers.

27. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

28. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

29. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

2. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

3. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

4. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

5. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

6. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

7. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

8. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

10. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

11. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

12. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

13. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

15. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

16. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

17. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

18. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

19. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

20. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

22. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

23. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

24. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

25. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

27. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

28. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

29. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

30. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

31. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

32. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

33. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

34. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

35. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

36. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

37. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

38. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

39. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

40. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

41. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

42. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

43. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

44. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

45. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

46. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

47. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

48. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

49. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.

50. valeriana. See Valeriana. Greek V. is Polemonium. Red V. is Centranthus.
suikers arising from the roots, soon forming large colonies. The common species are often grown from seeds. V. alba and V. rubra of the trade are no doubt Centaurium rubens.

a. Rootstocks horizontal or ascending, with small fibrous roots.
b. Stem-leaves (at least the lower ones) pinnate or palmately lobed.

Officialis, Linnaeus. Common Valerian. Garden Heliotrope. Cat's Valerian. St. George's Heurd. Fig. 2632. Somewhat pendent; stem erect, simple below, but somewhat branching above, 2-5 ft.; its, all pinnate, with several to many lanceolate to linear acuminate toothed or notched leaflets; fls. numerous, whitish, pinkish or lavender, very fragrant. Europe, N. Asia. - The medicinal valerian is obtained mostly from the roots of this species.

B. Linn. Glabrous, usually less tall than the above: root-lvs. simple; stem-lvs. lobed or bearing 3-7 entire leaflets; fls. white. Caucasus. Var. aurica, Hort., has young shoots golden yellow.

dioica, Linn. Marsh Valerian. About 1-2 ft.: root-lvs. oval, elliptic or spatulate and entire, long-stalked; stem-lvs. mostly pinnate with entire leaflets or divisions, the terminal leaflet oval or oblong and the lateral ones smaller and narrower: fls. mostly unisexual, the sterile ones the larger, all pale rose color. Europe, in moist soil.

Stichensissus, Bong. A foot or less, the rootstocks thick and ascending: root-lvs. ovate or oblong, simple or somewhat lobed; stem-lvs. mostly 3-5-foliolate, the divisions or leaflets ovate or oblong; fls. white.

BB. Stem-leaves not compound nor lobed, but sometimes dentate.

montana, Linn. Usually one ft. or less high, glabrous or nearly so: root-lvs. oblong, or orbicular-oblong, usually obtuse, somewhat dentate; stem-lvs. lanceolate-acuminate, dentate or nearly entire: fls. bright rose, dioecious. Eu. L.B.C. 4:317.

AA. Rootstocks perpendicular, branching below.

éulile, Nutt. Two or 4 ft., glabrous or nearly so: root-lvs. oblongate or spatulate with margined petiole, entire to pinnatifid; stem-lvs. few, sessile, parted into linear or lanceolate divisions: fls. yellowish white, in an elongated panicle, more or less divaricate. Ohio to Arizona and British Columbia, in wet or moist lands.

The roots are eaten by Indians. The leaves are thickish and strongly veined.

The African or Algerian Valerian is Fedia Cornea, or Valeriana. (Valeriana Cornea, Linn. Valeriana Nucou- cophila, Lodd.) It is an Algerian annual used for salat, after the manner of corn salad. It does not appear to be in the American trade. Glabrous, branching, 1-2 ft. or less, the lvs. flat-oblong, thickish, simple, somewhat toothed, those of the stem clasping: fls. long-ovate, in terminal clusters. Cult. as for corn-salad, although it commonly less cold. It thrives well in warm weather when not allowed to suffer for water. R.R. 2:195.—"V. scopulorum, Linn., of Europe, appears to have been offered in this country, although little known here: about 1 ft. tall, glabrous: radical lvs. oval or cordate, dentate: stem-lvs. with 3 leaflets or lobes, the terminal one large, fls. rose-colored, polyzamous.

B. H. B.

VALERIANELLA (diminutive of Valeriana). Valerianaceae. Including Corn Salad or Petticoat. A genus of nearly 50 species of annual, dichotomously branched herba, with a basal rosette of entire lvs. and small white, bluish or pinkish fls. borne in terminal cymes which form compact globular or flattish clusters. Corolla nearly regular, 5-lobed; stamens 3: fr. 3-loculed, 2 of the locules being empty. These plants are mostly native to the Mediterranean region. V. olloria is the common Corn Salad and V. crinita the Italian Corn Salad. To the account given in this work at page 376, the following may be added:

Corn Salad is both a salad plant and a pot-herb, chiefly the former. The name "Corn Salad" is probably derived from the fact that the plant grows spontaneously in the grain fields of Europe, large quantities of it being gathered in early spring. It is rather tasteless compared with lettuce, and is little known in America. Abroad it is prized as a fall and winter salad. It is a cool-season crop, grown like lettuce and matures in 6-8 weeks. Plants should stand about 8 in. apart in the row. An ounce of seed should give 2,000-3,000 plants. The following description of the varieties is derived from Villmorin's Vegetable Garden.

olloria, Merch. Corn Salad. Lamb's Lettuce. Petticoat. Fig. 2633. An "annual annual" herb, the seed of which ripens in April or May, soon falls to the ground, and germinates in August. The plant makes its growth in the fall and flowers the following spring. In cultivation the seed is generally sown in early spring or late summer. The plant forms a dense rosette of spoon-shaped lvs. which grow in a decussate fashion, and has an angular, forking stem bearing small bluish white fls. in terminal clusters. Eu., Orient.—The Round-Leaved variety has much shorter lvs. than the common type and they are half-crescent instead of spreading, and less prominently veined. This kind is the one grown almost exclusively for the Paris market. The Large-Seeded variety is more robust than the common type and the seed is nearly as large, lvs. marked with numerous secondary veins. Much grown in Holland and Germany. The Etampes variety has very dark-colored lvs., which are often united or folded back at the margins. lvs. narrow, prominently veined, thicker and more fleshy than the other

2632. Garden Heliotrope—Valeriana officinalis (X3).

very fragrant, in contracted cymes, the corolla about 1/3 in. long. Rocky Mts. to Alaska. G.F. 9:515.—A very early bloomer.

2633. Valerianella olloria—Corn salad.
kinds and specially suited to cold weather and long distance shipment. The cabbaging variety differs from the others in forming a heart or head of fine flavor. Unfortunately it is the least productive type, but it bears shipment well.

eriocarpa. Dasy. ITALIAN CORN SALAD. Distinguished from the common species by the lighter color of the lvs., which are slightly hairy and somewhat toothed on the edges towards the base. The plant is native to the south of Europe, where it is highly esteemed because it does not run to seed as quickly in a warm climate. It is undesirable for northern climates.

W. M.

VALLISNERIA (Antonio Vallisneri, 1664-1730, Italian naturalist). Hydrocharitaceae. About 4 species of aquatic plants, including the well-known Eel-grass or Tape-grass. This is found in fresh water all over the world. It is a submerged plant with linear lvs. ½-6 ft. long, depending on the depth of the water. The lvs. originate in a tuft at the bottom of the water, and the plant spreads by runners sent out from these tufts. Eel-grass is usually found in quiet waters. It has no horticultural rank, except as an aquarium plant. Like many other aquarium plants, it has special interest for students of botany. The pistillate lvs. are borne on very long spiral threads and come to the surface as shown in Fig. 2634. The stamine lvs. are borne on very short stalks near the bottom of the water. At the proper time the stamine lvs. break away from their stalks and rise to the surface of the water. As they float about, some of the pollen is conveyed to the pistillate lvs., and in this haphazard way the blossoms are fertilized and seed is produced. Both kinds of lvs. are very small, and they are borne on separate plants. Eel-grass is readily collected, or can be procured from dealers in aquarium supplies or from collectors of native plants. The plant is sometimes called “wild celery,” because it is said to impart a celery-like flavor to wild ducks that feed on it. For generic characters, see Gray’s Manual or Britton and Brown’s Illustrated Flora.

Wm. Teckler and W. M.

VALLOTA (Pierre Vallot, French botanist; wrote an account of the garden of Louis XIII in 1623). Amaryllidaceae. The SCARBOROUGH LILY, VALLOTA purpurea, is a South African representative of the American genus Hippeastrum, popularly known as “Amaryllis." It is a bulbous plant with large, red, funnel-shaped, 6-lobed flowers, blooming in September and later. A pair of well-grown specimens in large pots or tubs make a showy ornament for the porch. Plants have been grown with over 50 flower trusses, each truss bearing an umbel of 4-9 fls., the individual fls. being 2-4 in. or more across. Vallota is a genus of only one species and is distinguished from Hippeastrum by the seeds being winged at the base. The tube of the flower is longer than in the typical Hippeastrum, and at the base of each perianth-segment is a cushion-shaped callus somewhat different from the minute scales or distinct neck that is often found at the throat of a Hippeastrum.

Other generic characters; Perianth erect; tube broadly funnel-shaped; segments equal, ascending, broad, connivent; stamens inserted below the throat; ovules many, supersedes; stigma capitate; seeds black, compressed. It has recently been proposed that Vallota be considered a subgenus of Cyrtanthus. The latter is a group of about 20 species of plants with fls. of various colors and naked at the throat. Cyrtanthus proper and

2635. Scarborough Lily—Vallota purpurea.

(From a specimen 2 feet high)

the subgenus Monella have beautiful pendulous fls. in umbels, but the plants are not so easy to grow as Vallota. It has been suggested that they be crossed with the more robust Vallota in the hope of combining their varied colors and pendulous grace with the strong constitution of the Vallota. Such a process would be similar to the one by which the noble race of Hippeastrum hybrids has been given to the world. Vallota is undoubtedly related to Cyrtanthus through the subgenus Gastronema, which has erect fls. and differs chiefly in the stamens. Of this subgenus C. aegyptiaca is in the trade now. The best form of Vallota seems to be the variety magnifica.

purpurea, Herb. SCARBOROUGH LILY. Fig. 2635. Bulb large; lvs. appearing with the fls., strap-shaped, 1½-2 ft. long, dying down in autumn; peduncle hollow, slightly 2-edged, 2-3 ft. long; fls. scarlet. Gn. 36, p. 245; 42, p. 275. R.H. 1870:30 (1, grandiflora). A.F. 9:231. Gng. 2:361. A.G. 1893:81. —The typical form has scapes about 1½ ft. high and blood-red fls. 2½ in. across. Var. major, Hort., is 3 ft. high and has fls. over 3 in. across. B.M. 1439 (Amaryllis purpurea). Var. minor, Hort., is smaller than the type in all parts. B.K. 7:52 (Amaryllis purpurea, var. minor). Var. eximia, Bull., has fls. 4 in. across, with whitish, feather-like blotches on the base of the perianth-segments. Var. magnifica, Hort., is probably the best and most robust form; fls. 5 in. across, with a white eye. Colors said to be brighter and more uniform than in any other kind. Gn. 36:234. G.C. III. 3:246.

W. M.

The Scarborough Lily is generally rated as a greenhouse bulb, but it can be grown by the amateur who has no glass, provided the plant can be kept over winter in a well-lighted cellar. Many people have had no success with Vallota. Such failures are generally due to the plants being kept too dry during winter. Although Baker says the leaves die down at the Cape in autumn, the plant acts like an evergreen in cultivation. Unlike the majority of bulbous plants, the Vallota should never be dried off, but kept moderately moist about the roots throughout the year. The Vallota is also strongly opposed to interference with its roots. It is possible to preserve a flowering specimen in most luxuriant health
for three or four years without repotting, simply by applying liquid manure to the roots occasionally during the summer. The culture of Vanda is not difficult when the peculiarities are understood. Several years are needed to work up a good plant to the specimen size. A Vanda bulb is about twice as large as a hyacinth. For the first potting use a light soil, with a little sand at the base of the bulb, and place the bulb a distance below the surface equal to its own diameter. Use as small a pot as possible at every stage; shift only when it is necessary to increase the number of plants or when there is danger of the roots breaking the pot. For amateurs the best time to repot the plants is directly after the flowering period. Use the greatest care in handling the roots. Allow the bulbs to project a little beyond the surface.

Some gardeners prefer to repot Vanda in June or July when root action has started, but before the flower stems have pushed up. Vanda likes full sunshine at all times of the year. The plant will stand a few degrees of frost in winter. Beware of over-potting; it is better to have the bulbs crowd one another out of the pot. Amateurs sometimes raise Vandas in the window-garden, one bulb in a 6-inch pot with 1 or 2 flower-stalks, but a large specimen is well worth years of care. The Scarborough Lily has been cultivated by rich and poor for over a century. Its popular name is supposed to have been derived in the same way as the Guernsey Lily,—a Dutch bark having been wrecked off the coast of England, some bulbs washed ashore and become established. Plant and Vanda is considerably grown for the London market, and it is said that some growers succeed in blooming their plants twice the same year, in winter and summer. At the Cape, the species is said to be naturalised, and what is said would account for the special winter treatment which it needs. In California the plant blooms at various times of the year.

Michael Barker.

VANCOUVERIA (after Capt. George Vancouver, commander of the Discovery in the voyage to our north-west coast in 1791-95.) *B. berberidacea.* A genus of 3 species of low, hardy perennial herbs native to our Pacific slope. Shade-loving plants, with slender creeping rootstocks and radical 2-3-ternately compound leaves, somewhat like maidenhair or rue and rather small white or yellow flowers in an open panicle on a naked scape. Sepals in 6, in 2 series, obovate, petal-like, reflexed, soon falling; petals 6, linear—sparticulate; stamens 6: foil-like oblong, membranous, unequally 2-valved; seeds arillate. Vancouveria demand a rich soil in rather shady positions. They are not showy plants, but have foliage of an elegant and refined type.

a. Lvs. thin, membranous: fls. whitish.

 vex surface when finished. A plentiful supply of water is essential at all seasons with copious syringing over the foliage in bright weather. The compost should never be allowed to remain dry for a long time.

V. trieriod and species like it grow very well on foliage plants in the greenhouse, where their large aërial roots, which are freely emitted from the sides of the stems, may ramble among the foliage and thereby retain moisture a long time after syringing. A few species, such as V. Amestiana, V. ceraeica and V. Kimballiana, with one or two other alpine species, require about ten degrees cooler temperature, but otherwise similar treatment to other species of the genus.

Stock is increased by removing a foot or more of the leading growth with a sharp knife, allowing several roots to remain attached to each growth and washing them in the usual manner. These new pieces should be frequently syringed over until they become established or they are likely to shrivel. The old stems will nearly always send out several new growths.

The principal insect enemies to Vandas are several species of scale, which breed fast in a dry atmosphere. They can be kept in check by syringing with strong tobacco water and by sponging the plants with a 20 per cent solution of alcohol.

R. M. GREY.

INDEX.

A. Labellum spurred.

B. Low, flat, or channelled and keeled, toothed or lobed at the apex.

c. Racemes loose: labellum with lateral lobes.

D. Figs. 1-2½ in. across.

E. Color blue .

EE. Color white or pale yellow, but streaked and shaded with brown .

DD. Figs. 2 in. or more across (sometimes less in Nos. 8 and 11).

E. Color blue .

EE. Color white or yellowish, but spotted with purple or brown.

F. Middle lobe of the labellum diluted, reniform.

FF. Middle lobe slightly diluted, truncate or emarginate.

G. Apex emarginate or 2-lobed.

GG. Apex truncate and obscurely macrate.

A. Labellum not spurred .

A. Labellum not spurred.

1. ceraeica, Griff. Stem 1-2 ft. high: lvs. 5-7 in. long; deeply channelled, truncated and 2-lobed at the apex; racemes many; slender and pendulous, each bearing about 12 fls.; fls. 1 in. across; sepals and petals obovate, sub-acute, undulate or twisted, pale lilac-blue; labellum shorter than the sepals, middle lobe cuneate-obovate, with a delicate violet, large white mid-ridge, sides lobes small, dark blue. Spring. Burma. B.M. 5534. P.M. 1872:256. G.C. 1870:329.—Color varies from blue to nearly white. Var. Bozallii, Reichb. f. Fls. pale violet or nearly white; disk of the labellum deep violet with white lines on the sides. B.M. 6828.

2. parviflora. Lindl. Stem 4-6 in. high: lvs. strap-shaped, 4-8 in. long, unevenly obtusely 2-lobed; racemes erect, in-floresc. fls.; sepals and petals obovate-petulate; labellum shorter than the sepals, middle lobe obovate, dilated, truncate and 2-lobed at the apex, yellow below, white above, spotted and dished with purple and having thick flaccid ridges. Himalayas. B.M. 5178 (as Afrides Wightianum).

3. spatulata. Spreng. Stem 2 ft. high: lvs. 2-4 in. long, obtusely 2-lobed: peduncle robust. 12-18 in. tall, few-fl.; fls. 1½ in. across, golden yellow; sepals and petals obovate-petulate, flat; labellum as long as the sepals, clawed, side lobes very small, broadly obovate, middle lobe sub-orbicular, obscurely 3-lobed. Ceylon, India.

4. lamellata. Lindl. Lvs. channelled, leathery, obliquely and acutely bilbil at the apex; fls. pale yellow, stained with red; sepals and petals obovate, obtuse, undulate, the lower sepal larger and somewhat incurved; middle lobe of the labellum ovate, retuse, auriculate, having a pale violet or white, elevated, platelike tubercle just below the apex. Aug.—Nov. Philippines.

5. Bozallii, Reichb. f. (V. lamellosa, var. Bozallii, Reichb. f.). Stem tall, with long recurved lvs.; raceme longer than the lvs., bearing 14-20 fls.; sepals white, with the lower margin of the lateral pair sepal-brown; petals white, with violet streaks which are also found on the sepals, pandurate with large lamellic and square areoles, mostly illa. Nov.—Dec. Philippines. G.C. II. 15:37. G. 19:374.

9. insignis, Blume. Stem erect; lvs. linear, 10 in. long, apex with 2 or 3 teeth; raceme rather short, 6-10 fls.; fls. 2-2½ in. across; sepals and petals obovate, fleshy, the petals narrower, ochreous brown, with darker brown blotches inside, almost white on the outside; labellum pandurate, the apex being broadly reniform, conical, white tinted with rose. Sumatra. Malaya. B.M. 5759. G. 25:168.—Var. Schrederiana has yellow fls. with a white labellum. G. 25:168.

12. *imbata*, Blume. Stem about 3 ft. high: Ivs. linear, keeled, 6-8 in. long, unequally bifid at the apex; racemes 10-12 ft.: 6-8 in. long on peduncles of equal length; fls. 2 in. across; sepals and petals spotted, bright cinnamon, tessellated, bordered with golden yellow, white suffused with light outside; middle lobe of the labellum oblong-pandurate, truncate, mucronate, pale lila, June, July. Java. B.M. 6173.

13. *Pariahi*, Reichb. f. Stem very short: Ivs. deshay, rigid, almost terete, with a groove down the center, 6-12 in. long; raceme simple or branched, erect, 1-2 ft. long and bearing 20-80 fls.: fl. 1½ in. across, white, with rose-colored ridges on the labellum, sepals and petals ovate-oblong, obtuse; labellum with a broadly cuneate, undulate middle lobe, having 5 ridges converging into a reflexed callus, side lobes small, rounded. Flowers at various seasons. India. B.M. 7139. J.H. 111. 29:194; 32:271. A.F. 6:441.

15. *Anesiana*, Reichb. f. Stem very short and stout: Ivs. deshay, rigid, almost terete, with a groove down the center, 6-12 in. long; raceme simple or branched, erect, 1-2 ft. long and bearing 20-80 fls.: fl. 1½ in. across, white, with rose-colored ridges on the labellum, sepals and petals ovate-oblong, obtuse; labellum with a broadly cuneate, undulate middle lobe, having 5 ridges converging into a reflexed callus, side lobes small, rounded. Flowers at various seasons. India. B.M. 7139. J.H. 111. 29:194; 32:271. A.F. 6:441.

17. *terae*, Lindl. Fig. 2638. Stem long, climbing: Ivs. terete, 6-8 in. long; peduncle 6-12 in. long, bearing 2-3 fls., raceme: fls. 2 in. across; sepals nearly orbicular, white tinged with rose; petals a little larger, deep rose; side lobes of the labellum broad, incurved, yellow spotted with crimson, middle lobe exceeding the sepals, fan-shaped, reniform, purple or rose-colored. May.
VANDOPSIS (like Vanda), Orchideae. Includes 2 or 3 species which until recently have been united with Vanda or with Staurops. They are distinguished from allied genera by the labelum, which is firmly united with the column, not spurred, and from which, at the base, with the terminal lobe compressed laterally. In appearance these plants resemble robust Vandas, with which they are usually classed for horticultural purposes. Treatment the same as for Vanda.

giganté, Pfitz. (Vanda gigantiflora, Lindl.) Stem pendulous; Ivs. 1-2 ft. long, thick, flat, obtusely notched; raceme 10-15 in. long, decurved, many fls.; 8 in. across, golden yellow, horticultural near A. J. Bidwell, of Orlando, Fla. In 1874 Van De- man reported that the shrub grew exceedingly well, sprouting readily from the roots when frozen down. It has probably never been fruitedit in America. It grows readily from imported seeds.

Vangueria is a genus of 20 species native to the warmer parts of Asia and Africa. It is a shrub or tree, sometimes spiny or somewhat climbing in habit; Ivs. opposite or rarely pseudo-verticillate in 4's, oval; fls. small, white or greenish in axillary clusters; calyx 5-5 lobed, lobes deciduous or rarely persistent; corolla hairy or not outside, usually furnished inside with a ring of delicately pilos hair; lobes spreading or reflexed; staminodes 5, rarely 4; disc fleshy or depressed; ovary 3-5-loculed; stigma capitate; ovules solitary; fr. drupaceous; pyrenes 5-5 in number or putamen 5-3-loculed.

Madagascarensis, J. F. Gmel. (V. delisi, Vahl.) Glabrous shrub, 10-15 ft. high; Ivs. very large, oblong, obtuse or acute, membranous, short-petioled; fls. in copious, peduncled, axillary dichotomous cymes; corolla funnel-shaped, ¾ in. long, with 5 spreading deltoid teeth. Madagascar.

W. M.
VARIEGATION 1901

Many other genera. Different kinds of variegation are shown in Figs. 2640-1.

Variegations may be distinguished from ordinary colorations, bleaching, chlorosis, etc., by the fact that the colored areas are usually quite sharply defined. They do not gradually blend into each other, but have definite boundaries. Cells in the variegated areas are found, as a rule, to contain the same chlorophyll bodies (chromatophores) as the ordinary green cells of the plant. However, in the variegated parts, the green color is not developed, and the chromatophores are often smaller or are somewhat swelled and vacuolated. In the case of chlorosis, due to the lack of iron, or yellowing due to the lack of light, a leaf will quickly develop its normal color if given the proper conditions. This is not the case, however, in variegated leaves. While the intensity of whatever color the chromatophores may have can be changed by light and food, a variegated cell never can be changed by these means to a normal cell.

The chlorophyll granules (chromatophores) appear to have lost entirely, in many cases, the power to make starch and sugar from the carbonic acid gas in the air, and in other cases this power is very greatly reduced. In practically all cases, however, when the chromatophores are not destroyed, they retain the power to convert sugar into starch and they thus store up starch in their tissues from the sugar manufactured by the healthy cells of the leaf.

White or albino variegation is of course due to a lack of any coloring in the chromatophores, and sometimes to the entire absence of these bodies. The cells seem to have lost completely the power of making chlorophyll. The abundant variegations are to be looked upon as the more extreme forms of variegation, and usually arise through a fertile or atrophied condition of the plant. Seedlings raised from parents both of which are variegated in this way are usually very weak. High feeding and favorable conditions of growth, while they will not cause a variegated plant to return to its normal condition, will often stimulate the development of a normal green shoot that takes most of the nourishment and thus causes the starvation and disappearance of the albino parts. In other cases, as in codiaeums, modified chlorophyll is made. Large yellowish oil-like drops occur in the substance of the

VANILLA (Spanish, little sheath or pod). Orchiidacee.

Vanilla. Climbing orchids whose branch stems ascend to a height of many feet. The nodes bear leaves or seedless acaulis. Leaves, in alternate arrangement, Fils. in axillary racemes or spikes, without an involucre at the top of the ovary; sepals and petals similar, spreading; labellum united with the column, the lip developing into the upper portion of the latter; column not winged. About 20 species in the tropics.

The most important species is V. planifolia, the Vanilla crop, native in Mexico, but now widely cultivated in the West Indies, Java, Bourbon, Mauritius and other islands of the tropics, its chief requirement being a hot, damp climate. The plants are propagated by cuttings varying in length from 2 to about 12 ft., the longer ones being the more satisfactory. These are either planted in the ground or merely tied to a tree so that they are not in direct contact with the earth. They soon send out aerial roots, by which connection with the soil is established. They are usually trained on trellises so that the stems are supported by the forked branches, but posts and trellises are also used as supports. In most places where Vanilla culture is carried on pollinating insects are lacking and the flowers must be pollinated by hand. Plants bear their first fruit about three years after setting. The fruits continue to fruit for 20 or 40 years, bearing up to 50 pods annually. The Vanilla pods are picked before they are ripe, and dried. The vanilla crystalizes on the outside. For a full description of Vanilla culture and methods of curing the pods, see Bull. No. 21, U. S. Dept. of Agriculture, Div. of Botany, by S. J. Galbraith. Vanilla is also made from other sources by chemical means. The genus was monographed in 1896 by R. A. Rolfe in Journ. Linn. Soc., vol. 32.

planifolia, Andrews (V. aromatica, Willd. in part). Fig. 2639. Common Vanilla. Vanilla Bean (from the pods). Tall climbing herbs with stout stems; lvs. thick, oblong-lanceolate, acuminate, with short, stout petioles; fls. yellow, large, in axillary racemes of 20 or more blossoms; sepals and petals oblong-lanceolate; labellum trumpet-shaped, with small, reflexed, crenulate lobes. Winter. A native of Mexico but widely cultivated throughout the tropics and in greenhouses. B. M. 7167. L.B.C. 2123. G. 57, p. 35.

aromatica, Sw. Stem slender; lvs. broadly ovate, with a bluntish point, contracted at the base; fls. greenish and white. Jamaica, Colombia, Trinidad.

Heinrich Hasselberg.

VANILLA PLANT. Trilis odoratissima; see also, Vanilla, above.
chamatophores, and the various changes that these undergo, as the leaf becomes older, produce the remarkable and beautiful colorations of this group of plants. The coloration here, as in dracaenas and caladiums, is intensified by strong light and nourishing food. The more of the modified chlorophyll there is produced and the more rapid the changes in the modified chlorophyll brought about through the action of light and the seeds and oxidizing ferments of the leaves, the more highly developed will be the colors, though here again high feeding is likely to cause the plant to revert to its normal condition.

Variegated plants or parts of plants are usually of slower growth and smaller than green plants of the same variety or the green parts of the same plant.

Causes of Variegation. — Variegation occurs either by bud-varia
tion or by variations in seedlings. In the former, a variegated branch is likely to appear on an otherwise perfectly normal plant. Such variegations are easily reproduced by budding, grafting or cuttings, but generally do not develop again from seeds produced on such branches. On the other hand, when variegation develops in seedlings, the seeds of such plants usually give a number of variegated individuals, even the cotyledons being sometimes affected. In some cases the proportion of variegated plants from seeds is very large and can be increased by selection. As a rule, the form of spotting or marking is not constant in seedlings, often being very different from the parent. In certain groups of plants, which have for many years been selected on account of the horticultural value of these markings, the variegated condition has become almost a fixed feature of the plant, as in dracaenas, caladiums, codiaeums, etc. While the plants of these genera are not usually propagated from seeds, still on such young when they are so propagated, a large number of seedlings show more or less variegation.

Darwin and many of the earlier investigators believed that these variations were started in the plant by unfavorable nutritive conditions, and much has been written on the subject as to whether or not variegations should be considered as disease conditions.

The question as to whether a variegated condition could be transmitted to normal plants by budding and grafting has also been much disputed, but the weight of evidence indicates that in many cases such transmission certainly takes place. This has been thought to indicate the presence of some micro-organism, living either parasitically or symbiotically in the plant, and causing the changes known as variegation.

Investigations conducted by the writer on the so-called mosaic disease of tobacco, which is a form of variegation, and also on many other forms of ordinary variegation, show quite conclusively that the disease is not caused by micro-organisms, but is due to a disarranged condition of the nutrition of the cells. Without going into the details of the matter, it may be said that the condition is characterized physiologically by a marked increase in the oxidation of the cells, caused by the presence of an abnormal amount, or an abnormal activity, of oxidizing ferment in the protoplasm. This ferment prevents the movement of food substances, especially starches and nitrogenous materials. The decrease of the latter is especially marked, and it is probably on account of the lack of sufficient nitrogenous food that the cells do not develop normally. The young growing buds and dividing cells require highly organized nitrogenous foods. They do not make use, to any extent, during the process of growth and cell division, of the ordinary nitrates which are built up into nitrogenous foods by the mature cells. The oxidizing ferments, though normal constituents of all cells, prevent it from becoming excessively active, the proper nutrition of the dividing cells, and it is a curious fact that when these ferments are increased from plant tissues and injected into the young buds of healthy tobacco, at least, cause the buds so treated to develop into variegated shoots. The ferment in question, or variegation, passes readily through the cell-walls of the plants and it thus becomes evident how such changes could be transmitted by budding and grafting, though no parasitic organisms of any kind are connected with the matter.

Another method of producing variegation of tobacco is by cutting the plant back severely during rapid growth. The new shoots have to develop with a small supply of elaborated nitrogenous food, the larger part being removed in the severe cutting back. Shoots thus developed nearly always show variegation. The same thing is true of many other plants, especially the potato, tomato, mulberry, etc. In fact, it appears that a plant is likely to show variegation whenever it is so treated that the growing buds or the forming buds, or the seeds, have to develop under such conditions that the ferment content of the cells is increased beyond the normal amount, and the reserve foods stored are in small amount.

These changes must, therefore, be considered as pathologic in their nature, as the vitality and

VASES

rige of the plants are reduced as a result. It is further evident that the chief causes of variegation may be diverse, some of the most usual being seed of low vitality; unsuitable nourishment, especially a lack of elaborated nitrogen; rapid growth in very moist soil; roots during a period of rapid growth of the upper parts of the plant; severe cutting back, etc.

This started at first through the influence of environment, variegation, when of value horticulturally, has in many cases been increased and fixed by selection till it has become almost a specific characteristic in some groups of plants.

Autumnal Coloration.—A word might be said in this connection regarding autumnal coloration. The production of color in autumn foliage is, as is well known, due in part to the gradual destruction of the chlorophyll when the leaves have reached maturity and approach the period of death, and in part to the action of acids on anthocyanin as described below. Many of the destructive changes which take place in the chlorophyll are oxidation processes, the same as occur in the cells of highly colored variegated plants, and physiologically they are different from those occurring in Calathen, Caladium, Codium, etc. The approach of maturity in the leaf, and the coming on of cool weather in autumn, stimulates the production of oxidizing ferments, and the necrosis of the acids of the cell-sap upon the chromogen, or color contents of the leaves, especially the chlorophiply and anthocyanin, causes many of the brilliant colors of autumn. When there is a popular belief that these colors are due to cold weather or frosts; but while frosts, if they are light, hasten the solution and destruction of chlorophyll, they may not, perhaps, so much as more hasten changes which would occur in time without them. Even in the tropics, some foliage before it matures becomes highly colored, and on the Japanese maples there appears the most beautiful autumnal colorations in July in the region of Washington.

In practically all deciduous trees, bushes, etc., before the withering and falling of the leaves, all of the valuable food materials, such as sugars, aminoacids, etc., pass from the leaves through the vascular bundles into the twigs and branches so that they are not lost to the plant. When the leaves finally fall they are therefore nothing but mere skeletons, containing waste materials.

In the passage, especially of aminoacid matters, from the leaves to the stems, it is necessary that the materials be protected from the strong action of light, and it is believed that part of the coloration of maturing leaves serves this purpose.

Aging material, or chromogen, known as anthocyanin, is always present in such cases, and develops beautiful reds when the cell-sap is acid, blue when no acids are present, and violet when there is only slight acidity. In connection with the disorganizing chlorophyll, causes the various mixtures of yellow, brown, violet, red, orange, etc., of autumnal coloration as described above. In very young leaves of many plants, such as Allathus glaucontus, Juglans regia, Vitis, Cissus, and many other plants, this same anthocyanin is developed as a protection to the aminoacid materials traveling to the young cells. Such protective colorations have to be distinctly separated from variegations. In evergreen leaves, during the winter, the chlorophyll granules are protected by the development of anthocyanin, forming a brownish or reddish tinge in the cell-sap. This is especially prominent in many conifers.

While, as stated above, these protective and in some cases transitory colorations should be clearly distinguished from variegation, it is an interesting fact that they develop when the conditions for active nutrition are unfavorable, just as in the many cases of maturing leaves by starving the plants or permitting them to become sufficiently dry to check growth.

Chlorosis.—This term is usually applied to those cases of dull green foliage due to the absence of a lack of some nutrient salt, such as iron, potash, lime, phosphoric acid, etc. The most common cause of chlorosis, or yellowing, is due to the lack of iron. In such cases, the disease is readily cured by either spraying the foliage with a dilute solution of iron sulfate or other iron salt, or watering the roots with the same. Even within a few hours the chloroplasts will begin to turn green, and the plant goes on making starch and sugar from the carbon dioxide of the air in the normal manner. A lack of phosphoric acid sometimes causes a similar trouble, which is cured by the addition of this nutrient substance to the soil. Numerous cases are on record of yellowing of foliage due to excess of soluble lime in the soil. Grapes are especially sensitive to an excessive amount of lime, and turn yellow readily as a result of its action. Soils which contain too much magnesia in proportion to lime also often cause a yellowing of foliage of plants growing in them. All causes of this kind can be readily distinguished from variegation by the fact that all the young leaves produced under such conditions become yellowish or white and are not mottled or marked as in variegated plants. Moreover, the condition is readily corrected by furnishing the proper nutrition, and usually all plants growing in such soils show the same trouble.

Albert F. Woods.

VARNISH TREE. Kallocretia paniculata, Allathus glaucontus, Pergarum vermiculfera, and other plants.

VASES. Such vases as are shown in Fig. 2642 are common features of formal gardening. All matters concerning their manufacture or beauty are clearly outside the province of this work, but every gardener who purchases such a vase is interested in certain practical horticultural features of its construction. It is imperative that the vase have a hole at the bottom for drainage, otherwise the soil will become sour. It is desirable that the rim of a vase be rounded, as a sharp edge cuts the vines that trail over it and are swayed by the passing wind. Many of the old fashioned stone vases 4 or 5 ft. high were made with a bowl too shallow for the good of the plants.

Vases are generally stationed in conspicuous positions near buildings, where they receive daily attention from all, including the gardener. It is necessary to water them every morning during hot weather, and it is therefore desirable to have the water supply near at hand. A watering cart is often used in taking care of vases. Vases are often placed in the sunniest situations, but they can also be used in partially shaded spots. On the north side of a building in a shady place sheltered from the high winds small palms may be used in vases, together with Rex begonias and Pandanilla Velenii.

The plants used in vases should be of a firm texture, and resistant to drought, dust and occasional high winds. Cannas, ferns and foliage plants that are likely to be cut or whipped by the winds are necessarily excluded. The first thought should be given to a center-piece. This should usually be some plant of a rather stiff, formal or architectural nature. Cordyline indivisa and C. nautina are excellent for the purpose. They should stand well above the other plants. Around the edges vines are used, especially periwinkles, green and variegated, nasturtiums and Sceneria mikavaoides. Another choice plant for this purpose is Helichrysum.

2642. Stone flower vase 4 or 5 feet high, used in formal gardening.
VASES

petalium, known to gardeners as *Gynapodium Ino-rium*. This is an "everlasting" plant which is not truly a flower but does not flower in vases but is valued for its silvery foliage and pendulous habit. Between the center piece and the rim of drooping vases are used such standard plants of medium height as geraniu-um, Geranium millefolium, and the common begonias. The material, as Lobelia Erinus, coleus, scarabaeus, and acalypha. *Centaurae* *Vginaria* and *GymnocarpE* are also useful plants for vases.

The soil in a vase may vary from 6 to 18 inches in depth. It should be a strong, solid compost, about 3 parts of loam to one of manure. If the bowl seems too shallow and becomes filled with roots add a top-dress- ing of well-rotted manure, or of moss with a little compost. Such a muleh will aid plant-food and conserve moisture.

Considerable forethought and taste may be required to keep the vases attractive during early spring, in the interval after the last frost and time when the tender bedding material is set out. Pansies have been suggested for this period, and make a good effect when seen from above. A better effect can be produced by using conifers in pots which have been wintered in a frame. These may be bordered with pansies if the gar- dener thinks best and can find the time at this season.

Rustic vases are much less expensive than stone, iron or earthenware ones and in some situations are very suitable. It is an excellent idea to elevate the vase on a cheaply constructed pedestal of tree trunk or boards, which will soon be hidden by *Amelopsis* *Veitchii*.

ROBERT SHORE.

VAUX, CALVERT (1821-1895), an American land- scape gardener. Together with Frederick Law Olm- sted he planned Central Park, New York, the proto- type of large, accessible, nature-like city parks. The following account of his life-work is taken with slight changes from an obituary notice by Wm. A. Stiles in Garden and Forest 8:480: Calvert Vaux was born in London in 1821. He had achieved success in ar- chitecture before the age of twenty-four, when he came to America as business associate of Andrew Jack- son Downing. At the time of Downing's untimely death in 1854 the two men were designing and constructing the grounds about the capitol and Smithsonian Institution, the most important work of the kind that had yet been attempted in America. Meanwhile, the gathering sentinels in favor of spacious and accessible city parks which had found expression in the eloquent letters of Downing at last secured, through legislative action, the purchase for a public pleasure-ground of the rectangu- lar piece of ground now known as Central Park, New York. In 1856 the city authorities selected, out of thirty-three designs offered in competition for the new park, the one signed "Greensward," which was the joint work of Frederick Law Olmsted and Calvert Vaux, and Central Park as we know it to-day is the realization of this design in its essential features. This was the earliest effort by this country of a public park conceived and treated as a consistent work of landscape art, and the first attempt in any country to plan a spacious pleasure-ground which should have the charm of simple natural scenery while it met the requirements of complete in- closure by a compactly built city. No one can read the original plan as presented for competition without feeling how thoroughly an experience of nearly half a cen- tury has justified the forethought of the young gardener, or without a sense of gratitude to them that our first great park, which has to such an extent furnished a standard to other American cities, and similar undertakings, was a work of such simplicity, dignity, refinement and strength. It may be added that this "Greensward" plan, together with other re- plicas of Central Park, on Mountsaint and Riverside Parks, in New York, on parks in Brooklyn, Albany, Chicago, San Francisco and other cities, both in this country and the Dominion of Canada, by the same authors and a standard model, have been universal in the application to public pleasure-grounds which is unique and invaluable. Calvert Vaux was a member of many im- portant commissions, and he acted as landscape gar- dener for the Niagara Falls Reservation, but for more than thirty years his best work and thought were stead- ily given to the parks of New York City. He had the genuine creative faculty which gave the stamp of original- ity to all his work, and a rare insight into its nature, but he was always quietly reinvigorated by a demand of the people. To Calvert Vaux, more than to any other man, New York owes a debt of gratitude for the fact that Central Park, in spite of attacks on every side, has been held so secure against harmful invasion and has been developed so strictly on the lines of its original conception.

In private life Calvert Vaux was a man of singular modesty, gentleness and sincerity. He lacked the graces of manner and magnetism of social intercourse which carry many men in vases to a brilliant position that much exceeds their real merits. Never- theless, he had many accomplishments and culture of the best type. It is a sad and singular coincidence that both Downing and Vaux met their death by accidental drowning. The career of Calvert Vaux is an inspiring one for all struggling young artists and for all public-spirited citizens in America who are laboring in the work of civic and village improvement. Amid the changing policies of municipal governments, the life- work of Calvert Vaux is a shining example.

W. M.

VEGETABLE GARDENING. In horticultural usage a vegetable is an edible herbaceous plant or part thereof that is commonly used for culinary purposes. The product may or may not be directly associated, in its de- velopment, with the flower. This definition does not clearly include all the products which ordinarily are con- sidered to be vegetables. Some vegetables, as melons, are properly dessert articles. Only usage can delimit the term. What are considered to be vegetables in one country may be regarded as fruits in another country. However, the use of the term is so well understood that there is no difficulty in making proper application of it in common speech.

All the art and science that has to do with the grow- ing of these plants is popularly known as vegetable- gardening. Recently a Latin-made term, olerculture, has been introduced, which is defined as vegetable growing, coordinate with pomology and floriculture. It is not likely, however, that this term will ever come into general use, although it may be useful in formal settings. Vegetable-gardening is ordinarily considered to be a branch of horticulture rather than of agri- culture. However, a number of crops may be either horticultural or agricultural subjects, depending on the extent to which they are grown. When grown in estab- lishments that are devoted primarily to a horticultural business, squashes, pumpkins, potatoes and tomatoes are usually regarded as horticultural commodities; but when they are grown on farms where mixed husbandry is practiced and are made a part of the general farm system in rotation, with equal propriety they may be called agricultural. Thus, the term vegetable-gardening crops that are practically always associated with a horticultural rather than an agricultural busi- ness. They are grown in small quantity either for home use or for special markets. Of such are lettuce, par- sley, cauliflower and radish. Some of the crops may be classified as horticultural or agricultural, depending on the circumstances. The term horticulture and vegetable gardening crops are used for special markets. Of such are lettuce, par- sley, cauliflower and radish. Some of the crops may be classified as horticultural or agricultural, depending on the circumstances. The term horticulture and vegetable gardening crops are used for special markets. Of such are lettuce, par-
There seems to be a growing tendency in this country for vegetable-gardening to become a part of general farming schemes. A generation ago a large part of the vegetable-gardening for profit was conducted in relatively small areas by men who devoted their entire time to the business. At present much of the vegetable-gardening enterprise is merely an adjunct to farming proper. This is in part due to the development of the canning industry, because of which enormous quantities of certain products, as of tomatoes, are desired. It is partly due also to the extension of agriculture into the newer regions wherever areas are discovered that are particularly well adapted to the growing of special commodities; as, for example, the raising of squashes in some of the prairie states and the recent extension of melon-growing into Colorado. Long-distance transportation has revolutionized vegetable-gardening in this country. See *Farming*. Whilst there has been great progress in the industry, our vegetable-gardening has not developed so widely from the European ideals as our pomology has. Yet tomatoes, sweet corn, watermelons and sweet potatoes are probably grown more extensively here than elsewhere in the world.

Vegetable-gardening is an important business wherever there are large cities, because the markets are close at hand. The second most important factor in determining the location is climate, since earliness of product usually increases the profits. A third influence in the geography of vegetable-gardening is the soil. Usually soils of a light and loose character, or those that are said to be "quick," are preferred, because the plants may be started early in the spring and they also grow and mature rapidly. Because such soils are so frequently employed for vegetable-gardening purposes, gardeners have come to be very free users of stable manure and concentrated fertilizers. In recent years the vegetable-gardening areas of the eastern country have rapidly extended along the Atlantic seashore as far as the keys of Florida. In these southern localities vegetables can be secured in advance of the northern season and when the best prices are reigning.

The development of transportation facilities has made this enterprise possible. The southern Mississippi valley region is also developing a large vegetable-gardening interest since it is tapped by trunk lines of railroad running to the north and east. Well-marked vegetable-gardening areas are those on Long Island, N. Y., and about Norfolk, Va., where special industries and practices have developed. Fig. 2643 shows an onion-growing community in southeastern New York.

The most recent published statistics of vegetable-gardening in the United States are those of the Eleventh Census, 1890. According to a bulletin issued by that census the investment in commercial or partly truck-gardening interests of the country lying beyond the immediate vicinity of large cities amounted to more than $150,000,000. More than half a million acres of land were devoted to the industry and nearly a quarter of a million of people were employed. After paying freight and commission, the products of these establishments brought to their owners more than $75,000,000.

Vegetable-gardening may be divided into two great categories, depending on the disposition that is to be made of the products; namely, market-gardening or truck-gardening, of which the purpose is to make money from the industry; and home- or amateur-gardening, in which the purpose is to raise a supply for the family use. Whilst the same principles of selection of soil, tillage and fertilizing apply to both these categories, these kinds of gardening are unlike in the general methods of procedure. The market-garden is ordinarily located where the climate and soil influences are favorable. Every effort is made to secure uniformity and great productivity of crop, and it is usually desirable that the crop come into the market somewhat quickly and then give place to other crops. In the home-garden the climate and the soil are largely beyond the choice of the gardener, since these matters are determined by the location of the homestead. The general effort is to secure products of high quality and to have a more or less continuous supply throughout the season. In market-gardening emphasis is usually placed on a few crops, whereas in home-gardening it is placed on a great variety of crops.

The old-time home vegetable-garden was generally unsuited to the easy handling of the soil and to the efficient growing of the plants. Ordinarily it was a small confined area in which horse tools could not be used. The rows were short and close together, so that finger work was necessary. The custom of growing crops in small raised beds arose, probably because such beds are earlier in the spring than those that are level with the ground (Fig. 1528). With the evolution of modern tillage tools, however, it is now advised that even in the home-garden finger-work be dispensed with as much as possible. Some of the very earliest crops may be grown in raised beds to advantage, but in general it is better to secure earliness by means of glass covers or by ameliorating the entire soil by underdrainage and the incorporation of manures and by judicious tillage. See *Tillage and Tools*. For farm purposes particularly it is desirable that the rows be long and far enough apart to allow of tillage with horse tools. If the vegetable-gar-
In vegetable-gardening in large cities is prosecuted on rented lands; therefore it may not be profitable to invest in such permanent structures as forcing-houses. The first cost of hotbeds is also less than that of forcing-houses, and this is often a very important item. Fig. 264. For management of glass structures, see Hotbeds, Greenhouse, Forcing.

There are great numbers of insect and fungous pests that attack the vegetable-garden crops. General remarks under Insects, Fungus, Insecticides, Fungicide and Spraying will apply to these difficulties. The spray pump has now come to be a necessary adjunct to any efficient vegetable-garden. However, there are many difficulties that are beyond the reach of the spray, particularly those that persist year by year in the soil or which attack the roots rather than the tops. For such difficulties, the best treatment is to give rotation so far as possible and to avoid carrying diseased vines back on the land the next year in the manure. Even the club-root of cabbage can be starved out in a few years if cabbages or related plants are not grown on the area. Any treatment that conduces to the general vigor and well-being of the plant also tends to overcome the injuries by insects and fungi.

In its best development vegetable-gardening is essentially an intensive cultivation of the land. Often it is conducted on property that is too high-priced for ordinary farming. Land that demands a rent on one thousand dollars an acre is often used for vegetable-gardens with profit. There is also intense competition near the large cities. These circumstances force the gardener to utilize his land to the utmost. Therefore, he must keep the land under crops every day in the year when it is possible for plants to live or grow. This results in various systems of double-cropping and companion-cropping, whereby two or more crops are grown on the land the same season or even at the same time. Market-gardening is usually a business that demands enterprise, close attention to details and much physical labor.

In intensive vegetable-gardening it is important to start many of the crops under glass and to transplant the young plants to the open as soon as settled weather comes. This is particularly true of tomatoes, very early lettuce, sweet potatoes, egg plants, peppers and the early crops of celery, cabbage and cauliflower. In the northern states muskmelons and sometimes watermelons and cucumbers are started under glass, being grown in pots, boxes or upon inverted sods, whereby they are more readily transferred to the open. Formerly the plants were started under hotbed or coldframe structures, but of late years there has been a great increase in the extent of glass houses

or forcing-houses. In these structures conditions can be controlled better than in hotbeds, and they are permanent investments. However, hotbeds and coldframes are still exceedingly important adjuncts to the vegetable-garden, chiefly because they are not permanent and thereby can be moved when the person shifts to other land, and because the fruits and vegetables are nearly large users of stable manure. Near the large cities the manure is bought in car-load lots, and it is used every year. The reason for this is the necessity of improving the physical texture of the soil so that it will be loose, open and mellow, being or "quick," and hold an abundant supply of moisture. In intensive vegetable-gardening there is no "resting" of the land and no green crops to be plowed under. The vegetable matters, therefore, has to be supplied almost entirely by barn manures. In the larger and less intensive vegetable-growing farther removed from large cities, general agricultural practices can be employed to better advantage, such as rotation and green-manuring. Vegetable-gardeners generally use largely, also, of concentrated fertilizers. These materials may be employed for either or both of two purposes: to start off the plants quickly in the spring, or to add plant-food for the sustenance of the plants during the entire growing season. Ordinarily the former use is the more important in vegetable-gardening, since it is necessary that the plants start quickly in order that early crops may be secured. Many times fertilizer is used in amounts far in excess of the needs of the plant in mere plant-food, in order to give the plants a strong and vigorous start and thereby enable them to make the most of themselves. If the plants are not well established when hot and dry weather comes there is likely to be little profit in them.

264. Companion cropping.—Lettuce between young cabbage plants.

2645. A better way of growing vegetables,—in long straight rows.
VEGETABLE GARDENING

If, with his knowledge of vegetable-growing, the gardener combines good business and executive ability, and the intimate knowledge of market conditions, he should be able, however, to make it a profitable and attractive business. Although the outlay is likely to be large, the returns are direct and quick. Fig. 304. The time is almost past when buyers are devoted to vegetable-gardening, although the greater part of it applies chiefly to amateur or home-growing. Leading current books on the general subject of vegetable-gardening are those by Greiner, Green, Henderson, Kawson and Landreth. For California one should consult Wickson's "California Vegetables in Garden and Field," and for the Atlantic south, Roll's "Vegetables-Growing in the South for Northern Markets." There are many books devoted to special topics, and there are many others which in their time were of great practical value, but which are now chiefly known as records of the history of the epoch in which they were written. Only one American work has been devoted to descriptions of varieties of vegetables, as the works of Downing, Thomas, and others have to various fruits. This work is Fearing Burr's "Field and Garden Vegetables of America," Boston, 1895, and the abridgment of it in 1896, called "Garden Vegetables and How to Cultivate Them." A full list of the American vegetable-growing literature may be found in Bailey's "Principles of Vegetable-Gardening" (1901). Persons who desire a cyclopedic account of vegetables should consult Vilmosin's "Les Plantes Potagères," the first edition of which is published in London as "The Vegetable Garden."

L. H. B.

VEGETABLE-GROWING IN CALIFORNIA. It is an interesting fact that although California's horticultural prominence now rests upon fruit products, the first attraction to the new state, after the gold discovery, was the early growth of garden vegetables. The reports of immense size, of acreage product and of prices secured, were almost incredible because so much in advance of ordinary standards, but the statements were so fully authenticated that many were drawn to California by them. These horticultural pioneers, however, soon found that immigrants from Asia and the Mediterranean region could, by their cheap living and by doing their own work, cut under American growers who had to employ high-priced labor, and so the latter retired from the field, leaving the opportunity to the frugal and thrifty foreigner. Thus vegetable-growing, from an American point of view, came into disrepute and largely retains such disadvantage at present. The result is that the American largely avoids market-gardening, while Asians and South Europeans are thriving in it. There has been a reflection of the same disfavor upon farm growing of vegetables for home use, and our farming region, including the fruit-growers who should know and do better, is largely dependent upon alien vegetable peddlers or products of canneries instead of fresh home-grown esculent, which would be cheaper and less laborious. In the hands of these operators, many of the vegetable diseases and pests are likely to become serious, if not until the time of the fall and winter, and are taken right from the ground to the cars without protection or storage. Tender vegetables, like corn, beans, tomatoes, etc., can, however, be grown in the winter only in a few frostless places. They must either be pushed to a finish in the fall or soon early in the spring and carried into the dry summer as far as necessary either by natural moist land or by irrigation. There are, however, a few localities where tomatoes will fruit early in the spring from fall plantings, and peppers will live through the winter and bear a second season's crop on the old plants.

The possession of an irrigation supply is the secret of
full satisfaction in California vegetable-growing, but a sufficient supply of water, if skillfully applied, will work wonders. Irrigation will enable one to have something crisp and delicious in the garden every day in the year in the California valleys. It is true, however, that much cultivation is possible without irrigation by beginning at the opening of the rainy season in September, growing the harder vegetables while moisture is ample even on the drier lands during the late fall and winter, and killing the lower lands well plowed and cultivated to prevent evaporation until the tender vegetables can be trusted in the open air, and continuing cultivation assiduously and constantly, to see that moisture is retained as long as possible for them. That this is thoroughly practicable is seen in the fact that the large Lima bean product is grown almost entirely without irrigation from plantings made as late as May and the whole growth of the plant is achieved without a drop of water except that stored in the soil. The same is true of the corn crop; perfect corn can be grown without a drop of rain or irrigation from planting to harvesting. In such cases, however, the winter rains are retained in the soil by cultivation. If winter growth is made by rainfall, summer growth can be made on the same land by irrigation. In this way irrigation becomes eminently desirable in securing all-the-year growth, which cannot be had by rainfall. With good soil and abundant irrigation it is possible to secure four or five rotations during the year—the hardy crops in the fall and winter months; the tender plants in the spring and summer. Of course the adjustment of all these means to desired ends requires good perception and intelligent action, and explains why those who have been accustomed to plant at a fixed date and do little but cut weeds afterwards may find it hard to get the best results in California. And yet the Californian grower has great advantages in his deep, rich soil, in freedom from diseases which thrive in a humid atmosphere and in an exceedingly long growing season.

Local adaptations for different vegetables are sometimes quite sharply drawn and selection of lands for large specialty crops must be made with reference to them. The result is that the earliest vegetables come from a practically frostless valley near Los Angeles; almost all the Lima beans are grown on a coast plain in Ventura and Santa Barbara counties; the celery for eastern shipment is nearly all grown on the peat lands of Orange county; the cabbage largely from San Mateo county; asparagus and tomatoes from Alameda county and river islands of Sacramento and San Joaquin counties, etc. Smaller areas of these products and others not mentioned are more widely scattered, but everywhere the local soil, exposure and climate are chief considerations.

The prospect of great increase in all the vegetable products of California. Fresh and dried vegetables cuter largely into ocean traffic with distant Pacific ports. Interstate trade is constantly increasing and canned vegetables are contracted in advance to European distributors as well as to dealers in all the Americas.

E. J. WICKSON.

VEGETABLE MARROW. See page 1718.

VEITCHIA (James Veitch, of Chelsea, famous English nurseryman), Palmae. About 4 species of palmate palms native to the Fiji Islands and New Hebrides. The genus belongs to that portion of the Areceae tribe characterized by a paracial ovule which is more or less pendulous and fls. spirally disposed in the branches of the spadix, and is distinguished from Heterocybe and allied genera by the following characters: sepals of the male fls. chartaceous, connate at base: female fls. much larger than the male. It is doubtful whether any species is now in cultivation. [V. Joannis, H. Wendl. was cult. in the early eighties. The leaf segments have a wide and rather shallow notch at the apex or are oblique at the base. The sheath pale and rachis pale green, dark brown color and covered when young with a gray tomentum interspersed with lanceolate, thin, dark red scales. Fr. 2 1/4 x 1 1/2 in., oval, ellipsoid, orange, with a red base. G.C. 11: 20:205. R.H. 1835, p. 341. It has been conjectured that Veitchia You Houitei advertised in 1895 by American dealers may be a species of Veitchia. The genus is imperfectly known, and nothing further can be said at present of Veitchia You Houitei.

VELTHEMIA (after the Count of Veltheim, 1741-1801, Hanoverian promoter of botany), Liliaceae. Three species of tender bulbs from South Africa with dense clusters of pennisum, tubular flwers 1/2 in. long, resembling those of the Poker Plant (Hesperocallis), floresforter in color. The plants grow about 1 1/2 ft. high and bloom the last days of the end of October. Two species are offered by Dutch bulb-growers. They are not showy but are of easy culture. They are practically unknown in America. Generic characters: petals withering and persistent; tube long, cylindrical; segments 6, very short, ovate; stamens inserted at the middle of the tube; anthers dehisce inroreently; ovules 2, collateral, placed near the middle of the locules; capsule large, membranous, top-shaped, acutely 3-cornered, loculicidally 3-valved. These plants have a large tunicated bulb 2-3 in. thick. The genus is monographed in Flora Capensis, vol. 6. For culture, see Bulba.

A. Lvs. green, 2-3 in. broad.
viridiolila, Jacq. Lvs. oblong-lorate, wavy-margined, especially 1 ft. long; scale mottled with purple: raceme very dense, 3-4 in. long, 25-30-fl.; fls. 1/4-1/2 in. long, yellow or reddish, with greenish tips. L.B.C. 13:1245. B.M. 501 (4-6-1877).

A. Lvs. glaucesc, 1/2 in. broad.
glaecasa, Jacq. Lvs. oblong-lorate, acute, glaucesc: scale less stony: fls. "yellow or bright red," according to Baker. B.M. 1901 (fl. white, dotted red toward the tips): 3450 (fls. reddish purple, dotted yellow above).

W. M.

VELVET BEAN. Mucuna pruriens, var. utilis. See also Ball, 104, Ali. Exp. Sta., by J. F. Duggar.

VELVET PLANT. Gymnum aurantiaca.

VENETIAN or VENICE SUMACH. Rhus Cotinus.

VENIDUM (name not explained by its author), Compositae. The plant listed in one of the largest American catalogues of flowering seeds as V. calendulaceus is so little known in America that the following account of it as a garden plant is adapted from Gm. 21, p. 405. It is a graceful single-flowered composite which thrives in ordinary garden soil. It is a subshrub but is also a half-hardy annual, making a compact, rounded mass 2 ft. high and 3 ft. wide, and "covered for several months consecutively with black-eyed golden blossoms, resembling those of the pot marigold, though much brighter and more refined." "There is considerable diversity in its seedlings both as regards habit and the size, shape and shading of its blossoms, and careful selection in seed-saving is useful in order to secure the best forms. It is admirably adapted for cutting, as the flowers open and shut as regularly as when on the plant." This species has also been treated as a greenhouse perennial, continuing to bloom until midwinter. The flower-heads are fully 2 in. across. Venidium is a genus of 18 species of South African herbs, 7 of which are annual and perennial, Generic characters: rays female: receptacle honeycombed, mostly nude: involucral scales in several rows, the outer narrower and herbaceous, inner scarios; achenes glabrous, dorsally 3-5-winged, with the beaks reflexed, the rings indexed, the mental straight, narrow; no hairs from the base of the achenes: pappus either none or of 4 very minute, unilateral scales. Monographed in Flora Capensis, vol. 6.}

decircus. Less. Diffuse, conescent perennial, 1-2 ft. long; lvs. mostly lyrate, the terminal lobe ovate or rounded, subacute-lobed or repand, at first edgewhiskered, then spreading, enduringly sulcate beneath, petiole 2-3 1/4 in. long, amply celled at base, the car decurrent along the stem.
VERBASCIUM
into ft. sturdy J.
its everywhere ft. followed poetic foot
numerous whitish stocks European ft. the V.
B.M. somewhat N. B.B. serrulate; stock
Asia. texture: greenish dense cate;
perennial B.
hemisphere broadly icicle long,
rather poisonous stout pedicels outside;
stems long, rather
Perianth-segments 6, persistent, spreading; stamens 6, attached at the base of the segments; capsule ovoid, 3-lobed, 3-located; seeds flat, broadly winged.

Verstruems are striking foliage plants, of easy culture in moist shady positions. In
the open sunlit or in dry ground the foliage is liable to burn and decay prematurely.
They may be propagated by division or seeds.

a. Fls. whitish or greenish.
b. Perianth-segments crisped dentate.

VIRIDIS, Linn. EUROPEAN WHITE HELLEBORE. A Hardy perennial 3-4 ft. high; root
short, fleshy; Ivs. green, pilate; radical Ivs. 1 ft. long, oblong, 5-6 in. wide, firm in
texture; panicle 1-2 ft. long, dense; fls. whitish inside.

VIRIDE, Linn. AMERICAN WHITE HELLEBORE. Indian
Blackstock 2-3 in. long; Ivs. pilate, acute, the lower oval, about 1 ft. long, the upper gradually smaller; fls. yellowish green; segments oblong or ob lanceolate, ciliate, serrulate; pedicels 1-3 in. long. July. North America. B.B. 1:408. B.M. 1096 (Helo nias viride).

Cali forniaeum, Duraud. Stem very stout, 3-7 ft. high; Ivs. ovate-acute, the upper ones lanceolate but rarely securate; perianth-segments broader than in V. viride, obtuse, whitish with a greener base. Colo. and Wyo. to N. Calif. and Ore.—Int. 1853 by Pringie and Horsford. The long panicle of whitish, bell-shaped, drooping fls. is followed by ornamental fruits or capsules.

nigrum, Linn. A hardy perennial often 2-4 ft. high, somewhat haluson at the base; lower Ivs. oblong pilate, 1 ft. long, 6-8 in. wide, narrowed at the base; upper leaves lanceolate; panicle narrow; fls. blackish purple; segments long, obtuse. June. Eu., Asia. B.M. 963.

J. B. KELLER and F. W. BAR CLAY.

VERBASCIUM (old Latin name of the Mullein used by Pliny). Scrophulariaceae. Mullein. A genus of over a hundred species, mostly coarse, woolly, weedy yellow-red, biennials native to the Mediterranean region. Considering the fact that the familiar Mulein (V. Thapsus) is everywhere known and despised in America, the popularity of the genus in English wild gardens is highly surprising. Over 30 kinds are cultivated, and some of them have been pictured many times. A little study of the group shows how much pleasure can be missed by any one who persists in one point of view. The English farmer has no dread of the Mulein, for the Mulein is actually a favorite border plant in England, especially for the back row and for shrubberies. One connoisseur after growing many kinds of Verbascums discarded them all except the common species. The plant probably came to America from England, certainly from Europe, but not long ago it was sold in England under the name of "American Velvet Plant." The "Soldierly Mulein" has often been praised by Ameri-
can writers for its sturdy habit and resistance to the wintry winds; and even a Mulein has its poetic moment, for the young rosette of leaves in the early morning is undeniably beautiful.

There are a few true perennials and some shrubs among the Verbascums, but the species mentioned below (except No. 17) are believed to be biennials. Yellow is the dominant color, with pale yellow and white variations. The origin of the other colors is explained under No. 12 below. Mulleins usually self-sow freely. Their large symmetrical rosettes are very satisfactory the first year, especially in the case of the silvery-leaved species. The second year they send up stalks 2-10 ft. high and give scaring bloom over a long season, in some cases June to Nov., being at their best in August. The best species are V. phoeniceum (see No. 12), V. Olympiacum (No. 17) and V. phlomoides (No. 3), the last two deserving special notice.

The Olympian Mulein is the showiest of all Verbascums because of its short season of bloom. It is peculiar in the fact that three and sometimes four years are necessary to bring it into bloom. Meanwhile it makes tufts of silvery foliage, the Ivs. often attaining 3 ft. in length. The species is the best of the candelabrum type, by reason of its great height (6-10 ft.) and the symmetrical branching of the spike. The fls. are produced in multitudes for three weeks and they are
smaller than in *V. phlomoides*. The plant has the disadvantage of being sensitive to wetness, its soft, woolly lvs. damping off in wet situations over winter.

V. phlomoides, though less popular than the preceding, is probably the best of all the yellow-flowered species. It has the advantage over *V. Olympicum* of being a true biennial of easier culture with larger fls. and a longer season of bloom, 8-10 weeks, and even then if cut half way down it will throw out lateral bloom in late autumn.

Generic description: biennial herbs, rarely perennial or suffruticose, more or less woody; ramose or spikes terminal, simple or branched; pedicels clustered or solitary; calyx 5- or 5-parted; corolla with almost no tube, rotate, rarely concave, with 5 broad lobes; stamens 5, affixed at base of corolla; style entire; ovules numerous; capsule globose ovoid or oblong. DC. Prod. vol. 10. Boisier Flora Orientalis, vol. 4. Garden 27, p. 172; 41, p. 551. American trade names are: *V. Chalchi, nigrom, Olympicum, pannoniacus, phlomoides, phalecanum*.

INDEX.

album, 13.
Blattaria, 10.
blattarioideis, 8.
Boerasalvi, 11.
caesius, 1.
Chalchi, 10.
collina, 1.
camphor, 8.
census, 4.
caesius, 1.
caesius, 1.
uineum, 10.
comunis, 8.
densiflorum, 2.
edulis, 12.
Ferrugineus, 12.
Freyhrinm, 19.
glorbinius, 8.
Lamotei, 1.
parthenstraum, 12.

A. Authors of the longer stamens adjacent-decurrent. SECTION I. THAPSUS.

B. Fls. clustered. (Group 1. Eu throm.)

C. Flowers short-decurrent; corolla concave at the throat. 1. Thapsus

C. Author long-decurrent; corollas flattened out. 2. thapsiforme

E. Stem-less; long-decurrent. 3. philomoides

D. The Fls. spicata, pedicels sometimes as long or longer than the calyx. 4. longifolium

E. Less, very long. 5. filaments glabrous. 6. crassifolium

F. Filaments glabrous. 7. ovalifolium

B. Fls. solitary or nearly so. 8. virengasta

C. Plants woolly. (Group 2. Spectabiles.) 9. densiflorum

CC. Plants glabrous. (Group 3. Blattaria.)

D. Pedicels in 2's or 3's... 10. virgata

D. Pedicels solitary. 11. Blattaria

AA. Authors all kidney-shaped and of about equal size. SECTION II. LYTCHNIT.

B. Racemes simple, or slightly branched. 12. phlomoides

C. Calyx rather large. 13. nivem

CC. Calyx round. 15. phlomoides

DD. Fls. purple. 16. phlomoides

DD. Fls. yellow. 17. nigrom

BB. Racemes branched or paniculat.

c. Clusters of fls., finally remote. 17. Olympicum

c. Clusters of fls., nearly together. 18. Lychnitis

d. Pedicels as long as calyx or longer. 19. Chalchi

e. Plant green and nearly glabrous. 20. rubiginnseus

EE. Plants more or less woolly. 21. chalchi

EF. Filaments white-woolly. 22. thapsiforme

4. longifolium, Ten. (1. perScinum, Vis. & Panc.), Italian species known by its very long root-lvs., long interrupted racemes which are somewhat branched, the lower clusters of its spicate.

5. crassifolium, Hoffm. & Link. Spanish plant with long-decurrent lvs., spicate raceme, clustered lvs., flattened corolla and glabrous filaments.—One of the few species that thrives in a light, sandy soil.

6. densiflorum, Bertol., Italian mountain species known by its decidedly yellow wool and long dense racemes.

8. virengasta, With. (1. blattarioideis, Lam.), This and the next are two of the very few Verbascums that are green throughout. 1. glabrum, Will., and 1. virgatum, Pers., represents its glabrous and sticky-pilose variations. Cosmopolitan.

9. Blattaria, Linn. Moth Muller, Blattaria is from blattre, cockroach, which the plant is said to repel. Plant is frequented by moths, whence popular name. Native of Europe and N. Asia; naturalized in America. One of the few green-leaved Verbascums, distinguished from 1. virgatum by solitary pedicels, Fls. rarely white.

10. nivem, Ten. Imperfectly known Italian species with white wool, very dense raceme of solitary, subsecessive fls. and a 5-parted woolly calyx having ovate lobes.
Place the flats in a coldframe, and keep them moist and shaded until the cuttings are rooted. When rooted, transfer to flats in a cool, light house until after New Year's. Then pot them, listing them in nursery rows or, following a temperature of 50°F., which will soon give plenty of material for additional cuttings. Verbenas increased from cuttings tend to flower early, and those propagated in February or March will require at least covering. When planting-out in beds for summer bloom, bend the plant over nearly to the horizontal, so that the new growth will spread along the surface of the soil. These shoots will quickly take root, thereby covering the ground. The old method was to peg the plants down.

In propagating general stock, sow the seed in February and pot into 2-inch pots as soon as the seedlings are up an inch. A temperature of 45-50°F. will answer, but they should have full light. There is no place equal to a mild hothouse for young Verbenas. About April 15 plunge the pots in a few inches of soil in a mild hothouse. Lift them now and then and rub off the roots which go through the bottom of the pot, in order to check growth and hasten rooting. Customers want to see them in flower before buying, and most of them want to sell them the end of May. However, Verbenas can be planted out early in May, as a slight frost will not injure them.

Verbenas is a genus of about 110 species, one Mediterranean, the others American and occasionally weedy. Herbs or subshrubs, decumbent or erect: lvs. opposite, rarely in 2's or alternate: spikes terminal, dense, and long and distant-fld., sometimes corymbose or panicled: corolla-tube straight or incurved; limb somewhat 2-lipped, lobes 5, oblong or broader, obtuse or retuse; stamens 4, didynamous: ovary 1-loculed, 1-ovaried.

W. M. Scott and W. M.

The following account of Verbenas is extracted from a thesis by J. H. Cowen, whose untimely death deprived American horticulture of a most promising worker. Mr. Cowen was a student of the Colorado Agricultural College and had been an assistant in the horticultural department there. After two years' work at Cornell University he received the degree of Master of Arts in June, 1900, and was elected to the fellowship in the College of Agriculture. A few days later he was notified of his election to the chair of horticulture in the state of Washington and also at Colorado. He accepted the position at his alma mater. The day before his intended departure he was stricken by appendicitis. He died July 12, 1900. The work in Colorado was very much to his heart. It was his native state. He knew the people and the conditions. No man was ever better fitted for the work he expected to undertake.

It was Mr. Cowen's intention to recast his thesis in cyclopedic form. The following account has been changed as little as possible. The botanical part at the end is entirely recast, the readable portion containing Mr. Cowen's words, with a few slight verbal changes and some omissions.

In 1836 Loudon styled the Verbenas "a genus of weedy plants." The lapse of a few years was sufficient to prove this remark to be applicable to many species now used on the plains and prairies of South America, where many species of such surpassing beauty as to set at naught all preconceived notions of the inherent fitness and "weediness" of the genus.

Introduction of Parent Species, 1826-1838. — The first of this noble race to be introduced was Verbena chamaedryfolia, a dazzling scarlet. This species has had a profound influence upon the "selfs" of V. hybrida, particularly the scarlets, and is one of the predominant parent species of the "compacts."

The second important North American species to be introduced was Verbena phyllosticta, in 1834. The flowers are inclined to rose or purple rather than to scarlet, and, according to early plates, are more regular; they are elevated on longer peduncles than the clusters, oval or oblong instead of flat or merely convex. This species and V. chamaedryfolia seem to be the principal parents of the various red, scarlet and rose-colored forms in cultivation.

Verbena incisa, cultivated in England for the first time in 1836. This species is characterized by rosy or purplish, rather regular flowers, borne in a flat or slightly convex cluster. The corolla is strikingly lighter below than above. The leaves are much more deeply cut than in the two preceding species. The habit of growth resembles that of V. phyllosticta, but the flowers are rather tall and weak, three feet high in cultivation. This spe-
VERBENA

VERBENA

The four prototypes of the garden Verbenas, faithfully redrawn from early colored plates.

From left to right: V. chamadrysfolia, chief parent of the reds; V. phlogiflora and V. lucida, the originals of the rosy and purple colors; and V. tenuifolia, a white flower which is chiefly, if not wholly, responsible for the fragrance of the hybrid Verbenas.

present races of Verbenas. V. tenuis and V. Anthisia have probably been used occasionally by florists in hybridizing, but they belong to a different section of the genus, some of their hybrids seldom produce seeds and their influence, if any, has been slight and transient.

With the successful Introduction of V. tenuifolia in 1825, Verbenas took a most promising start for the development of a splendid group of garden plants. They possessed four species, the great variability of which gave opportunity for limitless selection, and the close affinities of which afforded the most favorable opportunities for profitable hybridizing. V. chamadrysfolia provided one of the richest scarlets in nature, V. phlogiflora and V. lucida provided various tints of rose and purple, V. tenuifolia gave white with a rather elusive suggestion of yellow. V. chamadrysfolia was of prostrate habit: V. tenuifolia was stiff and upright; the other two species were intermediate. V. tenuifolia was possessed of a rich perfume.

Early Period of Hybridizing and Selection, 1826-1848. —Selection and hybridizing had already begun in 1826 and had been continued with the production of "several excellent varieties." The first of these were given trinomial Latin names. The Verbenas gained popularity so rapidly and so many efforts were made to improve it that a great number of horticultural varieties soon appeared and English varietal names gradually superseded the unwieldy quasi-botanical ones. All the characters of V. tenuifolia are apparent in many forms of our V. hybridra, notably so in many of the blue "coulatas." Of the four species thus far mentioned, V. tenuifolia alone is still cultivated in a distinct specific form.

These four species seem to be the only ones which have had a marked and permanent influence upon our

improve it that a great number of horticultural varieties soon appeared and English varietal names gradually superseded the unwieldy quasi-botanical ones. All the characters of V. tenuifolia are apparent in many forms of our V. hybridra, notably so in many of the blue "coulatas." Of the four species thus far mentioned, V. tenuifolia alone is still cultivated in a distinct specific form.

These four species seem to be the only ones which have had a marked and permanent influence upon our
admiration of flower-lovers. A host of showy-flowered and zonal pelargoniums were offered to the public. Henderson says that in 1870 he sold 20,000 pelargoniums and that in 1875 he sold 100,600. In many bedding ar-
rangements the Verbenas were used. The tuberous-rooted begonias and \textit{Phlox Drummondii} likewise contributed to the neglect of the Verbena, the latter of two largely on account of its "eyes" and also of conditions in the west of England, however, the Verbena continued to be used to a slight extent as an exhibition plant up to 1889.

By 1870 the Verena was beset with unusually destructive insects and diseases. These troubles were not new, for as early as 1844 it was rec-
ognized that there was difficulty in preserving plants over winter on account of the attacks of mildew and greenfly, but the reward was sufficient compensation for the required vigilance. It is probable that the highly artificial conditions and "coddling" to which the Verena was subjected during the period it was used so extensively as an exhibition plant, contributed to weaken its constitution and thereby to heighten the destructive influence of the mildew and aphid.

The prospects for the Verbena have somewhat improved within recent years. The German varieties maintained their constitutions better than the English ones, and the American climate seems better suited to the Verena than the European. Owing to the long recognized difficulty of "wintering over," the treatment of the Verena as an annual has come into practice and its success is most gratifying. With the improvement of the habit of growth by the evolution of a race of "compactas" and by the fixing of the various colors so that they will come true from seed, the Verena has gained a new lease on present and future popularity.

The form and size of the individual flower and of the flower-cluster have been closely associated and have had a concomitant evolution. By observing Fig. 2656 it is apparent that in the prototypes of some of our present garden varieties of \textit{Verbena hybrida} the individual flowers are irregular, the upper lobes of the corolla being narrower or longer than the lower, and the flowers are relatively small. \textit{V. chamerion} is the most irregular, \textit{V. incisa} and \textit{V. tetraecia} are somewhat less irregular, while \textit{V. phlomitiflora} (if the name were true to his subject) had nearly symmetrical flowers. In none of these species were the corolla-lobes expanded strictly in a plane at right angles to the tube. The flower-cluster of \textit{V. chamerion} was likewise very diverse from the florist's standpoint, in considerable portions of the space were unoccupied, giving to his eye a ragged, unfinished appearance. \textit{V. incisa} and \textit{phlomitiflora} were appreciably better in this respect, while in \textit{V. tetraecia} the flowers were unsatis-
factorily scattered along a sparse spike. The Verena fancier soon established in his mind an ideal of "pip" and "traps," toward which he could readily select. This conception doubtless changed from decade to decade, but the essential features remained fairly constant. This ideal type is admirably exemplified in Fig. 2656, which is a reproduction of an apple from an idealized litho-
graph of 1872. The individual flowers are over an inch in diameter, the lobes are geometrically symmetrical and fill the space perfectly, but do not crowd. The flower-cluster is of graceful, oblate-oval form, with no unoccupied spaces and yet not overcrowded.

Though the Verena breeder probably never completely realized the ideal flower and structure, this ideal has had a most significant influence. The greatest progress in improving the size and form of the individual flower and of the flower-cluster was made during the fifties and sixties, especially during the period in which the Verena was used as an exhibition plant. This is quite natural, because exhibition plants are seen at close range by the English gardeners of this period were very formal in their tastes. On the other hand, such a high degree of symmetry is not sought in flowers used for bedding and for borders. They are seen at greater distances. A abundance of color and the form and size of flowers are of greater importance. It is probable that the best Verbenas of to-day would hardly come up to the standard of those grown by the English gardeners of 1868 if judged by formal symmetry.

The Verena has little tendency to "sport" toward the production of double flowers. However, such forms occasionally occur among seedlings.

\textbf{Development of the Eye.}—The "eyeed" effect observ-
able in the prototypes of \textit{V. hybrida} was that produced by the polisade of white hairs in the throat and the yellowish color of the inside of the tube. At present we have numerous races of "oculitas" with distinct white or yellowish eyes of various sizes. Two different kinds of color markings are spoken of as "eyes;" viz., dark centers and lemon or white centers. In this dis-
cussion the term is applied only to the latter. In a list of 48 select varieties published in 1848 several are de-
scribed as having dark centers, two have lemon eyes, and two have white or "light" eyes. It seems evident from the fact that some of these flowers were produced prior to 1863. There is no record of any of these varieties having been advertised for their dark centers which were doubtless very pleasing; since 1863 less attention seems to have been given to the dark centers and more to the development of distinct white or lemon-colored eyes.

The recognition of a distinct class of oculitas does not seem to antedate 1870, and it is the impression of the undersigned that the French and German Verbena fanciers deserve most of the credit for the recent development of the important oculita class. The ideal oculita of to-day has a clear, distinct, white eye of only medium size. Very large eyes are not so pleasing. They have a tendency to give a "chopped" appearance.

\textbf{Reds.}—The first stem parent, \textit{V. chamerion}, had red flowers, and red in its various modifications of crin-
son, scarlet, rose, etc., has been predominant through-out the entire history of the Verbena. Every accessible list of varieties from 1815 to the present shows a pre-
ponderance of crimson. Among the more recent ad-
vances in this line is \textit{P. Robson's Defiance}, a brilliant crimson, very popular in the fifties, has left so strong an influence as to give the class name "Defiance" to numerous varieties and strains, some of which are doubtless direct derivatives of this historic variety.

\emph{An ideal type of Verbena.}

Adapted from an English colored plate of 1872.
VERBENA

Whites, and the Matter of Fragrance.—Of the four prototypes, *V. tencrioides* alone was white, or white with a shade of pink or an initiation of yellow. Among the hybrid Verbenas there have been, from the first, a few prominent white varieties; but there is no period during which the proportion of whites exceeded about one in eight, or one in ten. Whites are more frequently fragrant than other colors. Good reds are seldom or never fragrant, pinks occasionally so, mauves, purples and blues frequently so. A rich jasminaceous fragrance was one of the noteworthy characters of *V. tencrioides*. Whites in many, perhaps a majority of cases, show foliage and pubescence characters of *V. tencrioides*. This is especially true in plants propagated from seed.

Blues and Purples.—It seems that different shades of purple were occasionally represented in the wild forms of *V. incisa* and *phlogiflora*; however, there were no distinctly blue ones, and in the early history of the Verbena there is a dearth of blue varieties. We find in the Florist of 1861, that "Bluebeard" is "really blue" and that "a good blue has long been wanted, most of the so-called blues being of a blue-purple color." Subsequent to the fifties the number of blue varieties recorded in lists appreciably increase, but they by no means equal the reds, being little if at all in excess of the number of whites. Our best blues of to-day (for example Blue Boy) are of a deep, royal purple (per Ridgway's color plates) rather than really blue. A great variety of tints and shades of purple are represented in the blue varieties which the writer has grown, especially the ones from European seed, there has been a striking resemblance to *V. tencrioides* in foliage, pubescence, habit of growth, etc. They also resemble this species in having many that are very fragrant.

Yellow.—A good yellow has been the dream of many a Verbena lover, but it is doubtful whether the dream will ever be fully realized. Gartenfors of 1890 reports a *V. hybrid* *lutea*, but it is not constant and the yellow is dim. Gartenfors of 1896 reports that *V. tencrioides* *lutea*, Vilin., was produced from *V. tencrioides*, that it is "bright yellow," and that it will be "joyfully received by Verbena lovers."

The Striped Varieties.—Two classes of so-called striped Verbenas have arisen: one sort having the median portion of each lobe of the corolla a different color, usually red or rose, and the margin white; the other sort having irregular stripes, dots and dashes of red, rose or purple upon a white ground color. In 1893 the former class seems to have originated with the British florists somewhat previous to 1849, and was the most popular "striped" class with them for many years after the introduction of the second, true or striped ones. The true striped or Italian Verbenas were introduced into France and England from Italy about 1862. Cavagnini, Brothers, of Bresan, are given the credit of having originated this unique race. It is the general opinion of writers that the Italian are derivatives in part of *V. tencrioides*, the foliage of the Italian varieties portrayed in *Flora des Serres* and of striped varieties now grown shows no "pinnatifida laciniata" foliage of *V. tencrioides*. Neither has the undersigned been able to find any evidence of the author appendages of *V. tencrioides*. However, it is impossible to determine with certainty the parentage of hybrids or structural characters alone. The true explanation may be that the *V. philadelphica* which so often have been used, was not *V. tencrioides*, Spreng., but some form of *V. hybrida*, Hort. The striped varieties are unstable and have a strong tendency to revert to "selfs," whether propagated by seed or by cuttings. In the writer's own experience, a seedling of blue and white striped corolla reverted in four generations of cuttings, so that some of the plants produced only flowers that were solid blue; others, flowers that were white with only an occasional streak of blue. Striped Verbenas afford excellent opportunity for the study of bud-variations.

Production of Leaf-Variation (yellow foliage).—Comparatively little attention has been given to leaf-variation among the Verbenas. However, a number of varieties having leaves variegated with yellow were introduced about 1865, during the period when variegated plants were so popular. At present we have a strain of yellowish-leaved Verbenas which come true to this character from seed.

Development of Compactas.—Early in the history of the Verbenas their "straggling and uncontrollable" habit of growth was lamented. Considerable pegging was necessary in order to keep the plants in any desired position and repeated efforts were made to secure bedding varieties of closer, more upright habit. Considerable progress was made by British florists during the sixties. The progress, however, has been made subsequent to 1870 and the German Verbena growers of Erfurt deserve much of the credit for the production of this splendid little habit, with so much to help restore the Verbena again to popularity. Compactas have been fixed in various colors so that they will come true from seed. In most botanical characters they resemble *V. phlogiflora* and *phlogifloroides*.

Development of Treatment as Annuals. Seed-Planting.—When the Verbenas were first introduced they were

2651. Old style (on the left) and new style of color markings in Verbena.

That at the left was popular at least from 1849 to 1865. The Italian or modern striped race at the right was introduced about 1892, and is the only one known to-day.
propagated to a considerable extent by separating the prostrate, rooting branches and potting them. This method was soon abandoned in favor of propagation by cuttings. Verbenas root very readily and they were grown from cuttings almost exclusively up to 1880, except that seed propagation was employed for the production of new varieties. During all this period, as a consequence of much fortuitous and intentional hybridizing, and of no effort having been made to fix varieties, seedlings were very variable and untypeable to parent varieties. Soon after the decline of the Verbenas in 1868-70 seed propagation was more extensively employed. It obviated the very troublesome experience of wintering over plant stocks, which were so susceptible to attacks of mildew and aphids. Soon efforts were made to fix strains that would come true to color and habit from seed. This has been most successfully accomplished, and the Verbenas is gaining much of its popularity through treatment as an annual. Seeds are sown in March. The plants are hardened off in a coldframe and set out in the latter part of May. They flower profusely from June to October. Striped varieties are not easily fixed.

Summary of Present Horticultural Types (V. hybrida).—It is impossible to satisfactorily classify the hybrid garden Verbenas according to their botanical derivation. They are conveniently classified according to color of flowers into: (1) Selfs, or one-colored varieties; (2) Oculatas, or eyed varieties; and (3) Italians, or striped varieties. As to habit they may be divided into: (1) Standards, those of the ordinary loose, spreading growth; and (2) Compacts, which are much reduced in stature and of more condensed form. Verbenas now in cult. are shown in Figs. 2652-4.

INDEX.

A. Connective of the upper anthers not appenedaged.
B. Clusters not paired. Prototypes of the Garden Verbenas (V. hybrida, Hort. Fig. 2652).
C. Fls. scented.
CC. Fls. rose or purple.
D. Clusters sessile to oblong: lvs. saw-toothed.
DD. Clusters flat or convex: lvs. more deeply and sharply cut.
CCC. Fls. white.
BB. Clusters paired.

AA. Connective of the upper anthers furnished with a glabrous appendage.
Aa. Fls. violet or rose purple. c. Bracts half as long as calyx: plant a subshrub.
Bb. Fls. lirate: plants annual.
cc. Lvs. twice pinnatifid.

1. Veronica, Linn. (V. Melindres, Gill. V. melindroides, Cham.). Fig. 2629. Characterized by red fls. in flatish clusters, oblong, coarsely scapulated, nearly sessile lvs. and rather stiff pubescence. Stems slender, forked, creeping at base, hirsute; branches somewhat ascending: lvs. oblong or ovate, base broadly cuneate, contracted into the short petiole, crenate or subincisely serrate, serrations often unequal, strigose above, below hairy, especially on nerves: peduncles elongated, ascending: spikes solitary, capitulate; bracts lanceolate-subulate, ciliate; calyx hirsute canescent, sparingly glabulur, more than twice as long as the bracts; corolla crimson, limb irregular.—Occurs in two rather distinct forms: var. Melindres has oblong to oblong-lanceolate lvs., which are unequally incised-serrate. This form is less hirsute and is more graceful and vigorous. It was the first introduced to cultivation. Var. melindroides has shorter, broader lvs. and is more hairy. Different forms occur over southern Brazil, Uruguay, Paraguay, and the whole of the Pampas.

2. Veronica, Cham. (V. Tweedieæa, Niven). Fig. 2629. Characterized by rose or purple fls. in oblong or oval clusters; resembles No. 1, but has more upright habit, softer pubescence and larger, longer-pointed, distinctly petiased lvs. Stems ascending: branches rather erect, much divided, angled, retrorsely hirsute: lvs. oblong or lanceolate-triangular, acute, base entire, unequally long-attenuate into the evident petiole, unequally subincised serrate, somewhat venously rugose, strigose above, below hairy or striiglossy pubescent; spikes terminal, pedunculate, many-fl., oval to oblong:

2652. The common garden Verbena—V. hybrida (X1).
bracts short-orovate to subulate lanceolate; calyx twice as long as bracts, covered with short pubescent interspersed with short capitate glandular hairs. Southern Brazil and Uruguay. B. M. 3541. P. M. 4:5. B. 2:60.

3. incisa, Hook. Fig. 2649. Rosy or purple-flowered species with lvs. more deeply cut than in the two preceding. Whole plant hairy-pubescent; stems ascending; branches erect; lvs. oblong-triangular, base cuneately truncate or subcordate, attenuate into the petiole, pinnatified to lobed or deeply serrated and incised, upper lvs. sub lanceolate, sessile, incisely pinnatifid: spikes terminal, pedunculate, subulate, flat or convex: bracts ovate: calyx 4 times as long as bracts, short-hairy, sprinkled with glandular hairs: corolla-tube glabrous, pubescent, thrice as long as calyx; limb large, rose-purple, poler beneath, obovate lobes deeply emarginate. Southern Brazil, Paraguay and northern Argentine Republic. B. M. 3628.

4. teucrioides, Gill. & Hook. Figs. 2650, 2653. Characterized by fragrant white lvs. in very long clusters. Stems cespitose, rooting at base, ascending, tevele, openly and copiously hirsute; lvs. ovate to oblong-triangular, base entire, sessile or nearly so, obtusely serrate, margins revolute, vein-pulvinate, glandular-pubescent above, submentosely hirsutulous on veins below: spikes terminal, solitary, glabrous, hairy, lvs. 5-9 in long; bracts subulate - lanceolate, elliptic; calyx nerved, twice as long as bracts; corolla yellowish white or pinkish, long exserted, twisting in age, fragrant. Southern Brazil, Uruguay, Argentine Republic, Chile and Peru. P. M. 5:243. B. M. 3694.

5. venosa, Gill. & Hook. Fig. 2654. Differes from all other cultivated kinds by pinnate inflorescence and terebrous roots. Herbaceous perennial, 1 foot high: stems simple, rhizomatous, creeping at base, ascending, 4-angled, hairy; lvs. rigid, oblong to oblong-lanceolate, the subcuneate base entire and half-clapping; acute at apex, unequally subincisely dentate, the teeth openly acuminate, nerves prominent, hirsute below: spikes in a close terminal panicle, subulate, lateral ones pubescent, fastigate and finally cylindrical; bracts subulate, elliptic, often purplish, exceeding the hairy calyx; corolla lilac or bluish purple to nearly sky-blue; very thinly villous without; tube slender, thricr as long as calyx; fr. 1

2654. Young plant of Verbena venosa, too young to show the characteristic pinnate arrangement of clusters (X ½).

2653. Verbena teucrioides, as cultivated to this day (X %). The spike elongates still further.

8. bipinnatifida, Nutt. (V. pulchella of some German seedsmen. V. montana, Hort., in part). Perennial, prostrate and rooting at base; stems stout, upright, branched, 6-18 in, high: lvs. rather thick, petiolated, 1-2½ in, long, scarious sheaths, ovate in outline, narrowly parted or 3-parted into numerous oblong, rather acute lobes 1-3 lines broad; spikes solitary, dense to rather lax, at first capitulate, becoming 2-4 in. long in fr.: corolla 2-3 lines long, purple or lilac, limb 4-3 lines broad, lobes emarginate to obcordate; throat of corolla provided with a pilafoal of slender hairs: upper stamens bearing each a small anther. flowers thin in August, Texas to Neb. and Col.—Flowers become bluish purple in drying.
VERMONT

1917

V. Aubletia, Jacq. (V. Aubletia, var. Dránumondii, Lindl. V. Caucauista, Britton. V. Dránumondii, Hort. V. Lamberti, Sims. V. moutting, Hort., in part. Fig. 2655. Perennial, subaceous, with rather stiff hairs or globose burs; stems slender and ascending from a somewhat creeping root base, 6–18 in. high; lvs. ovate or ovate-oblong in outline, 1–3 in. long, truncate, broadly cuneate or subulate at base and the petiole more or less armed, in a definite row, the deeply 3-lobed; spikes peduncled, dense, short and capitate in early flower, becoming 2–4 in. long in fruit: bracts subulate, mostly shorter than the calyx—teeth and the calyx densely pubescent; calyx with a few unequal, filiform-sululate; corolla 6–10 lines long, from bluish purple or lilac to rosy purple or white, frequently approaching blue in dried specimens; limb 3/4–3/4 in. broad, lobes oblong or obovate, subacute and more or less revolute near the sinuses, throat provided with pales of short white hairs: upper anthers bearing each a light brown, oblong gland which is barely exserted. Colo. and Mex. eastward across the continent. B.B. 3:72. B.M. 208:2290. B.F. 4:2324; 23:1925.—Reported as producing many garden and spontaneous hybrids. Garden forms are of stouter habit, less inclined to root at base; lvs. larger, dark shmy green above, more conspicuously velvety, clusters and individual lvs. larger, and the color variation more striking. Many forms have a richer fragrance and quite different from that of the hybrid Verbens. On account of the robust, healthy nature of V. Aubletia it has been frequently recommended for the above purposes as desirable for hybridizing with the hybrid Verbens to improve their constitution. This cross would be too radical for best results. It is to be regretted that this charming species which is thought worth of in Europe should be neglected in its native America.

V. brocata and hastata, two weedy North American species, have also been offered for cultivation, but they have small garden value. Descriptions are easily obtained.

J. H. COHEN.

VERBENA, LEMON. Lippia.

VERBENA, SAND. See Abronia.

VERBESINA (probably a meaningless alteration of Verbena). Compositae. CROWNBEARD. About 50 species of American herbs, annual or perennial (some tropical species shrubby), with alternate or opposite, often decurrent lvs. and corymbose or solitary heads of yellow or white flowers; rays sometimes wanting, pistillate or neutral; sexes flattened or those of the rays 3-lobed, their margins waved or not: pappus of (1–3) awns, sometimes with 2 or 3 intermediate scales. About half a dozen hardy perennial Verbesinas have slighted, but the competition among the yellow-fl. autumn-blooming compies is so great that Verbesinas have little chance. The following species is a robust and rather coarse plant, growing 4–8 ft. high, and found only for the wild gardens and the back border, as a border. It is doubtless of the easiest culture. It blooms from Aug. to Oct., and has numerous yellow fls. 3/4–1 in. across in flatish clusters.

occidentalis, Walt. (V. Siegesbeckia, Michx.). Hardy perennial herb, 4–8 ft. high; lvs. ovate (uppermost oblong-lanceolate), acuminate, serrate, the larger ones 8 in. long, contracted into a marginal peho: rays straw-colored and usually fertile: awns of pappus not hooked. Dry hillsides, eastern U. S. B.B. 3:420.

W. M.

VERMONT, HORTICULTURE IN. Fig. 2656. Vermont has no reputation as a horticultural state, either amongst her own citizens or outside her boundaries, yet there are several fruits grown in the temperate zone, not even excepting apricots and peaches, which cannot be grown to perfection here. With the exception of apricots, peaches and sweet cherries, the other fruits grown are produced in great perfection. The only reason which can account for the non-development of Vermont's horticultural resources is that the possibilities are not appreciated by her landowners. Vermont farmers are extremely conservative and slow to make a change in their methods of farming, so that the signal success of the few who have taken up fruit-growing makes but small impression on the many who are still busy making butter and growing hay, potatoes and corn.

The home markets for fruit and vegetables are unusually good. Strawberries rarely sell for less than 15 cents a quart, and the average price for good fruit is probably nearer 25 cents. Blackberries are generally selling at 10 cents and raspberries 10–12 cents. Cherries are hardly to be bought, though sour cherries thrive and cherry pie is perhaps best. Apples, cherries and damsons are always $3 to $4 a bushel. Good vegetables sell equally well. With such favorable markets, supported by numerous small manufacturing villages and a horde of summer boarders, horticultural industries certainly ought to thrive.

The horticultural regions of Vermont are, roughly, three. The first and most important is the Champlain valley district, including several of the large islands in Lake Champlain. This region reaches off toward Montreal on the north; and the general character of its horticulture is much like that in the St. Lawrence valley between Montreal and Lake Ontario. Winter apples are the most important crop in this section. The second region lies in the southwestern part of the state and belongs to the upper Hudson valley. Apples will grow well and are grown when attended, but they are seldom cared for. Greater success is secured with small fruits, the growing of which is greatly encouraged by the large annual immigration of summer residents. The third district comprises the valley of the Connecticut. It is the least developed of the three, horticulturally. The reason for this fact is not plain. Soil and climate are admirably adapted to all sorts of fruits. Even peaches are successfully grown in orchards. The few men who are growing plums, cherries, strawberries, etc., are proving every year that the Connecticut valley in Vermont is naturally as much a fruit region as any other.

The apple crop offers the single semi-exception to the statement that Vermont has no horticultural reputation at home. There are a few commercial apple orchards in the Champlain valley which grow as fine apples and yield as handsome cash profits as any orchards in America. Grand Isle county, made up of land lying in Lake Champlain, has the largest reputation for apples. The best orchards and the best orchardists are found there; but Addison county ships about double the quantity of apples.

The varieties of apples grown for market are principally Greening, Spy, Baldwin and Fameuse. Next to these come McIntosh, King, Ben Davis, Spitzenburg, Seek-no-further and Arctic. A few old varieties are still grown in such small confidence:

Blue hill, Dutch Mignonette, Gilpin, Grimes Golden, and the like. But such collections are few and unmerited. The modern commercial varieties are the only ones in repute.

Vermont has had some experience with the Russian apples. In fact, Dr. T. H. Hoskins, of Newport, on the northern boundary of the state, has been one of the most famous experimenters with the Russian importations. Nevertheless the Russian varieties have made small impression on the pomology of the state.

Plums are grown just enough to prove that they will succeed admirably. Lombard, Green Gage, Broadway, the Dansons and other old-fashioned sorts still retain the preference of conservative Vermonters, though other growers are planting chiefly the Japanese varieties, especially Burbank and Ambrosia. In the northern and mountain town only the Americana and Nira types are hardly enough; but even these are seldom grown.

Among cherries Morello, Montmorency and Richmond are favorites. Raspberries are mostly red, the black caps being seldom grown. Cuthbert is the leading variety, though Schaffer and Columbia are gaining friends rapidly. Blackberries are not carefully grown usually. Fine blueberries are picked from the woods in considerable quantities. Early varieties of grapes can be ripened for home use, Concord, Wodeon, Moore Early, Green Mountain and Delaware being leading varieties.
Truck gardening is practiced, of course, in the neighborhood of all the principal cities; but it cannot be said to be a well-managed business. Those crops which grow in special perfection are beans, potatoes, peas, tomatoes, salisfy and parsnips. Those which cannot be grown, or which are, as a rule, unsuccessful, are melons, okra, sweet potatoes, turnips and Lima beans. Special crops which are sometimes grown in quantities for export are seed peas, white beans and onions.

On account of the long, cold winters and the short, cloudy days of that season, greenhouses are operated at a great disadvantage. The production of hothouse vegetables is, therefore, very small, and florists find it difficult to grow roses and lilies, or even violets and carnations, at a profit.

The Vermont Horticultural Society was organized December 3, 1896. It is, therefore, a young, though an active and useful society.

F. A. WAGGONER

VERNONIA (after Wm. Vernon, an English botanist who traveled in North America). Compositae. Ironweed. A genus of nearly 500 species of perennial herbs or coryd shrubs, with alternate, pinnately veined leaves and usually purple or rose flowers borne in the following species in terminal cymes. The genus is widely scattered about the world, but is possibly most plentiful in South America. The following species are native of the United States, and are hardy perennial herbs of attractive appearance, with rather large heads of purple flowers in terminal clusters in late summer or early fall.

Heads not glomerate, several- to many- tld.; involucre of dry or partly herbaceous, much-imbricated bracts; corolla regularly 5-cleft into narrow lobes: akenes mostly 10-costate, with a truncate apex and a cartilaginous, callous base; pappus double (at least in American species). Vernonias are of easy culture in any good, rich border, being easily propagated by division.

A. Heads 50-70-flowered.

Arkansas, DC. Stem 8-10 ft. high: lvs. linear-lanceolate, 4-12 in. long, alternate-acuminate; peduncles not branched; involucre green, the filiform tips often reddish. Plains, Mo., Kan. to Texas. July-Sept. B. B. 3:302.

AA. Heads 15-40-fl.-

b. Lvs. narrowly linear.

c. Plant about 1 ft. high.

Lindeheimeri, Gray & Engelma. Stem excessively leafy up to the inflorescence: lvs. 1½-3 in. long by 1-2 lines wide, with revolute margins; fls. in a corymbiform cyme. July-Sept. Rocky hills, W. Texas.

c. Plant 2-4 ft. high.

Lettermanni, Engelm. Stem fastigiate and commonly much branched at the summit: lvs. 2-4 in. long, only 1 line wide, margins not revolute; fl.-heads numerous, ½ in. long, 10-14-fl. July-Sept. Sandy soil, Arkansas.

b. Lvs. not narrowly linear.

c. Bracts of involucre tipped with slender awns.

Novembearis, Wildl. Fig. 2657. Stem 3-6 ft.: lvs. oblong to oblong-lanceolate, 3-9 in. long; heads in an open cyme; involucre commonly brownish or dark purplish; fls. rarely white, usually in moist soil. July-Sept. B.B. 3:302.—The more common species of the eastern United States.

c. Bracts not awned.

d. Plant tomentose.

Baldwinii, Torr. Stem 2-5 ft. high: lvs. lanceolate to ovate-lanceolate, 4-8 in. long; bracts greenish acute or acuminate, tips spreading or reflexed. Fls. earlier than most species, in July and August. Prairies, eastern Mo. to Texas. B.B. 3:302.

d. Plant glabrous.

e. Lvs. thin.

altissima, Nutt. Stem 5-10 ft. high: lvs. veiny, lanceolate or lanceolate-oblong, 4-12 in. long; bracts obtuse or merely mucronate-tipped, closely appressed, July-Sept. Western Pa. to Ill., La. and Fla. B.B. 3:303.

e. Lvs. thickish.

fasciculata, Michx. Stem 2-5 ft. high: lvs. somewhat obscurely veined, linear to oblong-lanceolate, 2-6 in. long; heads numerous and crowded on the branches of the cyme: bracts obtuse or some of the upper mucronate-acute, closely appressed. July-Sept. Ohio and Ky. to the Dakotas and south to Texas. B.B. 3:303.

2657. Isolated specimen clump of Ironwe ed—Vernonia Novembearis.
VERONICA (after St. Veronica). Scrophulariaceae. Speedwells. The Speedwells are mostly herbs, with a few exotic shrubs, best known by their usually long racemes of small blue flowers. About 200 species, mostly in the northern hemisphere, a few species in the tropics and southern hemisphere. In New Zealand they are a dominant feature of the country. Plants in cultivation are mostly hardy at the North, usually growing occasionally prostrate. Lvs. opposite, rarely verticillate or alternate: fls. in axillary or terminal racemes and bracted; calyx 4- to 5-parted; corolla usually blue, rarely pink or white, wheel-shaped or salver-shaped, the lateral lobes or the lowermost one commonly narrower than the others; stamens 2, exerted, one on each side of the upper lobe of the corolla; style entire, subcapitate; capsule flattened, obovate or notched at apex, 2- to 4-furrowed; seeds few or many.

All are showy, tree-flowering plants, used, except the shrubs, as garden perennials or annuals, and propagated by seeds, the perennials also by division, the shrubs by cuttings in spring or summer. They succeed in any good garden soil in a sunny situation. The racemes bowing forward as the plant grows, are adapted to the herbaceous border. The shrubby forms are greenhouse plants or grown only in warmer parts of the country, particularly California, where they are everblooming, and where they do well where they can be exposed in exposed places by the sea. The shrubby species are mostly natives of New Zealand. They are well reviewed in The Garden 45, p. 506, and 26, p. 222. Some of them have enjoyed a considerable popularity in England, where they are generally seen in cold conservatories, but they survive the winters outdoors in the most favored parts of the British Isles. The first hard herb was raised in 1848 by Isaac Anderson-Henry (then Isaac Anderson), a noted hybridizer. This gentleman continued his experiments for several years, using V. speciosa, salsilloides and elliptica. His work was continued by others, and most of the hybrid Veronicae of today have the parentage above indicated, with the blood of V. speciosa generally much in evidence. If a descriptive name for Veronica hybrids is desired, V. speciosa var. hybrida is the best name for the whole group. Unfortunately all these hybrids are unfit for general cultivation out-of-doors in northern climes, but a harder race will probably be secured by using V. Traversii and its allies, which have been introduced more recently. Some of these are V. Colensoi, Rakiaea, avanala, bouvardia and pinnicola.—All unknown to the American trade. A third and still harder group of the New Zealand Speedwells is the truly alpine group known as Whipcord Veronicae. These should be quite hardy in northern rockeries. They are unknown in America now. The best of the group is said to be V. capensisoides, var. variabilis, known to English trade as V. salicifolium. Others in cultivation are V. Hectori, Armstrongii, and hypogynoeae.

Veronica was monographed by Bentham in Latin in DC. Prod. 10:438-491 (1846), 158 species being then known. An excellent account of cultivated Veronicae is found in Vilmorin’s Blumenhandlern.
3. elliptica, Forst. (V. dermatisa, Soland.). Remarkable for its white fls., which are large for the genus, ¾-1½ in. across. Small or tree-like; lvs. oval or oblong-elliptic; racemes axillary, few-fl.; lvs. white or flesh-colored. New Zealand and antarctic regions. B.M. 242. J.H. III. 35:325.—Not advertised in America now.

4. speciosa, R. Cunn. A half-hardy bushy branching shrub, 3-6 ft. high. Stout and very smooth, the branches angled; lvs. obovate-oblong, subsessile, thick and smooth, 2-3 in. long; racemes axillary, densely fl.; lvs. blue to violet, rose, red or white varieties; capsule exceeding calyx. Banks of streams, New Zealand. B.M. 457. R.H. 1844-60. Andersonii, Linn. Paxt. (V. Hendersonii, Hort.), a hybrid of V. salicifolia and speciosa, is a summer bedding plant and also a greenhouse subject. It grows 18 in. high; lvs. oblong, sessile, entire, thickish; racemes axillary; lvs. bluish violet. F.S. 5:565. Fig. 2658.

Var. imperialis, Boncharlat (V. imperialis, Hort.), has large, dense spikes of "aumaranth-red" or crimson-purple flowers. F.S. 22:2317. The excellent "Veronica Purple Queen" is alleged to be a hybrid of V. Traversei and V. Hendersonii and to have violet-blue fls. with a white center. The handsome plate Gn. 45:966 shows no trace of V. Traversei nor of white center. The parent species are close. In some catalogues V. Hendersonii and V. subsessilis are said to be synonymous, but this is a gross error.

5. salicifolia, Forst. Strong, half-hardy, glabrous shrub with flat-forked branches, approaching a tree in size and habit; lvs. lanceolate, subsessile, entire, smooth, 2-3 in. long, pointed; racemes axillary, densely fl.; lvs. bluish white, large, pedicelled; capsules larger, longer than broad, pointed, exceeding the sepals. New Zealand, where it is a graceful tree 10-15 ft. high. Gn. 26, p. 107; 28, p. 290; 34, p. 349.

6. macrocarpa, Vahl. Young branches glabrous; lvs. sessile, lanceolate, entire, acute, smooth; racemes densely fl.; lvs. bluish white, large, pedicelled; capsule ovate-oblong, thrice exceeding the calyx. With habit and lvs. of V. salicifolia. Mt., New Zealand.

2658. Veronica Andersonii (× ½). No. 4.

7. Buxbaumii, Tenore. Prostrate annual, with elongated slender pubescent stems, the lower branching and often rooting; lvs. ovate, subcordate, coarsely crenate-serrate, pubescent, shortly petiolated ½ in. long, the upper alternate and similar; racemes axillary; lvs. small, blue, scattering, on long pedicels, of long duration; capsule broader than long, very widely notched, exceeded by the sepals and calyx. Fields, middle and S. Europe, Asia and naturalized in N. Amer. F. 1846, p. 112.

8. Syriaca, Roem. & Schult. Ascending, diffusely branched pubescent herb, 6-12 in. high; lvs. ovate or ovate-lanceolate, incised or dentate, smooth; lower petiole, upper subsessile, ½ in. long; raceme terminal, slender, ½ in. long. Fls. blue, with thread-like pedicels ½ in. long; capsule broader than long, notched two-thirds of its length, exceeding the sepals. June. S. W. Asia. R. H. 1857, p. 311.

9. serpyllifolia, Linn. (V. alpifloris, Hort.). THYM-LIKE SPEEDWELL. pubescent. No. 35. Alpine Speedwell. A creeping, nearly smooth plant, growing irregularly in clumps 2-4 ft. high, the base prostrate and rooting; lvs. ovate or oblong, crenate, ½-¾ in. long, smooth, variable: capsule short-ovoid, whitish or pale blue with deep stripes; capsule wider than long, obtusely notched, exceeding or equal to the sepals. May-July. Roadside and fields, Asia, Eu. N. Afr., N. and S. Amer.

10. Virginica, Linn. (Leptadenia Virginica, Nutt.). GREAT VIRGINIAN SPEEDWELL. CULVER’S ROOT. Erect, simple, somewhat pubescent herb 2-6 ft. tall; lvs. in whorls of 4-6, lanceolate, 2-4 in. long, smooth above, pubescent below, acutely or short-acuminate; capsules terminal, erect, long, dense; fls. many, white or pale blue, short-pedicelled; capsules longer than broad, pointed, exceeding the calyx. Aug.-Sept. East and central states.—Free-growing herb. Likes rich soil and much sun. While stiff and coarse, it is bold and stately. Var. japonica. Of similar character but a month earlier. Japan.

11. alpina, Linn. A slender, delicate plant growing from a creeping stock, branching at the base, becoming ascending or upright, the flower-stems often solitary, 2-6 in. high; lvs. opposite, occasionally alternate, subsessile, elliptic or oblong, entire or dentate, about ½ in. long, of varying size, the lowest small, orbicular; raceme short, scapiform, dense; fls. small, blue or violet; capsule ½ in. long, oblong, longer than broad, hairy, exceeding the calyx. Mts., of Europe, or Mediterranean, Asia and alpine and arctic regions in America. B.M. 2925.—Adapted to the rock-garden. Blackens when dried.

12. gentianoides, Vahl. GENTIAN-LIEMED SPEEDWELL. Erect, slender, tufted species 6-24 in. high, according to soil and position, from creeping roots and leafy stems below broadening above into a spicate raceme; lvs. oblong or oblong-oblong, some lanceolate or linear, thickish entire or small crenate, smooth, 1½-3 in. long; root-fls. more or less in rosettes; upper lvs. lance-like, smaller and narrower; raceme elongated, leafy, many-fl.; hairy; fls. pale blue, with darker streaks on long pedicels; capsule nearly round, slightly constricted at the calyx. Wet alpine fields, S. E. Eu. B.M. 1002.—A hardy species in any soil or location, shade-enduring though not necessarily shade-loving, blooming early. Plants, by division, and forms a neat mound. Excellent ground cover for bare spots in midsummer. Also a valuable border plant. One of the earliest. Var. folia variegata is a dwarf form with variegated lvs. used in formal bedding. Another variety has longer flower-stems and larger fls. which are light lavender. Var. alba has white flowers.

13. repens, DC. CREEPING SPEEDWELL. Prostrate, slender, compact plant growing in dense masses; lvs. ½-3 in. long, ovate, slightly crenate, shining green and moss-like; racemes slender, few-fl.; fls. nearly white, with a trace of blue; capsules broader than long, deeply notched, exceeding the sepals. May. Forests of Corsica. Hardy in Mass.—Grows in the sun. Will cover the ground where grass does not grow, forming a sod in a short time. Prefers moist corners but thrives on a moderately dry soil.

14. incana, Linn. (V. caudata, Hort.). HOARY SPEEDWELL. Strong, upright or ascending, white-woolly plant 12-18 in. high, with many sterile bracted branches bearing shorter, slenderer, erect branches; lvs. opposite, ovate or oblong, lower oblong, upper lanceolate, 1-3 in. long, white-tomentose; racemes erect, numerous, 3-6 in. long; fls. many, blue, short-pedicelled; capsule longer than broad, thick, exceeding the woody calyx. Fields and mountain regions. N. Asia, and southwestern Eu.—Resembles V. spicata in habit. Has a good
15. **pinatula**, Linn. Strong, upright plant 2-3 ft. high, glabrous or pubescent; lvs. sparse or somewhat clustered, finely cut, the lower pinatula with spreading seg- ments, the upper pinatula, thin, shining, smooth; racemes slender, many-fl., elongated; fls. blue. June, July. Open mountain lands, Russia.

16. **spuria**, Linn. (V. paniculata), Linn. V. amethyste- rion, Willd. EASTERN SPEEDWELL. Upright, slender, densely pubescent species 2 ft. high; lvs. mostly oppos- ite or ternate, 1 in. long, linear, acute, serrate-crenate toward the apex, entire below, smooth, narrowed at the base, thickish; racemes numerous, panicked, long, densely many-fl.: fls. blue, pedicelled; capsule nearly round, thick, exceeding the sepals. May, June. Woods, southeastern Eu. and southern Russian Asia.—Becomes woody late in the season. Var. elegans, Voss. Lvs. pubescent on both sides; habit much branched and more slender than the type. A form with variegated lvs. and flesh-colored fls., is known to the trade as V. elegans carne variegata.

17. **longifolia**, Linn. Strong, leafy, upright, densely growing species 2½ ft. high, with usually a smooth stem; lvs. lanceolate or oblong- acuminate, sharply serrate, lower opposite, upper more or less verticillate, pubescent below, very acute, 2½-4 in. long; racemes long, erect, spiciform, dense; fls. blue, numerous; capsules longer than broad, notched, a little exceeding the linear sepals or sometimes exceeded by them. Rac- eomes black in drying. July-Sept. Wet fields, middle and eastern Eu. and northern Asia.—Much cultivated and hybridized varieties. A fine border plant and the most common species, growing and flow- ering freely in any good soil. Var. subsessilis, Mill. Fig. 2639. More erect, compact and robust than the type, 2½ ft. high, growing in clumps with numerous side branches and of a good habit; lvs. 2-4 in. long, ac- cording to the richness of the soil: spikes longer and fls. larger than of the type and of an intense lustrous blue. Aug.-Oct. Japan. B.M. 6447. E.H. 1811.270. G.C. H. 16:788. A good border plant and considered the best Speedwell. Best in deep, rich soil in an open position. Var. rosa, Hort. (V. roser, Hort.), a probable varie- ty with pink fls., 2 ft. high and much branched. Hardy in Mass. Prop. by division and cuttings. Var. villosa (V. villosa, Schrad. V. crewstonia, Hoffm.). A Siberian form with narrower lvs. than the type and large blue fls. Lvs. serrate or doubly notched or incised.

18. **spicata**, Linn. Ascending or erect, slender stems 2-4 ft. high, growing from a shortly creeping, almost woody rootstock; lvs. lanceolate, lance-oblong or the lower ovate, opposite or verticillate, crenate, downy, 1½-2 in. long, thick; racemes long, upright, densely many-fl.: fls. pedicelled, clear blue or sometimes pale pink; stems very long, purplish; capsule longer than broad, notched, thick, exceeding the broad hairy sepals. June-Aug. Hilly pastures, Eu. and N. Asia.—Thrives in an open soil away from shade. Regarded as one of the better border Speedwells. Var. alba has white fls. Var. rosa, Hort., has showy pink fls. in early autumn.

19. **circumdata**, G. Don. Low, trailing perennial, grow- ing in a dense mass; lvs. lanceolate, crenate toward the apex, small, dark green, numerous; racemes many, 6 in. high: fls. small, dark blue. May, June. Switzer- land.—Rare. Considered one of the best. Valuable as a ground cover, as a rock plant or at the front of a her- baceous border.

20. **montana**, Linn. MOUNTAIN SPEEDWELL. Slender, trailing, hairy plant, 12-18 in. long, rooting from the stem; lvs. ovate, petioled, coarsely crenate, hairy, sparse; racemes slender, few-fl., on long pedicels; capsule large, broader than long, slightly notched, ex- ceeding the hairy sepals. May, June. Moist woods, temperate Europe.

21. **finikiana**, Linn. COMMON SPEEDWELL. FLUTELLEN. GROUND-HELE. Prostrate, leafy native with a pubescent stem rooting at the nodes, slender, 6-18 in. long: lvs. elliptic, oblong or broadly oblong, ½-1 in. long, hairy, serrate at base, evergreen, retaining color where most

2659. Veronica longifolia, var. subsessilis (X ¼).
VERONICA petiole showy other ft. forcing Coronia. The H. ft. is ('. be Lvs. slender — ^3 Viburnum is nial, are inflated, low horticultural scattered 2:483. deeply bose, slender: its sheath rachis armed foliage from 1886. Rochester monticola, oruciferce. Verschaffeltia Verschaffeltia 25. linear, are epigeous the base. Some said it is an annual or biennial, while Koch says it is perennial or subshrubby. In the American trade it is considered an early-flowering yellow annual, about 1 ft. high, blooming in May and June. sinuata, Poir. Lvs. softly tomentose, oblong lanceolate, narrowed toward the base, sinuate-dentate or subentire. Spain.—According to De Candolle the petals finally become whitish. W. M.

VETCH. See Vicia.

VERVAIN. Verbena.

VESICARIA (Latin, bladder; referring to the shape of the pod). Cruellora. About 20 species of widely scattered herbs with racemes of large, rather small, yellow or purple flowers of various forms. Sepals equal at the base or laterally subequal; silique globose or inflated, many-seeded, and with a slender style: lvs. entire, wavy or pinnately cut. The genus has small horticultural standing, but some of the hardy perennials are said to be well adapted for rockwork and easy culture. Some are like wall flowers; others resemble alium. Both seeds and plants of V. sinuata are offered by American dealers, but the plant is imperfectly known. De Candolle says it is an annual or biennial, while Koch says it is perennial or subshrubby. In the American trade it is considered an early-flowering yellow annual, about 1 ft. high, blooming in May and June.

VETIS. See Salix.

VIBURNUM (the ancient Latin name). Cornellia. Ornamental, deciduous or evergreen shrubs, rarely small trees with opposite, petioled and entire, dentate or lobed lvs. and with white fls. in showy cymes, followed by decorative red or blackish berry-like fruits. The Viburnums rank among our most valuable ornamental shrubs. Besides showy flowers and decorative fruits they possess tasty and showy foliage. Viburnums are the plants of the bright fall coloring. The plants are of good compact habit. Most of the deciduous species are hardy north, but V. macrocephalum, var. sterile and V. obovatum are tender; also V. tomentosum, Wrightii, Rhothecium, cotilofolium, nudum and dilatatam are not quite hardly farther north than New England. Of the evergreen species V. japonicum is the hardest and stands some degrees of frost. The Viburnums are well suited for borders of shrubbery or planting along roads, and the more showy ones are handsome as single specimens on the lawn. They are mostly medium sized shrubs, 5-10 ft. high, but V. laudum, prunifolium and rafitatum sometimes grow into small trees, 30 ft. high, while V. acerifolium rarely reaches 5 ft. The most decorative in fruit are V. Opulus, dilatatum and Wrightii, with scarlet or red berries which remain a long time on the branches. Besides the Snowball forms, V. dilatatam, tomentosum, Sieboldi, prunifolium, rafitatum, malle and delavayi are very handsome in bloom. Varieties with all the flowers of the cymes sterile and enlarged are known in the case of Opulus, tomentosum and macrocephalum, the Common, the Japanese and the Chinese Snowballs. The foliage of most species turns purple or red in fall, that of V. Opulus and acerifolium being especially brilliant. V. dilatatam and philodendrum assume a dull yellow color; V. macrocephalum and Sieboldi keep the bright green of their foliage until late in autumn. The Viburnums are not very particular as to soil and position, but most of them prefer a rather moist soil. The species called V. acerifolium, Lantana, dilatatum, Tiunas, plateae and prunifolium grow well in drier places, while V. dilatatam and philodendrum require shade and a porous soil of constant moisture. V. acerifolium does well under the shade of trees in rocky and rather dry soil. V. Tiunas is often grown in pots and thrives in any good loamy and sandy soil. With a little light it may be forced into bloom at any time in the winter; if not intended for forcing, it requires during the winter a temperature only a little above the freezing point and even an occasional slight frost will not harm it. Tiunas and the Japanese Snowball are also sometimes forced and require the same treatment in forcing as other hardy shrubs.

Prop. by seeds sown in fall or stratified; also by greenwood cuttings under glass, especially V. tomentosum, macrocephalum, malle, cassioides and the evergreen species; V. dentatum and Opulus grow readily from hardwood cuttings and all species can be increased by layers (Fig. 2660); grafting is also sometimes practiced, and V. Opulus, dentatum and Lantana are used as stock.

About 100 species in N. and C. America and in the Old World from Europe and N. Africa to E. Asia, distributed as far south as Jamaica and Guianas. Extremely small trees, with opposite stipulate or extipulate lvs.; fls. small in terminal paniculate or mostly umbel-like

2660. A layer of Viburnum Opulus, the Common Snowball.
VIBURNUM

The familiar Snowball of delightful memory seems to be doomed. It is too much trouble to try to keep off the aphids. Fortunately its place can be taken by a Japanese species that is even more satisfactory. Fig. 2663. The berries of the Japanese species, V. tomentosum, are a brilliant scarlet, changing to black. The foliage of this Snowball is also remarkably beautiful. The leaves are olive-green with brownish purple or bronzy margins, and their plicate character makes them very distinct and attractive. The bush is entirely free from insect pests. The single and double forms of the Japanese species differ in the same way that is shown in Figs. 2661 and 2666. Unfortunately they have been confused in many nurseries, and only the trained eye can tell them apart in the nursery row. The double or Snowball type is, of course, the one destined to the greater popularity, though the single form is a shrub of great value, especially for large estates and parks. The double form is known to nurseries as Veburnum plicatum, but its proper name is V. tomentosum, var. plicatum. While it is hardy in New England, it is not a shrub that can be transplanted as easily as many other species. Hence it should be transplanted every second year in the nursery until it is sold. The double form may be propagated by cuttings of half-ripened wood in close frames, or by layers, which in some soils would better remain two years. French nurseries propagate it by layering. The layers seem to suffer from winter and, to be on the safe side, it is best to cover them well with moss or leaves when the ground is somewhat frozen, so that the frost may be kept in until spring. The clusters are about as big as oranges and pure white. They are in great demand for Decoration Day in New York.

The single form, unlike the double, is easily transplanted. It is also readily propagated by layers or cuttings. Both kinds are hardy in the North and make compact bushes 3-8 ft. high.

J. W. Adams and W. M.

INDEX.

1. Sieboldii
2. Sandankwa
3. odoratissimum
4. Tinus
5. rigidum
6. pumilum
7. rubidulum
8. macrocephalum

A. Les, pruinose, not lobed.
B. Cymes paniculate, broadly pyramidal or semi-globose.
C. Foliage deciduous.
D. Cotyledon with cylindrical tube.
E. Snowball, cultivated.
F. Cymes umbellate-like, flat except in the Snowball forms.
G. Secondary veins curving before reaching the margin; margin entire or finely serrate.
H. Foliage persistent, entire.
I. Branches and les, glabrous or slightly pubescent.
J. Les, finely and sharply serrate: cymes sessile, sub-headed by the upper leaves.
K. Petioles mostly with weavy, rather broad margins.
L. Lentago
M. Petioles without or with narrow, not weavy margins.
N. Winter-buds with pubescent scales.
O. Winter-buds naked.
P. Winter-buds naked, les, with usually numerous small teeth.
VIBURNUM

E. Cymes with the marginal fls. sterile and enlarged

EE. Cymes with all the fls. fertile.

F. Keys of cymes usually 7, cymes flat.

14. Lantana

FF. Keys of cymes usually 5, cymes convex

15. cotinifolium

DD. Winter-buds protected by scales; teeth rather coarse, usually less than 23 on each side.

E. Petioles without stipules.

F. Cymes with the marginal fls. sterile and enlarged

16. tomentosum

FF. Cymes with all fls. fertile and alike.

G. Fr. red; lvs. rounded or broadly cuneate at the base.

H. Foliage evergreen, glabrous.

17. Japonicum

HH. Foliage deciduous.

1. Petiole 3/4-1 in. long; fls. almost sessile.

K. Lvs. pubescent on both sides.

18. dilatatum

KK. Lvs. almost glabrous

19. Wrightii

HI. Branches and lvs. glabrous

21. dentatum

HH. Branches and lvs. pubescent

22. molle

EE. Petioles with stipules, sometimes rather small and caducous.

F. Lvs. long-petioled; blades to 3/5 in. broad

23. Demetrios

FF. Lvs. short-petioled; blades to 1/2 in. broad

G. Cymes short-peduncled, dense.

24. pubescens

GG. Cymes long-peduncled, loose.

25. erosum

AA. Lvs. petiolarly 3-5- serrate, usually 2- lobed, slender-petioled.

b. Fls. all perfect.

c. Habit strictly upright; fr. purplish black.

26. acerifolium

cc. Habit sprawling; fr. scarlet.

27. Opulus

BB. Marginal fls. sterile, radiat.

28. Sargentii

1. Sieboldi, Miq. Fig. 2661. Deciduous shrub, attaining 10 ft., with stout branches, pubescent when young; lvs. oval to oblong-obovate, coarsely crenate-serrate except toward the base, acute, dark green and shining above, paler and stellate-pubescent beneath, 3-6 in. long; fls. white, rotate-campanulate, in panicles 25/4-1 in. broad; fr. oblong, changing from pink to bluish black. May, June. Japan. G.F. 2:559.—Hardy shrub of vigorous growth with handsome dark green foliage, large for the genus, exalting a very graceful odor when bruised. The fruits drop soon after ripening. It is known in some nurseries as V. japonicum, V. latifolium or V. japonicum latifolium. Var. reticulatum, Redd. (V. reticulatum, Hort.). Smaller in every part:

Ivs. of lighter green, less pubescent: half-hardy. Var. variegatum, Hort. Lvs. variegated with white.

2. Sandankwa, Hassk. (V. suspensum, Hort.). Evergreen shrub, attaining 6 ft., with slender warty branches; lvs. oval to oval-oblong, acute or obtuse, usually remotely crenate-serrate toward the apex, shining and dark green above, paler beneath, glabrous, 2-4 in. long; fls. white, tinged pink, in dense semi-globose panicles becoming 1 1/2 in. high; corolla 3-5 in. long; with cylindrical tube twice as long as limb: fr. red, subglobose. June, July. Looschoo Isl. B.M. 072.—Tender.

3. odoratissimum, Ker. (V. tubulosa and A. Sieboldii, Hort.). Evergreen upright shrub, attaining 10 ft., with stout warty branches, glabrous; lvs. elliptic to elliptic-oblong, acute, remotely serrate toward the apex or entire, shining and bright green above, paler beneath, glabrous, 3-6 in. long; fls. pure white, fragrant, in broadly pyramidal panicles 4 in. high; corolla rotate-campanulate; fr. red, changing to black. May, June. India to S. China and Japan. B.R. 046.—Tender.

5. rigidum, Vent. (V. rosigii, Pers. V. latifolium, Hort. V. Tinus, var. strictum, Ait.). Shrub, attaining 6 ft., with spreading birsute branches; lvs. broadly ovate to ovate-oblong, acute or obtuse, pubescent on both sides when young, almost glabrous above at length and wrinkled, 5-6 in. long; fls. pure white; cymes large, 3-4 in. broad; fr. oval, bluish black. May-July. Canary Is. B.R. 037. L.B.C. 0:559. A.G. 1850:556.—Less handsome and less free-flowering than the preceding species.

6. obovatum, Walt. (V. leucogyna, Ait.). Shrub, attaining 8 ft., with spreading branches; lvs. almost glabrous, ovate to oblanceolate, obtuse or retuse, coriaceous, glossy, entire or obscurely crenate toward the apex, 5-1/2 in. long; fls. white, in sessile cymes 1-2 in. broad; fr. oval, black. April-June. Va. to Fls. L.B.C. 15:1496.—Tender.

7. niglum, Linn. (V. niglum, var. Claryoni, Terr. & Gray). Upright shrub, sometimes attaining 15 ft.; lvs. oval to ovate or oval lanceolate, acute or obtuse, usually thick and somewhat revolute or obscurely crenulate, thickish, scurfy on both sides when young, glabrous above at length: fls. white or yellowish white; cymes rather long-peduncled, 3-5 in. broad; fr. globose, pink at first, changing to dark blue. June, July. Long Island to Fls., west to Ky. and La. B.M. 2281.—Not quite hardy north. Var. nitidum, Zabel (var. angustifolium, Terr. & Gray). V. nitidum, Hort. Lvs. smaller and narrower, more shining above and firmer.

8. cassinoides, Linn. (V. niglum, var. cassinoides, Terr. & Gray. V. aquisomum, Willd.). White Rock, Appalachian. Th. Upright shrub, 6-12 ft. high; lvs. oval or ovate to oblong, acute or bluntly acuminate, usually obscurely dentate, almost glabrous, rather thin, dull green above, 1-3 in. long; almost like most of the preceding species, but peduncle shorter, usually shorter than cyme; blooming a little earlier. June, July. Newfoundland to Manitoba and Minn., south to N. C. G.F. 2:559. Em. 2:411 (as V.
VIBURNUM

VIBURNUM 1925

nudum).—A good shrub for borders of shrubberies; hardy.

9. Lentago, Lind. SHEEP-BERRY, NANNY-BERRY. Fig. 201. A tree, shrub or small 12 ft., V. L. var. angularis, with slender branches: winter-buds long-pointed; petioles mostly with wavy margin: lvs. ovate, acuminate, glabrous or seedy at the veins beneath, 2-4 in. long: fls. white; cymes sessile, 2-3 in. broad: fr. ovate, bluish black with bloom. May, June. Hudson Bay to Manitoba, south to Ga. and Miss. S. S. 5:223, 231.—Hardy, large, often arborescent shrub, keeping its flowers and fruit all summer. V. p. marginalis (Lentago) Keteleer, Carr. has a garden hybrid, originated in Germany, is V. tetteri, Zabel {V. Lentago × nudum), similar in habit to this species but the cymes on short peduncles over 1/2 in. long.

10. rufifolium, Raf. (V. prunifolium, var. ferrugineum, Torr. & Gray. V. ferrugineum and poto-tenoreum, Small). Large shrub or small tree, attaining 25 ft. or more, with rather stout branches: winter-buds scarcely pointed, obtuse, rusty-pubescent; petioles often with narrow margin, rusty tomentose; lvs. elliptic to obovate, usually obtuse, glabrous and shining above, rusty-pubescent beneath, 2-4 in. long: fls. pure white: cymes 3-5 in. broad: fr. oval, dark blue, glaucous, ½ in. long, April-June, later than the following species. Va. to Fla., west to Ill. and Texas. S. S. 5:222 (as V. prunifolium, part); Handsome arborescent shrub with dark green shining foliage, showy fls. and decorative fr.; has proved hardy at the Arnold Arboretum, Boston.

11. prunifolium, Lind. (V. pyrifolium, Poir.). BLACK HAW, STAG-BERRY. Shrub or small tree, attaining 15 ft., with spreading, rather stout branches: winter-buds short-pointed, glabrous or reddish, pubescent: lvs. broadly oval to ovate, acute or obtuse, glabrous or nearly so, 1-3 in. long; petioles often with narrow margin, glabrous; fls. pure white: cymes sessile, 2-4 in. broad fr. oval to subglobose, bluish black and glaucous, lvs. over 3 in. long, April-June. Conn. to Fla., west to Mich. and Tex. A. F. 12:1100. Gng. 5:310.

13. alnifolium, Marsh. (V. laeunodes, Mieliex.). HOREH-BUSH. AMERICAN WAXYFARMING TREE. Low shrub, sometimes 10 ft. high, with wide-spreading, often procumbent branches, scurfy-pubescent when young; lvs. orbicular or broadly ovate, cordate at the base, short-acuminate or acute, irregularly serrate, minutely pubescent or almost glabrous above, searly-pubescent beneath, 2-4 in. broad: fls. white; cymes sessile, 3-5 in. broad; marginal fls. short-peduncled: fr. ovoid-oblong, dark purple. May, June. New Brunswick and Mich. to N. C.—Handsome shrub, with very large foliage, assuming a deep claret-red in fall.

14. Lantana, Lind. WAXYFARMING TREE. Upright shrub or sometimes a small tree, attaining 20 ft.; young branches scurfy-pubescent: lvs. ovate or oblong-obovate, usually cordate at base, acute or obtuse, sparingly stellate-pubescent and wrinkled above, tomentose beneath: denticulate, 2-4 in. long: fls. white; cymes densely 2-3 in. broad, with usually 7 rays; fr. ovoid-oblong, bright red, changing to almost black. May, June. Fu, W. Asia. AsA. 18:453 and F. E. 9:203 (as V. pilcatum).—Same shrub, especially for drier situations and limestone soil. Var. rugosum, Hort. With larger and very wrinkled lvs. and larger cymes. There are a number of other vars., including some with variegated leaves.

15. cotinifolium, D. Don (V. multibracteatum, C. Koch). Shrub, attaining 6 ft., with spreading branches, tomentose when young; lvs. orbicular-ovate to ovate, corolate or rounded at the base, usually obtuse, crenulate-dentate or almost entire, wrinkled above and nearly glabrous at length, tomentose beneath, 2-5 in. long; fls. white, tinged with pink, in cymes 2-3 in. broad, with usually 5 rays; corolla rather larger, funnelliform-campanulate, tube longer than limb; fr. ovoid-oblong, red, changing to black. May, June. Northwest Himalayas. B. R. 19:1650. G. F. 5:245.—Not quite hardy north, requiring protection near Boston.

2662. VIBURNUM LENTAGO. Nearly full size.

19. Wrightii, Miq. Upright shrub, to 10 ft. high, with the branches almost glabrous: Ivs. almost orbicular or broadly obovate to ovate, abruptly acuminate, coarsely dentate, almost glabrous except on the veins beneath, 3-5 in. long: fls. rather large, white, in usually short-stalked, 2-4 in. broad cymes; corolla glabrous outside: fr. globose, red. May, June. China, Japan.—Hardy shrub, similar to the preceding, but of less dense habit, with larger fruits in nodding cymes.

21. dentatum, Linn. Arrow-wood. Upright bushy shrub, attaining 15 ft., with glabrous branches: Ivs. rather long-petioled, orbicular to ovate, acute or shortly acuminate, coarsely dentate, glabrous or pubescent only in the axile of the veins beneath, 1/2-3 in. long: fls. in long-peduncled, glabrous cymes, 2-3 in. broad: fr. sub-globose, bluish black, glaucous. May, June. New Brunswick to Minn., south to Ga. G.F. 10:322. Em. 2:414.—Handsome native shrub, thriving best in moist soil. V. dentatum of some nurseries, not native, has somewhat larger Ivs. and seems to bloom later.

22. mollé, Michx. (F. sericeum, Chapman. F. Nepeta, Hort.). Similar to the preceding, but branches, cymes and under side of Ivs. stellate-pubescent: Ivs. larger, with stouter petals, dark green; peduncles stouter: teeth of calyx more prominent: fr. large and more pointed: blooms 2-3 weeks later. Mass. to Fla. and Tex. G.F. 4:30.—Handsome than the preceding on account of its larger glossy dark foliage and more robust habit. In gardens sometimes confounded with V. pubescens and sometimes found under the erroneous name of V. HANCEAE. See supplementary list.

26. acerifólium, Linn. Dockweeckie. Shrub, attaining 5 ft., with slender, upright branches: Ivs. orbicular or ovate, 3-lobed, with acute or acuminate lobes, coarsely dentate-serrate, pubescent or at length almost
VIBURNUM

2664. Viburnum Opulus (× 1/2).

Single form of the common Snowball as it grows in the wild.

27. pauciflorum, Raf. Straggling shrub, attaining 5 ft.; lvs. orbicular to oval, coarsely dentate, with 3 short lobes above the middle or often without, glabrous or slightly pubescent beneath when young, 2-3½ in. long; cymes few-fl., small, on lateral, short, usually 2-3-branched; fr. scarlet, subglobose, June. Labrador to Alaska, south to Vi. and Colo. in the mountains. G.F. 2:5.—It does not usually succeed well in cultivation; requires shade and moist porous soil.

28. Opulus, Linn. (V. Americanaum, Mill. V. trifolium, Marsh. V. opaloides, Müh. V. edule, Pursh. V. Oxydecteum, Pursh.). CRANBERRY-BUSH. HIGH CRANBERRY. Figs. 2664, 2665. Shrub, attaining 12 ft. with rather smooth light gray branches and stems; lvs. broadly ovate, 3-lobed, with coarsely dentate-serrate, acuminate lobes, pubescent or almost glabrous beneath, 2-4 in. long; lvs. white, in peduncled cymes, 3-4 in. broad; fr. subglobose to oval, scarlet. May, June. New Brunswick to Brit. Col., south to N. J. and Ore.; also in Eu. and Asia. Handsome native shrub, very decorative in fruit, which begins to color by the end of July, remains on the branches and keeps its bright scarlet color until the following spring. The berries are not eaten by birds.

Var. nanum, Jacq. A very dwarf, compact, small-leaved form; flowers but very rarely. Var. sterile, DC. (V. phaeum, and rossicum, Hort.). GUEDELL Rose, SNOW-BALL. Fig. 2666. All its, steric, forming large, globose heads, Ggg. 1:9. Gg. 56. p. 88.—This is a very showy var., but it lacks the decorative fruits. There are also variegated forms of the type and of the sterile variety. The American Cranberry-bush is considered by some botanists a distinct species under the name V. Americanaum, Mill., but differs little from the European form, chiefly by the more vigorous growth, by the pedicles having a shallow rather broad channel and small glands, and by the shorter peduncles and shorter stamens.

29. Sargentii, Kochne. Similar to the preceding, of more upright, denser habit: bark of stems darker, fissured and somewhat corky, young branches with prominent lenticels; lvs. of thicker texture, pubescent or glabrous beneath, the upper lvs. with much elongated and usually entire middle lobe and small, short, spreading lateral lobes; pedicles with large glands: sterile fls. larger, sometimes to ⅓ in. across; authors purple; fr. globose, in usually upright cymes. N. China, Japan.

—Introduced under the name Viburnum Opulus from Pekin. It does not seem to fruit as profusely as V. Opulus.

ALFRED REIDER.

2666. Snowball—Viburnum Opulus, var. sterile (× 1/2).

All the fertile flowers are changed to sterile, showy ones.

VIIA (classical Latin name). VETCH. TARE. More than 100 species of herbs, mostly climbing, with pinnate foliage, closely allied to Lathyrus, Pisum and Lens, but differing in minute floral characters; wings adhering to the keel; style very slender, with beards or hairs all around the upper part or only at the apex; pod flat, 2-many-seeded, 2-valved and dehiscent, the seeds either globular or flattish; stamens 0-2-6; flowers mostly blue or violet, sometimes yellowish or white. The Viciae are widely spread in the northern hemisphere and some of them in South America. About two dozen species occur in North America, some of the species introduced. Most of the Viciae are weedy or insignificant looking plants, but a few are grown for the bright flowers, others of late for green-manure crops (see Cover-Crops, and one V. Faba) is a garden bean. The species are mostly cool-season plants of easy culture. The interest in the Vetches in this country is mostly for their value as soil coverers and for foliage. V. sovina and V. villosa are the important species here at present.
A. Plant stiff and erect, usually bearing no tendrils, cultivated for the beans (Fabae).

Faba, Linn. (*Faba vulgaris*, Moench. *F. sativa*, Bernh.). Broad Bean. Windsor Bean. English Dwarf Bean. Figs. 190, 191, Vol. I. Strong, erect annual, 2-4 ft., glabrous or nearly so, very leafy: leaflets 2-6, the lower ones not opposite on the rachis, the terminal one wanting or represented by a rudimentary tendril, oval to elliptic and obtuse or meroonate-pointed: fls. in the axils, dull white and with a large blue-black spot; pods large and thick, from 2 or 3 inches even to 18 in. long, the seeds large and often flat. Probably native to northern Africa and S.W. Asia.—Much grown in the Old World, but the hot dry summers prevent its cultivation in most parts of the U. S. It is grown successfully in parts of Canada, particularly in the maritime provinces. The plant is grown mostly for cattle feeding, although the beans may be used, both full grown and immature, for human food. This bean has been culivated from prehistoric times and its natiivity is in doubt. The plant is hardy and seeds should be sown early, when the season is cool.

AA. Plant weak, usually climbing by means of tendrils that represent leaflets.

b. Fls. about 3 in the axils, sessile or nearly so.

Sativa, Linn. Spring Vetch or Tare. Annual or biennial, not surviving the winter in the North, more or less pubescent, 2-3 ft. high: Hts. 7 pairs or less, elliptic, oblong or oblanceolate, mostly truncate and apiculate at the top, the tendril part of the leaf extended: fls. usually 2 in each axil, about 1 in. long, purplish; pods 2-3 in. long when mature. Eu., and naturalized in some parts of the U. S.—Much cult, abroad as a forage plant, in this country grown for similar purposes and also somewhat as a fodder for orchards. Seeds sometimes used for making flour. There is a white-seeded and also a large-seeded variety.

d. Fls. several to many in peduncled clusters.

c. Blossoms small and usually very showy, mostly bluish, in loose often 1-sided clusters: plants grown mostly for forage or in wild gardens.

d. Leaflets usually less than 9 pairs.

Villosa, Roth. Hairly or Winter Vetch. Fig. 1997. Annual or biennial (sometimes perennial?): enduring the winters in the North, villous-pubescent: Hts. 5-7 or more pairs, elliptic-oblong, rounded at the tip but usu-

ally ending in a very minute point: fls. violet-blue, in long 1-sided axillary racemes. Eu., Asin.—Now considerably used as a cover-crop.

American, Muhl. Perennial, nearly or quite glabrous: Hts. elliptic to oblong, obtuse or sometimes crenulate-purplish, about 1 in. across in few-fl. loose racemes. Moist lands across the continent and as far south as Ky.—Has been offered by dealers in native plants.

Caroliniana, Walt. Perennial, nearly or quite glabrous: Hts. oblong to linear-oblong, usually obtuse or crenulate: fls. nearly white, ¼ in. or less long, in several- to many-fl. loose racemes. Mimm. and Kans. onward.—Has been offered as an orobolos, Wulf. (*Orobus lathyroides*, Sibth. & Sm.). Perennial, 2-3 ft. tall: lvs. 3-5 pairs, oval-lanceolate, very acute: fls. handsome, violet-blue, small, in 2 or 3 short clusters each axil.

dd. Leaflets usually 9 or more pairs on full-sized lvs.

Crassica, Linn. Perennial, usually pubescent: Hts. 9-12 pairs, thin, linear to oblong, meroonate: fls. purplish, about ½ in. long in a rather dense raceme. Across the continent and south to Ky.; also in Eu. and Asia.

c. Blossoms red and showy, in dense spikes or spike-like racemes: flower-garden subject.

Fulgens, Batt. Annual, 3-5 ft. pubescent: Hts. 8-12 pairs, oblong or lance-linear, meroonate: fls. small, red or nearly scarlet and purple-striped, in a compact race-

me or spike. Algeria.—Recently introduced.

L. H. B.

VICK, JAMES (Plate XL1), seed-man and editor, was born at Portsmouth, Eng., Nov. 25, 1810, and died at Rochester, N. Y., May 16, 1882. He came to America at the age of 12, learned the printer’s trade, and in 1850 became editor of the "Genesee Farmer," then published at Rochester by Luther Tucker and subsequently absorbed by "The Cultivator." In 1853 he purchased Downing’s magazine, "The Horticulturist," and published it for a time, the editor being Patrick Barry. In 1860 Vick entered the seed business and his trade soon grew to large proportions. For about 20 years his name was a household word, being associated especially with flowers. In 1878 he founded "Vick’s Magazine," which is still pub-

lished. Vick’s personality was the same as that of the editor in "Vick’s Magazine" to children and to garden lovers everywhere: show the great hold he had on the hearts of the people.

W. M.

VICTORIA (in honor of Queen Victoria). *Nymphae-

a*, Royal Water Lily. This remarkable aquatic genus may be recognized by its large, rounded floating leaves often 6 feet or more in diameter, with the mar-
gin turned up at right angles to the water surface to a height of 2-3 inches, making a botanical object. The fls. (12-18 in. across) are nocturnal, opening on two suc-
cy new days about 4:30 p. m. and remaining open until the middle of the following morning. The first evening the inner floral lvs. remain loosely closed over the stigma, the flower is pure creamy white, and exalates a delicious fragrance somewhat resembling a rich pine-
apple; the second evening the floral lvs. spread widely open, and the color changes to pink or even a deep red. The ovary is inferior, densely prickly, and surrounded by a short, broad tube, on the sides and summit of which the floral lvs. are situated. Sepals 4; petals 5-7; sty-

lus thick, oblong-ovate to linear, rather thin and de-
licate in texture; Stamina about 20; stamens 150-

200, linear-lanceolate; paracarpels about 25, forming a ring of thick, fleshy bodies between the stamens and
the styles; carpels 30–40; stigma forming a broad, basin-like depression, 2–2½ in. wide, in the midst of the flower, with a central conical continuation of the floral axis, the basin filled with fluid on the first evening of opening; carpellar styles broad and fleshy in the lower part, produced upward to a fleshy, subulate, incurved process about ½ in. long. In fruit all of the floral lvs. have decayed away, leaving the basal tube of the torus at the top of a great prickly berry, half the size of one's head. The seeds are greenish or brownish black, about the size of a pea. The genus is represented by 2 well-defined species, inhabiting still waters of South America from British Guiana to Argentina.

In its native haunts Victoria grows in 4–6 ft. of water, spite of the cup-like form of the leaves, water from rain or other sources does not remain on the surface; it doubtless runs down at once through the tiny perforations. This would be an indiscernible protection to the leaf against fungous foes and in the function of assimilation.

A single leaf, by its buoyancy, may sustain a weight of 150 or 200 pounds. Not the least remarkable feature of these leaves is their rate of growth. Caspary found the maximum growth in length to be about 1 inch per hour when the leaf is just expanding; the surface increases 4 or 5 sq. ft. in 24 hours, and a plant will produce in 21 to 25 weeks 600 or 700 sq. ft. of leaf-surface. A great development of heat has been observed in the

In great patches miles in extent, and is perennial. The tuberous rhizome stands erect in the mud, where it is anchored by innumerable spongy roots which spring from the bases of the lvs. in groups of 10–30 or 40. The tuber may be as much as 6 in. in diameter and 2 ft. long. It decays below as it grows above. The lvs. are arranged in 55–144 order, and the flowers arise in a parallel but independent spiral of the same order (Planchon). Each leaf after the first seedling leaf has a broadly ovate, fused pair of stipules, these organs serving to protect the apex of the stem. The petioles and peduncles are terete, about 1 in. in diam., covered with stout, fleshy prickles, and traversed internally by 4 large, and a number of smaller, air canals. The petioles attain to a length much greater than the depth of the water, so that the lvs. can adjust themselves to changes of the water-level, though Banks states that they may be completely submerged in times of flood. The gigantic lvs. are covered beneath with a close network of prickly veins, the larger of which project an inch or more from the leaf-surface; the tissues are full of air-spaces and canals, thus hooping up the mass of cellular matter. Besides many stomata on the upper surface of the leaf, which open into the air-chambers of the mesophyll, there are innumerable tiny depressions, in each of which one can see with a hand-lens that the leaf is perforated with a fine hole; these holes were termed by Planchon "stomatodes" (P.S. 6:249). He considered them to be useful as air-holes to let out gases which, rising from the water or mud, might be caught in the deep meshes of the netted veins on the under side of the leaf. It is also to be noted that, in

266b. Victoria regia, the giant Water-lily of the Amazon.

opening flowers of Victoria. About 8 P.M., when the authors are shedding their pollen (in second-day flowers), the stamens may reach and maintain a temperature 10° F. above that of the surrounding air.

Though doubtless known to Spanish traders and missionaries, and certainly of use to savages as food in quite early times, Victoria was first noticed botanically by Hasskine in Bolivia about 1801; but he died in the Philippines without recording his discovery. Bonpland, the companion of Humboldt, also saw it, near Corrientes, Argentina, in 1819, but still it was neglected. In 1832 Poeppig found it on the Amazon, and described it as Euryale Amazonica. D'Orbigny saw the plant in 1827 at Corrientes, and in 1833 in Bolivia, and several years later published accounts of his find. Robert H. Schomburgk, finding it again in 1856 on the Berbice river in British Guiana, sent home specimens and figures from which Lindley in 1857 (published in 1858) established the genus Victoria and described the species V. regia. This name has settled upon the northern species, while the one found at Corrientes was named in 1840, by d'Orbigny, V. Cruziana in honor of General Santa Cruz, of Bolivia.

The struggle to bring the "Queen of Water-lilies" into captivity began with Schomburgk. He removed living plants from inland lakes and bayous to Demerara,
British Guiana, but they soon died. In 1840 Bridges obtained seed in the Bolivia locality, province of Moxos, and sent them in a jar of wet clay to England. Out of 22 seeds obtained at Kew, three germinated and grew very slowly, but the small seedlings remained until October, but then died in December. In 1849 dry seeds were sent to England from the Essequibo river, along with rhizomes, the latter in 1848, an easier, the rhizomes rooted, and the seeds refused to germinate. In 1859 an expedition from Demerara succeeded in bringing back to that town thirty-five living plants, but these all died. Finally some seed from the guayra of one batch from Kew and the guayra in bottles of fresh water by two English physicians, Rodle and Luckie. The first seedling arrived Feb. 28, 1849, and on Nov. 5 a plant flowered at Chatsworth; the latter was subsequently sent to Queen Victoria. From this stock Victoria regia was distributed to gardens in Europe, Asia, and America. Van Houtte, of the Conservatory of Philadelphia, was the earliest successful cultivator in this country. His gardener was the late Thomas Mechan. The first flower opened Aug. 21, 1851.

The first observations of the growth of seed from South America were made by Edward S. Rand, Jr., from Para, Brazil, to Mr. Sturtevant, then at Bordentown, N. J. The resulting plants proved to be slightly different from the type species, and were called Victoria var. Brasil. It is doubtful whether this form was described by Planchon as V. Amazonica, and retained with grave doubts by Caspary; subsequent cultivation has shown it to be a variety distinctly different from V. regia of Brazil. In 1894, however, Mr. Tricker received seed of a quite another species, which was provisionally named V. regia var. Brasil. It is much more amenable to outdoor culture than the older type, and has reached a well-deserved popularity. Specimens grown from seeds sent by Mr. Tricker to Kew were regarded simply as garden forms of V. regia, but recent investigation by Mr. Tricker and the writer shows that it is truly the V. cristata von d’Orbigny, dried specimens of which (including seeds) had been sent to Paris over 60 years before. It is a south-eastern South American variety, and its hardiness is evident. The seedlings of this species are used as food in Paraguay under the name of Maiz del Agua, “water-corn.”

For much information on the cultivation of Victoria, see Hooker, B.M. 4275-78; Planchon, in F.S.; 6:192-224, etc.; Caspary in Flora Brasiliensis 1, part 2, p. 143 et seq. In 1854 John Fisk Allen published in Boston a quarto of 160 pages, with colored plates, entitled: “Victoria regia; or the great water lily of America. With a brief account of its discovery and introduction into cultivation: with illustrations by William Shaw.” From specimens grown at Salem, Massachusetts, U. S. A."

Victoria regia, Lindl. (including V. regia, var. Brasil). Fig. 2968. Lvs. sparingly pubescent beneath, upturned margined, 3-6 ft. high; fls. becoming dull crimson in the second evening; sepals prickly almost or quite to the tips; prickles of the ovary above two-fifths in. (10-11 mm.) long; seed elliptic-globose, nearly 1/4 in. long, less in diam. (7-8 mm. long, 5-6 mm. diam.); raphes indistinct; operculum elliptic-orbicular, with the micropyle at its center and bilum at the margin. British Guiana, Amazon and tributaries. B.M. 4275 (poor); 4276-78 (worsted in some details). F.S. 6:291-292. Kermer, Natural History of Plants, pl. XI. Tricker, Water Garden pl. 1 and 2; p. 21, 35. Caspary, Fl. Brasil. 4, part 2, pl. 30, fig. 15 (seed).

Victoria cristata (known in cultivation as V. regia, var. Trickeri, and V. Trickeri). Lvs. densely villous beneath, upturned margins green, 6-8 in. high; fls. becoming deep red-pink the second evening; sepals prickly only at base, smooth above; prickles of the ovary over 5 in. (15-16 mm.) long; crowded; seed subglobose, about 5/8 in. (7/8 mm.) in diam.; raphes absent; operculum elongate-ovate, with bilum and micropyle epipptic. Para, Paraguay, and tributaries. British Guiana, Tricker, Water Garden, pl. 1; pp. 51, 55. Caspary, Fl. Brasil. 4, part 2, pl. 38, fig. 16 (seed). —Intro. by Wm. Tricker in 1894.

Henry S. Conard.

Victoria regia at first was cultivated for a great expense in conservatories and tanks built especially for the purpose. Then it was grown in artificially heated ponds in the open air. The Victoria is largely grown in private and public gardens throughout the United States at the present time, together with tropical nym- phas, which form a branch of the ornamental flower trade. This method of culture is uncertain and often unsatisfactory. For many years but one type of Victoria was known, the very rare and expensive V. regia var. Brasil. In 1885 Mr. Tricker introduced a new form which produced a deep crimson flower; it also possessed darker foliage and the upturned rim was deeper. It was known as Victoria Brasil. Having grown this variety for several seasons in the open air, the writer is unable to discern any difference, and two seasons ago he decided to drop V. Brasil. In 1894 the undersigned received seed of what is now known to the trade as V. Trickeri. This is by far the best kind for out-of-door culture. Moreover, it can be grown where V. regia fails to grow, as it revels in a temperature of only 70°-80°.

Victoria regia is now considered of easy culture. Its requirements are heat, light, and a rich, well-loamed soil in abundance. The seed should be sown during February and March. The temperature of the water should range between 23°-26° F. The seed should be planted in pots or seed-pans and placed in shallow water. A tank 8-12 in. deep, having a metal lining, copper preferred, is the most suitable for seedlings and young plants. Where sufficient heat is not attainable, the water may be heated by gas. The addition can be made by the use of an oil lamp. It is altogether unnecessary and unnatural to fill or chip the tank to assist in the rapid growth of seedlings. They should appear in about twenty days, though occasionally a few may appear in ten days. These should be potted off singly into 2½-in. pots, using fine, loamy soil. The water temperature for the young plants should be the same as directed for the seed pots. As soon as the young plants acquire their first floating leaf they will doubtless be benefited by repotting. From the very beginning, as sown seed, the plants should be gradually growing, repotting at intervals, until they are planted out in their summer quarters. As the young plants advance they will require a more shallow water, so that the leaves are not crowded and overlap each other. To raise plants of V. Trickeri is altogether a different matter. The seed will not germinate in a high temperature; 68° to 70° is sufficient. The seed may be sown in February, but there is a great uncertainty as to how long one must wait for the seedlings to appear, and also as to what percentage of seeds will germinate. As soon as the seedlings appear they may be treated like seedlings of V. regia, except as to temperature, which should be kept as above stated for seedlings and small plants, and as the season advances may be raised to 75° and 80°. The rodality of the air is not so important. The temperature is borne out by the fact that early in June quantities of seedlings appear in the pond in the open where the temperature of the water during the past season was kept almost constantly at 80°. Such seedlings remained in the pond during the winter. Planting in summer quarters may be done early in June or whenever it is safe to plant out tender nymphales, that is, when the pond is not artificially heated. Where it is desired to plant out in unheated ponds it is not safe to plant before the middle or latter end of June. The conditions of the weather, earliness or lateness of the season, locality, etc., must all be taken into account. The best results are to be obtained from an artificially heated pond, or pits in the pond specially constructed to start the Victorias, these pits to be kept steadily heated. The water or steam and covered with frames and sashes. By this method plants may be set in their summer quarters early in May and kept until the middle of June, or rather a temperature of 85° maintained until the advent of summer weather. Very gratifying results are obtained when the Victoria is grown under glass, as it is thus grown in several places in the United States, notably the Rosarium, the Park, Pittsburg, and Allegheny Park; also at Graystone, the estate of Samuel Untermyer, Esq., Yonkers, N. Y.; also at many notable gardens in Europe. Plants grown under glass usually attain a larger size, as they are protected against climatic changes and the elements, besides enjoying more of a tropical atmosphere. There is, however, more than one disadvantage.
VIGNA (Dominie Vigni, Paduan commentator on Theophrastus in the seventeenth century) is a leguminous genus distinguished under Cowpea in Vol. I. The Cowpea is known both as V. Cucang, Walpers, and V. Similansis, Endlicher. The former name, however, dates from 1839 and the latter from 1848, and the former should be used. The Cowpea is an annual bean-like rambling vine with three rhomboid-ovate stalked leaflets, the lateral ones unequal-sided, the petioles long. The flowers are bean-like white or pale, borne in two or three together on the summit of a long axillary peduncle. The pods are slender, usually curved, a few inches to a foot or more long. Seeds small, kidney shaped, bean-like, white or yellow, usually with a different color about the eye. The Cowpea varies much in stature, and particularly in the color of the bean. It is possible that more than one species is confused in these horticultural forms.

The nomenclature of the cultivated varieties of Cowpeas is almost hopelessly confused. Formerly the name Cowpea was restricted to the buff-colored or clay pea, but now it is commonly used generically. The word Cowpea is an Americanism. Common generic terms now in use in the South are "black-eye pea" and "cornfield pea."

While the Cowpea is now used mostly for animal food and green-manuring, the pen itself is also a good human food and has been so used for many years. For table use the peas are usually gathered when the pods begin to change color, although the dried peas are also extensively used. As long ago as 1855 an excellent essay on Cowpeas was written by Edmund Ruffin (Essays and Notes on Agriculture, Richmond, 1855). L. H. B.

VIGUERA (Dr. A. Viguier, botanist of Montpellier, France). Compositae. About 60 species of herbaceous or subshrubrous plants, found in warmer parts of the world, especially America. The following is a native of Lower Calif. and is offered in S. Calif. It is a tall, bushy plant with silvery foliage and small yellow discs, like single sunflowers, but borne in ample corymbs. The plant blooms both winter and summer. For generic characters see Gray's Synoptical Flora or Bot. Calif.

Tomentosa. Gray. Shrub or branching subshrub; leaves opposite, subcordate, serrate, tomentose on both sides, 3-5 in. long; heads corymbose; flowers villous, with 2 long awns and many small scales.

W. M.

VILLAGE IMPROVEMENT AND CIVIC IMPROVEMENT

A community of persons who band themselves together in order to promote the civic beauty and hygiene of the town wherein they live. Such associations have no legislative power, and merely advise their civic officers, if consulted, and they may rightfully use their influence to promote laws affecting the general welfare. The secret of their success in the long run is in educating public opinion to demand good officers, and then in cooperating with the officials, not antagonizing them. A few notable associations are composed entirely of women. Those of Honesdale, Pa., and Stockbridge, Mass., having examples of the best type of mixed associations. The Merchants Association of San Francisco, with a membership of more than a thousand, is an excellent example of an effective society composed wholly of men. Experience has taught the older organizations that a juvenile auxiliary is a valuable adjunct. These juvenile branches are worked through the public schools, and their promotion is the most practical way known of teaching civics.

These associations are organized by one or more interested persons calling a meeting and electing officers. The officers are president, vice-president, recording and corresponding secretaries, a treasurer, and an executive committee, all elected annually. The duty of the last is to plan the work, make the contracts and expend the funds. The funds are raised by annual dues of the membership, by contributions and by entertainments.

2669. Glimpse of a village street in a community where the idea of village improvement flourishes, showing that a central lawn with border planting is adapted even to small areas.

The usual and most successful mode of work done by these associations is to form as many committees as are desired, and place every member of the association on one of these committees. Each committee has a chairman, who calls its meetings independent of any meetings of the central body. This placing of each member upon a committee assures the working interest of the entire membership.

In large cities it has been found best to have section or ward organizations, which work for the especial needs of their ward or section, while delegates from these sections are elected to the central body, which works for the general good of the whole city. Denver, Colo., Oakland and San Francisco, Cal., and the famous Woman's Civic Club of St. Paul, Minn., work upon these lines. The standing committees are never quite alike in any two associations. They necessarily vary with the needs of the community.

While the avowed object of these associations is the improvement and ornamentation of public streets and highways, the cleaning and beautifying of premises, school yards, library grounds, railway stations, and other public buildings, the formation of parks and the preservation of natural beauties, yet in an association of progressive, broad-minded people, much kindred work naturally creeps in. For example, the Montclair, N. J., association has ten standing committees and constitutional power to add special committees as need arises. The names of these committees are as follows: street, sanitary, finance, humane, railroad, children's auxiliary, park, preservation of natural beauties, prevention of cruelty to children, prevention of cruelty to animals.

The work of committees may well be set forth by specific examples from the Montclair society. Under the supervision of the street committee, galvanized iron barrels were placed at intervals along the main
thoroughfares for the reception of rubbish, such as paper, and fruit rinds. Shopkeepers are asked to keep their premises in good order. If they do not comply with the request, the Town Improvement Association sends a man with a wheelbarrow (the latter labeled T. I. A.), and with broom and hoe a general housecleaning takes place. After two or three visits of the T. I. A. man, the proprietor generally takes the hint and atten-
tends to his premises himself. The suipetery committee reports to the health board any nuisance. The milk supply has been carefully looked after, the dairies inspected, and a map showing the locations of all the dairies placed on file in the office of the town clerk, where it may be seen by any householder who cares to examine it. The finance committee looks after the funds. Annual dues are fifty cents a member. The work of the humane committee is to inspect the police station, see that it is kept in sanitary condition, and the prisoners properly treated. The railroad committee keeps a watchful eye upon the stations and sees that they are as neat as pos-
sible and the surroundings made attractive. The chil-
dren's auxiliary is formed of eleven hundred school children, who have pledged themselves to "work to-
gether to make Montclair a happier place in which to live, by doing everything we can to make the town more healthful and beautiful." The different classes from the school take charge of the flower-beds around the buildings, attend to the planting and keep them in order. All this fosters early the love of attractive sur-
roundings, engenders habits of neatness, and devel-
ops local pride and patriotism.

The committee for the preservation of natural beau-
ties has much to keep it busy. Its members watch the fine trees of the town, and if any are splitting, the owners are notified to mend them. Dead trees are cut down, and the owners of unsightly fences are requested to remove them. The burning of hedge-rows is forbid-
den, as it destroys the wild flowers and leads to forest fires. The duties of the committees for prevention of cruelty to children and animals are self-explanatory. They are auxiliary to the state association, and have full power to act. The park committee takes charge of any waste pieces of ground, generally at the intersect-
tion of roads, keeps them in order, and plants shrub-
bery or makes flower beds, as the case may be.

Montclair boasts of the most handsomely equipped jail in the state, with a separate apartment for women, and a sanitary and padded cell for the insane. The com-
mittee for the prevention of cruelty to animals has placed the sign posts, "Please uncheck your horses going up this hill," at the top and bottom of the moun-
tain road. The paving of the plaza in front of the rail-
way station is due to the efforts of the railway committee, which visited the officials at least once a month for three years before the work was undertaken.

Newton Center and Stockbridge, Mass., contend for

the honor of forming the first improvement association. Newton Center's committee claims to be older than the Laurel Hill Association of Stockbridge. The latter organization was founded in 1853 through the efforts of Miss Mary T. Goodrich. Afterwards Mrs. J. Z. Goodrich, and was caused by overhearing the eulogy of a summer visitor upon the unity, unhygienic condition of the village and its undescrib-
ability from the bottom of the street as a small affair. Hopkins reported the visitor's remarks to her towns-
people, and after a year's agitation the Laurel Hill Asso-
ciation of Stockbridge was formed. The first year $1,000 was raised, part of which was placed in the bank.

Bar Harbor, Maine, regards its improvement association in the light of a commercial investment. The summer visitors demand that the town shall be clean and pretty, and they give liberally to the association that it may become necessary to estab-
lish a state charter before the association could legally inherit the funds. Other gifts to the value of more than one hundred thousand dollars have been made to the improvement society's work as a commercial investment is clearly perceived by Europeans. The village had much to do with the selection of the famous Lenox neighborhood, part of which pays taxes in Stockbridge. It is pleasant.

Schwarzwald Improvement Society of Germany numbers 3,500 members, who are assessed an annual dues of $1.25. This association was formed for the purpose of making the Black Forest known and accessible to the public, of preserving and protecting ruins, of improving pleasure-grounds, erecting pavilions, towers, etc., and generally promoting intercourse. There are thirty-nine separate associations in different parts of Ger-
many working for its own interest after the manner of the American ward associations. Both the German and Eng-
lish associations work to attract capital to their towns. River-sides are made into a continuous parkway through the town, paths are opened to points where beautiful views may be had, and cards in the hotels and public buildings draw visitors' attention to these matters, and to the fact that comfortable seats will be found in these places. German children are urged to be polite to strangers, and in London the public schools have or-
ganized a League of Courtesy. English laws do not permit the pollution of streams by sewage or factory waste, and in Europe good roads and clean streets have for so long been a national and municipal concern that they are looked upon as a matter of course. In general, European associations are not obliged to consider these problems, but are free to turn their attention to the promotion of civic beauty in all its various forms.

It is the leading men and women of each country who are promoting these associations. The society called Scapa, the mission of which is the checking of the abuse of public ad-
vertisements and the upholding of good taste among the members enrolled, some of whom members of Parlia-
mament. The work of this notable society has attracted the favorable attention of almost every government in Europe.

In America, the "National League of Improvement Associations" was organized at Springfield, Ohio, Oct. 19, 1900. It is now known as the "American League for
VINCA

VILLÁRSIA synophoides is the plant described at p. 925 of this work as Linanthus synophoides. The plant is probably to be referred to Linanthus pet tusum, however. To the list of pictures add Gn. 48:1636 and 48, p. 390.

VINARIÁ (Latin, vîmen, a slender twig or with, alluding to the branches). Leguminósæ. A single species, an Australian shrub with rush-like stems and long, wiry leaves. The flowers are small and unisexual, the hermaphrodite flowers being male and the female flowers being female. The plant is propagated by cuttings, which are inserted in the ground in spring or autumn. The flowers are hermaphrodite, and the fruit is a pod, containing several seeds.

Vincá

VINCA (vinca, old Latin name of Periwinkle, used by Pliny). Apocynáceæ. A genus of 10 species including the common Periwinkle or Trailing Myrtle, Vincá minor. This is one of the commonest and best plants for covering the ground in deep shade, especially under trees and in cemeteries. It is a hardy trailing plant with shining evergreen foliage and blue, silver-striped, 5-lobed flowers, appearing between spring and early summer. It forms a dense carpet to the exclusion of other herbs. It thrives best in moist, half-shaded positions, but will grow in the deepest shade even in poor soil, especially if it is heavy. It is a useful plant for clothing steep banks, covering rocks and carpeting gravel walks. It can be planted successfully on a large scale any time from spring to fall during dry or rainy weather. It is propagated by division or by cuttings, as seeds very rarely mature. The Periwinkle will live in city yards under trees where grass will not thrive. V. minor is the commonest and most variable species. Varieties with white, purple and double flowers are kept in most nurseries, also as a form with variegated foliage.

Vicán (victor, the conqueror) is larger in all its parts than the common Periwinkle and not so hardy. It is well known to florists. A variegated form of it is seen in nearly every veranda box in the garden. V. rosea is a tender plant of erect habit which is used chiefly for summer bedding. It grows about a foot high and has rosy purple or white flowers with or without a reddish eye, and often 2-3 in. across. The flowers bloom continuously from the time they are set out until frost. It can be grown in large masses for public parks with somewhat less expense than geraniums. Mr. Strömbeck, head gardener at Lincoln Park, Chicago, has in cor'ded his experience with Vicán rosea in Florists’ Review 1:149 as follows: The seed is sown in Jan. or Feb. in flats of sandy soil in a temp. of 65°-70°. When the seedlings show the first leaves they are pricked out about an inch apart in trays of the same soil, and when the little plants have 5 or 6 leaves they are potted into 2-in. rose pots, and later shifted to 3-in. pots. The majority are bedded out from the 3-in. pots. The soil of the bed should be a sandy loam if possible, and the plants will not do well in a very heavy soil. In bedding, set the plants about a foot apart. They require more water than a geranium, and when the bed is watered it should be given a good soaking and then left alone for a few days. The plants require no trimming.

The amateur will find Vicán rosea a satisfactory window plant that can be grown with little trouble from seeds started as late as April, but of course such plants will not bloom as early as the bedding stock propagated in Jan. or Feb. V. rosea is the largest flowered Vicán, and it seeds freely.

W. M.

VINCA major and varieties are the most useful of the genus to the commercial florist. Some plants from 2-in. or 3-in. pots should be planted out in May. They will make large plants by September. For decorating purposes, some of these plants can be lifted and put in 5-inch pots and will winter in a very cool house. To obtain useful sized plants in 5-inch pots the following arrangement will be made. Smaller ones are cuttings in 2-in. pots, the following spring for veranda, box or vases. The flowers should be cut off and removed to November or December. The long trailing flowers will give an abundance of material. Always make the cutting with two or three leaves or other leaf growth at base or near the very soft tips. They root
slowly but surely in about a month, and until February will do very well in a 2½-inch pot. About the middle of February shake off the soil and give them a 3-inch pot, and they will make a fine growth by middle of May. In

growing these trailing Vinca in pots the principal point to observe is never to let them want for water.

WILLIAM SCOTT.

Vinca is a genus of herbs or subshrubs, erect or prostrate; lvs. opposite; fls. rather large, axillary, solitary; corolla salver-shaped, with a narrow throat which is pilose inside or thickened-balloused; stamens included above the middle of the tube; carpels 2, distinct; stigma annular, thick, viscid; ovules 6-many in each carpel, in 2 series: foliicles 2, erect or divergent. The genus may be divided into 2 sections: 1. Pericinca, in which the anther-cells are short and divided by a wide connective; 2. Laehmnia, in which the anther-cells are normal. V. rosea belongs to Section 2; the others mentioned below are included in Section 1.

INDEX.

<table>
<thead>
<tr>
<th>Name</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>alba</td>
<td>1</td>
</tr>
<tr>
<td>argentea</td>
<td>1</td>
</tr>
<tr>
<td>atropurpurea</td>
<td>1</td>
</tr>
<tr>
<td>Bride</td>
<td>1</td>
</tr>
<tr>
<td>ceraea</td>
<td>1</td>
</tr>
<tr>
<td>elegansissima</td>
<td>1, 2</td>
</tr>
<tr>
<td>reticulata</td>
<td>2</td>
</tr>
<tr>
<td>rosea</td>
<td>2</td>
</tr>
<tr>
<td>variegata</td>
<td>2</td>
</tr>
<tr>
<td>vatica</td>
<td>1</td>
</tr>
</tbody>
</table>

A. Trailing herbs, hardy or nearly so, only the short flowering stems ascending; fls. produced in spring or early summer, mostly blue or white. European species.

B. Foliage evergreen.

C. Lvs. ovate or oblong-ovate; corolla-lobes wedge-shaped; calyx glabrous.

1. minor, Linn. Common Periwinkle. Blue, Running or Trailing Myrtle. Fig. 2671. Hardy evergreen trailing herb, in all country gardens and running wild in cemeteries and shady places, the blue-fld. or typical form being commonest. Often called "Myrtle" but the classic myrtle is Myrtus communis. Very rarely produces seed, but spreads freely by creeping sterile stems which root at every joint. Lvs. ovate or oblong-ovate, glabrous and shining, barely 1½ in. long; petiole very short, with 2 glands near the apex; calyx-lobes lanceolate, glabrous; corolla-lobes wedge-shaped, obtusely truncate. En.

The following horticultural varieties are advertised in America: Var. alba, with single white fls.; alba plena, with double white fls.; alba variegata, with single white fls. and variegated foliage; argentea variegata, with silvery variegation; atropurpurea compacta, with single

dark purple fls.; aurea variegata, with golden variegation; ceraea, with single blue fls.; plena, with double blue fls.; rosea, with single rose fls.; purpurea plena, with purple double fls. Gn. 50:1678. Some of these are advertised without reference to V. minor, as if they were good species, thus V. ceraea and purpurea. V. elegansissima alba belongs here, also "The Bride," a white variety with a pink center.

c. Les. subcordate-ovate: corolla-lobes obovate; calyx ciliolate.

2. major, Linn. Larger Periwinkle. Larger in all its parts than V. minor, not quite hardy north, and rooting only at the tips of the sterile stems. Lvs. broader below the middle than in V. minor, subcordate-ovate, often 2-3 in. long, ciliate; petiole with 2 glands near the apex; fls. blue; calyx-lobes narrowly linear, ciliate; corolla-lobes obvate. En.—This species is much subject to mealy bug. The variegated forms are popular for veranda boxes and hanging baskets. Some are blotched with yellow, others are margined. Here seem to belong V. aurea maculata and V. aurea maculata, Hort. V. major, vars. variegata and reticulata, are also advertised. Var. elegansissima, Hort., is a handsome form with lvs. bordered and blotched with yellowish white. It seems to be common with the florists, although it is rarely, if ever, advertised in American trade catalogues. It is one of the best forms for vases for baskets and for decoration indoors. The sprays should be allowed to grow long, in order to develop their characteristics. Cuttings should be struck early in the fall and if kept growing steadily will make satisfactory specimens in five-inch pots. It is a good idea to plant this variety in the front part of a sunny greenhouse bench where the long sprays may reach down to the walk. As a window-box plant it has the merit of withstanding considerable neglect.

2671. Vinca minor, the Common Periwinkle, or Running Myrtle. Natural size.

2672. Vinca rosea.

(X nearly ½).
Plate XLVII. Vines.
Akebia quinata on a porch. Lantana in the basket. A bush of Caryopteris Mastacanthus in the foreground.
VINES

1935

VINES are really climbing plants. They get up in the world in three general ways: by scrambling or clambering over other plants without any special devices for aiding them in the ascent; by twining about the support; by ascending by means of special organs, as roots or tendrils. The larger number of cultivated climbing plants belong to the last two categories. However, there are many useful climbers amongst the scrambling, as, for example, some of the long-stemmed roses. These plants usually have to be tied to a support unless they are allowed to ramble at will over some expanded surface, as the top of a bush or a broad stone wall.

Each species of twining plant has its own direction of winding about the support, and the species follows this direction under all ordinary circumstances. Some of them, as the hops, wind about the support in the direc-

VINES

VINCA

3. herbacea, Walck. & Kit. Herbebacces Periwinkle. Hardy trailing herb, which generally loses its foliage in winter, sends up short flowering stems in spring, followed by sterile creeping stems which root at the tips. The flowers are purpler than in the common Periwinkle, later, and the corolla-lobes are narrower: lvs. elliptical or lanceolate, margin revolute, ciliate; petiole with 2 glands near the middle; calyx-lobes narrowly lanceolate, ciliate; corolla-lobes oblong-ovate, dilated. Eastern Eu., Asia Minor. B.M. 2002. B.R. 1:4301.

AA. Tender, erect subshrub (herb X.), with rose or white lfs. produced all summer.

4. rosea, Linn. Madagascan Periwinkle. Fig. 2672. Tender, erect, evergreen climbing plant, somewhat shrubby at the base, cosmopolitan in the tropics: lvs. oblong, narrowed at the base, veiny; petiole glandular at the base. lfs. with a very small orifice, rose purple or white, the latter with or without a reddish eye; calyx-lobes linear, corolla-lobes dimidiate-obovate, mucronate. Op. 36. p. 455; 43, p. 389. V. 13:149; 16:49. B.M. 248. F.R. 1:141. This is commonly called the "Madagascar Periwinkle," but V. rosea is probably not native to the Old World, while the only species of Vinca that is really native to Madagascar, viz., V. lancea, is not in cultivation. The plant is sometimes called "Cape Periwinkle" and "Old Maid." The three main types should be known as V. rosea, V. rosea, var. alba, and V. rosea, var. scutata, the latter being a white flower with pink or red center. As a matter of fact, these appear in American catalogues as V. alba, V. alba pura, V. alba nova, V. scutata and V. varius, the latter being a trade name for seed of mixed varieties.

W. M.

VINCA TOXICUM. The Mosquito Plant or Cruel Plant, known in the trade as Vinca toxicum acauminatum and V. Japonicum, is Cynanchum acauminatum, which see.

VINE-CACTUS. Fouquieria splendens.

VINE, GLORY. Cithamia.

VINE PEACH. See under Cucumis Melo.

VINE, PIPE. Aristolochia Sinuata.

VINE, SILK. See Periploca Graeca.

VINE, WONGA WONGA. Tecoma australis.

VINES. In horticultural parlance, a vine is a weak-stemmed, more or less tail-growing plant that needs to have the support of some rigid object to hold it above the earth. Many plants that are grown for their economic uses are vines, although they are ordinarily not so classified in horticultural works; for example, some of the beans, the hop and the sweet potato plant. When vines are mentioned in horticultural writings, plants that are used for ornament are commonly understood. In general literature the term "vine," when used specifically, designates the grape. Sometimes vegetable-gardeners, when speaking of vines, mean cucurbitaceous plants, as melons, cucumbers and squashes.

Vines belong to many natural orders and represent very many types of plant beauty. The larger part of them are useful in horticultural operations as screens for covering unsightly objects or for shading verandas and summer houses. Many of them are shrubs, the plant body being woody and persisting year after year; others are ephemeral herbs, dying to the ground but the root persisting from year to year, as some dioecious; others are true annual herbs, as morning-glories. Some of them are valued chiefly for foliage, as the Virginia creeper, Japanese ivy, grapes and the true or English ivy; others are priced largely for their flowers, as morning-glories, moonflowers and scarlet runners. Vines represent all degrees of hardness of this list; they are also of various heights and differ in rapidity of growth; therefore it is impossible to make a list of vines that shall apply to the whole country.

2673. Hop (Humulus Japonicus), twining from the observer's right to his left, or with the sun.

2674. Morning glory, twining from the observer's left to his right, or against the sun.

The special organs by means of which plants climb are of many kinds. In general they may be referred to three general all degrees of hardness or tendril. Some of them, as
2675. The coiling of tendrils; a shows the tendril hooks ready to grasp a support; b, shows the coiling of the tendril-branches and the straight or not-coiled spaces where the direction of the coil is reversed. Canna-banana (Sicana).

strikes a support it fastens itself securely, and then the plant is drawn to the support or held to it by the coiling of the tendril. This coil also serves as a spring whereby the plant is held to its support during winds. The continuous coiling of the tendril in one direction would twist the tendril in two; therefore, tendrils usually coil in more than one direction, one part of the length being coiled from right to left and another part from left to right. Some of these phenomena may be seen in Fig. 2675, which represents the tendrils of one of the Cucurbitaceae. All members of this family, as cucumbers, melons, pumpkins and wild balsam apple, are excellent subjects on which to observe these phenomena.

Of the very many vines that may be used with good results in the open air in the North the following are common and therefore to be commended. Many greenhouse vines can also be used in the open during the summer, but these are not included in the present list.

AA. Top shrubby.

Ampelopsis quinquefolia, Virginia creeper. Figs. 80, 1866. The best single vine for covering buildings and arbors, since it is perfectly hardy and thrives under many conditions. Plants should be selected from vines of known habit, as some individuals cling much better than others.

Ampelopsis tricuspidata (A. Veitch). Fig. 2676; also Fig. 81, Vol. 1. A neater and handsomer vine than the Virginia creeper, clinging closer, but it is often injured by winter in exposed places, especially when young. It is best adapted to stone and brick buildings.

Clematis of various species. C. paniculata and C. Virginiana are best for general use.

Teocoma radicans, trumpet creeper.

Vitis or grapes of various species. The wild species are preferable. Fig. 2677.

Hedera Helix, true ivy, Fig. 1623. The English ivy does not endure the bright sun of northern winters.

2676. Ampelopsis tricuspidata on a stone building.

VINES

Hardy in middle states, and often does well on the north side of buildings farther north.

Actinidia arguta. Fig. 29. One of the best arbor vines.

Akebia quinata. Figs. 56, 57. Graceful and pretty.

Lonicera sempervirens, L. Late and other honeysuckles. L. Japonica (or L. Halliana) is half evergreen in the North and is popular.

Aristolochia macrophylla, Dutchman's pipe. Figs. 135-146. A robust grower, with enormous leaves. Useful for covering verandas and arbors.

Cestraea scandens, waxwork or false bittersweet.

Wisteria Sinesis and W. spectabilis. Figs. 2175, 2176.

AA. Top dying to the ground, or nearly so, in winter. Some are annuals.

Menispernum Canadense, moonseed. A small but attractive native twiner for wild gardens.

Humulus Lupulus and H. Japoniensis. The former is the common perennial hop; the latter is a sturdy and useful annual.

Discorea dirivascata, yam, Chinese potato, cinnamon vine. The large, deep-seated tuberous roots withstand freezing. Climb high, but does not produce foliage enough to cover unsightly objects. Discorea villosa is a small but handsome native species.

Pueraria Thunbergiana (known also as Dolichos Japonicus), while not yet common, deserves to be better known. It is an herbaceous perennial in the North, but makes a woody top in the South. Tender, it blooms in June and July.

Vasona, various species. Moonflowers and morning-glories belong here. Some are perennials far south; all useful and interesting. Tender.

Trapaonum majus, nasturtium. Tender annual.

T. peregrinum, canary bird flower. Tender annual.

Lathyus odoratus, sweet pea. Hardy annual.

Thunbergia alata. Tender annual.

Dolichos Lablab, hyacinth bean. Tender annual.

Cardicoceropus Hainesianus, balloon vine. Tender annual.

Adrionis eichrosea, Allegheny vine. Tender perennial.

Cobe scandens. Tender.

L. H. B.

Vines for the South. I. DECIDUOUS. Ampelopsis tri-
cuspidata and quinquefolia are exceedingly popular for covering brick walls, stumps, or dead trees. Being deciduous, they are free from the objection of evergreen vines, whose foliage often accumulates dust and is a harbor for sparrows' nests. A. quinquefolia has its black berries all winter, the form with variegated foliage is most desirable. — Berchemia scandens has small, greenish flowers; not showy, but of rapid growth in most soils.

—Cestraea scandens is desirable for its orange-colored capsules and scarlet seeds, which are retained during a part of the winter. —Cevrocezma Virginianum, a twining herb, is a very desirable small vine. The large, pea-shaped lavender flowers are produced from May until autumn. —Clematis. The best native species are C. crispa, with dark bluish purple campanulate flowers, C. eoscula with scarlet campanulate flowers, and C. holosericea, conspicuous for the silky plumose tails of the akenes. All these are herbaceous and lose their stems during winter. Of the hybrid garden varieties
which retain their stems there are only a few that can stand the dry, arid summers of the middle South. The most resistant are C. Jackmanii, Fairy Queen, Henry, lanuginosa, Otto Froebel, Duchess of Edinburgh, velutina, but all should be planted where free from the direct glare of the afternoon sun. Besciamara barbara, a tall climber usually found in rich moist bottoms and bearing numerous fragrant white flowers, is a very showy plant. — Lycium Barbarum is frequently used for trellises; the red berries, which are retained during winter, are its main attraction. — Passiflora incarnata is often a troublesome weed in newly cultivated lands, but its flowers are remarkably showy and the lemon-like fruits, called may-pops south, are edible, the seeds being coated with a mucilaginous acidulated pulp. P. Latea has very small greenish-yellow flowers and also a very small, purple-tinged fruit. — Neobuxia Grossa is of exceedingly rapid growth, and when covered in spring with myriads of flowers is an attractive plant for trellises or rustic summer-houses. — Pecanaria Thunbergiana is a most vigorous climber, a single plant frequently covering an enormous space. The pea-shaped flowers appear in spring, are of a violet color and very fragrant. — No better plant can be found for covering a large space in a short time. It is excellent for covering dead trees. — Tragia grandiflora is one of the best exotic climbers, with very large and showy orange-red flowers, which are produced from spring until autumn. It can be trained with a single stem if supported for a few years. Several forms differ only in the size and color of the flowers, as coerulea, deeper red; spectabilis, yellowish; hybrid, blood-red. The native species, T. radicans, is frequently considered a nuisance south in cultivated fields, but when trained to a pillar or frame few of our native climbers are as desirable. — Wisteria. Although the Japanese species frequently produces clusters more than a yard in length, the Chinese species is the favorite, being cultivated in purple, white and double forms. The double flowers are full and of a beautiful shape, but the variety is unfortunately a shy bloomer. Our native species, W. speciosa, is superseded by an improved European form. Var. magnifica has flowers of a light lavender-blue, which are produced at intervals during the summer. Its growth is unusually vigorous.

II. EVERGREEN. Akebia Fo-bata, with its large leaves in 2's, yields an abundance of banana-shaped mucilaginous fruit, found in the markets of Japan, but here considered of indifferent value. A very robust climber. The "five-leaved akebia," A. gnaria, is one of the most valuable rapid-growing climbers. — Bignonia capreolata, or Cross Vine, is found in rich woodlands; flowers brown-red, with yellow throats; blooms in spring. — Clematis paniculata is almost an evergreen, as it retains its foliage nearly all winter. Flowers are produced in the greatest profusion during midsummer and are very fragrant. One of the most desirable climbers. — Ceanothus Californica twines to a height of 10-15 feet. When covered during winter with a profusion of coral-red berries there is no climber that can equal it. Once known in higher latitudes it would prove to be one of the most attractive greenhouse plants. — Clematis punicea, var. velutina, or Japan oleaster, a good soil and frequently makes a growth of 8 to 10 feet. The brownish bark contrasts well with the bright green and silvery reflected leaves, while the clove-shaped flowers are very fragrant. Ex-

flowers are produced during winter. — Hedera. Of the many varieties of this genus there are few of the variegated-leaved that stand the southern summers, but the Irish and Algerian, the latter with unusually large leaves, are hardy and desirable. — Jasminum nudiflorum expands its bright yellow flowers in late winter and is valued as the earliest harbinger of spring; it is frequently used as a hedge plant when supported by a wire. J. officinale has white flowers during April and May. J. Reeseri and J. humile, with yellow flowers borne in summer and autumn, are great favorites. — Kadsura Japanica is valued chiefly for the reddish tint of its autumn foliage. The small white flowers are rather inconspicuous. — Lonicer.
VINES

The following native species are all desirable; viz., *L. scopulariun*, with scarlet and orange flowers, and *L. tiliaceum* with brilliant buff-yellow flowers. In many portions of the South are found large patches of the exotic species, *L. Japonica*, var. *flavosa*, *Chlorosis* and *Helitrobus* are frequently troublesome, as they choke out surrounding plants. Its *Var. aureo-reticulata*, with its attractive foliage, and *L. Perityleum*, var. *Belgica*, which yields a continuous crop of pink and buff flowers, are the most valuable of the exotic sorts. *Ipomoea*. *I. Bonariensis* (Sellowii) and *Learii* are the best of the tuberous section, the plants remaining sound during winter if slightly covered with litter. *I. pande-*

rous*, known as Italian broad, is frequently found in large quantities in newly cleared oakwood lands, the tabers often weighing 10 to 15 pounds. It is very showy with its large white flowers and purple inner tube. *Passiflora*. Both *Aquilegia*, with flowers combining white, citron, and blue, and Constance Elliott, with pure white flowers, are perfectly hardy and produce blossoms. *Roses*. Of the climbing varieties there is a great profusion. Most varieties are either perfect evergreens or retain their foliage nearly all winter. The White and Yellow Bankias are wonderfully attractive in early spring when laden with innumerable small violet-scented flowers, while the climbing Tea China, Noisette and Bourbon yield a profusion of variously colored flowers from early spring until winter. The Whinemans section will hardly become popular as plants bloom only in spring, while the Cherokee and Mac-

turine are still used for making evergreen hedges. *Musk*. Of the many species growing south, *Aristolochia* laurifolia is highly valued for its large, shiny leaves: it is of great decorative value for ornamenting ball rooms. Other kinds are desirable both for leaves and berries. *Trachelospermum jasminoides* is an excel-

lent white-flowering climber. The variegated form does not grow as tall, but its foliage becomes beautifully tinted with gold and red in fall.

III. Half-Hardy Climbers. During the summer,

southern homes are frequently adorned with a class of

climbers that farther north are suitable only for green-

house culture. Some of the best are mentioned below:

Antigonon. *Aristolochia* and *Tecoma* here men-

tioned will stand the winter if the soil is covered with

a coat of straw or leaves. The stem dies down in fall,

but the new growth appears vigorously in spring. The

others need greenhouse protection north of Savannah.

Ga. *Antigonon longipes*. Flowers in long racemes of

a beautiful pink color and produced from June until

frost. *Aristolochia elegans*. This blooms profusely

from April until frost. The flowers are tubular, but the

limb is perfectly flat and curiously marked and laced with

purplish maroon. *Bignonia*. *B. emusa* is at home in

the extreme South. It is a vigorous climber. In early

spring or early in February it is covered with large

bunches of bright orange-colored flowers. *B. speciosa* will stand the winters of southern Georgia and produces its wonderful colored flowers in early spring. *Bougainvillia glabra*, var. *Sanderiana*. Those who have seen this plant in Florida when in full bloom must agree that it is not surpassed by any other climber. The brilliancy of the climber is beyond description. Hardy south of Jacksonville. *Tecoma Capensis*.

Flowers in clusters of a beautiful orange-red color. Hardy

as far as Savannah.

P. J. BERRICKANS.

Vines for Conservatories or Greenhouses.

Flowering vines and climbers, when skilfully trained over

the roofs, supports and sides of conservatories and other

plant houses, add greatly to the attractiveness of such

places. From the number of vines in cultivation good

choice may be had both for cool or warm houses,

and for every aspect, as well as for flowering at all

seasons. Annual, bulbous and tuberous-rooted vines may

be grown in pots or small tubs, but permanent hard-

wooding flowering vines must have ample root room.

However, in some cases, as with the strong-growing

bignonias and thunbergias, the root space must be

limited, or there will be an immense growth at the

expense of flowers. When possible, the strongest growing vines may be planted under the greenhouse stages and the stems and

branches trained up from the back to the sides and roof. In most modern greenhouses, however, the space

underneath the plant stages is taken up by the heating

pipes. To overcome this difficulty boxes made of one-

mech express 5 feet long, 1½ feet wide and 1 foot deep

are very well designed, painted olive-green, and placed in convenient positions on the plant stages. In planting young vines the soil

should be broken and not sifted; neither should the

boxes be filled with soil at the time of planting, but the

vine should be planted in a central mound and the box

gradually filled as the plant grows. This practice is

stimulating to the vines and tends to maintain the de-

sirable qualities of the soil. Most vines may be trained

on wires, which should be either galvanized or copper

and of sufficient strength to support heavy vines.

The wires should be spaced not more than 1 foot apart,

and fastened in a horizontal position. The space between

the wires and glass should not be less than 18 inches or

the vines may freeze in winter.

Some judicious thinning of the growth is generally

necessary in order that the vines may receive sufficient

light and air. The vines should not be tied in too closely,

but allowed their natural habit of growth as far as

possible in order to obtain the best effects.

A few of the most desirable kinds for conservatory

and cool greenhouse follow, detailed culture of which

may be found under their respective headings in this

work. *Loniceru a albiflora* and *rosa*, producing bell-shaped

wax flowers of exquisite beauty, are well adapted for

the back wall or north side. Their worst enemies are

snails, which eat the young stems as soon as they push

through the soil. *Tecoma Jasminoides*, a strong-grow-

ing vine, produces clusters of jasmine-like flowers.

Lucentia grattissima makes one of the rarest and most

beautiful of all plants. The eyus of rose-

colored or pink flowers are produced in the greatest

profusion during the early winter months. Its worst

enemy is mealy bug. Dipladenias are excellent sum-

mer-flowering, tuberous-rooted vines, and their gorgeous

flowers well repay the attention given them. *Ficus

purshii* is an excellent subject for covering walls, either

in cool or warm houses. *Solanum Jasminoides* is a

strong-growing vine producing clusters of jasmine-like

flowers of white or lilac colors. The well-known Mare-
VINES

The following are among the choicest for warm house culture: \textit{Ampelopsis} \textit{Schuetzii} and \textit{Hedera helix} are as light, perhaps the best of the allamandas. They have no in sect enemies and are of easy culture. Among aristolochias, \textit{A. elegans} is the choicest, though \textit{A. ornitho cephalus} and \textit{A. lobata} are commonly sold. \textit{Bougainvillea spectabilis} and \textit{glabra} are handsome stave climbers, and should be included in every collection. They are of easy culture and will flower profusely in a light, warm position. \textit{Clerodendrum Thomson} is perhaps too well known to require any comment. It should be in every collection. \textit{Thunbergia lanibolin} is one of the handsiest plants, and will bloom almost any color where it will be somewhat shaded during the warmer parts of the day, as the petals are so delicate that they fade quickly. Among passifloras the scarlet-flowered \textit{P. roscoa} is excellent; also \textit{P. abutilonarum}. Their worst enemy is mealy bug. \textit{Hoyas}, \textit{Stephanotis} and \textit{Plumbago Capensis} are all good. \textit{Pathos ceanocactis}, sometimes catalogued as \textit{Mesororia panderza}, is a good plant for climbing trunks of palms or tree ferns or dust walls. \textit{Cissus discolor} and \textit{Asparagus plumosus} are both excellent for training up the supports of plant houses. \textit{Solanium Wendlandii} is one of the best and showiest vines.

Edward J. Canning.

Vines for Southern California.

The following list of vines for this section places them very nearly in their proper order as far as popular demand is concerned. One much-used vine, the ivy geranium, is purposely omitted for lack of knowledge as to its proper place in the list, the demand for this vine being somewhat spasmodic. The ivy geranium, being hardy here, is used for a great variety of purposes, as hanging baskets, hedges, and for climbing up the sides and on the roof of a house. Passifloras are unpopular here by reason of the numerous caterpillars that infest them at certain times of the year. Of this list \textit{Solanium Wendlandii} is probably the most tender, with the bongai-villases a close second. For the covering of unsightly objects in the least possible time, \textit{Ipomoea Learii} (Fig. 2678) easily takes first place and the loniceras will rank next. Several species of jasmines are worthy of attention, but space forbids, as the list could easily be extended to 10 or more. Vines occupy an important place in the horticulture of southern California, as in other warm and sunny countries.

Bougai-villases, all species; \textit{Bignonia venusta}; \textit{Solannum Wendlandii}; Lonicera, several species; \textit{Ipomoea Learii}; \textit{Tecoma Riosoliana}; \textit{Jasminum grandiflora}; \textit{Bignonia Treadwellii}; \textit{Solunnun Sedediaea}; var. azureum; Wistaria Sinensis; \textit{Wistaria Sinensis}, var. alb; \textit{Solannum Jasminoides}; \textit{Tecoma grandiflora}; \textit{Tecoma Jasminoides}; \textit{Passifloras Capensis}. \textit{Tecoma filicatula}; \textit{Hardenbergia monophylla}; \textit{Hardenbergia Combintae}; \textit{Mandevilla suaveolentes}. Fig. 2679: \textit{Hoya carnosa}; \textit{Chantus pantea}; \textit{Akbea quitana}; \textit{Kauhiba nipigena}; \textit{Mucubebuck com plexa}; \textit{Physianthus albus}; Various
tacsonias; Figs. 2457, 2453, 2608.

Ernest Brauntion.

Vines for Middle California.-The number of species of climbing plants cultivated in California for ornamenting town and country houses is large, but on account of the newness of the country and the recency of introduction of many of them, few species are commonly seen. In middle California (taking the San Francisco neighborhood as a center) the following are most extensively grown as a covering for porches, arbors and houses: (1) \textit{Ampelopsis triocspidata}, (2) \textit{Hosa Banania} and other species, (3) \textit{Clematis Jackmani} and other species, (4) wistarias, (5) tacsonias and passifloras, (6) \textit{Lonicera Japonica}, var. \textit{Hartlaubii}.

For house adornment the tacsonias are not to be recommended, on account of their rampant and dense growth, which tends to keep the building damp and cold in winter. The Lady Banks rose is a general favorite on account of its evergreen habit and the abundance of blooms which it produces in spring. \textit{Wistaria Chi nensis} is an old and well-tried friend. In spite of a somewhat untidy habit of growth and need of yearly training and trimming, it is probably as much loved in California as in its native land, Japan, on account of the exuberant, breath freedom with which it showers its wealth upon us in the form of numerous trusses of fragrant flowers. Hall's Honeysuckle has such fragrant blossoms, is so easily reproduced by cuttings and blooms so freely and for such a long period, that it is more commonly grown in country places than perhaps any other vine.

The following lists are not intended to be complete, but rather suggestive; they are believed to include all the species generally grown in middle California. They are thrown into special-purpose groups.

Section 1.-For houses and places where dense growth would be objectionable. This list does not include all the species present grown in such places, as several that are frequently so grown have proved unsatisfactory.

A. Tall, suitable for covering the side of a house.
 a. Hardy.
 \textit{Akebia quitana}. Figs. 56, 57.
 \textit{Ampelopsis heteropigilla}.
 \textit{Ampelopsis quinquefaolia}. Fig. 50.
 \textit{Ampelopsis quinquela}-
 \textit{teora}.
 \textit{Ampelopsis triospidata}. Figs. 81, 82.
 \textit{Arancia sericofera} (consalt
 \textit{Physalsanthus}).
 \textit{Bignonia Treadwellia}.
 \textit{Boussingaultia fossaloides}.
 Fig. 250.
 \textit{Clematis Barley}. Fig. 488.
 \textit{Clematis Jackmani}. Fig. 483.
 \textit{Clematis kerosina}.
 \textit{Clematis montana}.
 \textit{Clematis paniculata}. Figs.
 2678, 2679.
 \textit{Dolphich ligoen}.
 \textit{Helminth sarcoderris}.
 \textit{Hollosella lattolia}.
 \textit{Ipoema Rama-ner}. Fig. 1170.
 \textit{Ipoema Mexicana}.
 \textit{Jasminum grandiflorum}.
 \textit{Jasminum humile}.
 \textit{Jasminum nudiflorum}.
 \textit{Jasminum officinale}.
 \textit{Kawedya rubicunda}.
 \textit{Leitana Camara}. Fig. 1220.
 \textit{Lonicera Cuprifolia}.
 Fig. 1310.
 \textit{Lonicera Japonica}, var. Hal-
 bana. Fig. 1314.
 \textit{Lonicera Japonica}, var. \textit{arbo-re-tetetana}.
 \textit{Lonicera Periclymenum}. Fig.
 1221.
 \textit{Mandevilla suaveolentes}. Fig.
 2679.
 \textit{Marandia Barcelana}.
 \textit{Marandia rackerbeaes}.\n \textit{Marandia saxenda}. Fig.
 1227.
 \textit{Molotiria pentacta}.
 \textit{Periploera tereza}.
 \textit{Plumbago Capensis}. Fig.
 1820.
 \textit{Rosa Banksia},
 \textit{Rosa Banksw.
Rosa irrigata. Figs. 2366

1940. VINES

Rosa, various species, Solanum jasminoides, Stntemonia hexaphylla. Fig. 2385.

Teocuma grandiflora.

BB. Tender.

Allananda Henderson. Fig. 61.

Asparagus medeoboides, Budleia Madagascanensis, Eeerecodecarpus scaber.

A. Hardy.

Cliahthus periclitis, Heliocarpum Perrivianiun. Fig. 1825.

Asparagus, Lathyrus latifolius. Fig. 1246.

Lathyrus odoratus, Lathyrus sylvestris.

Convolvulus bicuspidus, Maurnandra Barkalnia.

Convolvulus macrostegius, Muehlenbeckia complexa.

Ipomera purpurea, Petargonium peltatum. Fig. 1712.

Pelargonium pechatum. Fig. 1825.

Pereskia scabata, Sarsella juncea.

Russellia pumila, Tropaeolum Camarine.

Ficus pumila.

Teocuma jasminoides, Teocuma Thunbergiana.

Teocuma radicans, Wistaria Chinensis, Wistaria spectosa, Wistaria multiijuga.

AA. Low-growing climbers suitable for planting along a fence or wall or the base of a tree, or for massing against a house.

BB. Deciduous.

Pezoria Thunbergiana.

Passiflora alata-cervata, Taeocuma manicata. Fig. 2689.

Taeocuma Van Volxemi.

3. For tree-trunks, unsightly poles, etc.—For such places the English ivy, Hedera Helix, is one of the very best plants; it can be used with advantage to cover the trunks of eucalypts and to prevent the unsightly shedding of the bark without injury to the tree. The English ivy seems to be domiciled at home in the coast climate of middle California. Clematis montana can be used with good effect to climb up among the branches of Cupressus sempervirens or Chamaecyparis Lawsoniana against the dark outline of which the white flowers of the Clematis contrast beautifully. Roses are often treated in the same manner. Ampelopsis quinqufolia is sometimes made to climb a rugged old specimen of Cordyline australis, and, often reaching the tufts of leaves which crown the short branches of the latter, the young lianas of the creeper hang down in beautiful festoons. In Golden Gate Park Taeocuma Enochian is has been allowed to wander at will over the rounded heads of live oaks (Quercus agrifolia). T. mollissima is sometimes used in the same way.

4. For slopes, retaining walls and banks of creeks. —For long, sloping banks nothing has yet been found more effective than English ivy, which withstands the dryness of a warm southern exposure without irritation. Petargonium peltatum, Tropaeolum majus, Jasminum Chinensis, var. procumbens, and J. Sabina, var. prostrata, are also used satisfactorily.

A. Hardy.

Asparagus heidus, Lathyrus splendidus.

Asparagus plumosus, Lycium Richii.

Asparagus sprengeri. Fig. 153, 154.

Ficus pumila, Manettia bicolor. Fig. 1539.

Pereskia scabata, Russella juncea.

Tropaeolum Camarine.

B. Evergreen.

Cobaea scandens. Fig. 592.

Ipomera leiocarpa. Fig. 297.

Passiflora caerulea. Fig. 1033.

Pelargonium peltatum. Fig. 1702.

Pelezoria Thunbergiana.

Section 2. For arbors, porches and trellises where a dense and rapid growth is desirable.

A. Hardy.

B. Evergreen.

2689. Taeocuma manicata (X5).

VINICULTURE. Wine-making and the subjects associated therewith. The subject is not primarily horticultural. It is essentially manufacture. The growing of the grapes is Viticulture. See Grape and Vitis.
VIOLA (classical name). Viola odorata. Violet. There are probably 120 species of Violets. They are widely distributed perennial or rarely annual herbs (or even subshrubs) with interesting irregular flowers on 1- or 2-flowered axillary peduncles. They are plants of the northern and southern temperate zones. About 40 species are native to North America north of Mexico. The flowers are 5-merous as to envelopes and stamens: sepals all similar, persistent with the fruit; corolla irregular, the lower petal spurred, the others similar but usually not alike; stamens short and included, the anthers more or less coherent and two of them with an appendage projecting into the spur; fr. a capsule, 3-valved, with several to many globular seeds. Some of the species (particularly the common eastern V. palmata) have cleistogamous flowers, which are borne at the base of the plant (often under the mold) and are pollinated in the bud. The structure of the corolla of the Violet is shown in Fig. 2681. In Fig. 2682, representing the same species, the cleistogamous flowers are shown at a.c.

Three species of Viola are well known in gardens. The Common Sweet Violet is V. odorata. From this the florists’ Violet, in many forms, has been evolved. The Pansy is V. tricolor. See Pansy. The Horned or Butterfly Violet is V. cornuta. These are all European species, and are now considerably modified by cultivation.

Many of the native Violets are offered by dealers in hardy plants, but only V. pedata and V. palmata (with its var. cucullata) are really known to any extent as garden plants; and even these are not frequently seen. V. pedata, the Bird’s-foot Violet, is a most worthy species, and it will some day, no doubt, be the parent of an important garden race. It is very variable even in the wild state. Since the native species are really not horticultural subjects, and the descriptions of them are so easily accessible in the writings of Gray, Britton, Greene and others, and, moreover, the kinds are so many, they are not described in this account; but a list of those which are or have been offered in the trade is given below as a matter of record. In the nomenclature of this list, the monograph of Gray has been followed (Gray’s Syn. Flora, vol. 1, pp. 195-204).

Violets are easy to grow, particularly if an effort is made to imitate the conditions under which they naturally occur. Some of them are woods species, others swamp species, and others inhabit dry plains. They are propagated readily by means of division and in some species by runners. Sometimes seeds are used, but not commonly. Many species that grow mostly to single stems in the wild make large full clumps when grown good opportunity in the garden. Fig. 2683.

a. Plant perennial.

b. Spur short and obtuse.

c. Spur long and acute.

d. Spur long and obtuse.

2682. The two kinds of Violet flowers—the common showy flowers at the right, natural size, and the cleistogamous flowers at 2: 1 (X 1/2). Viola palmata var. cucullata.

2683. Clump of common blue Violet of the eastern states.—Viola palmata, var cucullata.

odorata, Linn. Sweet Violet. Figs. 2684, 2688-90. Tufted, somewhat pubescent, producing stolons; roostock short: lvs. cordate-ovate to reniform, obtusely serrate, the stipules glandular; fls. blue, fragrant (running into white and reddish purple forms), the spur nearly or quite straight and obtuse. Eu., Afr. and Asia.—It runs into many forms, varying in stature, size of flowers and color. There are double-flowered forms. The parent of florists’ Violets.

2681. The structure of the corolla of Viola palmata var. cucullata. Somewhat enlarged.
date-ovate and usually acuminate, obtusely serrate, the stipules large and lanceolate; fls. large, pale blue, the ovary-obtuse petals standing well apart, the spur half or more as long as the petals and nect. S. Eu. B.M. 791. — Frequently seen in gardens and much prized for its large, bright flowers. Good for spring bloom. Hardy. There are several colors, represented in Alba, Purpurea, Mauve Queen and Papilio. The last has very large flowers, violet in color, with small dark eye. Fig. 2685.

AAA. Plant annual, or imperfectly perennial in cultivation.

tricolor, Linne. Pansy, Heartsease. Figs. 1634, 1615. Glabrous or nearly so, the stems becoming long and branched; lvs. cordate or round-cordate, those of the stem becoming lanceolate, all stalked and crenate-dentate, the stipules large and lanceolate; fls. large, usually about three colors represented (except in hibred self varieties), the spur short and inconspicuous. Eu. — When strayed from cultivation, the flowers become small and lose the markings characteristic of the hibred Pansies. A small, flowered field form, thought by some to be indigenous to this country as well as to Europe, is var. arvensis, DC. See Pansy.

The following are North American Violas that have been offered to the trade:

A. Blue Violas (sometimes running into white and striped forms).

cognata, Greene. Offered in Colorado.

Hollis, Gray. Calif. and Oregon.

palmata, Linn. (V. cucullata, var. palmata, Hort.). Eastern states.

Var. cucullata, Gray (V. cucullata, Alt. V. obliqua, Hill). Figs. 2861, 2865. On the Atlantic slope. By Britton & Brown regarded as a distinct species for which Hill's name V. obliqua (1769) is used rather than Atton's V. cucullata (1789). The commonest Violet in the northeastern states. V. obliqua, var. striata, is a striped form now in the trade, and not uncommon wild. There are forms known as vars. pecta and variiegata. One of the most variable species in stature, form of leaves, and color of flowers. It is easily colored in the garden.

pedata, Linn., Bird's-foot Violet, and one of the handsomest species. Sandy soil, Atlantic states and west to Ind. Terr. and Minn. It runs into very distinct forms. Var. bicolor, Pursh. Two upper petals much darker.

Var. arbus, Hort. Flowers nearly white.

rosea, Muhl. Michigan, east.

sylvestris, Alt. Minn. and Texas, east. Var. pecta, Hort. has striped flowers.

Selkirkii, Pursh. Northeastern states and Canada.

VIOLET

AA. White Violas.

blanda, Wild. Fig. 2686. Low places, across the continent. Pretty little species, fragrant. Var. reniformis, Gray. Northern states. Variations into many forms, though not so widely distributed, are found in Nova Scotia and Texas.

lanceolata, Linn. Nova Scotia to Florida and Texas.

primevifolia, Linn. Canada to Florida and Louisiana.

viola, Ait. Yellowish white. Mo., east.

AAA. Yellow Violas.

glabella, Nutt. Rocky Mts. to Calif. and Alaska.

lobata, Benth. Calif.

Nuttallii, Pursh. Calif., and north.

pedunculata, Gray. California seeds are gathered for export.

rugosa, Alt. Fig. 2687. Dakota, east and south.

rotundifolia, Michx. Nova Scotia to N. Car.

sermentosa, Doug. Idaho to British Columbia and Calif.

L. H. B.

VIOLET, Commercial Cultivation.— The Violet probably ranks third in commercial importance among florists' flowers in America. It has risen greatly in horticultural importance within recent years. The Violet season is only about seven months, while the season of roses and carnations is usually nine months. As with the other leading flower crops, — roses, carnations and chrysanthemums, — the Violet requires very close attention the year round. Though Violas require no staking, tying or disbudding, other laborious practices are necessary. The status of Violet culture has been raised by the raising of the other important florists' flowers as regards general care and efficiency of management, and consequently quality of products. In recent years a crop worth millions of dollars annually was raised with scarcely any discussion in the trade papers concerning methods. There are national societies devoted to the rose, carnation and chrysanthemum, but none to the Violet. So low had the interest sunk in Violet culture on its professional side that the "Violet disease" was spoken of by the florists as if it were only one thing, whereas there are at least eight distinct and important kinds of troubles that devastate Violet plants. At last the tide has turned. The various diseases have been investigated by scientists, especially those of the Division of Vegetable Physiology and Pathology, in the U. S. Department of Agriculture, and there is considerable free literature available concerning the nature of these diseases and the methods of controlling them. The wonderful success of certain Violet specialists has awakened general interest and emulation. Violet culture now receives something like its proper share of attention in the trade papers. The practical experiments in Violet culture by Galloway and Dorsett, based upon a knowledge of plant diseases, the introduction of the cyanide method of fumigation, a rigorous system of plant-breeding and a close study of actual market conditions have had an important influence in raising the standard of commercial Violet culture.

There is a popular impression that Violas are an easy
crop to grow. This is true only of blooms of ordinary quality and only as regards the total amount of work required per year as compared with a crop of roses, carnations or chrysanthemums. The best Violas are produced only under the best conditions, and it is a singular fact that many persons who have thought they had mastered Violet culture after a few years' success have failed subsequently. The Violet is still everywhere grown by local florists, but good Violet culture has been the latest to attain a high degree of specialization. The present status of the subject is admirably presented in Galloway's Commercial Violet Culture, New York, 1899.

Varieties.—From *Viola odorata*, a species indigenous to Europe, parts of Asia and Japan, many cultivated sorts, both single and double, and of different colors, have been derived. The varieties most highly prized and of the greatest commercial value to American florists are, in the order named: of the double varieties, Marie Louise (Fig. 2688), Farquhar, Imperial, New York (Fig. 2690), and King of Violas, dark blue flowers; Lady Hume Campbell, Neapolitan (Fig. 2689) and De Parme, light blue; Swanley White (Fig. 2691), Queen of Violas and Belle de Chatenay, white, and Madame Millet, Odorata Rubra and Double Red, red or pink. Of the single sort the varieties most highly prized are, in the order named: California, Princesse de Galles, Lorraine and La France, purple; White Czar and Rawson’s White, white, and single red or pink.

Propagation.—In commercial Violet growing, plants are propagated chiefly in four ways: (1) By cuttings 3 or 4 in. long, made from well-developed runners and rooted in clean, sharp sand; (2) by divisions, made by taking up the old plants, usually after flowering has ceased, and separating them, all divisions with old roots and hard woody stems being discarded, and the young, well-rooted ones transplanted 3 or 4 in. apart each way, and watered and shaded for a few days, until they are well established, when they can be lifted with a ball of earth and set where desired; (3) by cuttings made from young, unrooted crowns or divisions of the old plant removed during the winter or spring without disturbing the flowering plant, and rooted in clean, sharp sand, as in the case of runners; (4) by removing well-rooted young divisions, crowns or offsets, without disturbing the flowering plant and caring for them the same as divisions made in spring.

Soil.—As a rule, Violas do well in any good, well-enriched soil. The best results, however, are obtained from soil prepared from sod taken from a rather heavy, sandy loam that is well drained and capable of retaining and giving up an abundance of moisture at all times. The soil to be used in the Violet house, stationary frame, or in pots, should be prepared the previous fall. From a suitable loam, strip off the sod to a depth of 3 or 4 in.; compost this with well-rotted manure, preferably cow manure, and pile in alternate layers of from 6 to 8 in. of sod and 2 to 3 inches of manure. In this condition let it stand exposed to the weather until spring, and then, just before it is to be used, chop down and add pure bone meal at the rate of 27 ounces per cubic yard of soil, after which work over several times, or until the whole is thoroughly pulverized and mixed, when it is ready for use. For movable frame culture, scatter from 1 to 2 in. of well-rotted manure over the sod in the fall, then turn under by spading or deep plowing, and in that condition let it stand exposed to the action of the weather until spring. Just before planting time plow again, top-dress with pure bone meal at the rate of 6 ounces per square yard of soil, and harrow or work over.

Methods of Culture.—Among American florists four methods of growing Violas are in common use: viz., field and house culture, house culture, frame culture with or without artificial heat, and pot culture, the extent to which they are used being in the order named.

Field and house culture: Early in the spring the young plants are set in the field and cultivated during the summer. Some time in September or October they are lifted with a ball of earth and transplanted into beds or benches in the house, where they bloom during the winter.

House culture: The plants are grown under glass, either on benches or in solid beds, during the entire season. This method should take the place of all others, for with it the very best conditions and closest attention can be given the plants at all times, and as
a rule the results obtained are much better than from any other method.

Frame culture with or without artificial heat: The young plants are placed either directly in the frames, where they are to grow and flower, or else in beds, where they are cultivated during the summer and the frames placed over them in the fall, or as soon as they require protection; or they are grown in the field as in the case of field and house culture, and transplanted to the frames some time in September or October. This method is still used to considerable extent by commercial growers, especially in regions where the temperature seldom if ever falls below zero for any length of time. Amateur growers usually adopt this method because of its simplicity and inexpensiveness.

Pot culture: The young rooted cuttings are planted in thumb-pots and gradually shifted to larger sizes as growth demands until they are in 7-in. pots. Here they are kept and flowered, or the plants are taken up from the field in the fall and put into 7- or 9-in. pots, according to the size and vigor of the plants. This method is seldom used in commercial growing, being expensive, inconvenient and usually unsatisfactory.

Time of planting: This varies somewhat with different growers and in different sections. Generally, however, the best results are obtained where planting is done in early spring. Plants set out at this time get well established, and as a rule are stronger, healthier and more vigorous than those set out later, when the weather is usually hot and dry.

Proper distance in planting: As a rule, the double Vietten are planted 8 or 9 in. apart in rows 10 in. apart, and the single ones 12 in. apart in rows 12 to 18 in. apart, the distance depending somewhat on conditions and varieties. Planting too close is liable to induce disease, and too far apart is unprofitable.

Care and management: The plants should be kept free from all weeds, runners and old decaying leaves, and the earth should be frequently stirred, care being taken not to injure the roots of the plants. During the summer the temperature should be kept as low as possible and in the winter as nearly as possible at 45° to 50° F. at night and 50° to 60° in the daytime. The ventilation of the houses should receive careful attention at all times, so that an abundance of fresh air can be supplied to the plants when needed. Watering is a difficult problem, usually taxing to the highest judgment of the grower. No fixed rules can be laid down as to the proper amount to apply or when to apply it, this depending upon a number of factors, such as the character of the soil, temperature and moisture of the atmosphere, amount of light, etc. As a rule, however, the soil should be kept moist at all times, and the watering should be thorough, but never to such an extent as to cause the soil to remain saturated for any considerable length of time.

Violet Houses and Frames (Fig. 2682).—There is probably little choice between any of the standard styles of greenhouses, provided certain features are observed in their construction. Provision should be made for supplying an abundance of fresh air, either from the sides or top, whenever it is needed, the ventilators being so arranged as to be easily operated either from within the house or from the outside, the inside arrangement to be used in general ventilation of the houses, the outside whenever irrigation with hydrocyanic acid gas is necessary. The arrangement and location of the house should be such as to secure the maximum amount of sunshine during December and January, and the minimum amount during the growing season, when it is necessary to maintain as low a temperature as possible so as to insure good, vigorous, healthy-growing plants. The location of the house and the direction in which it should run depend largely on the

2688. Violet, Marie Louise (X 1).

2689. Neapolitan (X 1).

2690. New York (X 1).
The Violet frames, which are either stationary or movable, are made of rough boards, and are about 5 ft. 10 in. wide, of any desired length, from 12 to 15 in. high in front and 18 to 20 in. high at the back. The best location for the frames is at the base of a ground sloping to the south, with a wind-break of some kind to the north and northwest to protect them during the winter from cold winds.

Marketing is one of the most important factors connected with commercial Violet-growing and is seldom understood in all its details. The grower should be thoroughly familiar with the many needs and requirements of the market and be able to supply these demands, for upon his ability to do this depends largely his success or failure from a financial standpoint. Violets are prized chiefly for their delicate perfume, and as this diminishes in proportion to the length of time they are picked, the best market, other things being equal, is the one which requires the least possible delay between picking the flowers and placing them in the hands of the customer.

The crop may be disposed of at retail or wholesale or through a commission merchant. Each method has its advantages and disadvantages, and in deciding which one to adopt the grower must be guided by existing conditions. He must in any event have a thorough knowledge of the requirements of the market as regards quality of the flowers, size, shape and arrangement of the bunch, and should at all times exercise the utmost care in picking, packing and shipping, so that the flowers may reach the customer in the best and most attractive condition. The kind of bunch varies from year to year, and each large city is likely to have its own style. The various styles are wonderfully exact in their requirements and great skill is required to bunch the flowers properly.

Diseases. The cultivated Violets are subject to a number of diseases, each of which is characterized by one or more distinct symptoms. The principal diseases are as follows, their destructiveness being in the order in which they are discussed:

Spot disease (Alternaria violae).—This disease, also called the disease, leaf-spot, leaf blight and small-
to moderate spotted leaf blight, is the most widespread and destructive known in America. It attacks principally the foliage, normally producing definite circular whitish spots, frequently with concentric rings, of a darker shade, which in the light central portion resembling the bite or sting of an insect. Cercocephala violae, Phyllasticta violae, Septoria violae.

2692. House of Violets.
manila paper bag and this into a second bag. Attach
each package to a string or wire so arranged as to allow
it to be lowered from the outside of the house into its
respective jar. Pour into each jar an amount of water
about equal to the bulk of cyanide in the bag; add com-
mercial sulfuric acid until steam is evolved, then from
the outside lower the bags into the jars beneath. Fami-
gate double varieties thirty minutes and single varieties
twenty minutes, after which open ventilators from out-
side, leaving them open at least sixty minutes before
entering the house (for full information, see Circular 37,
Dept. of Agric., Div. of Entomology). Aphides may
also be eliminated by using tobacco in some one of its
many forms, but tobacco is likely to weaken the leaves
and make them more liable to the attack of fungi, and
on this account is very objectionable.

Red spider (Tetranychus telarius).—This pest lives
on the under surface of the leaves, and when present
in sufficient number causes considerable damage. It is
widely distributed on a great variety of plants, and
when established in the Violet house is most difficult to com-
bat. It can be held in check, and
often the plants may be kept en-
tirely free from it, by frequent
spraying with clear water un-
der a pressure of 20 to 30 pounds
per square inch. Care must be
taken to spray early in the
morning and on bright days,
so that the plants may dry off
before night. Neglect may be
the means of inducing disease.

Eel worms, or nematodes (Amphillina sp.).—This
causes swellings on the roots of the plants known as
root galls. Another species attacks the buds, causing
them to "go blind." There is no known method of ex-
terminating these pests, but their injurious effects may
be reduced to a minimum by adopting the methods
recommended for controlling fungous diseases.

Gall fly (Diplosis violicola), violet sawfly (Empytha
Glandulalis), greenhouse leaf tier (Phyllocopta rubi-
gallia) and several species of cutworms (Agrotis et al.).

In some parts of the country the larvae of these in-
sects infect the plants to some extent by feeding on
the foliage. Fumigating with hydrocyanic acid gas is
the best means of combating them.

Slugs, snails, sow bugs, etc.—Under certain con-
tions these pests do considerable damage, especial in
the flowers. They also can be controlled by the hydra-
cyanic acid gas treatment.

P. H. Dorse.

VIOLET. AFRICAN. Scutipoula. V., Damask or
Dame's, is Hesperis matronalis. V., Dog's Tooth
See Hottowia.

VIPER GOURD. Trichosanthes Anguina.

VIPER'S BUGLOSS. See Echium.

VIRGINIA Lutea. See Cudrastis Tiarifera.

VIRGINIA COWSLIP or V. Lungwort — Mercurialis
palustrisvaribides.

Orcharding.—It is in the larger fruits that Virginia
horticulture has won most renown. The present pro-
duction of apples is about 500,000 barrels, the bulk of
which is produced in the Valley and Piedmont sections.
Piedmont, Virginia, with a varying altitude of 500 to
over 1,000 feet and a soil ranging from dark red to
black, is famous as the producer of the most perfect
type of Albermarle Pippin and Winesap apples. Situated
in mountain coves, and on hillsides in many instances
barely arable, these orchards enjoy specially favored
conditions, and yield almost fabulous returns, an
individual tree having produced $100 worth of fruit in
a season though practically unheeded for. In this section
the apple probably reaches its greatest development of
tree growth, with a maximum of 9 ft. 5 in. in circum-
ference of trunk; 90 ft. spread of branches, and a yield
of 130 boxes, at one picking. The Valley leads in apple
production, and here the largest orchards are found with
40,000 or more trees under one management. Limestone
in formation and with an altitude of from 500 to 2,500
feet, this section is admirably adapted to fruit culture.
It grows York Imperial and many other apples to perfection.
The Blue Ridge and Appalachian sections, with alti-
dudes of from 2,000 to 4,000 feet and rich limestone
soils, have been practically undeveloped horticulturally,
but so far as tested are a field of rich promise. Among
the cultivated fruits of Virginia the apple takes first
rank. Early May, Red June, Early Harvest and Yellow
Transparent as the leading first earlies, open the sea-
on the latter part of June and carry the season into
July, when the succession is taken up by Sweet Bough,
Astrakan, Maiden's Blush, Summer Queen and Pen-
nington are the favorites of Bacon, Saxony House, Fall Pippin, Pallawater, Sweet Winter Paradise, and Virginia Beauty as leading fall apples, and concluded by York Imperial, Albemarl Pippin, Ben Davis and Winesap, which is the most successful through winter.

The planting of pears for commercial purposes has largely increased with the introduction of Kieffer, Le Conte, the Sue, this type, while Seckel, Bartlett and Duchess remain the favorites for garden purposes.

In peaches the varieties largely planted are Nectar, Alexander, Greensboro Mountain Rose, Early Rivers, Blue Greengage, Crawford Early, Late Elberta, Stump the World, Heath Cling, Levy Late, Blythe Octobe and Albright Winter. It is the general experience that in early peaches white-flushed varieties do better. Sweet cherries probably grow to greater perfection in Virginia than elsewhere east of the Rocky Mountains, $60 worth of fruit from an individual tree in a season being a usual occurrence.

The most popular varieties are Early Purple, Black Tartarian, Napoleon Windsor and Gov. Wood. It is considered among observant growers that Mahaleb is a failure as a stock for the production of orchard purposes in Virginia, and the most successful stock is the Mazzard, which grows with such luxuriance as often to become a striking feature of a Virginia landscape. There are, as Japanese types, the plum industry is taking on renewed life and plum orchards of considerable size are being planted. Red June, Abun- dant, Poorboy, Boring, and Wisconsin have been profitable about in order named. Satsuma preserves well. The Damson and a blue plum of the "Horse" plum type are very commonly disseminated throughout the state, reproducing itself in the same manner as the Damson, and seems to be exempt from black knot. Only a few trees of the last two kinds are grown at any one place, but the aggregate of fruit is considerable. Nearly all the pome and stone fruits adaptable to this climate are grown in the state, but few on a commercial scale except as noted.

Tangaroa.—That section of Pleinmont Virginia near Chincoteague has the finest lead in grape-growing, and extensive vineyards of wine grapes have been planted, and a wine cellar established, whose product has been favorably compared with the best French wines of same charater.

Small fruits.—Raspberries are grown in sufficient quantities to supply local demands, with Cathart as the leading variety. The same may be said as to gooseberries and currants, with Houghton and Downing popular varieties of the former and Cherry and Fay of the latter. Strawberries are grown extensively in a number of localities and distant markets, with the vicinity of Norfolk the center of production. From Norfolk they are shipped by boat and train-loads, and "the patches" are often 100 acres or more in size. Blackberries and dewberries are furnished so largely by nature that stimulus for cultivation is held in check, as is the case so far as home consumption goes with many other fruits, for from early spring strawber- ries, service berries, dewberries, blackberries, huckle- berries, Mazzard cherries, haws, wild grapes, plums, seedling apples, pears and peaches follow each other in the same season, thus requiring no unusual care.

Commercially, however, the horticulture of Virginia is making rapid strides in methods and increased plantings.

Tidewater.—Tidewater ranks first in its trucking and small fruit interest. With its mild climate, tractable soil, abundance of labor, thorough transportation facilities, low freight rates, and demand due to great eastern markets, it has in the last 30 years become the "Market Garden of the World," the section adjacent to Norfolk producing over six millions of dollars worth of truck fruit for edible Gardening.

Nurseries.—The 50 or more nurseries in the state are well distributed, with the largest establishments at the junction of the Tidewater and Middle Virginia sections. The fruit and nursery products are from 350 acres down. The apple is their leading specialty.

Floriculture and landscape gardening have been principally confined to the larger cities of the state, where there has been a rapid increase of glass acreage in recent years devoted mainly to the production of roses, carnations, and chrysanthemums as cut-flowers. The soil and climate of Middle Virginia have been found especially favorable to attracting this class of industry, while the counties of Louisa, Hanover, Spotsylvania and Prince Edward have many growers devoting especial effort to violet culture. The interest in landscape gardening is gradually on the increase.

Geo. E. MURKELL.

VIRGINIA STOCK. *Malvola.*

VIRGIN'S BOWER. *Clematis.*

VISCARIA. See *Lychnis.*

VISCUM is mentioned under *Phoradendron.*

VISEA (after a Lisbon merchant). *Terestramoidece.* A genus of one species confined to the Canary Islands. It is a large evergreen shrub or small tree resembling in a general way a tea plant or camellia. The specific name *Visea* has been given to the younger Linnaeus because the fruit was supposed to be the "mocan" of the aborigines, which was made into a kind of syrup and used to a considerable extent. The fls. are only three-eighths of an inch across, but very numerous. The fruits are much shorter than the lvs., but they are very sweet-scented. It has recently been offered in S. California.

Mocanera, Limn. f. Tender evergreen shrub, 6-9 ft. high, of compact habit and with dark green, shining leathery foliage: lvs. short-petioled, ovate-lanceolate, serrate: fls. solitary, white, pendulous. Canaries.

VITEX (ancient Latin name for this or a similar shrub). *Verbenaeece.* Ornamental deciduous or evergreen trees or shrubs with opposite, digitate or rarely simple leaves and usually with small white, blue, violet or yellowish flowers in axillary cymes often disposed in large, terminal panicles. Most of the species are inhabitants of tropical and subtropical regions and only a few can be cultivated outdoors in temperate regions. The hardest seems to be *V. lavica* which stands most ordinary winters as far north as Massachusetts.

V. Agnus-castus is hardly as far north as New York, in sheltered positions. These fls. are particularly valuable for their late-appearing flowers. They are almost any kind of soil and prefer rather dry, sunny situations. None of the tender kinds seem to be in cultivation in this country. *V. virginnica* is found in a post of peat and loam. Propagated by seeds sown in spring and by greenwood cuttings under glass; also by layers.

About 60 species are known, distributed through the subtropical and tropical regions of both hemispheres, few in the temperate regions. Lvs. opposite, digitate, with 3-7, rarely with one lobe: fls. in often panicked, few- to many-did. cymes: calyx campanulate, usually 5-toothed; corolla tubular-funnelform, with 5-lobed, oblique and slightly 2-lipped limb: stamens 4, 2 longer and 2 shorter ones: fr. a small drupe, with a 4-valved stone. Some species, particularly *V. altissima* and *V. Leycestryon* in S. Asia are important timber trees.

Agnes-catus, Linn. *Chaste-tree.* *Hem-tree. MONK'S PEPPER-TREE.* Shrub or small tree, with a strong aromatic odor, grayish tomentose: lvs. long-stalked: fls. 5-7-l., lanceolate, acuminate, narrowed at the base into a short stalk, entire or with few coarse teeth, grayish tomentose beneath, yellowish beneath. Inflorescence in dense, sessile clusters, taking form, often panicked racemes 5-7 in. long: corolla usually pale or blue, grayish outside, ⅜ in. long; stamens and style exerted. July—Sept. S. Eu., W. Asia. Mn. 2, p. 44.

—Var. alb, Hort. (V. albidissum, Hort.) lfs. white.

—Var. stellata, Hort. Fls. blue.

incisa, Lam. (V. lactiflora, Hort.). Fls. 2G94. Similar to the preceding: lfs. inately serrate or almost
pinnatifid, grayish tomentulose beneath, the middle one 2-3 in. long, the smallest ones often entire; fls. smaller, scarcely 1⁄4 in. long, in more slender and looser terminal panicles; stamens shorter than limb; throat villous. July, Aug. N. China, Manchuria. B.M. 364 (as V. Ne-
gundo). Less showy in bloom than the preceding species, but a graceful shrub of loose and open habit, with handsome foliage.

ALFRED REIDER.

VITICULTURE. See Grape and Vitis.

VITIS (classical Latin name). VINE. GRAPE. Vitex or Ampelides. A widespread genus of mostly tendril-bearing, climbing vines; much abundant in temperate countries. In its stricter limitations, the genus includes less than 50 known species, but some authors unite Cissus and Ampelopsis with it, when it includes some 250 species. The latest monographer (Planchon, DC. Monogr. Phaner. 5) refers thirty or more species to Vitis in the main account and in the addendum, and more than 200 to Cissus. North America is particularly rich in Vitis, not only in number of species but in the widespread distribution and the abundance of the plants. From our native species have been developed the outdoor Grapes of this country except those of California and the extreme southwest (which are Vitis vinifera). For an account of the evolution of these native cultural varieties, see Grape; also Bailey’s "Sketch of the Evolution of Our Native Fruits, Rarities."

Many of the species of Vitis are excellent ornamental plants, when it is desired to cover arbors, porches or trees. All of them are readily grown from seeds, and most of them from hardwood and softwood cuttings. The following discussion includes all the species native to North America north of Mexico; it is adapted from the writer’s account in Gray’s Synoptical Flora, vol. 1, 420-450. These American Grapes are very difficult to distinguish in many cases; hence the subjoined descriptions are very full in order to bring out the contrasting characters. Some of the best recent systematic writing on American Vitis is from French sources, since the American species have come into prominence in France as phylloxera-resistant stocks for the Wine Grape. See, for example, the works of Millardet, and Viala and Raroul, also "Ampelographie Universelle," by Viala and Viremard, now publishing. As understood by Gray, Vitis is distinguished as follows: Plants climbing by the paraphractum and coiling of naked-tipped tendrils. Flowers polygamo-dioecious (i.e., some individuals perfect and fertile, others sterile with at most only a rudimentary ovary); 5-merous; corolla calyptrately cuneous,—the petals in anthesis cast off from the base while coiling by their tips (Fig. 2695): hypogynous disk of 5 nectariferous glands alternate with stamens; style short and thick, or conical; berry pulpy; seeds pyriform, with contracted beak-like base.

INDEX.

australis, 22. Americana, 22.
angustifolia, 5.
anaxacana, 1.
aranensis, 22.
argus, 22.
Aristos, 18.
Artus, 18.
Arbo, 15.
Banakian, 1.
Berti, 16.
Biod, 23.
Bianco, 31.
Blau, 27.
Bourqui, 22.
Brickett, 22.
California, 22.
canadensis, 23.
canescens, 17.
Carrhoe, 24.
Champan, 12.
chirete, 17.
Corket, 2.
cordiformia, 14.
cortecia, 23.
dicerta, 7.
diversifolia, 22.
doniana, 21.
furi, 14.
formosa, 8.
Florida, 5, 17.
fusiana, 20.
galan, 22.
gongylodes, 4.
Helleri, 14.
hypognia, 23.
Hyacinth, 9.
Labrea, 27.
Lanceoini, 22.
Longi, 11.
microperas, 12.
Muscari, 22.
Myrocarpia, 13.
Canella, 8.
Muscana, 6.
muscaluede, 5.
Muscaria, 25.
Norton, 22.

Vitis (classical Latin name). VINE. GRAPE. Vitex or Ampelides. A widespread genus of mostly tendril-bearing, climbing vines; much abundant in temperate countries. In its stricter limitations, the genus includes less than 50 known species, but some authors unite Cissus and Ampelopsis with it, when it includes some 250 species. The latest monographer (Planchon, DC. Monogr. Phaner. 5) refers thirty or more species to Vitis in the main account and in the addendum, and more than 200 to Cissus. North America is particularly rich in Vitis, not only in number of species but in the widespread distribution and the abundance of the plants. From our native species have been developed the outdoor Grapes of this country except those of California and the extreme southwest (which are Vitis vinifera). For an account of the evolution of these natural cultural varieties, see Grape; also Bailey’s "Sketch of the Evolution of Our Native Fruits, Rarities."

Many of the species of Vitis are excellent ornamental plants, when it is desired to cover arbors, porches or trees. All of them are readily grown from seeds, and most of them from hardwood and softwood cuttings. The following discussion includes all the species native to North America north of Mexico; it is adapted from the writer’s account in Gray’s Synoptical Flora, vol. 1, 420-450. These American Grapes are very difficult to distinguish in many cases; hence the subjoined descriptions are very full in order to bring out the contrasting characters. Some of the best recent systematic writing on American Vitis is from French sources, since the American species have come into prominence in France as phylloxera-resistant stocks for the Wine Grape. See, for example, the works of Millardet, and Viala and Raroul, also "Ampelographie Universelle," by Viala and Viremard, now publishing. As understood by Gray, Vitis is distinguished as follows: Plants climbing by the paraphractum and coiling of naked-tipped tendrils. Flowers polygamo-dioecious (i.e., some individuals perfect and fertile, others sterile with at most only a rudimentary ovary); 5-merous; corolla calyptrately cuneous,—the petals in anthesis cast off from the base while coiling by their tips (Fig. 2695): hypogynous disk of 5 nectariferous glands alternate with stamens; style short and thick, or conical; berry pulpy; seeds pyriform, with contracted beak-like base.

INDEX.

australis, 22. Americana, 22.
angustifolia, 5.
anaxacana, 1.
aranensis, 22.
argus, 22.
Aristos, 18.
Artus, 18.
Arbo, 15.
Banakian, 1.
Berti, 16.
Biod, 23.
Bianco, 31.
Blau, 27.
Bourqui, 22.
Brickett, 22.
California, 22.
canadensis, 23.
canescens, 17.
Carrhoe, 24.
Champan, 12.
chirete, 17.
Corket, 2.
cordiformia, 14.
cortecia, 23.
dicerta, 7.
diversifolia, 22.
doniana, 21.
furi, 14.
formosa, 8.
Florida, 5, 17.
fusiana, 20.
galan, 22.
gongylodes, 4.
Helleri, 14.
hypognia, 23.
Hyacinth, 9.
Labrea, 27.
Lanceoini, 22.
Longi, 11.
microperas, 12.
Muscari, 22.
Myrocarpia, 13.
Canella, 8.
Muscana, 6.
muscaluede, 5.
Muscaria, 25.
Norton, 22.

2604. Vitis incisa (X2).
The structure of the key to the following species, when standing alone, is as follows:

A. Species grown wholly for ornament:
 a. **Old World** : (Nos. 1-4)
 b. **Lvs., simple, cissus-like** : (No. 1)
 c. **Bark not shredding** : (Nos. 5-6)
 d. **Bark shredding** : (Nos. 7-27)
 e. **Green-leaved Grapes** : (Nos. 7-19)
 f. **Vulpina-like** : (Nos. 7-13)
 g. **Lvs., broader than long** : (No. 7)
 h. **Lvs., ovate** : (Nos. 8-13)
 i. **Diaphragmas thin** : (Nos. 8-12)
 j. **Diaphragmas very thick** : (No. 13)
 k. **Coriplota-like** : (Nos. 14-17)
 l. **Young shoots terete** : (No. 14)
 m. **Young shoots angled** : (Nos. 15-17)
 n. **Plants strongly climbing** : (No. 18)

B. Skin and pulp freely adhering:
 a. **Orbicular-scalloped-leaved species** : (No. 19)
 b. **Colored-leaved Grapes** : (Nos. 20-27)

C. Mature **lvs., only flocculent in cobwebby or glaucous beneath**:
 a. **Diaphragmas** : (Nos. 20-24)
 b. **Ends of growing shoots white-tipped** : (Nos. 20-21)
 c. **Ends of growing shoots rust-tipped** : (Nos. 22-24)
 d. **Mature lvs. densely tomentose beneath** : (Nos. 25-27)
 e. **Tendrils interwoven** : (Nos. 25, 26)
 f. **Tendrils continuous at every joint** : (No. 27)

B. **Lvs. with 3-5 leaflets**:
 a. **hypochna** : F. Muell. (Cissus hypochna, Gray), Foliage handsome and persistent, dark green above and glaucous beneath; leaves usually 3, obovate to elliptic, acuminate, stalked, entire or toothed towards the apex; ftls. yellowish; fr. rather small and nearly globular. Australia.—Offered in S. Calif.

4. **pterophora**, Baker (V. pterophora, Lynch, not Baker). A most remarkable species, the branches bearing cylindrical or club-shaped tubers at their ends, which fall and produce new plants; tall, climbing by means of long forked discinctous tendrils, the stem winged and hairy: lvs. large, of 3 ft., which may be again lobed, the stipules large and purple on one side, the petiole winged; cyme peduncular; floral envelopes of a thickened calyx and 1 minute petals. Brasil. G. C. H. 19:53. B.M. 6893. Gn. 55, p. 170.—Offered in S. Calif.

2606. **Vitis rotundifolia**, the Muscadine grape of the South (X 3/4).

A. Species grown primarily for their ornamental interest, all native except No. 28.

B. **Skin and pulp firmly adhering**:
 a. **Orbicular-scalloped-leaved species** : (No. 19)
 b. **Colored-leaved Grapes** : (Nos. 20-27)
 c. **Bark bearing prominent tendrils, never shredding**:
 a. **nodes without diaphragmas; tendrils simple**:
 i. **flower-clusters small and not much elongated**:
 a. **seeds oval or oblong, without a distinct stipule-like bract**. **(Muscadinia).**

5. rotundifolia, Michx. (V. taurina, Bartram. V. culina, Authors, not Linn. V. musculina, angulata, veraculam, petitio, Floridiana, Raf.). MUSCADINE, SOUTHERN FOX GRAPE. BULLET OF BULLET OF BULL GRAPE. Fig. 2606. Vine with hard, warty wood, running rampant even 60 to 100 ft. over bushes and trees, and in the shade often sending down dichotomous aerial roots; lvs. rather small to medium (2 to 6 in. long), dense in texture and glaucous both sides (sometimes pubescent along the veins beneath), cordate-orate and not lobed, mostly with a prominent and sometimes an acuminate point (but somewhat contracted above the termination of the main side veins), the under surface finely reticulated between the veins, the teeth and the apex angular, coarse and acute, the basal sinus shallow, broad and edentate; petiole slender and (like the young growth) fine-scaly, about the length of the leaf-blade; tendrils (or flower-clusters) discontinuous, every third node being bare; fruit-bearing clusters smaller than the sterile ones, and ripening from 3 to 20 grapes in a nearly globular bunch; berries falling from the clusters when ripe, spherical or nearly so and large (½-1 in. in diameter), with very thick and tough skin and a tough musky flesh, dull purple in color without bloom (in the Supeperomrg variety silvery amber-green), ripe in summer and early autumn; seeds ½-3½ in. long, shaped something like a coffee berry. River banks, swamps, and rich woods and thickets, S. Delaware to N. Fla. and west to Kans. and Texas.
6. *Vitis monticola*, Simp. Vign., *Mustang Grape of Florida, Bird or Everbearing Grape*. Very slender grower, preferring to run on the ground or over low bushes, more nearly evergreen than the last, flowering more or less continuously: Ivs. smaller, thinner, and more shining, more nearly circular in outline and less prominently pointed, the teeth broader in proportion to the blade and more open or spreading; clusters larger and more thyrse-like: berries ½ to 1 in. larger than in the last and often more numerous, shining black, with a more tender pulp, acid juice, no muskiness, and thinner skin; seeds half smaller than in the last. Dry woods and sands, Florida, at Jacksonville, Lake City, and southwards, apparently the only Grape on the key roads; also in the Bahamas.—Difficult to distinguish from *V. rotundifolia* in herbarium specimens, but distinct in the field.

Vitis

cc. Bark without distinct lenticels, on the old wood separating in long thin strips and fibers; nodes provided with diaphragm: tendrils forked; flower-clusters mostly large and elongated; seeds pyriform. (*Euvitis*.)

D. Green-leaved Grapes, mostly marked at maturity by absence of prominent white, rusty, or blue tomentum or scar or conspicuous bloom on the Ivs. beneath (under surface sometimes thinly pubescent, or minute patches of floccose wool in the axils of the veins, or perhaps even coherently); foliage mostly thin: tendrils intermixed, i. e., every third joint bearing no tendrils (or inflorescence). *V. cinerea* and *V. Arizonica* are partial exceptions and might be looked for in bd (*NOS. 7-13*).

E. *Vulpina*-like Grapes, characterized by thin light or bright green mostly glossy Ivs. (which are generally glabrous below at maturity except perhaps in the axils of the veins and in *V. Champlain*), with a long or at least a prominent point and usually long and large sharp teeth or the edges even bagged (*NOS. 7-13*).

F. Lea. broader than long, with truncate-oblique base. (*V. Trifoliatae might be sought here.*)

7. *rupesiris*, Scheele. Sand, Sugar, Rock, Bush, or Mountain Grape. Shrub, 2 to 6 ft. high, or sometimes slightly climbing, the tendrils few or even none, diaphragm plane and rather thin: Ivs. puberulous to puberulous-ovate (about 3 to 4 in. wide and two-thirds as long), rather thick, smooth and glabrous on both surfaces at maturity, marked by a characteristic light glanscent tint, the sides turned up so as to expose much of the under surface, the base only rarely cut into a well-marked sinus, the margins very coarsely angle-toothed, the boldly rounded top bearing a short, abrupt point and sometimes 2 lateral teeth enlarged and suggesting lobes; stamens in fertile fls. recurved laterally or rarely ascending, those in the sterile fls. ascending; cluster small, slender, open and branched: berries small (½ in. diam.), purple-black and somewhat glaucous, pleasant-tasted, ripe in late summer; seeds small and broad. Sandy banks, low hills and mountains, District of Columbia and S. Pa. to Tenn., Indiana, Mo., and S. W. Texas.

Var. *diissecta*, Eggert, is a form with more ovate Ivs. and very long teeth, and a strong tendency towards irregular lobing. Mo.

Vitis

F. Lea. ovate in outline, with a mostly well-marked sinus.

g. *Diaphragma* (in the nodes) thin: young shoots not red: Ivs. not deeply lobed.

8. *monticola*, Buckley (*V. Texana*, Munson. V. *Fourceana*, Planch). *Sweet Mountain Grape*. Fig.

2697. *Vitis monticola* (on the left) and *V. vulpina* (× 1/2).
Macon, to N. Dak., Kans., and Colo., and south to W. Va., Mo., and N.W. Texas. B. M. 2426. — The commonest Grape in the northern states west of New England, abundant along streams. Variable in the flavor and maturity of the fruit. Fruits with pedicels and under surfaces of lvs., pubescent sometimes occur. Occasionally hybridizes with V. Lathrusca eastward, the hybrid being known by the tomentose young shoots and unfolding leaves, and the darker foliage, which is marked with rusty tomentum along the veins of the less jagged leaves.

Var. praeox. Bailey, is the June Grape of Missouri, the little sweet fruits ripening in July.

10. Treelised, Minson. Plant shrubby and much branched, climbing little, the small and mostly short (generally shorter than the lvs.) tendrils deciduous the first year unless finding support; internodes short, the diaphragma twice thicker about one-sixteenth in.) than in V. vulpina and shallow-hiemicave: stipules less than one-fourth as large as in V. vulpina: lvs. large and green, very broad-ovate or even reniform-ovate (often wider than long), thin glabrous and shining on both surfaces, the basal sinus very broad and open and making no distinct angle with the petiole; the margin unequally toothed (not jagged as in V. vulpina) and indistinctly lobed, the apex much shorter than in V. vulpina: fertile fls. with very short, recurved stamens, sterile with ascending stamens: cluster small (2 to 3 in. long); berries 1/2 in. or less thick, black with a thin brown, ripening three weeks later than V. vulpina when grown in the same place, thin-skinned: pulp juicy and sweet; seeds small. Brewster county, S. W. Texas and New Mexico to Bradshaw Mountains, Arizona. — Little known, and possibly a dry-country form of V. vulpina. In habit it suggests V. Arizonica, var. glabella, from which it is distinguished, among other things, by its earlier flowering and larger leaves with coarser teeth and less pointed apex.

11. Longii, Prince (V. Sulmis, Panch. V. Arizonicum, Lemm.). Differs from vigorous forms of V. vulpina in having floccose or pubescent young growth; lvs. decidedly more circular in outline, with more angular teeth and duller in color, often distinctly pubescent beneath; stamens in fertile fls. short and weak, and laterally reflexed, those in sterile fls. long and strong; seeds larger. N.W. Texas and New Mexico. — Regarded by French authors as a hybrid, the species V. rupestris, vulpina, candicans and cordilolia having been suggested as its probable parents. It is variable in character. In most of its forms it would be taken for a compound of V. rupestris and V. vulpina, but the latter species is not known to occur in most of its range. It

2698. Vitis vulpina (or V. riparia). Natural size.

Probably the most widespread of American native grapes.
species (possibly with *V. Arizonica* or *V. Donmann*), but it is now so widely distributed and grown so far removed from its supposed parents and occurs in such great quantity in certain areas, that for taxonomic purposes it must be kept distinct. It is not unlikely that it has originated at different places as the product of unlike hybridizations. Late French writers designate the jagged-leaved forms as *V. Solonis*, and the dentate forms as *V. Nuevo-Hispana*. This interesting grape was found some thirty years ago by Engelmann in the Botanic Garden of Berlin under the name of *Vitis Solonis*, without history. Engelmann guesses (Bushberg Cat., ed. 3, 18) the name to be a corruption of "Long's." It is probable that the plant was sent to European gardens as *Vitis Longii*—very likely from Prince's nursery—and the name was misread on the label. The original name, which was duly published by Prince with description, may now be restored.

Var. *microspérmum*, Bailey (*V. Solonis*, var. *microspérmum*, Munson), is a very vigorous and small-seeded form, which is very resistant to drought. Red River, N. Texas.

13. *Champlini*, Planch. Probably a hybrid of *V. rapestris* or *V. Berlandieri* and *V. canadiensis*, bearing medium to large reniform or reniform-cordate leaves, which are variously pubescent or coated but become glabrous, the growing tips mostly white-to-montaceous: berries very large and excellent. S. W. Texas. A. G., 1891: 579.—In some places associated with *V. canadiensis*, *Berlandieri* and *vivipara* only, and in others with the above and *V. rapestris*. Often composing dense thickets in the wild.

6. Diaphragmus very thick and strong: young shoots bright red: leaves often strongly lobed.

14. *rubra*, Michx. (*V. plautii*, Le Conte). True FROST GRAPE, CHICKEN, RACCOON, or WINTER GRAPE. One of the most vigorous of American vines, climbing to the tops of the tallest trees, and sometimes making a trunk 1 or 2 ft. in diam.: diaphragm thick and strong: leaves long-cordate, triangular-cordate with rounded base, or cordate-ovate, undivided but sometimes very indistinctly 3-lobed or 3-serrated, the basal sinus rather deep and narrow, the margin with large, acute teeth of different sizes and the point long and acute, the upper surface glossy and the lower bright green and either becoming perfectly glabrous or bearing some close and fine inconspicuous grayish pubescence on the veins; pedicels long: stamens erect in the sterile fls. and short reflexed-curred in the fertile ones: clusters long and very many-flowered, most of the pedicels branched or at least bearing a cluster of fls.; berries numerous and small (about ½ in. in diam.), in a loose bunch, black and only very slightly glaucous, late and pesty vine; with a thick skin and little pulp, becoming edible after frost: seeds medium and broad. In thickets and along streams from Pa. (and probably S. New York) to E. Kan., Fla. and Texas. Probably the most useful and best grape of the whole genus.

Var. *Ratiana*, Engel. has feebly aromatic berries, and grows in the Mississippi valley.

Var. *simplévrum*, Munson. A glossy-leaved form bearing its foliage very late in the season: leaves sometimes suggesting forms of *V. rubra*. S. Fla.,
VITIS

Var. Hæleri, Bailey. Lvs. more circular (i.e., lacking the long point), and the teeth round-obtuse and ending in a short mucro. Kerr county, S. Texas, 1,600 to 2,000 feet.

No. Young shoots angled, and covered the first year with tomentum or wool.

15. Baileyana, Manson (V. Virginiana, Munson, not Lam., ’Possum Grape.’ Less vigorous climber than V. cordifolia, rather slender, with short internodes and very many short side-shoots: lvs. frequently smaller, the larger ones shortly but distinctly 3-lobed (lobes mostly pointed and much spreading), bright green but not shining above, gray below and pubescent at the margin small-notched (teeth much smaller than in V. Berlandieri) or sometimes almost entire, mostly distinctly and divaricately 3-angled or shortly 3-lobed towards the apex, the triangular apex large and prominent, the upper surface colored in open, the fertile ones short and laterally recurved; cluster mostly dense and often straggling, containing many small black berries, these only slightly, if at all glaucous, ripening very late, and after frost becoming dull dark green (not glossy), the under surface remaining ash-gray or dun-gray, wobbly-pubescent; stamens in fertile fls. long, slender and accrescent; in the sterile ones short and laterally recurved; cluster mostly loose and often straggling, containing many small black berries, these only slightly, if at all glaucous, ripening very late, and after frost becoming dull dark green (not glossy), the under surface remaining ash-gray or dun-gray, wobbly-pubescent; seeds small to medium. Along streams, mostly in limy soils, central III. to Kans. and Texas; also N. Fla.; also in Mex.—Readily distinguished from V. estivialis by the triangular-topped sharply 3-lobed ash-gray lvs. and the grayomentum of the young growth.

Var. Floridana, Manson. Growing tips rusty-tomentose, as are sometimes the veins on the under sides of the leaves: cluster longer-petuneced and more conoid, Manatee co., Fla.; and apparently also in Ark.; possibly a compound with V. estivialis, but the lvs. have the characteristic shape of V. cinerea. Not to be confused with any form of V. Caribena, because of the lobed triangular-topped lvs. and much larger teeth.

Var. canescens, Bailey. A form with rounded or heart-like lvs., the upper half of the leaf lacking the triangular and 3-lobed shape of the type. St. Louis, Mo., and S. Ill. to Texas.

FF. Plant scarcely climbing, the tendrils perishing when falling to find support.

18. Arizonica, Engelm. (V. Arizoumnae, Parry). Canon Grape. Plant weak, much branched, with short internodes and thick diaphragms, branches angled: lvs. mostly small, cordate-ovate and with a prominent triangular-pointed apex, the sinus broad or the base of the blade even truncate, the teeth many and small and pointed or mucronate, the margin either continuous or very indistinctly 3-lobed (or sometimes prominently lobed on young growths), the leaves and shoots white-woolly when young, but becoming nearly glabrous with age: stamens ascending in fertile fls. and recurved in the fertile ones: bunches small and compound, not greatly, if at all, exceeding the lvs., bearing 20 to 40 small black berries of pleasant taste: seeds 2 to 3, medium size. Along river banks, W. Texas to New Mex. In Ariz., mostly south of the 35th parallel, to S. E. Calif. and northern Mex.

Var. glabra, Munson. Plant glabrous, with glossy and mostly thinner and larger lvs. In mountain glades, with the species ranging northwards into S. Utah. Distinguished from V. monticola by its triangular-pointed and small-toothed lvs. Probably a form of V. Trecartii.

EE. Orbicular-scallop-edged species of the Pacific coast.

19. Californica, Benth. Fig. 2790. A vigorous species, tall-climbing upon trees but making bushy clumps when not finding support, the nodes large and diaphragmatic rather thin: lvs. mostly round-reniform (the broader ones the shape of a horse’s head-print), rather thin, either glabrous and glossy or (more commonly) cottony-canescent until half grown and usually remaining plainly pubescent below, the sinus ranging from very narrow and deep to broad and shallow, varying (on the same vine) from finely blunt-toothed to coarsely scallop-toothed (the latter a characteristic feature), the upper portion of the blade either perfectly continuous and rounded or sometimes indistinctly 3-lobed and terminating in a very short apex: bunches medium, mostly long-peduncled and forked, the numerous small berries glaucous-white, seedy and dry but of fair flavor: seed large (½ to 1½ in. long), prominently pyriform. Along streams in central and N. Calif. and S. Ore.—Lvs. becoming handsomely colored and mottled in fall.
VITIS

20. **Girardinia**, Munson. **Valley Grape.** Strong, climbing vine, with thick diaphrans: lvs. medium to large and rather thin, broadly cordate-ovate, with a rather deep and narrow sinus and nearly continuous or obscurely 3-lobed outline (sometimes markedly 3-lobed on young shoots),

the teeth many and small and acute, the apex short-triangular or almost none, the under surface remaining closely tomentosely; clusters large and very compound, each one dividing into three or four nearly equal sections, which are in turn shouldered and thyrse-like: berries small, black and slightly glaucous, the skin thin but tough, pulp finally becoming sweet; seeds small in size, pyriform. S. Calif., south of the 36th parallel.

-Differs from **V. Californica** in the more pubescent shoots and foliage, smaller and sharper teeth, decompound clusters, smaller less glaucous berries, and smaller seeds. Shoots of **V. Californica** often bear lvs. with small and nucious teeth, and such specimens without the fl.-clusters are difficult to distinguish from this species. Some of the forms which have been referred to **V. Girardinia** are apparently hybrids with the wine Grape, **V. vinifera**; and at best the plant is imperfectly understood and its merits as a species are yet to be determined.

21. **Deaniana**, Munson. **Plant vigorous, climbing high or remaining bushy if failing to find support, with short internodes and rather thin diaphrans: lvs. bluish-green in fact, mostly large, more or less prominent lobes, the under surface usually remaining densely pubescent and the upper surface more or less floccose; cluster medium to small, bearing large (½ in. and less in diam.), black, glaucous berries of excellent quality: seeds large (½-¾ in. long), distinctly pyriform. Chiefly in N.W. Texas, but ranging from Coeur d'Alene, Idaho, to the Pecos river in New Mexico. **G.F. P.** 8:435. The plant would pass at once as a hybrid of **V. vulpina** and **V. canadensis**, except that the former will not occur in its range. It is very likely a hybrid, however, and **V. canadensis** seems to be one of the parents.

22. **astivalis**, Miwkt. (**V. pluvialis**, **V. aestivalis**, **V. americana**, Bartram; **V. J. Norris**, Calif.; **V. brachyandra**, var. **aestivalis**, Regel. **V. brachyandra**, Le Conte). Summer, bunch, or **Pixton Grape.** Strong, trailing vine with medium short internodes, thick diaphrans, and often pubescent petioles: lvs. mostly large, thickish at first but becoming rather thick, ovate-cordate to rounded, and with the sinus either deep (the basal lobes often overlapping) or broad and open, the limb always lobed or prominently angled, the lobes either 2 or 3, in the latter case the lobes usually enlarged and rounded at the extremity, the apex of the leaf broadly and often obtusely triangular, the upper surface dull and becoming glabrous and the under surface retaining a covering of copious rusty or red-brown pubescence which clings to the veins and draws together in many small, tufty masses: stamens in fertile fls. reflexed and laterally bent: clusters mostly long and long-peduncled, not greatly branched or even nearly simple (mostly interrupted when in flower), bearing small (½ in. or less in diam.), black, glaucous berries, which have a tough skin and a pulp ranging from dryish and astrangent to juicy and sweet; seeds medium size (¼ in. or less), two to four. *Tree* Byron New York to central Fla. and westward to the Mississippi and Missouri. -A marked type among American Grapes, being readily distinguished from other species by the reddish fuzz of the under sides of the leaves.

Var. **glauca**, Bailey (**V. Linnaeum**, var. **glauca**, Munson). Lvs. and mature wood glaucous-blue on the body beneath, but the veins rusty and nearly larger. S. W. Missouri to N. Texas. -Much like **V. bi-color**, but lvs. thicker and more pubescent below, and tips of shoots rusty-tomentose.

Var. **Linnaeum**, Munson (**V. diversifolia**, Prince. **V. Linnaeum**, Buckley). **Post-oak, Pine-wood, or Turkey Grape.** More stocky than **V. astivalis**, climbing high upon trees but forming a bushy clump when not finding support; lvs. densely tomentose or velvety below; berries large (¾-1⅔ in. in diameter), black and glaucous, mostly palatable: seeds mosty much larger than in **V. astivalis** (often ½ in. long). High post-oak (**Quercus stellata**) lands, S. W. Missouri to N. Texas and E. La. -Very likely derived from the **astivalis** type through adaptation to dry soils and climates. Perhaps worth recognition as a geographical species. The name of this Grape was spelled *Linnaeum* by Buckley, with whom the name originated. The name of the person whose name commemorated was spelled *Linnæus*, and Munson has therefore changed the spelling of the name of the Grape. However, Buckley's spelling should persist, as a matter of nomenclatorial priority.

Var. **Bourquiérana**, Bailey (**V. Bourquiérana**, Munson). A domestic offshoot, represented in such cultivated varieties as Heribemont and Le Noir, differing from **V. astivalis** in its mostly thinner leaves which (like the young shoots) are glaucous-blue below, the pubescence mostly cinerous or dun-colored or the under surface sometimes blue-green: berries large and juicy, black or amber-colored. -A mixed type, some of it probably a direct ancestor of **V. astivalis**, and some hybridized with the wine Grape (**V. vinifera**). Much cultivated south.
23. *bicolor*, Le Conte (*F. argenteifolia*, Munson). **Blue Grape**, or **Summer Grape of the North**. Fig. 2701. A strong, high-climbing vine, with mostly long internodes and thick diaphragms, the young growth in canes generally perfectly glabrous and mostly (but not always) glaucous-blue, tendrils and petals very long; *ln.* large, round-cordate-ovate in outline, glabrous and dull above and very heavily glaucous-blue below but losing the bloom and becoming dull green very late in the season, those on the young growth deeply 3-5-lobed and on the older growths shallowly 3-lobed, the basal sinus running from deep to shallow, the margins mostly shallow-toothed or sinuate-toothed (at least not so prominently tooth-toothed as in *V. aestivalis*): cluster mostly long and nearly simple (sometimes forked), generally with a long or prominent peduncle; the purple and densely glaucous berries of medium size (½ in. or less in diam.), sour but pleasant-tasting when ripe (just before frost); seeds rather small. Abundant northwards along streams and on banks, there taking the place of *V. aestivalis*. Ranges from New Eng. and Ill. to the mountains of W. North Carolina and to W. Tenn.—Well distinguished from *V. aestivalis* (at least in its northern forms) by the absence of rufous tomentum, the blue-glaucous small-toothed leaves, and long petals and tendrils. It has been misunderstood because it loses its glaucous character in the fall.

24. **Caribea**, DC. Fig. 2702. Climbing, with flocculent-woolly (or rarely almost glabrous) and striate shoots: tendrils rarely continuous: *ln.* cordate-ovate or even broader and mostly acuminate-pointed, sometimes obscurely angled above (but never lobed except now and then on young shoots), becoming glabrous above but generally remaining rufous-tomentose below, the margins set with very small, mucro-tipped silinate teeth: cluster long and long-peduncled, generally large and very compound: berry small and glabrous, purple: seed obvolute, grooved on the dorsal side. A widely distributed and variable species in the American tropics, running into white-leaved forms (as in *V. Blucoi*, Munson). Little known in the United States: La., Lake City, N. Fla., swamp near Jacksonville, Fla.

ee. *ln.* densely tomentose or felt-like beneath throughout the season, the covering white or rusty white.

f. Tendrils intermittent (every third joint without tendril nor inflorescence opposite the leaf).

25. **candicans**, Engelm. (*V. Mutsugon-atis*, Buckl.). **Mustang Grape**. Plant strong and high climbing, with densely woolly young growth (which is generally rusty-tipped), and very thick diaphragms: *ln.* medium in size and more or less papery-like, ranging from reniform-ovate to cordate-ovate or triangular-ovate, dull above but very densely white-tomentose below and on the petals, the basal sinus very broad and open or usually none whatever (the base of the leaf then nearly truncate), deeply 5-7-lobed (with enlarging rounded sinuses) on the strong shoots and more or less indistinctly lobed or only angled on the normal growths, the margins wavy or sinuate-toothed; stamens in the sterile fls. long and strong, those in the fertile fls. very short and laterally reflexed; cluster small, mostly branched, bearing a dozen to twenty large (½ in. or less in diam.) purple or light-colored or even whitish berries, which have a thick skin and a very disagreeable berry flavor: seeds large, pyriform. E. Texas, mostly limestone soils.

Var. coriacea, Bailey (*V. cinerea*, Shuttl.). **Leather-leaf or Callous Grape**. Fig. 2703. Differed from the species chiefly in bearing much smaller (about ½ in. in diam.) thinner-skinned and more edible Grapes with mostly smaller seeds, and perhaps a less tendency to very deep lobing in the *ln.* on young shoots and possibly rather more marked rustiness on the young growths. Florida, chiefly southward, in which various Texan plants reappear.—The more agreeable quality of the fr. is probably the result of a more equable and moister climate.

26. **Simpsoni**, Munson. Distinguished by mostly much-cut *ln.* on the young shoots and comparatively thin, large and large-toothed ones on the main shoots, rusty-white tomentum below and very prominently brown-tomentose young growths,—the character of the *ln.* and tomentum varying widely, the foliage sometimes becoming almost blue-green below. *Fla.—This is likely a hybrid of *V. aestivalis* and *V. cestivars*, **var. coriacea**. Some forms of it are very like *V. Labrusca*, and might be mistaken for that species.

ff. Tendrils mostly continuous (a tendril or inflorescence at every node).

27. **Labrusca**, Lind. (*V. Blaun d i*, Prince). **Fox Grape, Skunk Grape**. Figs. 949, 950, Vol. II. A strong vine, climbing high on thickets and trees; young shoots tawny or fuscous, with much sheary down: *ln.* large and thick, strongly veined (especially beneath), broadly cordate-ovate, mostly obscurely 3-lobed towards the top (on strong growths the sinuses sometimes extending a third or even half the depth of the blade, and rounded and edentate at the bottom) or sometimes nearly continuous in outline and almost deltoid-ovate, the petaloid sinus mostly shallow and very open (ragging to narrow and half or more the length of the petiole), the margins shallowly scallop-toothed with mucro-pointed teeth (or sometimes almost entire), and the apex and lobe acute, the upper surface dull green and becoming glabrous but the lower surface densely covered with a tawny-white, dun-colored or red-brown tomentum: stamens long and erect in the sterile fls. and (in wild forms) short and recurved in the fertile fls.: raceme short (berries usually less than 20 in wild types), generally

2703. *Vitis candicans, var. coriacea* (× ¼).
VITIS

simple or very nearly so, in anthesis about the length of the peduncle; berries large and nearly spherical, ranging from purple-black (the common color) to reddish or amber-gold, generally falling from the pedicel when ripe, variable in taste but mostly sweetish to musky and sometimes slightly astringent, the skin thick and tough; seeds very large and thick. New England and southwards in the Allegheny region and highlands to western-central Georgia. Not known to occur west of the Mississippi River, although reported from S. Indiana. — The parent of the greater part of American cultivated Grapes. It is often confused with V. aestivalis in the South, from which it is distinguished by the habitually continuous tendrils, the more felt-like lvs. which are not floccose, and especially by the small-toothed lvs., very short clusters and large berries and seeds.

2704. Vita vinifera (× ¾).

Vitis vinifera, Linn. WINE GRAPE. European GRAPE. Fig. 2704. Young growth smooth and floccose, the plant not so high climbing as most American species; tendrils intermitted; lvs. mostly thinish, rounded, with a deep sinus and the basal lobes usually overlapping, tomentose or glabrescent beneath, the margins coarsely notched or jagged; clusters large and long, the berries usually oval or oblong, although many varieties are globular-fruited. Probably native to the Caspian or Caucasian region and western India. Var. laciniata, Hort., has much-cut foliage; handsome. Gn. 54, p. 425.— Cult. from the earliest times, and the Grape of history. Now greatly varied. The hothouse Grapes, as Black Hamburg, Barberossa, are of this species; also the vineyards of California. Not hardy in the northern states and very subject to phylloxera (root-louse) and mildew. Regel, a Russian botanist, considered the Wine Grape to be a hybrid of two species that he called V. Labrusca and V. vulpina, but this view is not accepted.

V. Amarinais, Rapp., is much like V. vinifera, sometimes grown abroad for the purple tint of its young growth. Gn. 54, p. 425.— V. Bâleais, Hook, (Oisans Bâleais, Planch., and by him referred to C. Currori). A most remarkable species, its trunk being concaved into a turnip-like body a few inches in diameter; the leaves, opposite, decussate, with a short, succulent branchlet; tendrils none; its greenish, in clusters usually raised above the leaves. V. heterophylla, Thunb.—Amelopsis heterophylla.— V. inconstans, Miq.—Amelopsis tricospidata.— V. japonica, Thunb. Jonsin. — V. sisu, Cassius. V. aurea, Regel.— V. aurea, Regel. V. aurea, Regel. with large, coruolate-ovate lvs., with small spicate teeth and very white-tomentose beneath. China. Assumes handsome colors in fall.— V. Lindeni, Hort. See V. pinnatifida, Regel.— V. Panniculia, Romanet (Amelopsis Daviddiana, Mott. Amelopsis angustifolia, Juss. var. Daviddiana, Carr. Vitis Davidiana, Regel.)— V. Pannicoria, Regel. (Amelopsis angustifolia) has the following: tendrils intermitted; lvs. mostly small, very various, sometimes 3-5 foliolate but usually only 3 lobed or even ovate-cordate and the margins nearly or quite entire or crenate-dentate, whitish beneath. China. Has much the aspect of an Amelopsis. — V. Romaneti, Romanet (Zamétophis Daviddisa, Carr. Amelopsis internodera, Carr. Vitis Davidiana, Hort., in part 1). Stems very hairy or almost spiny, the hairs glandular and pileolate; tendrils internodera: lvs. large, coriaceous, obovate, 3-lobed, strongly crenate-dentate, becoming nearly or quite glabrous above, hairy beneath; clusters 3-4 in. long, the berries small, black, edible. Vigorous vine from China, little known in this country and its hardiness in the northern states not yet tested. E.H. 1889, p. 55. 1891:192 (variegated form said to be of the same stock). V. Romaneti of the trade is apparently closely allied to V. Coignetii, from which the hardiness distinguishes it.— V. ritiana, Carr. R.H. 1890:443, belongs with V. streptocarpa, Maxim. is Ampelopsis sericans, Miq. Gn. 54, p. 427.— V. streptocarpa, Miq., see Cassius straza. — V. Thunbergii, Regel. is V. Aureanensis. — V. tricospidata, Regel. = Amelopsis tricospidata.

L. H. B.

VITTIADINIA (Dr. C. Vittadini, an Austrian who wrote on fungi 1836-1842). Compásiter. About 14 species of perennial plants, natives of Australia, New Zealand, S. America, and Hawaiian Islands. Herbs, with a thick caudex, or branching subshrubs; lvs. usually entire or variably cut; heads rather small, with a yellow disk and white or blue rays, terminal or solitary or in leafy corymbs; involucres of several rays; rays pilillate, numerous, corymbose, the irregular, narrow, compressed or flat, with or without ribs on the faces; pappus of numerous, often unequal, capillary bristles. The genus is closely related to Eriogonum, differing in habit and in the appendages of the style-branches, those of Eriogonum being short, while those of Vittadinia are awl-shaped.

Vittadinia telisbo of the California trade is said by Dr. Franceschi, of Santa Barbara, to be "a charming dwarf plant, well suited for rockeries, borders and hanging baskets; covered with myriads of daisy-like white flowers." However, V. telisbo of the trade is apparently not V. telisbo of the botanists; the latter is a synonym of V. australis, of which a description, taken from Flora Australiensis is here given for comparison. The plant known to the California trade as V. telisbo has been examined by J. Burtt Davy, who sends the following account: "V. telisbo, Hort., is not DC., the Mexican Daisy, is really an Eriogonum and should be known as Eriogonum australis, DC. Fig. 2705. It is a much-branched perennial, 6-12 in. high; lvs. alternate, variable, ¼-1 in. long, from linear-subulate or lanceolate to oblongate or oblong-oblanceolate, entire, toothed, or 2-several lobed; peduncles 1-2 in. long, solitary; heads daisy-like, about ¾ in. diam.; rays numerous, narrow, white above, purple on the back, especially in age; style-tips obtuse. A useful border plant, looking best in a moist or as an edging; drought-resistant, hardy and becoming naturalized near San Francisco; readily propagated by cuttings. The freshly broken stems smell strongly of aromatic acid. Fls. July-Sept."

australis, A. Rich. (V. telisbo, DC., not Hort.) . Herbaceous plant of uncertain duration, 1 ft. high or less, tomentose; lvs. oblongate or spatulate to linear-lanceolate, entire or coarsely toothed, solitary; rays narrow; said to be revolute (which may apply only to dried specimens). Australia, Tasmania. — Has 4 distinct botanical varieties. W. M.

VITTARIA (Latin, a fillet or head-band). Polypodiaceae. A genus of ferns with narrow, grass-like foliage, growing pendent from trees. V. lineata, Sw. is a typical American species which is commonly seen growing as central Florida, where it grows on the cabbage palmetto. Rare in cultivation. L. M. Underwood.
VOLKAMÈRIA. Consult Cleodendron.

VRIÈSIA (named for Dr. W. de Vriese, of Amsterdam). \(V\). \(B\). Bentham, Often spelled \(F\). Vriesea, but not so spelled by Lindley, who founded the genus. According to Mez (DC. Monogr. Phaner. 9), 84 species are to be referred to this genus. They are very like tillandsias, with which they are united by Bentham & Hooker and others. The chief technical difference is the presence in Vriesia of 2 ligules or a single cleft or marginal ligsle on the inside of the base of petals. Culturally Vriesias are like tillandsias. They run to forms with marbled and banded leaves. They are tropical American stiff-leaved plants, with mostly distinct spikes bearing large and showy bracts. Several species have been introduced in recent years, and many garden hybrids have been produced. Few kinds are offered in the American trade, and only these kinds are described here. For other kinds, see the monographs of Baker and Mez; also the Kew List of introductions for 1876-1896. For culture, see Tillandsia.

a. Stamen longer than the petals.

b. Inflorescence branched.

c. A. Stamen about the same length as the petals.

d. Inflorescence simple.

e. Bracts of inflorescence strongly imbricate.

splendens, Lam. (\(V\). spectabilis, Hook. \(T\). splendens, Bong.; \(T\). picta, Hort. \(T\). zebrina, Hort., in part). Fig. 2706. Strong-growing plant, with broad, strong, arching-acending lvs. 1 ft. or more long, which are bright green and marked with dark brown transverse bands: spike with densely imbricated bright red-acminate bracts, the scape spotted: fls. exserted, yellowish white. Guiana. B.M. 1:322. F.S. 2:107; 6, p. 162. R.H. 1846-1847. One of the best and most showy species. A robust form is var. \(m\). Hort.—See Supplementary List below for additional note on \(T\). zebrina.

carinata, Warw. (\(V\). braquichnechys, Regel. \(T\). carinata, Baker). Fig. 2707. Lvs. rostrate, about 5 in. long, the base sheathing, imbricate at the tip.

cc. Bracts of inflorescence remote, not imbricate.

2706. Vriesea splendens.
Vriesia

V. hieroglyphica, Morr. (*Tillandsia hieroglyphica*, Bull.). Lvs. many, rosulate, stout, recurved, short-acute, very strongly and irregularly marked and banded with dark green above and brown-purple beneath; inflorescence paniculate, the bracts broadly elliptic-ovate, the fls. yellowish. Brazil. I.H. 31:314; 42, p. 318. R.H. 1891:400. — A very striking and showy plant. Sometimes known as a Massangea.

V. fulgida, Hort., has been catalogued in this country. It is a garden hybrid (*V. incurvata* × *Duvallii*). It has short green lvs. and an exserted simple spike with distichous bright red imbricated bracts. I.H. 35:67. — *V. glucophylla*, Hook., is referred to *Tillandsia fasciculata*. — *V. musaica*, Cogn., is Guzmania, for which see *Tillandsia*. It is also known as a Massangea (see p. 992). — *V. zebrina*, Hort., is sometimes *V. splendens*, and sometimes Cryptanthus zonatus. For the latter, see discussion under *Tillandsia* and Fig. 2515.

Vulneraria. *V. Anthyllis*, Scop., is *Anthyllis Vulneraria*, which see in Vol. I. The other *Vulnerarias* are referred to the same genus.

Vénomus is another spelling for *Euonymus*.
WAHOO, WAHOO, or BURNING BUSH is *Eonymus atropurpureus*. *Ulmus alata*, the Winged Elm, is also called Whahoo or Wahoo.

WAFFER ASH. *Pietea trifoliata*.

WAHLBERGIA grandiflora. See *Phytolacca*.

WAITZIA (F. A. C. Waitz, born 1788, state physician to the Dutch at Samarang, Java; wrote on Japanese plants). *Composite*. Includes one of the rarer "everlasting flowers," a half-hardy annual which grows about 1½ ft. high and bears flat-topped clusters of yellow flower-heads, with a golden disk. The clusters are about 5 in. across, and the heads 2 in. across, the showy part being the involucral bracts, which are arranged in 4 or 5 series, and are petal-like in character but of stiffer texture than ordinary petals. *Waitzia* is a genus of 7 species of Australian herbs, mostly annuals: lvs. alternate, linear or nearly so; fls. heads in terminal corymbs or rarely in oblong, leafy racemes; involucres vary in outline, the bracts overlapping in many rows, all colored and petal-like: receptacle flat, without scales; anthers provided with tails of microscopic size: achenes somewhat compressed, glabrous or papillose, terminating in a slender beak; pappus of capillary bristles usually cohering at the base, simple, barbellate or plumose. The genus is distinguished from *Helipterum* and *Helichrysum* by the beaked achenes. *Flora Australiensis*, vol. 3.

grandiflora, W. Thompson. (The authorship of this species is credited to Naudin by Index Kewensis.) Half-hardy everlasting or "immortelle," annual, exceeding 18 in. in height; lvs. lanceolate, long-acute, sessile, green above, slightly villous beneath, prominent midrib beneath; fls. yellow, in terminal corymbs. F. 1800-41, where it was originally described. Probably the most desirable of the genus. It seems to have replaced *W. aurea*, the favorite of the previous generation, being larger and more robust, and, therefore, easier of cultivation.

W. M.

WALDESTEINIA (Franz Adam, Count of Waldstein-Wartenburg, born 1759 at Vienna; wrote with Kitaibel an illustrated work on rare plants of Hungary; died 1823). *Rosaceae*. The YELLOW or BARREN STRAWBERRY, *Waldsteinia fragarioides*, is a little plant that looks much like a strawberry plant, but it has yellow flowers and bears no edible fruit. It is a hardy North American tufted perennial herb, about 4 in. high, with glossy lvs. composed of 3 wedge-shaped fls., and 5-petalled fls. less than ½ in. across. It comes with the first rush of spring, and continues to bloom until summer. There is no satisfaction in growing only a few plants of this wild flower. The plant is appropriate to the rockery, where every effort should be made to induce it to form a dense mat. Masses of the Yellow Strawberry have been used with good effect for edging shrubbery borders, and the plant is listed by several nurseriesmen.

Only 4 species of Waldsteinia are well known. They are hardy, creeping, perennial, strawberry-like plants: lvs. alternate, mostly basal, long-stalked, entire, lobed, 3-5-cut, or with 3-5 lfts., the lfts. crenate or incised: sepal loose, bearing 2-5 yellow fls.; petals 5, obovate, about as long as the calyx-lobes; stamens indeterminate: carpels 2-6: achenes obliquely obovoid, dry or slightly fleshy. *Native of North temperate zone.*

fragarioides. Tratt. Fig. 2708. Popular description above. Pubescent or nearly glabrous; lfts. dentate or crenate except at the base, 1-2 in. long: sepal oblong-obovate 3-8-d: achenes 4-6. May, June. Woods and shaded hill-sides, New England to Minn. and Ind., along the Alleghenies to Va., R.I., Del., Pa., Ind., Ohio, Mich., W. Va., and Ill., to 510. B. M. 1567 and L.B.C. 5:185 (both as *Dalibarda fragarioides*).

W. M.

WAKE ROBIN. In England Arum maculatum. In America, *Trillium*.

WALLMEISTER is *Asperula odorata*.

WALKING-LEAF FERN is *Campylopus*.

WALL CRESS or ROCK CRESS is *Arabis*.

WALL FERN. *Polypodium vulgare*.

WALLFLOWER. Consult *Cheiranthus Cheiri*.

WALLICHA (Nathaniel Wallich, 1786-1854, Danish botanist; wrote on plants of India). *Palmaeae*. Three species of Himalayan palms, one of which, the *Pterocarpus* or *Dipterocarpus*, with its large, oblong, fleshy fruits, is being introduced to Europe and America. It has been cultivated for many years in tropical greenhouses.

Low palms, cespice, with short branching caudices, or in 1 species tall; lvs. densely fasiculate, terminal, distichous, sealy, unequally pinnatisect; segments solitary or the lowest in groups, cuneate at the base, oblong-obovate or oblanceolate, crosse-dentate, the terminal one cuneate; midrib distinct; nerves flabellate; margins recurved at the base; petiole slender, laterally compressed; sheath short, split, with the margins deeply crenate; spadix short-peduncled, the staminate drooping or recurved, ovoid, much branched, densely ill., the pistillate looser, erect; spathes very numerous, slender, coriaceous, the lower ones the narrower, tubular, the upper ones cymbiform, entire, imbriated: fls. medium, yellow: fr. ovobo-lobiang, red or purple. Stove palms. For culture, see *Didymosperma*.

Wallichia is allied to Didymosperma, Arena and Caryota, differing in having 6 stamens instead of an indefinite number. Caryota is the only one of this group with ruminate albumen. Didymosperma has a cup-shaped, 3-holed calyx, and in Arena the calyx has 3 distinct sepals.

2706. Yellow, or Barren Strawberry—Waldsteinia fragarioides (× 3/4).

distichia, T. Anders. Caudex 10-15 ft. high, 5-6 in. in diam.; naked; lvs. distichous, 6-10 ft. long, alternate, erect; lfts. 1-2 ft. long, 2-5 in. wide, fascicled, linear, narrow, to the base, truncate and dentate at the
WALLICHA

For Lfis. few N.B. still in. practically confined to.

California nut is a large-fruited species, although it is sometimes, but erroneously, designated the large-fruited black walnut. A related species, the butter-nut (J. cinerea, Figs. 711, 1194) is sometimes called White Walnut. The Black Walnut (J. nigra) is often planted on roadsides and about yards, but it is scarcely a horticultural product yet. A very similar species in California is Juglans Californica (Fig. 2712), which makes a fine large tree and often bears excellent nuts. The eastern J. nigra was early introduced into California and it seems now to be common. In fact, it is sometimes difficult to distinguish the two species. The Californian species attains a height of 50 ft., making a broad-topped handsome tree. Commercial Walnut culture is concerned with J. regia, and this culture is practically confined to California. The species is hardy even as far north as parts of New York, and in the Middle and Southern states it often bears well, but its culture is not attempted on a large scale in the East. The Japanese Walnut, J. sieboldii (Figs. 718-20) is now becoming known in the East, and it is perfectly hardy in central New York. It is a handsome tree, but it probably will not become an important fruit tree. For the species of Walnuts, see Juglans, L. H. B.

WALNUT

WALNUT PEPPER. Sedum acre. Jared G. Smith.

WALNUT is a name applied to any species of the genus Juglans. The Walnut of history is Juglans regia (Fig. 2709), a native of southeastern Europe and regions beyond. Etymologically, the word Walnut signifies a nut that comes from a foreign source. It is interesting to note that in this country Juglans regia is known as English Walnut, apparently because the imported nuts are likely to reach us by way of England. In eastern North America, the word Walnut usually applies to the native Juglans nigra (Figs. 2710, 1168), although it sometimes, but erroneously, designates the large-fruited black walnut. A related species, the butter-nut (J. cinerea, Figs. 711, 1194) is sometimes called White Walnut. The Black Walnut (J. nigra) is often planted on roadsides and about yards, but it is scarcely a horticultural product yet. A very similar species in California is Juglans Californica (Fig. 2712), which makes a fine large tree and often bears excellent nuts. The eastern J. nigra was early introduced into California, and it seems now to be common. In fact, it is sometimes difficult to distinguish the two species. The Californian species attains a height of 50 ft., making a broad-topped handsome tree. Commercial Walnut culture is concerned with J. regia, and this culture is practically confined to California. The species is hardy even as far north as parts of New York, and in the Middle and Southern states it often bears well, but its culture is not attempted on a large scale in the East. The Japanese Walnut, J. sieboldii (Figs. 718-20) is now becoming known in the East, and it is perfectly hardy in central New York. It is a handsome tree, but it probably will not become an important fruit tree. For the species of Walnuts, see Juglans, L. H. B.

WALNUT IN SOUTHERN CALIFORNIA. Fig. 2713. The Walnut industry in certain limited areas of California occupies a place second only to the growing of citrus fruits. About 6,000 tons will be exported from California the present season (1901), which will be worth $4,000,000. California more than one million dollars. Commercial Walnut culture is confined to four southern coast counties of California—Santa Barbara, Ventura, Los Angeles and Orange. For this there are good and sufficient reasons. Although called the 'English' Walnut in this country, the climate of England is not very well suited to its production, and the greater part of the product in that country is used in the manufacture of pickled Walnuts. The Walnut is fairly hardy when dormant, but very tender when growing. Therefore, no place subject to late spring frosts can grow Walnuts with success. The extension of Walnut culture into the more northern coast counties of California must be done by planting varieties which lie dormant until the time of the spring frosts is past. The immature nut is also very tender, and cannot endure very hot weather. Even in the coast counties a small percentage of the crop is often destroyed by hot weather, and the hot interior valleys of southern California, or places very distant from the ocean, do not produce Walnuts. The area of successful production is still further limited by the requirement of well-drained and deep alluvial soil for the tender rootlets. Any soil of a clayey nature or underlaid with a hard clay subsoil will produce only stunted trees, while on soil where the water comes nearer than twenty feet of the surface the trees will grow only a few years, hardly long enough to produce a full and profitable crop.

In nursery practice the nuts are scattered at a distance of about 1 ft. in drills 4 ft. apart, late in the fall, in soil that has been deeply plowed. As soon as a sufficient number of the plants break through to distinguish the rows, the cultivator is run through to kill the weeds. The young seedlings are irrigated and cultivated frequently during midsummer, the object being to force them as much as possible and yet harden them before winter. During the first year the seedlings reach a height of 1/2 ft. The taproot, however, grows down from 3-5 ft. If grown in the nursery the second year, they are treated in the same manner, and usually reach a height of 8-12 ft. Of late years the practice of grafting has been growing in favor. The 1-year-old seedlings are root-grafted, just as they stand in the row. The grafts will grow about 8 feet in one year. Grafting is much more successful than budding. When trees are budded, ring-buds are used, and the tie is a strip of waxed cloth. The trees are planted in orchard form at either 1 or 2 years of age, preferably the latter. They are usually set in squares 50 ft. apart. The trees make very little
growth the first year; many of them not more than 6 inches. After this the growth is rapid. The trees are tied to stakes with strips of cloth, since they are very tender when growing, and the wind caused by the trees is not sufficient to cause any other tie to cut through the bark. Walnut trees are pruned very little. At first small limbs are allowed to start about the trunk, but later these are pruned off to a height of 4 feet. Some of the longer growths are shortened back while the trees are young; and after they are older the low limbs which bend down in the way of cultivating are removed.

The Santa Barbara Stuff shell begins to bear the third year from planting, but does not produce profitable crops before the fifth or sixth year. Precoce in bearing is not a desirable quality in Walnuts, since no Walnut tree will produce a profitable crop until it attains sufficient size to support it. Hardshell trees do not bear as young, and they are not regular bearers.

Walnut orchards in California receive thorough tillage. They are heavily irrigated in winter, and plowed about 8 in. deep in the spring. After they are irrigated and cultivated until the nuts begin to fall.—about the 1st of September. Late irrigation fills out the nuts and causes the hull to open readily. Heavy fogs are also desirable during harvesting. The nuts are shaken down and picked up. They are then spread in trays about 6 in. deep until dry, when they are bleached and shipped to market. Walnuts were formerly bleached with fumes of sulfur, but this was found injurious to the nut. They are now usually dipped in a solution of chloride of lime (chlorinated lime) and sal-soda, to which a sufficient amount of sulfuric acid has been added to set free the chlorine.

The majority of Walnut-growers are organized into local associations. Representatives of these associations form the executive committee of the Southern California Walnut-Growers' Association. This executive committee provides the form of contract which the local associations may enter into with brokers, and fixes the price. The local associations are managed in several ways. In some the growers bleach their own crop, while in others the association performs this work at its own packing house.

The Walnut tree has very few pests. The red spider sometimes attacks the trees, but it is not considered a serious pest. Of late years a bacterial growth has developed to a considerable extent which is more serious. This attacks and destroys the immature nut and the small limbs of the tree.

ARTHUR STALEY.

THE WALNUT IN CENTRAL CALIFORNIA. Walnut-growing is quite rapidly extending in both the coast and interior valley regions of Central California and is already successfully accomplished in favorable situations in the foothills up to an elevation of 2,000 ft. There are also many instances of thrifty and prolific trees in northern California and southern Oregon. This northern extension of successful Walnut growing is conditioned upon the use of the best French varieties and the rejection of varieties popular to the chief commercial districts in southern California, viz., Prepararturien, Mayette, Chabere, Parisienne, Franquette, etc. These varieties are harder in resistance of frost and leaf-burn from summer heat. They are largely root-grafted upon the seedlings of the California Black Walnut in the nursery and are also being top-grafted upon old native trees.

E. J. WICKSON.

Walnut Bacteriosis.—Chief among the more serious diseases of Juglans regia in the United States is a bacterial blight of the nut, branch and leaf of that tree. This blight has its greatest development along the Pacific coast, especially in Orange and Los Angeles counties, California. The germ which causes this disease is a newly described species of Pseudomonas (P. juglandis). Different effects of the disease are shown in Fig. 2714.

The organism of Walnut bacteriosis winters in the fallen nuxts, in the diseased tissues of affected branches, and especially in the pith cavity of the latter. New infections occur as soon as spring growth begins, taking place near the growing point of branches, in the opening leaves, and upon the young and tender nuts. The finer lateral veins of the leaves and the adjoining parenchyma are destroyed, and the nutrib is often affected. The injury resulting from infection of the branch will largely depend on the tenderness of the latter at the time and point of infection. If the tissue is tender a canker-like spot will be eaten through to the pith, or the entire end of the shoot may be destroyed. If the nut is infected while small, its complete destruction usually follows, the digestive action of the germ involving hull, shell and kernel. Nuts infected early in the season mostly fail when small, while later infections frequently result only in the destruction of the hull and the blackening of the outer layers of the shell, the tissues having become too hard for the further progress of the disease. As in the case of pear blight, rapidly growing trees are more subject to injury than those making a slower and harder growth. The spread of the microorganism through infected branches is generally only local—it rarely extends more than a few inches from the point of infection. A marked blackening of the injured parts results from the rapid oxidation of the tannic acid which they contain, though this is not distinctive of injury from this disease. Pseudomonas juglandis is actively motile; hence fogs, rain or dew aid in its spread and increase the number of infections. The water of irrigation may carry the germ for miles.

The destruction of the tissues of the Walnut is effected
by means of two fermenters or enzymes secreted by the organism. One is a diastatic ferment which converts the starch of Walnuts into grape sugar; the other is a peptonizing ferment which digests the proteins of the cells. The action of these fermenters becomes manifest in the development of a water-soaked band immediately surrounding the margin of the blackened infected spot if the disease is active, and this appearance readily distinguishes this malady from all other injuries to the nut or branch. As the secretion of the two fermenters depends largely upon a temperature of 65° to 75° F., a much lower temperature is unfavorable to the destructive action of the blight upon the tissues, and when such low temperature prevails the infected points are likely to be cut out through the action of the cells of the Walnuts.

The losses from Walnut bacteriosis are often heavy, especially in individual orchards or special localities. A loss of 50 per cent of the crop is not uncommon, and occasionally as high as 80 per cent of the nuts are affected in badly diseased orchards.

The treatment of this Walnut disease has been found to be difficult, but the spraying of the dormant tree has shown a considerable saving when a Bordeaux mixture is used. It has also been learned that the hard shell of the Walnuts are comparatively free from this disease, and that certain softshell varieties are so nearly free that the grafting of nursery stock from these resistant trees is contemplated for new orchards. As no species of Walnut except J. regia has thus far shown this disease under natural conditions, many hybridizations have been undertaken in hope of obtaining resistant and satisfactory trees by this means.

NEWTON B. PIERCE.

WALNUT, INDIAN. Aleurites triloba.

WAND PLANT. Galax aspaphila.

WANDERING JEW. Zebrina pendula and Tradescantia fluminensis. Also Sarracenia sarmentosa.

WARATAH. Telopea speciosissima.

WARDER, JOHN ASTON, physician, author, horticulturist and forester, was born at Philadelphia, January 19, 1812. His early life was spent in a suburban home, where he acquired a love of nature which he cherished through life. Bartram and Darlington were among his neighbors and he met in his father’s house men like Audubon, Meek and Nuttall. In 1830 his parents moved to Springfield, Ohio, where he helped clear up a farm and first became interested in agricultural sciences and comparative anatomy. He was graduated at Jefferson Medical College, Philadelphia, in 1836. He settled in Cincinnati in 1837 and began the active practice of medicine. He was early elected a member of the school board and did faithful service for many years, making it his business to travel through the counties to study systems of teaching in order to introduce improved plans into the Cincinnati schools. He was actively interested in and a prominent member of the Cincinnati Astronomical Society, the Cincinnati Society of Natural History, the Cincinnati Horticultural Society, and the Western Medical Association. He was also prominent in the old Cincinnati College and afterward in both the Ohio and Miami Medical Colleges. He was for many years president of the Ohio Horticultural Society and as such presenting to the American Pomological Society. He was among the first to draw public attention to the improvement of public grounds, private parks and cemeteries. The present interest in landscape gardening in this country is largely due to his efforts and writings. He was interested in establishing the famous Spring Grove Cemetery, one of the best of English and American country cemeteries, and was one of the first residents of Clifton, where he lived near Mill Creek, Ohio, formerly owned by President Harrison. There he spent most of his time in testing varieties of fruit and methods of culture, and prepared practical papers for horticultural societies and other readers, and in fact established a private experiment station. In 1859 he became a correspondent of the Western Horticultural Review, which continued four years. In one number is contained the first description of the Catalpa speciosa, now recognized as one of the valuable forest trees. His report of the FAX and Hemp commission, published by the government in 1853, was the result of much patient study and investigation. "Hedges and Evergreens" appeared in 1856, "American Pomology—Apples," published in 1857, was the result of more than 15 years of careful study, aided by hundreds of correspondents in various parts of the central states. It is still considered the standard authority on description and varieties of apples, containing a table of varieties and synonyms of over 1,500 names.

A report upon Livestock and Forestry was prepared during a large part of his visit to the World's Fair at Vienna in 1873, as United States Commissioner. In 1875 he issued a call for a convention at Chicago to form an American Forestry Society, which convention was incorporated by the government of Ohio and held in Cincinnati in September, 1876. The public was not yet impressed with the importance of the subject, but this pioneer association gave impetus to the plans for united effort. In 1879-80, with the approval of various societies, Dr. Warder memorialized Congress, asking for a commission for the study of forestry in Europe, but general interest was not thoroughly aroused until, largely through his efforts, the American Forestry Congress held its meeting in Cincinnati in April, 1882. He was honorary president of the Ohio State Forestry Society, prepared strong memorial on behalf of the forests and was shortly afterward appointed agent of the Department of Agriculture to report upon forestry of the northwestern states. He was devoted in his interests in all which concerns rural life and industry; his efforts had a great and marked effect on the horticulture and outdoor art of the great central states. Death ended an active and useful life July 14, 1885.

R. H. WARDEK.

WARDIAN CASES are nearly air-tight glass cases used for transporting growing plants on long sea voyages. For this purpose they furnish the best and safest method. They protect the plants from salt spray and foul gases, and require a minimum of care, as the plants need no watering. They maintain nearly uniform conditions of tempera-
turally, moisture and atmosphere. Similar cases are also used in greenhouses for growing filmy ferns, dwarf foliage plants and other small specimens that require a very moist and close atmosphere. They were invented about 1836 by N. B. Ward, who wrote a book of 55 pages "On the Growth of Plants in Casually Glazed Cases," published at London in 1842.

WARCEWICZELLA. See Zygoptetalum.

WARREA (named for Frederick Ward, who discovered the genus species in Brazil). Orchideae. Lev. few, long, plicate: scape tall, bracteate, bearing a raceme of terminal noddy fl.; sepals that petals subequal, concave, the lateral sepals united with the base of the column; labelium not spurred. united with the base of the column, undivided, concave, with longitudinal ridges: column without appendages: pollinia 4, with a narrow stipe. Plants with a habit of small forms of Phaius. They require the same treatment as that genus.

W. edulis, Lindl.—Aganisa cyanea.

HEINRICH HASSELBERG.

WASHINGTON, HORTICULTURE IN. Fig. 2715. The state of Washington may be said to have two distinct climates, and to the east of this range of mountains, the climate of western Washington, may, generally speaking, be said to be very temperate. There are no very great variations in temperature. The summers are cool, and in some parts somewhat dry. The winters are warm, or at least not cold. In some parts of western Washington the rainfall is abundant, amounting to 70 or 80 inches; in other parts the annual rainfall does not exceed 25 inches. Those portions of western Washington not bounded on the west by the Olympic mountains are subject to a much greater rainfall than those parts lying immediately east of these mountains. Thus, parts of Jefferson county and of Island county are comparatively dry, even though what is known as the wet side of the mountains. The whole of western Washington is a vast forest; yet there are numerous valleys in which trees do not grow. The natural forest growth is coniferous, except along the watercourses, where there is a considerable growth of deciduous trees, such as alder, poplar, willow, etc. In a few places scattering specimens of oak, ash and maple are found. Vast areas of land have been reclaimed from the sea, or at least from Puget Sound, and these title-lands are amongst the best in the state. The summers are comparatively bright and dry, the winters wet and almost sunless.

In eastern Washington a wholly different condition exists. The summers are bright, the temperature high, and during the months of June, July and August practically rainless. Eastern Washington has a varying rainfall. Those portions immediately east of the Cascade range have a very scanty rainfall, but as we near the eastern borders of the state the rainfall becomes greater. In and near the Yakima valley, the rainfall is from 4-6 in. per annum. As we go east the rainfall becomes greater, until at the eastern borders of the state it is about 22 inches, quite sufficient in this climate to produce good crops. Altitude has a marked influence on the climate of eastern Washington. In the valleys of the Columbia and Snake rivers, from 400 to 600 feet above sea-level, the summers are long and hot, and in these portions severe frosts are not felt; but in the low valleys the tenderer fruits grow to perfection, but of these there are only a few thousand acres. There are two large valleys; viz., the Walla Walla and the Yakima, each having an altitude of about 1,000 feet, where the winters are more severe, and where fruit trees often suffer in bud and twig, and where vegetation is at a standstill for a longer period in winter than in the lower altitudes. All lands in eastern Washington at a lower altitude than 1,500 feet must be irrigated to produce crops. The larger portion of eastern Washington, and especially that bordering on Idaho, is high, ranging from 1,800 to 2,000 feet above the sea. It is in these high portions that the rainfall is sufficient to raise good crops without irrigation.

The whole state is rolling. The Cascade range cuts the state into two very unequal parts, the larger part lying to the east. The watercourses, for the most part, run in deep canons, and the table-lands are nothing but level. The soil varies from the deep basalt clay loams to the volcanic ash, and to the sand and silica soils of the river bottoms. The higher lands grow the hardy fruits to perfection; the river bottoms grow the peach, apricot and the grape, while midway between these is grown a great variety of fruits, garden products and alfalfa. The best wheat lands are the heavy clay soils at an altitude of about 2,000 feet.

Fruits.—The state of Washington is fast coming to the front in fruit production. There are now planted within its borders about 80,000 acres of fruit. Whitman county, on the eastern border, has an acreage of 6,000 planted to fruits, mostly apples and prunes. Clark county, on the west of the range, is the greatest prune producer. The Puysallup valley, close to the Puget Sound, is the leading small-fruit section, but the whole state is adapted. As we go east the rainfall lessens, and the counties producing the largest amount of fruit are Walla Walla, Yakima, Whitman, Clark, Spokane and Kittitas. The islands of Whidbey and Orcas are famous for their fruits, and the amount of the 80,000 acres is distributed as follows: 25,000 acres are in prunes, mostly Italian, 40,000 in apples, and the remainder in plums, cherries and grapes.

Prunes.—The Italian prune (Fellenberg plum) is planted in great numbers on both sides of the state. Clark county has not less than 5,000 acres planted to
this fruit, and is still planting more. There is no other portion of the United States, and perhaps not in the world, where this variety is so largely planted. There is a demand for a large, somewhat acid prune, and the Italian is satisfactory. The demand is growing and new markets are constantly being opened up.

The French prune (Agen, Prune d'Agen, Petite, etc.), is planted in considerable numbers, but nothing like the Italian. Washington seems to be unable to compete with California in the production of this fruit. Nevertheless it is fairly profitable in Washington, yielding about the same number of pounds to the tree as the Italian, and selling in the eastern markets at a good price. But the Italian usually sells for more money, as the fruit is much larger.

The Silver prune, or Cee Plum (Cee Golden Drop), is a large, handsome prune when well prepared and always brings the top market price, selling for two or three cents per pound more than Italian or French. Not a great many are planted, and in some cases the prune-growers work their silver prunes over to Italians. There are numerous varieties of prune planted on the coast, but none in so great quantities as the Italian. Much of the fruit of this prune is shipped green, i. e., in a half-ripe condition. This finds its way to the most eastern markets, and some of it even to England. The fruit of the Italian stands shipment well, better than any other variety. Most large growers have evaporators in their orchards, and the most of the fruit is preserved in this way.

Apples.—The late-keeping winter apple undoubtedly leads all other fruits in the total acreage now planted in the state. The counties shipping the greatest quantity are Whitman, Walla Walla, Yakima and Spokane. The varieties mostly planted are Ben Davis, Gano, Northern Spy, Wagener, Esopus, Arkansas, Jonathan, Yellow Newton and Baldwin. The lower warm valleys grow the long season apples, like Yellow Newton and Esopus, to perfection, while the higher altitudes are best adapted to a shorter season fruit, like the Wealthy and the Gravenstein. All apples color finely, and are very fair in appearance. There are few off years, but there seem to be full years and thin years, though the crops are much more constant than in the middle or eastern states. Apple growing is amongst the most profitable of the fruit industries. Many large orchards have been planted that are not yet in bearing. At present the state grows much more fruit than it can consume.

Pears.—Pears are grown to great perfection in almost every part of the state, but there is no finer fruit than which that comes from the low warm valleys of the Snake, the Columbia, Walla Walla and Yakima. The Bartlett is the great summer pear, followed closely by Flemish Beauty. For fall and winter, Anjou, Clairgean, Easter and Winter Nels are largely grown. Pears have been successfully shipped from the Pacific coast to Liverpool and London. The planting of pears is not receiving the same attention as the planting of apples, yet a number of acres are annually added to the orchards of the state.

Plums.—Certainly nowhere on this continent is the plum more at home than on the Pacific coast. Unfortunately plums are not profitable. At present there are no canneries to take care of the surplus, and most of the plums are sold long-distance shippers. There is a local demand for a considerable quantity of plums, but great quantities annually go to waste under the trees. The varieties mostly planted are Agenon, Jefferson, Peach, Pend, Lombard and the Damsons.

Cherries.—Sweet cherries grow to great perfection in all portions of the state, but especially so in the Puget Sound region and in the warm valleys of the east side. Some new varieties, natives of the coast, notably Bing, Lambert and Lewelling, give great promise, and already are leaders in the markets of the West. The sour varieties also grow and yield abundantly. Sweet cherries attain their greatest perfection in the warm valleys at an altitude not much above 1,000 feet. Sour varieties do best in the high lands, at an altitude of about 2,000 feet. Cherries have been found to be profitable, yet few new plantations are being set. The reason for this is probably to be found in the labor market, it being almost impossible to get the necessary help to care for a large crop of cherries.

Grapes are not planted to the same extent here as in the eastern and middle states. The native varieties do not seem to succeed so far north, except in a few favored spots. In the low warm valleys of the Snake and Columbia all varieties seem to do well. Even the European (Pitt Runion) is grown to perfection, and usually receives no special winter protection. These Old World grapes are fairly profitable, the local market usually being good.

Small Fruits.—The raspberry, blackberry, dewberry, strawberry and gooseberry all do well in the state. In some sections of western Washington these fruits are grown in great quantities and are mostly shipped to the Montana markets. While the prices realized are not large, the crops are so abundant that small-fruit farming pays well.

Cranberries grow in the coast counties and on some parts of Puget Sound. Where suitable land is found the returns from cranberry culture are said to be very satisfactory.

Cauliflower and Cabbage Seed.—The production of these seeds is now carried on in an extensive way on Laconner Flats (reclaimed tide-lands) on Puget Sound. The demand is good, and the crop profitable. Cabbage and onion seed is produced in great quantities, and the results are promising. Tulips make great numbers of offsets, and hyacinths propagate freely by the same methods practiced in Holland.

Horticulture, as an occupation, may be said to be profitable within the state. It is true, markets are at a great distance, but the mines in Idaho, Montana and
Plate XLVIII. *Washingtonia filifera,* the most characteristic palm in California.
British Columbia take great quantities of fruit and vegetables. Migrants to British Columbia have not always been found to be profitable, but the state is fast setting up, and the outlook for the horticulturist is very bright.

J. A. BALMER.

WASHINGTON GRASS. See Cobweb.

WASHINGTONIA (named for George Washington), *Palmaceae.* Tall palms, with the robust trunks clothed above with remains of the sheaths and petioles; fleshy, terminal, ample, spreading, orbicular, flabellately plicate, lobed nearly to the middle; segments induplicate, filamentous on the margins: rachis: rigid, ligule large, appressed; petiole long, stout, plano-convex, very spiny along the edges; spadix long, copiously panicleately branched, glabrous; branches slender, flexuous; spadix long, membranous, split, glabrous; fr. small, ellipsoid, black. Species 3. Ariz., S. Calif. and Mexico. Plate XI: VIII.

Robusta, H. Wendl. (Washingtonia Sonore, Hort. in part). Stem more robust; petiole shorter and more densely spiny, the young plants with yellow spines and black-violet sheaths and petioles, at length brown; blade light green, 3 ft. long by ¾ ft. wide; segments 60, Western Mex. G. F. 38-39. R. H. 1885, p. 490.

Sonore, Wats. Stem 25 ft. high, 1 ft. in diam.: tvs. 3-4 ft. in diam., somewhat glaucous, very filiferous; petioles 3 ft. long, very slender, 2 in. wide at base, ½ in. at apex, floccose-hairy along the margins and with stout curved spines: fr. ¾ in. long, edible. Mex.

JARED G. SMITH.

FURTHER NOTES ON WASHINGTONIA.—Our nursery catalogues show that the identity of the three species of Washingtonia is a matter of conjecture in the minds of growers. In middle California there are two distinct types in general cultivation: (1) the one having very filamentous deeply cleft leaves, long (3-5 ft.) petioles with yellow margins and spines, which is the Colorado Desert species, *W. filifera,* Wendl.; it is less hardy in San Francisco than *W. robusta,* suffering from cold winds and fog and often rotting at the center of the growing part. (2) The species with more robust habit, the growing part of the stem shorter and therefore more distinctly conical, dark leaf-sheaths, short, stout petioles with brown, often very dark margins and spines, and shorter, more rigid, less deeply cut and often less filamentous leaf-blades, which is the one from Mexico and Lower California, *W. robusta,* Wendl. (W. Sonore, Hort. Calif. in part). This dark color of the petiole margins and spines is equally noticeable in the young as well as in older specimens. Comparative study of the inflorescence may perhaps establish this palm as a more geographical variety of *W. filifera,* but we have not been able to study flowering specimens. It is certain that a part of the material offered by nurserymen under the name of *Washingtonia Sonore,* is really *W. robusta.* Its greater hardiness in the climate of San Francisco shows that *Washingtonia robusta* is by far the most desirable species for cultivation along the coast of middle California.

The following data give evidence that many of the specimens in cultivation in the San Francisco bay region have originated from Mexican seed and are not, as is sometimes suggested, mere cultural varieties developed from seed of the typical form of the Colorado Desert. According to Charles Abraham, for many years proprietor of the Western Nursery, San Francisco, seed of *Washingtonia robusta* was introduced some twenty-five years ago by Mr. Spreckels, a commission merchant of San Francisco, from the coast of Mexico near Guaymas. Of the trees raised from this seed there is a specimen at Abraham's nursery, and Mr. Abraham states that there is a fine one in the grounds of St. Ignatius College, San Francisco, and another at the Crocker residence in Sacramento. The latter has already matured seed, from which Mr. Abraham has raised a young plant. In the old Bolton garden at Greenwich and Jones streets, San Francisco, there were growing until this year several well-marked specimens. According to Miss Lizzie Bolton, these were raised from seeds presented to her mother, Mrs. James R. Bolton (formerly Mrs. Estrada) by friends who brought them from Mazatlan. These specimens are now in Mr. Abraham's possession. A third importation of seed was made by Mr. John Rock, manager of the California Nursery Co. at Niles, but we do not know whence it came.

Washingtonia Sonore is rarely seen in cultivation, though frequently mentioned in nurserymen's catalogues, and it is certain that much of the material offered under this name is really *W. robusta.* In his "Flora of the Cape Region of New Zealand," G. F. C. Wendl.; this species is very hardy. It is less hardy, and makes a very picturesque object. This collar of old leaves usually burns fiercely in the dry season.

Washingtonia Sonore, if it were a typical species, would be of much more value under cultivation than *W. robusta.* From the above notes it would appear that both *W.
Some and W. robusta are found along the Pacific slope of Mexico, on the mainland or on the peninsular of Baja California. While the type locality of the former is given as Guaymas, on the mainland of Mexico, the few

specimens in cultivation have come from the peninsula, and though the type locality of the latter is unknown, most of the specimens in the trade apparently came from Guaymas and Mazatlan on the mainland.

In cultivation in California Washingtonias respond gratefully to abundance of water during the dry season. It is a mistake to suppose that because they are desert plants they will thrive without moisture; in Palm valley, in the San Jacinto mountains, where they grow luxuriantly, they are said to be found only in the vicinity of springs.

JOE BURTT DAVY.

WATERING. An abundant and convenient supply of pure, fresh water should always be a first consideration in locating a garden or greenhouse. Having this, the next matter is knowing how to use it, for her good gardeners say, lies nine-tenths of the elements of success. Certain it is, especially in the indoor cultivation of plants, that more depends upon knowing when to give or withhold water than upon any other single matter. The art of watering is unteachable; it requires experience, judgment, skill. Some knowledge of the commoner facts of vegetable physiology, physics, and soil physics will be helpful, but even then experience will be necessary. Two common types of watering-cans are shown in Fig. 2718. In American gardens, however, watering is usually performed with a hose from a stored water supply.

General Rules. A fairly safe guide is: never water plants until the soil has become dry, though not "soil-dry," and then give them a liberal drink. Plants dislike a continuously wet soil. In the care of plants in even-basins, a useful test is to thump the bottom of the pot. If it rings the soil is dry; if the sound produced is dull the soil is sufficiently moist. Such rules, however, are only for the novice. They presuppose activity of growth, and take into account only one consideration aside from this, that is the condition of the soil as regards moisture. The experienced gardener reads his practice in his plants and the conditions under which they are being kept. The following suggestions are based upon the most important considerations.

Actively growing plants may be watered very freely, as a rule, whereas in a dormant or semidormant state the same plants will require only occasional waterings. Soft-stemmed or rapid-growing plants ("soft-wood" and "hard-wood" plants), and those with large leaves, need, as a rule, an abundance of water when growing actively. Hard-wood or slower-growing plants, with smaller leaves, must be watered with greater care. Soft-wooded plants, with some exceptions, may at times flag somewhat for want of water, and recover without permanent injury when a fresh supply is given. Hard-wooded plants, as cavanilles, azaleas and beeches, on the other hand, suffer permanent damage from becoming too dry. It is safest to allow no plant in active growth to flag.

The amount of foliage affects the plant's capacity for using water. Plants which have been cut back, or which from disease, insects or other causes, have lost most of their foliage, must be kept drier until they have regained their foliage.

Unhealthy plants are benefited, as a rule, by being kept rather dry until they begin to show signs of renewed vigor.

Small cuttings, or any plants freshly potted or newly transplanted, are not in condition to use much water until the root-hairs have attached themselves to the soil-particles and growth has begun. A thorough watering at the time of potting or repotting the plants, especially if they are subsequently shaded for a few days, is usually sufficient until they have become established.

The character and bulk of soil should be kept in mind. Porous and warm soils dry out much sooner, while the heavier clay soils are in danger of becoming water-logged and sour, unless drained. When there is a large mass of soil in proportion to root development, as in the case of greenhouse beds newly set with young plants, care must be used in watering until the soil is occupied with roots.

Serious trouble often begins in the greenhouse from a heavy watering at the beginning of a period of dark, muggy weather. Not only does such watering do damage to the soil and roots, but the excessive humidity of the air about the plants and its weakening effect upon their tissues, invites the attacks of various mildews, fungi and insect pests.

The time of day is important. In the greenhouse in winter free ventilation is usually impossible. At night there is a tendency toward a damp atmosphere. Careful florists, therefore, water in the early part of the day at this season, so that the house will have become somewhat dried out by nightfall. It is seldom advisable to let plants go into the night with wet foliage. It gives the fungi a chance. Especially hazardous is it to water cutting benches or boxes of young seedlings late in the day in the winter season. The various damping-off fungi find under such treatment the conditions suitable for their development. Excessive humidity on the interior of a closed plant-house is most likely to occur in moderate weather. During severe weather the condensation upon the glass is large and renders the interior of the house hotter during summer. During summer, when there is free ventilation, the watering may advantageously be done late in the day. Midday watering at seasons when
WATERING

the sunshine is very bright is often followed by scalding of the foliage unless the plants are shaded. Ferns, Rex begonias, Chinese primroses and richardias are among plants easily injured in this way.

Consider the temperature. The temperature at which the plants are kept, the position of the heating pipes, the amount of light, and the freedom of ventilation permissible, need to be kept in mind in watering plants in glasshouses. It is better, as a rule, to have the watering conform to these conditions; but frequently the practice must be reversed.

Experiments by the writer show, beyond question, that the temperature of water used in watering plants exerts a marked effect upon the growth, flowering and fruiting of plants. It is now held that, in general, the water should be of a temperature close to that of the air in the house where the plants are growing, or about 10° F. below.

Watering may be indirect. Shading the glass of greenhouses in summer with some suitable material is much practiced by florists for the purpose of sheltering plants from too great intensity of light, and for the purpose of reducing evaporation and transpiration. Certain kinds of plants, as palms, and some kinds of ferns, require this; also newly potted plants. Syringing of walks, by reducing the temperature and increasing the humidity of the air, also tends to reduce transpiration. Ventilation and reduction of the temperature to ventilation are necessary, however, to avoid excessive humidity, which tends toward a soft, wet atmosphere and extreme sensitiveness and susceptibility to disease.

Vessels to contain plants should always be provided with openings at the bottom for perfect drainage. This, in a measure, is a safeguard against overwatering. Investigation has shown that a soil which is kept continuously wet through bad drainage or otherwise is rapidly impoverished through loss of nitrogen. A fermentation is also set up in the roots, which through the formation of alcohol and other products, results in their destruction.

While a constantly wet soil is always very objectionable, thoroughness in watering as often as the plants need water is of the greatest importance. When enough water has been supplied there will be more or less dripping from the bottom of the pot. It is a good plan to leave a space of 1½-2 in. or more at the top of the pot for the reception of water. This space should be so large that when filled, the supply of water in soaking downward will lift the soil out of the vessel.

See, also, Greenhouse Management, p. 626.

2718. Watering-cans.

The can on the left, flattened on the sides, is generally preferable. It can be carried in greenhouse walks and in narrow rows. The long spout enables the operator to apply the water directly to the roots; and the greater force of the discharging water makes a better spray from the rose.

Subwatering. — A method of watering known as "subwatering" has been made use of in recent years for supplying moisture to plants growing in beds. W. J. Greene, of the Ohio Experiment Station, was one of the first in this country to point out, as the result of experi-

ments, some of the advantages of this method of applying water. The essential feature of this system is a water-tight bench, with earthenware tile placed in rows upon the bottom either crosswise or lengthwise to the bed. Soil is placed about, and over these. Openings into the runs of tile are left at the top. Water poured into these openings runs along the length of the tile and is carried outward and upward into the soil by capillarity—this holding the soil from below upward. In beds over 50 ft. long a fall of 2 in. every 50 ft. is recommended. See Figs. 1182-3, Vol. II.

J. C. Arthur has experimented with a plan which, in many respects, is an improvement upon the "tile system." Here porous brick, having the lower edges cracked off, are placed edgewise and close together over the bottom of the bench. The shattered edge of one brick meets that of the preceding one. Water is thus formed over the bottom of the bed, whereby water is distributed over the entire bottom. Capillarity carries the water upward, through the layer of bricks to the soil resting upon them. The amount of water applied at a given time is indicated by a gauge near the edge of the bench. This consists of a U-shaped tube, placed at one convenient place having one end inserted through and on a level with the bottom of the bench; the other rises an inch or so higher outside the edge of the bench. Carnations and lettuce have given excellent results grown by this method of irrigation.

Subwatering in connection with flower-beds and borders in the open ground has also proved very advantageous. It tends to prevent the formation of a crust on the surface of the soil, and keeps it loose and porous, carrying the soluble plant-foods upward instead of downward. For further notes, consult the article Irrigation.

Watering Lawns and Flower-Beds.—In watering beds in the open ground, and lawns, the chief thing is thoroughness. Superficial waterings induce the formation of roots near the surface. Neglect and subsequent drought then prove more disastrous to the plants than if the ground is kept even. However, of course, the evening is the best time for surface sprinkling. Watered in the heat of the day, grass and various other plants are likely to have the foliage scorched. Ordinarily it is better to avoid watering beds of plants in the open ground if possible or delay it until really necessary, and then water thoroughly.

Ernest Walker.

Plunging.—While it is true that most of the water given to the plant passes through the soil and escapes from the hole in the bottom of the pot, yet much that is left in the soil,—which is considerable if the soil is saturated as it should be,—is evaporated from the porous sides of the earthenware pots. In very sunny weather plants in small pots, standing on a bench, dry out very quickly. This can be avoided by plunging the pots in some material, as coal ashes, tan bark, or, better than all, spent hops. When plunged to the rims, only half of the surface watering is needed, and the advantage of less watering is shown by a marked improvement in the health and vigor of the plants. Such a benefit is this plunging that plants which would otherwise need a shift into a size larger pot, can be carried along another month in perfect health. This applies more particularly to quick-growing, soft-wooded plants, geraniums especially, for these are quickly exhausted by too frequent waterings.

William Scott.

WATERMELON. Figs. 2718-20. Plate XLIX. The Watermelon (Citrusula vulgaris, which is native of the warmer parts of Africa. It is a slender annual. It has been cultivated from prehistoric times. It reaches its highest development in warm and sunny climates.
There is probably no country in which the Watermelon is cultivated to such a large extent as in the United States. All the central and southern states can grow Watermelons to perfection, and there are some of the short-season varieties that thrive well as far north as Ontario. It is always important that light soils should be selected for the Watermelon, but this is particularly true in the northern part of the country, since the plants must secure an early start and grow rapidly in order to mature in the short seasons. It is probable that a well-matured Watermelon raised in the North has as good quality as one grown in the South. Some people believe that seeds from melons grown in the northern parts of the country as the muskmelon is, and is not so largely grown. The Watermelon can be so cheaply grown in the South and the West, and it transports so readily, that there is practically no Watermelon growing for profit in the northern states. Nearly every home garden can grow its own supply. The seeds may be sown directly in the open ground; or, in the northern sections, it is better to start them indoors in transplanting boxes or on sods, as explained under Muskmelon and Transplanting. It is well, also, in the northern states, to sow rather freely of some quickly acting fertilizer in the hill, in order to start the plants off early. If the lands are loose and loamly and likely to dry out, or, on the other hand, if they are hard and tend to become lumpy, it is well to make "holes" by mixing one or two large shovelfuls of manure with the earth; but it is important that this manure be short and well rotted and then very thoroughly mixed with the soil. If the manure is coarse and not well incorporated with the soil, the hill is likely to dry out and the fertilizing elements are usually so finely divided that the plant does not get a quick start. The smaller-growing varieties may be planted as close as 6 x 8 feet, but it is customary not to plant them closer than 3 feet either way. In the South, where general field practice is that the melons are usually planted about 10 feet apart. The fles beetle and the striped cucumber beetle are likely to be serious on the young plants. Hand-picking and thorough spraying with Bordeaux mixture is always important that light soils are selected for the true citrus of commerce, they are commonly known as citrons. They come true from seed.

L. H. B.

Watermelon Culture in Georgia.—The Watermelon is the only important fruit or vegetable that has no valuable by-products. Its saccharine matter cannot be profitably converted into sugar. Its enormous reservoir of juice or sap renders it joyous to taste, when added to vinegar or wine, as pâté-refract instead of acetie or alcoholic fermentation results. For this reason, also, it does not, like the cantaloupe, produce a good brand when distilled. Its substance cannot be successfully used in animal nutrition—serving, at best, as a mere aliment or digestive.

Habitat and Distribution.—Throughout the entire tertiary region of the Atlantic and Gulf states, from the seacoast to a curved line marked by the Piedmont Escarpment which sweeps diagonally southwest from Richmond to Vicksburg, through the Mississippi—through this vast area—"the land of the long-leaf pine" (and of the wiregrass)—the Watermelon flourishes unrivaled, attaining there its serenest, fullest perfection. And of this region Georgia in particular is noted as producing not only the bulk of the crop shipped to northern trade centers, but the choicest selection as well.

To a certain limit perfection in the melon is found to directly the large lands of the Carolinas and especially of, of course, by the corrections imposed by isotherms, geological formation and local conditions and environment. Every mile traveled southward from New England toward the Gulf and "quick" soils, the melon becomes larger and fuller, and the crop matures later. To the boundary between Georgia and Florida on the Atlantic slope and to the Brazos river in Texas, the possibilities of melon culture are as yet unexplored for the melon may be considered the great center of southern melon production—its "very "throne of empire"—and was, for many years, the market and the populace began to prefer the round to the oblong form, though still partial to the "striped rind". In antebellum days, besides the Rattlesnake only two varieties obtained general recognition at the South for excellence—the Lawton and Cuba melons, with their evolved offspring—the former dark green, the latter belonging to the white or gray type (pale green rind with delicate, darker green tracey) but both of them of oblong shape. These were in great measure gradually displaced by the Georgia (or Augustra) Rattlesnake, and it, as stated, was in turn forced to partially yield precedence to the Kolb Gem. The round or oblong form became fully established in public favor, in particular advent of the "Jones" type, which soon dominated the market, its refreshing dark green color proving particularly attractive. Selections of this strain, culminating with Duke Jones, Lord Bacon and others, have finally brought the melon up to its highest perfection, though the Girardian improvements from Florida, such as Florida Favorite, New Favorite and Triumph, still contest their supremacy, while the older standards, as Rattlesnake, Sugarloaf, Sheephead, Scalibark and the like are by no means "back numbers."

Nor have the North and West been altogether idle in the work of development, many of the best of the recent introductions and some of the older strains coming from these sections. Indiana, for instance, gives us Sweetheart Carl Housier Rattlesnake, and Illinois and Boss come from the Middle States; while Virginia contributes Jordan Gray Monarch.

Many points combine to form the ideal melon. The scale of excellence for the southern type is probably as follows:

<table>
<thead>
<tr>
<th>Percent</th>
<th>Shipping capacity</th>
<th>Size</th>
<th>Proportion of market value</th>
<th>Quality</th>
<th>Earliness</th>
<th>Shape</th>
<th>Color of flesh</th>
<th>Color of rind or marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
WATERMELON

As southern melons are intended, primarily, for sale, a hard, thick rind, with firmness and solidity of flesh, is a paramount requisite, as it makes a safe shipper and long keeper.

Unfortunately, quality, which is based mainly upon a high sugar content, is generally inseparable from a thin rind and tender flesh—indicative features to those requisite for a good shipper. This accounts for the relatively inferior quality of such melons as Rattlesnake, Kolb Gem and Jones, which are grown, of course, for distant markets. The metropolitan seldom realizes the supreme lusciousness which it is possible for some of the best local varieties in the South to attain unless he has been lucky enough to test them in the field. Even a Lord Bacon, the best of the shipping melons can not stand table comparison with Bonnie, Dixie, Jordan Gray Monarch, Kleeckley Sweets, Melver Sugar, Phinney Early or Mountain Sweet.

Shape is of minor consideration, if only ordinary symmetry or freedom from distinct deformity is preserved, as preference appears to be divided between the round or ovoid and elongated forms, while the marking or color of rind is of still less moment; although late a solid green tint seems to find a ready market than either the striped or "gray" marking, while an irregular, blotched surface, as with Scalyback or Mountain Sprout, though attached to good quality and size, is distinctly objected to.

With regard to color of flesh, the public is united in demanding a deep red or crimson heart, with few seeds; for white or golden shaded varieties have never found favor. They are generally regarded as wanting in character or insipid, although some melons of this type unquestionably attain superior quality.

Little difference is observable between varieties in their capacity to resist disease and insect depredation. Vigor of growth depends mainly upon individual cultural methods and little upon variety; nor is there much marked difference in time of maturity between the different strains.

Of all the physical features enumerated, size and shipping capacity are by far the most important—tolerating aggregating 60 per cent of the requisites for an ideal type. Size is almost as necessary as resistant rind, and it is fatal to attempt to ship small melons. Results would be far better if stricter calling should be universally followed.

To summarize: For shipping purposes the following varieties are excellently listed for preference, in the order named: Lord Bacon, Kolb Gem, and Georgia (preferably Augusta) Rattlesnake. For table or family: Jordan Gray Monarch, Sibbly Triumph and Samnole. For early melons: Memphis, Augusta Sugarloaf and Augusta Rattlesnake. For late melons: Boss, Scalyback and Sweetheart. Although the Watermelon is extremely cosmopolitan and will readily accommodate itself to a variety of soils, and, particularly in its own best region—the "Watermelon Belt"—it will submit to an infinity of rough and unscientific treatment without rebelling, yet a warm, light, gray, sandy soil is its delight, especially when supplemented by a strong clay subsoil that will daily yield its medium of moisture, little by little, when called on. Like the cat and the grape, the melon cannot bear the "hot feet." Still, the soil should not be too rich.

Sufficient capillarity must exist to keep the roots of the plants well supplied with their proper amount of moisture—though not enough to evaporate the entire reservoir of water in the subsoil. When the soil is too rich in manure is not desirable. Sufficient nitrogen for its use can be supplied artificially where it does not exist naturally. A small amount, and general mulching, will produce larger melons, but at the expense of quality.

They will prove soft, watery and insipid—poor shippers, and with a small percentage of sugar. Therefore, an ideal location for a melon plot on which these should be found on the site of an abandoned cowlot, or an old garden spot. "Second bottoms"—the accumulated detritus of hillsides—serve admirably, but creek bottoms or heavy muck of any sort would be no more admirable for the melon than for grapes or peaches.

Rotation of crop area is all-important. Never should two crops of melons occupy the same plot with an interval of less than three years between them. In that time, insect depredators, attracted by the first melon crop, will probably have become exterminated, and the soil from the site of a previous planting (especially potash) will also have been, to a great extent at least, made good.

Preparation of the land should be thorough, but not necessarily deep. The roots of the melon extend quite a distance under ground laterally, but close to the surface. The deeper the land is broken, the deeper the roots will be inclined to penetrate; disturbing the natural habit and producing surplus vime at the expense of fruit. But because shallow plowing is permissible, for that very reason the surface pulverization should be thorough and effective. That is saves on the subsoil should be expended on the harrow. After breaking, two harrowings, one with a cutaway, the other with an Acme harrow, should follow. This leaves the plot in excellent condition, especially if a crop of cow-peas has been grown on the land the previous year, as is always advisable.

The richer the soil or the higher the fertilization, the more luxuriant will be the resulting growth of vines. Hence, the distance apart at which the "hills" should be located must correspond. On very rich land 12 feet apart each way is none too much. Indeed, many growers prefer this distance even on poor land. It is entirely a matter for individual control. Probably 10 x 10 feet is the distance most frequently employed, and in no case should it be less than 8 feet. What is saved on the subsoil should be expended on the harrow. After breaking, two harrowings, one with a cutaway, the other with an Acme harrow, should follow. This leaves the plot in excellent condition, especially if a crop of cow-peas has been grown on the land the previous year, as is always advisable.

Whatever the distance adopted, the plot, after its final "freshestening up," with the harrow, or "scooter off," with cross furrows made by a light "scooter" plow. Then, in one direction, with a wide "shovel" plow, an opening furrow is run in which the fertilizers is drilled and thoroughly mixed with a scooter—two trips to the row—on which four furrows are next "listed" with a turn-plow, thus forming the bed for planting, which will warm up sooner than the surrounding soil. The "middles" are broken out later.

Many growers still cling to the obsolete practice of dragging up the dirt with a hoe into individual hills at the intersection of the furrows, and therein concentrating the manure, as in garden squash culture, instead of employing the more modern and economical "continuous beds." Where compost is used on a small scale this may be excusable; but it is not only preferable, but on a large scale necessary, to drill commercial fertilizers.

A crop of cow-peas the previous year is the best preparation that can be given an area intended for melons. It leaves the soil well stored with nitrogen, light, porous and easily worked. In midwinter or early spring, according to latitude, the manure, or whichever commercial fertilizer is employed, should be put in; compost or stable droppings sooner, to insure partial decomposition by planting time, and manure, or whichever commercial fertilizer is employed, should be put in; compost or stable droppings sooner, to insure partial decomposition by planting time, which is always variable in its content of plant-food, and therefore for more reliable results commercial fertilizers are preferable, particularly when operations are conducted.
on a large scale. The following formula will be found to be well adapted to the average soil:

\[
\begin{align*}
\text{Nitrate of soda} & \quad 1 \text{ lb.} \\
\text{High grade superphosphate} & \quad 500 \\
\text{Sulfate of potash (or nitrate of potash)} & \quad 1,200 \\
\text{Potash} & \quad 2,000
\end{align*}
\]

This is rather a high grade formula and will analyze:

\[
\begin{align*}
\text{Per cent} \\
\text{Nitrogen (ammonia equivalent 4.8 per cent).} & \quad 3.8 \\
\text{Phosphoric acid (available).} & \quad 8.4 \\
\text{Potash (K₂O).} & \quad 7.5
\end{align*}
\]

It may be used advantageously at the rate of from 400 to 500 lbs. per acre; the maximum amount, however, will rarely be justified. An extra finish of nitrate of soda—say a thimbleful per hill—applied just after the plants are well up, will give them a good start.

Planting is performed by hand and the seed put in quite shallow. Seeds should not be spared. Field mice, pigeons, poultry, crows, cockroaches and other depredators frequently prevent a perfect stand where but few seed are used, and the time lost thereby, when replanting is necessitated, can never be regained. Twenty seeds to the hill is not too many—preferably rather more than less—each seed pushed down separately into the mellow soil with the forefinger to the depth of an inch or less. They should be no account be placed deeper. This forces the marauding agency—whatever it may be—to discover and destroy each seed in succession, which gives some a chance to escape; whereas, if planted together in a mass, so soon as the pocket was found the seed would all be scattered or devoured at once. The process of planting as described seems slow and laborious, but it really takes much less time than cellars where the temperature is uniform and can never drop below freezing.

After the plants are up they are at first thinned down to three or one to the hill, and subsequently to one, or at most two. One vigorous root system, well attended to, will usually succeed in extracting from the soil as much plant-food as will two or three, and give a better account of it, also, on "setting day."

Cultivation is commenced early and should cease early. It is effected with either the five-toothed or twelve-toothed cultivator or with scooper and "heel-scrape," and should invariably be shallow, except for the first plowing after planting, when the middles are commonly "run out." Ricks are thinned plow or "twister."

"Laying by," or the cessation of cultivation, should occur as soon as the vines cover the ground well. Vines are never turned at any stage, if it can be avoided, and under no circumstances after "laying by." New vines are of land ever plowed in the early forenoon. To prevent the wind from rolling and tumbling the vines, a thin broad-casting of cow-pees is usually made at the last plowing. They serve also, later, to partially shade the melons and leave the soil in excellent condition for the next crop.

Marketing.—Large areas for shipment are always located directly on some line of railroad—i.e., any, with a spur or side-track into the plantation. The heaviest servitude attached to melon culture is the initial haul, which should be done at a patient pace of a mile an hour in a springless vehicle discount profits more severely than a thousand-mile journey, subsequently, in a ventilator car—the mode of shipment now almost exclusive when the melons are employed. This is the only convenient. Profits also largely depend on two other considerations: judicious and severe culling, and the proper selection of a market. The first measure cannot be practiced too severely. Underpriced fruit is unsalable, and the car-load average is invariably gauged by the smallest melons it contains, as the strength of a chain is measured by its weakest link. Nothing less than sixteen pounds should ever leave the field, and it would be better to limit the minimum weight to twenty pounds.

Anything over thirty pounds ranks as large, over forty quite large, and melons reaching fifty pounds, or over, are in the first rank, although it is not uncommon to meet with monsters of sixty, seventy or even eighty pounds, while occasionally a phenomenally big one tops the hundred mark. It is believed that the largest melon on record (officially) attained the weight of 124 pounds. This was grown near Deaear, Ga., some twenty years ago outside the established "Melon Belt."

In shipping, the smaller melons should occupy the floor of the car, with the larger forming the upper tiers—not for the purpose of deception or for the sake of appearance, but because the smaller sizes better stand jolting and pressure and there is also less loss if they are injured.

As the importance of avoiding glutted markets is self-evident, and the judicious selection of his point of shipment means to the grower success or failure, it follows that shipping associations are almost an absolute necessity—the ordinary planter who depends on his individual judgment generally "going to the wall." The "Shippers' Unions," however, are usually able to cope successfully with the problem and manage to distribute the season's crop over the country in such manner as to leave a living profit to the planter. Yet the industry is now by no means so remunerative as formerly. Supply seems to be more than equal demand, and great complaint is made by the grower of excessive freight charges, while the transportation lines insist that their rates at present figures are not profitable. And yet the grower still continues to plant his melons, the railroads to haul, and the public to purchase, and there is also less loss if they are injured.

Affectations and Remedies.—After a stand is once obtained—spontaneously and promptly—and this, when all is said, is perhaps the main problem underlying successful melon culture—its affections are—its cures are—few and simple. Indeed, the Watermelon may be said to be free from any vital disease, and its maladies are almost entirely confined to those resulting from the attacks of a few insect pests, as follows:

1. The melon worm (Mermis nalis)
Plate XLIX. Watermelons.—The Orange variety.
small moth, the larvae of which, light, yellowish green caterpillars about an inch long, destroy only the leaves of the Watermelon, but both the foliage and fruit of the cantaloupe or muskmelon. They are "not "suckers." 2. The melon louse (Aphis gossypii).—This attacks the foliage, only, in the form of the adult—a small winged green fly, viceroyal, whose wingless progeny are a pest as in about a week from birth, and begin to reproduce.

3. The striped cucumber beetle (Diabrotica vittata).—A family of very small, colorless, egg-shaped, a species of an inch long, appearing in spring and attacking the young plants as they emerge from the ground, its larvae at the same time destroying the roots.

W. is the idea beetle (Coccinella cucumeris). Diminutive, like all of its kind, but very active, feeding on the young plants in spring, after maturing under rubbish and stones. The adult insect eats the upper surface of the leaves, and in irregular patches, and the larvae are said to burrow their way through the interior of the leaf structure under the surface.

Remedies: Commercial grower is generally prepared to accept the fact that those pests is going to neglect him, and therefore makes his preparations to combat all, separately and collectively, and so plants as to recover the loss. The following is a detail of the operations advised:

1. Apply a pinch of nitrate of soda to each hill as soon as the young plants are up to insure full vigor and protection of resistance to all enemies as they arrive upon the scene.

2. For the melon worm, striped cucumber beetle and flea beetle, spray with Paris green—1 ounces to 50 gallons of water—for two or three sprayings, at intervals of a week apart.

3. Spray, intermediate, at intervals of a week (midway between the necessary applications) if the melon louse is found to have located on the plants, with a 1 to 20 mixture of kerosene and water (using Weed kerosene attachment to sprayer) or with kerosene emulsion, same as coal soap, 1 lb. in 100 gallons, may be substituted for the kerosene treatment in ordinary cases, but when obdurate resort must be had to carbon bisulphide, a teaspoonful to the hill, in box-tops, clamshells or other vessels of any kind, under canvas or hooped covers. This remedy is falling, but somewhat troublesome, and is only justifiable when the commercial grower is fighting desperately for his crop and livelihood. A detail of the methods of preparing the remedies here suggested may be obtained from the article on Insecticides, in Vol. II, this work, which see.

HUGH N. STARNES.

WATSONIA
(Sir Wm. Watson, M.D., 1715-1757, electrician and professor of botany at Chelsea). *Iridaceae.* A genus of 10 species of tender bulbous plants native to South Africa, from Madagascar, the others from the Cape of Good Hope. They bloom from July to September and have scarlet, rose or white 6-lobed flowers, with usually a long, slender tube which is bent near the base, Watsonia are very much like Gladiolus, having the same kind of a corn, the same sword-shaped, rigid leaf, the same kind of a spike and the same season of bloom. It is, therefore, a great mistake to suppose that they are suited only to greenhouse cultivation. The main differences between Watsonia and Gladiolus, from the horticultural as well as botanical points of view, are the longer tube and regular flower of Watsonia; three of the six perianth-segments in Gladiolus being usually different in size, shape and direction of spread. An important feature is the style-branched, while those of Watsonia are simple, while those of Gladiolus are bifid.

Great interest has been aroused in Watsonia recently by the introduction of the "White Watsonia," known to the trade as *W. Angelina.* The plant might be roughly described as a white Gladiolus. It is likely to receive considerable attention within the next few years. It grows 3 or 4 ft. high, strong species, a cylindrical, egg-shaped, and bears about a dozen flowers, each 2½-3½ in. long, and about 2 in. across. The purity of its color and its value for cutting make it of exceptional interest to florists. There are other white-flowered forms of Watsonia, but none of them seem to be in the American trade. Pure white is the exception in the iris family, while it is a common, if not dominant, "color" in the lily and amaryllis families.

The White Watsonia has acquired so many names that a short historical sketch of the plant is desirable. All the stock in the trade at present is supposed to be descended from plants cultivated by H. W. Arderne, of Cape Town. The original bulb was found 80 miles away in a peat bog amongst thousands of the common pink-flowered kind. In Oct., 1892, Mr. Arderne had 400 spikes in bloom of some of his plants. They were described in *The Garden* under the name of Watsonia alba. However, a pure white-flowered form had been previously found near Port Elizabeth and a bulb sent to J. O'Brien, of Harrow, flowered in England in 1898 and was then fully described as *W. iridifolia,* var. *O'Brieni,* the name adopted in this work. In the recent discussions of the plant the fact has been overlooked that T. S. Ware, of Tottenham, cultivated a white variety in 1866. It being figured in *The Garden* for that year as Watsonia alba. A nearly white form was cultivated in England as early as 1891, but the tube was pinkish outside and there was a rosy spot at the base of each perianth-segment.

William Watson, of Kew, was the first to emphasize the close horticultural parallel between Watsonia, Gladiolus and Gladiolus and to urge the whole group upon the attention of the plant-bred. This suggestion, coming from the man who may be said to have created the modern breeding of Cape Primrose or Streptocarpus, should result in an other fine race of hybrids before many years. However, the Watsonia "bulb" is not so easily and safely stored as that of Gladiolus.

Generic characters: perianth with long, curved tube, the lowest and narrowest part. The distance above the calyx; the tube is then dilated into a cylindrical or funnel-shaped portion which bends down, usually at a sharp angle; segments equal, oblong, spreading; stamina unilateral, arcuate, inserted below the throat of the tube. Baker, Handbook of the Iridaceae. Flora Capensis, vol. 6.

INDEX.

<table>
<thead>
<tr>
<th>Species</th>
<th>Size</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watsonia alba</td>
<td>4 ft.</td>
<td>White</td>
</tr>
<tr>
<td>Watsonia angusta</td>
<td>3 ft.</td>
<td>Rose</td>
</tr>
<tr>
<td>Watsonia ardernei</td>
<td>2 ft.</td>
<td>Yellow</td>
</tr>
<tr>
<td>Watsonia densiflora</td>
<td>5 ft.</td>
<td>Purple</td>
</tr>
<tr>
<td>Watsonia meriana</td>
<td>3 ft.</td>
<td>Red</td>
</tr>
<tr>
<td>Watsonia rosea</td>
<td>4 ft.</td>
<td>Pink</td>
</tr>
</tbody>
</table>

A. Upper part of tube cylindrical or narrowly funnel-shaped.

B. Length of perianth-segments ½-2 in.

C. Stems tall, 4-6 ft., often branched.

D. Spikes lax, 12-20 ft. long.

E. Filaments scarlet. 2. angusta

F. Flowers rose-red or white. 3. densiflora

G. Flowers: spikes denser, about 30 ft. long. 4. iridifolia

H. Stems shorter, mostly 2-3 ft., un-branched.

I. Tubé 1½-2½ ft. long. 6. coccinea

II. Upper part of tube short and broadly funnel-shaped. 8. rosea

1. aletroides, Ker. Bright scarlet or pale pink-flowered species, 1-2 ft. high, remarkable for the short perianth-segments: stem simple or branched: spikes 6-12 ft. B. M. 533 (rosy scarlet, splashed with cardinal, the inner segments white at the tip).

2. angusta, Ker. (W. iridifolia, var. coccinea, Ker.). Scepter-flowered species distinguished from *W. meriana* by the color of the fls. and by the shape of the perianth-segments. In *W. angusta* the segments are decidedly acuminate, while those of *W. meriana* are more nearly oblong and come to a point suddenly. Also the style of *W. angusta* reaches to the tip of the perianth-segments, while in *W. meriana* it does not. B. M. 600. Gw. 17:230 (as *W. meriana*, var. coccinea) 44:323.
3. Meriana, Mill. This seems to be the dominant species of the genus and hence the most variable and the one most interesting to the plant-breeders. In its widest sense it includes *W. iridiflora*, but for horticultural purposes it will be convenient to consider the latter a distinct species. *W. meriana* is best restricted to the commonest type at the Cape, which is a rose-flowered species 3-4 ft. high, the stem usually branched, leaves 3½-4½ in. wide and the spikes 12-20-fl. This is the plant figured in B.M. 418 as *Anthosia meriana*, G. 17:230 is more typical in color. The white-fl. form, which is rarer in nature, is treated under *W. iridiflora*.

Baker says that there are scarlet-fl. forms of this species, but as he gives them no name, and it is probable that all such should be referred to *W. augusta*.

4. *Iridiflora*, Ker. This is treated by Baker as a variety of *W. meriana* characterized by broader leaves than the type: shorter and more numerous, white or pinkish. For horticultural purposes it will be convenient to treat it as a distinct species and restrict the name to the pink or rose-colored type.

5. densiflora, Baker. This very distinct and handsome rose-colored species more nearly resembles a globular than any other by reason of the density and regularity of its pyramidal inflorescence. Stems unbranched, 2-3 ft. high: spikes a foot long; fls. bright rosy red. B.M. 6400. — There is a choice variety with pure white fls. *Var. alba*, Hort., was introduced as early as 1891.

6. cocinea, Herb. This showy scarlet-fl. species differs from *W. meriana* in its stem being shorter and unbranched, the spikes fewer-fl., and the styles a trifle longer. Stem 1 ft. high: spikes 4-6-fl. B.M. 1194 (W. meriana variety).

7. htmillis, Mill. This species has rose-red fls. apparently the same size and color as *W. densiflora* but only 4-6 in a spike and the stem only a foot or so high. B.M. 651. — A variegated form figured in B.M. 1192 as *W. roseo-alba* has a spike of 8 flesh-colored fls. with broad bands and splashes of scarlet.

8. *rosea*, Ker. Robust rose-colored species, growing 4-6 ft. high and the fls., though fewer than those of *W. densiflora*, are perhaps capable of greater size. Spikes about 15-fl. B.M. 1672.

W. *spprata*, Hort. John Saul, 1893, is presumably a catalogue error, as no such name appears in Baker’s latest monograph.

W. *M.*

WATTLE. See *Acacia*.

WAX BERRY. *Symphoricarpos*. *W. Flower*.

WAYFARING TREE. *Viburnum Latifolia*.

WEATHER PLANT. See *Abra*.

WEEDS. It would have been a sorry thing for agriculture if there had been no weeds. They have made us stir the soil, and stirring the soil is the foundation of good farming. Even after we have learned that crops are benefited by the stirring of the land, we are likely to forget the lesson or to be neglectful of it unless the weeds constantly remind us of it. Necessity is always the best schoolmaster; and of these necessities, weeds are amongst the chief.

A weed is a plant that is not wanted. There are, therefore, no species of weeds, for a plant that is a weed in one place may not be in another. There are, of course, species that are medicinal weeds; but in the wild state, where they do not intrude on cultivated areas, they can scarcely be called weeds. The common pigweed and the purslane are sometimes vegetables, in which case they flourished on the beach among them.

The one way to destroy weeds is to practice good farming. Judicious tillage should always keep weeds down in cultivated lands. In idle lands weeds are likely to be a serious nuisance. In sod lands they are also likely to take the place of grass when for any reason the grass begins to die. The most effective way of destroying weeds in grass lands, therefore, is to secure more grass. In order to do so, it may be necessary to plow the land and reseed. In some cases, however, it is only necessary to give the land a rest, and then the weeds will come up along with the available fertilizers and to sow more grass seed. This is the fundamental remedy for weeds on lawns. If such weeds are perennial, as dandelion and plantain, it is advisable to hand them out, a stiff sod should be secured. The annual weeds that come in the lawn the first year are usually destroyed by frequent use of the lawn mower.

Foul lands may usually be cleared of weeds by a short and sharp system of rotation of crops, combined with good tillage in some of the crops of the series. When the land for any reason is fallow, as when it is waiting for a crop, — surface tillage with harrows or cultivators will serve to keep down the weeds and to make the land clean for the coming crop. Often lands that are perfectly clean in spring and early summer become foul in the fall after the crops are removed. Cleaning the land late in the season, therefore, may be one of the most efficient means of robbing the land of weeds. Coarse and rough stony soil, if not well rolled, may also be a conveyer of weed seed. The seeds of weeds are sometimes carried in the seed with which the land is sown, particularly in grass and grain seeds.

It does not follow that weeds are always evil, even when they are abundant. In the fall a good covering of weeds may serve as an efficient cover-crop for the orchard. They are likely to entangle some extra care the next year in order to prevent them from gaining a mastery, but this extra care benefits the orchard at the same time. It is of course, far better to sow the cover-crop oneself, for then the orchardist secures what he wants and of the proper quantity and at the right season; but a winter cover of weeds is usually better than bare earth.

From the above remarks it will be seen that weeds are scarcely to be regarded as fundamental difficulties in farming, but rather as incidents. In the most intense and careful farming the weeds bother the least.

There should be a careful oversight of all waste areas, as roadsides and vacant lots. Experience has shown that the greatest difficulty arises on commons and waste land, not on farms.

Weeds are often troublesome in walks, particularly in those made of gravel. If the walk were excavated two feet deep and filled with stones, rubble or real ashes, the weeds cannot secure a foothold. It is particularly important that gutters be not laid directly on the soil, else they become weedy. There are various preparations that can be applied to sidewalks to kill the weeds. Although, of course, they also kill the grass edgings if carelessly applied. Strong brine, applied hot, is one of the best (1 lb. of salt to 1 gal. of water). There are also preparations of arsenic, vitriol, lime and sulfur.

L. H. B.

WEEDING TREES. Consult *Trees*.

WEIGELA. Referred to *Dierdra*.

WEST INDIA RATTLE BOX. *Coratulina retusa*.

WESTERN CENTAURY. *Hesperochiron*.

WESTRINGA (J. C. Westring, physician and author). *Labiatae*. An Australian genus of 11 species of shrubs with entire whorled leaves and solitary, 2-lobed, white or purple-spotted flowers in terminal heads. Calyx bell-shaped, 5-toothed; corolla with a short tube and dilated throat: the upper lip flat and broadly 2-lobed, the lower 3-lobed; fertile stamens 2; staminodes 2, short.

rosmariniformis, Sm. *VICTORIAN ROSEMARY*. A bushy shrub with the branches and under side of the leaves silvery white with appressed hairs: lvs. in whorls of 4,
oblong-lanceolate to linear, 1/2-1 in. long; fls. white, axillary, almost sessile; calyx 3 lines long; corolla not twice as long as the calyx. Sandy hills, near the coast. Australia.—Offered in S. Calif.

F. W. BARCLAY.

WEST VIRGINIA HORTICULTURE (Fig. 272), like that of most other states, had its beginning as a side issue of the usual operations of the farm. In fact, even to-day it is considered as a sort of complement to grain-growing or stock-raising in most sections of the state. In some localities where towns have sprung up as the result of coal, oil or railroad operations, the demand for vegetables and small fruits has been largely met by local producers. The market-garden work, aside from the growing of watermelons, peas and tomatoes, is such as has been encouraged by the growth of the neighboring towns. Melon-growing, which has an extensive acreage along the Ohio river bottom, is the only branch of vegetable-gardening which seeks markets outside the state. What has been said of vegetable-gardening applies equally well to small-fruits culture, but the tree-fruits—notably apples and peaches—fall under quite a different category.

The apple industry in West Virginia is chiefly of two characters, —the lower and the northern. The former region gives considerable attention to the production of early apples for the northern markets. Several early harvest varieties are grown, Yellow Transparent, Red Astraehan and Pomme Royal predominating; these are followed by Maiden Blush, Grimes Golden and Rome Beauty. Because of the favorable climate in this region, the production of this class of fruits has grown to be a profitable one, although not a large industry. The northern Ohio river valley counties, including what is known as the Northern Panhandle, are more than anything else, dry sandy localities, very rare. Aster Schreberi.

Another Aster of the Great-leaved group, with immense pale green hairy root leaves, remarkable for the broad square outline of the sinus (notch) at base of leaves, from which it can be recognized at once. Flower heads rather large, white. Grows in drier, sandy soils than last, and unless the soil happens to be unusually rich is not very handsome. Occasionally in richer soils I have found plants with flowers decidedly handsome, so believe it worthy of a trial. The root-leaves densely cover the ground and are often a foot long, 5 or 6 inches wide.

as a result the fruit, the bulk of which goes south and west, has a reputation in the markets to which it finds its way. This region along the upper Ohio is peculiar also in possession of a variety suited to its climate and to the practices of the growers. This is known as the Willow Twig, an apple of good size, good appearance and fair quality, a long keeper and a good cooker. Willow Twig and Ben Davis yield the greater part of the crop of this region, although among varieties of minor importance the Rome Beauty and Bentley Sweet are some of the best.

The varieties chiefly grown in the eastern counties differ quite a bit from those of York in the west, as do the varieties of New York. In the eastern counties York Imperial or Johnson Fine Winter is the variety upon which most dependence is placed. It is not only a sure cropper, but is a good market variety, possessing high color with good flavor and fair keeping qualities. It is one of the ten varieties included by Taylor in his expert list. This variety, placed in store in October, can be moved from the cold room in February, with little or no shrinkage from loss of moisture and an equally small loss from decay. Ben Davis here, as well as in Hancock county, forms a valuable second, although the cropper better in the northern than in the eastern counties. Among fall varieties for both sections of the state none exceeds the Grimes Golden. This apple, as well as the Willow Twig, is a native of the

21. West Virginia, to illustrate the palaeological regions.
3. Moriana, Mill. This seems to be the dominant species in cultivated gardens and hence the most variable and the one most interesting to the plant-breders. In its widest sense it includes W. iridifolia, but for horticultural purposes it will be convenient to consider the plant figured in E.M. 418 as Ampelospora Moriana. Gn. 17:230 is more typical in color. The white-flowered variety is a serious. The part of good like, at least a quantity, the flower is like a serious nuisance. In soil lands they are also likely to take the place of grass when for any reason the grass begins to fail. The remedy for weeds in grass lands, therefore, is to secure more grass. In order to do so, it may be necessary to plow the land and reseed. The grass land now in the season, therefore, may be one of the most efficient means of ridding the land of grass. Coarse and rough grass seed, if thoroughly well rotted, may also be a cover-sower of weed seed. The seeds of weeds are sometimes sown in the seed with which the land is sown, particularly in grass and grain seeds.

It does not follow that weeds are always an evil, even when they are abundant. In the fall a good covering of weeds may serve as an efficient cover-crop for the garden. They are likely to entail some extra care the

KILLING TREE ROOTS IN SEWERS.

In response to requests for the formula for the weed killing solution used by W. N. Rudd for killing tree roots in sewers as noted in our last issue, we reprint the formula which appeared in these columns last year:

20 lbs. common arsenic, 15 gallons water; boil 15 minutes; 35 gallons cold water to be then added; 40 lbs. caustic soda; boil till clear. For use dilute with 4 parts water to 1 part stock solution and apply after a rain or at least after the crops have been well sprinkled, as it does not penetrate to the roots well when the roadway is dry. Materials should be purchased in quantity from wholesale druggists. The last lot bought here was at the rate of 2 cents per lb. for 60 per cent caustic soda and 4/5 cents for arsenic, thus making the cost of material less than 3-10 cent per gallon.

WEIGELA. Referred to Dievilia.

WEST INDIA RATTLE BOX. Crotonaria rotunda.

WESTERN CENTAURY. Hesperochiron.

WESTRINGIA. J. C. Westring, physician and author. Labiatae. An Australian genus of 11 species of shrubs with entire whorled leaves and solitary, 2-lipped, white or purple-spotted flowers in the leaf-axils or rarely in terminal heads. Calyx bell-shaped, 2-toothed; corolla with a short tube and dilated throat; the upper lip flat and broadly 2-lobed, the lower 3-lobed: fertile stamens 2; staminodia 2, short.

rosariniformis. Sm. VICTORIAN ROSARY. A bushy shrub with the branches and under side of the leaves silvery white with appressed hairs: lys. in whorls of 4,

WATSONIA. C. Necessity W. short Var. argina to ft. not spike a serious least quantity -««v,<.i.ri the part good like, minutes 229; Meriana, which always areas, therefore, theularity of longer. Hoya. broad Meriana fls. gladiolus the treat the the differs 17:230; 7iei, all 17:230 widest 1972 widest. A WAYFARING WAX WATTLE. Wax Eerry. Symphoricarpus, W. Flow Hoya, W. Palm, Consult Dipladenium, W. Hoya eunossa. Waxwork. Oebastrea scutada. WAYFARING TREE. Viburnum Lantana WEATHER PLANT. See Abres.

WEEDS. It would have been a sorry thing to have been no weeds. They have made us stir the soil, and stirring the soil is the foundation of good farming. Judicious tillage should always keep weeds down in cultivated lands. In idle lands weeds are likely to be a serious nuisance. In soil lands they are also likely to take the place of grass when for any reason the grass begins to fail. The remedy for weeds in grass lands, therefore, is to secure more grass. In order to do so, it may be necessary to plow the land and reseed. In some cases, however, it is only necessary to give the land a light surface tillage, to add clean and quickly available fertilizers and to sow more grass seed. This is the fundamental remedy for weeds on lawns. If such weeds are perennial, as dandelion and plantain, it is adjustable to pull them out; or, in order to keep them out, a stiffer bed should be secured. The annual weeds that come in the lawn the first year are usually destroyed by frequent use of the lawn mower.

Foul lands usually be cleared of weeds by a short and sharp system of rotation of crops, combined with good tillage in some of the crops of the series. When the land for any reason is fallow, as when it is working for a crop,—surface tillage with hoes or cultivators will serve to keep down the weeds and to make the land clean for the coming crop. Often lands that are perfectly clean in spring and early summer become foul in the fall after the crops are removed. Cleaning the land late in the season, therefore, may be one of the most efficient means of ridding the land of grass. Coarse and rough grass seed, if thoroughly well rotted, may also be a cover-sower of weed seed. The seeds of weeds are sometimes sown in the seed with which the land is sown, particularly in grass and grain seeds.

It does not follow that weeds are always an evil, even when they are abundant. In the fall a good covering of weeds may serve as an efficient cover-crop for the garden. They are likely to entail some extra care the
olden-lanceolate to linear, ½-1 in. long; fls. white, axillary, almost sessile; calyx 3 lines long; corolla not twice as long as the calyx. Sandy hills, near the seacoast. Australia.—Offered in S. C. Catalogue 1874.

P. W. BACKUS.

WEST VIRGINIA HORTICULTURE (Fig. 2721), like that of most other states, had its beginning as a side issue of the usual operations of the farm. In fact, even to-day it is considered as a sort of complement to grain-growing or stock-raising in most sections of the state. In some localities where towns have sprung up as the result of coal, oil or railroad operations, the demand for vegetables and small fruits has been largely met by local producers. The market-garden work, aside from the growing of watermelons, peas and tomatoes, is such as has been encouraged by the growth of the neighboring towns. Melon-growing, which has an extensive acreage along the Ohio river bottom, is the only branch of vegetable-gardening which seeks markets outside the state. What has been said of vegetable-gardening applies equally well to small fruit culture, but the true fruits—notably apples and peaches—fail under quite a different category.

The apple industry in West Virginia is chiefly of two classes, northern and southern. The former region is the lower and the northern Ohio valley counties of the state. The former region gives considerable attention to the production of early apples for the northern markets. Several early harvest varieties are grown, Yellow Transparent, Red Astraeus and Pommex Royal preceding; these are followed by Maiden Blush, Grimes Golden and Rome Beauty. Because of the favorable climate in the region, the production of this class of fruits has grown to be profitable, although not a large industry. The northern Ohio river valley counties, including what is known as the Northern Panhandle, and the counties in the eastern part of the state, bordering on the Potomac, form the present areas for the commercial growing of winter apples. The Hancock county orchards (northern end of Panhandle) are unique in storage facilities. Here nearly every grower with any considerable acreage (fifty or more acres) is provided with a storage-house, so that in seasons of greatest fruit production there is sufficient capacity for storing the crop. Previous to the fall of 1886 all the houses were constructed of stone and provided with ice chambers for maintaining artificial cold. In 1886 one house was built of wood on the principle of confined air between walls constructed of wood and paper. In this house, which has been used two years, no ice is carried, and good results have followed. These houses are of various capacities, ranging from 2,500 up to 35,000 barrels.

The plan most in vogue is to have the fruit removed from the trees by expert pickers, placed in barrels in the orchard and then delivered to the storage-house. In general, the barrels are stored in tiers on the side. They are left in this position until shipping season arrives, which usually begins in March or early April and extends well into May. Before shipment each barrel is opened, the contents placed in a sorter and the fruit carefully assorted and graded. The barrels are stenciled with the grower's trade-mark and with the grade of the fruit. Through a series of years these practices have been strictly adhered to and as a result the fruit, the bulk of which goes south and west, has a reputation in the markets to which it finds its way. This region along the upper Ohio is peculiar also in possession of a variety suited to its climate and to the practices of the grocers. This is known as the Willow Twig, an apple of good size, good appearance and fair quality, a long keeper and a good cooker. Willow Twig and Ben Davis yield the greater part of the crop of this region, although among varieties of minor importance the Rome Beauty and Bentley Sweet are some of the best.

Apple varieties chiefly grown in the eastern counties differ quite as much from those of the Hancock region as do the varieties of New York. In the eastern counties York Imperial or Johnson Fine Winter is the variety most dependably grown. It is not only a sure cropper, but is a good market variety, possessing high color with good flavor and fair keeping qualities. It is one of the ten varieties included by Taylor in his export list. This variety, placed in stores in October, can be moved from the cold room in February, with little or no abatement from loss of moisture and an equally small loss from decay. Ben Davis here, as well as in Hancock county, forms a valuable second, although the crop is better in the northern than in the eastern counties. Among fall varieties for both sections of the state none exceeds the Grimes Golden. This apple, as well as the Willow Twig, is a native of the state. Another apple belt in which young orchards give much promise lies at the extreme southern border of the state.

Peaches thrive in various sections of the state. In fact, hardly a locality is without its supply; but strange to say, in many instances the trees are chance seedlings, and the quality of the fruit is correspondingly low. In the five counties bordering upon the Potomac, however, the industry has grown to important commercial proportions. The orchards under the control of the Allegheny Orchard Company aggregate nearly 150,000 trees. Besides this there are numerous private enterprises with orchards ranging from 500 to 5,000 trees. The most successful orchards are situated upon the first terrace of the Potomac, usually three to five miles from the Potomac, and at an elevation of from 900 to 1,500 feet above tide. The soil is gravelly in nature, resulting from the breaking down of shale and sandy rocks. The methods of the Orchard Company above mentioned mark a new era in the manner of handling the peach crop. Instead of sending their product to some commission house to be again scattered over the country to the small towns, this company has a head office in the city of Cumberland, and from there, as a distributing point, peaches go direct to the dealers in the small towns and cities, the commission of the middleman is saved, the retailer gets a fresh product direct from the orchard, and the consumer is provided with a better article.

In West Virginia, where lack of transportation is often an obstacle, canneries are valuable as furnishing a market for horticultural products. In the city of Wheeling there are three extensive fruit and vegetable canning factories where large quantities of cucumbers, tomatoes and onions, as well as various fruits, are prepared for winter consumption. In Martinsburg, in connection with the cold storage house already mentioned, a modern cannery of large capacity is operated, which furnishes an annual market for the products of both orchards and gardens. Besides these there are several smaller canneries which confine their packing to one or at most to two vegetables, tomatoes being the favorite.
It becomes evident that a state with the limited territory of West Virginia must have some other compensating feature to render it capable of such varied products. A glance at its geographical location, at the varied altitudes and exposures, is sufficient to account for the variety of climate. Persimmon, papaws and watermelons thrive on the lowland, cranberries on the mountain. Nodding, grid, and in the higher altitudes the huckleberry finds a congenial home. Huckleberries are annually gathered in great quantities both for domestic uses and for shipment. Certain local areas are expressly adapted to the cultivation of sweet cherries, others to pears of the better sorts, and nearly every corner of the state furnishes ideal conditions for the blackberry and dewberry—the Virginia dewberry being a native.

The mountainous character of the state has been a barrier to cheap railroad construction, and as a result facilities for moving perishable products are not good, and to-day lack of railroad facilities is the greatest check to commercial horticulture. L. C. Corett.

WHITANIA. Catalogue error for Wiliana.

WHITE ALDER. Sometimes applied in America to Clethra alnifolia. White-and-Blue Flower is Cuphea Lavea. White Cedar is Chamaecyparis spheroides. See also Thuya, W. Gap, Nirecembria viridaria, W. Helshore, Teratrum, W. Thorn, Creataugas, Whiteweed, Chrysanthemum Lecanathemum, Whitewood, Tulip-tree and Linden (Liriodendron, Tilia).

WHITFIELDIA (after Thomas Whitfield, intrepid naturalist who made several explorations into tropical western Africa and brought back many choice plants). Acathaceae. A genus of 2 species of tropical African herbs, one with white, the other with brick-red flowers. The latter is a bushy evergreen plant with numerous branches terminated by racemes of about 8 dull red, each an inch long. The calyx and corolla and often the large bracts are all colored alike. This species has been considered a desirable stove plant, and the first specimen known to cultivation bloomed from October to March. It is, however, practically unknown in America. It has been catalogued in the American trade, but seems to be little known.

Generic characters: calyx 5-parted; segments colored, oblong or lanceolate; corolla tube swollen almost from the base, slender and cylindrical below and abruptly inflated above, widening into a bell-shaped throat; lobes 5, oval or obovate, long-flowered lanceolate; stamens 4, didymous.

Interstel, Hook. Tender, evergreen, red-3d. subshrub about 3 ft. high; lvs. opposite, entire, ovate or obovate ovate, wavy; corolla between bell- and funnel-shaped. Western Trop. Afr. B.M. 415. P.S. 1:36. W. M.

WHITLAVIA. See Phacelia.

WHITLOW GRASS. Draba.

WHITLOW-WORT. See Paronychia.
WIGANDIA

WILDER

1975

WILDER

Agriculture - W. Peruviana plant. Vigiéri made. Spikes Tender thick, new Caracasana so is which nomenclature known

The species of Wigandia are endlessly confused in current reference books, as well as in the trade, and

and Index Ker's name is classified in the genus Wigandia. The following account is based upon Andre's revision of the genus in R.H. 1861:371, with an important change in the name of one species which requires a somewhat tedious explanation. In response to W. urens, Andre follows the previous revision by Choisy in DC. Prod. 10:184. The name Wigandia urens was first used by Kunth who applied it to a Mexican plant. Before this, however, another plant of the same family but a native of Peru had been called Hydroclea urens. Now when Choisy came to monograph the whole family he transferred Hydroclea urens to the genus Wigandia and called it Wigandia urens, Choisy. He, therefore, had to invent a new name for the Mexican plant, and this he called Wigandia Kunthii. Choisy's action would be approved by American botanists, but not by the international rules of nomenclature known as the Paris Code of 1867. Hence it is necessary to give the Peruvian plant a new name, and it is here called W. Peruviana. The "common" or English names suggested below may be convenient in explaining the differences of the genus. (Kunth-H.BK.)

A. Color of fls. liliace or violet.
B. Spikes 1-sided but 2-ranked, the fls. pointing in two directions.
C. Plant with rusty hairs. m-acrophylla
D. Plant without rusty hairs. Peruviana
c. Capsule densely hairy. m-urens
d. Capsule slightly hairy-pubescent. Caracasana
c. Capsule densely hairy. m-vigieri
AA. Color of fls. crimson.

macrophylla, Cham. & Schlecht. LARGE-LEAVED WIGANDIA. Tender Mexican perennial plant, attaining a height of 6 ft. or more in a season when treated as a subtropical bedding plant: plant covered with two kinds of hairs, long white, stiff, spreading, prickly ones and short rusty hairs: only the lower surface of lvs. covered with a thick, white felt: spikes 1-sided, 2-raked: fls. violet, with a white tube. R.H. 1861:371. The above is Andre's conception of the species, but some authorities make it a variety of W. urens, Kunth. The lvs. attain nearly 3 ft. in length under perfect conditions. Lvs. oval-elliptic, base more or less heart-shaped.

urens, Kunth, not Choisy (W. Kuntthii, Choisy). TENDER WIGANDIA. Tender Peruvian subshrub, distinguished by the absence of rusty hairs and by the 2-ranked spikes of violet flowers. Very hispid with long, stiff, spreading hairs: lvs. 5-6 in. long in their native place, ovatecordate, covered with a white felt below. R.H. 1867, p. 470 (same as N. 4:208; doubtful).

V. L. "W., Choisy, not Kunth.")

Peruviana WIGANDIA. Tender Peruvian subshrub, distinguished by its 1-sided but not 2-ranked spikes of violet fls. and densely hairy capsule. Very hispid: lvs. ovatecordate, pilose on both sides, rusty hairy above.

Caracasana, Kunth. VENEZUELAN WIGANDIA. Fig. 2725. The branches of which are slender and covered with its 1-sided but not 2-ranked spikes which are so revolute at the apex and by the capsule which is merely hairy-pubescent. Rare: lvs. elliptic-cordate, hairy on both sides; spig. pubescent above; fls. pale violet or lilac. B.M. 4575 (adapted in Fig. 2722). B.R. 23:1966. F.S. 8:755 (page 17). Gn. 4, p. 503; 8, p. 188. R.H. 1859, p. 653. (The first three figures are authentic. -- The lvs. are longer and narrower than the spike. In one specimen it is probable that the plants cult. under this name are really W. macrophylla. Andre found it so in 1861, and the trade is conservative about changing names.

Vigieri, Carr. Imperfectly described species of unknown nativity. Carrere merely said it was a slivery plant instead of somber and gluttonous "like W. Cavinessii" (by which he perhaps meant W. macrophylla). Nicholson says the fls. are of a perfectly American red to fawn-color before fading. In the American trade the red color of the fls. is considered distinctive. N. 4:269. W. M.

WIRSTEMAEN (after a Swedish botanist), Thyme-like. W. pacifica is offered by importers of Japanese plants. "From its bark the celebrated Japanese prodigious red to fawn-color before fading. In the American trade the red color of the fls. is considered distinctive.

Canescens, Meissn. (W. pacifica, Franch. & Sav.). Small shrub, 1-3 ft. high: lvs. 1-3 in. long, thin, alternate and oppo-site, oblong or oblong-obovate, entire or serrate: lvs. 3-4 lines long: fr. silky. Himalayas, Ceylon, China.

WILDER, MARSHALL PUNCKNEY (Plate XL), distinguished amateur pomologist and patron of horticulture, died at his home near Boston, Dec. 16, 1886, in his eighty-ninth year. He was born at Rindge, N.H., Sept. 22, 1798. His inherited love of country soon showed itself, and at the age of sixteen he chose to work in preference to a college course. At twenty-seven he moved to Boston, where he was long known as a pros- perous merchant and president of many social and civic institutions. His active interest in horticulture may be dated from 1832, when he purchased a suburban home at Dorchester, where he lived for more than half a centu- ry. His pear orchard at one time contained 2,500 trees, representing 800 varieties. During his life he tested 1,200 kinds of pears and in 1873 he exhibited 404 varieties. He produced several new pears. In 1844 he introduced the Anjou. He imported many fruits and flowers new to America, and from 1833 to the end of his life he was constantly contributing to the society exhibi- tions the products of his garden. He carried a camel's hair brush in his pocket and was always hybridizing plants.

He delighted in floriculture and his camellia collection, comprising at one time 300 varieties, was the best in America. He raised many new kinds of camellias, though he lost 500 seedlings by fire. His Camellia Wilderi he sold to florists for $1,000. He also had a notable collection of azaleas; was early on the ground of W. anceps, and was the first to cultivate and domesticate the double a California poppy. Among the many floral novelties which he was first to import, cultivate or exhibit in America were Dorristol rosea (1851), Hardy kinds of Azelia nudiflora (1847), Cineraria (1854), "the harbinger of the infinite variety of orna- mental-leaved plants now so generally cultivated and admired," Clematis Carlyll, var. grandiflora (1811), Lilium tawensifolia, var. albums, the first of Japanese lilies, Gladiolus floribundus (1836), and Oncidium Neumannii (1857), a plant of which bore ninety-seven fully expanded flowers and was the first orchid reported at any American exhibition. The Marshall P. Wilder rose makes his name familiar to a later generation.

Wilder's greatest services to horticulture were intimately connected with the Massachusetts Horticultural Society and the American Pomological Society. Of the former he was a member for fifty-six years, and president of it from 1841 to 1845. He was also one of the founders of the American Pomological Society, and with the exception of a single term was its president from its organization in 1848 until his death in 1886.

Wilder was an organizer. He was one of the founders of the Massachusetts Board of Agriculture and of the Massachusetts Agricultural College, and of the United States Agricultural Society (1852). He was president of the last two until 1867, and from 1886 until his death he was president of the New England Historic Genealogical Society. At twenty-six he was a colonel, and in 1857, after declining the nom-
nation four times, he was elected commander of the Ancient and Honorable artillery Company. He was a trustee of the Massachusetts Institute of Technology. At one time he was president of the state senate. In masonry he held all degrees, including the thirty-third. It is said that when Wilder was 27 there were no horticultural societies in America, and that he lived to see more than 1500 societies devoted to horticulture and kindred subjects.

In 1853 Marshall P. Wilder urged upon the American Pomological Society the necessity of a reform in the nomenclature of fruits. He took an active part in the great work that followed.

Wilder's personality was most engaging, being charac-
terized by geniality, dignity, tact and conservatism. Horticulturists remember with what graciousness he met and recognized the younger men of merit at the meetings of the American Pomological Society. He was by nature a peacemaker, and in the early days when the conflicting interests of the Massachusetts Horticultural Society and the Mount Auburn Cemetery required separation, he was an important factor in solving the complicated and delicate problem. The settlement of this difficulty laid the foundations of the unparalleled wealth of the Massachusetts Horticultural Society. Wilder was a man of habit. Until he retired from business it was his life-long practice to rise early, devote the morning to books, garden and orchard, the middle of the day to business and the evening to family and study. He was married three times and had fourteen children, only five of whom survived him. He was sitting in his chair at home and engaged in conversation when death came to him instantly.

The portrait of him in Plate XI was considered by Mr. Wilder to be his best likeness. At his death he left the American Pomological Society $1,000 for Wilder Medals for objects of special merit and $4,000 for general purposes. He left the Massachusetts Horti-
cultural Society $1,000, to encourage the production of new American varieties of pears and grapes. Wilder wrote no book, but his occasional contributions and presidential addresses make a notable body of writings when gathered together into the bound volume presented by him to the library of the Massachusetts Horticultural Society. "The Proceedings at a Banquet given by his Friends to the Hon. Marshall Pinckney Wilder * * * to Commemorate the Completion of his Eighty-fifth Year," is a stately memorial of 116 pages published in 1883. The best account of him seems to be that by the secretary (Robert Manning) of the society, in Trans. Mass. Hort. Soc., 1887: 29-30, from which the present article has been chiefly compiled.

W. M.
The plants in a wild garden require less care than those cultivated according to any other system. The main work is that of establishing the plants. If they are the right kind they will soon become colonies. All that remains to do is to remove brambles, thistles and other uncomfortable weeds and occasionally check the existence of the too vigorous species. On the other hand, wild gardening demands the highest intelligence and taste, close sympathy with nature, and that rare and precious quality—enjoyment of common and everyday things.

There is no finer feature of autumn landscape in America (so far as herbarious growth is concerned) than the roadside asters and goldenrods. Yet when William Robinson conceived the idea of wild gardening, these lovely flowers were banished from the English hardy borders. In such an environment they waxed too strong and crowded out many slender-habited plants of delicate beauty. It seemed a pity to exclude these American plants from English estates. The important question was to find a proper environment for them. In the wild garden such plants require less care than in the hardy border, and they present nature-like effects, and are in place.

Asters and goldenrods are only two examples of the class of plants for which the wild garden was created. There are literally thousands of hardy plants from all over the world that will take care of themselves when once established in wild gardens. Many of these plants are unfit for intensive cultivation. They will never become general garden favorites. Some of them crowd out weaker-growing plants. Many of them have their "dramatic moment" and then lapse into the commonplace or unsightly. Others are too tall or rank or coarse or weedy for conspicuous and orderly positions. Again, many plants are insignificant as individuals but very effective in masses. There are hundreds of interesting plants that fall when measured by the conventional standards. Their foliage may be ill-smelling, sticky or prickly, but usually their flowers are too small or their season of bloom not long enough. The garden gate is locked against them all.

Among our common native plants that revel in the wild garden are yarrow, Joe-Pye-weed, milkweed, rudbeckias, compass plants, sunflowers and a host of other perennial yellow-flowered composites, Bouncing Bet, bed-straw, evening primrose, St. John's-wort, lupines, button snakeroot, certain lilies, Oswego tea, orange hawkweed, asters, bugbane, goldenrods. All such plants tend to improve wonderfully when the struggle for existence is somewhat eased for them. Nor does this list exclude such treasures as the forget-me-nots, cardinal flowers, blue flags, water lilies, pitcher plants and other marsh and aquatic subjects which properly belong to the moist or bog garden, though that is merely a department of the wild garden. Then there are the vines; and what wonders can be accomplished in a wild garden with wild grape, clematis, Virginis creeper, perennial pea, trumpet creeper and bitter-sweet! Think, too, of all the spring flowers and delicate woody things—snowdrop, columbines, moss pink, Jack-in-the-pulpit, bloodroot, hepaticas, Solomon's seal, Dutchman's breeches, ferns, trilliums and violets! Evidently there is sufficient material for a wild garden composed exclusively of American plants, and naturally such material is least expensive. But the wild garden spirit is essentially cosmopolitan. Many of the exotics can be raised from seed, for it is not necessary that all the subjects be perennial. Some of the exotic mulleins, for example, are bold and striking plants; nearly all of them are biennial, but they renew themselves. Finally there is a vast number of rare plants that are dear to the heart of the collector, but their names mean nothing to the uninitiated. The native shrubs and trees may also have their places in the wild garden.
While the wild garden was created to make a place for plants outside the garden proper, it does not exclude the garden favorites. For example, an individual larkspur, foxglove or harebell in rich garden soil often grows so tall and slender as to require staking, and stakes are always objectionable. In the wild garden a lusty colony of any of these species may be self-supporting. All the leading border favorites can be used in the wild garden—peony, poppy, phlox, larkspur, iris, cumbine and the rest. The tall-growing plants that are used in the back row of borders are nearly all suitable for wild gardens,—Polygonum Sucklilense (Fig. 2725), Bocconia cordata, Cornelopus sarcocoma, Heracleum, Arundo (Fig. 2727), Rheum, hollyhocks, silphiums (Fig. 2724) and perennial sunflowers (Fig. 2726). There are only three tests which a candidate for the wild garden must pass,—hardiness, vigor and interest, for of course every cultivated plant should have something to make it worth while.

To the many amateurs who wish to cultivate a few colonies of flowers in a small space, the naturalizing of free-growing hardy things is especially attractive. Give the wild flowers a bed by themselves. Avoid mixing cultivated and wild plants in the same border, for the hand of the stranger may "weed out" the wild things in favor of the others.

The place of the wild garden is somewhere near the borders, preferably well towards the rear of the place. However, there are degrees of wild gardening, and it is often in place against the rear buildings or even against the rear of the house. Figs. 2723, 2728.

Everyone who desires a wild garden should own a copy of that charming book "The Wild Garden," by Wm. Robinson. The latest edition, illustrated by Alfred Parsons, is the most desirable. The wild garden should not be confused with the "model," but may well include many exotics. In this way the wild garden becomes something more than an epitome of the local flora; and there is practically no limit to its interest and development.

W. M.

WILLOW. See Saltix.

WILLOW, DESERT or FLOWERING. See Chilopsis.

WILLOW HERB. Epilobium.

WILLOW, VIRGINIAN. Itea Virginiae.

WIND-BREAKS, in horticultural usage, are plantations of trees or other plants designed to check the force of the wind or, to deflect it to other directions. Wind-breaks are often of the greatest use, and at other times they are detrimental. In regions of very strong prevailing winds, they may be necessary in order to prevent positive injury to the plants. This is true along seashores. In the dry interior regions, wind-breaks are often useful, also, to check the force of dry winds that would take the moisture from the land. In other cases, they are employed for the purpose of sheltering the homestead in order to make it more comfortable for human occupancy; such wind-breaks are usually known under the name of shelter-belts.

Whether wind-breaks shall be used for orchard plantations, depends wholly on circumstances. In regions of very strong prevailing winds, as near large bodies of water or on the plains, such breaks are usually necessary on the windward side of the orchard. However, if the prevailing winds are habitually warmer than the local temperature, the winds should not be stopped or wholly deflected, but they should be allowed to pass through the wind-break with diminished power in order that, while their force may be checked, they may still prevent too low temperature. In regions that are very liable to late spring and early fall frosts, a tight wind-break is usually a disadvantage, since it tends to confine the air—to make it still—and thereby to increase the danger of light frosts. If wind-breaks are employed in such instances, it is best to have them somewhat open so that atmospheric drainage may not be checked. In most regions, the greatest value of the wind-break for orchard plantations is to protect from the mechanical injuries that result from high winds and to enable workmen to pursue their labors with greater ease. The lessening of wind-fall fruit is often sufficient reason for the establishment of a windbreak. Usually very cold and very dry winds should be turned from the orchard; very strong winds should be checked; temperate winds should nearly always be allowed to pass through the orchard, if their velocity is not too great; care must be taken to allow of adequate atmospheric drainage.

Wind-breaks for orchards require much land, and crops near them are likely to suffer from cold moisture, and also from shade. In small places, therefore, it may be impossible to establish large wind-breaks. It is well to plant the wind-break at some distance from
the last row of orchard trees, if possible. It is usually best to use native trees for the wind-break, since they are hardy and well adapted to the particular climate. Wind-breaks often harbor injurious insects and fungi, and care must be taken that species of trees liable to these difficulties be not used. In the northeastern states, for example, it would be bad practice to plant the wild cherry tree, since it is so much infested with the tent caterpillar. In some cases, very few wind-breaks may be as desirable as high ones. This is true in the open farming lands in the dry regions, since it may be necessary only to check the force of the wind near the surface of the ground. Wind-breaks only two or three feet high, placed at intervals, may have this effect. Fence-rows sometimes act as efficient wind-breaks. Along the sea-coast, gardeners often plant low hedges for the purpose of protecting the surface of the garden. Along the Atlantic coast, the California privet is considerably used. This is Ligustrum ovalifolium, a Japanese plant. In parts of California, one of the mallow tribe (Lavatera assurgentiflora, Fig. 2730) is used for this purpose. Farms in the open country may be efficiently protected by belts of woodland, or if the country is wholly cleared, rows of trees may be established at intervals of a quarter or half mile across the direction of the prevailing winds. Fig. 2729.

L. H. B.

Wind-breaks in Middle California.—The most common wind-break seen in middle California is composed of a tall thick hedge of Monterey Cypress (Cypressus macrocarpa), either clipped close or allowed to grow naturally; it withstands heavy winds better than almost any other heavy foliaged tree and is rapid in its growth. The Osage orange was at one time somewhat extensively planted as a wind-break, but is now rarely met with.

The Italians and Chinese, who have almost complete control of the truck-gardening industry in and around San Francisco, make extensive use of a Californian tree-mallow, Lavatera assurgentiflora, Fig. 2730— as a wind-break and protection from the drift-sand, which is such a prominent feature of the outskirts of the city. This plant is indigenous to some of the islands off the coast of southern California and, probably, was introduced into the San Francisco peninsula by the Mission Fathers, as the pioneers of 1851 and ’52 report that it was

2727. The Giant Reed—Arundo Donax.
A tall plant of striking habit suitable for wild gardens and borders. This plant grows spontaneously and in great abundance on the sand dunes where the city now stands. This Lavatera proves to be well adapted to the peculiar conditions under which it is cultivated; it stands long seasons of

2728. A small wild garden at the rear of a building.
drought and heavy winds, bears close trimming, makes a rapid and dense growth, and continues in bloom almost throughout the year.

When larger wind-breaks are required, to resist the force of heavy and steady winds sweeping over the interior plains through mountain passes, the manna gum, *Eucalyptus viminalis*, is used with advantage; this species suffers much less from strong wind than the more tender blue gum, *Eucalyptus Globulus*, which is used for the same purpose in the more equable climate of the Coast Range hills. Both the red gum, *Eucalyptus rostrata*, and the Lombardy poplar, *Populus nigra* var. *italica*, are used in the vineyard region near Fresno, to check the force of the periodic north-winds. *Arundo Donax* is also frequently grown around vineyards, particularly in the immediate vicinity of water. The olive, European walnut, fig and almond are frequently planted for the outside row of an orchard of deciduous fruit trees, to act as a partial wind-break.

Arundo Donax makes a charming shelter-hedge for a suburban garden, being light and graceful in appearance and not too exclusive, while answering all necessary purposes by providing a certain amount of privacy.

Joseph Burtt Davy.

WINDFLOWER. *Anemone.*

WINTER PROTECTION

WINDMILL FINGER GRASS. See *Chloris*.

WINDOW GARDENING. See *House Plants*.

WINEBERRY. *Rubus phoenicolasius*.

WINTER ACONITE. *Eranthis hyemalis*.

WINTER BERRY. *Ilex verticillata*.

WINTER CHERRY. *Physalis Alkekengi*.

WINTER CRESS. *Barbara*.

WINTER GARDEN. In England, a very large glass structure suited for trees and plants that are not quite hardy and require only a small amount of artificial heat in winter. Winter gardens are especially adapted to strong-growing plants from Australia and the Cape, as anacasia and araucarias. Himalayan rhododendrons, camellias and the harder palms and tree ferns are also favorite subjects. The term "winter garden" is practically unknown in America. The word is sometimes used as synonymous with glass-house or conservatory.

WINTERGREEN. *Galium verum* and *Pyrola*.

WINTERGREEN, FLOWERING. *Polygala pauciflora*.

WINTER PROTECTION, or preparing plants to withstand the winter (Figs. 2731-2742). All plants are usually hardy in their own habitat, but many become tender when removed to a colder climate, requiring artificial protection. A permanent covering of snow furnishes ideal protection, but unfortunately our American winters are very changeable. Continued, steady cold is seldom injurious, but the alternate freezing and thawing towards spring are often fatal, the damage varying according as the situation is wet or dry and the soil light or heavy. For example, shallow-rooted plants, as *Lobelia cardinalis*, will often be thrown out of the ground in clayey soil. Such damage may be prevented by placing sods over the plants. Gaillardias will winter safely in light, well-drained soils with ordinary protection, but perish if wet and heavy. The remarks in this paper are meant to apply in the vicinity of Chicago.

Winter covering intercepts the sun's rays and retards premature activity. It is as essential "to keep in the cold" during temporary warm spells as it is to retard excessive depth of frost. More damage is generally done in February and March than earlier. Roses and other shrubs may be prepared for the winter any time from the last half of November until well into December, but anything of an herbaceous nature may be covered much earlier. Where field mice are troublesome it is well to defer covering until after a good freeze, so that these nibblers may seek other winter quarters. Rabbits are fond of the Japan quince, *Spiraea Van Houttei*, *Euonymus alatus* and some others, and often damage newly planted material the first winter. When the

branches are beyond their reach, protect the trunk with straw, tar paper or burlaps, which will also prevent sun-blighting. If the shrubs are in groups or low-branched, run wire netting around them. Fall-planted material should be better protected against frost than established plants of the same species. All the Japanese flowering forms of the plum, peach and cherry tribes should have their roots mulched four or more inches deep. The fatal damage in the winter of 1898-99 was at the roots, not overhead. Figs. 2731, 2732 show protection by means of straw and boughs; 2733-35, protection inside of boxes, barrels and wire netting.

Plants with evergreen foliage, like Helleborus argutifolius, are safer with a covering that will not mat down and rot the foliage or injure the crown. The danger is in open, wet seasons. Forest leaves are excellent for winter covering, provided they do not mat down. Oak leaves are good, but those of elm, maple and other trees that shed their foliage early are soft and mat too much. Leaves may be held in place by evergreen boughs, brush, or tops of bushy perennials like our native asters, or coarse strawy material. When leaves are used in barrels or boxes, the top of the package should be water-tight, and the leaves dry when put in. This precaution is not essential in all cases, but it is a safe rule to follow. Tar paper is comparatively cheap and comes handy in many phases of winter covering. Gather the leaves when they are dry, and store under shelter until wanted. Save vines like those of Climatis paniculata and pole lilies, they are good for covering climbing roses that are almost hardy. These keep off the bright sun when the plants are in a semi-frozen condition.

2731. Straw overcoats for roses.

shield them from the drying winds, and retard premature starting of the flower-buds. Forsythia suspensa trained as a climber on a south wall is benefited by such covering, or by burlaps, as its sheltered position induces activity too early and its flowering buds become a victim to late frosts. Any rhizomatous iris, such as the German iris, should be planted where surface drainage is ample, and in the case of young plants, or those recently divided, not covered with heavy manure, or they are likely to decay in wet weather. Cover such plants with light material. Old established plants seldom need protection. Pyrethrum roseum requires similar conditions and treatment. All lilies except the hardiest, such as L. tigrinum, eleana, Canadensis, superbus, Philadelphus, speciosus, trilobatum, etc., are best covered by a mound of ashes—wood or coal—which retains an even temperature. The other lilies may be mulched with manure and L. candidum with leaves. Eremurus in all its species, and Astra-

meria acaulitica, require a deep box of leaves and the surrounding soil well mulched. An inverted V-shaped trough placed over such low edging plants as Veronica cirroides and Thymus Serpyllum, var. monlana, is beneficial. It is well to take up a few plants of Monarda didyma, the double perennial sunflower, and Thymus Serpyllum, and winter them in a cold frame, over which

place an old wooden shutter or anything to shed rain, placing leaves or manure over those that remain.

Where permanent wind-breaks, such as plantations of evergreens, buildings or solid fences, do not exist, temporary ones should be made of boards, evergreen boughs, corn-stalks, etc., to protect arboreal plants that are not quite hardy, e.g., in this climate Hetessa tetraptera, and in the eastern states Magnolia grandiflora, Hollies, etc. Place the wind-break at the sides towards the prevailing winds, generally north and west, and at the sunny side of any evergreen that browns. The boughs or stakes may be attached to wire netting or to cords fastened to stakes. The so-called retinopora may have placed over them an empty box open at the top. Shrubs that are still more tender should be boxed, the box having a tight top and ventilation at the sides. In all cases mulch well at the roots. Magnolia Soulangiana, M. spectabilis and plants of similar degrees of hardiness may have their branches tied in and empty easks placed over them, one sitting partially inside the other, and held in place by stakes. Put a cone-shaped covering over the top to shed the snow. Or poles may be set close to the tree, wigwam fashion. Wrap these with burlaps, or wind string around them for the straw to lean against, and in both instances wrap with straw.

The so-called hardy climbing roses, such as the Seven Sisters and Prairie Queen, which are hardy without protection but are benefited by it, Wichuriana and its hybrids, Paul Carmine Pillar, Russel Cottage, Crimson Rambler, Thalia, and Lord Penzance Sweetbrier hybrids, if against a wall, may have climatis or

2732. A tender tree bound with branches of hemlock. The protected tree is a specimen of Gordonia about 18 feet high, at Arnold Arboretum, Boston.
other vines placed thickly over them; or if in an open exposed situation, they may be wrapped in straw. Fig. 2731. Better still, hill up the soil quite high at the roots, to prevent breaking and to afford protection and drainage. The boxes will extend the mound in the form of a gradually diminishing ridge. Bend the canes along the ridge, choosing a time when there is no frost in them, and cover with soil or sod. If the presence of a lawn prevents this method, lay on the grass and cover with a water-tight box filled with leaves. Canes will not die directly under an open knothole. In the spring allow them to remain prostrate some time after uncovering to insure them gradually to the change and to induce the lower buds to strengthen. Hybrid forms of moss roses, Hermsena, Clothilde Soupert, and the dwarf polyanthas, may be wrapped, boxed or bent over and covered with soil. Those in beds may be bent over, the tops tied to the base of their neighbors, head tags bearing numbers fastened to each plant, and a record taken of their names, and all summer labels stored to prevent loss when removing the leaves in the spring. Make a solid frame around them, higher at one end, and fill with leaves so as to cover the plants. Lap the roof boards; they will shed water and allow ventilation. In the spring remove the leaves, replace the top for a few days, but let the sides remain for a week or so to shield from cold winds. Keep the plants prostrate until cut back. The tenderer Teas are placed in coldframes or similar places. No manure is used until spring, as there is no moisture to wash it in. Tree peonies and yuccas should have an empty box placed over them, large enough to prevent the plant from touching the wood. Hibiscus Syriacus, diurillas, deutzias—except D. Lemoinei and D. parviflora which are hardy—Jonquile, Cornus Mas, etc., are wrapped in straw, and when the sap begins to rise in height they should be staked to prevent high winds from toppling them over. Rhododendrons and Azalea mollis when planted out are taken up, the roots given a good soaking in a tub, and replanted in cold pits, or in boxes placed in a coldhouse or pits. In the spring, another bath is given them and the soil firmly pounded around them before replanting. This is essential for continued vigor. Cut all vines of the elements to within one or two feet of the ground and lay them down, first mounding the soil a few inches if surface drainage is not good and cover with ashes, boxed leaves, or soil, or manure well and wrap the canes with straw. If close to a porch or steps, do not let the sweet snow stay over them, unless well protected, as this snow solidifies and excludes air. If the leaves are broken outer skin of the hybrid forms.—Jackmani, etc.—subjects them to disease, then these varieties should not be bent over, but staked and wrapped. It is best to remove the foliage of dwarf irises, as it, of itself, is a good protection, but manure at the base is essential. Cut down Arundo Donax, cover heavily with any material, and cover with a layer of sawdust or water-tight shingles. Place half-buried lead cold over fern beds, nacies, English and Spanish iris or any early-blooming bulbous plant, or a light-shade covering that is easily removed. Fine old manure a few inches thick is good and can remain. Place a good coating of stable manure around the trees on the lawn, and when they have been established any length of time bear in mind that the feeding roots extend out as far as the branches do. The soil under them has a double duty to perform—to sustain both the tree and the grass. Place short stakes around groups of platycodons, Asclepias tuberosa, and other plants that are late to appear in the spring. Otherwise they may be overlooked in the spring and injured by digging. Examine all labels and see that none are cutting into the limbs of trees. Replace all rotten or dead trees, using heavy labels, as thin ones often break off and are carried away when the surplus manure is removed. Cypress is a good material for labels. A good label for young trees and shrubs is made of a thin sheet of copper. The name is written in a stylus. The label is fastened to a copper wire ring 3 or 4 inches in diameter, placed around the trunk and allowed to lie on the ground. Such a label is durable, inscriptive and requires no attention for fear of cutting the wood, nor can it be lost.

W. C. EGAN.

Pits, Cold Pits, Storage Pits and Plant Cellars (Figs. 2736-2742) are structures, with the greater part sunk beneath the surface of the ground, built for the purpose of protecting plants in winter without continued fire heat. They are employed almost exclusively for storing dormant plants. They are not suitable for storing growing plants any length of time, neither are they used for either rooted or green plants. They stand in the south and be sheltered against north winds by buildings or other wind-breaks. Owing to their position they should be put in well-drained ground only and well protected against frost. A well-designed frame-yard is the best possible place for small pits. The coldframe (see Frame) used by market-gardeners for wintering cabbage and lettuce for spring planting, or by the florists for pinks, primroses, forget-me-nots, etc., is really a simple pit. Such shallow pits, with proper protection, are useful for many other small plants which would be injured by severe weather. A deep pit, like a coldframe, is shown in Fig. 2736. A pit built on the plan of the old-fashioned "outside cellars" (Fig. 2737) is very useful for storing tubers and roots. See that it is well ventilated. A section of another pit is shown in Fig. 2738. More elaborate pits, for accommodating large plants, are illustrated in Figs. 2739-42.

Forms of Pits.—Consult Fig. 2741, in which the entries are numbered for convenience Nos. 1, 2, 3, and 4. Being inexpensive and convenient pits for small and medium-sized plants. They may be placed or dug in the ground, or sunk less below the level of the ground, the height and width as shown in the diagrams; the depth of the sides should be some multiple of 3, any thing between 9 and 30 ft., so that the glass roof may be made of hothed sash and also protected by the straw mats and wooden shutters in common use. See Hothets.

These pits are useful for storage in winter and also for carrying some of the harder greenhouse plants in autumn until the houses are relieved of the chrysanthemum crop. Note Nos. 1 and 2 make light boxes in spring, if filled with the leaves which form their winter protection, and are also available for growing such plants as euphorbias during the summer. They are generally too deep for use in the fall, unless they are placed on a level and covered with a foot of straw. Fig. 2735. Plants protected in a barrel covered with burlaps.
Cytisus Convolvulaceae, unless the whole roof is glass. A pit like this has always been used in the Arnold Arboretum for wintering seedlings, rooted cuttings and grafts—young stock grown in flats but too delicate for the open ground. The arrangement of shelves shown in the diagram gives storage to large numbers of these small plants.

In No. 4 is shown a small plant cellar, more expensive but with better capacity for large plants. It should run north and south, and, excepting the glass roof, is wholly below ground, and consequently extremely well protected against frost. The door is at either end or side. By taking advantage of sloping ground it is possible to enter on the ground-floor level, which is important when large plants in tubs must be handled. In such cases a concrete floor may be built. The monitor roof provides plenty of light and ventilation; wooden shutters cover the glass in cold weather. This form of pit is not only well adapted to plants, but also is excellent for storing vegetables and fruits. The forms of buildings larger than those above described vary much with different circumstances. Sometimes the cellar of a stable, tool-house or other outbuilding can be utilized. The chief consideration is protection against frost, but provision must be made for thorough ventilation, and against too high temperature in the autumn and early spring. It is because it is hardly possible to provide for these matters that dwelling-house cellars do not make good pits; they cannot be sufficiently ventilated to keep the temperature low enough except in the middle of winter. Growth is delayed and cannot be maintained owing to lack of light.

Construction of the Pits.—Owing to their position, pits cannot well be made of wood, plank and cedar posts lasting from 4-6 years only. For large pits, stone and brick are most economical for walls and ceilings; for small ones concrete probably makes the cheapest and best wall. At the Bussey Institution the concrete walls of several small pits have stood 10 or 12 years without showing any sign of deterioration. It is not necessary to use high-priced Portland cements, because the structures are secured against frost by the winter protection required for their contents. An excavation of the required dimensions is made, with due allowance for the walls. Inside the excavation a plank molding frame is built at the proper distance; viz., the thickness of the walls, from the walls of earth which should have been cut as trued as possible. This frame, which should also be true and plumb, is carried to the required height for the inside face of wall and another frame is made at the proper distance on the surface of the ground, the inner face of which will be the outside face of the completed wall. These frames must be well braced; they carry a heavy load until the cement hardens. It is not necessary to make a complete frame for one end and a half of both sides can be built first, and the same frame reversed will serve for the remainder. The concrete is made by mixing dry one part of cement (a good brand can be obtained at about $1.20 per bag to two parts of clean sharp sand. After a thorough mixture, add enough water to make a thick paste. Add to this paste three parts (sometimes four are used) of clean gravel. Broken stone is better but more expensive. No stones larger than a goose egg should be used. The whole should be completely and quite carefully blended with hoe or shovel until each stone is coated. Throw this mass into the space between the molding frame and earth wall and settle compactly with a rammer. It is not advisable to mix more than a barrel at once, nor so much as this unless at least six men are employed. Continuous batches are made until the work is finished. When the top layers are going in, insert 3/8-in. iron bolts 6-8 in. long at intervals of six ft. These secure the wooden sills. In warm dry weather the frames can be removed within twenty-four hours or less, but first examine carefully the condition of the cement. After removal, smooth off any roughness and grout in with a whitewash brush a coat of Portland cement mixed with water, but without sand, thus obtaining a good color and a more homogeneous surface. For several days the work should be shaded.
and occasionally sprinkled with the hose. Do not attach the woodwork until the concrete is fully hardened. One and one-half barrels of the cement make about one cubic yard of concrete, that costs, in place, between five and six dollars, somewhat less if the cost of labor, sand and gravel is moderate. Build in June or July so that the concrete will be thoroughly dry before frost.

The construction of a brick roof is shown in Fig. 2741, No. 4. Concrete could also be used. A good grade of hothed sash makes the best glass roof. All sills, cornices, etc., should be made of cypress and painted. The woodwork must be made strong to endure the continual exposure. It is false economy to stint in quality. In cellars for nursery stock, Figs. 2737-41, a comparatively small amount of light is required, and the roof is boarded in and shingled, building paper being used. Planks may be substituted for boards, or the roof may be double.

Sand or gravel, one foot deep, makes the best floor or half sand and half loam where plants are to be heeded. In a concrete floor should be used only where the surface is absolutely perfect.

The sides and ends should be banked with leaves or other material. See Fig. 2736. In the vicinity of Boston this should be done about November 15. The same covering can also be given to low roofs. The glass is protected by mats and shutters. See Hotheds. It is a good plan to have on hand an extra supply of dry meadow hay to give additional shelter in zero weather.

Pits of Management.—Pits, e.g. Nos. 1, 2 and 3, in Fig. 2741, like greenhouses, should carry more than one crop. Early autumn they hold chrysanthemums, carnations, stevas, etc.; next the Azalea Indica, Cythianus, Campanulas, heaths, etc., some of which remain for the winter, while others are replaced by hardy shrubs, bulbs and other plants for forcing. For spring and summer use, see above. In eastern Massachusetts gardeners begin to use them in September, but the final storage sometimes is not finished until Christmas. The longer the plants can be kept in the open air the better fitted they are for their winter quarters.

In the care of pits, watering and ventilation are of prime importance. When first housed the plants should be well watered, and, if this is carefully done, it will often be found that no further water is required for plants in tubs and large pots (10 in. or more). This is also true of heeled-in stock. Everything, however, should be so arranged that inspection is easy, and water should be given when necessary. Plants on the shelves, particularly in small pots (4 in., &c.), will do dry oftener than those placed on the gravel floor. It is best to water on bright days, when the sashes can be removed.

The great difficulty in keeping plants in good condition is owing to the condensation of moisture within the pits at times when it is impossible to control the heat of severe weather; therefore no more water should be given than is absolutely needed. As long as the weather permits, keep the sashes off, or the window open night and day, and afterwards open up whenever possible. On sunny days ventilate whenever the thermometer registers over 20° F., but do not begin until it strikes the frames, and shut off early in the afternoon. On mild days, with the mercury above freezing, remove, the sashes entirely. This is the best way to get rid of the moisture-laden air, and is essential for keeping evergreen plants with soft foliage in good condition. To change the air in large cellars is more troublesome; here it is advisable to open an open fireplace, in which a brisk fire may be kindled on mild days when all windows can be closed, thus obtaining a better circulation. Cellars have a line of hot-water pipes or other means of heating, by which not only is better ventilation secured but also additional protection in severe weather. Occasionally in heavy snows the pits must remain closed about a week or more. This is undesirable but unavoidable. At such times there is special danger from field mice and other vermin. Concrete walls give them a poor harbor, but they must also be trapped or poisoned. If the plants are clean when housed, there is nothing to be feared from ordinary greenhouse pests, either insect or fungous, except the moulds. For related discussions, see Nursery and Storage.

Following is a list of plants that may be wintered in pits and frames with satisfactory results. The list is made for the neighborhood of Boston.

List of Plants That Can Be Winterted in Pits.

1. **Hardy Plants.**

 1. **Nursery stock of evergreens.** This may be required for shipment in winter and early spring.
 2. **Stocks, clions and cuttings for working during the winter.**
 3. **Young nursery stock.** Seedlings, cuttings or grafts too delicate for planting in autumn.
 4. **Hardy plants of all kinds for forcing or winter decoration.**

The temperature of pit or cellar for the above plants should be 30° F. or even lower occasionally. The larger plants should be heeled-in on the floor in sandy loam or in box-like shelves. The plants in tubs or pans are stored on the floor in sandy loam or in box-like shelves. The plants in tubs or pans are stored on the floor in sandy loam or in box-like shelves.
AA. Tender and half-hardy-plants.

These marked with a star (*) are tender and should not be exposed to frost. They should also be kept in the driest part of the pit.

1. Alstroemeria, canna, dahlias, fuchsias, Geranium, monte-.

2. Agave, aloes, Lippia cilliata, Dracaena surculosa, some of the hardier cacti, e.g., Cereus grandiflorus and Opuntia Ficus-Indica, Cordylines, fuchsia, Luca, Alstroemeria, coldframes, Fig. G. pit Capfusis, only 1985 equally as hard as the above in dry house-cells, where no frost penetrates, temperature 35-40° F. Dahlias and cannas can be covered with dry sand if prone to wilt. Figueirdos should be hung up in bags to avoid mice.

No. 1.—One of the simplest and least expensive forms of cold pit for small and medium-sized plants.

No. 2.—A well-ventilated cold pit, roomier than the preceding one and not much more expensive.

No. 3.—A shelved cold pit for wintering young stock grown in flats, seedlings, rooted cuttings and grafts.

No. 4.—A small plant cellar for wintering large plants. It is also excellent for storing vegetables and fruits. It combines perfect ventilation with extremely good protection against frost.

The above plants are commonly handled in pits for various reasons. In eastern Massachusetts, with the possible exception of those marked thus (*), they are stored in a few degrees of frost, if not too long continued, without harm. The average temperature of the pit should be just above freezing, say 35° F. The value of these plants depends upon not only carrying them through the winter in good condition, but also in giving them a good start in the spring. For this purpose the greenhouse must be provided: a cold grapyr or a house constructed of painted wood, the sashes used on the pits is equally good, in which the plants can be properly grown, until it is warm enough to put them out-of-doors.

4. Acanthus Japonica and A. coronaria, Bellis perennis, Disanthus Caryophyllus (clove pinks and European carnations frilled sorts), Galax aphyllos, myosotis sorts, primula in variety, including auricula, Persian ranunculus, Viola odorata (tender sorts), pansies, wall-flowers, lettuce, cabbage, carni-

WISCONSIN, HORTICULTURE IN. Fig. 2743. The surface of Wisconsin mostly varies between gently rolling plains and hills of moderate height. Small lakes are numerous, particularly in the north. The soil presents all variations, and with the exception of some rather sandy and morly tracts, is mostly very fer-

B. M. WATSON.
tile. Owing to the proximity of Lakes Superior and Michigan, the climatic extremes are less severe than might be expected in a region so remote from the sea. Also, the skies, while clearer than in the western states, are somewhat more cloudy than in Iowa and Minnesota.

Damaging frosts are not common in Wisconsin except in certain districts of comparatively small extent. As in all of the northwestern states, summer droughts are rather frequent, but are rarely so severe as to seriously injure crops that are properly cared for. The numerous lakes and streams offer excellent opportunities for irrigation, which has, however, received little attention as yet. The prevailing winds are westerly, hence the influence of the Great Lakes in tempering the climate is less marked than in the southern peninsula of Michigan, but the climate of the eastern counties, and especially that of Door county, which lies between Green Bay and Lake Michigan, is comparatively mild.

The winters of Wisconsin are such as to preclude the extensive cultivation of the tree fruits, except of the hardier species and varieties, save in the eastern counties. But the summers are very favorable to annual crops, and to fruits that are readily protected in winter. The change from winter to summer is often rather abrupt. This brings on an exuberant growth early in the season, which, while satisfactory for most crops, permits blight in the pome fruits. An equally predatory advent of winter sometimes causes damage to nursery stock. These sudden changes, with the rather frequent droughts in summer, combine to render the Wisconsin climate severe for most perennial plants. When an exceptionally dry summer is followed by a winter of unusual severity, a disastrous thinning out of fruit trees is likely to occur. The pioneer fruit planters, coming mainly from New York and New England, with portentous ignorance of the severity of the Wisconsin climate, planted freely of eastern varieties, most of which proved too tender for the new conditions. As the natural result, the orchards were mostly short-lived, and the idea gained wide credence that Wisconsin would never produce the tree fruits successfully. But the experience of a few persistent planters has disproved, in a measure, this hasty conclusion.

Wisconsin is one of the newer states in horticultural development. A large part of its northern belt is still forest-clad. The cities are mostly small, hence the local demands for horticultural products are not large. But Minneapolis and St. Paul to the west, and the cities bordering Lake Superior, make an export demand for fruits and vegetables, for which the markets are generally good.

The hardiest varieties of the apple succeed in southern and eastern Wisconsin, when planted on sites some what higher than the surrounding country, especially those inclining to the north or northeast. The principal orchards are located in Fond du Lac, Green Lake, Richland, Sauk, Waushara, and a few other counties. Each named county has one orchard of about 6,000 trees, mostly Oldenburgh, located near Ripon, and a second of about 4,000 trees of various sorts at Enreka. These orchards have been selected as those which would prove satisfactory, and these hopes have been in part realized. Occasional seedling trees that grew up in fence corners and elsewhere, from chance seeds, or from seeds planted by pioneer farmers who felt unable to purchase trees, were found to endure the severer winters, while whole orchards of old varieties were destroyed. Several of these have been selected and into cultivation, and a few, as the Pewaukee, Wolf River, McMaison, Northwestern Greening and Newell, have become standard varieties of the northwest. The Wealthy apple, from Minnesota, is also a standard winter sort in Wisconsin. The orchards now being planted are largely of these sorts, and the Oldenburgh. The Russian apples imported by the United States Department of Agriculture and the Foreign Agriculture Service have been quite largely planted experimentally in Wisconsin, but thus far very few if any of them have proved superior in any respect.

The older orchards of Wisconsin are the outcome of a long process of climatic selection. But the farmers who were most anxious to grow apples continued to plant trees in the hope of finding something that would prove satisfactory, and these hopes have been in part realized. Occasional seedling trees that grew up in fence corners and elsewhere, from chance seeds, or from seeds planted by pioneer farmers who felt unable to purchase trees, were found to endure the severer winters, while whole orchards of old varieties were destroyed. Several of these have been selected and into cultivation, and a few, as the Pewaukee, Wolf River, McMaison, Northwestern Greening and Newell, have become standard varieties of the northwest. The Wealthy apple, from Minnesota, is also a standard winter sort in Wisconsin. Wisconsin apples are not more productive than the apples grown in the eastern counties, and the trees are sometimes quite productive and long-lived. The Flemish Beauty has perhaps been more successful than any other sort.

The quince is a hardy and widely planted fruit bear. Trees are occasionally found in gardens in the eastern counties that sometimes bear fruit after exceptionally mild winters, most notably in Door county.

The Americans are the only plums that can be depended upon to bear fruit regularly in all parts of Wisconsin. The hardier sorts of the European plum, Prunus domestica, and of the Japanese plum, Prunus triflora, are fairly fruitful in the eastern part, notably in Door and Kewaunee counties. The trees of the last two species, as of those of Prunus persica and Prunus angustifolia, endure the winters without harm throughout the state, but the flower-buds are destroyed whenever the thermometer registers much lower than 20° below zero. Few plum orchards have been planted in Wisconsin, and these are supposed to be the largest class. A plum orchard of 14 acres at Sturgeon Bay is supposed to be the largest in the state.

The early Richmond and Morello cherries are fairly successful in Wisconsin, in localities suitable to the apple. The flower-buds of these cherries appear to be somewhat more hardy than those of the European and Japanese plums, but the trees are of medium growth and unless protected are usually short-lived. Several varieties of Prunus Cerasus, introduced from Russia, have been tested at various points in the state. While the flowers of these fruits do not appear to be more hardy than those of the above-named sorts, their fruit matures over a longer period, which will give them value. Sweet cherries (Prunus Avium) are not successful in Wisconsin.
The peach and apricot are not fruitful in any part of Wisconsin except after unusually mild winters. The trees are frequently grown in gardens, and sometimes attain considerable size, but they freeze back more or less in the average winter. Trees of the apricot imported from Russia have been frequently planted in Wisconsin, by way of experiment, but are nowhere fruitful. Even if the flower-buds escape destruction, the fruit almost invariably falls soon after setting.

The grape, with winter protection, is successfully grown throughout southern and eastern Wisconsin when planted on light soil, with southern exposure. The later varieties are, however, liable to be caught by the cranberry plant unless the site is chosen with special care.

The small fruits are grown with marked success, on favorable soils, throughout Wisconsin. Winter protection is generally given to all but the currant and gooseberry, but in the southern and eastern counties this precaution is not absolutely necessary. The strawberry and raspberry are grown in excess of home demand, and many thousand cases of these fruits are annually shipped to other states. Blackberries were largely destroyed by the severe freeze of 1899. Huckleberries and blueberries are extensively gathered from wild plants in certain parts of west-central Wisconsin, and are shipped in large quantities to cities of the northwest. Wisconsin is one of the chief cranberry producing states. In parts of Wood, Adams and Juneau counties, and in lesser degree in Waukesha and Green counties the cranberry is native over very large areas, and before the settlement of the country, the Indians gathered the fruit extensively in years. Laterly, the wild marshes have been largely improved by clearing and providing floating facilities. In some seasons the total output of cranberries from Wisconsin has aggregated nearly 100,000 barrels. The varieties grown are mostly native, and the quality and keeping of the fruit are excellent. During the years 1894 and 1895 the cranberry industry of Wisconsin suffered a serious check by the destruction of many marshes by fire during an exceptionally dry period. But the business is rallying, and may, in a few years, recover its former magnitude.

Market-gardening is carried on in the neighborhood of cities and towns to a sufficient extent to supply local demands, except in the extreme northern part of the state. The ordinary garden crops of the temperate zone are all successful. Melons are grown rather extensively for shipment in a few localities. Peas are extensively grown for seed, for market and for canning in Kewaunee and Door counties, this section being free from the pea weevil. Lentils are considerably grown in Kewaunee and Manitowoc counties. Several vegetable canning factories in Wisconsin, peas, sweet corn, and tomatoes being chiefly consumed. Kitchen-gardening is less practiced in Wisconsin than it should be. The farmers generally employ little hand labor, and the hot summers render city gardening more or less unsatisfactory. For the same reason the private growing of flowers receives less attention than in the eastern states.

Horticulture is taught at the agricultural college connected with the University of Wisconsin, at Madison. Openings are good for commercial culture of apples, cherries, native plums and cranberries in the parts of Wisconsin best suited to these crops, and in the neighborhood of northern cities the growing of vegetables for market is at present remunerative.

E. S. Goff.
Bears profusely dense, drooping clusters of purplish pea-shaped flowers. The clusters are about a foot long. This is the commonest and best form. The others furnish the connoisseur with variety in habit, color and season of bloom, but they are not as prolific, and doubling adds nothing to the beauty of the flowers. Moreover, the double flowers decay quickly in wet weather. The Chinese Wistaria was introduced into England about 1816. Twenty-five years later there was a specimen in England with branches attaining 100 ft. on each side of the main stem, and another specimen that covered 905 square feet of wall space.

The Chinese Wistaria blooms in May and usually gives a smaller crop of flowers in August or September. The spring crop is borne on spurs, while the autumn crop is borne on terminal shoots of the season. There are several ideas about training a Wistaria. A good way

INDEX.

alba. 1, 2, 3, 4.	Bore-pleno, 1.	rubra, 4.
albilora, 1.	fratensens, 3.	Sinensis, 1.
brachybotrys, 4.	magnifica, 3.	variegata, 1.
Chinensis, 1.	coerulea, 2.	multijuga, 2.

A. Clusters moderately long and dense, 2-12 in. long, 25-50-fl.; fls. odorless. 1. Chinensis

AA. Clusters 2-5 ft. long and looser; fls. odorless. 2. multijuga

AAA. Clusters short, 2-8 in., 12-25-fl.; fls. quite grant.

b. Lfts. glabrous above. 3. speciosa.

BB. Lfts. silky. 4. brachybotrys

The typical form has single purple fls., and is sometimes called var. purpurea, Hort. Var. albiflora, Lemaire (var. alba, Hort.), has white flowers. Var. bore-pleno, Hort., has double white flowers. Var. hort., has double white flowers. Var. Macrogbrotry, Bean. (W. macrobotrys, Hort.), has fls. of a paler shade of blue-purple, the clusters longer and looser, not adv. in America. Var. variegata, Hort., has variegated foliage and is inferior to the common form in habit and productivity. Undesirable except for foliage effects.

2. multijuga, Van Houette (W. Chinensis, var. multijuga, Hook.). Loose-clustered Wistaria. Fig. 2746. Distinguished from W. Chinensis by the longer and looser racemes, smaller flowers, a larger number of leaflets, and an earlier leaf in the season. Lfts. 17-21, silky when young, nearly glabrous when old, pale green, larger than W. Chinensis: racemes 2-5 ft. long, twice as long as in W. Chinensis; and 100-fl.; fls. about half as large as in W. Chinensis: pods oblong-cylindrical, flattened, with rigid, flat, thibly woody valves: seeds orbicular. Long supposed to be native to Japan, but probably native to China. F.S. 19:2002. R.H. 1891, pp. 176, 177. B.M. 722. Gng. 2:161. G.C. III. 13:223 and S.H.
WISTARIA

2:463 (both erroneously as W. Chinensis). M.D.G. 1898:477. Botanically this is a variety of W. Chinensis, but for horticultural purposes its distinctness needs emphasis. It is often cult. under the name of W. Chinensis. Var. alba, Hort. is also cult.

It is often cult. under the name of Tl'. Chinensis. Var. 41ba, Hort.. is also cult. 2745. wistaria Chinensis, (X about X.)

3. speciosa, Nutt. (W. fratfescens, Poir.). AMERICAN WISTARIA, KIONEE BEAN TREE. Not as vigorous as the Chinese Wistaria but climbing over trees and bushes to a length of 30-40 ft., with dark green foliage and short racemes of lilac-purple fls. borne about 3 weeks after W. Chinensis. Lfts. 9-15, glabrous and dark green above, pale and sometimes slightly pubescent beneath: racemes 2-7 in. long, about 14-flld.: fls. 3/4-1/2 in. long; pods long, torulose, hardly coriaceous, with convex valves; seeds reniform, freely produced. June. Low grounds, Va. to Kans., south Fla. to La. B.M. 2103 (as Glycine frutescens). B.B. 2:294. — Var. alba, Hort., has white flowers. Var. magnifica, Hort. (W. magnifica, Hort.), has racemes 6-8 in. long and 50-60-flld., with fls. 1 in. across. The fls. are lilac with a yellow spot, and borne earlier than the type. The clusters are larger and denser. A great improvement. F.S. 11:1151.

4. brachybotrys, Sieb. & Zucc. SHORT-CLUSTERED WISTARIA. Japanese species, distinguished from all others by its low growth. It is said to attain only 3-5 ft. and should therefore be particularly desirable for standards and bushy specimens. Lfts. 9-13, silky: racemes about 6 in. long, about 25-flld.: fls. purple, 1 in. across; pods tomentose. Late bloomer. Japan. S.Z. 1:45. F.S. 9:880. — Vars. alba and rubra, are offered.

W. alba has been used in trade catalogues for W. speciosa, var. alba. W. Japanica, Sieb. & Zucc. See Millettia.—W. nivea, Hort. John Saul, was doubtless a white-fld. variety of some common species.

WITCH ELM. Ulmus scebra.

WITCH HAZEL. Hamamelis.

WITHANIA. Consult Salpichroa.

2746. Wistoria multiugia, often called Japanese Wistaria. (X 3/4.)

WITLOOF. A form of Chicory (which see).

WOAD. See Isatris.

WOLFBERRY. Synophoricarpus occidentalis.

WOLFSBANE. See Aconitum.

WONGA WONGA VINE. Tecoma australis.
WOOD BETONY. Stachys Betonica.

WOODRUFF. See Asperula.

WOOD LILY. Trillium.

WOODSIA (Joseph Woods, an English botanist). Polypodium. A genus of mainly rock-loving ferns characterized by their inferior indusium, which is attached beneath the sorus, enclosing it at first but soon splitting into star-like lobes, and later hidden beneath the sorus. Some fifteen species are known, of which seven grow wild in this country. The following native species are sometimes cultivated in borders. Treatment given other hardy ferns will suit them well. Both grow best amongst rocks.

Ilévésis, R. Br. Fig. 2747. Lvs. growing in rosettes or tufts, 3-8 in. long, 1 in. or more wide, bipinnatifid; segments crowded, obscurely crenate; sori confluent when old. Eu. and N. Amer. north of Va.

obtusa, Torrey. Lvs. clustered, 6-15 in. long, 2-4 in. wide, minutely glandular-hairy, bipinnate; pinnae rather remote, triangular-ovate. New England to Arizona.

L. M. UNDERWOOD.

WOOD SORREL. Oxalis Acetosella.

WOODWARDIA (Thomas J. Woodward, an English botanist). Polypodium. A genus of rather coarse-leaved ferns of diverse habit and structure, but all bearing the sori in rows arranged parallel to the midrib like links of sausages. Commonly known as the CHAIN FERN. See Fern.

a. Lvs. of two sorts, the veins everywhere forming areolae.

b. Veins forming one or more series of areolae.

cocula, Moore (W. angustifolia, Sm.). Sterile lvs., deltoid-ovate, with numerous oblong-lanceolate sinuate pinnae; sporophylls with narrowly linear pinna 3-4 in. long. Mich. to Fla., mostly near the coast.

O. Lvs. uniform.

WORMS. Under the name of "Worms," "Snails" and "Caterpillars," various odd fruits of leguminous plants are grown as curiosities. The pods are often put in soups as a practical joke, not for their edible qualities. The plants chiefly grown for this purpose are Scorpiurus vermiculata, Linn., S. subtillosa, Linn., S. maricata, Linn., S. labia, Linn., Medicago scutellata, Mill., and Astragalus hookeri. The last is the one usually known as "Worms." The picture, Fig. 2749, shows species of Scorpiurus, chiefly S. vermiculata (beneath) and S. subtillosa (above). All these various plants are annuals of the easiest culture. They are practically unknown in this country, although offered by seedmen. See Caterpillars. L. H. E.

WORMSEED. See Chenopodium.

WORMWOOD. Artemisia Absinthium. Fig. 2750. An erect, hardy herbaceous perennial, native of middle and western Europe and the countries that border the Mediterranean, and sometimes found in waste places as an escape from American gardens, having angular, rather shrubby stems 2-4 ft. tall, which bear abundant, much divided, hoary leaves of intensely and persistently bitter flavor, and pinnules of greenish or yellowish flat heads. The seed, greyish and very small, retains its vitality for about four years, but is usually sown soon after harvesting. The tops and leaves, gathered and dried in July and August when the plant is in flower, are officially credited in America with aromatic, tonic, and,
as its name implies, anthelmintic properties, although now, for no apparent reason other than caprice of practice, they are less popular with the profession than formerly. In domestic medicine they are employed as mentioned and as a diuretic, locally as a poultice or as a decoction with vinegar to ulcers, sprains and bruises. In the dry state they are occasionally placed among clothing as a moth repellant. Formerly Wormwood was used by brewers to condition and preserve liquors, but at the present time it finds its most extensive use as the principal ingredient in absinthe, in the manufacture of which peppermint, angelica, anise, cloves and cinnamon are also ingredients. According to Blythe, the green color of this liquor is due not to Wormwood but to the chlorophyll of spinach, parsley or nettles. The plant may be grown without trouble in light, dry, rather poor garden soil from seed which, owing to its small size, should be started where it may not be washed out or packed down by rain. When large enough to set out the few specimens necessary to furnish a family supply should be placed not closer than 15 in, each way the first year. If alternate plants be removed with a good ball of earth early in the following spring and planted 30 in. apart, they will be sufficiently close together and the transplanted ones should suffer from no check. Ripened cuttings taken in March or October may be used for propagation. Clean cultivation and slight annual dressings of manure are the only other requisites. In the middle western states there are several localities where Wormwood is grown for export. M. G. Kains.

WREATH, PURPLE. See *Petrea volubilis*. St. Peter's W. See *Spinwa.*

WYCH ELM. *Ulmus scebra.*

WYOMING, HORTICULTURE IN. Fig. 2751. The agricultural land in Wyoming is at a higher average altitude than that in any other state, being about 6,000 feet above the sea. As shown in the accompanying map more than one-half the total area is above 6,000 feet altitude. This includes the high mountain ranges, which as a rule are covered with forests that catch and hold the winter snow, the melting of which supplies the numerous perennial streams flowing in every direction from the mountain summits. In the north are cultivated areas at less than 3,500 feet altitude, and farming is practiced on high plateaus or in mountain valleys up to 8,000 feet. Wyoming embraces an area 555 miles from east to west and 270 miles from north to south, in the very heart of the Rocky Mountain region. As would be expected, there is great diversity of soil, climate and exposure. There are wind-swept plains, rolling uplands, protected mountain valleys and bottom-lands along streams, with corresponding lengths of the growing season, free from frost, of from eighty days or less to more than one hundred and fifty days. The mean annual temperature varies from less than 40° F. to about 50° F.

The rainfall is as little as 4 or 6 inches per annum in the Red Desert and reaches a maximum of 30 inches or more on the high mountains. The average for the agricultural regions is about 12 inches. With the exception of a very small area in the northeastern part of the state, and small valleys at high altitudes in the mountains, where some quickly growing plants will mature without being artificially watered, no crops can be raised without irrigation. It has been estimated that there is sufficient water supply to reclaim about 12,000,000 acres of agricultural land, and about 2,000,000 acres are already covered by irrigation canals.

The natural conditions make live-stock husbandry of paramount importance. The soil is cultivated principally to increase the amount of stock food and little intensive farming has been inaugurated. Some ranches extend 10-15 miles along the streams, and some of them have not yet known the use of a plow except in the construction of the ditches to irrigate the native meadows. The state is yet in the transition period between the time of the nomadic stockman, or the large stock ranch and range business, and the time of permanent home-building and a stable agriculture. In the
last decade the sentiment of the people in regard to cultivating the soil has changed in a marked degree. They are turning their attention to a better agriculture and the production of horticultural crops, both for profit and for greater home comfort. The state will not reach great commercial importance through her horticultural products, but the people are beginning to appreciate the value of the home-garden and some are raising hardy apples, cherries, grapes, small fruits and vegetables to supply local markets. At the present rate of increase the production of fruits for home consumption will soon be of great importance.

The agricultural land lies along the watercourses, and naturally the first areas to be brought under cultivation were the bottom-lands along the smaller streams where the canals necessary to bring water to the soil could be easily and cheaply constructed. The bench areas, or uplands, have better drainage both for water and air, and are more likely to be free from injurious late and early frosts, than the lowlands near the streams. With the extension of agriculture to the higher bench lands horticultural plants can be raised with more success. The modifying influence of wind-breaks makes it possible to grow fruits in a way that was not dreamed of when the country was first settled. Many early plantings of fruit trees failed because of drying winds or late frosts, and in some instances because the plants were drowned by over-irrigating the lowlands where first attempts were made.

Because of the varying conditions, the kinds and varieties of fruits which can be successfully produced vary in different parts of the state. The high plateaus are characterized by frost every month in the year except July, and only such crops can be grown as will stand a degree of frost in the spring months. In the warmer valleys, even up to 5,000 feet altitude, such tender vegetables as tomatoes, melons, sweet potatoes and peanuts have been successfully raised. Where the season is short because of the altitude, plants grow very rapidly, reach maturity in a short time and do not seem to be so seriously affected by light frost as they do where the season of growth is long.

In those portions of the state which are below 6,000 feet in altitude (see map) many varieties of apples, Moretto and Rocky Mountain dwarf cherries and plums (varieties from Prunus Americana) are fruiting, and hardier kinds are successful at much higher altitudes in protected locations. The Wealthy apple has been successfully fruited on the Laramie Plains at an altitude of 7,400 feet. Tree fruits have been most successfully raised in Fremont, Sheridan, Natrona and Laramie counties, which also produce all the varieties of small fruits usually grown in this altitude.

Above 7,000 feet the only small fruits that succeed well are currants, strawberries, dewberries and gooseberries, named in the order of their apparent hardiness. Because there is not sufficient snowfall to cover the ground and keep it covered during the winter, it is necessary to give winter protection to raspberries, blackberries and grapes by laying down and covering with earth to prevent their parts above ground drying out and dying in the dormant season. Under unfavorable conditions such treatment becomes necessary with strawberries and gooseberries.

Under irrigation the kinds of fruit suitable to the climate produce large crops. Years of failure are rare, and when they do come are traceable to sudden unseasonable changes of temperature, such as late spring frosts or early fall storms before the plants are mature and ready for winter. The first trees were set out in Wyoming between 1882 and 1885. Planting began in earnest in 1892, and every year there is good increase in the area devoted to fruits.

Following is a list of apples which have fruited in the state, arranged as nearly as possible in the order of their apparent hardiness and present abundance: Standard—Wealthy, Oldenburg, Antonovka, Gideon, Fameuse, Wolf, Tetoisky, Ben Davis, Transparent, Pewaukee, Pippin. Cramo—Siberian, Montreal, Whitney, Martha, Van Wyck, Soulard, Transcendent.

B. C. Buffum.
XANTHOSMA (Greek, dyed yellow, referring to the color of the fls.). *Compáthis*. A genus of only one species, a summer-blooming, yellow-flowered composite with heads 1-1½ in. across, composed of a small disk and about 20 rather slender rays. This plant is known to flower-seed catalogues as *Centaurium Drummondii*. In cultivation the plant is treated like a hardy annual, the seed being sown in the open border early in spring. Generic characters: fls. all fertile; achenes top-shaped, 4-5-ribbed or angled; pappus persistent, composed of 10 or 12 rigid bristles which are minutely sebaceous above, gradually chaffy-dilated towards the base, and longer than the disk-corolla, as many more one-half shorter, and usually 3½ smaller and shorter external ones.

Texanum, DC. (*Centaurium Drummondii*, Torr. & Gray). Fig. 2752. Nearly glabrous biennial or annual, 1-4 ft. high: lvs. narrowly oblong to lanceolate; stem-lvs. entire or with a few teeth toward the apex: fls. attaining a diam. of 2 in. even in the wild.

W. M.

XANTHOCÉRAS (Greek, xanthos, yellow, and keras, horn, alluding to the yellow horn-like processes of the disc). *Sapindaceae*. Ornamental deciduous shrub or small tree with alternate, odd-pinnate lvs., showy white fls. in terminal and axillary racemes, appearing with the leaves in spring on last year's branches. The large greenish fruits are similar to those of the buckeye. X. *sorbifolia*, the only species, is hardly as far north as Mass., and is a very handsome shrub well suited for solitary planting on the lawn. The dark green, glossy foliage is not attacked by insects and retains its bright color even after frost sets in. The flowers are very showy and appear even on small plants. Xanthoceras is also sometimes used for forcing. It is not very particular as to soil. A porous, loamy soil and a sunny position seem to suit it best. Prop. by seeds, stratified and sown in spring, and by root-cuttings, which succeed best with moderate bottom-heat. A monotypic genus from N. China, allied to Ungnadia and Koelreuteria: fls. polygamous, the upper ones of the terminal raceme pistillate, the lower ones staminate, those of the lateral racemes staminate, with rarely a few pistillate ones at the apex; sepals and petals 3; disc with 4 subcentrally horns about half as long as stamens; stamens 8: ovary superior, 3-loculed, with a rather short, thick style: fr. a capsule, with thick walls dehiscent into 3 valves, each locule with several globose, dark brown seeds.

Alfred Rehder.

XANTHÓRRHÉA (Greek, yellow flower, referring to the resin which exudes from the trunks). *Junáccéas*. The "Grass Trees," "Grass Gums" or "Black Boys," which form a conspicuous feature of the Australian landscape, are among those strange members of the rush family that have a decided trunk or caudex. The Grass Trees often have a trunk 2 or 3 feet high, surmounted by a dense, symmetrical crown of foliage, composed of a multitude of brittle, linear leaves 2½ ft. long which spread or curve gracefully in all directions. From the center of this tuft of leaves arises a solitary, sedge-like flower-stalk, terminating in a dense cylindrical spike of numerous, closely packed greenish flowers. These picturesque desert plants are well worth trying in the warmer and more arid regions of the U. S. The trunk varies from almost nothing in some species to 15 ft. in the case of aged specimens of X. *Preissii*. The tall and palm-like trunks are thickly covered with the bases of the old dead leaves, which are cemented together by the black or yellow resinous gum that flows freely from the stems. In Australia the trunks are often charred and discolored by bush fires. The following species have been offered in southern Fla. and southern Calif., but are practically unknown to cultivation in this country. All the species are long-lived perennials native to dry and rocky places. They are said to thrive in a compost of peat moss and to be propagated by offsets. *X. Preissii* seems to be the most desirable species.

Xanthorrhoea is a genus of 11 species of Australian

(1993)
plants of the general appearance described above: perianth persistent, of 6 distinct segments, the 3 outer glume-like, erect, concave or almost hooded, 3- or 5-nerved, the 3 inner much thinner, usually 5-nerved, erect, but more or less protruded beyond the outer segments into a short, hyaline or white, petal-like, spreading lamina. *Flora Australiensis* 7:112.

XANTHORRHIZA

B. Spike 1½-2 ft. long.

Zástula, R.Br. Lvs. 3-4 ft. long, 2-3 lines broad; scape often 6-8 ft. long, not counting the spike. Readily distinguished by the dense, rusty tomentum covering the ends of the bracts and outer perianth-segments.

AA. Trunk becoming 5 or 6, or even 15 ft. long.

Preissii, Endl. Lvs. 2-4 ft. long, 1-2 lines broad, rigid, very brittle when young; scapes 2-6 ft. long; including the spike, which occupies one-half to nearly all its length. B.M. 6933.

W. M.

Zanthorrhiza (Greek, yellow root). Often spelled *Zanthorrhiza*, *Ramuicladex*. A genus of only one species, native in the eastern United States from New York to Florida. Plant shrubby; lvs. pinnate or bipinnate; fls. in drooping racemes or panicles; sepals 5, petal-like, deciduous; petals 5, smaller than the sepals, and 2-lobed; stamens 5-10; carpels 5-10, sessile, forming only one-seeded follicles, one ovule of each usually not maturing.

The plants are cult. mostly for their handsome foliage, which is much like that of *Actaea*, and which changes to a beautiful golden color in the autumn. The plants will grow readily in any good soil but usually prefer damp and shady places, although it often thrives in loose, sandy soil. Propagated both by seed and root division in fall or early spring. Often not hardy in Massachusetts.

spilofila, L'Hérit. **SHRUB YELLOW ROOT.** Fig. 2755. Stems of bright yellow wood, 1-20 ft. high; roots yel-

2753. *Zanthoxylum sorotilia* (X ¾). (See p. 1993.)

A. Trunk very short.

B. Spike 2-5 in. long.

minor, R.Br. Lvs. 1-2 ft. long, 1-2 lines wide; scape longer than the lvs.; spike less than 1½ in. wide. B.M. 6297.—Belongs to the group in which the inner perianth-segments have a white blade conspicuously spreading above the outer ones, while in the next two species the inner segments have a short whitish tip, little longer than the outer and scarcely spreading.

2754. Fruit of *Zanthoxylum sorotilia* (X ¾).
XANTHOSOMA (Greek, yellow body, referring to the stigma.) Araceae. This genus is interesting to the horticulturist as containing the handsome variegated stove foliage plant known to the trade as Phyllotricum Lindeni, and part of the vegetables known as "Malanga," a crop to which two per cent of the arable land in Porto Rico is devoted. Many species of the arum family are noted for their huge tubers, some of which are edible "after the acid and more or less poisonous properties are dispersed by the expression of the juice, or by its dissipation through heat" (B. M. 4989). Of this class the best known is the Elephant's Ear, or Colocasia esculenta. The Malanga is said to be "little, if at all, inferior to Caladium esculentum; in whiteness and delicacy far superior to spinach; and in this respect it may vie with any European vegetable whatever."—Bot. Mag. The "Yantia Malanga" of Porto Rico is, according to Cook, Colocasia antiquorum, var. esculenta. Other Yantas are species of Xanthosoma. The botany of them is confused. Xanthosoma is a genus of 25 species, according to Engler, who has given an account of them in Latin in DC. on Planer, vol. 2 (1879). They are milky herbs of South and Central America with a tuberous or tall and thick rhizome; lvs. arrow-shaped, 3-cleft or pedately cut; fls. unisexual, naked: males with 4-6 stamens connate in an inversely pyramidal synandrium with 5 or 6 faces: every 2-4-budded; ovules anatropous.

a. Caudex a short, thick, erect rhizome, sagittifolium, Schott (Arum sagittifo-
lium, Linn.). MALANGA. A tropical vegetable. "Young plants of this are stemless, but in age, from the decay of the old lvs., an annulated caudex is formed some inches in height, each throwing out stout fibers from the base, and from time to time producing offsets, by which the plant is easily propagated, or if suffered to remain the

sagittate-ovate, suddenly and shortly acute at apex, basal lobes obtuse: spathe large, with a creamy white limb. Tropical Amer. B. M. 4989. In northern hot-houses said to bloom in winter.

XANTHODYLXUM (Greek, xanthos, yellow, and xylon, wood). Sometimes spelled Zanthoxylum. Including Fagara. Rutaceae. "Quaker Ash." "Tooth
Ache Tree." Ornamental deciduous or evergreen trees and shrubs, mostly prickly, with alternate odd-pinnate or sometimes simple leaves and small greenish or whitish flowers in axillary clusters or terminal panicles followed by small capsular, often ornamental fruits. X. Americanae is the only species which is hardly north, but some of the species from E. Asia will probably prove fairly hardy in the middle Atlantic states. As ornamental shrubs they are valued chiefly for their fruits, but some have handsome foliage also, and X. ailanthoides is called by Sargent one of the most beautiful trees of Japan. They seem to be not

775. Xanthosoma Lindeni. Leaves a foot or so long.

AA. Caudex tuberosus.

Lindeni, Engl. (Phyllotricum Lindeni, André). Fig. 2756. Tender variegated foliage plant with large, arrow-shaped lvs. marked with white along the midrib and parallel veins which run therefrom to the margin. I.H. 19:38. A.G. 19:573 (1898).—Tuberos plant from Colombia. G. W. Oliver, in his "Plant Culture," remarks that this stove ornamental plant should be more used for decorative purposes than it is at present, for it will stand more rough usage than one would suppose. After a goodly number of leaves have been developed in a warm, moist atmosphere, the plants will maintain a good appearance in a greenhouse temperature and may even be used as house plants. The lvs. are firmer in texture than caladiums. Prop. by division. Before re-potting, put the pieces in a warm sand-bed to encourage fresh roots. Lvs. oblong-hastate, with acute basal lobes.

X. helophillum, Kunth, has a short, thick, erect rhizome and a cordate-hastate leaf. Venezuela. Var. Caracasana, C. Koeh (X. Caracasana, Schott. Colocasia Caracasana, Eng.). has lvs. pale green beneath, the posterior lobes more produced at the apex and the midrib and nerves often rosy. Caracas. X. Mahaffii, Schott (Colocasia Mahaffi Hort.), closely allied to the preceding, has a similar caudex and a cordate-ovate leaf but the posterior costae are separated by a right or acute angle, the angle in the preceding species being obtuse. W. M.

2755. Xanthorrhiza apifolia (X 3/4).
very particular as to soil and position. Prop. by seeds
and by suckers or root-cuttings.

The genus contains about 140 species in the tropical and
subtropical regions for both hemispheres, and a few
in temperate regions. Trees and shrubs, with mostly
prickly branches: most parts, particularly the fruits, emit
a strong aromatic odor when bruised; lvs. odd-pinnate, 3-
foliolate or rarely simple; fls. directed or polygnous,
small, in cymes or panicles; sepals, petals and stamens 3-
5, sepals often wanting; pistils 3-5; fr. composed of 1-5
separate small dehiscent capsules each with 1-2 shining
black seeds. Several species are used medicinally. The
wood of some W. Indian species and that of the Australi-
an X. brachyacanthum is considered valuable. The
fruits of X. piperitum are used like pepper in Japan.

Xanthoxylum, Mill. (X. flavum, Willd. X. racemiflorum, Michx.). Prickly Ash. Fig. 2757. Shrub or small tree,
attaining 25 ft., with prickly branches: lfts. 5-11, opposite,
almost sessile, ovate, entire or crenate, dark green
above, lighter and pubescent beneath, 13/4-2 in. long; fls.

Piper, DC. Chinese or Japanese Pepper. Bushy shrub, rarely small tree: branches with slender
prickles: lfts. 11-13, narrow-elliptic to elliptic-lanceo-
late, serrulate, glabrous, dark green and lustrous above,
paler beneath, 3/4-1 1/2 in. long; fls. in terminal, rather

X. altanthoides, Sieb. & Zucc. Tree, attaining 60 ft.
branches with numerous short prickles: lvs. 1-4 ft. long; lfts.
oblanceolate, glabrous, glabrous beneath, 3-6 in. long; fls. and
fr. in terminal corymbs, Japan. Handsome tree—X. Bangert-
ium, Maxim. Shrub, with stout, compressed prickles; lvs.
prickly; lfts. 7-11, ovate to ovate-lanceolate, glabrous, 3/4-1 1/2
in. long; fls. and fr. in terminal corymbs, N. China—X. Omea-
Hirsutum, Linn. (X. Carolinianum, Lind.). Toothache-tree.

Piper wood. Small tree, attaining 30 or occasionally 50 ft.
lfts. 7-17, ovate-lanceolate, pubescent beneath when young,
1-2 1/2 in. long; fls. and fr. in terminal panicles, April, May.
S. Va. to Fla. and Tex. 8, 8. 1, 13—X. planipinnatum, Sieb. & Zucc. Shrub, with stout, compressed spines; lfts. 3-5, elliptic
to elliptic-lanceolate, serrulate, glabrous, 1-2 in. long; fls. and
fr. in small panicles on short lateral branches, Japan—X.
Schindhelmii, Sieb. & Zucc. Shrub, with sparsely prickly
branches: lfts. 13-19, elliptic-lanceolate, crenate, emarginate
at the apex, 5/8-1 1/2 in. long; fls. and fr. in large, terminal
corymbs, Japan.

Alfred Rehder.

Xeranthemum. The immediate influence of pollen—the
influence on the fruit that results directly from a given
pollination.

XERANTHEMUM (Greek, dry flower: it is one of the
"everlastings"). Compositae. There are four or five
species of Xeranthemum, of which X. annuum is one of
the oldest and best known of the "everlastings" or
immortelles. They are inhabitants of the Mediterranean
region. They are annual erect herbs, densely pubescent
or tomentose. The heads are rayless, but the large in-
volucral scales are petal-like and persistent, giving the
plant its value as a subject for dry bouquets. Outer flow-
ers few and sterile, inner ones fertile; receptacle ehatly
involutcd in many series, of various lengths, glabrous;
heads solitary on long naked peduncles.

The culture of Xeranthemum is very simple. Seeds
are usually sown in the open, where the plants are
not to stand; but they may be started indoors and the
seedlings transplanted. Hardy or half-hardy annuals.

X. annuum, Linn. Fig. 2758. Annual, 2-3 ft. tall, erect,
white-tomentose: lvs. alternate, oblong-lanceolate,
acute, entire; heads purple, 1-1 1/2 in. across, the larger
scales wide-spreading and ray-like. S. Europe.—Runs
into many varieties. Var. ligulatum, Voss (X. plen-
atum and X. imperiatus Hort.). A double or half-

double form. Var. perljudum, Voss (X. superbius-
num Hort. has very full double heads. In these and
the single types there are white-ld. (var. albium), rose-
ld. (var. roseum) and purple-ld. (var. purpureum) var-
ieties. There are also violet-ld. forms. Var. multlflo-
rum, Hort. (var. compactum) has a more compact and
XERANTHEMUM

A. Raceme 3-6 in. long or more; perianth-segments exceeding the stamens: lvs. one line or less wide.

XEROPHYLLUM

1997

- **Xerophyllum** (Greek, dry leaf). Liliaceae. Turkey's Beard. The Turkey's Beard of our eastern states is a strong perennial herb, 3 or 4 ft. high, resembling the asphodel. It has a dense tuft of numerous long, wiry leaves from the center of which springs a stately shaft sometimes 5 ft. high, with an oval or oblong raceme 6 in. long, crowded with yellowish white 6-petalled fls., each 1/4 in. across. It blooms from May to July, its, with delicate fragrance lasting a long time. It is a handsome plant than the asphodel, but, like many other native plants, its beauty was first appreciated in England and it has only lately found favor in American gardens. X. setifolium or asphodeloides as it is known to the trade, is considered one of the choicest plants for English bog gardens. The possession of several large clumps is especially to be desired, as each plant flowers so freely that it requires a year or two to recover. Unfortunately the plant does not seed freely and propagation by division is a slow process which must be performed with great care in the spring. It needs a moist and somewhat shaded situation and a peaty soil. The probability is that the Turkey's Beard can be grown in any sandy soil that has been liberally enriched with well-rotted leaf-mold in a spot that is reasonably dry in winter. The species is a native of the dry pine barrens from southern N. J. to eastern Tenn. and Ga.

- The chief species of the Pacific coast, X. tenax, has white and violet flowers, the latter color supplied by the stamens. Each region should cultivate its own species. The forms are too much alike for the same garden. A third species, S. Douglasii, is a rare plant ranging from Montana to Oregon. It is distinguished by its 6-valved capsule, and is said to be inferior as a garden plant to the other species.

Xerophyllums are tall perennial herbs with short thick, woody rootstocks, unbranched leafy stems and linear, rough-edged leaves, the upper ones shorter than the lower: fls. small, white, in a large, dense raceme, the lower fls. opening first; perianth-segments oblong or ovate, 5-7-nerved, devoid of glands; stamens 6; ovary 3-grooved; styles 3, reflexed or recurved; capsule loculicidally and sometimes also septicidally dehiscent. Watson in Proc. Am. Acad. Arts. Sci. 14:284.

2759. Xerophyllum setifolium growing near the margin of a pond.
XIMÉNIA (Francis Ximenes, Spanish monk, wrote on plants of Mexico in 1015). Olacdcecc. Here belongs the Hog Plum, a tropical fruit of minor importance which grows wild throughout the tropics, and in the U. S. is native to Florida south of Tampa Bay. The fruit is about an inch long, shaped like a plum, and the pulp is sweet and aromatic. The "stone" which incloses the seed is proportionately very large. The fruit is borne on a small tree, each branch of which ends in a thorn about 1/2 in. long. The fruits are generally eaten, but although it is fairly common in Fla. it is not cultivated. The species has been suggested by the American Pomological Society as worthy of cultivation with a view to improvement.

Ximenia is a genus of 8 species of tropical shrubs or trees, often thorny: lvs. alternate, entire, often clustered; fls. whitish, in short axillary cymes or rarely solitary; calyx small, 4-toothed; petals 4, united at the base, villous within; stamens 8; ovary 4-loculed; locules 3-4-ovuled; drupe baccate, not inclosed in the calyx.

Americanæ, Linn. Hog Plum. Also called Mountain or Seaside Plum and False Sandalwood; "Wild Olive" in Jamaica. Tropical fruit-bearing tree described above. Lvs. 2-3 together, oblong, obtuse, short-petioled; peduncles 2-4-fld., shorter than the lvs.; fls. small, yellow; petals thick, lanceolate, rusty-hairy within; fr. yellow; nut white, globose. Tropics.--The "Hog Plum" of Jamaica is Spondias lutea.

XYLOSMA longifolium has been offered in southern Florida, but no plants have been sold and the stock has lately been destroyed, as there seems to be no reason for cultivating the plant. It is a bush from the Himalayas and belongs to the family Bixaceæ. See Flora of British India.

2760. Yucca arborescens, the tree Yucca, or "Yucca palm," of the Mojave region.
YAM. See Dioscorea and Sweet Potato. Circular 21, Div. of Bot., U. S. Dept. Agric., has valuable cultural notes on the introduction of West Indian Yams (Dioscoreas) to subtropical agriculture in the U. S.

YARROW. Consult Achillea.

YATE. See Eucalyptus occidentals.

YELLOW ROOT SHRUB. Xanthorrhiza.

YELLOW-WOOD. Cheddaria tinctoria.

YERBA BUENA. Micromeria douglasii.

YEW. See Taxus.

YOUTH-AND-OLD-AGE. Zinnia.

YUCCA (Indian "name for the Manihot, erroneously applied by Gerarde). Liliaceae. About a dozen species, chiefly of the arid North American table-land and confined to the United States, Mexico and adjacent islands. Evergreens with long, narrow, usually spiny-pointed leaves and panicles of large white nocturnal flowers frequently shaded with green or purple.

Y. filamentosa, flaccida, baccata, gloriosa in some of its forms, and glauca are hardy in the northern states, and Y. Treculeana shows considerable resistance to frost. The tender species are kept in the cactus house. Well-drained sandy loam suits them best, but with good drainage they are tolerant of a large range of soil and exposure. Prop. by seeds, offsets, stem-cuttings, and the rhizomes that several species produce, which may be cut into short lengths and rooted in the cutting bench. Y. Treculeana blooms usually in March in plant houses, as when wild, and the Mexican species when brought to flower are usually spring bloomers, but they often refuse to flower for long periods and then suddenly and unexpectedly produce an abundance of simultaneous bloom, even on the smaller plants. Of the hardy species, Y. glauca flowers in June and it is quickly followed by Y. filamentosa and Y. flaccida, while the forms of Y. gloriosa, which usually flower only at intervals of several years, bloom from late August to so late in the autumn as to be cut down by frost.

2761. Yucca whipplei.

The great Yuccas, or "Yucca Palms," of southern California (Fig. 2700) are chiefly Y. brevifolia. They grow in the higher lands bordering the Mojave and adjacent deserts, reaching a height of 15-20 ft. The old plants are exceedingly weird and picturesque. Occasionally this species is transferred to gardens, but it is apparently not in the trade.

INDEX.

A. Fr. erect, capsular; seeds thin and flat
B. Stigma capitate, on a slender style 1. Whipplei
BB. Stigma 2- or 6-labeled, terminating a stout style 2.

AA. Fr. pendent, not dehiscent.

B. Seeds thin; fr. welt thin and soon dry; lvs. usually ev-
tive 5. gloriosa
BB. Seeds thick; fr. pulpy, sweet and edible.

C. The fr. without a core, pur-
tle-fleshed; lvs. rough-
margined: 6. alofolia
CC. The fr. with poppy core and yellowish flesh.

D. Lvs. rough-margined 7. Guatemalensis
DD. Lvs. with dehiscing mar-
ginal fibers when adult 8. Treculeana 9. baccata

1. Whipplei, Torrey (Y. graminifolia, Wood. Y. Cali-
fornica and Y. Ortelianus, Hort.). Figs. 2761, 2763. Acaulescent: lvs. ¾ in. wide, stiff, flat, striate, glau-

2. Filamentosa, Linn. Figs. 2762, 2764-5; 1052. Some-
times called Adam's Needle, Bear Grass, Silk Grass, or Thready Yucca. Acrocline: lvs. 1 h. wide, rather weak, somewhat concave, glaucous when young; short and stout, pointed from the base, with curious marginal fibers; panicle loose, long-stalked: fls. creamy white; style white. Southeastern U. S. B.M. 800. A yellow or white-margined form is var. variegata. Carr. B.B. 1:427. Var. concava, Engelm. (Y. concava, Haw.). Lvs. broadly spatulate, plicate, concave. N. C.

rated for the preceding, and comprising several forms. Vars. exigua and integrar have the leaf-margin brown, without dehiscing fibers.

4. Glauca, Nutt. (Y. augustifolia, Pursh. Y. Hain-
burgy, Baker). Fig. 2765. Lvs. less than ½ in. wide, thin but stiff, flat, acutely and pungently pointed, with white margin from which slender fibers dehiscing themselves, whitish green: panicle with 1 or 2 short branches within the cluster of leaves, or usually reduced to a ra-

5. Gloriosa, Linn. Nearly stemless or with slender trunk, 10-15 ft. high: lvs. 1-2 in. wide, thin but not re-
curved, somewhat concave, glaucous when young, pungently pointed, brown-margined: panicle with ascend-
ing branches, short-peduncled: fls. often with a reddish or brownish shading. Carolina coast region. —A form
with median whitish stripe on the lvs. is var. médiosta. Planch. Among the numerous varieties and forms into which this, the first-cultivated Yucca, has spread, the following are most worthy: Var. plicata, Carr. Lvs. very glaucous, strongly plicate. G.C. III. 15:304. Rep. Mo. Bot. Gard. 3, pl. 6. Var. recurviflóra, Engelm. (Y. recurvifólia, Salisb. Y. recurvif., Haw. Y. prédaufs, Hort.). Fig. 2767. Lvs. less plicate, soon green, gracefully recurved. occasionally with a few detaching marginal threads. Carolina coast region. Ga. 4, p. 337. R.H. 1858, p. 433; 1859, p. 488. Variegated forms of this are the following: Var. margináta, Carr. Lvs. yellow-margined; var. variegáta, Carr. Lvs. with yellow median band; and var. elegans, Hort. Lvs. with reddish median band. Var. nobilis, Carr. (F. Ellítrandbei, Bak.). Lvs. glaucous, not plicate, less recurved. Var. réxilis, Trel. (Y. réxilis, Carr.). Lvs. long, narrow, less than an inch wide, scarcely plicate, glossy green, gracefully recurved, occasionally a little rough on the margin. —Hybrids of Y. gloriosa with both capular and fleshy-fruited species have been artificially produced in Europe, and are in some European gardens under the names Y. Deleitíi, Y. saléci, Y. Curverie, Y. Andréan, Y. dracnóides, Y. striá, Y. Massilienses, Y. silvér-ter, Y. Iexitá and Y. jajaca, R.H. 1886, p. 63; 1885, p. 81. For descriptions see R.H. 1886, p. 169. Other hybrids not yet in the trade have more lately been produced by Sprenger, of Naples.

6. allofólia, Linn. Slender simple trunk 10-15 ft. high: lvs. dagger-shaped, 1-2 in. wide, flat, very stiff and pungent, not plicate: panicle compact, close to the lvs.: fls. white, often tinged with green or purple; ovary distinctly stalked. Southeastern U. S. and West Indies. B.M. 1700. —Variegated forms are: Var. margináta, Bommer. Lvs. with yellow margin, and often when young also tinged with rose. Var. quadricolor, Hort. Lvs. with median yellow band, and also when young with rosy coloration. Var. Draconis, Engelm. (Y. Draconis, Linn.). Branching above, Lvs. broad and arching, less pungent. B.R. 22:1891. Var. conspicua, Engelm. (Y. conspicua, Haw.). Tall, the stems clustered at base: lvs. broad, recurved, softly green-pointed.

9. bacáta, Torr. SPANISH RAYONET. Low, from a stout running caudex: lvs. of a yellower green, with very thick marginal threads: panicle rather loose within the leaf clusters: fls. and fruit very large. S. Colo. to Ariz. B.R. 1:426. WM. THELEASE.
ZALUZJANSKAYA (after a Pole, who wrote Methodus Hortatoria, Prague, 1592). Including Nycteria, Serpula, &c. About 16 species of S. African herbs and subshrubs, including three plants known as Night Bal-
sams or Star Balsams, from their night blooming habit.

The name Night-blooming Phlox would be better, as the
flowers are salver-shaped and 5-lobed, each lobe being
deeper cut. These plants are generally treated as half-
hardy annuals, the seeds being sown indoors in early
spring. The plants bloom in about ten weeks after
being set out and continue in flower through July and August.

Some cultivators declare that this method is very un-
satisfactory and urge that the seed be sown in the au-
tumn and the young plants wintered in a coldframe.

They will then begin to flower by June. The blossoms are
closed by day and are fragrant by night.

Zaluzianskayas are more or less viscos plants; lowest
2vs. opposite, upper ones alternate, usually few-toothed;
fls. sessile but long-tubed, disposed in leafy spikes
which are usually greenish, rarely 5-toothed, or 5-
1ipped or 2-parted; corolla persistent, the 5 lobes entire
or 2-fl., equal or the 2 posterior ones a little wider;
stamens usually 4; style club-shaped; capsule oblong,
beakery or membranous. The Zaluzianskayas are little
known in American gardens. The botanical status of
the group is in need of revision.

A promise was made to give some account under
Zaluzianskaya of the puzzling trade names Erinus,
gracilis, Pileioniana, and speciosa. It is probable that
these are all varieties of Erinus alpinus. In the
American trade they are considered as trailing plants
suitable for hanging baskets, vases and window boxes,
uses to which Erinus alpinus is eminently adapted.
E. speciosa is said to have ultramarine blue fls.; E.
gracilis, light blue fls. and a spreading habit; E. Pile-
ioniana, pure white fls., blue-edged; E. duplicis, double
blue fls. Erinus gracilis of the botanists is a true
Zaluzianskaya, being a synonym of Z. typhoides, a plant
of erect habit with white fls., that are violet outside.

Although Erinus and Zaluzianskaya are placed in dif-
ferent tribes of the twig family, it is difficult to sepa-
rate them by any one important botanical character un-
less it is the shape of the stamens, which is oblong in
Zaluzianskaya, reformed in Erinus. The horticulturist,
however, may readily distinguish them by the lowest
leaves, those of the former being opposite, those of the
548, should be added the fact that the genus has only
one species. The other names which appear to be good
species of Erinus in Index Kewensis are probably
be referred to other genera, as they are mostly South
African plants,—Europe and the Cape having few
genera in common.

All the species mentioned below have their corolla-
lobes bifid.

A. Corolla-tube slightly pubescent.

b. Duration perennial: bracte broadly lanceolate:
2vs. oblong-linear.

l'Hendéa, Walp. (Nycteria l'Hendéa, D. Don.
Erinus glabrescens, Linn., not Hort.). Subshrub, 2 ft.
high, 3½ in. across, white, violet
outside. B.M. 2504. B.R. 9:748 (both as Erinus l'Hendéa).

b. Duration annual: bracte oblong-lanceolate: 2vs.
linear or the lower ones lanceolate.

Capenas, Walp. (Nycteria Capéñas, Benth.).
Differs from the above, according to Bentham, in stature,
duration, strict stems and smaller 2vs., but, unfortunately
Bentham does not give the height of the plant or
color of the fls. According to R.H. 1831:221, the plant
has white or lilac flower-clusters on the same plant,
each flower having an orange eye. The spikes, accord-
ing to Bentham, are commonly short and 4-8-fl., some-
times long and 15-20-fl. There is some evidence that
this species and the next are confused in the trade. In
R.H. 1831:221 the fls. are ½-1 in. long, and less than
½ in. across.

2768. ZAMIA (name used by Pliny, meaning loss or dam-
age, and first applied to barren pine cones, and trans-
ferred to those plants apparently because of the become
like fruitication). Cycadóideae. One of the nine genera
of the Cycas family, as constituted by Alphonse De
Candolle (Prod. 16, p. 2, pp. 322-547). Other genera
of horticultural interest and discussed in this Cyclo-
peia are Ceratozamia, Cyas, Dioon, Encephalartos and
Macrozamia. The Zamas are stocky short- and usu-
ally simple-stemmed cycads-like plants, the trunk some-
times subterranean, with long plinate evergreen leaves
or fronts, the leaflets being thickened and usually
broadened near the base, and joined. There are about
30 species in the American tropics, and two are native
in Florida. The flowers of cycads are dioecious, with
separate flowers; the pistillate flowers are mere naked ovules
inserted under scales in cones, and the staminate flowers
are simple and not under similar scales. The plants
are therefore gynoic (seeds naked or not enclosed in
a pericarp or ripened ovary) and are allied to the
conifers. The fruit is a berry-like drupe. In Zama the
floral scales are peltate (and not horned) and form a
cylindrical cone; the anthers are numerous, and the
ovules pendulous in pairs. Leaves nearly straight
in ovation. The foundation of Zama has been studied
by H. J. Webber (Bull. 2, Bureau of Plant Ind. U. S.
Dept. Agr.). His conclusions respecting the Floridian
species are accepted here.

Zamia. The zamia are house plants, to be treated like
pecies of Cyas or Encephalartos, which see. The plants
are propagated by means of seeds and offsets; also
by division when there is more than one crown.

(W. M.)
A. Petiole prickly.

ZAMIA

furfuracea, Ait. Trunk cylindrical, 1-2 ft. tall; petioles dilated and concave at the base, with several small prickles; lfts. about 10-12 pairs, opposite or alternate, oblanceolate, entire or on the lower half but serrate or jagged towards the top, acute or obtuse, scarcely marked (as also the rachis): cone ovate-cylindric, downy, pedunculate, pale yellowish brown, the ptiliata cone 4 in. or less long. Mexico. B.M. 1869.

Lindeni, Regel. Trunk cylindrical, 2-4 ft. or more tall when well grown; petioles long, cylindrical, sparsely provided with tawny wool, the prickles short conical and spreading: lfts. of 3 or more pairs, glabrous or somewhat puberulous, nearly or quite opposite, sessile, long-lanceolate and acuminate, dentate—serrate towards the base, Lvs. on the top. Ecuador. 1:95. Florida.

AA. Petiole not prickly.

b. Species growing beyond the limits of the U. S

integriolia, Ait. Trunk 12-18 in. tall, erect, globose or oblong: lfts. glabrous; lfts. alternate, 7-16 pairs, oblong to linear-lanceolate to lanceolate, mostly obtuse, entire or somewhat dentate towards the apex: cones oblong and obtuse, short-peduncled. West Indies. B.M. 1851. — The Florida plants, usually referred here, are apparently all Z. floridana and Z. pumila.

Mexicana, Miq. Distinguished by De Candolle as follows: scales of the leaf-bases tomentose and also the petioles at the base, the petioles 3-cornered, unarrowed, glabrous, somewhat warty: lfts. of 9 or more pairs, sub-opposite, narrow-lanceolate, straight or slightly curved, acute or acutish, rigidly coriaceous, dark green, many-nerved, spinulose—serrulate from the middle to the apex, Mex. — By Index Kewensis referred to Z. Loddigesii, a species with prickly petioles.

Psuedo-parasitica, Yates (Z. Roselli, Regel). Distinguished as follows by De Candolle: trunk cylindrical; lfts. lanceolate, simose—falcate, entire, glabrous, acute at the base, cuspidate at the apex, with 18 strong nerves which are twice bifurcate. Panama. — Grows on tree trunks.

angustifolia, Jacq. Foliage glabrous when mature: lfts. 5 in. long, 4-20 pairs, usually alternate, elongated and narrowly linear, the apex obtuse and very obscurely serrulate or entire, the base not narrowed, 6-8-nerved: ptiliata cone oblong but cuspidate. Bahaman, Cuba.

BB. Species native to Florida.

Floridanus, DC. Coontie. Comptes Figs. 2768-71. Lvs. ovate or ovate-lanceolate; petiole triangular in outline, sericeo-tomentose at base, with scattered hairs above; lfts. mostly opposite, 14-20 pairs, glabrous above and with scattered hairs beneath, linear, falcate and somewhat twisted, narrow at the base and obtuse at the apex, the margin revolute and with a few obscure teeth; mature ptiliata cone oblong, 5-6 in. (12-16½ cm.) long, markedly umbonate (projection on the scales), densely tomentose. — Very abundant in southern Florida on the east coast below lat. 26° 30', in open comparatively dry pine woods.

pumila, Linn. Differs, according to Webber, in having shorter and broader leaflets which are less twisted and not so erect and rigid, and in its shorter and non-umbonate cones with seed-bearing scales thinner and more flattened at outer end. — Abundant in central Florida, ranging from 28° 30' north for one degree of latitude, in dense moist woods.

ZANNICHIELLA palustris, Linn. (Natalilirus), or Horned Pondweed, is offered by collectors of native plants, but has little horticultural value. It is a hardy aquatic plant (probably annual) widely distributed in the New and Old Worlds. It has thread-like submerged lvs. 1-3 in. long and flowers and fruits under water. It is found in fresh or brackish water. B.B. 1286.

ZANTE CURRENT. See Reissin, page 1496.

ZANTHORRHIZA. See Zanthorhiza.

ZANTHOXYLUM See Zanthoxyllum.

ZAUSCHNERIA (named for a professor of natural history at Prague). Oxyacanthus. The California Fuchsia, or Hummingbird's Trumpet, is a half-hardy perennial plant ½-2 ft. high, with drooping, trumpet-shaped vermilion ffs. 1½ in. across and under 1 in. wide at the mouth. It is the calyx which forms the showy trumpet, and its 4 acute lobes are rather larger than the 4 petals, which are oblong and inserted at the throat of the calyx-tube. The length of the calyx distinguishes this genus from Epilobium, to which Zauschneria is closely allied by reason of its 4 petals, 8 stamens, Falcate ovary and comose seeds. The genus has only one species, but this varies greatly in the width of its, and hairiness. Varieties have been made based upon linear, lanceolate or ovate lvs., but they run into one another. The plants also vary from glabrous and pubescent to tomentose. As a bedding plant it has been occasionally used for novelty effects by European gardeners. To overcome its thin and leggy habit, it is well to set the plants rather closely and pinch out the young shoots until compact bushes are secured. The plant is sometimes grown in pots for greenhouse decoration in late autumn. There are said to be forms that vary considerably in hardness. The plant is hardly in most parts of England with slight winter covering. In favored spots it is considered to be a choice plant of pendent habit for the steep sides of rockeries and for naturalizing on old walls. In light and dry soils it spreads underground like the epilobiums. It is prop. by division, by cuttings made in autumn and wintered in a coldframe, or

by seeds sown in early spring in mild heat. In California the plant is considered objectionable on account of the unkept appearance produced by the woolly seeds. It is remarkably resistant to drought.

California. Presi. CALIFORNIA FUCHSIA. Hummingbird's Trumpet. Half-hardy perennial with the flower of a Fuchsia and the fruit of an Epilobium: height
ZAUSCHNERIA

W. M.

ZE A (an old Greek name for some common cereal, probably spelt). Euchlena. As now limited the genus is founded upon the single polymorphic cultivated species Zea Mays, Maize or Indian Corn (Figs. 2772, 2773), whose origin is unknown but is suspected by some to be Teosinte (Euchlena laurians).

Most of the evidence points to Mexico as the region in which it originated and from which it spread. Under the head of Corn are given the botanical characters of the genus, a classification of subspecies of Zea Mays, and a discussion of Sweet Corn and Pop Corn. A picture of a staminate flower is given in connection with the article Grass (Fig. 981, p. 663). Hackel ('The True Grasses') explains the fructification of Maize as follows: "The pistillate spikes (originally by monstrous or teratological development) are grown together into a spongy, continuous, club-shaped body (the cob) upon which the 4-11 double rows of sessile upon a low longitudinal elevation that is limited by a long, shallow furrow on each side) correspond to a single spike of Euchlena. Grain developed at the expense of the other parts, projecting beyond the thin bracts, which rarely become coriaceous and incline P. Figg. 2772, 2773. The staminate flowers are in the "tassel." Dent or Field Corn (Z. indentata, of Sturtevant). The bulk of the Corn raised for home use and for export belongs to this subspecies. It is characterized by the presence of horny or corneous endosperm along the sides of the grain, while the starchy endosperm extends to the summit. In drying, the floury portion shrinks more than the horny, and this gives rise to the dent at the summit. Both the horny and the floury portion of the endosperm consist of starch, but the former is more compact. The varieties vary greatly in size of plants and appearance of the ear, but in general the plant and the ear are both larger than the Sweet or Flint Corns. The color of the kernels varies, the chief color varieties being white, yellow, and calico, the latter mottled with red; red varieties are less common, but red ears occasionally occur in all varieties.

Flint Corn (Z. indentata, Sturt.). Kernel with aky endosperm enveloping a starchy or floury portion, this being hard and starchy and with no dent at apex. Ears in most varieties smaller and rows fewer (often 8) than in the Dent Corn. Color of kernel white, yellow, red, blue, and variegated. Commonly cultivated through the northern portions of our country and in Canada, where the seasons are too short for Flint Corn. Has been grown as far north as 50°.

Soft Corn (Z. unguiculata, Sturt.). Kernels without horny or corneous endosperm, hence shrinking uniformly. Seems to have been commonly grown by the Indians in many localities of both North and South America. At present it is cultivated to only a limited extent in the United States. Brazilian Flour Corn sold by seedsmen is a type of Soft Corn.

Pod Corn (Z. turcica, Sturt.) is sometimes grown as a curiosity. Each kernel is enclosed in a small husk and the whole ear again enclosed in the usual husk.

A form of Flint Corn with variegated leaves goes under the name of Z. japonica, Japanese striped Corn. Z. quadrivola and Z. gracillima are seedsmen's names for other similar forms, the former being variegated and the latter dwarf.

For cultural account, see Corn. A. S. Hitchcock.

2772. Indian Corn—Zea Mays.

The husks are a kind of involucre. Each kernel represents a flower. The "silks" are styles.

The origin of Maize is still a mystery. All evidence points to an American nativity, but the original form of the species is not identified. Many persons believe that the wild original will yet be found somewhere from Mexico south. Others suppose that Maize originated
from the Teosinte (Enchilona Mexicana), a fodder grass that is much grown in Mexico. See Teosinte. This latter view has arisen from experiments in crossing Teosinte and Maize, whereby a maize-like plant has been produced, thus showing the very close affinity of the two species. Plants of this hybrid were thought by the late Sereno Watson and others to constitute a new species of Zea, and Watson named it Z. canina. This plant quickly reverts to ordinary Corn when grown in the North (see Harrisberger, G. F. 19:322; Contr. Bot. Lab. Univ. Penn. 22:271. Also Bailey, Bull. 49, Cornell Exp. Sta.). Figs. 2774, 2775. Zea Mexia, therefore, may be (1) a true species, of which the wild prototype is unknown; (2) a direct offshoot by domestication of Enchilona Mexicana; (3) a product of crossing between Enchilona Mexicana and some unknown related species; (4) a product of crossing between Enchilona Mexicana and a domesticated race of the same species. Our knowledge is yet insufficient to enable us to offer much more than conjecture on these categories.

Maize is remarkably variable, although most of the variations intergrade in different regions and under different conditions. The most extended American study of variation and varieties in Maize has been made by the late Dr. E. Lewis Sturtevant. The summary of his study of varieties is published as Bull. 57, Office of Experiment Stations, U. S. Dept. of Agric. ("Varieties of Corn," 1899). Sturtevant throws the varieties of Maize into seven "species groups" or "agricultural species." The distinguishing characters of these groups are founded on the kernels. Aside from these there is at least one well-marked race of ornamental maize, Zea diplopera, which for horticultural purposes may well be separated from the others. In the following classification, the characters of the races, except of the ornamental sorts, are copied from Sturtevant. It is probable that a strict in-

2775. Ear of Zea canina, third year from the wild. Cob flattened (X%).

2774. Zea canina, showing the long branches, with ears at the joints.

Zea Mays, Linn., Maize. INDIAN CORN. A composite species, of which no single form can be taken as the type. Linnaeus meant the name to cover the whole range of forms then grown in European gardens. Tender annuals. If an original specific form of Maize were to be discovered, this form would no doubt be taken as the type, and all other forms ranged as varieties of it.

a. Maize grown for ornament.

Var. gracilis, Koen. (Z. gracilis and Z. minima, Hort.). Very dwarf, slender form with greenish, sometimes cuit. In Eu. A variety variegata is also mentioned.

Var. Curtagena, Hort. (Z. Curtagena, Molina), is described as a very robust green-leaved form. Sturtevant places it in the Pop Corn tribe. Gn. 42, p. 207.

2777. Pol or Husk Corn.—Zea Mays, var. tunicata (X%.

Each kernel inclosed in a husk.

AA. Maize grown primarily for the grain or fruit.

Var. tunicata (Z. tunicata, Sturt.). Pod Corn. Figs. 2771, 2778. Plate VII. In this group each kernel is inclosed in a pod or husk, and the ear thus formed is inclosed in husks.

Var. evérita (Z. évérita, Sturt.). Pop Corn. Fig. 551, Vol. 1, Plate VII. This group is characterized by the excessive proportion of the corneous endosperm and the small size of the kernels and ear. The best varieties have a corneous endosperm throughout. This gives the property of popping, which is the complete eversion or turning inside out of the kernel through the explosion of the contained moisture on application of heat. A small deposit of starchy endosperm does not greatly interfere with this property of popping, but when the starchy endosperm is in excess, as in a flint Corn, the kernel does not evert, but the corneous portion only explodes or splits, leaving the starchy portion unchanged. The true Pop Corn is hence tender in its eating; the false Pop Corn has a tender portion of limited extent only. This class of Corn is even more readily recognized by inspection than by description.

Var. indurátà (Z. indurátà, Sturt.). Flint Corn. Plate VII, Fig. 793. A group readily recognized by the occurrence of a starchy endosperm, inclosed in a corneous endosperm, as shown in a split seed. This corneous endosperm varies in thickness with varieties. When very thin at the summit of the kernel the shrinkage of the starchy endosperm may cause a depression, thus simulating externally a dent from which its structure at once differentiates it.
Var. indentata (Zea indentata, Sturt.). DENT CORN. Fig. 2780. Plate VII. A group recognized by the presence of corneous endosperm at the sides of the kernel, the starchy endosperm extending to the summit. By the drying and shrinkage of the starchy matter the summit of the kernel is drawn in or together, and indented in various forms. In different varieties the corneous endosperm varies in height and thickness, thus determining the character of the indented surface.

2779. Flint Corn. Var. indentata (X ½).

Var. amylacea (Zea amylacea, Sturt.). SOFT CORN. This group is at once recognized by the absence of corneous endosperm. Through the uniformity of the shrinkage in ripening there is usually no indentation, yet in some varieties an indentation may occur, but splitting the kernel infallibly determines the class.

Var. saccharata (Zea saccharata, Sturt.). SWEET CORN. Figs. 2781, 2782, 551. Plate VII. A well-defined group characterized by the translucent, horny appearance of the kernels and their more or less wrinkled, wrinkled, or shriveled condition.

Var. amylacea-saccharata (Zea amylacea-saccharata, Sturt.). STARCH-SWEET CORN. This group is founded upon three varieties found in the San Pedro Indian collection of Dr. Palmer and sent in 1886. The external appearance of the kernel is that of a sweet, but examination shows that the lower half of the kernel is starchy, the upper half horny and translucent. These varieties all had a white cob, the kernels deeper than bread.

L. H. B.

ZEBRINA (name refers to the striped leaves). Commelinaceae. Differes from Tradescantia chiefly in the fact that the corolla is tubular (petals not free); stamens 6, equal; 3st. few, sessile, in 2 conduplicate bracts. Two species.

pendula. Schnizl (Tradescantia zebra, Hort. T. tricolor, Hort., in part. Commelinia littlata, Lindl. Commelinia zebrina, Hort.). WANDERING JEW, in part. Figs. 2783-81. Trailing, half-succulent perennial herb, rooting at the joints; lvs. lanceolate, sessile, the leaf-sheath about ½ in long and hairy at top and bottom and sometimes throughout its length; under surface of leaf red-purple; upper surface silvery white, suffused with purplish, the central part and the margins purple-striped; fls. about 2, rose-red, contained in boat-shaped bracts, one of which is much smaller than the other. Mexico.—A very common greenhouse plant, much used for baskets and for covering the ground underneath benches. Commonly confused with Tradescantia fluminensis; Fig. 2785, and sometimes with Commelina nudiflora. See Tradescantia. The lvs. of Z. pendula seem never to be green. They vary somewhat in color. All forms are easily grown, and they propagate readily from pieces of stem. Var. quadricolor, Voss (Tradescantia quadricolor and T. multi-color, Hort.). Lvs. with metallic green at the base and striped with green, red and white. Handsome. L. H. B. 2783. Flower of Zebrina pendula. Slightly enlarged.

2784. Zebrina pendula. (X ½.)

ZELKOV (after the vernacular name Zelkova in Crete, or Selkow in the Caucasus. Syr. Abelè, Urticaceæ. Ornamental deciduous trees, with alternate, short-petioled, toothed leaves and insignificant flowers in axillary clusters or solitary, followed by small drupe-like fruits. Z. acuminata is hardy in the northern parts of the United States as far north as Mass., at least in sheltered positions. The Zelkovas, particularly Z. acuminata, are handsome trees of graceful habit, much resembling a small-leaved elm tree. They seem not to be very particular as to soil and position. Prop. by seeds soon after ripening; also by layers and by grafting on Ulmus. Four species are known, natives of Crete, the Caucasus and E. Asia. They are allied to Celtis and Aphananthe and are chiefly distinguished by the ciliate sepals. From the elms, which they much resemble in foliage, they are easily distinguished by the drupe-like fruits.

2781. Sugar or Sweet Corn—Zea Mays, var. saccharata (X ½). A green ear, with unshrunken kernels.

Trees, sometimes shrubby, with peninsular, stipulate lvs.: fls. polygamous, the perfect ones solitary in the axils of the upper lvs., the stamine ones clustered in the axils of the lower lvs. or bracts; calyx 4-5-lobed; sta-
mena 4-5; styles 2; fr. a 1-seeded drupe, usually broader than high, oblique, with the style eccentric. *Z. acuminata* is an important timber tree; the wood is very durable, and considered the best building material in Japan. The young wood is yellowish white in color; the old wood is dark brown and has a beautiful grain.

Z. japonica, Dipp., not Miq., is an imperfectly known spe-
cies, supposed to be Japanese; it is distinguished from *Z. cre- nata* chiefly by the lvs. being somewhat smaller, more pubes-
cent and rough above. Var. Verschaffeltii, Dipp. (*Ulmus Verschaffeltii*, Hort.), has the lvs. deeply pubescent with glaze and broadly crenate at base.

Alfred Rehder.

Zephryanthes (Greek, *zephyros*, west wind). *Amurystalis*, *Zephyr Flower*, Fairy Lily. About three dozen species of bulbous plants native to the warmer parts of America. Unfortunately they are not quite hardy, but some of them are very satisfactory plants for window-gardens, resting somewhat in winter and blooming in summer under such treatment. They all have linear lvs. contemporeous with the fls., and slender scapes about 6-9 in. high, crowned by solitary 6-lobed fls. of white, rose or yellow. The fls. are 1-3 in. across. Other generic characters: perianth regular, erect or suberect; corolla none; anthers dorsifixed, versatile; ovules many, superposed; seeds black, flat.
The latest revision of Zephyranthes is found in Baker's Handbook of the Amaryllidaceae, 1888, where the following subgenera are made:

Subgenus Zephyranthes Proper. Flower erect; tube short; stamens inserted near its throat. (Eighteen species, including all described below except No. 11.)

Subgenus Pseudirizons. Flowers erect; tube longer, dilated in the upper half; stamens inserted at the middle of the perianth-tube. (Five species, none in cult.)

For the further separation of the species Baker uses the characters which appear in the key below, except the foliage characters and the color of the flowers. However, the genus may be readily separated into three sections based upon the color of the fls., and this arrangement is here used as being more convenient to the horticulturist. The seasons of bloom indicated below are those for localities where the plants will thrive outdoors the year round.

The Zephyr Lilies must be wintered in a place free from frost, and as the best kinds are natives of swampy places it is fair to presume that they will need more moisture during the resting season than the generation of bulbous plants. The four best species are: Z. candida, white, autumn; Z. Atamasco, white, spring; Z. carinata, rosy, summer; Z. rosea, autumn. All of these will probably survive the winter out of doors in our middle states if given a fair degree of protection.

Z. candida deserves special notice. William Watson, of New England, writes in Gm. 37, p. 174: "The most satisfactory of all is Z. candida. This species differs from all others known to us in several particulars, the chief being its hardiness and ease of management under ordinary cultivation in a sunny border out of doors. We have tried almost all the other species of Zephyranthes with this treatment, but they every one failed, whilst Z. candida flourished and multiplied rapidly, until we now have a border filled with it. This border is against the south wall of a greenhouse and it is always moist. The soil is ordinary loam, in which the bulbs were planted about 4 inches apart. They have each since become crowded tufts, their leaves completely hiding the soil. This border was as gay with the flowers of Zephyranthes last autumn as any border of crocuses in spring. On very sunny days the flowers opened quite flat, and glistened like snow in the sunshine. Another character which distinguishes this species from the others is its evergreen foliage." It is said that the river La Plata was so called (the name meaning "silver") because of the profusion of these white flowers on its shore.

INDEX.

- Anderson, 11.
- Atamasco, 1.
- carinata, 5.
- candida, 5.
- Lindleyana, 7.
- texana, 10.
- Treatise, 2.
- verecunda, 4.

A. Fls. white, often tinged rose outside.

B. Stigma 3-lobed.

C. Osary stalked.

D. Perianth 3 in. long.

E. Lvs. channelled, bright green, shining, with acute margins.

F. Lvs. thick, semi-fleshy, deep green, not shining, with rounded margins.

G. Perianth 3 in. long.

H. Ovary sessile.

I. Stigma capitulate, obscurely 3-lobed.

J. Fls. bright rose-colored.

K. Perianth 2½-3 in. long.

L. Perianth 1½-2 in. long.

M. Perianth about 1 in. long.

N. Fls. yellow, often reddish outside.

O. Style slightly declinate.

P. Pedicel much shorter than spathe.

Q. Pedicel much longer than spathe.

R. Style strongly declinate.

S. Candia.

T. Atamasco.

U. texana.

V. carinata.

W. candida.

X. verecunda.

Y. rosea.

Z. speciosa.

2788. Zephyranthes speciosa (X ½). (See page 2007.)

Zephyranthes

1. Atamasco, Herb. (Amaryllis Atamasco, Linn.). Atamasco Lily. Fig. 2789, 2790. Most popular and largest of the spring-blooming white-fl. species; the commonest Zephyr Lily native to the U. S. Bulb short-necked, less than 1 in. thick; lvs. 4-6, linear: scape 6-12 in. high; fls. pure white, about 3 in. long. March-June. Va. to Fla. and Ala. B. B. 1:44; R. M. 2:99; L. B. C. 19:1899. Gm. 24, p. 199; 37, p. 155.

2. Texana, Wats. Closely allied to Z. Atamasco and best distinguished by the lvs. as indicated in the
key. The perianth-segments are sometimes keeled with rose, but in both species the fls. turn pinkish with age. It is a Florida species, found in damp localities and blooming several weeks later than *Z. Atamasco. V. 6:299. Gn. 33. p. 11.

3. erubescens, Wats. (Amargilla erubescens, Hor- ford). Rare white-fl., August-blooming species supposed to be native to Texas, but perhaps from northern Mexico. Distinguished from the two preceding species by the larger, longer-necked fl., shorter perianth and fls. strongly tinged with rose outside. Bulb over 1 in. thick; neck as long; spathe bifid above; tube equaling and closely embracing the pedicel (about 1 in. long).—Int. by Horsford 1889 and probably lost to cultivation.

4. verecunda, Herb. Rare spring-blooming species, dis- tinguished from other white-fl. spe- cies in cult. by the sessile ovary and long-necked fl. Bulb 1 in. or less thick; neck 1 1/2 in. long; fls. 11/2 in. long, greenish white, more or less tinged outside or keeled with rose. Highlands of central Mex. B. M. 2583.—Offered by Dutch dealers.

5. candida. Herb. Fig. 2790. Most popular of white-fl. Zephyr Lilies, being distinguished from the others by its autumn-blooming habit and capitulate stigma. Lvs. appearing in autumn with the fls. and lasting through the winter in favored locali- ties, over 1 ft. long; fls., pure white or slightly tinged rose outside, 1 1/2-2 in. long. Marshes of La Plata. Gn. 37:740. B. M. 2597. L. B. C. 15:1419.

6. carinata. Herb. (Z. grandiflora, Lindl.). Largest and choicest of the rosy-fl. species and said by Baker (1888) to be the commonest Zephyranthes in cultivation; how- ever, the name *Z. rosea is far com- moner in American catalogues. It is a summer-blooming species with fls. 2 1/2-4 1/2 in. across, and about 3 in. long. Bulb 1 in. thick, short necked; ovary stalked; stigma trifid. Jamaica, Cuba, Mexico, Guatemala. B. R. II:902. Gn. 33:630 (erroneously as *Z. Atamasco.). I. H. 35:49. J.H. II. 29:329.

7. Lindleyana. Herb. Rare summer- blooming rose-colored species from the mountains of Mexico, inferior to *Z. carinata for general cul- ture. Bulb globose, 3/4 in. thick; neck short; fls. 1 1/2-2 in. long; ovary stalked; stigma 3- flid; spathe 3-flid only at tip.—Once offered by Lovett, of Little Silver, N. J.

8. rosea, Lindl. Autumn-blooming rosy-fl. species, with much smaller fls. than *Z. carinata but, according to American catalogues, the most popular rosy-fl. species. The fls. are only about an inch long and 1/2 in. broad; bulb globose, 3/4 in. thick; neck scarcely any; spathe 2-flid at tip only; ovary stalked; stigma 3-flid. Oct. Cuba. B. M. 2357. B. R. 10:821. Gn. 12, p. 84 (col. plate).—Trade plants of *Z. rosea should be compared with *Z. carinata.

9. longifolia, Hemslay. Summer-blooming, yellow-fl. species. Distinguished from the next in cult. by characters of pedicel and spathe. Bulb ovate; neck 1 1/2-2 in. long; spathe much shorter than spathe; fls. yellow, coppery outside, 2 1/2-3 in. long. New Mex. Int. by Horsford, 1889, and probably lost to cult.

10. Texana. Herb. Yellow-fl. Texan species. Bulb globose; neck 1 1/2 in. long; spathe bifid only at the tip; pedicel much longer than the spathe; fls. yellow, coppery outside, 1 in. long, 1 1/2 in. across. B. M. 3996 (Dobranthus Andersonii, var. Texanus).

Britain imported 5,600,000 pounds of Ginger valued at $820,000. Medicinal Ginger is prepared from the dried "root;" concomitantly Ginger from the green. Candied Ginger is made from carefully selected, succulent young rhizomes which are washed and peeled and then preserved in jars of syrup. Housewives often preserve their own Ginger; it is important to have the hands protected while unpeeling the roots or they will "burn" the fingers. Ginger probably could be cultivated commercially in southern Florida and California. In Florida it thrives in rich soil and partial shade, and the roots can be dug and used at any time. The plant is cultivated commercially even in localities where it is necessary to lift the roots and store them over the cool season, as in the lower Himalayas. In the West Indies Ginger may be cultivated up to an altitude of 3,500 feet.

Zingiber is occasionally cultivated as store decorative plants. The shoots having a reed-like appearance, they may often be used to good advantage in arranging plants for artistic effects. They are of the easiest culture. Propagation is effected by division of the rhizomes in spring. These should be potted in fibrous loam to which a third of well-decomposed cow or sheep manure has been added. Water should be given sparingly until the shoots have well developed, when they should have an abundance. They are also benefited by an occasional watering with weak liquid manure water. Towards the end of summer the shoots will begin to mature, when the water supply should be diminished, and as soon as the plants are ripened off the pots may be stored either under the greenhouse stages or in some other convenient place, where they should be kept almost dry for the winter.

Zingiber may be taken as the typical genus of the singular family Sertaminaceae, with its 36 genera and 150 species. Bentham and Hooker state that it is an extremely natural group, well marked in leaf as well as flower, and not connected with any other family by a single intermediate genus. The distinguishing feature of the family largely resides in the stamens. Sometimes there are 5 stamens and a sixth imperfect one; sometimes there is only one perfect stamen and all the stamens are petal-like. The anthers are sometimes 2-celled, sometimes composed of one cell borne on the margin of the connective. In Zingiber and others the connective is produced into a long spur. Generic characters: rhizome horizontal, tuberos: fls. ob-long lanceolate, clasping the stem by their long sheaths: spikes usually radical, rarely lateral or terminal on the leafy stem: calyx cylindric, shortly subacute; corolla-segments lanceolate, upper concave; lateral staminodes none or adnate to the lip; anther-cells contiguous; crest narrow, as long as the cells. Thirty species, native to Old World tropics. Compare Canna and Maranta.

2791. Zingiber officinale

2792. Flower of the Ginger plant (X 1/2).

2793. Commercial roots of Ginger, as seen in the stores (X 1/3).

ZINNIA

2791. Zingiber officinale

Commercial varieties of Ginger are seen in the stores (X 1/3).
ZINNIA
2011

compared with the dahlia. Among garden composites its only rivals in point of color range are the chrysanthemum, dahlia, Chama aster and cineraria. Among gar- den annuals in general the Zinnia ranks with the most useful kinds, and many persons would place it among the twelve most popular of annual flowers. Zinnias and daisies, rather stiff in habit, with equa- tional depth of flower, and in technical perfection a lit- tle short of the dahlia: the rays are rather rigid and overlap one another with somewhat monotonous preci- sion, and the colors are metallic as compared with the soft hues of the China aster.

Historical Sketch.—The Zinnia (Z. elegans), with its great range of color and perfection of form, is now so much a matter of course that the present generation is surprised to learn that it is one of the most recent of "florists' flowers." A double Zinnia probably was not seen in America before the Civil War. In the early six- ties, the Zinnia was a sensation of the floral world; in the seventies it ceased to be fashionable and as early as 1882 it was spoken of as an "old-fashioned" flower. Its course was run in twenty years.

The single form of the Zinnia is now cultivated only for its scientific and amateur interest. Single Zinnias are not offered by tradesmen and occur only as degener- ates from the double form. The first double form appeared in 1855 at the nursery of M. Grenau, at Bagnoles, France, amongst a number of plants raised from seed received from the West Indies. The double forms were introduced to the public by Vilmorin in 1860. Probably the earliest colored plate of double Zinnias is that in Florus des Serres published toward the end of 1860. This shows that the first double forms were much flatter and rougher (i.e., less regular) than to-day and often exhibited some remnant of the disk. The fixation of bright, distinct colors proceeded rapidly, but the purification of the white seems to have been a slow process. The depth of the flower has increased from an inch or so in the earliest double forms to an average of 2 inches for first-class specimens, with a maxi- mum of 4 inches in the robust type. The rays are now arranged in 15 or more series, as against 5 or 6 in the first double forms. The first double forms are shown as 2½-3 in. across, which is a good average for to-day. The accepted type of Zinnia flower is essentially that of Fig. 2755, but the florist's ideal represents a much deeper flower of absolute firmness and regularity. Of recent years several new variations have appeared. Tubular forms are known to the trade as "Z. tagelliforme flore plumo." The curled and crested forms, intro- duced in the nineties, represent the reaction against formal flowers in general. Much care has been bestowed in perfecting the habit of Zinnias, and there are five well-marked degrees of height, which for purposes of explanation and general convenience may be considered as three,—tall, medium and dwarf.

I. TALL ZINNIAS are ordinarily 20 to 30 inches high. This size and the next smaller size are the favorites for general purposes. The tall kinds are available in 12-16 colors. A robust race, which attains 28 to 40 inches under perfect conditions, is known to the trade as Z. elegans robusta grandiflora pleasia. It is also known as the Giant or Mammoth Strain. This strain was de- veloped after many years by Herr C. Lorenz and was introduced in 1886. A maximum diameter of 6 inches is recor- ded for flowers of this strain. In C.C. II. 25:601 is shown a flower measuring 1½ by 4 in., with about 18 se- ries of rays, the latter being so numerous and crowded that the flower is less regular than the common type.

II. MEDIUM-SIZED ZINNIAS range from 12-20 inches in height. They are available in about 8 colors. Here is the most of most of the forms known to trade catalogues as pamilla, anna and combata.

III. DWARF ZINNIAS range from 2-12 inches in height and are of two sub-types, the pomerons and the Tom Thumbs. The pomerons, or "Liliputians," are taller growing and smaller flowered, generally about 9 inches high, and of colors about 2 inches across. The Tom Thumb type represents the largest possible flower on the smallest possible plant. Both types are available in several colors, not all of which are yet fixed in the seed.

Zinnia Haageana is second in importance to Z. elegans. The single form was introduced to cultivation about 1861 and the double about 1871. It is dwarfer than most Zinnias, and has smaller flowers, with a color range restricted to shades of orange. It is distinct in a pretty but less showy than the common Zinnias. The first race of hybrids between Haageana and elegans appeared in 1876 under the name of Z. Darwinei. This group is said to resemble Z. elegans in size and color of its., and to recede from Z. elegans in habit, being more branched and forming a broader and flatter bush. However, this race has never been adequately described and it is little known in America to-day. Several va- rieties of the Darwin class are figured in The Florist and Pomologist 1876, pp. 28, 29. Some recent hybrids of Haageana and elegans not yet introduced are said to be full of promise.

Cultivars of Zinnias.—Zinnias are of the easiest cul- ture, thriving in any deep, rich soil, whether loamy or sandy. The seeds may be sown about May 1, or wher- ever the soil is in fit condition for hardy annuals. Such treatment will give flowers from the first of July until frost. The young plants should be thinned so as to stand a foot or two apart, depending on whether they are of medium or tall-growing habit. By midsummer the foliage should obscure the ground. For the very best results the second season may be started indoors about April 1, and the seedlings transplanted once or twice before being placed outdoors in permanent quarters. Such pains are, however, not worth while for most peo- ple. In 1891 it was considered the regular thing to start the single Zinnias indoors, but this bother is no longer
necessary. Dwarf varieties should be set 14–16 in. apart: taller kinds 2 ft. each way. Zinnias have two kinds of seeds, triangular and heart-shaped. The triangular seeds are long, narrow, thick and ridged. The heart-shaped seeds are short, broad and flat. Some growers believe that the heart-shaped seeds tend to produce single flowers; others hold the opposite opinion.

Generic Description.—Zinnia is a genus of 16 species of annual, perennial and subshrubby plants, mostly Mexican but ranging from Texas and even Colorado to Chile. They have opposite, mostly entire leaves and terminal heads of flowers which are peduncled or sessile. Rays plicilate, fertile: disk yellow or purple, its florets hermaphrodite, fertile: involucre ovate-cylindric or campanulate, the scales in 3 to many series, broad, obtuse or rounded, more or less colored: achenes laterally compressed, 2-toothed at the summit and frequently 1-awned from the inner angle, rarely 2-awned. Latest botanical revision by Robinson and Greenman in Proc. Am. Acad. Arts Sci. 32:14 (1897). There is a good summary of cultivated Zinnias by Voss in Vilmarin’s Blumengärtneri. Illustrated historical sketch in Gr. 48, pp. 464, 465.

A. Plant annual.
B. Achenes of the disk flat and broad, oburate, 2–2½ lines long.
C. Colors various: Ivs. clasping, cor. date-ovate to elliptic —— elegans
CC. Color orange: Ivs. sessile, narrow, lanceolate —— Haageana
BB. Achenes longer, narrower, oblong, 1–1½ lines long.
C. Color of rays yellow: disk yellow, —— pauciflora
CC. Color of rays red or purple.
D. Rays suberect or scarcely spreading: disk yellow —— multiflora
DD. Rays revolute; disk dark-colored. —— tenelliflora
AA. Plant perennial —— grandiflora

elegans, L. *Youth-and-old-age*. The common species from which most of the garden Zinnias are derived. Figs. 2794–96. Erect annual, a foot or more high, but varying from 3 in. to 3 ft.; Ivs. ovate or elliptic, clasping, about 1 in. wide; rays red, yellow or green, but now of nearly every color except blue and green; disk originally yellow or orange, but nearly or quite absent in the common double forms: Ivs. 2–5 in. across; July to Oct. Mexico.—Single forms ill. in B.M. 327, P.M. 1:223 and B.R. 15:1294 (the last two as *Z. violacea*). Double forms, F.S. 13:1391, R.H. 1861:251; 1864:331. Pompons in Gr. 48, p. 464 (Liliput); 30:562 (deceptive as to size). R.B. 20, p. 132.

Haageana, Regel (*Z. Mexicana*, Hort.). Fig. 2797. Distinguished from *Z. elegans* by the orange-colored Ivs., which are generally smaller; also the plant is dwarfer, as a rule, and the leaves are merely sessile, not clasping. Tropical America. Single forms. Gr. 30, p. 270; 48, p. 464. Double, Grn. 30, p. 271; 48, p. 301. F. 1871, p. 229. A.G. 1892:318.—This is considered by Robinson and Greenman as a horticultural species not certainly distinguishable from *Z. angustifolia* in spite of its broader leaves.

pauciflora, Linn. An erect annual, with yellow heads about 1 in. across, with rather broad, spreading rays. Plant hirsute, with spreading hairs;
somewhat cylindrically branched above; peduncles at maturity enlarged upwards and hollow. Mexico, Peru, and Andes.

multiflora, Linn. This and the next are included by most writers in Z. paniculata, but Z. multiflora may be distinguished from Z. paniculata by the presence of the stem being much flatter, appressed or rarely spreading, and the rays red or purple, mostly narrow and suberect or scarcely spreading. B. M. 1:49.

tenuiflora, Jacq. Fig. 5376. Very distinct by reason of its revolute, linear rays which are cardinatal in color. It has a dainty flower about 1 in. across hardly comparable with the showy Z. elegans. This species has been cult. in America but seems to be no longer advertised here. It is referred to Z. paniculata by most writers, and to Z. multiflora by Robinson and Greenman. B. M. 555, A. G. 1890:243.

grandiflora, Nutt. Hardy, low-growing, Colorado perennial, with woody root, shrubby base, linear lvs., and sulfur-yellow rays which are very broad, almost round in outline. Lvs. less than 1 in. long and 3-nerved. Colo., New Mex., Ariz., Mex. Int. 1900 by D. M. Andrews.

W. M.

ZIT-KWA. Beunorea cerifera.

ZIZANIA (an old Greek name). Gramineae. A single species of annual swamp grass found in northern N. A. and northern Asia. Spikelets 1-fl., monoecious, in large, terminal panicles, the pistillate upper portion narrow and appressed, the staminate lower portion spreading; pistillate spikelets long awned. The plant is a stately and graceful grass, deserving to be better known.

aquatica, Linn. INDIAN RICE. WATER OATS. WILD RICE. Culms tall, as much as 9 ft.; lvs. broad and flat. Recommended for borders of lakes and ponds. The grain is excellent for fish and waterfowl. Wild Rice lakes and ponds are favorite resorts of sportsmen in the fall. Before sowing, put the seeds in coarse cotton bags and sink them in water for twenty-four hours. Sow in water from 6 in. to 5 ft. deep, with soft mud bottom, or on low marshy places which are covered with water the year round. In running water, sow as much out of the current as possible. Sportsmen are not generally aware that seed can be obtained in large quantities and at a reasonable price from seedsmen. Wild Rice is very desirable for aquatic gardens, being one of the handsomest of tall hardy grasses for the margins of ponds.

A. S. Hitchcock.

ZIZIA (J. B. Ziz, Rhenish botanist). Umbellifera. A genus of three species of hardy perennial North American herbs 1-2½ ft. high, with ternate or ternately compound leaves and compound umbels of yellow flowers. The genus has no horticultural status, the two following species being advertisers only by collectors of native plants. For full account, see Britton and Brown's Illustrated Flora, Coultar and Rose's Monograph of the American Umbelliferae, Contrib. U. S. Nat. Herb. 7:90 (1900), and Manns. Zizias are mostly referred to Thaspium by previous botanists, but the authors cited above retain it as a separate genus mainly on account of the wingless fruit.

aurea, Koch. EARLY OR GOLDEN MEADOW PARSNIP. Height 1-2½ ft.; basal and lower lvs. 2-3 ternately compound; upper lvs. ternate; fr. oblong, 2 x 1½ lines. April-June. Fields, meadows and swamps, New Bruns., and S. Dak. to Fla. and Tex. B.B. 2:534.

AA. RAYS OF UMBELS 2-12, SLENDER, DIVERGING.

W. M.

ZIZYPHUS (from Zizouf, the Arabian name of Z. lotus), Rhamnaceae. JUJUBE. Deciduous or evergreen shrubs, or sometimes trees usually with prickly branches, alternate, short-petioled, 3-5-nerved, entire or serrate lvs. and small greenish or whitish flowers in axillary cymes followed by drupe-like sometimes edible fruits. They are not much cultivated in this country.
and none of the species is hardy north; the hardest seems to be Z. vulgaris, but it is tender north of Washington, D. C. Most kinds have handsome foliage and are well adapted for planting in shrubberies or southern states and California. They seem to thrive in any well-drained soil. Prop. by seeds, by hardwood cuttings under glass and by root cuttings. A genus of about 11 species distributed through the tropics, subtropicals, of both hemispheres, allied to P. inflorescens, but chiefly distinguished by the drupe-like fruit. Shrubs with slender often prostrant branches or trees; stipules mostly transformed into spines, often only one spine stumpy or one straight and the other a hooked spine; fls. 5-merous; ovary 2-3, usually 2-lobed, fr. 2 parts, glabrous. The fruit of Z. Jujuba, vulgaris and Z. Lotos are edible and the first named is much cult. in China.

Jujuba, Lam. Tree, 20-30 ft. high: branches usually prickly; young branches, petals and inflorescence densely rusty tomentose; lvs. broadly oval or ovate to oblong, obtuse, sometimes emarginate, serrate or entire, dark green and glabrous above, tawny or nearly white tomentose beneath, 1-2 in. long: fls. in short-stalked many-fl. axillary cymes: fr. subglobose to oblong, orange-red, 3/4-4 in. long, on a stalk about half its length. March–June. S. Asia, Africa, Australia. Onl. p. 139, 194.

Sativa, Gärtn. (Z. vulgaris, Lam.). Common Jujube. Shrub or small tree, attaining 30 ft.: prickly or unarmed. Glabrous branches often fascicled, slender and having frequently the appearance of young lvs.: ovate to ovate-lanceolate, acute or obtuse, oblique at the base, sometimes emarginate, serrate, glabrous, 3/4-2 in. long. In fascicled, in axillary cymes: fr. ovate to oblong, dark red or almost black, 3/4-4 in. long, short-stalked. March–June. S. Eu. and E. Asia; naturalized in Ala. A. G. 1891:29 (as var. invaeans). The Jujube is sometimes planted in Florida and California, although it yet has no commercial rating as a fruit plant. According to Wickson, it was introduced into California in 1876 by G. F. Richardson, and is "fruited regularly and freely in several parts of the state." The fruits or berries are ripe in November and December, and the plant begins to bear at three years from planting. The Jujube fruit is used in confectionery.

Z. Loto, Lam. Prickly shrub, 3-4 ft. high. Lvs. ovate-oblong, erectulate, glabrous, fls. in few-fl. axillary cymes. fr. subglobose, yellow. S. Eu., S. Afr.—Z. Paliurus, Willd.—P. major, Scop.—Z. Spinia-Christi.—Z. Spinia-Christi Willd. Small prickly tree: lvs. ovate to oblong, erectulate, glabrous or pubescent on the veins beneath; fls. in axillary clusters: pedicels tomentose: fr. subglobose. S. Afr. and W. Asia. This species is supposed by some to have furnished Christ's crown of thorns; see also P. major Spinia-Christi.

Z. Perrisi, Torr. Belongs to the genus Condalia, which is easily distinguished by not having spiny stipules but the branches transformed into slender thorny thorns and by its usually unperianth. Z. Perrisi, Webb, is a much branched, glabrous thorny shrub, 4-15 ft. high: lvs. elliptic to oblong, with a cuneate base, 3/4-5 in. long: fls. in axillary or terminal cymes: fr. ovate, 5/16 in. long. S. Calif. This plant was once offered by a collector of native plants, but it is probably not in the trade now.

ALFRED BEEDEER.

Zygadenus (Greek, yoke and gland, some of the species having two glands in the base of the petal). Lilitaeae. As outlined by Bentham & Hooker, the genus has 12 species, one of which is Siberian and the remainder North American and Mexican. This genus includes Amblythium in Zygadenus, but most authors do not unite the two. They are smooth, rhizomatous or bulbous plants, with simple erect stems bearing a raceme or panicle of white, yellowish or greenish flowers; lvs. mostly crowded at the base of the flower-stem, long-linear. The fls. are perfect or polygamous, the segments many-nerved and often adnate to the base of the ovary, the petals withering and persistent; anthers 6; capsule 3-loculed, the locules in fruit separate at the top or for their entire length. The species of Zygadenus are little known in cultivation. They are sometimes recommended for the wild garden, where they thrive in wet or boggy places. Increased by division: also rarely by seeds. Some of the species have poisonous bulbs, rhizomes and foliage.

A. Locules of the capsule dehiscing to the base; stamens free from perianth-segments; glands usually 1 or 2 in the base of the perianth. Zygadenus proper.

B. Glands large, covering nearly the whole base of the perianth-segments; bulb bi-sexuated.

c. Fls. usually perfect, rather large.

elegans, Pursh (Z. glacier, Nutt. Helibruna glabri-vima, Ker.). Three fl. or less tall, the lvs. 5/8 in. or less broad and very glaucous; bracts purplish: fls. greenish, the sepals simple or sparingly branched, the segment broad and less than 1/2 in. long, coherent to the ovary, the fl. opening about 1/2 in. across. Across the continent from New Brunswick and south to New Mexico. B.M. 1860. B.R. 24:57.

Frémontii, Torr. Lvs. an inch or less broad, less glaucous than the above. bracts green: fls. usually larger, rotate, the segments free from the ovary. California, from San Diego north, in the Coast Range. One of the "Soap plants." Said to be the best of the genus for cultivation.

Nuttallii, Gray. Lvs. from 3/4-4 in. wide, scarcely glaucous, light green: bracts scarios; fls. 3/4 in. across, not in a simple or branched raceme, the segments free from the ovary. Wash. to Col. and Texas.

pinnatus, Wats. Usually stouter, the lvs. broader and sheathing; raceme compound; perianth-segments deltoid, acute, short-clawed. Saskatchewan to Calif.—Bulb poisonous.

b. Fls. polygamous, small.

venenosa, Wats. Slender, 2 ft. or less tall: lvs. very narrow (3/4 in. or less), scabrous, not glaucous, the stem, not sheathing: bracts narrow, scarios: fls. in a short simple raceme, the perianth from the ovary, the segments 3/4 in. or less long, triangular-ovate to elliptic, short-clawed. S. Dakota to California.—Bulb poisonous.

paniculatus, Wats. Usually stouter, the lvs. broader and sheathing; raceme compound; perianth-segments deltoid, acute, short-clawed. Saskatchewan to Calif.—Bulb poisonous.

b. Glands very obscure: bulb somewhat fibrous, narrow.

lemanthoides, Gray. Stem slender and leafy, 4 ft. or less tall; lvs. rather short, the basal ones varying from 3/4 in. to over 1 in. long: fls. ovary, the perianth free from the ovary, the segments about 3/4 in. across, the segments oval-oblong and obtuse. New York to Fla. and Ark. B.M. 903, 1540. L.B.C. 10:988. Onl. 57, p. 106.—Bulb and herbage poisonous. A fly poison has been made from the bulb. L.H.B.

Zygia. See Albiazia.

ZYGOPETALUM (name referring to the united flower parts), Orchidaceae. Plants with numerous dichotous lvs, sheathing a short stem which usually becomes thickened into a pseudobulb: lvs. membranaceous, veenoise or plicate; fls. solitary or in racemes, showy: sepals and petals nearly alike in form and color, often united to each other at the base, the lateral sepals forming a mentum with the foot of the column; labellum with the lateral lobes scarcely prominent, middle lobe broad and plane, spreading, or recurved at the apex, with a prominent fleshy crest on the disc: column incurved, wimless or with small wings; pollinia 4, not distichous. Includes Iris, Aucuba, Wauchopea, Selinsia, Botanomaia, which are often separated as distinct genera.

HEINRICH HASSELBERG.

Zygotepetalum is a genus of mostly epiphyllous orchids, of easy culture. The Z. Mackalli group grow well under pot culture. One or two species with creeping rhiz.
zygopetalum, like Z. maxillare, thrive best on sections of tree fern, osmunds rhizome or in baskets. A good compost consists of equal parts of chopped soft oak, peat fiber and sphagnum moss, well mixed and interspersed with pieces of rough charcoal, about one-half of the pot space being devoted to clean drainage material. After distributing the roots, the compost should be worked in carefully but not too firmly about them, leaving the base of the plant even with, or just above, the rim of the pot. Repotting should be done when the plants show new root action. The temperature should range about 60° F. by night and 65° to 70° by day in winter, and in summer as low as possible, with free ventilation during inclement weather. A cool, light location in the cattleya department is favorable. The compost should be kept in a moist condition at all times. The plants are propagated by cutting through the rhizome between the old pseudobulbs at a good eye, potting up the parts and removing them to a rather higher temperature until they start into new growth.

The Batemenia, Pescatoria and Wargzewiczella groups are very similar in habit of growth, and all thrive well in orchid baskets suspended from the roof of the odoratoglossum or coolhouse, in a compost consisting almost entirely of chopped live sphagnum, freely interspersed with rough pieces of charcoal. Autumn is the best time to rebasket the plants, as they suffer during the warm weather if disturbed at the roots during spring. They need a shaded location, a moist atmosphere and a liberal supply of water at the roots all seasons. Never allow them to remain dry, as they have no resting season.

The Bullea group is closely allied and requires the same general culture but needs 5° F. higher temperature during the winter season.

The Promenaea group comprises a few small-growing species, all good subjects for the cool department. They grow best suspended from the roof in small baskets or perforated pans in a mixture of peat fiber and chopped sphagnum with a liberal supply of water and good drainage.

R. M. Grey.

INDEX.

<table>
<thead>
<tr>
<th>L. B.C.</th>
<th>L. M.</th>
<th>L. B.</th>
<th>L. M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burtii, 12</td>
<td>Gauthieri, 3</td>
<td>Patini, 10</td>
<td>rostratum, 1</td>
</tr>
<tr>
<td>cedeste, 9</td>
<td>intermedium, 6</td>
<td>Sedeni, 7</td>
<td></td>
</tr>
<tr>
<td>carinatum, 5</td>
<td>Lalindei, 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>crassianum, 5</td>
<td>Macedo, 4</td>
<td>Winter, 11</td>
<td></td>
</tr>
<tr>
<td>discolor, 13</td>
<td>maxillare, 4</td>
<td>Wendland, 14</td>
<td></td>
</tr>
<tr>
<td>Zygopetalum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Scapes tall, several-fl. 1. rostratum
B. Anther long-rostrate 2. Gauthieri
BB. Anther not rostrate 3. Patini
C. Petals spotted or blotched
D. Labellum glabrous 4. Mackali
DE. Labellum pubescent 5. Gauthieri
CC. Petals uniformly colored
AA. Scapes shorter than the Ivs. 1-fl. 6. intermedium
B. Column hood-like, arching over the crest
C. Fls. deep violet 7. vidulceum
CC. Fls. violet-purple 8. cedeste
CO. Fls. rose-colored 9. Patini
LD. Lalindei
BB. Column not hood-like
C. Fls. brown, spotted 10. Burtii
CC. Fls. white or greenish white 11. discolor
H. Wendland

1. rostratum, Hook. Pseudobulbs oblong, compressed; Ivs. lanceolate, 5 in. long; scapes 4 in. long, bearing 1-3 fls.: sepals and petals linear-lanceolate, greenish brown, wavy, 2-3 in. long; labellum about as long as the petals, subcutund, with reflexed margins, pure white with few radiating lines near the base; column wings rounded, sharply serrate on the upper margin; anther much reduced, the base extending down the column. May, June, Oct. Guiana. B. M. 2819. J. H. III. 316-7. A.P. 6565.

2. Mackali, Hook. Fig. 2799. Pseudobulbs large, ovate; Ivs. many, linear-lanceolate, 1 ft. long; scape 18 in. long, bearing 5 or 6 large fls.: sepals and petals dingy yellowish green, with blotches of purple on the inside, lanceolate, acute, erect, spreading, all united toward the base; labellum large, rounded, emarginate, white with radiating vein-like deep blue lines, glabrous. Brazil. B. M. 2798. B. R. 17:1453 (as Eulophia Mackali). P. M. 3:37. L. B. C. 17:1664. J. H. III. 316-7.—This is distinguished from Z. intermedium and Z. crassianum by its smooth labellum and narrower Ivs. Var. supurbum, grandiflorum, majus are also advertised.

3. Gauthieri, Lem. Pseudobulbs oblong subulate, 4 in. high: scape 2-3-fl.; fls. 3 in. across; sepals and petals green blotched with brown; labellum broadly reniform, deep purple at the base, white in front, sometimes nearly all deep purple with a darker crest. Autumn. Brazil. J. H. 11:535. 6n. 49:1630.—The Ivs. are fuscate, narrowly oblong, keeled, 12-16 in. long: inflorescence shorter than the Ivs.

4. maxillare, Lodd. Pseudobulbs 2 in. long; Ivs. lanceolate, 1 ft. long: scape 9 in. long, 6-8 fl.; fls. 1½ in. across; sepals and petals ovoid-oblanceolate, acute, green, with transverse brown blotches; labellum horizontal, purple, with a very large, glossy purple, notched horseshoe-shaped crest, middle lobe rounded, waved, and obscurely lobed. Winter. Brazil. B. M. 2695. L. B. C. 18:1576. J. H. III. 32:205. P. M. 1:271.—Distinguished by its small fls., and very large crest.

2799. Zygopetalum Mackali (X 1/4).

5. crassianum, Lodd. Habit of Z. intermedium: Ivs. broadly linear-lanceolate: fls. on long, stout scape; sepals and petals 2 in. long, oblong-lanceolate, green with rather few brown blotches; labellum 2 in. across, spreading, wavy, scarcely emarginate, white with purple veins radiating from the thick crest, disc hairy. Fls. at various times. Brazil. L. B. C. 17:1637. B. M. 3402 (as Z. Mackali, var. crassianum).—This has fewer brown blotches on the sepals and petals than Z. intermedium. There are varieties with pink, blue, or almost colorless veins on the labellum. Var. carinatum, Hort., has the vines deep vivid blue.
6. **intermedium**, Lodd. Lvs. eniform, 1½ ft. long, ½ in. wide: scape longer than the lvs., bearing 5-6 fls. each nearly 3 in. across: sepals and petals oblong, acute, green with large, confluent blotches of brown; labellum round, near to the base, deeply 2-lobed in front, pubescent, bluish white with radiating lines of purplish blue; column green and white. Fls. in winter, remaining in perfection about two months. Brazil. R.H. 1873:190 (as *Z. Reiteri*).—Plants of *Z. Mackiatis* are often cultivated under this name.

7. **Sedini**, Reichb. f. Plants strong, with the scape about as long as the lvs. and bearing several fls.; sepals and petals deep purple-brown, bordered with green; labellum pale purple in front, becoming deep purple toward the base. F.M. 1889:417.—A garden hybrid raised by Veitch.

8. **violaceum**, Reichb. f. (*Platylea violacea*, Lindl.). Fig. 2890. Lvs. as in *Z. Lalindei*: fls. on nodding scapes 4-6 in. long, deep violet; sepals and petals ovate-revolute, tipped with yellowish green; labellum ovate, cordate, crest of thick ridges covered by the arched column. Guiana. F.S. 7:678. P.M. S:1.

9. **celeste**, Reichb. f. (*Bulbca caliastris*, Reichb. f.). Lvs. 6-10 on a shoot, oblong-lanceolate, 6 in. long, 2 in. broad, with 6 paler sheaths 3-4 in. long; fls. solitary, on stout peduncles 6 in. in length; sepals broad, violet-purple, darker toward the top and margined with yellow at the tip, the lateral pair larger; petals like the dorsal sepal but paler; labellum short-clawed, ovate, deeply cordate, margins recurved and tip revolute, deep violet with yellowish margins and a thick yellow crest. Fls. freely in summer. Columbia. B.M. 6458. Gn. 31. p. 121; 49:1072.

11. **Lalindei**, Reichb. f. (*Bulbca Lalindei*, Reichb. f.). Lvs. elliptic-lanceolate, about 3 ft. long; peduncles 3 in. long, with solitary fls. 2½-3 in. broad; sepals ovate-oblong, recurved at the tips, rose-colored, with straw-colored tips; petals undulate-oblong, colored like the sepals or with white margins; labellum ovate-hastate, margins and tip recurved, golden yellow, disc with a semi-circular crest of thick, radiating lamellae: column broader than the disc, arched over ft. Ang. Colombia. B.M. 6351.—Color of the flower varies to bright violet.

13. **discolor**, Reichb. f. (*Warrea discolor*, Lindl. *Warzewiczella discolor*, Reichb. f.). Lvs. narrowly lanceolate, jointed, 9 in. long; scapes 1-ft., shorter than the lvs.; sepals spreading, lanceolate, white; petals shorter, ovate, white with a tinge of purple, half-spreading; labellum large, broadly ovate, somewhat convolute, white, changing to deep purple toward the disk, and having a whitish or yellowish crest. Central America. B.M. 4836.

14. **Wendlandi**, Reichb. f. (*Warzewiczella Wendlandi*, Hort.). Lvs. tufted, lanceolate; fls. 4-5 in. across, solitary, on a scape 3½ in. long: petals lanceolate, somewhat twisted, greenish white; labellum ovate, cordate, undulate, white, streaked and spotted with violet-purple; apex revolute, crest semi-circular, violet-purple.

Heinrich Hasselbrink.

2860. *Zygopetalum violaceum* (X ½).
The Rural Science Series

EACH BOOK IS THE WORK OF A COMPETENT SPECIALIST, UNDER THE EDITORIAL SUPERVISION OF

PROFESSOR L. H. BAILEY, of Cornell University

The following volumes are now ready:

THE SOIL. By F. H. King, of the University of Wisconsin. 303 pp. 75 cts.

THE SPRAYING OF PLANTS. By E. G. Lodeman, late of Cornell University. 399 pp. $1.

MILK AND ITS PRODUCTS. By H. H. Wing, of Cornell University. 311 pp. $1.

THE PRINCIPLES OF FRUIT-GROWING. By L. H. Bailey. 516 pp. $1.25.

FERTILIZERS. By E. B. Voorhees, N. J. Exp. Sta. and Rutgers College, 397 pp. $1.50.

THE PRINCIPLES OF AGRICULTURE. By L. H. Bailey. 300 pp. $1.25.

IRRIGATION AND DRAINAGE. By F. H. King, of the University of Wisconsin. 502 pp. $1.50.

THE FARMSTEAD. By I. P. Roberts, of Cornell University. 350 pp. $1.25.

RURAL WEALTH AND WELFARE. By George T. Fairchild, Ex-President of the Agricultural College of Kansas. 381 pp. $1.25.

PRINCIPLES OF VEGETABLE-GARDENING. By L. H. Bailey. 458 pp. $1.25.

FEEDING OF ANIMALS. By W. H. Jordan, of New York State Experiment Station. $1.25 net.

FARM POULTRY. By G. C. Watson, of Pennsylvania State College. $1.25 net.

So long as the demand warrants, new volumes will be added to the Rural Science Series. Definite arrangements have been completed for the following:

PHYSIOLOGY OF PLANTS. By J. C. Arthur, Purdue University.

PLANT PATHOLOGY. By B. T. Galloway and associates, of U. S. Dept. of Agr.

THE POME FRUITS (Apples, Pears, Quinces). By L. H. Bailey.

THE CARE OF STOCK. By N. S. Mayo, Kansas State Agriculture College.

THE PRINCIPLES OF STOCK-BREEDING. By W. H. Brewer, Ph.D., Yale University.

"The 'Rural Science Series,' representing the truly scientific spirit which now pervades our leading schools of agriculture, is an attempt to popularize fundamental agricultural laws, and at the same time to inculcate practical lessons in the art of tilling the soil."—Review of Reviews.

THE MACMILLAN COMPANY

NEW YORK CHICAGO BOSTON SAN FRANCISCO
The Garden-Craft Series

WRITTEN BY

PROFESSOR L. H. BAILEY

Of Cornell University, Editor of the Cyclopedia of American Horticulture

PRACTICAL handbooks for the horticulturist, explaining and illustrating in detail the various important methods. They may be called manuals of practice, and, although nearly all are written by Professor Bailey, of Cornell University, they include the opinions and methods of successful specialists in many lines. The fact should be emphasized that the Garden-Craft Manuals are summaries of principles and of the best practice in the leading American horticulture methods.

The volumes are compact, uniform, and are illustrated as the subject demands. They are of convenient shape for the pocket, and are bound in flexible green cloth.

THE HORTICULTURIST'S RULE BOOK. By L. H. Bailey. 312 pp. 75 cts.
PLANT-BREEDING. By L. H. Bailey. 293 pp. $1.
THE PRUNING-BOOK. By L. H. Bailey. 545 pp. $1.50.

Other Works by Professor Bailey

THE CYCLOPEDIA OF AMERICAN HORTICULTURE. 4 vols. Sold by subscription. $20 net.
THE EVOLUTION OF OUR NATIVE FRUITS. 472 pp. $2.
LESSONS WITH PLANTS. 491 pp. $1.10 net.
FIRST LESSONS WITH PLANTS. 117 pp. 40 cts. net.
BOTANY: AN ELEMENTARY TEXT FOR SCHOOLS. 372 pp. $1.10 net.

THE MACMILLAN COMPANY

NEW YORK CHICAGO BOSTON SAN FRANCISCO