CONTENTS

PREFACE ... xi

PROLOGUE
FROM ELECTOPIA, THE LAND OF ELECTRICITY 1

1 WHAT IS ELECTRICITY?
Electricity and Everyday Life ... 13
 Electrical Units ... 14
 Electricity in the Home ... 19
How Electricity Works ... 25
 The True Nature of Electricity ... 26
 Current and Electrical Discharge ... 30
Atomic Structure and Conductivity .. 34
Static Electricity ... 36
 The Triboelectric Series ... 40
Uses of Static Electricity .. 43
Tags on Consumer Electric Products ... 45
Voltage and Potential ... 46
Atoms and Electrons ... 47
Static Electricity ... 49
 Electrostatic Force .. 49
The Triboelectric Series .. 51
Movement of Charge and Direction of Current 51

2 WHAT ARE ELECTRIC CIRCUITS?
Electric Circuits in Everyday Devices .. 55
 A Flashlight's Circuit .. 56
Parts of an Electric Circuit ... 59
Ohm's Law and Methods of Connecting Electrical Components 67
 Electric Circuits and Ohm's Law ... 68
Series and Parallel Connections .. 69
Electric Circuits and Current ... 73
 Graphical Symbols .. 73
 Direct Current Circuit and Alternating Current Circuit 74
Ohm's Law ... 76
Resistivity and Conductivity .. 77
Effective Resistance ... 78
Contents

3
HOW DOES ELECTRICITY WORK?

- Why Does Electricity Produce Heat? .. 82
- Electricity and Joule Heat ... 85
- How Is Heat Generated by Current? .. 87
- Thermal Emission and Luminescence .. 90
- Current and Magnetic Fields ... 94
 - Fleming’s Left-Hand Rule (For DC Motors) 98
 - Fleming’s Right-Hand Rule (For Generators) 100
- Joule Heat ... 104
- Thermal Vibration ... 104
- Electromagnetic Waves .. 106
- Electricity and Magnetism ... 107
- Fleming’s Left-Hand Rule and Motors .. 109
- Fleming’s Right-Hand Rule and Electric Generators 110
- Electricity and Coils .. 111
 - Coils and Electromagnetic Induction .. 111
 - Coils and Inductance .. 112
 - Coils and Alternating Current ... 113
 - Coils and Transformers .. 114
- Capacitors ... 115
 - Capacitors and Alternating Current .. 115

4
HOW DO YOU CREATE ELECTRICITY?

- Generators ... 118
 - How Does a Power Generator Create Electricity? 121
- Batteries and Other Sources of Electricity 124
 - Chemical Cells ... 126
 - What Happens in a Dry Cell Battery? ... 132
 - Water and Fuel Cells ... 135
 - Anodes and Cathodes .. 138
- Creating Your Own Coin Battery ... 140
- Thermopiles .. 141
- Electricity Created by a Power Plant .. 147
 - Thermal Power Generation .. 149
 - Nuclear Power Generation ... 151
 - Hydroelectric Power Generation .. 152
 - Wind Power Generation ... 154
5
HOW CAN YOU CONVENIENTLY USE ELECTRICITY? 155

What are Semiconductors? .. 161
Diodes and Transistors .. 169
 Diodes That Emit Light ... 174
 Transistors ... 176
Diodes .. 186
Transistors .. 188
Field-Effect Transistor .. 188
Converters and Inverters .. 189
Sensors .. 190
 Temperature Sensors ... 190
 Optical Sensors ... 192

EPilogue .. 197

INDEX .. 201
Our current lifestyle necessitates the use of electricity. Electric current is often explained by comparing it to flowing water, but since electricity cannot be seen by the naked eye, this metaphor can be difficult to understand. What can we do to better understand electricity?

Electricity is very helpful in almost every facet of our lives; it produces light, heat, and power. Even though we can see these benefits, we are usually unaware of electricity itself. However, if we simply learn the basics, we can get a clear picture of how electricity works.

This book explains fundamental electrical concepts using a story told through manga followed by further explanations in written text. There are no complicated explanations—readers simply listen along with the heroine Rereko as her teacher Hikaru explains concepts. Even people who have had a hard time understanding electricity will find Hikaru's explanations easy to comprehend.

I am extremely grateful to Matsuda, who provided the artwork, and to everyone at TREND-PRO, who produced the book. I would also like to give my sincere thanks to Professor Masaaki Mitani for checking my work. I am also very thankful to Ohmsha, Ltd. for giving me the opportunity to write this book.

I hope that in reading this book you will learn about electricity and gain a familiarity with it.

KAZUHIRO FUJITA
DECEMBER 2006
PROLOGUE:
FROM ELECTOPIA,
The Land Of Electricity
ELECTOPIA

This is a world in which electronic devices are a little bit more advanced than they are on Earth.

However, students on Electopia have the same kinds of problems that students on Earth do.

Rereko...

Do you know why I called you in?

UH...UM...

Well, I've never been very smart... but I honestly don't know.

That's okay, you almost have the right answer.
LET'S LOOK AT THIS TERM'S FINAL ELECTRICITY EXAM.

THIS MAKES THREE CONSECUTIVE FAILING GRADES!

BUT I'M DOING SO WELL IN MY OTHER CLASSES!

NEVERTHELESS, YOU'RE GOING TO HAVE TO GIVE UP YOUR SUMMER VACATION TO TAKE SOME EXTRA CLASSES.

I'M IMPRESSED WITH YOUR POSITIVE ATTITUDE.

WHA...?

DID YOU SAY GIVE UP SUMMER VACATION?!

HARUMPH.

THAT'S RIGHT! YOU'LL GO TO STUDY ON EARTH AND START WITH THE FUNDAMENTALS!

DON'T WORRY. IT'S NOT SO DIFFERENT THERE. AND SINCE THE STUDY OF ELECTRICITY IS SLOWER, IT'LL BE PERFECT FOR YOU!
B...B...BUT...IF I SUDDENLY SHOW UP, IT'LL PROBABLY BE INCONVENIENT FOR THE TEACHER THERE.

I ALREADY SENT A LETTER, SO IT'LL BE FINE.

B...B...BUT, BUT...MY PARENTS HAVEN'T GIVEN PERMISSION FOR ME TO GO YET, RIGHT?

THEY SAID, "GO FOR IT!"

YOU! A SMART WOMAN LIKE YOU NEVER MAKES A MISTAKE, DO YOU?

WHAT IS IT? A ROBOT?

IT'S YONOSUKE, A TRANSDIMENSIONAL WALKIE-TALKIE AND OBSERVATION ROBOT!

TAKE GOOD CARE OF HIM! YOU'LL ALSO USE HIM INSTEAD OF A PASSPORT WHEN GOING BACK AND FORTH TO EARTH.

NICE TO MEET YOU.

TAKE THIS WITH YOU FOR LATER.
TOKYO, JAPAN

WHAT A SUDDEN DOWNPOUR...

I'M ALMOST HOME... I GUESS I'LL JUST RUN...

I'M GOING TO GET SOAKED! I WISH I'D BROUGHT AN UMBRELLA.

YIKES!!
OH. IS THIS JAPAN?

OH!

ARE YOU HIKARU SENSEI?

SENSEI?

HUH!? WELL, MY NAME IS HIKARU, BUT...

I'M REREKO! I CAME FOR SUMMER SCHOOL!! I'M A BONEHEAD...ABOUT ELECTRICITY...PLEASE... I'M BEGGING YOU...

NO! WAIT! WAIT A MINUTE!

WHAT? HUH...?
WELL, I DO ELECTRICAL ENGINEERING RESEARCH AT THE UNIVERSITY, SO I COULD DEFINITELY TEACH YOU ABOUT ELECTRICITY,

BUT... WHO IN THE WORLD ARE YOU?

OH DEAR! DIDN'T YOU GET THE LETTER?

LETTER...?

OH!

THAT REMINDS ME... I DID GET THAT SUSPICIOUS LETTER WITH NO POSTMARK...

BY ANY CHANCE, COULD IT BE THIS?

YES, YES! THAT'S IT.

DEAR AIKARU YANO SENSEI,

I'M SENDING MY STUDENT REREKO TO YOU FOR LESSONS. I HOPE THAT YOU WILL AGREE TO GIVE THIS STUDENT SOME LECTURES. I TRUST THAT I CAN COUNT ON YOUR KINDNESS.

SINCERELY,

TETSUO SENSEI
CENTRAL ELECTRICAL TRAINING SCHOOL

WELL, ARE YOU THE REREKO MENTIONED IN THIS LETTER...?

THAT'S ME!
OKAY! BUT...WHY ARE WE STANDING AROUND TALKING IN THE RAIN? CAN YOU GIVE ME SOME MORE DETAILS AT MY HOUSE?

YES, CERTAINLY!

...AT HIKARU'S APARTMENT

I'M SORRY, BUT IT'S A LITTLE MESSY.

TOWEL... A TOWEL... IS THAT IT?

NO PROBLEM! I'M SORRY TO bother...

YOU...?! LET'S SEE...

...I COULD HAVE SWORN IT WAS AROUND HERE SOMEPLACE.

THAT D...D...DOLL IS TALKING!?

IT'S NOT A DOLL!

WHAT DID YOU SAY? WHY DON'T YOU EXPLAIN IT TO ME FROM THE BEGINNING...

YONOSUKE IS A TRANSDIMENSIONAL WALKIE-TALKIE AND OBSERVATION ROBOT.

WELL, UM...
ELECTOPIA IS A LAND IN WHICH ELECTRICITY IS A LITTLE MORE ADVANCED THAN IT IS IN THIS WORLD.

SINCE THE STUDY OF ELECTRICITY IS THOUGHT TO BE SO IMPORTANT, EVEN KIDS IN MY GRADE MUST KNOW THE BASICS. BUT ACTUALLY, I'M...

WHAT CAN I SAY? I'M...

A LOSER!!

TETEKA SENSEI IS VERY KNOWLEDGEABLE ABOUT THIS WORLD.

SO, BY TAKING EXTRA CLASSES HERE, YOU'LL TRY TO MAKE UP FOR THE AMOUNT YOU'VE FALLEN BEHIND?
THAT'S... I'M... I WOULDN'T BE SO SURE ABOUT THAT...

I SAW YOU HERE, I WOULDN'T BE ABLE TO RETURN UNLESS I FINISH THESE EXTRA CLASSES...

I KNOW, BUT... I'VE GOT RESEARCH TO DO, AND...

WELL, HOW ABOUT THIS--

AS YOU CAN SEE, MY ROOM IS A LITTLE MESSY, RIGHT?

A LITTLE!

QUI... QUITE MESSY, OKAY?
While I'm at the university, maybe you could sweep and clean up and prepare dinner...?

I'm just been so busy, I haven't had much free time.

If you did these things for me, I'd be saved, and...

It's such a sloppy mess!!!

I know that! But there's gotta be some give and take, right?

Smack!

Um, well, I guess I'll give it a try. ...Ah...Ah...

Okay! I'll do my best! ...Ah...Ah...

...Choo!!

We completely forgot about those towels!
1

WHAT IS ELECTRICITY?
ELECTRICITY AND EVERYDAY LIFE

HIKARU SENSEI! I'M JUST ABOUT FINISHED!

PHEW!

GREAT, THANKS! HOW ABOUT TAKING A SHORT REST?

HMM...

IS SOMETHING THE MATTER WITH THE ELECTRIC TEA KETTLE?

"100V, 10A, 1000W"... THOSE ALL HAVE TO DO WITH ELECTRICITY, RIGHT?

SHALL WE START OUR LESSONS WITH THE UNITS USED FOR CONSUMER ELECTRONIC PRODUCTS?

YEP!

YEAH!
LET'S START WITH V, WHICH STANDS FOR VOLTAGE.

VOLTS (V) ARE THE UNIT REPRESENTING VOLTAGE.

VOLTAGE IS LIKE A PRESSURE DIFFERENCE THAT MAKES ELECTRICITY FLOW. YOU CAN THINK OF IT LIKE WATER PRESSURE FOR ELECTRICITY.

THE HEIGHT OF WATER VIEWED FROM A GIVEN REFERENCE POINT IS CALLED THE WATER LEVEL. ELECTRICITY ALSO HAS A COMPARABLE CONCEPT CALLED POTENTIAL DIFFERENCE.

THE UNITS FOR POTENTIAL DIFFERENCE ARE ALSO V.
CURRENT IS THE AMOUNT OF ELECTRICITY FLOWING PER SECOND THROUGH AN ELECTRIC LINE. IN TERMS OF WATER, THIS WOULD BE THE WATER VOLUME PER SECOND.

DROPS IN WATER LEVEL ARE SIMILAR TO VOLTAGE.

ON THE OTHER HAND, A (AMPERE OR AMP FOR SHORT) IS THE UNIT REPRESENTING ELECTRIC CURRENT.

VOLTAGE IS THE DIFFERENCE IN POTENTIAL BETWEEN TWO POINTS.

\[
\text{DROOP} = \text{VOLTAGE} \\
\text{WATER VOLUME FLOWING PER SECOND} = \text{CURRENT}
\]

JUST LIKE HOW WATER FLOWS IF THERE IS A DIFFERENCE IN WATER LEVEL, ELECTRICITY ALSO FLOWS IF THERE IS A DIFFERENCE IN POTENTIAL - FROM THE HIGH TO THE LOW POTENTIAL.

THIS MAKES ME WANT TO EAT NAGASHI SOMEN - FLOWING NOODLES!
Just like how the flowing water performs work by turning this water wheel, electricity also performs various kinds of work when current flows.

Does it cook the somen?

Enough about the somen already!

Okay, so what is W?

W (watt) is the unit representing electric power (consumed power).

The amount of work done per second when electricity flows is electric power.

Power is...

Power (W) = Voltage (V) \times Current (A)

...obtained from this equation.
Since we can rewrite this equation as

\[\text{Current (A)} = \frac{\text{Power (W)}}{\text{Voltage (V)}} \]

...we can also easily find the current.

For this electric tea kettle...

...we have

\[\frac{1000\text{W}}{100\text{V}} = 10\text{A} \]

Don't we?

That's right!

Now let's look at energy. The monthly electric bill has the unit kWh (kilowatt hour) representing the amount of electric energy a household uses...

Yup... I see it!
THIS CAN BE OBTAINED BY MULTIPLYING POWER AND USAGE TIME.

FOR EXAMPLE, IF A 1200W APPLIANCE IS USED FOR 2 HOURS, HOW MANY KILOWATT HOURS WOULD THAT BE?

UM... 1200 TIMES 2

IS 2400, ISN'T IT?

1200W x 2 HOURS = 2400WH = 2.4KWH

RIGHT, IT'S 2400WH (WATT HOURS). SO THAT'S 2.4KWH.

IF YOU KNOW THIS, YOU CAN FIGURE OUT THE ELECTRICAL UTILITY CHARGES FOR ANY APPLIANCE.

IF 1KWH COSTS 20 YEN, RUNNING THE TEA KETTLE FOR 2 HOURS (2.4KWH) WILL COST 48 YEN!

ELECTRICITY IN THE HOME

YOU KNOW THAT IF SEVERAL ELECTRONIC APPLIANCES THAT CONSUME A LARGE AMOUNT OF POWER ARE USED AT THE SAME TIME, THE CIRCUIT BREAKER MAY TRIP AND "BLOW A FUSE," RIGHT?

YEAH!
Well, why does the breaker trip, and what can we do to prevent it from happening?

Let's think about this together.

Okay.

First, let's talk about the flow of electricity coming to the house.

Click!

All right!

The electricity used in an ordinary home is created at a power plant and delivered to each home by electric lines. After it passes through transformer substations or transformers on utility poles, it changes voltage for use in the home.

Home distribution board divides electricity for each room.
A distribution board divides electricity for each room in the house. The electricity that enters the distribution board passes through a current limiter, enters a leakage circuit breaker, and is divided among multiple safety breakers.

The inside of a distribution board looks like this.

If the total current flowing through multiple safety breakers exceeds the maximum current value, the current limiter will trip.

In my house, the maximum current value allowed is 20A.

So if the current is more than 20A, it will trip for safety, right?
These are the safety breakers!

If a current of 20A or more is flowing, this will trip for safety.

So, if the total electricity used by the electronic appliances connected to one safety breaker does not exceed 20A...

Since the voltage of a household electrical outlet is always 120V, let's try calculating the total power used by the appliances connected to one safety breaker and see if it exceeds the limit.

For example, if we try using the electric kettle and the rice cooker...

Electric tea kettle
840W / 120V = 7.0A

Rice cooker
1500W / 120V = 12.5A

7.0A + 12.5A = 19.5A

This combination just makes it by a whisker...

20A has not been exceeded.
Even if it were exceeded, we could avoid tripping the breaker by not using both appliances at the same time, or...

We could use one of the appliances from an outlet connected to a different safety breaker.

However, there is still something we must be careful about, even if the breaker doesn't trip.

There is a value called the rated current that is determined for a normal electrical outlet.

Right!!!

It is generally 15A.

Well, even if the total current exceeds 15A when multiple electronic appliances are used from one outlet, the safety breaker will not trip as long as the current does not exceed 20A, but...

What happens if it is exceeded?
IF YOU CONTINUE TO USE THEM LIKE THIS FOR A LONG TIME, THE OUTLET OR PLUG WILL GET HOT, WHICH IS DANGEROUS!

...WELL, THIS ONE IS OKAY, SINCE IT'S NOT PLUGGED IN.

ACK, DON'T SCARE ME!

BUT FOR THIS REASON, LET'S STOP USING SEVERAL ELECTRONIC APPLIANCES WITH HIGH POWER CONSUMPTION FROM A SINGLE OUTLET, OKAY?

Y...YES!!

YOU SHOULD ALSO BE CAREFUL WHEN I'M CHARGING!

IT SHOULD BE OKAY IF WE CONNECT HIM TO AN OUTLET SEPARATE FROM OTHER ELECTRONIC APPLIANCES, RIGHT?

HUH? DO YOU CONSUME THAT MUCH ELECTRICITY, YONOSUKE?

YES, BUT... MY ELECTRIC BILL WON'T BE OKAY!!!
AROUND 600 BC, THE GREEK PHILOSOPHER THALES DISCOVERED THAT WHEN AN AMBER ORNAMENT WAS RUBBED WITH A CLOTH, IT ATTRACTION BEW FREEFEATHERS OR PIECES OF LINT.

AH! IS THIS, BY ANY CHANCE...

...DUE TO STATIC ELECTRICITY!??

YEP!

BUT, IN THOSE DAYS, THEY DIDN'T KNOW ABOUT STATIC ELECTRICITY.

INCIDENTALLY, THE WORD ELECTRICITY COMES FROM THE WORD ELECTRON, WHICH MEANS AMBER IN GREEK.

THE MYSTERIOUS FORCE THAT ATTRACTS TINY OBJECTS TOGETHER CAN NOW BE EXPLAINED WITH ELECTRICITY.

electron

HUH!
THE TRUE NATURE OF ELECTRICITY

SO LET'S TRY TO CLOSE IN ON THE TRUE NATURE OF ELECTRICITY!

ACTUALLY, THE TRUE NATURE OF ELECTRICITY COMES FROM TINY THINGS INSIDE EVERY SUBSTANCE.

HUUH?

EVEN IN YOU AND ME?

THAT'S RIGHT! IT'S IN BOTH YOU AND ME. ALL SUBSTANCES ARE MADE UP OF COLLECTIONS OF TEENSY LITTLE PARTICLES CALLED ATOMS.

HMM.

IF I REMEMBER CORRECTLY, YOUR PLANETS ALSO REVOLVE AROUND YOUR SUN, RIGHT?

AN ATOM HAS SOMETHING CALLED A NUCLEUS AT ITS CENTER, AND THINGS CALLED ELECTRONS REVOLVE AROUND IT.

ELECTRON

NUCLEUS

THESE EVEN TINIER PARTICLES ARE THE CAUSE OF ELECTRICITY.

SUN
It is! The nucleus, which corresponds to the sun, consists of protons, which have an electrically positive property, and neutrons, which have no electrical property.

The electrons that revolve around the outside have a negative property.

Proton (+)
Neutron (neutral)

Electron (-)

If an atom contains both positives and negatives, is the atom itself positive or negative?

Since the number of protons is usually the same as the number of electrons, the atom itself is electrically neutral.

Now, if external heat or light is added to an atom...

An electron may escape from the atom. This is called a free electron.
WHAT HAPPENS IF IT ESCAPES?

IF AN ELECTRON ESCAPES, THE NEGATIVES ARE REDUCED, AND THE ATOM BECOMES ELECTRICALLY POSITIVE.

THE NUMBER OF ELECTRONS INCREASES, AND THE ATOM BECOMES ELECTRICALLY NEGATIVE.

HEAT

LIGHT

THE NUMBER OF ELECTRONS DECREASES, AND THE ATOM BECOMES ELECTRICALLY POSITIVE.

ANATOM THAT HAS THIS KIND OF ELECTRICAL PROPERTY IS SAID TO BE CHARGED.

SO AN ATOM IS CHARGED WHEN ONE OF ITS ELECTRONS ESCAPES OR WHEN IT RECEIVES ANOTHER ELECTRON.

AHA! THE ESCAPED ELECTRON MOVES TO ANOTHER ATOM!
Charge is the positive or negative electrical property. A proton is said to have positive charge and an electron negative charge.

Charge...??

Two positive charges or two negative charges repel each other, while a positive and a negative attract each other.

It's like the north and south poles of a magnet, isn't it?

Yep! This force is called the electrostatic force or Coulomb's force.

Static electricity occurs when a material has a positive or negative electric charge that is not moving.
Current and Electrical Discharge

If a substance is positively or negatively charged, it tries to become neutral again by receiving or losing electrons.

By the way, objects can be conductors, through which electricity easily flows (like metal).

Insulators, through which electricity has difficulty flowing (like glass or rubber).

...and semiconductors, which are midway between conductors and insulators.

If there is an insulator between a positive and a negative charge, the electrons cannot move.

Because the electricity has difficulty flowing, right?
IF OBJECTS HAVING A CHARGE ARE CONNECTED BY A CONDUCTOR LIKE A COPPER WIRE...

THEN THE POSITIVES AND NEGATIVES UNITE TO CANCEL EACH OTHER OUT, AND THE CHARGED STATE NO LONGER EXISTS.

THIS PHENOMENON IS CALLED ELECTRICAL DISCHARGE.

ELECTRICAL DISCHARGE ALSO OCCURS IN THE AIR OR IN A VACUUM.

A DISCHARGE CAN EVEN OCCUR IN THE AIR?

HMMM.
This is what lightning is! Lightning occurs when tiny water droplets in clouds rub against each other, and the static electricity that was produced discharges to the ground.

Hail and ice particles in cumulonimbus clouds collide with each other, and electric charge accumulates.

Since air is an insulator, a discharge does not occur easily.

Then an enormous discharge occurs!

When a large amount of charge builds up, and there is a difference in potential between the positive and negative charges... or, in other words, when the voltage becomes very high...

The insulation of the air suddenly breaks down, and an electrical discharge occurs.

The breakdown of the insulation creates awesome power, right?

It does! But it happens in an instant.
THE DISCHARGE OF LIGHTNING IS INSTANTANEOUS. BUT WHEN WE HAVE A CONTINUOUS FLOW OF ELECTRONS, WE HAVE CURRENT.

BUT ONE THING WE NEED TO BE CAREFUL ABOUT HERE IS THAT THE DIRECTION OF THE CURRENT IS OPPOSITE TO THE DIRECTION OF THE FLOW OF ELECTRONS.

WHEN ELECTRICITY WAS STILL NOT WELL UNDERSTOOD, IT WAS THOUGHT THAT THE FLOW OF POSITIVE CHARGE WAS IN THE SAME DIRECTION AS THE CURRENT.

IN OTHER WORDS, WHEN ELECTRONS ARE CONTINUOUSLY FLOWING, ELECTRICITY IS FLOWING.

WHEN ELECTRICITY WAS STILL NOT WELL UNDERSTOOD, IT WAS THOUGHT THAT THE FLOW OF POSITIVE CHARGE WAS IN THE SAME DIRECTION AS THE CURRENT.

IN OTHER WORDS, WHEN ELECTRONS ARE CONTINUOUSLY FLOWING, ELECTRICITY IS FLOWING.

BUT LATER, AFTER IT WAS KNOWN THAT ELECTRONS HAVE A NEGATIVE CHARGE, IT TURNED OUT THAT THE DIRECTION IN WHICH THE ELECTRONS MOVE IS OPPOSITE TO THE DIRECTION OF THE CURRENT.

I SEE.
FOR EXAMPLE, THE ATOMIC NUMBER OF COPPER, WHICH IS OFTEN USED IN ELECTRIC LINES, IS 29.

WHY IS COPPER NUMBER 29?

THE ATOMIC NUMBER IS THE SAME AS THE NUMBER OF PROTONS THAT THE ATOM HAS.

AND SINCE THERE ARE THE SAME NUMBER OF PROTONS AS ELECTRONS, COPPER MUST ALSO HAVE 29 ELECTRONS.

THERE ARE FOUR ORBITS CALLED ELECTRON SHELLS AROUND THE NUCLEUS OF A COPPER ATOM. STARTING FROM THE INNERMOST SHELL, THESE CONTAIN 2, 8, 18, AND 1 ELECTRON, RESPECTIVELY, FOR A TOTAL OF 29 ELECTRONS.

AN ELECTRON IN THE OUTERMOST SHELL IS CALLED A VALENCE ELECTRON.
So copper has only one valence electron, right?

Pluck!

A valence electron easily becomes a free electron because the binding force of the atom is the weakest in the outermost electron shell.

If external heat or light is added to a copper atom, that energy is concentrated on the one valence electron.

That's right!

In fact, copper atoms share their valence electrons normally, and since these valence electrons aren't associated with any single atom but move freely between atoms, electricity will flow easily. This property is what defines metals, and gives them their characteristic large conductivity!

Ah! Therefore, the valence electron of a copper atom easily escapes, and electricity easily flows, right?

I get it!

Atomic Structure and Conductivity 35
Earlier I told you that static electricity occurs when an object has an electrically positive or negative charge. Static means that nothing is moving - no current flows.

Now let's talk about static electricity in a little more detail.

You know, we also have four seasons in Electopia, and in winter, it seems to cause little shocks everywhere... it's just awful.

Well, in that sense, static electricity is something we're relatively familiar with. But do you know how it is produced and what properties it has?

Um...it's...

That's what I thought!
Static electricity makes me think...

Oh! It's a vinyl sheet!

...of this!

If I rub this vinyl sheet against your hair, your hair will be charged positively, and the vinyl will be charged negatively.

Ahhh!

Ack, okay, I get it!

Your hair and the vinyl are charged to different polarities where they were rubbed together.

ARGH!!
This phenomenon occurs because the positive charge that was generated on your hair and the negative charge that was generated on the vinyl attract each other. Your positively charged hairs are also trying to avoid contact with each other.

And now my hair is standing on end...

This is freaking me out.

The amounts of positive charge and negative charge generated at this time are equal. This is because charge is being exchanged!

Static electricity that is generated by friction in this way is also called frictional electricity or triboelectricity.

That's a fitting name.
STATIC ELECTRICITY IS GENERATED BY THE CONTACT OR RUBBING OF TWO OBJECTS LIKE THIS.

IF I BRING THE CHARGED VINYL TO MY HEAD...

I SEE...

...MY HAIR STANDS ON END NOW, RIGHT?

TA-DA!

IT SURE DOES!

BRINGING THE CHARGED VINYL TO MY HAIR CAUSES CHARGE TO BE REDISTRIBUTED IN MY BODY—THE NEGATIVE CHARGE IN THE VINYL PUSHES ELECTRONS AWAY IN MY HAIR, GIVING IT A POSITIVE CHARGE. NOTE THAT THE OVERALL CHARGE IN MY BODY IS STILL NEUTRAL, AS THERE HAS BEEN NO EXCHANGE OF CHARGE BETWEEN ME AND THE VINYL.
HUH? IF SOMETHING THAT IS NOT CHARGED APPROACHES SOMETHING THAT IS CHARGED, IT BECOMES CHARGED TOO?

THAT'S RIGHT! IT'S A PHENOMENON CALLED ELECTROSTATIC INDUCTION.

THE TRIBOELECTRIC SERIES

HOWEVER, THE LITTLE SHOCKS CAUSED BY STATIC ELECTRICITY USUALLY OCCUR IN THE WINTER, RIGHT?

THAT'S RIGHT.

THAT'S BECAUSE STATIC ELECTRICITY IS MORE EASILY GENERATED WHEN THE AIR IS DRY—LIKE IN WINTER, WHEN THE HUMIDITY LEVEL IS LOW.

SINCE PEOPLE MOVE AROUND WHILE WEARING CLOTHES, THEIR BODIES RUB AGAINST THEIR CLOTHES, GENERATING STATIC ELECTRICITY.

RIGHT... MY LIPS GET CHAPPED IN WINTER, TOO.
Also, some clothes become charged easily, while others do not.

For example, silk has good water absorbency and contains much more moisture than synthetic fibers do. Therefore, it can reduce the occurrence of static electricity.

Is that so?

However, the polarity of the charges that are generated differs according to the materials that are rubbed together. This is called the triboelectric series.

When we rubbed vinyl and hair together, a negative charge was generated on the vinyl and a positive charge on the hair.
For example, if we rub together hair and a cotton handkerchief...

The hair is positive and the handkerchief is negative.

For a cotton handkerchief and a vinyl sheet...

The handkerchief is positive and the vinyl is negative.

So which will have the positive or negative charge is not predetermined, but it varies depending on the materials, right?

In fact, the characteristics of the charge may also vary according to the surface conditions of the materials that are rubbed together.

The farther apart the positional relationships in the triboelectric series are, the more static electricity is generated; the closer together the objects are in the series, the less static electricity is generated.

Got it!
NOW I'LL EXPLAIN SOME USES OF STATIC ELECTRICITY!

ONE SIMPLE APPLIANCE THAT USES COULOMB'S FORCE IS AN AIR PURIFIER.

STATIC ELECTRICITY IS ALSO USED IN A COPY MACHINE.

BY POSITIVELY CHARGING THE PARTS YOU WANT TO PRINT AND NEGATIVELY CHARGING THE INK, THE MACHINE CAN PRINT COPIES JUST THE WAY YOU WANT THEM.

AH! OF COURSE. FINE DUST IS ATTRACTED TO THE FILTER ACCORDING TO COULOMB'S FORCE.

SINCE THINGS WITH THE SAME CHARGE REPEL EACH OTHER, THE NEGATIVELY CHARGED AREAS DO NOT PRINT, WHILE POSITIVE AREAS ATTRACTION THE NEGATIVELY CHARGED INK.
WOW, STATIC ELECTRICITY IS GREAT!

YEAH! THANKS TO YOU, I HAVE A PRETTY GOOD UNDERSTANDING OF IT.

THAT'S GREAT! WELL, SHALL WE END TODAY'S LESSON HERE?

...BY THE WAY, CAN YOU COOK?

OF COURSE!

ALTHOUGH YOU'RE LIKELY TO HAVE SOME KIND OF AN AVERSION TO STATIC ELECTRICITY, IF YOU UNDERSTAND ITS CHARACTERISTICS PROPERLY, YOU CAN ALSO USE IT SKILLFULLY.

TONKYULAS DONBURI AND HEMO HEMO STIR FRY ARE MY SPECIALTIES.

UH, ARE THOSE KINDS OF FOOD!?
Consumer electric products have tags related to electricity with information such as voltage, current, and power—for example, 120V, 1440W, and 12A.

Voltage, the potential difference or "pressure" that makes electricity flow, is represented by the symbol V. The unit used to measure voltage is the volt (V), which is named for the Italian physicist Alessandro Volta, who invented the battery. The voltage used in an ordinary household appliance is 120V in the United States, 240V in Europe, and 100V in Japan.

Current is the quantity of electricity flowing per second through an electric line, and it is represented using the symbol I, which comes from the initial letter of Intensity of electricity. Current is measured in amperes (A), or amps for short, which are named for the French physicist André Marie Ampère. One amp is equal to one coulomb per second.

Power, which is the electric energy consumed in one second when current flows, is represented using the symbol P. Power is measured in watts (W), which are named for the British mechanical engineer James Watt, who invented the steam engine. One watt is equal to one joule per second.

You can determine the power a device draws by multiplying its voltage and current. The power of a 120V device in which 12A of current flows is \(P = V \times I = 120V \times 12A = 1440W \).

A typical American household contains many 120V devices. If you divide the power value that is displayed on each of these devices by 120V, you can find the value of the current that flows in each device. For devices with the same power, a 240V electronic device runs using half the current of an 120V electronic device.

Since \(P = V \times I \), we can rearrange this equation to look like this using simple algebra.

\[
I = \frac{P}{V}
\]

For a 120V electric device...

\[
I = \frac{1440W}{120V} = 12A \quad \text{...12A of current flows.}
\]

For a 240V electric device...

\[
I = \frac{1440W}{240V} = 6A \quad \text{...6A of current flows.}
\]
SI PREFIXES

1000W may also be represented by 1kW. This is because k stands for kilo and represents 1,000 or \(10^3\). But we can use other prefixes, too: 3,600,000 joules (J) are equal to 3.6 megajoules (MJ). These prefixes for different powers of 10 are called SI prefixes, and they come from internationally determined rules for units called the International System of Units (SI units). The most common ones are shown in the table below.

SI PREFIXES OFTEN USED IN ELECTRICAL RELATIONSHIPS

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Name</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>t</td>
<td>tera</td>
<td>(10^{12} = 1,000,000,000,000)</td>
</tr>
<tr>
<td>G</td>
<td>g</td>
<td>giga</td>
<td>(10^9 = 1,000,000,000)</td>
</tr>
<tr>
<td>M</td>
<td>m</td>
<td>mega</td>
<td>(10^6 = 1,000,000)</td>
</tr>
<tr>
<td>k</td>
<td>k</td>
<td>kilo</td>
<td>(10^3 = 1,000)</td>
</tr>
<tr>
<td>m</td>
<td>m</td>
<td>milli</td>
<td>(10^{-3} = 0.001)</td>
</tr>
<tr>
<td>µ</td>
<td>µ</td>
<td>micro</td>
<td>(10^{-6} = 0.000,001)</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>nano</td>
<td>(10^{-9} = 0.000,000,001)</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>pico</td>
<td>(10^{-12} = 0.000,000,000,001)</td>
</tr>
</tbody>
</table>

You can find the amount of energy, which is the total amount of work done by an electrical device, by multiplying the power it draws and the time the device operates. Power is often measured by power companies in kWh (kilowatt hours). For example, if an electric heater with 1kW is used for 1 hour, the amount of energy it uses is 1kW \(\times\) 1 hour = 1kWh.

However, when time is represented in seconds, Ws (watt second) can be used for the energy's unit. A watt-second is equivalent to a joule (J). For example, when a 1kW electric heater is used for 1 hour, since 1 hour = 60 minutes \(\times\) 60 seconds = 3600 seconds, the amount of energy used is 1kW \(\times\) 3600 seconds = 3600kWs or 3,600,000 joules.

You can calculate how much it will cost to use an ordinary household appliance by multiplying the amount of energy used (in kWh) by the utility company's price per kWh (you will also need to add in any flat-rate charges, if your utility company has them). Since the average electrical utility charge for 1kWh in the United States is approximately 12 cents for 1kWh, if a device with 1kW of power is used for 1 hour, the amount of energy used is 1kWh, and the electrical utility charge will be approximately 12 cents.

VOLTAGE AND POTENTIAL

Electricity flows from a high potential to a low potential. The potential difference between two points is called voltage. For example, for a AA battery, if we let the negative pole be the reference point, then the potential of the negative pole is 0V and the potential of the positive pole is 1.5V. The potential difference between the positive and negative poles is the supply voltage of this battery.

46 CHAPTER 1 WHAT IS ELECTRICITY?
Supply voltage of a AA battery

If we stack two batteries and let the reference point be point B, the potential of point A is 1.5V, the potential of point B is 0V, and the potential of point C is -1.5V. The voltage between points A and C can be obtained by subtracting the potential of point C from the potential of point A; the voltage, in this case, is 3V. If we let point C be the reference point, the potential of point C is 0V, the potential of point B is 1.5V, and the potential of point A is 3V. The voltage is still 3V.

The larger the difference in electrical potential, the larger the voltage.

ATOMS AND ELECTRONS

All substances are made of atoms. An atom consists of a nucleus, which is made of protons and neutrons, and electrons. Since protons have a positive charge and neutrons are electrically neutral, the nucleus itself is electrically positive. Electrons, on the other hand, have a negative charge. But since protons and electrons are equally and oppositely charged, an atom is typically electrically neutral.

Electrons move around the nucleus in a series of orbits called electron shells. Since the attraction from the nucleus is weaker for electrons in the outermost shells than ones in the innermost shells, electrons in those outermost shells may escape from orbit if external energy such as heat or light is applied. An electron that has escaped from orbit can move around freely and is called a free electron. In substances like copper and other metals.
The smallest quantity of electricity that exists in the natural world is a single electron.

Through which electricity easily flows, there are many free electrons, and if a voltage is applied to this substance, the free electrons all flow in one direction. This is how electricity flows through an electric line. The outermost electron shell of an atom is called the valence shell, and the electrons that are in it are called valence electrons.

The total number of electrons in an atom is the same as that atom's atomic number. Although there are many atoms with high atomic numbers and a lot of electrons, those substances are not necessarily ones through which electricity easily flows—the flow of electricity depends on the number of valence electrons.

Different materials have different amounts of free electrons.
When two different substances are rubbed together, atoms collide, and electrons that are easily separated from the atoms of one substance may escape and move to the atoms of the other substance. At this time, the substance that lost electrons becomes positively charged, and the substance that gained electrons becomes negatively charged. A substance that carries electricity in this way is said to be charged, and since this electricity is stationary (that is, it's not flowing), it is called static electricity. The quantity of the positive charge that is generated by this process is always the same as the quantity of the negative charge. Since static electricity is generated by friction, it is also called frictional electricity.

Electron movement and electric charge

ELECTROSTATIC FORCE

Charge is measured in coulombs and is represented by Q, the quantity of charge. The name of the unit comes from Charles Augustine Coulomb, a French physicist who studied electricity.

A force called electrostatic force (also known as Coulomb's force) operates between two charges. This force causes the same types of charge to repel each other and different types of charge to attract each other. The size of the electrostatic force F of attraction or repulsion (measured in a unit called a newton) operating between charge Q_1 and Q_2 is directly proportional to the product of Q_1 and Q_2 and inversely proportional to the square of the distance (r meters) between the charges. The stronger the charges, and the smaller the distance, the larger the resulting electrostatic force. This is called Coulomb's law with respect to static electricity.
Electrostatic force operating between charges and Coulomb's law.

If static electricity is generated by rubbing a vinyl sheet on a person's hair, the hair has a positive charge, the vinyl has a negative charge, and the hair clings to the vinyl due to the electrostatic force.

Also, if the negatively charged vinyl sheet is brought close to hair that has not been charged, the hair will become positively charged and will cling to the vinyl. This phenomenon, in which something that is not charged becomes charged when it is in close proximity to something else that is charged, is called electrostatic induction.
THE TRIBOELECTRIC SERIES

Static electricity is more easily generated as the air gets drier—humidity prevents static electricity from gathering on a surface. Also, some clothes easily become charged, while others do not, depending on the material they are made from. Since silk has good water absorbency and contains much more moisture than synthetic fibers, it can reduce the occurrence of static electricity.

The polarities of the charges that are generated by friction differ according to the materials that are rubbed together. These differences are represented by the triboelectric series. For example, if hair and cotton are rubbed together, the hair will become positively charged and the cotton will become negatively charged, but for cotton and vinyl, the cotton will become positively charged and the vinyl will become negatively charged.

![The triboelectric series]

The farther apart the materials are in the triboelectric series, the more static electricity is generated between them, and the closer together the objects are in the triboelectric series, the less static electricity is generated. In other words, you can reduce the occurrence of static electricity by wearing clothes that are made of materials that are close together in the triboelectric series.

MOVEMENT OF CHARGE AND DIRECTION OF CURRENT

Lightning is also a result of static electricity. Lightning occurs when the static electricity that is produced by the friction between hail and ice particles in a cloud discharges between the cloud and ground. In the case of lightning, air (which is an insulator through which electricity has difficulty flowing) exists between the positive and negative charges, so a discharge does not easily occur.

When a large amount of charge builds up and the potential difference between the positive and negative charges is extremely large, the insulation of the air suddenly breaks down and an electrical discharge occurs. Electrical discharge is the phenomenon in which charge flows continuously. This continuous flow of electricity is called current.
Electric current flows from positive to negative. Scientists have discovered that the movement of electrons, however, is from negative to positive. Therefore, the direction in which the electrons move is actually opposite to the direction in which current flows.

![Direction of current and direction of electron movement](image)

The amount of current is represented by the quantity of electricity passing through a wire in a second.

![Size of the current](image)

For example, when a charge of 1C passes through a given point, the current \(I \) can be obtained by dividing the charge \(Q \) in coulombs by the time \(t \) in seconds as follows:

\[
I = \frac{Q}{t} = \frac{1C}{1s} = 1A
\]

Also, the number of electrons flowing at 1A can be obtained by dividing 1C by the quantity of charge in 1 electron, as follows:

\[
\frac{1C}{1.602 \times 10^{-19} \text{C/electron}} = 6.24 \times 10^{18} \text{ electrons}
\]

In other words, when a current of 1A is flowing, there are \(6.24 \times 10^{18} \) electrons flowing per second.
The speed at which the electrons move is very slow—less than 1 cm per second. However, the speed at which electrical motion is transmitted to neighboring electrons is the same as the speed of light: 300,000 km per second. Therefore, the current also flows at 300,000 km per second (the speed of light).

Although electricity itself cannot be seen with the naked eye, heat or light is often produced when current flows. Therefore, we know that electricity exists by observing the phenomena caused by current.
2
WHAT ARE ELECTRIC CIRCUITS?
ELECTRIC CIRCUITS IN EVERYDAY DEVICES

THANK YOU FOR LOANING ME THESE CLOTHES!

SURE! YOU STUCK OUT LIKE A SORE THUMB WALKING AROUND IN THAT CRAZY OUTFIT.

MANY ELECTOPIANS WHO HAVE COME TO EARTH LIVE PERFECTLY FINE WEARING THEIR REGULAR CLOTHES!

REALLY!? OF COURSE! THEY HANG OUT AT PLACES LIKE HARAJUKU...

DO YOU REALLY THINK SO?

WELL...
WE'RE HOME!

HUU? THE LIGHTS WON'T TURN ON.

HMM... JUST A SECOND.

UH OH!

EVEN HIKARU SENSEI, WHO NORMALLY WOULDN'T HURT A FLY, COULD BEHAVE VERY DIFFERENTLY WHEN LEFT IN THE DARK WITH A BEAUTIFUL GIRL...

Hey, REREKOOOOO...

AIEEEE!
ARRRRRGGH!!!!

CRASH!

BANG!

AAAHH!
SORR...SORRY!
REREKO! OUCH!

ENOUGH! WHAT ARE YOU DOING PLAYING AROUND WITH THE FLASHLIGHT YOU JUST BOUGHT?!

THIS FLASHLIGHT IS ACTUALLY AN ELECTRIC DEVICE WITH THE MOST BASIC ELECTRIC CIRCUIT.

AN ELECTRIC CIRCUIT IS A PATH THROUGH WHICH ELECTRICITY FLOWS. IT IS ALSO REFERRED TO SIMPLY AS A CIRCUIT.

HEE HEE! I'M SORRY!

ELECTRIC CIRCUIT?

HMMM...
A FLASHLIGHT'S CIRCUIT

THE INSIDE OF A FLASHLIGHT LOOKS SOMETHING LIKE THIS...

IT'S SO SIMPLE!

A FLASHLIGHT CONSISTS OF ELECTRICAL COMPONENTS CALLED BATTERIES, A MINIATURE LIGHT BULB, AND A SWITCH.

SWITCH

LIGHT BULB

OKAY...

A BATTERY IS A PRODUCT THAT HAS VOLTAGE (THAT IS, A POTENTIAL DIFFERENCE).

WATER PUMP = BATTERY

IF WE THINK ABOUT IT IN TERMS OF WATER, A BATTERY CORRESPONDS TO A WATER PUMP THAT DRAWS WATER UP OUT OF A WELL.
So without a battery, no electricity would flow, right?

That's right!

In an electric circuit, this is called the power supply.

The bulb is the part that emits light when the current is flowing.

In terms of water, the bulb corresponds to a water wheel that spins based on the water current.

I see...

The switch is the part that lets electricity flow or stops it from flowing, depending on the contact.

The contact allows electricity to flow when the metal parts are touching.

I can picture that...
When the switch is closed, current leaves the positive pole of the battery, passes through the miniature bulb and switch, and returns to the negative pole.

The path through which this current flows is called an electric circuit, which always has a closed form (closed circuit).

Parts of an Electric Circuit

The voltage of the power supply is called the power supply voltage or electromotive force.

When current flows, the load converts electrical energy to light or heat energy—that is the work the battery did on the bulb.

I see! In the flashlight, the light bulb is the load, right?

That's right!

The load also has a property that hinders the flow of current. This is called electric resistance.
The light bulb is the load, which you say has electric resistance...

Resistance is represented by units called ohms (Ω).

What a weird symbol!

An electric circuit consists of three elements as shown here: power supply voltage, current, and electric resistance.

The light bulb has a resistance that converts electric energy to light energy. An electric heater, for example, has a resistance that converts electric energy to heat energy.

We get a variety of effects from resistance, don't we?

That was so warm...

We sure do!
WHAT POWER SUPPLIES BESIDES BATTERIES COME TO MIND?

THE ELECTRIC...UH... OUTLET?

HMM... ER...

THAT'S RIGHT!

BUT ELECTRICITY FLOWS QUITE DIFFERENTLY IN A BATTERY AND AN ELECTRIC OUTLET.

THAT ISN'T AN ELECTRIC OUTLET... IT'S A PLUG.

FOR A CIRCUIT THAT USES A BATTERY AS THE POWER SUPPLY, THE CURRENT DIRECTION IS ALWAYS THE SAME, AND ITS SIZE IS CONSTANT.

THE DIRECTION AND SIZE OF THE CURRENT ARE ALWAYS FIXED.
WHEN THE DIRECTION OF THE FLOW OF ELECTRICITY AND THE SIZE OF THE CURRENT ARE FIXED, IT IS CALLED DIRECT CURRENT. A CIRCUIT IN WHICH DIRECT CURRENT FLOWS IS CALLED A DIRECT CURRENT (DC) CIRCUIT.

THE BATTERY SENDS OUT DIRECT CURRENT ELECTRICITY, DOESN'T IT?

DIRECT CURRENT

RIGHT... AND THAT KIND OF POWER SUPPLY IS CALLED A DIRECT CURRENT (DC) POWER SUPPLY.

BUT THE ELECTRICITY FROM AN ELECTRIC OUTLET IS NOT DIRECT CURRENT?

THE ELECTRICITY FROM AN ELECTRIC OUTLET IS CALLED ALTERNATING CURRENT, BECAUSE ITS DIRECTION IS ALWAYS CHANGING.

YEP! THE DIRECTION THAT IT FLOWS CHANGES 50 OR 60 TIMES PER SECOND, AND ITS SIZE ALSO VARIES ACCORDING TO A REGULAR WAVEFORM.

YOU MEAN THE DIRECTION THAT IT FLOWS VARIES?
THE NUMBER OF WAVES REPEATED IN ONE SECOND IS CALLED THE FREQUENCY. THIS IS REPRESENTED BY THE SYMBOL F AND IS MEASURED IN HERTZ (Hz).

SO, IF THE DIRECTION THAT THE CURRENT FLOWS CHANGES 50 TIMES PER SECOND, IT'S 50 HERTZ, AND IF IT CHANGES 60 TIMES PER SECOND, IT'S 60 HERTZ?

THAT'S CORRECT! IN EASTERN JAPAN AND MOST OF EUROPE, 50 Hertz IS USED, AND IN WESTERN JAPAN AS WELL AS AMERICA, 60 Hertz IS USED.

HUUH? DIFFERENT FREQUENCIES ARE USED IN THE SAME COUNTRY?

IT'S TRUE. THIS IS BECAUSE WHEN ALTERNATING CURRENT POWER PLANTS WERE FIRST BUILT IN JAPAN, THE AMERICAN FORMAT WAS USED IN WESTERN JAPAN...

...AND THE GERMAN FORMAT WAS USED IN EASTERN JAPAN.
INCIDENTALLY, IF YOU ARE SHOCKED BY ALTERNATING CURRENT, YOU'LL FEEL A TINGLING SENSATION...

IF YOU ARE SHOCKED BY DIRECT CURRENT, YOU'LL FEEL A PRICKING PAIN, LIKE BEING STUCK WITH A NEEDLE.

THIS IS BECAUSE THE SIZE AND DIRECTION OF THE CURRENT ARE CHANGING.

HMMM. DIRECT CURRENT AND ALTERNATING CURRENT EVEN FEEL DIFFERENT IF YOU GET SHOCKED BY THEM! THAT'S REALLY INTERESTING...

WHAT IF I PUT DIRECT CURRENT OR ALTERNATING CURRENT ON THIS SABER OF MINE?

SO! IN THAT CASE, MISS REREKO...

YIKES! HIKARU SENSEI... PROTECT ME!

NOOOO!

DUN. DUN. DUUUM!
OHM'S LAW AND METHODS OF CONNECTING ELECTRICAL COMPONENTS

When there is a big difference in water pressure, the force of flowing water increases and causes a water wheel to rotate vigorously. With electricity, the higher the voltage, the more current will flow.

If this water wheel were larger, the water flow would slow down, and the quantity of water that flows per second would be reduced, right?

In the same way, the larger the electric resistance, the more the current flow is reduced.

Electricity flows according to a certain law.

I get it!

Okay, right.

What law is that?
If current is represented with I (amperes), voltage is represented with V (volts), and resistance is represented with R (ohms), then the relationship $I = \frac{V}{R}$ holds.

See, the current I is directly proportional to the voltage V and inversely proportional to the resistance R.

This is called Ohm's law.

This is the most important and basic property in electric circuits.
THERE ARE TWO MAIN CONNECTION METHODS USED IN ELECTRIC CIRCUITS.

SERIES CONNECTIONS FOR CONNECTING TWO RESISTANCES IN A LINE...

AND PARALLEL CONNECTIONS FOR CONNECTING TWO RESISTANCES SIDE BY SIDE.

HOW DO THEY DIFFER?

THE WAY IN WHICH CURRENT FLOWS AND THE WAY IN WHICH VOLTAGE IS APPLIED BOTH DIFFER.

SERIES CONNECTION

CURRENT FLOWS WITH THE SAME SIZE

RESISTANCE 1 RESISTANCE 2

CURRENT OF POWER SUPPLY = CURRENT OF RESISTANCE 1 = CURRENT OF RESISTANCE 2

VOLTAGE OF POWER SUPPLY = VOLTAGE OF RESISTANCE 1 + VOLTAGE OF RESISTANCE 2

PARALLEL CONNECTION

BRANCH

RESISTANCE 1

RESISTANCE 2

CONFLUENCE

CURRENT OF POWER SUPPLY = CURRENT OF RESISTANCE 1 + CURRENT OF RESISTANCE 2

VOLTAGE OF POWER SUPPLY = VOLTAGE OF RESISTANCE 1 = VOLTAGE OF RESISTANCE 2
When there are multiple resistances in a circuit, we can consider them as a single effective resistance.

So in this case, two are considered as one.

The effective resistance in a series connection is obtained by adding the two resistance values.

Effective resistance = \(R_1 + R_2 \)

How about in a parallel connection?

Obtaining the effective resistance in a parallel connection is a little more complicated.

We obtain it like this.

We simply add them like this.

Sum of the reciprocals of each resistance

The sum of the reciprocals?
IF WE REPRESENT IT IN A FORMULA, IT LOOKS LIKE THIS:

\[
\text{Effective Resistance} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 \times R_2}{R_1 + R_2}
\]

(PRODUCT OVER SUM)

WELL, LET'S GET A FEEL FOR IT FIRST, OKAY?

GRRRR! IT CERTAINLY IS COMPLICATED.

IF TWO IDENTICAL LIGHT BULBS ARE CONNECTED IN SERIES, THE RESISTANCE VALUE IS DOUBLED, RIGHT?

TO GET THE SAME BRIGHTNESS IN BOTH BULBS AS WHEN ONE BULB IS CONNECTED, WE MUST DOUBLE THE VOLTAGE.

IN THIS CASE, SINCE THE CURRENT IS HALVED, THE BRIGHTNESS OF EACH BULB IS DIMMER THAN WHEN JUST ONE BULB IS CONNECTED.

SERIES AND PARALLEL CONNECTIONS 71
If we connect the bulbs in parallel, the same voltage is applied to each bulb, and since the same current is flowing, the brightness does not change. However, the total current is doubled.

Even though the current branches, the current flowing to a single bulb is the same.

In other words, we need a power supply that makes twice as much current flow.

A household electric appliance also acts as a resistance. We can connect many of them in parallel to a 120V power supply from the breaker.

These connection methods each have special characteristics, don't they?

Therefore, a voltage of 120V is applied to every electric appliance.

I get it!
ELECTRIC CIRCUITS AND CURRENT

The electrical parts that make up a flashlight are the batteries, a miniature light bulb, and a switch. A battery has the ability to make electrical current flow, so it is called the power supply. The light bulb is a part that emits light when current flows through it. The switch is a part that lets electricity flow or stops it according to the opening and closing of a contact.

When the switch is closed, current leaves the positive pole of the battery, passes through the light bulb and switch, and returns to the negative pole. The path through which current flows in this way is called an electric circuit, which always has a closed form (a closed circuit).

GRAPHICAL SYMBOLS

A basic electric circuit consists of three elements: power supply voltage, current, and electrical resistance. These elements are connected by electric wires.

The power supply voltage that does the work of making current flow is called the electromotive force. The element that converts electric energy to light or heat when current flows is called the load (loads can also convert electrical energy into other things like sound or motion). The load has a property that hinders the flow of current, and this is called electric resistance or simply resistance. Resistance is represented by the symbol \(R \) and measured in ohms (\(\Omega \)), which come from the name of the German physicist Georg Simon Ohm.
Creating a realistic drawing of an electric circuit takes time and effort. Therefore, graphical symbols are generally used to draw a representation. Using standard graphical symbols enables anyone to easily understand a circuit diagram that was drawn by someone else.

![Electric circuit and graphical symbols]

Appliances that use electric resistance include electric heaters and toasters. The electric heating element used in these appliances is the part that converts electrical energy to heat energy when current flows through the electric resistance. Note that the electric wire used in these appliances also has electric resistance; although it is only a small amount of resistance, when current flows through the electric wire, heat is generated.

DIRECT CURRENT CIRCUIT AND ALTERNATING CURRENT CIRCUIT

The direction the current flows in a circuit that has a battery as the power supply is fixed, and the size of the current is also constant. When the direction of the flow of current and the size of the current are fixed, we call the electricity direct current (DC). A circuit in which direct current flows is called a direct current (DC) circuit. A power supply that sends out direct current, such as a battery, is called a DC power supply. A size D or size AA battery has a DC 1.5V power supply voltage.
On the other hand, the direction of flow and size of the current sent from the electric power company to a home changes cyclically. This kind of electricity is called alternating current (AC), and a circuit in which alternating current flows is called an alternating current (AC) circuit. The direction that this electricity flows changes 50 or 60 times per second, and its size also varies cyclically with time. The number of waves repeated in one second is called the frequency, which is represented by \(f \) and measured in hertz (Hz).

The size of AC voltage at any given time is called the instantaneous voltage, and the largest value among the instantaneous voltages is called the peak voltage. The size of the AC voltage that will perform the same amount of work as a DC voltage is called the effective voltage. The AC voltage that comes to an electric outlet in a home is generally 120V in the United States, but this is the effective voltage. The peak voltage is approximately 170V.
The current that flows in a circuit is directly proportional to the voltage and indirectly proportional to the resistance. This relationship is called Ohm’s law and can be expressed in a formula as \(I = \frac{V}{R} \). This is the most important and basic property in electric circuits.

For example, if a voltage of 120V is applied to a resistance of 120Ω, the current will be \(I = \frac{V}{R} = \frac{120}{120} \), and 1A of current will flow. Whenever you know two values among the current, voltage, and resistance in a circuit, you can use Ohm’s law to calculate the value you don’t know.

\[
\text{Ohm’s law: } I = \frac{V}{R}
\]
Resistivity and Conductivity

Electric wire has a very low resistance and is used to connect circuit elements. When a small amount of current flows through wire, we can consider its resistance negligible. If a larger amount of current flows through a wire than can do so safely, heat will be generated.

Resistance (R) is a measure indicating the difficulty of the flow of current. The resistance (measured in ohms) of a conductor with length L meters and cross-sectional area A square meters can be represented by \(R = \rho \times \frac{L}{A} \).

Resistivity measures how much a material opposes the flow of current and can be used to determine a wire's resistance. Resistivity, represented by the symbol \(\rho \), is a material-specific resistance value and is measured in ohm meters (\(\Omega \cdot m \)). From this equation it is apparent that for the same material, the size of the resistance is directly proportional to the length and inversely proportional to the cross-sectional area.

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity ((\Omega \cdot m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>(2.22 \times 10^{-8})</td>
</tr>
<tr>
<td>Silver</td>
<td>(1.59 \times 10^{-8})</td>
</tr>
<tr>
<td>Copper</td>
<td>(1.69 \times 10^{-8})</td>
</tr>
<tr>
<td>Aluminum</td>
<td>(2.27 \times 10^{-8})</td>
</tr>
<tr>
<td>Nichrome</td>
<td>(107.5 \times 10^{-8})</td>
</tr>
</tbody>
</table>

Conductance (G), in contrast to resistance, is a measure indicating the ease of the flow of current and is measured in siemens (S). Conductivity, represented by the symbol \(\sigma \), is the reciprocal of resistivity, and it is measured in siemens per meter (S/m). (The siemens, named for German inventor Ernst Werner von Siemens, is an inverse ohm; it is also sometimes called a mho and can be represented by the symbol \(\Omega^{-1} \)).

\[\text{Conductivity is } \sigma = \frac{1}{\rho} \]

\[R = \rho \times \frac{L}{A} \]
There are two basic methods of connecting electrical components. Let's look at them both with respect to resistance. When there are multiple resistances in a circuit, we can consider them as a single effective resistance.

The method of connecting resistances in a line is called a series connection. We calculate the value of the effective resistance in a series connection by totaling the individual resistance values.

Effective resistance = \(R_0 = R_1 + R_2 + \ldots + R_n \)

In this connection, the size of the current that flows in each resistance is the same. The power supply voltage is voltage divided by each resistance.

If two light bulbs of the same size are connected in series to a power supply, the current will be halved, and the brightness of each bulb will be dimmer than it was when just a single bulb was connected, because the effective resistance is doubled. At this time, the voltage at both sides of each light bulb will be half the value of the power supply voltage.
The other basic method of connecting resistances is called a parallel connection. At this time, the value of the effective resistance can be obtained by calculating the reciprocal of the sum of the reciprocals of each resistance.

$$\text{Effective resistance } = R_0 = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_n}}$$

The total resistance when two resistances are connected in parallel can be obtained as follows.

$$\text{Effective resistance } = R_0 = \frac{R_1 \times R_2}{R_1 + R_2} \quad \text{(Product over sum)}$$

In a parallel circuit, the voltage applied to each resistance is the same, because the current branches and flows to each resistance.
If two light bulbs of the same size are connected in parallel to a power supply, the brightness of each bulb is the same as it is when there is only one bulb. Since the current flowing to each bulb is the same as the current flowing when only one bulb is connected, the total current is doubled.

Series connection of light bulbs

The 120V electric appliances that we use in our homes are connected in parallel to a 120V power supply. If we increase the number of electric appliances connected to the power supply, the total current flowing also increases.
3

HOW DOES ELECTRICITY WORK?
WHY DOES ELECTRICITY PRODUCE HEAT?

SO, HOW'S IT GOING?

ARE THE LESSONS GOING WELL?

THEY'RE GREAT!

SPENDING SOME TIME ON EARTH SEEMS LIKE IT WAS THE PERFECT THING FOR YOU NOW, DOESN'T IT?

YES! BY PROPERLY REVIEWING THE BASICS HERE, I WILL REGAIN MY HONOR IN ELECTOPIA!

REGAIN?

HIKARU SENSE! AND I HAVE REALLY HIT IT OFF!

YOU NEVER HAD ANY HONOR IN THE FIRST PLACE!

JEEZ! THAT WAS ROUGH.
AH!

There's Hikaru Sensei! I've gotta run...

Keep up the good work, okay?

Hi, Hika...

Rereko! I've been searching everywhere for you! Uh, why don't you continue your ventriloquism practice in the lab?

Fine, fine!! Just come inside!

Excuse me? Have you forgotten that Yonosuke is a transdimensional walkie-talkie and an observation robot?

Jeez, simmer down!

Electricity and Joule Heat 83
This is the lab for my seminar.

It's much neater than your apartment, that's for sure!

Well... it's not just my apartment, now, you know...

Oh! I brought you some lunch!

It's not so unusual to see people talking on the phone, but, talking with a doll? That's a little...

...weird?

Well, you took the trouble to come here, so should we study a little?

Absolutely!

Thanks... and from now on, please only communicate with Yonosuke indoors, okay?
REREKO... WHAT IS THIS?

MOMENCHO! IT'S AN ORDINARY HOME-COOKED MEAL IN ELECTORIA.

IT'S SCARY TO THINK THAT I MIGHT GET USED TO THIS KIND OF COOKING...

SINCE IT'S LUNCHTIME, LET'S LEARN ABOUT CALORIES—THEY ARE USED FOR MEASUREMENTS IN FOOD!

A CALORIE IS A MEASUREMENT OF HEAT.

JUST LIKE HOW HEAT IS PRODUCED WHEN FOOD IS DIGESTED...

...HEAT IS ALSO PRODUCED WHEN ELECTRICITY FLOWS THROUGH AN ELECTRIC RESISTANCE.

HUH?
That heat is called joule heat.

We can find the amount of heat produced when current flows through resistance for seconds by calculating \(I^2 \times R \times t \). The symbol \(Q \) is used to represent heat, and we measure it in joules.

The amount of heat required to raise 1 gram of pure water from 14.5°C to 15.5°C at 1 atmospheric pressure is approximately 4.2 J, and this corresponds to 1 calorie.

So you can convert measurements between joules and calories!
HOW IS HEAT GENERATED BY CURRENT?

THE ATOMS THAT MAKE UP A SUBSTANCE ARE ALWAYS VIBRATING.

BUT... WHY DOES ELECTRICITY GENERATE HEAT?

THE ATOMS ARE JIGGLING...!!

TEMPERATURE CORRESPONDS TO THE MAGNITUDE OF THERMAL VIBRATIONS. WHEN AN OBJECT IS HEATED, ITS ATOMS VIBRATE MORE.

WOW! THEN IF THERE IS NO THERMAL VIBRATION, WILL THERE NO LONGER BE TEMPERATURE?

THAT'S RIGHT! THE TEMPERATURE AT WHICH THERE IS NO THERMAL VIBRATION IS CALLED ABSOLUTE ZERO, WHICH CORRESPONDS TO -273.15°C.

HAMMERING A NAIL...

WITH A FROZEN BANANA!

WOW! THAT'S ONE COLD BANANA!
We recently talked about the load having a property called electric resistance, which hinders the flow of current.

Actually, that property is due to the vibration of the atoms.

Of course! If an atom is vibrating, it’s harder for electrons to move around!

Electric wire has electric resistance at normal temperatures—even if it’s just a small amount.

Okay, I get that...

This phenomenon is called superconductivity.

When the temperature of some materials, such as aluminum, drops near absolute zero, the atoms reach a state of rest. At this point, electrons are able to move freely without colliding with the atoms—that is, there is no resistance at all.

Sweet! That sounds so cool!
When current flows in aluminum wire at a normal temperature, electrons violently collide with aluminum atoms, creating larger thermal vibrations and generating heat.

So at normal temperature, the thermal vibration increases.

Yep! And as the vibration of the atoms increases, the electrons can no longer move smoothly, so the electric resistance also increases.

If electrons collide with atoms causing the vibration to increase, electric resistance will also increase.

Generally, as the temperature of a metal increases, resistance also increases.

High temperature = High resistance

Low temperature = Low resistance

For example, think about walking around inside a train...

When the humidity drops, the resistance also decreases.

A train?
IF THE PEOPLE AROUND YOU ARE STANDING STILL WHEN YOU ARE TRYING TO WALK, YOU CAN MOVE EASILY, BUT...

...IF EVERYONE AROUND YOU IS ALSO MOVING, YOU WILL BUMP INTO THEM, AND YOU WON'T BE ABLE TO MOVE EASILY, RIGHT?

I'M THE ELECTRON, AND THE PEOPLE AROUND ME ARE THE ATOMS, AREN'T THEY?

EXACTLY! IF YOU TRY TO KEEP MOVING WHEN THE PEOPLE AROUND YOU ARE ALSO MOVING, YOU WILL BUMP INTO THEM, MAKING EVERYONE MOVE AROUND EVEN MORE!

THERMAL EMISSION AND LUMINESCENCE

AT THIS TIME, INFRARED RAYS THAT ARE INVISIBLE TO THE NAKED EYE ARE EMITTED.

WHEN CURRENT FLOWS THROUGH A RESISTANCE AND THE TEMPERATURE RISES, HEAT IS GENERATED.

I SEE...
INFRARED RAYS, WHICH ARE ALSO CALLED HEAT RAYS, ARE A TYPE OF WAVE CALLED AN ELECTROMAGNETIC WAVE.

ARE THERE OTHER KINDS OF ELECTROMAGNETIC WAVES?

YEP! THEY'RE DIVIDED LIKE THIS, ACCORDING TO THEIR WAVELENGTH.

EVEN IN VISIBLE LIGHT, WHICH WE CAN SEE WITH OUR EYES, THE COLOR VARIES WITH THE WAVELENGTH.

IF THE TEMPERATURE RISES FURTHER, VISIBLE LIGHT WILL BE EMITTED.

AT FIRST, INFRARED RAYS ARE Emitted.
THIS PHENOMENON, IN WHICH THE TEMPERATURE OF A SUBSTANCE INCREASES AND THERMAL ENERGY IS Emitted AS ELECTROMAGNETIC WAVES, IS CALLED THERMAL EMISSION. IT IS THE PRINCIPLE OF LIGHT EMISSION IN LIGHT BULBS.

IT'S ALSO WHY IT GETS PRETTY WARM NEAR A LIGHT BULB!

THERMAL EMISSION PRODUCES RED LIGHT AT A LOW TEMPERATURE, WHICH CHANGES TO BLUSH WHITE LIGHT AS THE TEMPERATURE RISES.

THAT ALSO HAPPENS AS A DESK LAMP GETS BRIGHTER.

ACTUALLY, LIGHT EMISSION DUE TO THERMAL EMISSION MOSTLY ENDS UP BECOMING HEAT, SO IT'S INEFFICIENT TO USE IT AS LIGHT.

ONE TYPE OF LIGHT EMISSION THAT ISN'T THERMAL EMISSION IS CALLED LUMINESCENCE. IT IS USED IN FLUORESCENT LIGHTS.

IS THAT RIGHT?

WOW!
It's more efficient because its energy loss due to heat is small.

But what makes a fluorescent light shine?

For the same electric power consumption, a fluorescent light emits more than four times the light of a regular light bulb.

Well, we should put fluorescent bulbs in all of our lamps!

That's not a bad idea...

So now you've learned that light-emitting phenomena include thermal emission...

Four times as much?!!

And luminescence, right?

Yep! I got it!
CURRENT AND MAGNETIC FIELDS

IT'S A MAGNET?

THAT'S RIGHT.
ELECTRICITY AND MAGNETISM ARE INSEPARABLY BOUND TOGETHER.

I'LL USE THIS FOR MY NEXT EXPLANATION...

AND SPRINKLE IRON FILINGS FROM ABOVE...

IF I PLACE A TRANSPARENT PLASTIC SHEET OVER THE MAGNET...

THAT'S AN AWESOME PATTERN!

COOOOOOOOOL..! ISN'T IT?
These lines leaving the magnetic poles are called magnetic fields. They go from the north (N) pole to the south (S) pole.

So the poles determine the direction.

Actually, the earth itself is like an enormous magnet. Its magnetism is called geomagnetism.

Gosh! The scale is so big!

This works because of geomagnetism.

That's right! This compass points north and south due to geomagnetism.

A compass? Oh... of course.
MAGNETIC FIELDS ARE GENERATED WHEN CURRENT FLOWS IN ELECTRIC WIRE. THIS PHENOMENON IS EXTREMELY IMPORTANT WHEN USING ELECTRICITY, AND MANY ELECTRICAL APPLIANCES MAKE USE OF IT!

MAGNETIC FIELDS ARE GENERATED IN A CIRCULAR PATTERN AROUND THE WIRE.

This is called Ampère's Law. You can remember how it works using your right hand.

DIRECTION OF CURRENT

IF I POINT MY RIGHT THUMB IN THE DIRECTION OF THE CURRENT, MY FINGERS CURL IN THE DIRECTION THE MAGNETIC FIELD IS GENERATED.
IF CURRENT OF THE SAME SIZE FLOWS IN THE SAME DIRECTION IN TWO ELECTRIC WIRES PLACED SIDE BY SIDE, TWO THINGS HAPPEN...

MAGNETIC FIELDS

...THE TWO MAGNETIC FIELDS GENERATED IN THE TWO WIRES ARE COMBINED TO FORM ONE LARGE MAGNETIC FIELD. THIS ALSO WORKS FOR MORE THAN TWO WIRES.

MAGNETIC FIELDS

ADDITIONALLY, A FORCE OF ATTRACTION IS GENERATED THAT CAUSES THE TWO ELECTRIC WIRES TO ATTRACT EACH OTHER.

WELL, WHAT HAPPENS IF THE DIRECTION OF THE CURRENT ISN'T THE SAME IN both WIRES?

IN THAT CASE, A FORCE OF REPULSION IS GENERATED IN the WIRES, AND THE MAGNETIC FIELDS NEGATE EACH OTHER.

I CAN'T SEE...

THAT'S RIGHT!
FLEMING'S LEFT-HAND RULE

FOR DC MOTORS

Hikaru Sensei!! Of course!

You're throwing paper, scissors, and rock! It's unbeatable!

Rereko, do you know what this means?

No...I don't mean that rock, paper, scissors trick.

If a conductor is placed into a magnetic field and current flows, force is exerted on the conductor and it moves according to Fleming's left-hand rule.

When your left hand is bent in this shape...

Conductor moves in this direction

Magnetic field points north to south in this direction

Current flows in this direction

This rule says that the index finger points in the direction of the magnetic field (N to S), the middle finger points in the direction the current moves, and the conductor moves in the direction indicated by the thumb, as a result of a force acting in the same direction.
If current flows in a conductor between the north (N) and south (S) poles, the conductor receives thrust upward.

A DC motor turns by using this force.

This is a really handy way to remember the rule!

Can you use Fleming's left hand rule to see why a DC motor spins? First, consider the left side of the loop—the current is flowing towards the battery, making the force on the loop upward. In the right side of the loop, current is flowing away from the battery, creating a downward force.

The loop will keep spinning in this direction because the contact switches when the loop becomes vertical (which means the direction of the forces will not change).
Fleming's Right-Hand Rule (for Generators)

Fleming also has a right-hand rule!

What does that rule say?

If a conductor moves between the poles of a magnet, the conductor crosses through a magnetic field.

Okay...

An action that causes electricity to flow, which is called the electromotive force, is generated in the conductor at this time, and current flows.

The flow of that current is in the direction of the middle finger of the right hand, the direction of the magnetic field is the direction of the index finger, and the direction of movement of the electric wire is the direction of the thumb.
This is Fleming's right-hand rule.

We apply a force to make the coil spin.

When a generator creates electricity, we simply consider one side of the loop (the left side, above), and we can determine the direction of the current using Fleming's right-hand rule.

We'd better not mix up our left and right hands!

We can use the right-hand rule to determine the direction of the current created by an electric generator...

...and use the left-hand rule to figure out the direction that a motor turns.
WHY DON'T WE STOP HERE FOR TODAY?

HORAY!

Hey, what's up?

Hikaru... are you playing around in the lab?

Oh! Hellooo!

No, we're not playing...

WOW! You brought your little girlfriend to the lab!

Girlfriend? I'm not...

You're totally wrong!!! She's my cousin!

OoOoOoKay... anything you say...

Huh?

It's true! You've totally misunderstood!
WELL...ER...
WE'RE HEADING
OUT NOW...

OKAY...
LATER, DUDE...

SLAM!

HUH?

WHAT'S THIS?
STUPID HIKARU
FORGOT HIS
LUNCH.

I WONDER
IF THAT KID
MADE IT!

POPI!

THERE'S SOME
LEFT. I GUESS I'LL
EAT IT, SINCE I
WOULDN'T WANT IT TO
GO TO WASTE...

WHAT WAS
THAT?!?!
Heat that is produced when current flows through an electric resistance is called joule heat. For example, the amount of heat produced when current I flows through resistance R for t seconds can be obtained by calculating $I^2 \times R \times t$. The amount of heat is represented by the symbol Q and is measured in joules (J), which are named after the English physicist James Prescott Joule. One joule corresponds to the electric power consumption of 1Ws (watt second) — and one joule is equivalent to a kg \times m2 / s2. The amount of heat required to raise 1 gram of pure water from 14.5°C to 15.5°C at 1 atmosphere of pressure is approximately 4.2J, and this is equivalent to 1 calorie (cal).

THERMAL VIBRATION

What is heat? The atoms that make up a substance are always vibrating, and this is called thermal vibration. The magnitude of the thermal vibration in a substance is directly related to the magnitude of the temperature of that substance — this thermal vibration of atoms is the true nature of heat.

If the atoms in a substance are not vibrating, that substance will have no temperature—that temperature is called absolute zero, which is equal to -273.15°C.

Even when copper wire, which is used for electric wire because of its low resistance, is at normal temperatures, the vibration of the copper atoms resists the movement of electrons, creating additional heat and additional resistance.

However, if the temperature of a material drops to near absolute zero, the vibrations of the atoms become very small. In such a state, electrons can travel much more easily — in other words, the material’s resistance decreases. In some materials, such as aluminum, if the temperature becomes low enough, the electrons can move without...
being obstructed by the atoms at all! When a material’s resistance becomes zero, we call the phenomenon superconductivity.

Many metals are found to naturally superconduct when they are cold enough, but most need to be near absolute zero. However, since it is extremely difficult to actually lower a substance’s temperature near absolute zero, research is being conducted on superconductivity phenomena that occur at temperatures much higher than absolute zero, a field called high-temperature superconductors. Someday, materials like these may be used to send electricity to homes everywhere without current loss due to joule heating.

In wires at normal temperatures, electrons will violently collide with other atoms, which creates even more thermal vibrations—that is, more heat. As a wire heats up, its resistance increases. Conversely, as its temperature decreases, electric resistance decreases.
When current flows through a resistance and the temperature rises, heat is generated. At first, infrared rays that are invisible to the naked eye are emitted. Infrared rays, which are also called heat rays, are a type of electromagnetic wave—a wave that has thermal energy. Electromagnetic waves (in order of decreasing wavelength) include radio waves, infrared rays, visible light, ultraviolet rays, and X rays, among others. Radio waves are used for TV or radio broadcasting and communication for ships. The color of visible light varies with the wavelength—red light has the longest wavelength, and violet light has the shortest.

After infrared rays are emitted from a substance, visible light will be emitted if the temperature continues to rise. This phenomenon in which thermal energy is emitted as electromagnetic waves as the temperature of a substance increases is called thermal emission. This is the principle of light emission in light bulbs. Thermal emission produces red light at a low temperature, which changes to bluish white light as the temperature rises.

Light emission due to thermal emission mostly ends up becoming heat, so it is inefficient to use it as light. Light emission in which the emitter does not need to be heated is called luminescence; it is the principle used in fluorescent lights. In a fluorescent light, electrons that escape from the filament collide with mercury vapor inside the fluorescent tube; the ultraviolet rays that are generated at that time excite the fluorescent substance on the inner surface of the fluorescent tube and become visible light. The light emission of a fluorescent light is very efficient—for the same electric power consumption, it emits more than four times the light that a regular light bulb emits.

Light-emitting phenomena include thermal emission and luminescence, as shown here.
ELECTRICITY AND MAGNETISM

If iron filings are sprinkled on a sheet of paper placed over a bar magnet, a pattern of lines is produced. These lines originate from the north (N) pole and lead toward the south (S) pole; they are called a magnetic field.

Magnetic fields are also generated when current flows. This phenomenon is extremely important when using electricity, and many common electrical appliances make use of it.

When current flows in an electric wire, a magnetic field with a circular pattern is generated around that wire. This is called Ampère's law. The magnitude of this magnetic field varies according to the strength of the current; if the direction of the current changes, the direction of the magnetic field also changes.
If current of the same magnitude flows in the same direction in two electric wires placed side by side, the magnetic fields generated in each wire are combined to generate a magnetic field of twice the current around both conductors. At this time, a force of attraction is generated between the two electric wires. If current is flowing in opposite directions in two wires, a force of repulsion is generated between the wires. In this case, the magnetic fields around the wires negate each other and become smaller.

\[\text{A magnetic field with a circular pattern is generated when current flows.} \]

Ampère's law

\[\text{Forces generated when current flows in two conductors.} \]

The additive property of magnetic fields also holds true for more than two wires (for example, a coil). In this way, a large magnetic field can be generated.
If current flows in a conductor that is within a magnetic field, an *electromagnetic force* is generated on the conductor. *Fleming's left-hand rule* indicates an easy-to-remember relationship among the directions of the magnetic field, the current, and the movement of the conductor. This rule says that when you extend the thumb, index finger, and middle finger of your left hand so they are mutually perpendicular, the index finger points in the direction of the magnetic field, the middle finger points in the direction of the current, and the thumb points in the direction that the conductor moves (the direction of the electromagnetic force). The name of this rule comes from the name of the English electrical engineer John Ambrose Fleming who defined it. You can determine the direction of rotation of a motor by using Fleming's left-hand rule.
Fleming's right-hand rule and electric generators

You can determine the direction of the electromotive force created by an electric generator by using Fleming's right-hand rule. When a conductor moves between the poles of a magnet, the conductor crosses a magnetic field facing from the north (N) pole to the south (S) pole of the magnet; electromotive force is thus generated in the conductor, and current flows. Fleming's right-hand rule indicates an easy-to-remember relationship among the directions of the magnetic field, the movement of the conductor, and the current. When you extend the thumb, index finger, and middle finger of your right hand so they are mutually perpendicular, the index finger points in the direction of the magnetic field, the thumb points in the direction that the conductor moves, and the middle finger points in the direction of the current.

![Diagram of Fleming's right-hand rule](image)

Electricity generated by a generator

You must apply a force to keep the loop spinning within the magnetic field. This could be the force from falling water, like in a hydroelectric generator, or the force of pressurized steam, like in a coal power plant.

But why do Fleming's hand laws work? We can better understand why generators and motors work by understanding how magnetism and electricity are related.
ELECTRICITY AND COILS

An electric wire wound in loops is called a coil. If current flows in a coil, a magnetic field is generated that goes through the inside of the coil. If an iron core is inserted in the coil, the magnetic field is concentrated in the iron, and it becomes a strong electromagnet. The strength of an electromagnet is proportional to the product of the current and the number of loops in the coil; if the direction of the current is reversed, the polarity of the electromagnet is also reversed. If the current is stopped, the magnetic force of the electromagnet disappears.

Magnetic field created by a coil of electric wire

You can use your right hand to find the orientation of the magnetic field induced by a coil. Just curl your fingers in the direction the current flows in the coil, and your thumb will point towards the N pole of the induced magnetic field.

COILS AND ELECTROMAGNETIC INDUCTION

When a bar magnet moves within a coil, current flows in that coil, which creates a magnetic field in order to oppose the change in magnetism. If the direction of the bar magnet’s movement changes, the direction of the current in the wire also changes. This phenomenon is called electromagnetic induction, and the electricity that is generated during this process is called induced electromotive force. The current generated is called induced current.

Lenz’s law, discovered by the Russian physicist Heinrich Friedrich Emil Lenz, states that the current due to electromagnetic induction flows in a direction such that the magnetic field produced by that current obstructs the motion of the magnet.
If a bar magnet is inserted into a coil, a current is induced that opposes the magnetic field. If the bar magnet is withdrawn, that change will be opposed as well, creating an induced current in the opposite direction.

Electromagnetic induction

COILS AND INDUCTANCE

If a coil is connected to a battery and current begins flowing, the magnetic field generated becomes larger, and the coil becomes an electromagnet. At this time, an induced electromotive force is generated on the coil itself due to the varying magnetic fields. This is called self-induction or simply inductance.

When the current to the coil is cut off, the magnetic field begins to disappear, and an induced electromotive force is generated in the direction that obstructs the flow of current in the coil. This is called a counter-electromotive force. The counter-electromotive force can be easily verified. When a battery is connected to a coil and current flows, a magnetic field is generated. When the current is constant, no counter-electromotive force is generated, but when the battery is detached and the current is cut off, the magnetic field that was being generated becomes smaller. At this time, voltage due to the counter-electromotive force appears at both ends of the coil.

Self-induction of a coil

COILS AND ALTERNATING CURRENT

The magnitude of alternating current is always changing. If alternating current flows in a coil, an induced electromotive force is generated in the coil in the direction that obstructs the flow of the current, and current flows so that it lags behind the power supply voltage variation by one-fourth of a cycle. This is called the lagging current, and it flows in an electrical device such as a motor with a coil. This temporal lag is called a phase difference. The coil acts like a resistance to the current as described above. This is called inductive reactance, and its magnitude is proportional to the frequency of the alternating current.

Electric power consumption is represented by the product of voltage and current, and when the voltage and current waves match with respect to time, 100 percent work is done—in other words, “the power factor is 100 percent.” If the current lags, the power factor will be less than 100 percent, and the circuit is said to have a “low power factor.”

If the power factor is low, the electric power that is input from the power supply will not do 100 percent work, so a power supply having a correspondingly larger capacity is required. The ratio of the consumed power to the input power is the power factor.

\[
\text{Power factor} = \frac{\text{Consumed power}}{\text{Input power}}
\]

A low power factor means that some current returns to the power supply without doing work.

![Diagram of AC current flow in a coil](image)

Lagging current flowing in a coil
COILS AND TRANSFORMERS

If an AC power supply is connected to coil 1, a magnetic field is generated. When this magnetic field varies within coil 2, an induced electromotive force is generated in coil 2. This phenomenon is called mutual induction. A transformer is an electrical device that uses this phenomenon to change voltage.

If two coils are wrapped around an iron core, and an AC power supply is connected to coil 1, a magnetic field is generated and passes through the inside of the iron core. Since coil 2 has been wrapped around the same iron core, the magnetic field varies inside coil 2, and an induced electromotive force is generated in coil 2.

The power supply side of a transformer is called the primary side, and the load side is called the secondary side. The voltage generated on the secondary side is determined by the ratio of the number of turns \(n_1 \) of the primary coil and the number of turns \(n_2 \) of the secondary coil. For example, if the number of turns of the secondary coil is twice that of the primary coil, twice the voltage is generated on the secondary side. The current that flows...
in the secondary coil at this time will be half the current that flows in the primary coil. The equation that describes this relationship is:

\[V_1 I_1 = V_2 I_2 \]

The ratio of the primary voltage \(V_1 \) and secondary voltage \(V_2 \) is called the transformation ratio, and the product of the primary voltage and the current will be equal to the product of the secondary voltage and the current. In other words, a transformer only changes voltage—it does not change the magnitude of the electric power.

CAPACITORS

When an insulator is sandwiched between two metal plates and a battery is connected, electrons move from the negative pole of the battery to the bottom metal plate to charge it. Since the electrons in the top metal plate move to the positive pole of the battery, the top metal plate is positively charged. At this time, charge is stored on the metal plates. An object that stores charge in this way is called a capacitor.

Current flows from the instant the battery is connected, but eventually the electrons will stop moving, as charge builds on the capacitor. In other words, if a DC power supply is connected to a capacitor, current flows only at first and then stops because of the gap in the circuit. If the battery is detached in this state, the charge remains stored on the capacitor. If the battery is then connected in the reverse direction, the charge that had been stored discharges, and the capacitor is charged in the opposite direction.

The ability of the capacitor to store charge in this way is called capacitance: its magnitude is directly proportional to the area of the metal plate and inversely proportional to the distance between the metal plates. Capacitance is measured in farads (F).

CAPACITORS AND ALTERNATING CURRENT

If AC voltage is applied to a capacitor, a charged current flows until the power supply voltage reaches its maximum (starting from 0V). The current is zero at the power supply’s peak voltage. When the power supply voltage decreases from its peak voltage, discharging begins, and the discharge current reaches its maximum when the power supply voltage is 0V.
At this time, the polarity of the power supply voltage changes, and a current flows again. Charging stops when the power supply voltage reaches its peak voltage for the opposite polarity, and then discharging occurs again.

If a capacitor is connected to an AC power supply, the variation of the current is one-fourth of a cycle ahead of the variation of the power supply voltage; this current is called **leading current**.

A capacitor works like resistance to alternating current. This is called **capacitive reactance**, and its magnitude is inversely proportional to the frequency.

If an AC circuit has a coil, the current lags, and the power factor decreases. If a capacitor is connected to that circuit, the current leads, and the power factor increases.

In an AC circuit, capacitors and coils act like resistance, and are called **impedance**.
HOW DO YOU CREATE ELECTRICITY?
I'M HOME...

WELCOME BACK!

OR...UM...

I'M HUNGRY, LET'S EAT!

MMMM...DINNER!

ARE YOU READY TO EAT DINNER? OR DO YOU WANT TO TAKE A BATH FIRST?

I'M REALLY HAPPY WITH WHAT I MADE TONIGHT!

YOUR COOKING IS GREAT! BUT WHERE DO YOU COME UP WITH ALL THIS STUFF?
Well, it isn't terrible...

...you know, sometimes...

Whaat!!!?

Hee hee! I'm just joking!

No, it's plain to see! You are a freeloader!

I'm appalled by what you are suggesting...

A married couple...

When we finish eating, we'll start our lessons, okay?

Okay, fine.
EXAMPLES OF THINGS THAT CREATE ELECTRICITY ARE A POWER PLANT AND A BATTERY, RIGHT?

LIKE THERMAL POWER GENERATION OR HYDROELECTRIC POWER GENERATION...?

ELECTRICITY

ENERGY (THERMAL POWER, HYDRAULIC POWER, NUCLEAR POWER, ETC.)

AN ELECTRIC GENERATOR IS DRIVEN BY THE GENERATION OF NUCLEAR POWER OR OTHER KINDS OF ENERGY TO CREATE ELECTRICITY.

ON THE OTHER HAND, A BATTERY USES THE ENERGY OF A CHEMICAL REACTION.

A CHEMICAL REACTION?

WE'LL TALK ABOUT THAT IN MORE DETAIL LATER.
HOW DOES A POWER GENERATOR CREATE ELECTRICITY?

First, let's talk about electricity created by an electric generator. The other day, we talked about electricity being created according to Fleming's Right-Hand Rule.

Yes, but actually, since the loop of wire is rotating within the magnetic field, electricity is created for which both the magnitude and direction of flow vary repeatedly like a wave.

This is AC electricity, right?
IT'S RIGHT! IF THE ELECTRIC WIRE ROTATES WITHIN THE MAGNETIC FIELD, THE MAXIMUM ELECTROMOTIVE FORCE OCCURS AT THE LOCATION WHERE IT ROTATED 90 DEGREES.

AT THE 180-DEGREE LOCATION, THE ELECTROMOTIVE FORCE IS TEMPORARILY ZERO.

AT 270 DEGREES, IT IS AT ITS MAXIMUM AGAIN, AND AT THE END OF THE FIRST ROTATION, THE ELECTROMOTIVE FORCE IS ZERO AGAIN.

So the voltage varies like a wave.

IF WE LET 1 ROTATION OF THE LOOP OF WIRE BE COUNTED AS 1 WAVE, THEN WHEN THE LOOP ROTATES 60 TIMES PER SECOND, WAVES WILL ALSO OCCUR 60 TIMES PER SECOND.

60 ROTATIONS = 60 WAVES = 60 HZ

This is referred to as electricity with a frequency of 60 hertz.

I GET IT!
THE VOLTAGE OF AN ORDINARY HOUSEHOLD ELECTRIC OUTLET IS 120V AC.

This value is called the effective voltage. It is the voltage value for which the amount of heat that occurs when an AC power supply is applied to a resistance is the same as the amount of heat that occurs when a DC power supply is applied to the same resistance.

DIRECT CURRENT (DC)
120V

ALTERNATING CURRENT (AC)
120V

HUH?

SO YOU'RE SAYING THAT WHEN 120V DC AND 120V AC ARE EACH APPLIED TO THE SAME RESISTANCE, THE SAME HEAT IS PRODUCED.

YEAH, BUT ALTERNATING CURRENT HAS A WAVE...

PEAK VOLTAGE 170V
EFFECTIVE VOLTAGE 120V

Although the voltage (effective voltage) of the electric outlet is 120V AC, the voltage at the point where the wave has the greatest magnitude is called the peak voltage, and this is approximately 170V.
Let's talk about how to create electricity. Batteries are just one source of electricity. A more general term for these devices is voltaic cells.

YEP, I KNOW THAT.

We can broadly divide voltaic cells into chemical cells, which use a chemical reaction, and...

Physical cells, which use solar or thermal energy.

So there are two main types.

So chemical cells can further be divided into primary cells, which cannot be recharged, secondary cells, which can be recharged and repeatedly used, and fuel cells.
What about physical cells?

Two types of physical cells are solar batteries and thermopiles.

Here are the typical battery types.

There are so many!
The principle of a chemical cell...

Was discovered approximately 200 years ago by the Italian physicist Volta.

Volta discovered that electricity is generated by two different types of metals and...

A
Zinc plate, etc.

B
Copper plate, etc.

...a liquid through which electricity passes, which is called an electrolyte.

Hmm... I can't quite picture it...

Galvanic cell

A battery based on this kind of mechanism is called a galvanic cell.

Okay, I'll explain it a little more specifically.
Let's assume that a zinc plate and a copper plate, which are immersed in diluted sulfuric acid, are connected by a conductor. These two plates are called electrodes.

Since zinc ionizes more easily than copper does, the zinc atoms leave electrons on the zinc plate to become zinc ions (\(\text{Zn}^{2+}\)) and the zinc dissolves in the diluted sulfuric acid.

What is an ion?

An ion is an atom or molecule that is charged to a positive or negative state.

If it's positive, it's called a cation, and if it's negative, it's called an anion.
SO...

YOU'RE SAYING THAT...

THE ZINC THAT DISSOLVED IN THE DILUTED SULFURIC ACID IS A CATION BECAUSE ITS ELECTRONS WERE REDUCED.

CATION

THAT'S RIGHT.

ALTHOUGH THE COPPER PLATE ISN'T DISSOLVED AT ALL, THE NUMBER OF ELECTRONS INCREASES AT THE ZINC PLATE ACCORDING TO THE AMOUNT OF ZINC THAT DISSOLVED, AND THEY PASS THROUGH THE COPPER WIRE TO MOVE TO THE COPPER PLATE.

THE FLOW OF THOSE ELECTRONS IS THE CURRENT, ISN'T IT?

THAT'S RIGHT!
Although hydrogen ions H⁺ and sulfuric acid ions SO₂⁻ exist in the diluted sulfuric acid...

If zinc ions are produced there, the hydrogen, which has a weaker ionization tendency than zinc...

...unites with the electrons that moved to the copper plate and becomes hydrogen gas.

IF ELECTRONS ARE CONSUMED IN THIS WAY...

...and electrons move from the zinc plate to the copper plate...

ELECTRICAL ENERGY IS PRODUCED.

THE HYDROGEN GAS IS PRODUCED FROM THE COPPER PLATE!
A DRY CELL BATTERY, WHICH BASICALLY CONSISTS OF THREE ELEMENTS (MATERIALS FOR A POSITIVE AND A NEGATIVE POLE AND AN ELECTROLYTE), CREATES ELECTRICITY ACCORDING TO A CHEMICAL REACTION IN THE SAME WAY AS A VOLTAIC CELL.

BUT DRY CELLS ARE OFTEN SMALL, RIGHT?

WHAT HAPPENS TO THE ELECTROLYTE?

THE ELECTROLYTE IS ABSORBED IN COTTON OR PAPER OR MADE INTO A PASTE SO THAT IT IS EASY TO HANDLE.

IN A GALVANIC CELL, THE HYDROGEN GAS THAT IS GENERATED BY THE CHEMICAL REACTION GRADUALLY COVERS THE SURFACE OF THE COPPER PLATE TO CAUSE A REVERSE ELECTROMOTIVE FORCE TO OCCUR.

A REVERSE ELECTROMOTIVE FORCE...?
 DOES THE FLOW OF ELECTRICITY GET WEAKER?

SOMETHING CALLED POLARIZATION ACTS TO HINDER THE FLOW OF ELECTRICITY, WHICH CAUSES A DROP IN VOLTAGE TO OCCUR.

WHEN THIS OCCURS, IT CANNOT BE USED AS A BATTERY.

YEP!

I SEE.

THEREFORE, AQUEOUS HYDROGEN PEROXIDE IS USED AS AN OXIDIZING AGENT IN THE ELECTROLYTE TO OXIDIZE THE HYDROGEN GAS AND MAKE WATER.

WELL, IS A DEPOLARIZER ALSO PUT INTO A DRY CELL?

IT IS! MANGANESE DIOXIDE AND OTHERS ARE USED.

THIS OXIDIZING AGENT IS CALLED A DEPOLARIZER.
A material that causes an electrochemical reaction is called an active material.

In technical terms, a chemical cell creates electricity through a reduction-oxidation (redox) reaction of the positive pole and negative pole.

This is difficult for everybody, right?

What happens in a dry cell battery?

Now, let's look at the interior of a dry cell battery.

Since it's dangerous to perform an actual analysis, I'll use a diagram for my explanation.

A manganese dry cell battery consists of the positive pole compound, which is mixed manganese dioxide for the positive pole and a zinc chloride solution for the electrolyte, and a zinc can, which is the outer negative pole material.
There sure is a lot of stuff in there!

If a manganese dry cell is used continuously, the voltage is depleted quickly.

But if you give it a little rest, the voltage is restored, and the current can flow again.

Therefore, this type of battery is appropriate for a flashlight or a clock that operates with little electric power.

In an alkaline dry cell battery, manganese dioxide is used for the positive pole, zinc powder for the negative pole, and potassium hydroxide, which is a strong base, for the electrolyte.

So that's what its characteristics are...
Although the manganese dry cell and the alkaline dry cell look alike on the outside, their insides are rather different, aren't they?

In a manganese dry cell, the outer part is zinc and the inner part is manganese dioxide...

...but in the alkaline dry cell, the inner part is zinc and the outer part is manganese dioxide.

Since the alkaline dry cell is structured to contain a lot of manganese dioxide and zinc, it provides greater current and has a longer lifetime.

Therefore, an alkaline dry cell is suitable for the power supply of a device that requires a large current, such as a motor.

I see.

If it's given a rest, its voltage is restored.

Clock, flashlight, motor, digital camera, portable radio.

If you understand the characteristics of dry cells, you'll be able to use each type in exactly the right way.

That's true!
WATER AND FUEL CELLS

HAVE YOU EVER DONE AN EXPERIMENT PERFORMING ELECTROLYSIS ON WATER?

I DON'T REMEMBER WHAT WE DID VERY WELL, BUT...

WELL, LET'S REVIEW IT THEN.

THE ELECTROLYSIS OF WATER IS SIMPLY A MEANS OF PRODUCING OXYGEN AND HYDROGEN BY PASSING ELECTRICITY THROUGH WATER.

ELECTRICITY

WATER (H₂O)

OXYGEN (O₂) HYDROGEN (H₂)

SINCE PURE WATER HAS A LOW CONDUCTIVITY, WE'LL ADD A SUBSTANCE SUCH AS SODIUM HYDROXIDE IN OUR EXPERIMENT. THIS WILL SPEED UP THE DECOMPOSITION PROCESS.

AH! THAT'S THE STUFF THAT'S CALLED CAUSTIC SODA.
When electricity is passed through it, hydrogen and oxygen are produced at the respective electrodes, which are platinum or another non-corrosive metal.

Incidentally, in electrolysis, the electrode that the positive side of the power supply is connected to is called the anode...

If the power supply is removed from the electrolyzed aqueous solution...

...and a load is connected...

...and the electrode that the negative side of the power supply is connected to is called the cathode.

I see!
...The decomposed hydrogen and oxygen will combine to produce electricity, water, and heat. This is the principle of a fuel cell.

If we continue to supply hydrogen and oxygen, electricity will continue to be created.

That's amazing!

Therefore, hydrogen and oxygen are supplied in a fuel cell to create electricity.

It's oxygen to the anode, and hydrogen to the cathode.

The supplied hydrogen...

...is separated into a hydrogen ion and an electron by the catalyst of the cathode.
ANODES AND CATHODES

THE ELECTRON IS SENT OUT AS ELECTRICITY AND THE HYDROGEN ION MOVES TO THE ANODE.

At the anode, the platinum catalyst causes the hydrogen ion to react with the supplied oxygen, and water is produced.

MECHANISM OF A FUEL CELL

If only water is emitted after the electricity is created, it also seems to be good for the environment, right?

YUP.
There is no vibration or noise, and we can use a tool called a fuel reformer to extract the hydrogen that we need for the fuel from natural gas or methanol, and we can simply use oxygen from the atmosphere.

It looks like everybody wins!

If the waste heat is also used, it is very efficient, and since hydrogen fuel can be retrieved in various ways, resources can easily be guaranteed.

But... if these batteries are so great... how come I've never seen one?

They still cost too much right now, but it won't be long before they become more widely used.

You mean they might be used more widely in the near future?

That's right.
CREATING YOUR OWN COIN BATTERY

ONCE WE KNOW ABOUT THE CHEMICAL REACTION THAT A BATTERY USES, IT'S SIMPLE TO CREATE ONE OF OUR OWN.

ALL WE NEED IS TWO TYPES OF METAL AND AN ELECTROLYTE. WE CAN EVEN USE COMMON ITEMS THAT ARE CLOSE AT HAND.

IF WE JUST USE A PENNY (COPPER) FOR THE POSITIVE POLE, A FOLDED PIECE OF ALUMINUM FOIL FOR THE NEGATIVE POLE, AND INSERT A TISSUE THAT WAS SOAKED IN SALT WATER AS THE ELECTROLYTE BETWEEN THEM, WE HAVE A BATTERY!
IT'S THAT EASY?

BUT IF WE STACK A BUNCH OF THESE SETS TOGETHER SO THEY MAKE A SERIES CIRCUIT...

...ENOUGH ELECTRIC POWER WILL BE PRODUCED FOR A SMALL LIGHT-EMITTING DIODE (LED).

WELL, THE ELECTRIC POWER THIS BATTERY PRODUCES IS VERY WEAK.

...ENOUGH ELECTRIC POWER WILL BE PRODUCED FOR A SMALL LIGHT-EMITTING DIODE (LED).

AH!

THERMOPILES

ELECTRICITY CAN ALSO BE PRODUCED BY A SIMPLE MECHANISM OTHER THAN A CHEMICAL REACTION.

IS THAT SO?

METAL A

METAL B

I HAVE TWO TYPES OF METAL HERE.
IF WE CREATE A CIRCUIT BY JOINING BOTH ENDS OF THE TWO TYPES OF METAL AND LET THE JUNCTIONS HAVE DIFFERENT TEMPERATURES, CURRENT WILL FLOW.

LET'S SEE IT IN ACTION. IF WE WRAP A COPPER WIRE AROUND AN IRON NAIL AND HEAT ONE END OF THE NAIL WITH A FLAME, A SMALL AMOUNT OF ELECTRICITY WILL FLOW.

THIS PHENOMENON IS CALLED THE SEEBECK EFFECT.

A THERMOPILE IS A TYPE OF PHYSICAL CELL THAT USES THIS PHENOMENON.
The greater the temperature difference between the junctions, the greater the current that will flow. Current will continue to flow as long as there is a temperature difference.

If this is combined with an ammeter, it can also be used as a thermometer.

That's because we can tell the temperature applied to the thermocouple by checking the amount of current, right?

There is also a phenomenon that is the reverse of the Seebeck effect. If a DC current is connected to the thermocouples and current flows, the thermocouple at one side will absorb heat and the other one will generate heat.

Exactly!
WOW...SO WE SHOULD BE ABLE TO APPLY THIS TO WARM AND COOL OBJECTS, RIGHT?

RIGHT! THIS IS CALLED THE PELTIER EFFECT.

THE HEAT-ABSORBING SIDE OF A PELTIER DEVICE, WHICH IS A SEMICONDUCTOR DEVICE, IS USED IN AN APPLIANCE SUCH AS A SMALL REFRIGERATOR THAT DOES NOT NEED A MOTOR.

PHENOMENA SUCH AS THE SEEBECK EFFECT OR PELTIER EFFECT ARE COLLECTIVELY KNOWN AS THERMOELECTRIC PHENOMENA.

THANKS... THAT'S ALL FOR TODAY.

ALL RIGHT. I REALLY LEARNED A LOT!

RING, RING

AH! TETEKA SENSEI IS CALLING.

RING, RING
Hello? This is Reroko!

Yes! Everything is fine.

Maybe I’ll go take a bath now...

How’s it going? Are your lessons all right?

Kaboom!!

What happened?!

ARGH!!

I don’t know!

Yowza!

The appointed date for your return to Electopia is Xiubouz...

Hikaru Sensei! Yonosuke is...
YONOSUKE IS BROKEN...

MISS...

IF HE IS COMPLETELY BROKEN... I WON'T BE ABLE TO COMMUNICATE WITH ELECTORIA...

...AND I WON'T BE ABLE TO GO HOME.

WHAT'LL I DO...??

WE'LL TRY TO FIX HIM SOMEHOW.

OKAY...
Electricity created by a power plant

In power plants, no matter what the source of motion, a turbine spins, which generates electricity in a generator.
An electric generator creates electricity according to Fleming's right-hand rule. And since the conductor is rotating within the magnetic field, both the magnitude and direction of the electricity's flow vary repeatedly like a wave. The maximum voltage is generated when the loop of wire cuts through the magnetic field at a right angle, and the voltage is zero when the direction of the magnetic field and the direction of the loop's movement are the same.

Electricity generated in a conductor

Electricity created by an electric generator
The electricity that is created by this process is called alternating current (AC). This is the electricity that comes from a household electric outlet. One wave is created by one rotation of the conductor within the magnetic field. If the conductor rotates 60 times per second, 60 waves are produced per second. This would be electricity with a frequency of 60 hertz (Hz).

The voltage of an ordinary household electric outlet is 120V AC. The peak voltage of the wave of this electricity is approximately 170V. The value of 120V represents the effective voltage, which is the value for which direct current (DC) electricity does the same work—in other words, the amount of heat generated when 120V AC is applied to a resistance is the same as the amount of heat generated when 120V DC is applied to the same resistance.

THERMAL POWER GENERATION

The types of thermal power generation that generate the most electrical power are steam generation, internal combustion generation, gas turbine generation, and combined cycle generation.

Steam generation burns fuel such as oil, coal, or liquefied natural gas (LNG) in a boiler to generate high-temperature, high-pressure steam. The force of that steam turns a turbine that is coupled with an electric generator to generate electricity.

The steam that was used to generate electricity is cooled in a device called a condenser; once it returns to liquid water, it is then sent to the boiler again.
Turbine and steam power generation

Internal combustion generation uses an internal combustion engine (like a diesel engine) to generate electricity.

Gas turbine generation uses a combustion gas such as kerosene or diesel oil to turn a gas turbine and create electricity.

Combined cycle generation
Combined cycle generation combines steam generation and gas turbine generation. Electricity is generated by a gas turbine, and then the heat of the exhaust gas is used to create steam to turn a steam turbine and generate more electricity; this is an efficient method of generating electricity.

NUCLEAR POWER GENERATION

Nuclear power generation uses the heat generated when the nuclear fission of uranium occurs in a nuclear reactor to create high-temperature, high-pressure steam, which turns a turbine and creates electricity. When a neutron collides with uranium-235, it decays to thorium-231: several neutrons as well as heat are emitted. The neutrons successively collide with other uranium-235 nuclei, causing nuclear fission to occur and generating a great deal of thermal energy.

Nuclear power generation uses this heat to create steam, which turns a turbine and generates electricity in a manner similar to thermal power generation. Control rods, which absorb neutrons, and a moderator, which reduces the speed of the neutrons, are used in the nuclear reactor to control nuclear fission and regulate the reactor's output.

There are various types of nuclear reactors. Currently, the type that is used most often is called a light water reactor, which uses light water (ordinary water) as a moderator and coolant. Light water reactors include boiling water reactors and pressurized water reactors. A boiling water reactor sends steam that was generated in the reactor pressure vessel directly to the turbine; after it turns the turbine, the steam turns back into liquid water in a device called a condenser, and the water is reused. A condenser uses ocean water to cool the steam so it turns back into liquid water and can be reused.

A pressurized water reactor passes boiling water that was created in the reactor pressure vessel to the steam generator, where water from a separate system is changed to steam, which turns the turbine.
HYDROELECTRIC POWER GENERATION

Hydroelectric power generation uses the potential energy of water to generate electricity. Dam-type power generation stores water at a high location and lets the water drop from there to turn a water turbine coupled with an electric generator to generate electricity.

Since it is easier to start and stop power generation and to increase or decrease the amount of power generated via hydroelectric power generation than it is to do so for thermal or nuclear power generation, hydroelectric power can be generated corresponding to varying power demands. Also, during periods of low power demand, a lift pump can be used to draw water up to the higher location to store it as potential energy.

For hydroelectric power generation to use the energy of water efficiently, several types of water turbines are used for different purposes according to the head (height difference) or amount of water.
A Francis turbine is used for a large amount of running water and a medium to high head. This type of water turbine is used for approximately 70 percent of the hydroelectric power generation in Japan. The water is directed perpendicular to the main shaft from all directions, the blades inside the turbine change the water’s direction to the axial direction, and the turbine is rotated by hydraulic power when the water is discharged.

A Pelton wheel is a water turbine that rotates from the recoil that occurs when water sprayed from a nozzle hits a spoon-shaped bucket (blade). It is useful in locations that have a high head.
A Kaplan turbine is a water turbine that rotates because several propeller blades connected to a shaft adjust their angles according to variations in the amount of water flowing or the head. This kind of turbine is useful in locations having a low head. A type of Kaplan turbine that does not adjust the angle of the blades is called a propeller turbine.

Although hydroelectric power generation accounts for only 10 percent of Japan's power generation, it is a valuable method for a country with few resources.

WIND POWER GENERATION

Wind power generation uses wind power to turn a turbine; the turbine in turn rotates an electric generator to create electricity.

There are various types of wind turbines for wind power generation. A propeller wind turbine, which uses wind power energy very efficiently, is common. When wind hits the turbine's blades, it creates rotational motion, and the rotation speed is increased by a gearbox to turn an electrical generator. An anemoscope (wind vane) and an anemometer (wind gauge) constantly measure the wind conditions, and the direction of the propeller and angle of the blades are adjusted to the optimum state to use the wind power most effectively.

Although the power supplied by wind power generation is greatly affected by variations in the direction and speed of the wind, and the noise that is generated when the wind turbine rotates can be a problem, this is a clean, environmentally friendly power generation method that requires no fuel and produces no exhaust gases.
5

HOW CAN YOU CONVENIENTLY USE ELECTRICITY?
Fortunately, Hikaru was able to repair Yonosuke's breakdown with the technology available on Earth.

He worked on Yonosuke every night...

And several days later...

I DID IT!
REALLY!?

...SHOULD BE OKAY NOW.

SHOULD BE???

YEAH! I FOUND THE BROKEN PART, AND HE...

CLICKETY CLICKETY CLICK

WELL, HE IS A ROBOT FROM ANOTHER WORLD, SO I CAN'T GIVE YOU A 100 PERCENT GUARANTEE, BUT...

YAY!!

METHINKS IT SEEMS AS IF I LOST CONSCIOUSNESS.

I DARESAY, THE LANGUAGE CENTER OF MY BRAIN HATH NOT RETURNED TO PERFECTION, BUT OTHERWISE, I HAVE...

...NARY A PROBLEM!

METHINKS!?

NARY A ONE...
RING, RING

OH, HI!! CAN YOU HEAR ME, TETEKA SENSEI?

WHAT HAPPENED? ALL OF A SUDDEN YOU WERE GONE!

YONOSUKE BROKE DOWN! BUT HIKARU SENSEI FIXED HIM FOR ME!

...I THINK.

YOU THINK?

BY THE WAY, TODAY'S THE DAY YOU'RE SCHEDULED TO RETURN TO ELECTOPIA. ARE YOU READY?

I WAS WORRIED FOR A WHILE. BUT SOMEHOW OR OTHER, I MANAGED TO REPAIR HIM...

WHAAAAAT!? SO SOON?
I tried to tell you before, but we got cut off.

We'll talk in more detail once you're back. You'd better get ready to go now.

Oh... well, okay.

All right. See you soon!

Well, it looks like you're going home...

Yeah. It's really a bummer finding out on such short notice.

All right! Let's go out for today's lesson!

Go out?
IS THIS THE FAMOUS AKIHABARA ELECTRIC TOWN? IT'S SO CROWDED AND BUSY!

MY CLOTHING FROM ELECTOPIA FITS RIGHT IN HERE.

UH, I DON'T THINK SO....

CLICK! CLICK! SNAP!

EVERYONE'S TAKING YOUR PICTURE!

WHOA! HEY...!!

BUT ANYWAY, TODAY I'M GOING TO TELL YOU ABOUT SOME IMPORTANT ELECTRONIC COMPONENTS AND SEMICONDUCTORS.
WHAT ARE SEMICONDUCTORS?

WOW!

THERE ARE SO MANY THINGS FOR SALE HERE!

THERE ARE ALL KINDS OF ELECTRONIC DEVICES AND ELECTRONIC COMPONENTS!

SPY CAMERAS... WIRETAPS...?

SEMICONDUCTOR DEVICES ARE AN IMPORTANT PART OF MANY ELECTRONIC DEVICES.

SEMI-WHO?

A SEMICONDUCTOR IS SOMETHING THAT HAS PROPERTIES IN BETWEEN THOSE OF A CONDUCTOR, THROUGH WHICH ELECTRICITY EASILY PASSES, AND AN INSULATOR, THROUGH WHICH ELECTRICITY HAS DIFFICULTY PASSING.

OH, OKAY!

UH, DON'T LOOK AT THAT STUFF! LET'S SEE WHAT'S OVER HERE...!
The magnitude of the resistance of a substance is represented by a characteristic value of that substance called its resistivity.

When the cross-sectional area of a substance is 1 m² and the length is 1 m, the resistivity...

...corresponds to the resistance value from cross section to cross section.

Resistivity is expressed in units called ohm meters (Ω m).

When the resistivity is represented as a function of the cross-sectional area and length of the conductor, the relationship can be expressed as:

\[\text{Resistivity} = \frac{\text{Resistance}}{\text{Cross-sectional Area} \times \text{Length}} \]

Electricity flows easily when the resistivity is low, and difficulty flowing when the resistivity is high. Resistivity in Ω m is typically classified into conductors, semiconductors, and insulators.

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Semiconductor</th>
<th>Insulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Germanium</td>
<td>Paper</td>
</tr>
<tr>
<td>Silver</td>
<td>Silicon</td>
<td>Glass</td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electricity has difficulty flowing when the resistivity is high, indicating a high resistance.

The distribution of resistivities of various substances looks like this.
IN PARTICULAR, SEMICONDUCTORS ARE SUBSTANCES WHOSE ELECTRICAL CHARACTERISTICS CHANGE DUE TO THE EFFECTS OF HEAT, LIGHT, OR ELECTRICITY.

SEMICONDUCTORS MAY CONTAIN SUBSTANCES SUCH AS SILICON OR GERMANIUM.

THEM SOUND MYSTERIOUS!

WHEN YOU PUT IT THAT WAY, IT'S EASY TO UNDERSTAND!

SILICON OR GERMANIUM ARE ELEMENTS, BUT...

A SEMICONDUCTOR THAT IS MADE UP OF TWO OR MORE ELEMENTS SUCH AS GALLIUM ARSENIDE IS CALLED A COMPOUND SEMICONDUCTOR.

GALLIUM + ARSENIC = GALLIUM ARSENIDE

THAT MAKES SENSE!
There are also cases in which a small amount of an impurity is mixed with the silicon or germanium. This process is called doping, and the result is called an extrinsic semiconductor.

A semiconductor with no impurity mixed in is called an intrinsic semiconductor. There are a lot of types of semiconductors!

The raw material most often used in semiconductors is silicon. Silicon is an element represented by the symbol Si.

Normally, silicon is found in a substance called silicon dioxide, which is a refined product often used as the raw material for semiconductor devices.

The purity of this refined silicon is 99,999,999,999 percent, which is sometimes referred to as eleven-nine.

This is extremely close to 100 percent!!!
A silicon atom has four valence electrons in its outermost shell. These atoms jointly contribute four electrons to form a firm, regular crystal.

It's like they're holding hands! Like this!

That's because the valence electrons of the silicon atoms are holding hands! That's right!

A silicon crystal does not have any electrons that can freely move around, so electricity will hardly pass through it.
IF AN ELEMENT WITH FIVE VALENCE ELECTRONS, LIKE PHOSPHORUS, IS MIXED IN WITH A SILICON CRYSTAL...

...THE PHOSPHORUS AND SILICON BOND, AND ONE VALENCE ELECTRON ESCAPES.

IT BECOMES A FREE ELECTRON, RIGHT?

THAT'S RIGHT! THIS CAUSES THE ELECTRICAL CONDUCTIVITY OF THIS SEMICONDUCTOR TO INCREASE.

THIS SEMICONDUCTOR IS CALLED AN N-TYPE SEMICONDUCTOR BECAUSE THE ELECTRON, WHICH HAS A NEGATIVE ELECTRICAL PROPERTY, BECOMES A CARRIER OF ELECTRICITY.

WHAT'S THIS N?

SIGH...

THE N STANDS FOR NEGATIVE.

...WHAT'S WRONG?

NEGATIVE

AH...!
NOW, LET'S SAY WE MIXED IN A LITTLE OF THE ELEMENT BORON, WHICH HAS THREE VALENCE ELECTRONS.

THE BORON AND SILICON BOND, BUT THERE IS AN EMPTY SEAT LEFT IN THE SPACE THAT DOESN'T HAVE AN ELECTRON.

EMPTY SEAT?

HOL..E... A HOLE?

HOLE ARE PLACES ELECTRONS ARE VACANT IN COVALENT BONDS.

YOU CAN THINK OF THE HOLE AS A FREE ELECTRON WITH A POSITIVE CHARGE.

OKAY...
Therefore, electrical conductivity also increases for this semiconductor.

This kind of semiconductor is called a p-type semiconductor because the hole, which has a positive electrical property, becomes a carrier of electricity.

What's the p stand for?

Opposite...

The p stands for positive, right?

What's the opposite of negative?

Right!

The substance formed by mixing an element such as phosphorus or boron into a pure silicon crystal is called an extrinsic semiconductor.

I get it!
DIODES AND TRANSISTORS

REREKO, DO YOU KNOW WHAT THIS IS?

UM...IS IT A DIODE?

IF A P-TYPE SEMICONDUCTOR AND N-TYPE SEMICONDUCTOR ARE COMBINED TO FORM A STRUCTURE CALLED A P-N JUNCTION, A SEMICONDUCTOR DEVICE CALLED A DIODE IS CREATED.

CORRECT!

THE TWO SEMICONDUCTORS ARE ATTACHED!

THE ELECTRODE OF THE P-TYPE SEMICONDUCTOR SIDE IS CALLED THE ANODE, AND...

...THE ELECTRODE OF THE N-TYPE SEMICONDUCTOR SIDE IS CALLED THE CATHODE.

OKAY.
A DIODE HAS A PROPERTY CALLED RECTIFICATION, WHICH ALLOWS CURRENT TO FLOW ONLY IN ONE DIRECTION.

At the P-N junction, the free electrons of the N-type semiconductor are absorbed by the holes of the P-type semiconductor...

...to form a section where no holes or free electrons exist.

That junction becomes a wall that prevents holes and free electrons from going back and forth...

...and it is called a potential barrier.

There is a wall, but one-way traffic can still move?

WHAT FEATURES DOES A DIODE HAVE?

ALLOWED

NOT ALLOWED
YES. IF THERE IS ENOUGH VOLTAGE, THIS BARRIER CAN BE BROKEN.

NOW I'LL EXPLAIN HOW DIODES WORK IN A CIRCUIT.

I'M READY!

FIRST, WE CONNECT THE NEGATIVE POLE OF A DRY CELL TO THE ANODE SIDE OF THE DIODE.

...AND CONNECT THE POSITIVE POLE TO THE CATHODE SIDE...

WHEN WE DO THIS, SINCE THE HOLES OF THE P-TYPE SEMICONDUCTOR AND THE FREE ELECTRONS OF THE N-TYPE SEMICONDUCTOR ARE ATTRACTION TO THE RESPECTIVE ELECTRODES, THE POTENTIAL BARRIER WILL INCREASE, AND CURRENT WILL HARDLY FLOW AT ALL...

THIS KIND OF APPLICATION OF VOLTAGE IS CALLED REVERSE BIAS.

 THAT MAKES SENSE!
Next, let's try reversing the direction of the dry cell.

In this case, the free electrons of the n-type semiconductor are pushed by the electrons that were delivered from the negative pole of the dry cell. They overcome the potential barrier and move to the anode.

The holes of the p-type semiconductor are also drawn toward the negative pole and move to the n-type semiconductor.

This enables electricity to flow!
Hooray!

Does current flow only when there is forward bias?

This kind of application of voltage is called forward bias.

Well... if we compare it with water, it's similar to the action of a valve installed in a water pipe.

The property that allows current to flow only in one direction in this way is called rectification.

Water flows

Valve installed in a water pipe

Water does not flow

This action can be used to convert alternating current to direct current.

AC power supply

The diode only allows current from the anode side to flow.

I get it!
DIODES THAT EMIT LIGHT

IN SOME DIODES, THE P-N JUNCTION EMITS LIGHT WHEN CURRENT FLOWS IN THE FORWARD DIRECTION.

OH YEAH, THOSE! I'VE SEEN THEM ON CHRISTMAS TREES!

THAT'S RIGHT. THEY ALSO CAME UP WHEN I WAS EXPLAINING A COIN BATTERY.

IF A FORWARD BIAS IS APPLIED TO A LIGHT-EMITTING DIODE AND CURRENT FLOWS...

ELECTRONS AND HOLES JOIN NEAR THE P-N JUNCTION AND VANISH.

OH, THEY COLLIDE!
THE ENERGY THAT IS PRODUCED AT THAT TIME IS EMITTED AS LIGHT.

SINCE THE WAVELENGTH OF THE LIGHT EMITTED DEPENDS ON THE RAW MATERIAL OF THE SEMICONDUCTOR, VARIOUS COLORS OF LIGHT CAN BE CREATED.

OOOH, AAAAAH.

TRAFFIC SIGNALS

LARGE-SCREEN OUTDOOR DISPLAYS

INTERIOR LIGHTS OF CARS

BACKLIGHTING OF MOBILE PHONES OR DIGITAL CAMERAS

SINCE THE LUMINESCENCE OF LIGHT-EMITTING DIODES DOES NOT INVOLVE HEAT, THEY ARE ENERGY EFFICIENT AND HAVE A LONG LIFETIME. THEREFORE, THEY ARE USED IN VARIOUS WAYS.

WE SURE SEE LOTS OF THEM IN OUR EVERYDAY LIVES.
WELL, FINALLY, LET'S TALK ABOUT TRANSISTORS!

I'M READY!

TRANSISTORS ARE SEMICONDUCTOR DEVICES THAT AMPLIFY SIGNALS OR ACT AS SWITCHES BY CONTROLLING THE CURRENT OR THE VOLTAGE THAT IS APPLIED TO AN ELECTRODE.

SWITCHES?

I'LL TALK ABOUT THAT LATER, BUT FIRST I'LL EXPLAIN THE STRUCTURE.

Okay.
TWO TYPES OF TRANSISTORS ARE NPN AND PNP TRANSISTORS.

They have one more electrode than a diode!

They have three electrodes referred to as B (Base), C (Collector), and E (Emitter).

If an NPN transistor is connected like this...

...the electrons in the collector are drawn to the positive pole where they accumulate.

On the other hand, the electrons in the emitter are pushed to the negative pole and accumulate near the base-emitter junction interface.

Okay, got it!
AT THIS TIME, THE HOLES IN THE BASE...

AND ACCUMULATE AT THE JUNCTURE OF THE BASE AND THE EMITTER.

IN THIS STATE, THERE ARE NO ELECTRONS OR HOLES NEAR THE BASE-EMITTER JUNCTION INTERFACE, AND CURRENT WILL NOT FLOW.

I SEE!

SO WHAT MUST WE DO TO LET ELECTRICITY FLOW?

AND CONNECT THE BASE TO THE POSITIVE POLE AND THE EMITTER TO THE NEGATIVE POLE, CURRENT WILL FLOW FROM THE BASE TO THE EMITTER.

IF WE PROVIDE ONE MORE DRY CELL BATTERY...

REALLY?
IF ELECTRONS FLOW FROM THE EMMITTER TO THE BASE...

...SOME OF THESE ELECTRONS WILL COMBINE WITH HOLES IN THE BASE, BUT...

...ALL OF THE REMAINING ONES WILL REACH THE BASE-Collector JUNCTION INTERFACE AND WILL KEEP FLOWING TO THE POSITIVE POLE.

THE CURRENT THAT FLOWS FROM THE BASE TO THE EMMITTER IS CALLED THE BASE CURRENT.

WHEN THE BASE CURRENT FLOWS, CURRENT WILL ALSO FLOW FROM THE COLLECTOR TO THE EMMITTER.

THIS CURRENT IS CALLED THE COLLECTOR CURRENT.
WHEN THE BASE CURRENT FLOWS, THE COLLECTOR CURRENT WILL ALSO FLOW, RIGHT?

THAT'S RIGHT!

IS THAT SO?

AS A RESULT, THE COLLECTOR CURRENT WILL CHANGE SIGNIFICANTLY IN RESPONSE TO A SLIGHT CHANGE IN THE BASE CURRENT.

SO THE BASE CURRENT CAN BE USED TO ADJUST THE COLLECTOR CURRENT?

EXACTLY.

WE CAN ILLUSTRATE THIS CONCEPT IN TERMS OF WATER LIKE THIS.
A small water current (base current) is used to adjust the valve in the pipe...

...that controls a large water current (collector current) that flows in the pipe.

I see!

This is how transistor amplification works.

Although the flow of electrical current is the opposite in a PNP transistor, the basic operation is the same.

A transistor can also be used as a contactless switch.

That's because the water stops if the valve is closed.
IF WE CONNECT A LOAD AND A POWER SUPPLY BETWEEN THE COLLECTOR AND Emitter...

AND USE THE BASE-EMITTER PATH INSTEAD OF A SWITCH...

...WE CAN USE THE SMALL BASE CURRENT TO CONTROL THE LARGE COLLECTOR-EMITTER CURRENT.

WHILE THE SWITCH IS OFF, NO COLLECTOR-EMITTER CURRENT FLOWS.

BUT WHAT GOOD DOES THAT DO US?

IT SEEMS LIKE A REGULAR SWITCH WOULD WORK JUST FINE.

UNLIKE A REGULAR SWITCH, IT HAS NO PHYSICAL CONTACT, SO IT DOESN'T WEAR OUT AND IS LESS LIKELY TO FAIL.

ALSO, SINCE IT CAN BE TURNED ON AND OFF RAPIDLY, CONTROL CAN BE FINE TUNED.

OH! IT REALLY HAS SOME GREAT ADVANTAGES!
Components called integrated circuits (ICs) are also used in electronic devices such as TVs or computers.

An IC contains an extremely large number of elements such as transistors, diodes, resistors, and capacitors—these complicated circuits can perform digital logic.

Well, this completes our discussion of the basics of semiconductor devices...

CLAP CLAP

...which means...

Your studies are over! Thank you for all your hard work!

No way! It's you who deserves all the thanks. Thank you very, very much!!

Since the call for picking you up hasn't come yet, let's go for a little stroll!

Really!? That would be awesome!!
WHERE SHOULD WE GO...??

HARK! THE TIME TO DEPART IS NIGHT!

WHIRR CLACK

HUH? ALREADY??

BUT IT'S... IT'S TOO...

YOU DON'T HAVE A CHOICE, RIGHT...?

GET THEE POSTHASTE TO THE ROOF OF AN ALTITUDES. EDIFICE.

CHAPTER 5 HOW CAN YOU CONVENIENTLY USE ELECTRICITY?
Well, I guess this is it. I'm glad I met you, Hikaru Sensei. I'm also glad I learned the basics of electricity.

I learned a lot by teaching you, Rereko!

Keep at it, even back on Electopia!!

And you keep working on your research!

...And also cleaning your room...

...And...

Ahhh!

Re...

...Rereko...?
When a single diode is connected to an AC power supply, current flows to the load for only one direction of the AC power supply due to rectification. Rectification that only allows a half-cycle of the alternating current to flow is called half-wave rectification, and the current that flows to the load in this process flows in only one direction, just like a direct current power supply. But since only a half-cycle of the AC waveform flows, this kind of rectification is inefficient.

When four diodes are arranged in a bridge configuration and an AC power supply is connected, the current of the entire cycle becomes positive and flows to the load. This kind of rectification is called full-wave rectification, and diodes that are connected in this way are called a diode bridge. Full-wave rectification enables current from the entire cycle of the AC power supply to be used as direct current.
Although this kind of full-wave rectification is more efficient than half-wave rectification, the waveform exhibits large pulsations. However, if an electrolytic capacitor is connected to the output, the charging and discharging of the capacitor can change the pulsations in the waveform into a flat, smooth direct current. A capacitor that is used to change a pulsating flow to a flat waveform in this way is called a smoothing capacitor.

![Diagram of AC power supply with smoothing capacitor and waveform](diagram.png)

Smoothing capacitor

If a reverse-direction voltage is applied to a Zener diode (or constant-voltage diode) and the value of the voltage is steadily increased, current will flow once a certain voltage is reached. This phenomenon is called breakdown, and when the circuit voltage rises more than necessary, current can flow from the cathode to the anode to suppress the rise in voltage. This characteristic of a Zener diode is used in a constant voltage circuit that maintains a fixed voltage.

![Diagram of Zener diode characteristics](diagram2.png)

Characteristics of a Zener diode
If an ordinary diode is used as a Zener diode, it will be damaged because breakdown and the Zener current will be concentrated locally within the diode.

TRANSISTORS

A transistor is a semiconductor device that amplifies signals or acts as a switch by controlling the current or the voltage that is applied to an electrode.

When a large amount of electric power is controlled by a transistor that is used as a switch, the transistor is called a power transistor. Generally, an NPN-type transistor is used in this way.

![Transistor symbols](image)

A switch that uses a transistor has no contact that will wear out, reducing the occurrence of failures, allowing it to be turned on and off rapidly, and allowing users to finely tune control of the device.

![Transistor that does the work of a contact](image)

FIELD-EFFECT TRANSISTOR

A transistor in which the collector current is controlled by the change of current that is input to the base is called a bipolar transistor (junction transistor). In contrast, a transistor that is controlled by changing the voltage that is input, rather than the current, is called a field-effect transistor (FET).
The merits of a field-effect transistor are that power consumption is low and response speed is extremely fast because current does not flow to the input. A field-effect transistor has three terminals that are referred to as G (gate), D (drain), and S (source), which correspond to the base, collector, and emitter of a bipolar transistor, respectively. A field-effect transistor controls the drain current according to changes in the voltage that is input to the gate.

Field-effect transistor (N-channel type)

An integrated circuit (IC) is a device in which an extremely large number of elements such as transistors or resistors are placed on one component; ICs are used in more complex electronic devices such as TVs and computers. An amplifier called a MOSFET (metal-oxide semiconductor field-effect transistor), in which the input gate is insulated by a thin film of silicon dioxide, is used in ICs.

CONVERTERS AND INVERTERS

A device that uses a diode to convert alternating current to direct current is called a converter, and a device that converts direct current to alternating current is called an inverter.

Converter and inverter

An inverter uses a semiconductor switching device such as a transistor to do the work of a switch. Single-phase alternating current can be produced by connecting four semiconductor switching devices and alternately turning on and off A, D, B, and C, as shown in the next figure. The frequency of the single-phase alternating current can be changed at will by varying the switching speed of the semiconductor switching devices.
The rotational speed of an induction motor is directly proportional to the power supply frequency. If the supply frequency is constant, the rotational speed will also be constant.

For an air conditioner to cool the air, a motor must turn a compressor to compress the refrigerant gas. If the rotational speed of the motor is constant, a large capacity will be output even when a small capacity is required, and electrical power will be wasted.

Therefore, energy-saving operation with no waste can be achieved by using an inverter to create alternating current with the frequency required to continuously vary the rotational speed of the motor according to the required capacity.

A DC motor that is rotated by a DC power supply is used in the newest inverter air conditioners. In order to vary the rotational speed of the DC motor, the voltage must also vary, so a semiconductor switching device is used for this purpose.

In addition to air conditioners, inverters are also widely used in other familiar electrical appliances such as lighting or refrigerators and even in railroad cars.

SENSORS

Various sensors are used in electrical appliances in place of the perceptions of our eyes or skin. For example, an electric thermostat uses a temperature sensor to detect the temperature and turn a heater on and off, so we need not repeatedly turn the switch on and off ourselves.

Since sensors convert physical information such as light or heat to electrical information, if they are incorporated into an electric circuit, they can allow an electrical appliance to operate automatically. There are also sensors that can detect magnetism, which cannot be perceived by humans, or infrared rays, which cannot be seen by the naked eye.

TEMPERATURE SENSORS

A temperature sensor is a device that opens or closes a contact or varies electrical resistance according to the temperature it detects. Temperature sensors include contact-type sensors, which perceive the temperature by directly touching the substance whose
temperature they are trying to measure, and non-contact-type sensors, which perceive emitted thermal energy without directly touching the substance whose temperature they are trying to measure.

There are many types of contact-type temperature sensors such as thermostats, thermistors, and thermocouples. Non-contact-type temperature sensors include infrared sensors.

A bi-metal thermostat is the simplest temperature sensor. It uses a bi-metal strip consisting of two types of metal with different thermal expansion rates, which curves in response to a temperature change. Although a thermostat is used in an appliance like an electric blanket, since the heater is turned on and off directly by a contact, the thermostat can only control large temperature fluctuations. A temperature sensor using a bi-metal strip is also used for the overcurrent action of a circuit breaker.

A thermistor is a temperature sensor whose electrical resistance varies according to a temperature change. Generally speaking, electrical resistance also varies with temperature.
for any metal. However, thermistors' resistance changes significantly, even in response to a small temperature change. Since a large current does not flow directly to a thermistor, it is used in combination with an electrical circuit to control temperature.

Thermistors are classified into positive temperature coefficient (PTC) thermistors, those whose resistance value rises when the temperature rises, and negative temperature coefficient (NTC) thermistors, those whose resistance value falls when the temperature rises.

The newest air conditioners and electric refrigerators use thermistors for temperature sensors, combined with electrical circuits that use semiconductor devices to enable temperature control to be finely tuned.

OPTICAL SENSORS

An optical sensor perceives light like our eyes do. These sensors are frequently used to automatically turn on street lights when it gets dark, and they function as the receiver of an infrared remote controller on an electrical appliance.

An optical sensor converts light energy to electrical signals. The phenomenon in which a substance such as a metal absorbs light energy and emits electrons as a result is called the photoelectric effect.

Photoelectric effect
The phenomenon that describes how voltage appears at the junction of a semiconductor due to the photoelectric effect is called the *photovoltaic effect*. Optical sensors that use the photovoltaic effect include *photodiodes* and *phototransistors*. A solar cell that is used for photovoltaic power generation also uses the photovoltaic effect to create electricity.

A *solar cell* generates an electromotive force when light energy strikes the p-n junction surface, causing the electrons and holes to move to the negative and positive poles, respectively. When a load is connected to a solar cell, current flows.

![Diagram of photovoltaic effect in a solar cell]

Photovoltaic effect of a solar cell

The effect in which a carrier of electricity such as an electron is generated by the photoelectric effect, thus causing the internal resistance value of a substance to change, is called *photoconductivity*. A *cadmium sulphide (CdS) cell* is a solar cell that functions using photoconductivity.

A *photodiode* is a semiconductor device in which current flows from the cathode to the anode due to the photovoltaic effect when light or infrared rays are received. The current that flows at this time varies according to the intensity of the light, and the photodiode measures this current.

The current when the light is received is extremely small. It is generally used by applying a reverse-bias voltage.
A photodiode combined with a transistor is called a phototransistor. Although a phototransistor has no base, a collector current flows when light is received in a manner similar to how base current flows in a transistor. The current in the collector varies according to the intensity of the light.
An optical sensor like a phototransistor can be used to determine the position or existence of a target object without touching it.

Photoelectric effect and optical sensors

Optical sensors are widely used for various purposes such as detecting brightness and turning on or dimming lights; an optical sensor can also be used in a security system as a photoelectric eye that detects the changes in light—that is, movement.

Uses of optical sensor
WITHOUT REREKO AROUND, I RETURNED TO REGULAR LIFE—SPENDING ALL MY TIME IN THE LAB.

AND I LET MY ROOM GET TOTALLY MESSY AGAIN...

I GUESS I'LL TRY TO BEAT THE RAIN!

UMPH.

IT'S BEEN A WHOLE YEAR... I REMEMBER THE WEATHER THAT DAY WAS LIKE IT IS NOW.

UH OH... IT'S GETTING CLOUDY.
THIS IS THE UNIVERSITY BUS STOP.

JEEZ!! WHAT A SUDDEN DOWNPOUR...

I'M GOING TO GET SOAKED! I WISH I'D BROUGHT AN UMBRELLA...

I'M SORRY TO SEE YOU...

I'D BUY AN UMBRELLA...

LIGHTNING STRUCK MY LAB BUILDING!? UNBELIEVABLE!

I REMEMBER SAYING THAT ON THAT DAY A YEAR AGO, TOO...

WHAT THE...???
I wonder if my data is okay...!? Why are you back? More makeup classes!? No... it's not me!! It's nice to see you again!

Why are you back? More makeup classes!? No... it's not me!! It's nice to see you again!

Why are you back? More makeup classes!? No... it's not me!! It's nice to see you again!
THIS TIME, I'M WORKING AT THE UNIVERSITY AS A RESEARCH ASSISTANT!

RESEARCH ASST.
RECOMMENDATION
ZETEKA

REALLY!!?

YEAH!
NOW WE CAN BE LAB PARTNERS!!
INDEX

A
absolute zero, 87, 88, 104-105
AC. See alternating current (AC)
active material, 132
air conditioners, 192
alkaline dry cell batteries, 125, 133-134
alternating current (AC), 64-66, 75-76, 113-116, 121, 123, 149, 173, 189-190
circuits, 75-76
power supply, 114, 121, 123, 186
amber, 25
ammeter, 143
Ampère, André Marie, 45
amperes/amps (A), 16, 45, 68
Ampère's law, 96, 107-108
anemometer/anemoscope, 154
anions, 127
anodes, 136-139, 169, 171, 193
appliances, electrical, 19, 24, 45, 46, 56-58, 71-72, 96, 123, 190
atomic numbers, 34
atomic structures, 34-35
atoms, 26-28, 34-35, 47, 127, 165
attraction, force of, 25, 49-50, 97, 108

B
base-collector junction, 179
base current, 178, 179-181, 182
base-emitter junction, 177-178
batteries, 45, 59-60
AA, 46-47, 74
chemical reactions and, 120
coils and, 112
coin, 140-141, 174
creating your own, 140-141
dry cell, 125, 130, 131, 132-134, 171-172, 178
charges, 29
attraction and repulsion, 25, 49-50, 97, 108
electrical discharges, 31-33, 51
measuring, 49
negative/positive, 29, 30-33, 36-39, 42, 47-48, 50-52
polarity of, 41
stored on capacitors, 115
in flashlights, 59, 73
lithium, 125
as power supplies, 63-64, 124-125
solar, 125
supply voltage, 46-47
types of, 125
voltage of stacked, 47
bi-metal thermostats, 191
bipolar transistors, 188
boilers, 147
boiling water reactors, 151-152
boron, 167, 168
breakdowns, 187
breakers, 19, 21-23
circuit, 19, 21
chemical cells/reactions, 124-132, 137, 138
circuits
alternating current, 75-76
in appliances, 56-58
breakers, 19, 21
closed, 61, 73
connection methods used in, 69-72, 78-80
creating your own, 141, 142
diodes in, 171
direct current, 64, 74-75
drawings of, 73, 74
electrical parts of, 61-66, 73
in flashlights, 58-61, 73
integrated (ICs), 183
parallel, 79
closed current, 61
closed current, 61
coal (as fuel), 147, 149
coils, 108, 111-115
coin batteries, 140-141, 174
collector current, 179-181
collector-emitter current, 182, 183
collectors, 177-180, 182
combined cycle generation, 149, 150-151
compasses, 95
compound semiconductors, 163
condensers, 149, 151
conductance (G), 77
conductivity, 34-35, 77, 135, 166, 168
photoconductivity, 193, 195
superconductivity, 88, 105
doctors, 30-31, 98-100, 108-110, 127, 148, 161, 162
connections, electrical, 69-72, 78-80
constant-voltage diodes, 187
consumed power, 17-18
consumer electric products, 20-24. See also electrical appliances
contactless switches, 181-182
counts, switch, 60, 61, 73, 188
contact-type sensors, 191
control rods, 151
converters, 189-190
copper
 atoms, 35
 plate, 126, 127, 128, 130, 140
 wires, 31, 104, 128
copy machines, 43
cotton, 41-42, 51
Coulomb, Charles Augustine, 49
Coulomb's force, 29, 43, 49-50
coulombs (Q), 45, 49-50, 104
counter-electromotive force, 112
current (/)
 alternating, 64-66, 75-76, 113-116, 121, 123, 149, 173, 189-190
 base, 178, 179-181, 182
 closed, 61
 collector, 179-181
 collector-emitter, 182, 188
 defined, 16, 45, 51, 128
 direct, 64, 66, 74-75, 123, 149, 173, 189-190
 direction of, 33, 51-52, 63-66, 75, 96-97, 98-101
 drain, 189
 fixed, 63, 74
 flow of, 15-17, 20-24, 58, 61, 63-68, 73-78, 96, 108-109, 128
 forward direction, 187
 induced, 111
 lagging, 113
 leading, 116
 limiters, 21
 measuring, 16, 143
 rated, 23
 size of, 52
 speed of, 53
 temperature differences, 142-143
 water, 181
dam-type power generation, 152-153
DC. See direct current (DC)
depolarizers, 131
digital cameras, 175
diodes, 163, 169-171, 173, 177, 183, 186-188, 189
 bridges, 186
 constant-voltage, 187
 light-emitting, 141, 174-175
 photodiodes, 193-194
 Zener, 187-188
direct current (DC), 64, 66, 74-75, 123, 149, 173, 189-190
circuits, 64, 74-75
 power supply, 74
direction, current, 33, 51-52, 63-66, 75, 96-97, 98-101
discharges, electrical, 31-33, 51
doping, 164
drain, 189
current, 189
dry cell batteries, 125, 130, 131, 132-134, 171-172, 178
effective resistance, 69-72, 78-80
effective voltage, 75-76, 123, 149
electric
current. See current
generators, 101, 110, 120-123, 147-149, 152-154
 heaters, 62, 74
 outlets, 23-24, 63-64, 123, 149
 power, 17-18, 19, 45, 46
 resistance. See resistance (R)
 shocks, 40, 66
 wires, 74, 77, 88, 96, 107, 108, 148. See also coils
electrical
 appliances, 19, 24, 45, 46, 56-58, 71-72, 96, 123, 190
 energy
 defined, 46
 heat, 61, 62
 light, 61, 62
 measuring, 46
 solar, 124-125
 thermal, 106, 124
 environment friendly power, 154
 escaped electrons. See free electrons
 Europe, voltage in, 45
 extrinsic semiconductors, 164, 168
charged. See charges
collections, 69-72, 78-80
discharges, 31-33, 51
potential, 46-47
electricity, nature of, 25-29
electrochemical reactions, 132
 electrodes, 127, 136, 169, 177
 electrolytes, 126, 130, 132, 140
electromagnetic force, 109, 111
 induction, 111-112
 waves, 91, 106-107
electromotive force, 61, 73, 100, 110, 111, 112, 122, 130
electrons, 26-29, 34-35, 47-48
 in chemical reactions, 128-129, 137, 138
collisions of, 89-90, 93, 105
free, 27-28, 35, 47-48, 166, 167, 170, 171
holes, 167, 170, 174, 177-178
 movement and electric charges, 49, 51-53
 single, 48
 speed of, 53
 valence, 34-35, 48, 165-166, 167
electron shells, 34-35, 47-48, 165
 electrostatic force, 29, 43, 49-50
 electrostatic induction, 40, 50
 emitter, 177-180, 182
 energy
 defined, 46
 heat, 61, 62
 light, 61, 62
 measuring, 46
 solar, 124-125
 thermal, 106, 124
 environment friendly power, 154
 escaped electrons. See free electrons
 Europe, voltage in, 45
 extrinsic semiconductors, 164, 168
low-temperature resistance, 89, 104
luminescence, 90-93, 106-107, 175

M
magnetic fields, 94-98, 100, 107-109, 111, 114, 121, 148
magnetism, 94-97, 107-108, 110, 111
magnets, 94, 107, 110, 111
manganese dioxide, 132, 134
magnetism, 94-97, 107-108, 110, 111
metal oxides. 94, 107, 110, 111
metals: aluminum, 88-89, 140
bi-metal thermostats, 191
bi-metal thermostats, 191
copper, 34-35, 41-42, 47-48, 51
properties of, 35
steel, 41-42, 51
mho. See siemens per meter (S/m)
micro-, 46
microwaves, 91
milli-, 46
mobile phones, 175
moderators, 151
MOSFETs (metal oxide semiconductor field-effect transistors), 189
metal oxide semiconductor field-effect transistors (MOSFETs), 189
metal-oxide semiconductor field-effect transistors (MOSFETs), 189
O
Ohm, Georg Simon, 73
ohms (Ω), 62, 73, 77, 162
Ohm's law, 67-68, 76
oil (as fuel), 147, 149, 150
optical sensors, 192-195
outdoor shells, 35, 47, 48, 165
outlets, 23-24, 63-64, 123, 149
oxidizing agents, 131
P
paper, 41-42, 51
parallel circuits, 79
parallel connections, 69-72, 79-80
peak voltage, 75-76, 123, 149
Peltier device/effect, 144
Pelton wheel, 153
phase difference, 113
phosphorus, 168
photoconductivity, 193, 195
photodiodes, 193-194
photovoltaic effect, 192, 195
photoemission effect, 195
phototransistors, 193, 195-196
P-N junction, 169, 170, 174, 193
PNP-type transistors, 177-178, 181, 188
polarization, 41, 131
polyester, 41-42, 51
polyethylene, 41-42, 51
positive electrical properties, 27-28, 168
positive ions, 127
positive poles, 46-47, 61, 73, 132, 171, 177-178, 179
positive temperature coefficient (PTC) thermistors, 192
potential barriers, 170-171
potential difference, 15-17
power generation
dam-type, 152-153
hydroelectric, 120, 147
nuclear, 120, 147, 151-152
thermal, 120, 147, 149-152
wind, 154
power lines, 20
power (P), 17-18, 19, 45, 46
power plants, 20, 120, 147-154
power supplies, 63-64, 72, 182
alternating current, 114, 121, 123, 186
batteries, 63-64, 124-125
direct current, 74
voltage, 60-61, 62, 73-74, 78, 115
power transistors, 188
pressurized water reactors, 151-152
primary cells, 124-125
primary sides, 114
primary voltage, 115
propeller wind turbine, 154
protons, 27, 29, 34, 47-48
PTC (positive temperature coefficient) thermistors, 192
P-type semiconductors, 168, 169-170, 174, 175
PVC (vinyl), 37, 39, 41-42, 51

R
radio waves, 91, 106
rated current, 23
reactors
boiling water, 151-152
light water, 151
nuclear, 147, 151
pressurized water, 151-152
rectification, 170, 173
red light, 91, 106
reduction-oxidation (redox), 132
refrigerators, 190, 192
rectifiers, 69-72, 78-80
resistances, connecting, 69-72, 78-80
resistivity (ρ), 77, 162
resistors, 183
reverse-bias voltage, 171, 193
reverse-direction voltage, 187
reverse electromotive force, 130
rice cookers, 22
rubber, 41-42, 51
safety breakers, 21-23
secondary cells, 124-125
secondary sides, 114
Seebeck effect, 142-144
self-inductance, 112
semiconductors, 30, 163, 166-171, 172
devices, 160-164, 161, 163, 169, 176, 183, 188-189
sensors
contact-type, 191
defined, 190
non-contact-type, 191
optical, 192-195
temperature, 190-192
series connections, 69-72, 78-80
shocks, electric, 40, 66
Siemens, Ernst Werner von, 77
silicon, 163-166, 167
crystals, 165, 168
dioxide, 164
silk, 41-42, 51
single electrons, 48
single-phase alternating current, 189-190
Si prefixes and units, 46
size, current, 52
smoothing capacitors, 187
sodium hydroxide, 135-136
solar
batteries, 125
cells, 125, 193
energy, 124-125
sound, 73
source, 189
south magnetic pole, 94-95,
99, 100-101, 107, 110, 121-122
speed, current/electron, 53
static electricity, 25, 29, 32, 36-40, 49-53
electrostatic force, 29, 43, 49-50
triboelectric series, 51-53
uses of, 43-44
steam engines, 45
steam generation, 149, 150
steel, 41-42, 51
sulfuric acid, 127, 129
sum of reciprocals, 70-71
superconductivity, 88, 105
supply voltage, 46-47
switches, 59, 60-61, 73, 74, 176, 181-182
symbols
amperes/amps (A), 16, 45, 68
charges (Q), 49
conductance (G), 77
coulombs (C), 45, 49-50, 104
current (I), 16, 143
farads (F), 115
giga- (G), 46
hertz (Hz), 65, 75, 122, 149
joules (J), 45, 46, 104
kilo- (k), 46
kilowatt hours (kWh), 18-19, 46
micro- (µ), 46
milli- (m), 46
mega- (M), 46
newtons (N), 49
ohms (Ω), 68, 73, 77, 162
pico- (p), 46
power (P), 17-18, 19, 45, 46
resistance (R)
See resistance (R)
resistivity (ρ), 77, 162
siemens per meter (S/m), 77
tera- (T), 46
time (t), 52
units and SI prefixes, 46
voltage (V). See voltage (V)
volts (V), 15, 17-18, 45, 68
watt seconds (Ws), 46, 104
watts (W), 17, 45
T
tags, consumer electronic, 45
tea kettles, 14, 18, 22
temperature sensors, 190-192
tera-, 46
Thales (philosopher), 25
thermal
emission, 90-93, 106
energy, 106, 124
power generation, 120, 147, 149-152, 149-154
vibration, 87-90, 104-105
thermistors, 191-192
thermocouples, 143
thermoelectric phenomena, 144
thermopiles, 125, 141-143
thermostats, 191
time (t), 52
toasters, 74
traffic signals, 175
transformation ratio, 115
transformers, 20, 114-115
stations, 20
transistors, 163, 176-183, 183, 188-189
amplification, 181
bipolar, 188
field-effect, 188-189
junction, 188
MOSFET, 189
phototransistors, 193, 195-196
PNP-type, 177-178, 181, 188
power, 188
triboelectricity, 38
triboelectric series, 40-43, 51-53
turbine engines, 147, 149, 152, 153

U
UHF waves, 91
ultraviolet rays, 91, 93, 106, 107
United States, voltage in, 45
utility pole transformers, 20

V
valence electrons, 34-35, 48, 165-166, 167
valence shells, 48
VHF waves, 91
vinyl (PVC), 37, 39, 41-42, 51
violet light, 91, 106
visible light, 91, 93, 106
Volta, Alessandro, 45, 126
voltage (V)
100V, 14, 45
120V, 22, 45, 72, 75, 76, 80, 123, 149
170V, 75, 76, 149
240V, 45
changes in, 20
defined, 15, 45, 46-47
effective, 75-76, 123, 149
in electrical appliances, 19, 24, 45, 46, 71-72, 96, 123, 190
forward bias, 173, 174
instantaneous, 75-76
international differences, 45
peak, 75-76, 123, 149
positive and negative poles, 46-47, 61, 73, 132, 171, 177-178, 179
potential and, 46-47
power supply, 60-61, 62, 73-74, 78, 115
reverse-bias, 171, 193

W
water
cells, 135-137
current, 181
levels, 15-16
turbine, 147, 152, 153-154
wheels, 17, 59-60
Watt, James, 45
watt seconds (Ws), 46, 104
watts (W), 14, 17, 19, 45
waveforms, 187
wavelength, 91, 106
waves
electromagnetic, 91, 106-107
radio, 91, 106
UHF, 91
VHF, 91
wind power generation, 154
wires
coils, 108, 111-115
copper, 31, 104, 128
electric, 74, 77, 88, 96, 107, 108, 148
wood, 41-42, 51
wool, 41-42, 51

X
X rays, 91

Z
Zener diodes, 187-188
zinc
chloride, 132
ions, 129
plate, 126, 127, 128
powder, 133
I see things haven't changed!

Methinks this place is a dungheap!

What can I say...