Bought with the income of the Fiske Endowment Fund
The bequest of Willard Fiske
Librarian of the University 1868-1889
1905

Return to
Albert R. Mann Library
Ithaca, N. Y.
INDEX FILICUM:

A SYNOPsis, with characters, of

THE GENERA,

AND AN ENUMERATION OF

THE SPECIES OF FERNS,

WITH SYNONYMES, REFERENCES, &c. &c.

BY

THOMAS MOORE, F.L.S., F.H.S.,

AUTHOR OF "THE HANDBOOK OF BRITISH FERNS;" "THE FERNS OF GREAT BRITAIN AND IRELAND, NATURE PRINTED," &c.; CURATOR OF THE CHELSEA BOTANIC GARDEN.

LONDON:

WILLIAM PAMPLIN, 45, FRITH ST. SOHO SQUARE.

1857.
The attempt now made to produce a Catalogue of Ferns arranged on some uniform plan, of convenient bulk and moderate price—as complete withal as a diligent research in the publications accessible to him has enabled the author to make it, has sprung from the acknowledged want of some recent enumeration of the species of Ferns, embodying the modern principles of classification. Such an enumeration, required, in order to render it fully intelligible, that a synopsis of the Genera of Ferns should be prefixed. It seemed also necessary to its utility, that the Catalogue itself should indicate under the adopted species, the following particulars, namely:—

1. references to the most useful general publications, as well as to those detached memoirs, in which they may be classified or described;
2. an enumeration of their synonymes;
3. references to figures;
4. a summary of their known habitats sufficient to illustrate their geographical range.

It will be obvious, that in order to render this information accessible as speedily as practicable, a thorough criticism of the synonymy could not be attempted, for this would have involved the actual labour of a complete *Species Filicum*, and could not indeed have been accomplished, without long delaying the publication of the list. Free use has consequently been made of the statements, critical or otherwise, of those botanists who have devoted attention to the subject, the whole being blended with such personal information as the author has been able to bring to bear on the subject. The work is consequently to be regarded as, mainly, a compilation. It has however been the endeavour both of the author and the publisher, to render it, as such, not only useful and readily available, but as free from error as possible. To this end, the greater number of the references given, have been actually examined;
a few only of those made to less accessible works, having been taken on trust.

In the prefixed Synopsis of the Genera, the author has sketched out what appears to him the most intelligible arrangement, as well as endeavoured to simplify the definitions of the generic groups. As regards the genera themselves, it has been an endeavour to hold a middle course, between the excessive sub-division and the equally inconvenient non-division of the older genera. The system of classification adopted, is that based upon the joint recognition of (1) the plan on which the vascular structure is developed, and (2) the nature of the fructification. This is the best plan yet devised, and if carried out with moderation, not to excess, and with a well-defined appreciation of what constitutes an important distinction, it is open to fewer objections and presents fewer difficulties than any other plan which has been suggested. It has nevertheless appeared, that in the application of this system, the number of genera has been hitherto too much extended; consequently those which are regarded as less necessary or most trivially characterized, dependant on the slighter venal and other differences, have not been adopted; while those based on the broader differences of venation, such for instance as are presented by free-veined and net-veined species, and again among the latter such as occur in a uniform or a pinnate plan of reticulation, or in the presence or absence of free included veinlets, have been unreservedly admitted.

The Species, will, throughout, be enumerated in alphabetical order, for facility of reference. Not having knowledge of every species it has been his duty to record, the author cannot hope to have avoided mistakes—sometimes no doubt in combining species which should have been kept separate, but more frequently, in all probability, in keeping separate what should have been united. It is however trusted that he may at least
have fulfilled a useful task in bringing together and placing in an accessible form, the various names scattered through numerous publications. The tendency of his investigations in this department of the subject, has been to the effect, that many plants of the value of mere varieties—constitutional or geographic, have been hitherto regarded as species; and he is prepared to believe that a more complete acquaintance with the modifications of form resulting from wide distribution, would lead to the combination of plants which he has here left separated. Notwithstanding this, he cannot but think that at the present day the current of opinion seems to be setting too strongly in this direction, in the disregard which is paid to actual differences—a state of things which, equally with the other extreme, is opposed to the possibility of defining with precision, and consequently of recognising species.

The author ventures to hope that he may solicit the further aid of Botanists in the execution of his task. In particular, either information or materials which may throw light on such of the species of the older authors as may still remain obscure; or such as may assist in the recognition of the new unfigured species of later writers, or in correctly indicating the distribution of the species generally, would be serviceable to him; and he further trusts that those who may discover errors will have the goodness to point them out with the view to their correction. Any communications of the nature here indicated, may be sent to him, under cover to the Publisher, Mr. Pamplin, Frith Street, London.

The work will be issued in Parts, as rapidly and as regularly as its preparation will permit; and will commence with the Synopsis of the Genera as a basis for the Enumeration of the Species. It is hoped that it may be found practicable to issue one part monthly.
SYNOPSIS
OF
THE GENERA OF FERNS.

CLASSIFICATION.

FILICALES—Acrogeneous plants, with dorsal or marginal one-celled spore-cases.

* Spore-cases furnished with a jointed ring, which is usually nearly complete, sometimes rudimentary Order.

† Spore-cases not valvate.

† Ring vertical, nearly complete, spore-cases usually stalked, gibbous, bursting transversely ...

[A] Receptacles universal, i.e., occupying almost or quite the entire disk of the fertile fronds, both veins and parenchyma

[B] Receptacles effuse, occupying a crowded mass of reticulated veinlets, forming large amorphous portions or separate lobes of the fronds, or sometimes definite in form ...

[C] Receptacles local, circumscribed, i.e., confined to determinate parts of the veins, definite in form.

(1) Sori transverse to the veins (when distinct veins are present); parallel or sub-parallel with the midrib or margin; more or less elongated, usually linear; occasionally oblong or lunately curved; rarely punctiform (then marginal with transverse indusia).

(a) Receptacles seated on or approximate to the midrib, therefore costal or sub-costal (often at the same time marginal by the contraction of the frond); linear or oblong.

(a) Sori linear superficial indusiate Order.

(b) Sori linear or oblong, superficial or immersed, non-indusiate Pleurogrammæ.

[March, 1857.]
[c] Receptacles local, &c., continued.

(1) Sori transverse to the veins, &c., continued.

(b) Receptacles marginal or sub-marginal, (rarely medial) always remote from the midrib, usually linear; sometimes oblong or punctiform.

(a) Sori non-indusiate, (mostly occupying a groove or furrow, sometimes superficial), linear—

(a) sub-marginal (often seated in a shallow dorsal furrow)

(β) marginal, (always in an extrorse marginal furrow)

(b) Sori indusiate, superficial, (linear, oblong, or rotundate).

(a) Indusium bursting along its outward margin, attached interiorly ...

(b) Indusium bursting along its inward margin, attached exteriorly.

Receptacles resupinate, i.e., the spore-cases attached on the under surface of the indusium

Receptacles normal, i.e., the spore-cases attached to the surface of the frond—

—punctiform

—linear, transverse

(c) Receptacles short, transverse, or arcuate on the venules, sub-parallel with the midrib or margin.

(a) Sori indusiate

(b) Sori non-indusiate

(2) Sori parallel with the venation, oblique (rarely sub-parallel) to the midrib, oblong linear or more or less elongated, sometimes compound.

(a) Sori indusiate, lateral or sub-lateral on the veins
CLASSIFICATION.

(2) Sori parallel with the venation, &c., continued.

(b) Sori indusiate, dorsal on the veins; on a cristaeform receptacle; indusium double, opening in opposite directions Didymochæneæ.

(c) Sori naked or spuriously indusiate, dorsal on the veins.

(a) receptacles linear, variously reticulato-anastomosed § 15. Hemionitideæ.

(b) receptacles linear, simple or forked, (sometimes short linear, i.e., oblong) ... Gymnogrammeæ. § 16.

(c) receptacles oblong, contiguous, parallel, the spore-cases becoming confluent and simulating a broad marginal sorus (spuriously indusiate) § 17. Platylomeæ.

(3) Sori punctiform, (rarely in § 18, sub-oblong, or by confluence more or less elongate).

(a) Sori naked, i.e., without true indusia; (fertile fronds sometimes contracted with involute margins—spuriously indusiate).

(b) Sori indusiate, i.e., with superior indusia.

(a) Indusium reniform or peltate, attached by the sinus or centre, free at the margins, (fertile fronds sometimes involutely contracted) § 18. Polypodieæ.

(b) Indusium rotundate, attached transversely to the vein by its base, the margins free § 19. Aspidieæ. § 20.

(c) Indusium roundish or oblong, adherent at the base and margins, opening in front, i.e., exteriorly § 21. Cystopterideæ.

(c) Sori involucrate, i.e., with inferior indusia.

(a) Special indusium more or less adherent to and connivent with the margin of the frond, forming an entire or two-valved cup; sori therefore within a marginal cup § 22. Davallieæ.

(b) Indusium or involucre distinctly within the margin of the frond, forming an entire lobed or fimbriated cup; sori therefore within a dorsal cup § 23. Peranemææ.
[A] Sori involucrate, i.e., indusia inferior; (receptacles elevated)

(1.) Fructifications thrysiform

(2.) Fructifications dorsal

[B] Sori naked, i.e., without indusia; (receptacles elevated)

[] Ring sub-oblique, nearly complete, broad; spore-cases few, sessile, gibbous, bursting horizontally.

(Rigid flabelliform gleichenoid ferns, with dorsal oligocarpous sori, covered by umbonato-hemispherical peltate indusia)...

[] Ring horizontally or rarely obliquely transverse, complete; spore-cases sessile or sub-sessile, usually vertically compressed, bursting longitudinally, i.e., vertically

[A] Ring zonal, i.e., spore-cases girt by the ring.

(1) Sori dorsal; (fronds rigid opaque with oligocarpous sori, and globose-pyriform spore-cases)

(2) Sori extrorse-marginal; (fronds usually pellucid membranaceous, with polycarpous sori and lenticular spore-cases)...

[B] Ring apical, i.e., spore-cases crowned by the convergent striae of the ring—radiate-striate at the apex

(1) Striae united at the apex, without any vacant space, (spore-cases attached laterally); scendent plants

(2) Striae disjoined, forming an orbicular apical vacuity, (spore-cases attached basally); dwarf herbaceous plants

[] Ring rudimentary, or incomplete (wanting one-third or more); very broad, flat obliquely vertical; spore-cases sessile or sub-sessile, globose.

(Aquatic annual proliferous ferns, with contracted fertile fronds)
† † Spore-cases two-valved, bursting vertically at the apex. Ring rudimentary, obliquely transverse near the apex Tribe 8. OSMUNDINEÆ.

** Spore-cases without a jointed ring.

[4] Fructifications dorsal on normal fronds, (vernation circinate or incurved)... MARATTIACEÆ. Order.

(1) Sori oblong distinct, longitudinally bivalved Tribe 1, MARATTINEÆ.

(a) Spore-cases free, crowded in two opposite linear series § 1. Angiopteridæ.

(b) Spore-cases concrete, in two opposite linear series § 2. Marattiæ.

(2) Sori circular distinct; spore-cases concrete in a single annular series Kaulfussineæ. Tribe 2.

(3) Sori connate over the whole surface of the fertile fronds DANINEÆ. Tribe 3.

[5] Fructifications marginal, on rachiform fronds or branches, (vernation straight) ... OPHIOGLOSSACEÆ.

LYCOPODALES—Acrogenous plants, with axillary radical or petiolar one- four- or many- celled spore-cases.

* Spore-cases one- three-celled, in the axils of the stem-leaves or bracts LYCOPODIACEÆ.

Stemless; with radical leaves; scape leafless; spore-cases one-celled Phylloglosseæ. § 1.

Stems leafy; spore-cases one- three-celled Lycopodiæ. § 2.

** Spore-cases (conceptacles) one- four- or many- celled, radical or petiolar MARSEILEACEÆ.

Spore-cases one-celled—
axillary at the base of the leaves (radical) ISOETEÆ. § 1.

clustered or binate, on short leafless branches, beneath the floating rooting stems SALVINIEÆ. § 2.

Spore-cases two- four- celled, radical PILULARIEÆ. § 3.

Spore-cases many-celled, radical or petiolar MARSILIEÆ. § 4.
GENERIC CHARACTERS.

Order—POLYPODIACEÆ. Tribe—POLYPODINEÆ.

§ 1. ACROSTICHEÆ.

(a) Fronds wholly fertile.

* Veins free.

1. POLYBOTRYA, Humboldt and Bonpland; Willd. Sp., Plant. v. 99.

Egenolfia, Schott; Lacaussadæa, Gaudichaud; Ectoneura, Fée; Granulina, Bory; Fée; Botryothallus, Klotzsch MS.; Psomiocarpa, Presl; Microstaphylia, Presl; Acrostichi sp., Auct.; Olfersæ sp., Presl; Anogrammatis sp., Fée; Gymnogrammatis sp., Auct.; Osmundæ sp., Jacquin.

Sori superficial, non-indusiæate, the receptacle occupying the whole under surface, or both upper and under surface of the rachiform fertile fronds. Veins simple or forked, or pinnate from a central costa; venules simple or forked, free.

Fronds dimorphous, pinnate, or bi-tri-pinnate, the fertile with linear contracted segments. Rhizome creeping or scandent.—In this genus occurs the highest degree of development of which the Ferns seem susceptible. In some of the species, the whole surface of the fertile fronds, above and below, is sporangiferous. Microstaphylia is a small plant of peculiar aspect, but does not afford any good characters on which to separate it from Polybotrya.

§. Eupolybotrya.—Fronds sporangiferous beneath; veins pinnate.

Ex.: P. cylindrica, Kfls. | P. osmandacea, H.B.K.
P. articulata, J. Sm. | P. appendiculata, J. Sm.
P. nodiflora, Bory. | P. Gaudichaudiana (Egenolfia, Fée.)

§ Microstaphylia.—Fronds sporangiferous beneath; veins simple or forked.

Ex.: P. bifurcata, Lk.

§ Psomiocarpa.—Fronds sporangiferous on both surfaces; veins pinnate.

Ex.: P. caudata, Kze. | P. apiifolia, J. Sm.

2. RHIPIDOPTERIS, Schott, Gen. Fil. (under t. 15.)

Phlebæphoræ, Link; Osmundæ sp.; Swartz; Acrostichi sp., Auct.; Olfersæ sp., Presl; Polybotryæ sp., J. Smith.

Sori superficial, non-indusiæate, the receptacles occupying the
GENERAE OF FEENS:

under surface of the disc-like fertile fronds. *Veins* flabellately-furcate; *venules* free.

Fronds small, dimorphous; the sterile flabellately-partite, or ounaato-dichotomous, the fertile entire or two-lobed. Rhizome slender, creeping.—Curious little creeping plants with divided barren and entire fertile fronds.

3. *ELAPHOGLOSSUM,* *Schott,* *Gen.* *Fîl.* (under t. 15.)

Acrostichum, *Fée* and *Auct.*; *Phyllitis,* *Necker*; *Olfersië sp., Presl.*

Sori superficial, non-indusiate; the *receptacle* occupying the under surface of the fertile scarcely contracted fronds. *Veins* simple or parallel-furcate from a central costa; *venules* free, clavate at the apex, terminating within the margin.

Fronds simple, entire, the fertile often somewhat narrower, naked or clothed with scales. Rhizome short, erect or decumbent, or elongately creeping; rarely humifuse and ramose.—The name *Acrostichum,* which *M.* *Fée* retains here, is properly associated with *A. aureum,* the Linnean type. The present is a well marked genus, the analogue of *Scolopendrium*; hence, *M.* *Schott's* very appropriate name, *Elaphoglossum,* which we adopt.

§ *Oligolepidum.*—Fronds naked, or with but few scales.

Ex.: *E.* *conforme,* *Schott.*

E. *Herminieri* (*Acrostichum,* *Bory.*)

E. *ramosissimum* (*Acrostichum,* *Fée.*)

E. *stigmatolepis* (*Acrostichum,* *Fée.*)

E. *alatum* (*Acrostichum,* *Fée.*)

E. *Febl* (*Acrostichum,* *Bory.*)

E. *viscosum,* *Schott.*

E. *laurifolium* (*Acrostichum,* *Pet.* *Th.*)

§ *Polyplepidum.*—Fronds clothed with numerous scales.

Ex.: *E.* *splendens* (*Acrostichum,* *Bory.*)

E. *Orbignyanum* (*Acrostichum,* *Fée.*)

E. *Hartwegii* (*Acrostichum,* *Fée.*)

E. *ovatum* (*Acrostichum,* *Hk.* & *Gr.*)

E. *Gardnerianum* (*Acrostichum,* *Kze.*)

E. *cuspidatum* (*Acrostichum,* *Willd.*)

E. *villosum,* *J.* *Sm.*

Acrostichum sp., *Auct.*; *Lomarele* sp., *Auct.*; *Stengchlenne* sp., *J.* *Smith*; *Olfersë* sp., *Presl.*; *Onocleæ* sp., *Auct.*; *Anemîn* sp., *Sprengel*; *Osmunde* sp., *Bory.*

Sori superficial, non-indusiate, the *receptacles* occupying the under surface of the contracted fertile fronds. *Veins* simple or
parallclo-furcate from a central costa; venules free, connivent with the margin.

Fronds dimorphous, pinnate, the fertile contracted. Rhizome scandent.—This genus differs from Stenochlæna, with which it agrees in habit, in the absence of the costal areole, and of the gland on the margin of the pinnae near their base.

Ex.: L. variabilis, Fée. L. sorbifolia, Fée. L. Smithii, Fée. L. heteromorpha (Stenochlæna, J. Sm.)

** Veins transversely combined in a single series.

Sori superficial non-indusiate, the receptacles occupying the under surface of the contracted fertile fronds. Veins arcuate at the base, forming narrow costal areoles; venules parallel-furcate, connivent with the thickened cartilagineo-serrate margin.

Fronds dimorphous, the barren pinnate, the fertile contracted pinnate or bi-pinnate, and having slightly revolute margins. Pinnae with a marginal gland near the base on the upper edge; sometimes articulated. Rhizome scandent.—A genus admirably marked by the costal areole of the barren fronds, and the marginal gland.

§ Eustenochlæna.—Pinnae articulated; fertile fronds pinnate.
Ex.: S. scandens, J. Sm. | ? S. pycnophylla, Presl.

§ Lomariobotrys.—Pinnae continuous; fertile fronds bi-pinnate.
Ex.: S. Meyeriana, Presl. | S. teuroides, Moore.

6. OLFERSIA, Raddi, Oper. Scient. di Bolon. iii. 283, t. 11.

ACONIPECTERIS, Presl; DORCAPTERIS, Presl; NEBREGLOSA, Presl; ACROSTICHÆ sp., Auct.; OSMUNDÆ sp., Auct.; CANDOLLIÆ sp., Mirbel; PTERIDIS sp., Auct.

Sori superficial, non-indusiate, the receptacles occupying one or both surfaces of the contracted fertile fronds. Veins simple or forked from a central costa; venules parallel, united at or near the margin by a straight arcuate or zigzag vein; sometimes with free excurrent marginal veinlets.
Fronds dimorphous, simple or pinnate. Rhizome creeping.—This genus differs from Elaphoglossum in having the parallel veins united by a vein which traverses the margin. In the sectional groups here indicated, the differences presented by the course of these marginal veins are not of generic value. The typical species, O. cervina, is a larger plant than the others, and more compound.

§ Euotlersia.—Marginal vein straight.
Ex.: O. cervina, Kze.

§ Nebroglossa.—Marginal vein arcuate.
Ex.: O. longifolia, Presl. | O. glabrescens, Presl.

§ Aconiopteris.—Marginal vein zigzag, with an excursive veinlet from the exterior angles.
Ex.: O. subdiaphana (Acrostichum, Hook. and Grev.)

*** Veins reticulated.

7. SOROMANES, Fée, Hist. Acrost. 16.

Polybotrye sp., Auct.; Botryothalli sp., Klotzsch.

Sori superficial, non-indusiate, the receptacles occupying the under surface of the contracted fertile fronds. Veins pinnate from a central costa; venules connivent, all anastomosing at an acute angle, and without free included veinlets.

Fronds large pinnate dimorphous, the fertile pinnato-pinnatifid or bi-pinnate. Rhizome robust, scendent or creeping.—The venation of this genus is analogous to that of Cyclodium.
Ex.: S. serratifolium, Fée.

Chriolepton, Fée; Chorizopteris, Moore; Acrostichi sp., Auct.; Leptochili sp., Blume; Polybotrye sp., Mettenius; Chrysodii sp., Mettenius; Fucilopteridis sp., Presl; Lomariopsidis sp., Mettenius; Cyrtogonii sp., J. Smith; Heteroneurii sp., Fée; Lomagrammatis sp., Brackenridge.

Sori non-indusiate, the receptacles occupying the under surface of the contracted fertile fronds, superficial or forming a shallow longitudinal furrow each side the costa. Veins all reticulated in hexagonal meshes, without free veinlets, the costal areoles larger.
Fronds dimorphous, simple, pinnate, or bi-pinnate; sometimes scaly beneath. Rhizome short, erect, or stout creeping, or scandent. Pinnae sometimes articulated.—There is no sufficient distinction between Cheilolepton and Neurocallis. The plants referred to the § Chorizopteris, of which the majority are only known in a barren state, are probably distinct, the winged rachis and easily detached membranaceous segments being peculiar; their habit is that of Lomagramma, which latter may be indeed an accidental form of the same structure, with the fertile parts so much dilated as to produce tenuitoid, instead of acrostichoid sori. Or, if Lomagramma is normally tenuitoid, these may prove to belong to that genus, when their fructification is known. They, however, perfectly accord, as far as they admit of comparison, with the Acrostichum scandens of Raddi, a plant which appears to us to have nothing to do with Pecileopteris, in which group it is usually placed, and which we bring here.

§ Neurocallis.—Receptacles superficial.
Ex.: N. præstantissima, Fée. | N. aureo-nitens (Acrostichum, Hook.)

§ Cheilolepton.—Receptacles in a shallow furrow.
Ex.: N. lomarioides, Presl.

? § Chorizopteris.—Pinnae articulate; rachis winged.
Ex.: N. pinnata (Chorizopteris, Moore.) | N. scandens (Acrostichum, Raddi.)
N. bipinnata (Chorizopteris, Moore.) | N. polyphylla (Lomagramma, Brack.)

Sori superficial, non-indusiate, the receptacles occupying the under surface of the fertile fronds. Veins uniformly reticulated in coarse hexagonal or elongated meshes, without free veinlets.

Fronds simple, the fertile somewhat smaller. Rhizome thick decumbent, or slowly creeping.—A genus of distinct aspect, with large simple fronds, uniformly reticulated, the fertile very little contracted; hence different from Neurocallis. The venation is similar to that of Acrostichum, from which they differ in having the fronds wholly fertile.

Ex.: H. crinitum, Fée. | H. pachyphyllum (Acrostichum, Kze.)
H. reticulatum (Acrostichum, Kze.); H. crassifolium, Fée.)
X.

Genera of Ferns:

10. STENOSEMIA, Presl, Tent. Pter. 237, (non Hk.: J. Sm. in part.)

Polybotrye sp., Blume; Acrostichi sp., Auct.

Sori superficial, non-indusiate, the receptacles occupying the whole under surface of the much contracted fertile fronds. Veins (sterile) pinnate from a central costa, the lowermost (basal) venules (or veinlets) anastomosing so as to form elongated costal (or venal) areoles; the uppermost and the usually simple veinlets free.

Fronds herbaceous, ternate or pinnate, with one pair of pinnae; the pinnae pinnatifid very oblique bulbilliferous in their axils; the fertile ones very much contracted. Rhizome sub-globose erect.—The spore-cases cover the surface on each side the costa.

Ex.: S. aurita, Presl. | S. ? cicutaria, Presl.

11. PECILOPTERIS, Presl, Tent. Pter. 241. (Eschw. emend.)

Poeci]opteris, Eschweiler; Boleitis, Schott; Campium, Presl; Cyrtogonion, J. Smith; Heteroneuron, Fée; Acrostichi sp., Auct.

Sori superficial, non-indusiate, the receptacles occupying the under surface of the contracted fertile fronds. Veins pinnate from a central costa, prominent; venules arcuately, angularly or irregularly anastomosing; sometimes producing exterior free or irregularly anastomosing veinlets.

Fronds dimorphous, pinnate, often viviparous. Rhizome creeping.—The differences between the two groups here indicated are too slight for generic characters. Pecilopteris approaches Jenzkinsia through some of the Brazilian species, in which the sori are sometimes rather scattered on the veins than occupying the whole surface; a condition probably owing to an undue expansion of the pinnae.

§ Campium.—Venules anastomosing transversely, with exterior free veinlets.

Ex.: P. virescens (Acrostichum, Wall.) | P. Hookeriana (Acrost. proliferum, Hk.)
P. Presliana (Heteroneuron, Fée.) | P. subcrenata (Acrostichum, Hk. & Gr.)

§ Cyrtogonion.—Venules and veinlets irregularly anastomosing.

Ex.: P. heteroclita, Presl.
P. repanda, Presl. | P. punctulata, Presl.
P. prolifera (Heteroneuron, Fée.)

Cheiropleuria, Presl; **Euryostichum**, Presl; **Acrostichum** sp., Auct.; **Polypodium** sp., Blyme; **Gymnopteris** sp., Fée and Auct.

Sorti superficial, non-indusiate, the *receptacles* occupying the under surface of the contracted fertile fronds. *Veins* prominent, pinnate from a central costa; the *venules* compoundly anastomosing, forming parallelogramoid primary areoles, and irregular hexagonal secondary areoles; or palmate-forked with irregular quadrate primary and sub-hexagonal secondary areoles: both forms with included free, simple hamate or divaricate *veinlets* having thickened apices.

Fronds simple lobed pinnatifid or pinnate, dimorphous, the fertile narrower, sometimes simple; herbaceous or coriaceous. Rhizome repent or scandent.—The compound venation is the distinguishing peculiarity of this group.

§ **Euryostichum.**—Veins pinnately branched.

* A. aliena, Presl. | *A. Heudeletii, Presl.*

§ **Cheiropleuria.**—Veins palmate-forked.

Ex.: *A. bienspis* (Polypodium, Bl.) | *A. vespertilionis* (Gymnopteris, Hk.)

(b) *Fronds fertile on the upper pinnae.*

Chrysodium, Fée.

Sorti superficial, non-indusiate; the *receptacles* occupying the under surface of the upper pinnae. *Veins* uniformly reticulated in small regular hexagonal meshes, without free veinlets.

Fronds pinnate, thick coriaceous, the upper fertile pinna usually somewhat narrower. Rhizome thick sub-globose, decumbent.—The Linnean type of *Acrostichum* is *A. aureum*; we consequently retain the name to this very distinct and well-marked, though limited, group. Probably the greater number of the so-called species are mere varieties of *A. aureum*.

[March, 1857.]

Sori superficial, non-indusiate; the receptacles occupying the under surface of the contracted upper pinnae. Veins pinnate from a central costa, prominent; venules transversely anastomosing, forming nearly equal parallelograms; veinlets again anastomosing in unequal sub-hexagonal areoles, and producing divaricate secondary veinlets, which are clavate at the apex, and free within the ultimate areoles.

Fronds pinnate, coriaceous, fertile and contracted in the upper part; pinnae articulate, auriculateform on the lower side at the base. Rhizome scendent.—A very well-marked genus, remarkable on account of the peculiar base of the pinnae.

Ex.: P. Horsfieldii, J. Sm. | P. speciosa, Bl.: Pr.

§ 2. PLATYCYRIÆ.

(a) Sori in amorphous patches.

Neuroplatyceris, Pluenet; Flée; Alcicornium, Gaudichaud; Scutigeræ, Flée; Platyceris, Flée; Acrostichum sp., Auct.

Sori superficial, non-indusiate, the receptacles, (a series of crowded anastomosing veins) occupying the under surface of separate lobes or large amorphous portions of the fertile fronds. Veins furcate, free or here and there anastomosing; venules anastomosing in large trapezoid or sub-hexagonal elongated areoles; the veinlets free, divaricate or hamate, within the areoles.

Fronds heteromorphous, coriaceous, laciniate or lobate, clothed with stellate hairs; the fertile ones articulate. Rhizome sub-globose.—A very distinct group. The primary veins rarely unite, while the secondary ones are compoundly anastomosed.

Ex.: P. alcicornæ, Desv. | P. Stemmaria, Desv.
P. biforme, Bl. | P. grande, J. Sm.

(b) Sori in quadrate patches.

Sori superficial, non-indusiate, oblong or quadrangular, ap-
proximate and sub-confluent in two rows on the contracted upper pinnae; the receptacles consisting of a crowded mass of anastomosed venules. Veins (sterile): pinnate from a central costa, prominent, the venules prominent, transversely anastomosed, forming nearly equal-sided areoles, within which the veinlets again anastomose, the ultimate areoles including free sterile divaricate veinlets; or (fertile): more equally and crowd-edly anastomosing between the primary veins.

Fronds coriaceous, pinnatifid, and sterile below; pinnate, contracted and fertile above; the pinnae sessile, articulated. Rhizome creeping.—The netted receptacle of this genus associates it with *Platycerium*; but in habit and aspect the species resemble *Drynaria*.

Ex.: *D. splendidens*, J. Sm. | *D. pilosum*, J. Sm.

(c) Sori in linear sub-marginal patches.

17. **JENKINSIA**, Hooker, Gen. Fil. t. 75.

Notochloaene sp., Wallich; *Campii* sp., Presl; *Cyriogonii* sp., J. Smith; *Lomariopsidis* sp., Mettenius.

Sori superficial, broadly linear, continuous, sub-marginal; the receptacles consisting of the (about 3) external series of arcuate venules with their excurrent veinlets: thus compound. Veins pinnate from a central costa, prominent; venules opposite anastomosing in angulate (two-angled) arcs, from the angles of which proceed excurrent veinlets; the veinlets near the margin free in the sterile, often anastomosing in the fertile fronds, the rest free, clavate at the apex; veins not extending to the margin.

Fronds pinnate, dimorphous, coriaceo-membranaceous, often proliferous, the fertile contracted. Rhizome decumbent.—This genus is allied to the *Acrostichaceae* through *Paclipteris*; indeed it may be only a dilated condition of this genus with the receptacles abnormally areolate. The arcuate soriferous veins also indicate an affinity with *Meniscium*; but the compound condition of the receptacles associates it with *Platycerium* and *Dryo-

tachyum*, in the group *Platycericeae*—the distinguishing feature of which, consists in the netted receptacles of the confluent masses of spore-cases.

Ex.: *J. undulata*, Hook.
XXIV.

GENERAE OF FERNS:

§ 3. LOMARIEÆ.

(a) Veins free.

Stegania, Brown; Lomariadum, Presl; Polygramma, Presl; Paraloma, Böe; Oncocleæ sp., Lin. and Auct.; Acrostichi sp., Auct.; Osmundæ sp., Auct.; Blechni sp., Auct.; Mettenius; Sal-piculææ sp., Böe; Pteridis sp., Auct.; Hemionitidis sp., Auct.; Parablechni sp., Presl; Polypteri sp., Auct.

Sori indusiate, linear, continuous, on a broadish linear receptacle, occupying nearly the whole under surface of the contracted fertile fronds. Indusium attached at the margin, linear, continuous, scarious, opening along the inward side. Veins (sterile): simple or forked from a central costa, the venules direct, free; or (fertile) obsolete.

Fronds simple pinnatifid pinnate or bi-pinnatifid; the fertile contracted. Rhizome short, thick, erect or decumbent, rarely creeping or arborescent.—This genus is technically very nearly allied to Blechnum, its typical species differing in having the aori and indusia at the margin, whilst in Blechnum they are distinctly intramarginal; but there are some species in which these differences are not very obvious. L. Fraseri, which has a slender arborescent trunk-like rhizome, is an anomalous species, approaching Onychium, but wanting the pinnate veins of the fertile segments which occur in that genus.

Ex.: L. Patersoni, Spr. L. elongata, Bl.
L. alpina, Spr. L. glauca, Bl.
L. blechnoides, Bory. L. Boryana, Willd.
L. procera, Spr. L. alta, Howard.
L. discolor, Willd. L. Fraseri, A. Cunn.

Orthogramma, Presl; Spicanta, Presl; Blechnopsis, Presl; Diaphia, Presl; Mesothema, Presl; Distaxia, Presl; Parablechni sp., Presl; Lomarle sp., Auct; Steganize, sp., Auct; Stenoculææ sp., Böe; Tenetidis sp., Auct; Asplenii sp., Auct; Osmundæ sp., Auct; Oncleæ sp., Auct; Acrostichi sp., Auct; Steuthipteri sp., Auct.

Sori indusiate, linear, continuous or rarely interrupted, on a transverse receptacle, approximate to the costa; central, or sometimes sub-marginal by the contraction of the fronds. Indusium
linear, opening along the inward side. Veins (sterile): simple or forked from a central costa; venules direct, free, thickened at the apex; in the fertile fronds combined near the base or within the margin by the receptacle.

Fronds simple pinnatifid or pinnate; the fertile sometimes more or less contracted. Rhizome short, erect, or producing elongated creeping stolones.—This genus is only intelligibly distinguished from *Lomaria* by including in it all those species in which the indusia and sori are evidently intramarginal, irrespective of the contraction of the fronds.

§ *Eublechnum.*—Sori costal or sub-costal.

Ex.: B. brasiliense, Desv. | B. occidentale, Lin.
B. orientale, Lin. | B. Finlaysonianum, Wall.
B. lanceola, Sw. | B. intermediate, Lk.

§ *Parablechnum.*—Sori sub-marginal by the contraction of the fronds.

Ex.: B. Spicant, Smith. | B. hastatum, Kift.
B. Gilliesii, Mett. | B. punctulatum, Sw.

(b) Veins transversely or arcuately combined.

Salpchlena, Klotzsch; *Salpimchlena*, Presl; *Blechni* sp., Autc.

Sori indusiate, linear, continuous, on a transverse receptacle, approximate to the costa. *Indusium* broad, membranaceous, involutely-cylindraceous, the opposite valves joined over the costa; at length opening along the centre. *Veins* forked from a central costa; venules parallel, combined at the apex by a slight intramarginal veinlet, and near the base, (in the fertile fronds) by the receptacle.

Fronds bi-pinnate, scandent. Rhizome as in *Blechnum*?—Very little different from *Blechnum*, except in the scandent habit and combined venules. There appears to be but one species.

Ex.: S. volubilis, J. Smith.

Blechni sp., Gaudichaud; *Woodwardia* sp., Mettenius.

Sori linear, indusiate, continuous; on an elevated cristæform transverse central receptacle. *Indusium* narrow, sub-coriaceous.
Veins arcuately anastomosing at the base, forming costal areoles; venules simple or forked, parallel, connivent with the thickened margin.

Fronds rigid, opaque, pinnato-pinnatifid. Rhizome arbor-escant.—The tree-like habit, elevated receptacle, thick indusium, and arcuately-anastomosed basal veins, indicate a distinct group, with which, however, we are but little acquainted.

Ex.: S. cyatheoides, Hks. | S. pallida, Hk. and Arn.
S. Souleytiana, Gaud. | S. squarrosa, Gaud.

§ 4. Pleurogrammae.

(a) Veins consisting of a costa only.

22. MONOGRAMMA, Schkuhr, Crypt. Gewäch. 82.

Vaginularia, Hks; Cochlidii sp., Kaulfuss; Grammitidis sp., Auct.; Pteridis sp., Auct.; Pleurogrammatis sp., Flos; Asplenii sp., Swartz; Acrostichi sp., Swartz; Tenuitidis sp., Mettenius.

Sori sub-immersed, non-indusiate, linear elongate near the apex of the frond, the receptacle formed of a portion of the costa. Veins reduced to the costa only.

Fronds small graminiform or rachiform, simple or forked. Rhizome creeping.—Curious little plants of extreme simplicity of structure.

§ Monogramma.—Sori lying in a longitudinal depression of the graminiform fronds.

Ex.: M. graminea, Schkuhr. | M. furcata, Desv.

§ Vaginularia.—Sori occupying a vaginiform expansion of the rachiform fronds.

Ex.: M. trichoidea, J. Sm.

(b) Veins consisting only of a costa, and the intramarginal receptacles parallel with it.

Sori immersed, non-indusiate, linear, continuous, sub-costal; the receptacle formed of a simple vein proceeding from each side the costa, near its base, and running parallel with it; sunk in a deep oblique furrow open towards the costa, over which the two
lines of spore-cases become confluent. Veins reduced to the costa, and the intramarginal receptacles parallel with it.

Fronds crowded, simple, narrow, erect. Rhizome short, creeping.—This fern has been placed by its author near to *Blechnum*. The fructification, however, as indicated in the admirable figure above quoted, does not appear to us to have any affinity with *Blechnum*. The spore-cases lie in two deep oblique furrows, one on each side the costa and open towards it; but the upper valve of this furrow is thick and herbaceous and not of the nature of an indusium. The furrows are rather analogous to what occurs in *Vittariae*, only they are in a different position. The plant appears to us to associate better with the *Pleurogrammeae*.

Ex.: *D. angustissima*, Brackenridge.

(c) Veins simple, oblique, from a central costa.

Cochlidii sp., *Kaulfuss*; *Micropteridis* sp., *Desvaux*; *Tennitidis* sp., *Kaulfuss*; *Blechini* sp., *Wildenow*; *Grammitidis* sp., *Auct.*; *Monogrammatis* sp., *Auct.*

Sori superficial, non-indusiate, more or less elongate near the apex of the frond; the *receptacle* contiguous to, or more or less coalescent with the costa. Veins simple or forked from a central costa, free.

Fronds small, entire, linear, rarely ovoid. Rhizome creeping.

Ex.: *P. graminifolia*, *Presl.*
P. pumila, *Presl.*
P. linearis, *Presl.*
P. linearifolia (Monogramma, *Desv.*)

Micropteridis sp., *Desvaux*; *Grammitidis* sp., *Auct.*; *Acrostichi* sp., *Swartz*; *Asplenii* sp., *Swartz*; *Gymnopteridis* sp., *Bernhardi*; *Polypodi* sp., *Mettaniius*.

Sori superficial, non-indusiate, elongate on the dilated and longitudinally plicate apex of the fronds; the *receptacle* coalescent with the costa. Veins simple from a central costa, free.
Fronds small, fasciculate erect, sterile and deeply toothed below; above dilated soriferous often becoming folded longitudinally. Rhizome stoloniferous. — The sori of this fern are often described as grammitoid, "oblong, oblique, at the base of the lateral veins, at length confluent." To us they appear to be produced in a line contiguous to the midrib, and seem little different from *Pleurogramma*.

Ex.: *X. serrulata*, Kf.

(d) *Veins compoudly anastomosing.*

Sori superficial, linear-elongate or linear-oblong, on the contracted apex of the fronds; the receptacles contiguous to and coalescent with the costa, sometimes covered while young by the revolute margin. *Veins* indistinctly pinnate from a central costa, or nearly uniform; *venules* compoudly anastomosing, forming crowded irregular areoles, from which proceed variously directed included free *veinlets*.

Fronds simple, opaque, linear lanceolate; the apex fertile contracted, straight or curved. Rhizome creeping. — This well-marked group, usually placed with the *Acrosticheæ*, accords much more closely with the *Pleurogrammeæ*.

Ex.: *H. spirita, Presl.*

H. *revoluta, Bl.*

H. platyrhynchos, *Kze.*

H. *validinervis, Kze.*

Leptochilus, Kaulfuss; *Dendrocolosa, Presl*; *Acrostichi sp., Auct.*

Leptochili sp., Fée; *Osmundæ sp., Auct.*; *Polybotryæ sp., Mettenius.*

Sori superficial, non-indusiate, linear continuous, at length effuse; the receptacles contiguous to the costa of the contracted fronds, often occupying nearly the whole under surface, sometimes double on each side the costa. *Veins* pinnate from a cen-
tral costa, the *venules* compoundly anastomosing, forming irregular areoles, from which, proceed free included divaricate *veinlets*; those of the fertile fronds much less developed.

Fronds simple pinnatifid or pinnate, dimorphous; the fertile much contracted. Rhizome short, creeping.—The species of *Gymnopteris* are usually referred to *Acrostichaceae*, but the definite linear sori confined to the receptacular veins, indicate a stronger affinity with the *Pleurogrammeae*.

Ex.: G. quercifolia, Bernh.
G. taccastifolia, J. Sm.
G. axillaris, Presl.
G. trilobata, J. Sm.
G. Féai (Leptochilus lanceolatus, Féa.)
G. decurrens, Féa.

§ TENITIDEE.

(a) *Veins reduced to an obscure costa.*

28. SCOLIOSORUS, M. (from skolios, tortuous; and *sorus*, a heap.)

Antrophyium sp., Hooker.

Sori non-indusiate, linear interrupted, flexuose, and oblique-branched on the exterior side; the *receptacles* immersed, medial, longitudinal. *Veins* reduced to an obscure costa.

Fronds simple, membranaceous, sessile; tufted on a short sub-globose rhizome. Sori placed about midway between the costa and margin. Veins apparently none, except the obscure costa.—This plant having neither netted veins nor netted sori, cannot belong to *Antrophyum*, and is quite distinct from every other established genus.

Ex.: S. ensiformis (*Antrophyum, Hook.)*

29. HOLCOSORUS, M. (from olkos, a furrow; and *sorus.*)

Grammitidies sp., Hooker.

Sori immersed, non-indusiate, oval-oblong; the *receptacles* seated in (a pair of) deep rounded furrows on the broadest or posterior face of the solid bluntly pentangular fronds, parallel with the costa. *Veins* reduced to a simple costa, embedded in the centre of the solid fronds.

Fronds distinct, solid, linear pentangular; the upper or rounded face having three shallow grooves; the lower or so-
riferous one two deeper furrows in which the sori lie. Rhizome creeping, scaly.—Totally distinct from the Gymnogrammea, and, as it appears to us, from all the established genera of ferns.

Ex.: O. pentagonus (Grammitis bisulcata, Hook.)

(b) Veins uniform reticulated, without free included veinlets.

Pteropsidis sp., Deveaux; Digramma, Kunze; Pteridis sp., Auct.; Anthophri sp., Auct.

Sori non-indusiate, linear, continuous or interrupted; the receptacles sub-marginal or medial, superficial or somewhat immersed. Veins uniform reticulated, forming elongated longitudinal or oblique areoles, without included free veinlets.

Fronds simple lobate or pinnate, rigid; the sori and costa in T. niphoboloides, clothed with stellate hairs. Rhizome creeping.

Ex.: T. angustifolia, Br.

T. blechnoides, Sw. | T. marginalis (Anthrophyum, Bl.)

T. niphoboloides (Anthrophyum, Kze.)

31. SCHIZOLEPTON, Fée, Hist. Vitt. 27.

Schizolomatia sp., Gaudichaud; Lindseæ sp., Auct.; Drymoglossi sp., Hooker.

Sori non-indusiate, linear, continuous; the receptacles sub-marginal, immersed; the interior thickened margin of the groove elevated and sub-indusiform. Veins uniform reticulated; the venules anastomosing in unequal elongated oblique areoles, without included free veinlets.

Fronds polymorphous, simple or lobed, coriaceous; the fertile more or less contracted. Rhizome creeping.—A well-marked genus, differing from Schizoloma in the absence of an indusium, and from Drymoglossum in the absence of free included veinlets.

Ex.: S. cordatum, Fée.

S. rigidum (Drymoglossum, Hk.)

Sori non-indusiate, linear, continuous; the receptacles marginal, superficial, not confined to the veins, (Icon. Hk.). Veins
uniform reticulated; the venules anastomosing in sub-equal hexagonal areoles, without included free veinlets.

Fronds pinnate, dimorphous; the pinnae articulate, the fertile contracted, their whole margins sporangiferous. Rhizome scandent.—The specimens to which this name has been given, may be abnormal semi-contracted fronds of some species of Nemo-callis, with which this agrees in everything except that it has marginal linear sori; it especially approaches our § Chorizopteris of that genus.

Ex.: L. ptericioides, J. Smith.

(c) Veins uniform reticulated, with included free veinlets.

33. DRYMOGLOSSUM, Presl, Tent. Pter. 227.

Heteropteris, Fée; Neurodium, Fée; Paltontium, Presl; Lemmaphyllum, Presl; Acrostichi sp., Auct.; Pteridis sp., Auct.; Nothochlamys sp., Auct.; Pteropus sp., Desvouz; Tenitidis sp., Auct.; Vittaria sp., Hk. and Gr.; Niphobolus sp., J. Sm.

Sori non-indusiate, linear, continuous; the receptacles marginal or sub-marginal, superficial or slightly immersed. Veins uniform reticulated, obscure; the venules anastomosing in roundish or oblong hexagonal areoles, from which proceed free included simple or hamate obtuse veinlets.

Fronds simple, dimorphous, or contracted at the fertile apex, usually coriaceous. Rhizome creeping.

Ex.: D. piloselloidea, Pr. | D. lanceolatum, J. Sm.
D. carnosum, Hk. | D. Cunninghamii (D. carnosum, J. Sm. non Hk.)
D. acrostichoides (Vittaria, Hk.) and Gr. | D. ellipticum (Pteris, Willd.)

Tenitidis sp., Mettenius.

Sori non-indusiate, superficial, of two kinds: (1) linear, continuous, seated on a sub-marginal receptacle; and (2), roundish or oblong, irregular, the receptacle seated on the short anastomosing venules, or the recurrent veinlets. Veins uniform, re-
ticulated; the *venules* forming unequal areoles, from which proceed free included simple or brachiate recurrent *veinlets*.

Froënds simple, membranaceous. Rhizome creeping.—The peculiarity of this genus is the production of different kinds of sori on the same frond, a feature which has led M. Fée to suggest that it may be an abnormal state of *Pleopeltis tenuilioris*, which it otherwise closely resembles.

Ex.: D. samarensis, *J. Sm.*

35. PARAGRAMMA, *Blume, En. Fil.* 114 (§) : M.

Grammitidis sp., *Blume*; *Pleopeltidis* sp., *Blume*; *Drynaria* sp., *J. Smith*; *Phymatodis* sp., *J. Smith*; *Polypodiis* sp., *Auct.*

Sori non-indusiate, oblong, distinct, parallel with the costa; the *receptacles* linear-oblong, immersed, sub-marginal. Veins immersed uniform; *venules* anastomosing in elongated sub-hexagonal areoles, from which proceed variously directed free included *veinlets*.

Froënds simple, coriaceous. Rhizome creeping.—Though usually placed among the *Polypodiceae*, the constantly elongated sori parallel with the costa, indicate rather an affinity with the *Tænitidea*; and we gladly revive for it the name *Paragramma*, formerly applied to it by Blume, by whom these species were considered to form a distinct section of *Grammitis*.

Ex.: *P. longifolia* (Grammitis, *Bl.*; Drynaria revoluta, *J. Sm.*)

P. decurrens (Grammitis, *Bl.*)

(d) *Veins forming a series of simple arcs each side the costa.*

Gusfidarie sp., *Fée*; *Tænitidis* sp., *Auct.*; *Pteropsidis* sp., *Auct.*

Sori non-indusiate, linear, continuous; the *receptacles* sub-marginal, superficial, formed of the marginal parts of the arcuate veins. Veins simple, from a central costa, each arching and uniting with the next vein, so as to form a series of oblique
elongated simple areoles each side the costa; the arcs sporangiferous in a sub-marginal line.

Fronds lobate, sub-coriaceous; the veins obscure. Rhizome short, creeping, sub-globose.—This fern is quite like *Tæniopsis furcata* in general appearance, but the venation is totally different: here, always combined in a series of arches, of which the outer part forms the receptacles; but in that, straight and combined only in the fertile fronds by a straight marginal vein forming the receptacle.

Ex.: *D. subpinnatifidum* (Cuspidaria, Fée.)

(e) Veins straight, combined (where fertile) by the marginal receptacle.

Teniopteris, *Hooker*; *Amplepopteris*, *Klotzsch*; *Cuspidable* sp., *Fée*; *Dicranoglossi* sp., *J. Smith*; *Tænidides* (*§ Chilogrammatis*) sp., *Blume*; *Vittaria* sp., *Auct.*; *Pteropsidis* sp., *Desvaux*; *Pteridis* sp., *Linnaeus*.

Sori non-indusiate, linear, continuous; the receptacles sub-marginal, immersed or superficial. *Veins* simple or forked from a central costa; *venules* parallel, combined at or near their apices (only where fertile) by the transverse, i.e., the longitudinal receptacle, otherwise free.

Fronds simple or lobate, coriaceous; the veins obscure. Rhizome short creeping, or tufted.—We include in this genus all the vittarioid species in which the *sori* is not placed in a distinct extrorse-marginal furrow.

Ex.: *T. lineata*, *J. Sm.*

| T. stipitata (*Vittaria, Kze.*) | T. zeylanica (*Vittaria, Fée.*) |
| T. furcata (*Pteris, Lin.*) | T. tricuspidata (*Pteris, Lin.*) |

§ *VITTARIA.*

38. VITTARIA, Smith, Mem. Acad. Turin. v. 413, t. 9.

Buncinaria, *Müller*; *Aristaria*, *Müller*; *Parenoxyaria*, *Müller*.

Sori non-indusiate, linear, continuous; the receptacles lying in

[March, 1857.]
an extrorse-marginal furrow, i.e., a groove open exteriorly in the extreme margin of the frond. *Veins* obscure, simple, combined at their apices by the receptacle.

Fronds simple and coriaceous, narrow-elongated and grass-like. Rhizome short, creeping, or tufted.—A group quite distinct in technical characters, but closely approached in aspect by some of the narrow-fronded species of *Tan-iopsis*. The fronds are mostly long and very narrow, like stiff blades of grass.

Ex.: *V. rigida*, Klf.
V. zosteraefolia, Bory.

| V. isocetifolia, Bory.
| V. anodontolepis, Fée.

§ **LINDSÆÆ.**

(a) *Veins free (except where combined by the receptacle.*)

Isoloma, J. Smith; *Lindsaynum*, Fée; *Lindsaya*, Kaufsuss; *Adianti* sp., *Auct.*; *Vittaelæ* sp., *Auct.*; *Wirellæ* sp., Fée; *Davallæ* sp., Spreng.

Sori indusiate, linear or oblong, continuous or interrupted; the *receptacle* sub-marginal. *Indusium* membranaceous, equaling-or shorter than the margin of the frond, opening on the exterior side. *Veins* ecostate and flabellately forked, or forked from a central *costa*; *venules* straight, combined at their apices by the receptacle, otherwise free; sometimes thickened at their apices.

Fronds herbaceous or sub-coriaceous, simple pinnate or bi-tri-pinnate; the pinnae (or pinnules) sometimes articulate, dimidiate or equal-sided; fertile only on the upper margin, or on both margins. Rhizome creeping.—In *Lindsaynum* the veins coalesce with a thickened margin, not a marginal vein. *Isoloma* has a central costa, articulated pinna, and clavate veins, but cannot be separated without also involving the separation of the isomerous *Adianti*.

§ **Isoloma.**—Divisions of the frond isomerous, with a midrib.

| L. divergens, Hk. and Gr.

§ **Bulindsaea.**—Divisions of the frond flabellate or dimidiate, ecostate.

| L. microphylla, Sw.
| L. retusa, Mett.
(b) Veins reticulated, without free included veinlets.

40. SCHIZOLOMA, Gaudichaud, Freycinet's Voy. 378, t. 16—18.

Pericopsis, Wallich Hb.; Synaphlebum, J. Smith; (Synaphlebum, Fée); Diellia, Brackenridge; Lindseæ sp., Auct.; Pteridis sp., Auct.; Adianti sp., Auct.; Davallæ sp., Hooker.

Sori indusiate, linear or oblong, continuous or interrupted; the receptacles sub-marginal. Indusium membranaceous, equalling or shorter than the margin of the frond, opening on the exterior side. Veins ecostate, or forked from a central costa; venules anastomosing in elongated oblique areoles, without free included veinlets, the marginal ones combined by the transverse receptacle.

Fronds herbaceous, simple lobed or pinnate, rarely bi-pinnate; pinnæ or pinnules equal-sided or dimidiate, fertile on the upper margin only, or on both margins. Rhizome creeping.—This genus differs from Lindseæ only in its simply reticulated venation. In the species referred to Diellia, the sori are constantly short and distinct; but this peculiarity, disregarded in Adiantum, cannot here be admitted to he of generic value.

§ Euschizoloma.—Divisions of the frond isomerous, with a midrib.

Ex.: S. ensifolium, J. Sm. | S. Guerinianum, Gaud.
S. Fraseri, Fée | S. falcatum (Diellia, Brackenridge)
S. Griffithianum, Fée | S. erectum (Diellia, Brackenridge)

§ Synaphlebum.—Divisions of the frond dimidiate, the costa excentric or wanting.

Ex.: S. propinquum (Lindseæ, Hk.) | S. recurvatum (Lindseæ, Wall.)
S. davallioides (Lindseæ, Bl.) | S. Pickeringii (Synaphlebum, Brack.)

(c) Veins compoundly reticulated, with free included veinlets.

41. DICTYOXIPHIUM, Hooker, Gen. Fil. t. 62.

Lindseæ sp., Mettenius.

Sori indusiate, linear, continuous; the receptacles sub-marginal. Indusium not equalling the attenuated margin of the frond. Veins compoundly reticulated, sub-uniform, from a central costa, internal; venules anastomosing in unequal hexagonal areoles, from which proceed free included simple or forked divaricate veinlets, which are thickened at the apex.
Fronds simple, coriaceo-membranaceous, the fertile narrower.
Rhizome short, thick, erect.—This genus, though distinct in
aspect, presents no technical difference of generic value to
distinguish it from Lindseya, except the compound reticulation, and
free included branches of its veins, are admitted to be differences
thus important. Hence we regard the fact of such a genus being
proposed, and admitted, as entirely sanctioning the derivation of
generic characters from the venation of ferns.
Ex.: D. panamense, Hook.

§ Adiantææ.
(a) Veins free.

42. ADIANTUM. Linnaeus, Gen. Pl. 782.

Adiantellum, Presl; Aptomzia, Fle; Synecchia Fle; Mesopleuria,
Moore MS.; Scolopendri sp., Adanson; Ptérènis sp., Auct.

Sori indusiate, transverse marginal, reniform oblong or
linear, continuous or interrupted; the receptacles seated on the
under surface of the indusium, and proceeding from the apices
of two or more converging venules. Indusium (inverted mem-
branaceous marginal lobe) venulose, sporangiferous beneath on
the venules; the receptacles, therefore, resupinate. Veins flabel-
lately forked, or forked from a medial costa, the furcations
repeated; venules parallel, free, continued in the fertile parts
into the indusium.

Fronds coriaceous or herbaceous, simple, pinnately or pedately
divided, or supradecompound; pinnae often articulated, usually
dimidiate with the costa wanting. Stipes and rachis ebeneous.
Rhizome tufted, or short creeping.—A perfectly natural genus.

§ Mesopleuria.—Costa medial; sori linear, elongate, continuous.
Ex.: A. Wilsoni, Hook. | A. obliquum, Willd.
 A. Phyllitidis, J. Sm. | A. lucidum, Sw.

§ Synecchia.—Costa wanting; sori elongate, continuous.
Ex.: A. incisum, Pr. | A. villosum, Lin.
 A. pulverulentum, Lin. | A. varium, H. B. K.

§ Adiantellum.—Costa wanting; sori round or oblong.
Ex.: A. reniforme, Lin. | A. Capillus-veneris, Lin.
 A. lunulaturn, Burm. | A. trapeziforme, Lin.
 A. prionophyllum, H. B. K. | A. concinnum, H. B. K.
(b) Veins reticulated.

Adianti, sp., Auct.

Sori indusiate, transverse marginal, linear, continuous; the receptacles and indusium as in Adiantum. Veins uniform, reticulated, with or without a costa; venules anastomosing in elongated areoles, without included free veinlets.

Fronds sub-coriaceous or membranaceous, pinnate bi-pinnate or pedately tri-pinnate. Stipes and rachis ebeneous. Rhizome short creeping?—This genus is distinguished from Adiantum by the reticulation of the veins.

§ Hewardia.—Costa medial.

Ex.: H. adiantoides, J. Sm. H. serrata, Fée.

§ Isotes.—Costa wanting, veins equal or uniform.

Ex.: H. Leprieuri, Fée.

§ Cheilantheæ.

(a) Sori marginal, terminal on the veins.

44. ADIANTOPSIS, Fée, Gen. Fil. 145.

Actinopteris, J. Smith; Aspidotis, Nuttai MS. (Hook.); Hypolepidis Auct., Hooker; Adianti Auct., Auct.; Cheilanthis Auct., Auct.

Sori indusiate, transverse marginal, oligocarpous, sub-orbicular; the receptacles punctiform at the apex of the veins. Indusium roundish, thin, membranaceous. Veins simple or forked from a central flexuose sometimes indistinct or evanescent costa; venules free.

Fronds herbaceous, pinnate or bi-tri-pinnate, sometimes pentangular or radiate; pinnules (or pinnae) articulated or continuous, sometimes sub-dimidiate. Stipes and rachis ebeneous. Rhizome short, tufted or creeping.—The adianti-cheilantheoid aspect of these plants, rather than any exact technical character, has been thought sufficient to separate them from Cheilanthes, and in this view we doubtfully concur. With Hypolepis they certainly have less direct affinity than with Cheilanthes.

Ex.: A. capensis, Fée. A. radiata, Fée.

A. pteroides (Cheilanthes, Sw.) A. monticola (Cheilanthes, Gardn.)

A. californica (Hypolepis, Hk.) A. Schimperi, (Cheilanthes, Kze.)
45. CHEILANTHES, Swartz, Synop. Fil. 5, 126.

Sori indusiate, transverse marginal, generally on a reflexed tooth or lobule; normally sub-orbicular, small, distinct, sometimes contiguous, and by lateral confluence, elongate: the receptacles punctiform at the apex of the veins. Indusium membranaceous, or formed of revolute portions of the slightly altered margin, of the same form as the sori. Veins simple or forked from a central costa; venules free.

Fronds usually small, pinnate variously pinnatifid or bi-tripinnate; membranaceous or sub-coriaceous, sometimes pulverulent or densely hairy or scaly beneath. Stipes and rachis generally cheneous. Rhizome tufted or shortly creeping.—There is usually much confusion as to the species referred by different botanists to the genera Cheilanthes, Pteris, and Allosorus, arising from what we believe to be, an erroneous view of the latter, which is well represented by A. crispus, and is essentially polypodioid, with revolute but not indusiate margins. There is no place for an intermediate genus—the Allosorus of Presl and authors—between Cheilanthes and Pteris, for there are but two types of structure referred to these three groups: the sori is either seated on a punctiform receptacle, which is Cheilanthes, or on a linear elongated receptacle, which is Pteris. The continuity of the indusium is perfectly immaterial. Cheilanthes thus only becomes an intelligible genus. The group Physapteris, Presl, (Myriopteris, Fée), is distinct in appearance, but does not afford any good distinctive character of generic importance, either in the veins or sori.

§ Eucheilanthes.—Segments with distinct or sometimes confluent indusia; not pouch-shaped.

C. nitidula, Hk.
C. hirta, Sw.
C. intramarginalis, Hk.
C. aurantiaca (Pteris, Cav.; C. ochra-cea, Hk.)

§ Physapteris.—Segments small, roundish, pouched-shaped, the indusium entire and almost closing over the back.

Ex.: C. lendigera, Sw.; C. myriophylla, Desv.

C. elegans, Desv.
C. Fée (Myriopteris gracilis, Fée.)

Sori indusiate, transverse marginal, sub-orbicular, distinct; the receptacles punctiform at the apex of the veins, generally occupying the axils of the lobes. Indusium sub-orbicular, more or less membranaceous, oblique. Veins simple or forked from a central costa; venules free.

Fronds generally large, herbaceous, bi-tri-quadri-pinnate. Rhizome extensively creeping.—Somewhat wanting in technical differences from both Cheilanthes and Adiantopsis, yet obviously unlike either, and marked by the long creeping rhizomes, and generally by the axillary position of the sori in reference to the segments of the pinnules.

Ex.: H. tenuifolia, Bernh. H. nigrescens, Hook.
H. parallelogramma, Pr. H. stenophylla (Cheilanthes, Kze.)

(b) Sori slightly intramarginal, terminal on the veins.

47. CASSEBEERIA, Kautfuss, Enum. Fil. 216.

Cassebeeria, Auct.; Adiantisp., Lamarck; Pteridisp., Mettenius.

Sori indusiate, transverse, slightly intramarginal, sub-orbicular or elliptic; generally combined in pairs on the emarginate lobes, single when the lobes or crenatures are entire; the receptacles of each sorus seated "on the termination of two veinlets," (Hk.): punctiform distinct, (ex Icon. Flé): combining the venules, (ex Icon. Metten.) Indusium of the same form as the sorus, membranaceous, inserted within the reflexed margin of the soriferous lobes. Veins internal, quite obscure, forked; in the less divided species proceeding from a central costa; venules free.

Fronds coriaceous, tripartite pinnate or bi-pinnate. Stipes and rachis ebeneous. Rhizome short, horizontal.—A well-marked genus, essentially distinguished by the somewhat intra-
marginal twin fructifications, which though not universally double, are commonly so.

Ex.: C. pinnata, Kfls.
C. triphylla, Kfls.
C. gleichenioiodes, Gardn.
C. petiolata, Fée.

(d) Sori intramarginal, medial on the veins.

48. PLECOSORUS, Fée, Gen. Fil. 150.

CRYPTOSTIGMA, A. Braun MS.; CHEILANTHIS sp., A. Braun olim, and Auct.

Sori (spuriously) indusiate, i.e., covered by the continuously inflexed slightly attenuated or scariose margin of the segments; rotundate, intramarginal, seated among hair-like scales, becoming effuse; the receptacles prominent, medial. Veins forked from a central costa, indistinct; venules free.

Fronds large, pinnato-pinnatifid, densely scaly beneath.—The ferns referred to this group differ from Cheilanthes in having distinctly intramarginal medial, instead of marginal terminal sori. They approach very near to Jamesonia, in company with which they might perhaps be placed without violence to nature. We retain them among the Cheilanthes, in consequence of the transverse marginal—though scarcely more than spurious—indusium, which is analogous to what occurs in some species of Cheilanthes.

Ex.: P. peruvianus, Fée.
| P. especiosissimus (Cheilanthes, A. Br.)

§ PTERIDEE.

(a) Veins free.

LEPTOSPIGA, D. Don; TRICHOMANIS sp., Thunberg; CAENOPTERIDIS sp., Thunberg; DAREI sp., Willdenow; PHOEBOLIS sp., Desvaux; CHEILANTHIS sp., Auct.; ALLOSPERI sp., Presl; PTERIDIS sp., Auct.; LOMARLEX sp., Auct.; LOMARIHOXYDIS sp., Fée; ASPLENII sp., Kunze.

Sori indusiate, linear (or oblong) transverse marginal or submarginal; the receptacles continuous. Indusium linear (or oblong), membranaceous, usually opposite, and while young
connivent over the narrow ultimate segments. Veins (sterile) simple and costaeform in the ultimate segments; or (fertile) pinnate from a central costa, the few branches united near the margin by the transverse receptacle.

Fronds bi-pinnately or decompoundly pinnatisected, sometimes sub-membranaceous, usually with small narrow segments. Rhizome creeping.—A small group of elegant ferns, with decompound fronds, and small ultimate segments, the fertile parts soriferous along the margin.

Ex.: O. auratum, Kyfis. O. lucidum, Spr. O. melanolepis, Kee.

Adianti sp., Swartz; Cheilanthis sp., Bory; Cassebeee sp., A. Braun Hb., (Feé); Pteridis sp., Mettenius.

Sori indusiate, transverse marginal, oblong or sub-orbicular, occupying the apices of the lobes; the receptacle transversely combining the apices of from two to four converging venules. Indusium of the same form, consisting of the reflexed scarcely altered margin. Veins forked from a central costa; venules free.

Fronds large, decompound, coriaceous. Stipes and rachis pallid. Rhizome short decumbent.—A genus of large compound ferns, with slight, technical characters to distinguish it from Pteris, beyond the comparative shortness of the sori.

Ex.: O. pallens, J. Sm.

51. HAPLOPTERIS, Presl, Tent. Pterid. 141.

Pteridis sp., Bory; Téniopsidis sp., J. Smith; Pteropsidis sp., Desvaux; Vittare sp., Mettenius.

Sori indusiate, linear, continuous, on a transverse marginal receptacle. Indusium broad firm marginal, inflexed, i.e. opening on the inner side (pteroid). Veins simple, from a central costa, remote, internal, combined in the fertile fronds by the receptacle.

Fronds simple, coriaceous, fasciculate. Rhizome sub-globose.
—The internal dehiscence of the indusium at once distinguishes this from the Vittariae, while the presence of the indusium equally separates it from the Tanitidea, with each of which it has
been associated. The authentic specimens we have examined, (Hb. Heward), seem to have more structural accordance with the Pteridaceae, though their aspect is certainly vittarioid.

Ex.: H. scolopendrina, Prest.

52. PTERIS, Linnaeus, Gen. Pl. 780.

The following genera are characterized by the structure of their leaves and the form of their spores. Species are given for each genus, illustrating the diversity found within them.

Sori indusiate, marginal, linear, continuous or interrupted; the receptacles linear transverse, uniting the apices of the veins. Indusium of the same form, membranaceous. Veins simple or forked from a central costa; venules free.

Ferns vary from pedate to decussate, often large, herbaceous, or coriaceous. Rhizome short erect, or creeping, sometimes much elongated.—An extensive genus, comprising species of greatly varied aspect.

§ Eupteris, Agardh.—Vernation terminal.

Ex.: P. genanifolia, Raddi.
| P. semipinnata, Lin. |
| P. longifolia, Lin. |
| P. scaberula, Richard |
| P. gracilis, Fée |
| P. hastata, Sw. |
| P. calomelanos, Sw. |

§ Ornithopteris, Agardh.—Vernation lateral.

Ex.: P. aquilina, Lin. | P. esculenta, Forst.

(b) Lower veins only arcuately anastomosing.

53. CAMPTERIA, Presl, Tent. Pterid. 146.

Pteridis sp., Auct.; Litobrochis sp., Auct.

Sori indusiate, marginal, linear, continuous; the receptacles linear transverse, uniting the apices of the veins. Indusium of the same form, membranaceous. Veins simple or forked from a central costa, the lowest pair only arcuately anastomosing, forming a series of elongated costal areoles; venules free.
Fronds herbaceous, large, pedately-branched or bi-pinnate. Rhizome short, erect.—The only distinction between Campteria and Pteris consists in the constant presence of arcuate costal areoles in the former, while the veins in the latter are wholly free, except where combined at the margin by the receptacle. The difference is slight; it is nevertheless analogous to the structure which is mainly characteristic of Hemitelia and Pleocnemia; and is at least more marked than the mere confluence of the veins, as occurs in Goniopteris: by which latter character only the last-named genus has been distinguished by botanists who do not usually recognize the differences of venation as important. Campteria becomes a useful intermediate group between Pteris and Litobrochia.

Ex.: C. bisaurita, Hook. C. pseudo-lonchitis, Presl. C. heterophlebia (Pteris, Kze.) C. Gardneri (Litobrochia, Fée.)

(c) Veins uniformly reticulated, without free included veinlets.

54. LONCHITIS, Linnaeus, Gen. Pl. 781.

Pteridis sp., Mettenius.

Sori indusiate, marginal, narrow, lunately-linear in the sinuses of the lobes and lobules (sometimes also continued along their margins); the _receptacles_ transversely uniting the apices of several converging venules. _Indusium_ of the same form, membranaceous. _Veins_ reticulated, with a central costa, the lowest branches forming one series of elongated costal areoles, the remaining _venules_ anastomosing in several series of oblique irregular hexagonal areoles.

Fronds large, herbaceous, bi-tri-pinnate. Rhizome thick, sub-globose.—Large, coarse, herbaceous ferns; sometimes by the elongation of their _sori_ approaching to _Pteris_; nevertheless tolerably well defined and recognisable.

55. LITOBROCHIA, Presl, Tent. Pterid. 148.

Sori indusiate, marginal, linear, continuous; the receptacles linear transverse, uniting the apices of the veins. Indusium of the same form, membranaceous. Veins simple or forked from a central costa, uniformly reticulated, evident or obscure, the hexagonal simple areoles universal; or, rarely, the basal portion of the veins parallel.

Fronds herbaceous or coriaceous, simple pedate palmate pinnate or bi-tri-pinnate. Rhizome short, erect or creeping.—We have not considered the venation of the § Heterophlebia as sufficiently different from that which is typical of this genus to necessitate its removal; and assuredly that of the § Doryopteris is not.

§ Heterophlebia.—Veins evident, parallel below, closely reticulated near the margin.
Ex.: L. grandifolia, J. Sm.

§ Eulitobrochla.—Veins evident, uniformly reticulated.

§ Doryopteris.—Veins obscure, uniformly reticulated.

(d) Veins compoundly reticulated, with included free veinlets.

56. AMPHIBLESTRA, Presl, Tent. Pter. 150.

Pteridis sp., Auct.

Sori indusiate, marginal, linear, continuous or interrupted; the receptacles linear, uniting the marginal veinlets. Indusium narrow, membranaceous. Veins pinnate from a central costa, prominent; venules compoundly anastomosing, forming transversely arcuate primary areoles, and irregular sub-hexagonal secondary ones; and having variously directed straight or incurved free included veinlets.

Fronds ample, membranaceous, tripartite. Rhizome short erect?—A large pteroid fern, with the compound anastomosing venation and aspect of true Aspidium.

Ex.: A. latifolia, Presl.
§ Woodwardia.

Sori indusiate, linear-oblong or shorter and sublutinate near the costa; the receptacles seated on the transverse anastomosing veins. Indusium plane or convex. Veins uniform; the lower ones arcuately anastomosing, forming elongate costal areoles (one or more series); the marginal venules free.

Fronds pinnatifid pinnate or pinnato-pinnatifid. Rhizome short, erect or decumbent, or elongate creeping.—This genus has considerable affinity, on the one hand, with the Lomarieæ, and on the other with Brainea, which latter, on account of its short transverse naked sori, we refer to Meniscieæ. The two groups into which its species are disposed, have little to distinguish them, the immersed and superficial sori being the principal differences—characters which, in other instances, are not held to be of generic value.

§ Woodwardia.—Sori immersed; indusia vaulted, straight.

Ex.: W. radicans, Sm. | W. areolata (W. angustifolia, Sm.)
W. virginica, Sm. | W. japonica, Sm.

§ Doodia.—Sori superficial; indusia convex, sublutinate.

Ex.: W. cundata, Caw. | W. media, Fée; (D. media, and lunu-
W. aspera, Fée. | W. blechnoides, Fée. [lata, Br.]

§ Meniscieæ.

(a) Veins arcuately anastomosing, forming costal areoles; venules free.

Rowringia, Hooker, non Champion.

Sori non-indusiate, short, transverse, curved; the receptacles seated on the arcuate costal veins, and often extending more or less up the parallel oblique free venules; at length, irregularly curved.
confluent. Veins acutely anastomosing at the base, forming costal areoles; venules simple or forked, parallel; connivient with the thickened margin.

Fronds rigid sub-coriaceous, pinnate, becoming pinnato-pinnatifid. Rhizome arborescent, three or four feet high.—This elegant and interesting tree fern strongly resembles Sadleria, a genus of Lomariae, the differences being that it has short, instead of elongated sori, which are quite naked instead of being indusiate, and are sometimes continued up the oblique vein, instead of being strictly confined to the costal line. It seems to us to connect the Lomariae, through Woodwardiae, with the Meniseciae, among which we place it in consequence of its short, transverse, naked sori.

Ex.: B. insignis, J. Sm. (Bowringia, Hook.)

(b) Venules regularly anastomosing transversely between the pinnate parallel veins.

Polypodii sp., Linnaeus; Asplenii sp., Jacquin.

Sori non-indusiate, linear-oblong, curved, often becoming confluent; the receptacles seated on the transverse parallel-curved venules, between the primary veina. Veins pinnate from a central costa, prominent; venules angularly or arcuately anastomosing between the veins, producing an excurrent free sterile veinlet from the apex of the arc or angle.

Fronds herbaceous or sub-coriaceous, simple or pinnate. Rhizome creeping.—A tolerably well-marked genus; nevertheless sometimes approaching the Acrostichae by the partial contraction of the fertile fronda, and the consequent crowding of the sori. It is connected with the Polypodiae, through those species of Goniopteris which have two contiguously-placed series of sori between their principal veins. One of the most remarkable species is the M. giganteum of Mettenius, from Peru, which has large simple fronds crowded with sori.

(c) Venules irregularly anastomosing, with free included veinlets.

60. DRYOMENIS, Fée, Gen. Fil. 225.

Sori non-indusiate, short oblong, transverse, in two series between the primary veins; the receptacles seated on the transverse venules. Veins pinnate, from a central costa; venules transverse united by a zigzag vein, forming (in the fertile one series, in the sterile a secondary series also, of) irregular areoles, from which proceed (rarely in the fertile, copiously in the barren fronds,) free included veinlets, variously directed.

Frons pinnate, herbaceous, the fertile taller and sub-contracted. Rhizome thick, decumbent.—A plant originally referred to the Polypodiaceae by Mr. Smith; but its transverse sori bring it into association with Meniscium in our arrangement.

Ex.: D. meniscicarpus (Drynaria, J. Sm.; Dryomenis phymatodes, Fée.)

§ ASPLENIEÆ.

(a) Indusia simple distinct.

* Veins free.

61. ACTINIOPTERIS, Link, Fil. Sp. 73, 79.

Sori indusiate, linear, elongate; the receptacles marginal in the contracted rachiform segments, lateral on the veins (which are few, and longitudinal). Indusium plane, membranaceous, opening on the inner side. Veins few, simple, nearly parallel, from an indistinct costa; the basal and external ones sub-marginal, soriferous.

Frons flabellately-partite, the segments rachiform hardly foliaceous, with few veins and marginal sori. Rhizome sub-globose.—Curious little palm-like ferns. The sori here, though marginal and apparently pteroid, are really parallel with, and lateral on the veins. They must therefore be placed among the Asplenieæ, where they form a sufficiently distinct group, related to Asplenium through A. septentrionale.

Ex.: A. australis, Lk. | A. radiata, Lk.
Genera of Ferns:

Phyllitis, Munch; Onopteris, Necker; Cenopteris, Bergius; Darkea, Jussieu; Acropteris, Link; Amesiurn, Newman; Homaloneuron, Klotzsch, Tarachia, Prest; Brachysorus, Prest; Hypochlamys, Fée; Darkeapinum, Fée; Allantodia sp., E. Brown; Athyrium sp., Aust.; Polypodi sp., Aust.; Aspidii sp., Aust.; Scolopendrium sp., Roth; Diplazium sp., Aust.; Acrostichum, Linnaeus; Blechnum sp., Aust.

Sori indusiate, linear short or elongate, oblique; the receptacles lateral on the anterior side of the veins. Indusium linear membranaceous, plane or fornicate. Veins simple or forked from a central costa, (sometimes single and costaceous in the ultimate narrowly-cut segments); or forked from the base of the segments, the costa being evanescent or wanting; venules parallel, direct, free.

Fronds coriaceous, herbaceous or membranaceous; rarely rachiform; simple lobed pinnate or variously decussate; the rachis or veins not rarely proliferous. Sori usually on the anterior side of the venules, but often inverse in the basal auricles, sometimes diplazioid. Rhizome short erect or decumbent, sometimes etaloniferous. — A very extensive and varied genus, yet not presenting definite or sufficient characters by which it might be broken up. The sections indicated below are distinct enough in their typical species, but merge more or less into each other through other species of intermediate character. In the §§ Euasplenum, Acropteris, and Darkea, the indusium is flat, plane; while in § Allantodia it is arched or vaulted.

§ Euasplenum.—Sori oblong or linear; veins simple or forked from a costa, and divergent at a broad or obtusish angle; or dimidately-furcate; fronds usually 1- sometimes 2-3-pinnate, or simple.

Ex.: A. serratum, Lin. | A. Hernionitis, Lin. (A. palmatum, Lam.)
A. marina, Lin. | A. alatum, H. et B.
A. auriculatum, Desv. | A. elongatum, Sw.
A. lanceolatum, Huds. | A. Petrarchae, DC.
A. nitens, Sw. | A. pseudo-nitidum, Roddi.
A. dimidiatum, Wild. | A heterocarpum, Wall.

§ Acropteris.—Sori linear; veins flabellato-furcate without a costa; or simple or forked, and diverging at a very acute angle from an evanescent costa; fronds 1-2-3-pinnate.

Ex.: A. coneatum, Lam. | A. dimidiatum, Sw. (A. zamiafolium, Lodd.)
A. laserritifolium, Lam. | A. premorsum, Sw.
A. septentrionale, Lin. | A. Ruta-muraria, Lin.
§ *Daraea.*—Sori oblong; veins mostly simple in the (usually) unisoriferous ultimate segments; indusium continued on to the parenchyma at both ends; fronds 2-3-pinnate.

§ *Allantodia.*—Sori short oblong, often basal; the indusium fornicate; veins simple or forked from a costa; fronds 2-3-pinnate.

Solenopteris, Zenker; *Asplenii* sp., *Auct.*; *Aspidii* sp., *Auct.*; *Diplazii* sp., *Auct.*; *Allantodiæ* sp., *Auct.*; *Cystopteris* sp., *Auct.*; *Polypodiui* sp., *Auct.*; *Nephronei* sp., *Auct.*; *Daræae* sp., *Auct.*; *Tectae* sp., *Cavanilles*; *Lastreæ* sp., *J. Smith.*

Sori indusiate, short oblong-lunate, or unequally or sometimes equally hippocrepiform; the receptacles on the anterior or sometimes also crossing and returning along the posterior side of the veins. *Indusium* of the same form, often lacerate-fimbriate. *Veins* simple or forked from a central costa; *venules* free, sometimes pinnate.

Fronds herbaceous, bi-tri-pinnate. Sori more or less generally, the basal ones usually, rarely nearly all, arcuate. Rhizome short, erect or creeping.—Neither the short sori, nor the fringed indusia of this genus, though sometimes relied on, are sufficient to distinguish it from *Asplenium*, the latter being too trivial, and the former too variable and indefinite a feature, unaccompanied moreover by any fixed habit. But the occurrence of hippocrepiform sori, more or less numerous, is abundantly distinctive, and indicates a tendency towards the structure of *Lastrea*. The curved sori sometimes only just cross the vein at one end, but are often continued some distance down the opposite side.

** Veins parallel transversely combined by a marginal vein.

Neotippopteris, J. Smith; **Asplenii sp.**, Auct.

Sori indusiate, linear elongate, parallel, oblique; the receptacles lateral, anterior. *Indusium* narrow linear, membranaceous, plane. Veins simple or forked from a central costa; venules approximate, parallel, united at their apices by a continuous slightly arcuate marginal vein.

Fronds simple, coriaceous, often robust. Rhizome short, thick, erect.—A well-marked group, characterised by having a sub-marginal vein uniting the apices of the oblique veins, and by the long narrow crowded sori.

Ex.: T. Nidns, Presl.	T. stipitata, Presl.
T. Phyllitis, Presl.	T. Simonsiana (Asplenium, Hk.)
T. muscfolia, Presl.	T. Grevillii (Asplenium, Wall.)

*** Veins reticulated, their apices combined by a marginal vein.

Asplenidictyum, J. Smith; **Asplenii sp.**, Auct.; **Tarachia** sp., Presl; **Diplazii sp.**, Hort.

Sori indusiate, linear elongate, parallel, oblique; the receptacles lateral anterior. *Indusium* narrow, membranaceous, plane. Veins simple or forked from a central costa; venules parallel at the base, reticulated towards the margin, forming trapezoid or elongated areoles, their apices arcuately combined, or connected by a continuous straight marginal veinlet.

Fronds coriaceous or thin herbaceous, pinnate, sometimes large. Rhizome thick, erect.—The typical species is a large fern with fronds of delicate texture. Both groups have the veins parallel and distinct near the costa, and reticulated near the margin; the one having, and the other wanting a straight marginal vein.

§ *Hæmidictyum.*—Marginal connecting veinlet straight.

Ex.: H. marginatum, Presl.

§ *Asplenidictyum.*—Marginal veinlets arcuately connected.

Ex.: H. Purdicanum (Asplenium, Hk.) | H. Finlaysonianum (Asplenium, Wall.)
ASPLENIEÆ.

Veins reticulated, the marginal veinlets free.

Sori indusiate, oblong-cylindrical; the receptacles sub-lateral anterior on the basal part of the veins. Indusium membranaceous, fimbriate, at first involving the sorns, at length reflexed. Veins simple, parallel at the base and thence soriferous, becoming forked and reticulated in elongated areoles towards the margin; the ultimate veinlets free, clavate, terminating within the margin.

Fronds pinnate, tender, herbaceous. Rhizome decumbent?

The original species of Allantodia are not distinct from the short tumid-fruited species of Asplenium. In the present plant, also referred to Allantodia by the author of the genus, (whose name Dr. Wallich has happily associated with it), the veins are reticulated, and the peculiar character of the sori—cylindrical and sausage-shaped—is much more manifest.

Ex.: A. Brunoniana, Wall.

Ceterac, Adanson; Notoleprum, Newman; Acrostichi sp., Cavanilles; Asplenii sp., Auct.; Grammitidis sp., Auct.; Gymnopteridis sp., Bernhardi; Scolopendrii sp., Symons; Vittare sp., Bernhardi; Gymnogrammatis sp., Sprengel; Blechni sp., Auct.

Sori linear oblong, oblongely indusiate; the receptacles lateral, usually anterior i.e. in reference to the segment, (posterior in the basal sori). Indusium "linear narrow plane, sometimes obsolete," (Hook): "thin, narrow," (Fee). Veins obscure, forked from a central costa, parallel and soriferous below, anastomosing irregularly near the margin, the basal anterior venule (i.e., anterior in reference to the frond,) soriferous on its anterior side.

Fronds pinnatifid coriaceous, densely clothed beneath with membranous imbricated scales. Rhizome short erect.—This genus is anomalous. Its affinity is with the Asplenieae on account of its lateral sori; but the sori in the common species seem to
be without covers: nevertheless, we believe we have found unquestionable indusia in the larger Canary Island species, and some observers have even found, in the commoner one, a slightly elevated membranous ridge, which no doubt represents this part. We have ample authority for excluding the free-veined Cape species from the genus.

Ex.: C. officinaram, Willd. | C. aurea, Desv.

(b) Indusia connivent in pairs, face to face. * Veins free.

68. SCOLOPENDRIUM, Smith, Mem. Acad. Turin. v. 410, t. 9.

Sori indusiate, linear, often elongated; approximate in parallel and opposite pairs; the receptacles on the anterior and posterior sides of venules belonging to adjacent fascicles of veins. Indusium linear, plane, membranaceous, each opening on its exterior side, (with reference to the fascicle on which it is placed), so that the twin sori open face to face. Veins forked from a central costa; venules direct, parallel, free, terminating in club-shaped spicles.

Fronds thick herbaceous, simple or pinnate, frequently undulate lobate or multifid. Rhizome short, stoutish, erect or decumbent.—In some abnormal states of S. vulgare, the veins here and there anastomose irregularly. The common species, S. vulgare, is one of the most prolific in varieties and monstrous forms among known ferns.

Ex.: S. vulgare, Sm. | S. Hemionitis, Cav.
S. pinnatum, J. Sm. | S. Krebsii, Kze.

** Veins reticulated.

69. ANTIGRAMMA, Presl, Tent. Pterid. 120.

Scolopendrii sp., Auct.; Asplenii sp., Swartz; Campyosori sp., Link; Hemidictyi sp., Presl.

Sori indusiate, linear elongated, approximate in parallel pairs;
the receptacles opposite, on the lower parallel portions of proximate venules. *Indusium* linear, plane, membranaceous, opening (in each pair) on the side towards the connivent opposite sori. Veins forked from a central costa; venules parallel and soriferous below, anastomosing near the margin in elongated unequal hexagonal areoles; the marginal angles emitting short free veinlets.

Fronds simple herbaceous. Rhizome short, erect.—This genus is known by its comparatively regular oppositely-placed sori, analogous to those of *Scolopendrium*.

Ex.: *A. brasiiliensis* (Asplenium, *Sw.*; *A. repanda*, *Presl.*) *A. plantaginae*, *Pr.* (Asplen. *Douglasii*, *Hk.*; *Camptosorus rumicifolius*, *Lk.*)

70. **SCHAFFNERIA**, Fée, in litteris (1856); *Id. Icon. Nouv. t. 17*, fig. 1, (ined.)

Sori indusiate, linear, unequal, scattered; the receptacles opposite and face to face on the sides of the areoles, sometimes connivent. *Indusia* linear, membranaceous; those within the same areoles opening face to face. *Veins* radiately-forked; the venules anastomosing in several series of unequal elongated areoles, the sides of which are soriferous; marginal areoles small and obovate.

Fronds simple, distinctly stipitate, rotundly flabellate or obovate, sometimes broader than long. Rhizome short, erect.—A very remarkable plant, with a distinct stipes as long as the radiately-veined fronds, which are generally quite abrupt at the base, or obtusely wedge-shaped. The sori are irregular in their disposition, but following the veins, are more or less radiately disposed.

Ex.: *S. nigripes*, Fée *MS.* (Mexico, Schaffner.)

Asplenii sp., *Linnaeus*: *Antigrammatis sp.*, *J. Smith*.

Sori indusiate, linear or oblong, scattered, often solitary in the costal areoles and on the marginal venules; usually connivent in irregular unequal pairs, face to face, on the adjacent venules of the secondary areoles; the receptacles seated on the sides of the
veins. *Indusium* linear, plane, membranaceous, variously directed in the solitary sori, opening face to face in the connivent ones. *Veins* anastomosing in few angular unequal areoles near the costa, and emitting simple or forked free marginal *venules* or *veinlets*.

Fronds simple, herbaceous, caudate and rooting at the apex. Rhizome short, erect.—Small ferns of peculiar aspect, remarkable for the variously directed irregularly-disposed, yet usually more or less distinctly opposite sori, on each side the costa.

Ex.: *C. rhizophyllus*, Lk. | ? *C. sibiricus*, Ruprecht.

(c) *Indusia connate in pairs, back to back.*

Veins free.

Lotzea, Klotzsch and Korsten; Asplenii sp., Auct.; Scolopendrii sp., Auct.; Allantodiæ sp., Auct.; Callipteridis sp., Bory; Hémionitidis sp., Swartz; Anisogoni sp., Hooker; Microstegiæ sp., Prest; Hypochlamydis sp., Fée; Athyrii sp., Auct.

Sori indusiate, linear, all or the lowermost only double, i.e., the *receptacles* occupying both sides of the veins. *Indusium* narrow, membranaceous, plane or fornicate; in the double sori affixed in pairs back to back on opposite sides of the same venule, one opening anteriorly, the other posteriorly; in the simple sori, as in *Asplenium*. *Veins* simple or forked from a central costa; *venules* direct, free.

Fronds herbaceous or coriaceous, simple pinnate or variously compound. Rhizome short, erect, rarely sub-arborescent.—The limit between *Asplenium* and the present genus is not very definite, in consequence of some species having but few of the double sori; notwithstanding which, *Diplazium* has been almost universally admitted since the time of Swartz, by whom it was founded. We do not refer it back to *Asplenium*, as Mettenius has recently proposed to do, because that genus is already sufficiently unweildy, and the double indusium affords a tangible mark of distinction. We include all species which produce twin sori with any degree of constancy, on the same principle that ferns
having forked naked linear sori are referred to *Gymnogramma*, though all the sori may not be forked.

§ *Eudiplazium.*—Sori linear; indusium plane.

D. delftideum, *Presl.*
D. Klotzschii (Lotzea diplazioides, *Kl. et Karst.*)

§ *Didymochlamys.*—Sori short oblong, sub-basal; indusium fomite.

Ex.: D. tumulosum (*Linden 508*; | D. athyroides (D. brevisorum, *J. Sm.*.,
D. plantagineum, *Sw.* | *Kew Ferns, non En. Fil. Phil.*)

** Veins connivently anastomosing.

** Note: Mention of *Ehizome*.

§ *Anisogonium.*—Sori indusiate, linear elongate, usually double, and together

§ *Callipteris.*—Veins angularly anastomosing in superposed pairs.

*** Veins reticulated.

§ *Callipteris.*—Veins angularly anastomosing in superposed pairs.

*** Veins reticulated.

74. *OXYGONIUM,* *Presl, Tent. Pterid. 117.*

Pteriglyphis, Fée; Ochlogramma, Presl; Diplazii sp., Auct.; Asplenii sp., Auct.; Callipteridis sp., J. Smith; Anisogonii sp., Presl.

Sori indusiate, linear elongate, usually double, and together
with the receptacles, as in Diplazium. Indusium narrow, plane, membranaceous, diplazioid. Veins forked (rarely simple) from a central costa; venules parallel below, soriferous on the elongated parallel portion, reticulato-anastomosing in one or two series of short areoles near the margin; the marginal veinlets free.

Fronds coriaceous, simple or pinnate. Rhizome "creeping."—The peculiarities of this group consist in the venules being parallel and distinct near the costa, and reticulated near the margin. The structure of the venation accords with that of Haemidictyum among the asplenioid series, and of Antigemma among the ecolopendrioid series.

Ex.: O. alismefolium, J. Sm. (Ochlogramma Cumingii, Preal.)
O. integrifolium (Diplazium integrifolium and cordifolium, Bl.)

§ Didymochlææ.

(a) Veins free.

75. DIDYMOCHELÆNA, Desvaux, Berl. Mag. v. 303, t. 7, fig. 6.

Monochlæna, Gaudichaud; Hippodium, Gaudichaud MS.; Ceramium, Reinwardt; Tegularia, Reinwardt; Hystrocarpus, Langsdorf MS.; Diplazii sp., Baddi; Aspidii sp., Auct.; Asplenii sp., Auct.; Adianti sp., Auct.

Sori indusiate, elliptic-oblong; the receptacles oblong dorsal, at the apex of the venules. Indusium of the same form, obtuse at both ends, attached longitudinally along its centre to a crest-formed elevation of the receptacle, free at the margins. Veins flabellately-forked; venules direct, free; the anterior one in each fascicle soriferous, the sterile ones clavate at the apex.

Fronds bi-pinnate, coriaceous; pinnules dimidiate or sub-dimidiate, obtuse, articulated, sub-ecostate. Rhizome arborescent.—Handsome tree ferns, with peculiar fructifications. It is probable that the several names which have been proposed, all belong to one species; Kunze's D. dimidiata is, however, said to differ from the rest in being entirely ecostate.

Ex.: D. lunulata, Desv. (Adiantum, Houtt.; D. sinuosa, Desv.: D. truncatula, J. Sm.)
D. dimidiata, Kre.
(b) Veins connivently anastomosing.

76. MESOCHLÆNA, R. Brown, Pl. Jav. Rar. 5.

*Sphérostephanos, J. Smith; Polypodi sp., Wallich; Stegnogrammatis sp., Fée.

Sori indusiate, oblong, parallel, oblique (hippocrepiform, Metten.); the receptacles medial, crest-formed, on the simple veins. *Indusium membranaceous, rounded at the apex, truncate at the base, attached longitudinally along the middle of the sorus, the margins glandular, free. Veins simple from a central costa; the lower or more opposite pairs angularly connivent-anastomosing (as in *Nephrodium.)*

Fronds large, herbaceous, pinnato-pinnatifid, hairy. Rhizome short, erect. Sori often crowded and becoming confluent, the indusium then pushed up vertically between the spore-cases.—This genus may be regarded as analogous to *Stegnogramma*, differing from it technically in being indusiate, the indusia being double or centrally attached.

Ex.: *M. asplenioides, J. Sm.* | *M. javanica, R. Br. MS; J. Sm.*

§ HEMIONITIDÆ.

(a) Veins parallel, longitudinal, scarcely reticulated.

Antrophyi sp., Auct.; Hemionitidis sp., Auct.; Loxogrammatis sp., Presl; Vittable sp., Auct.

Sori non-indusiate, narrow linear-elongate, immersed, parallel, rarely anastomosed; the receptacles therefore scarcely reticulated. *Veins uniform, ecdaste, elongato-parallel, here and there distantly reticulated, forming elongate linear areoles.*

Fronds simple, sub-coriaceous. Rhizome sub-globose. Sori forming three four or more lines occupying nearly the length of the frond.—The long parallel, scarcely reticulated sori distinguish this from *Antrophyum*, which it thus serves to connect with the Tænitideæ.

Ex.: *P. lineatum, J. Sm.* | *P. Grevillii (Antrophyum, Balf.)*

[April, 1857.]
GENERA OF FERNS:

(b) Veins uniform reticulated.

Sori non-indusiate, consisting of few sporadic superficial spore-cases occurring here and there on the veins in narrow linear or small short groups; the receptacles partially, though very slightly, reticulated. Veins uniformly reticulated from a costa, forming elongated sub-hexagonal areoles.

Fronds membranaceous, simple, articulated. Rhizome creeping.—Distinguished by its sporadic fructifications. It forms a connecting link between Antrophyum and the Acrostichea.

Ex.: A. citrifolium, Splitg.

79. ANTROPHYUM, Kaulfuss, Enum. Fil. 197.

Solenopteris, Wall. Hb.; Hemionitidis sp., Auct.

Sori non-indusiate, usually immersed, sometimes superficial, narrow-linear, occupying the anastomosed veins which form the sides of the areoles, mostly united; the receptacles therefore partially, though generally, reticulated. Veins uniformly reticulated, from a costa or ecostate, forming elongated sub-hexagonal areoles.

Fronds simple, coriaceous or membranaceous. Sori continuously or interruptedly reticulated. Rhizome tufted erect.—Distinguished technically from Hemionitis only by the partial though frequent reticulation of the sori. The habit and aspect are, however, quite dissimilar.

Ex.: A. Boryanum, Ktfs.; A. Boryanum, Bory.
A. cayennense, Ktfs. | A. cayennense, Ktfs.
A. pumilum, Ktfs. | A. pumilum, Ktfs.
A. giganteum, Bory. | A. giganteum, Bory.
A. semicostatum, Bl. | A. semicostatum, Bl.

80. HEMIONITIS, Linnaeus, Gen. Pl. 2 ed., 944, (reduct.)

Gymnogammatis sp., Link.

Sori non-indusiate, superficial, narrow-linear, occupying all the anastomosing veins; the receptacles therefore reticulated.
Veins uniform, from a costa, everywhere anastomosing and forming unequal hexagonal, more or less elongated, areoles.

Fronds cordate sagittate palmate or pinnate, herbaceous or coriaceous, prolificous, the fertile taller. Rhizome short erect or creeping. Sori continuously reticulated, often becoming confluent.—A small well-marked genus, as here limited, distinguished by the uniform and universal reticulation of the sori.

Ex.: *H. palmata*, *Lin.*
 H. pinnata, *J. Sm.*
 | *H. cordata*, *Roeb.*
 | *H. hederatolia*, *J. Sm.*

(c) Veins pinnate, venules reticulated, without free veinlets.

81. DICTYOCLINE, Moore, Gard. Chron. 1855, 854.

Sori non-indusiate, narrow-linear, superficial on the anastomosing venules; the receptacles therefore reticulated. Veins pinnate from a central costa; venules transversely anastomosing, forming two or three series of roundish-hexagonal areoles between the primary veins.

Fronds coarse, herbaceous, pinnate with 3—4 pairs of pinnae; the veins very hairy. Sori reticulated between the primary veins. Rhizome short thick decumbent.—This plant has the fructification of *Hemionitis*, except that the sori, instead of being universally reticulated, only occur on the venules between the primary veins, which latter are not soriferous. The aspect of the plant approaches that of some of the larger species of *Aspidium*, while the venation is nearly that of some kinds of *Pacilopteris*. It is the only hemionitidoid genus with pinnate venation.

Ex.: *D. Griffithii*, *M. (Assam, Griffith.)*

(d) Primary veins parallel-forked; venules reticulated.

Callogramma, *Blé; Gymnogrammatis* sp., *Auct.; Diplazii* sp., *Prest Hb.; Oxygoný sp., *Auct.; Calliptéridis* sp., *J. Smith; Grammitídis* sp., *Wallich.*

Sori non-indusiate superficial, narrow-linear, sub-parallel, un-
equally anastomosed, i.e., the lines more or less but sparingly uniting, sometimes only at the ends; the receptacles thus reticulated. Veins simple or forked from a central costa, parallel below forming elongate oblique areoles, more closely reticulated near the margin forming one or two series of shorter areoles, the ultimate veinlets sometimes free.

Frons simple or pinnate, sub-membranaceous. Rhizome short erect, or creeping.—This group is nearly the equivalent among the Hemionitidea, of Olfersia among the Acrostichea, but is more distinctly areolate towards the margin.

Ex.: S. alismaefolium, J. Sm. | S. vitteformis, J. Sm.
 S. vestita (Grammitis, Wall.) | S. pinnata, J. Sm.

(e) Primary veins arcuate, forming costal areoles; venules reticulated, the marginal free.

83. DICTYOGRAMMA, Fée, Gen. Fil. 171, t. 15 A. f. 2.

Notogramma, Presl (MS. Corrig. in Epim.); Gymnogrammatis sp., Aust.; Hemionitidis sp., Aust.

Sori non-indusiate, superficial, narrow-linear, sub-parallel, sparingly anastomosing; the receptacles thus reticulated. Veins arcuate, forming sub-elongated areoles parallel with the costa; the venules anastomosing in about one series of oblong oblique areoles with the marginal veinlets simple or forked, free and clavate at their apices; or more uniformly reticulated in several series of oblique oblong hexagonal unequal areoles.

Frons pinnate or sub-pinnate, sub-coriaceous. Rhizome short decumbent, in D. elongata creeping.—This genus in its typical species, D. japonica, differs from Syngramma, in having a series of areoles parallel with the costa, and free marginal oblique clavate veinlets. The Hemionitis elongata of Mr. Brackenridge, is too nearly allied in structure to be separated from D. japonica, though it differs somewhat in its more frequent reticulations, and judging from the figures, for both plants are unknown to us, in the nearly always free forked and interrupted hardly reticulated sori. The sori, in both, are frequently forked and free at the upper ends.

Ex.: D. japonica, Fée. | D. elongata (Hemionitis, Brackenr.)
GYMNOPHRAGMÆ.

§ GYMNOPHRAGMÆ.

(a) Veins free.

84. PTEROZONIUM, Fée, Gen. Fil. 178.

GYMNOPHRAGMÆ, sp., Auct.

Sori non-indusiate, linear, radiato-furcate, approximate laterally, and at length confluent into a broad intramarginal zone; the elongate receptacles seated towards the apices of the venules. Veins flabellate or radiately furcate, equal, internal; venules contiguous, free.

Fronds simple, reniform, coriaceous, smooth, the fructifications forming a broad band commencing a little within the margin. Stipes terete. Rhizome short erect.—Technically not very different from Gymnogramma, but the aspect of the plant is so peculiar, that the parallel contiguous receptacles, from which result a broad sub-marginal confluent sorus, may well be considered sufficiently distinctive. This condition of the fructification does, in fact, indicate an approach to the structure which occurs in the Platylomeæ.

Ex.: P. reniforme, Fée.

85. GYMNOPHRAGMÆ, Desvaux, Berl. Mag. v. 304.

GYMNOPHRAGMÆ, Bornkardi in part; Neurogramma, Presl.; Ctenarch, Presl in part; Calomelanos, Presl.; Anogramma, Link; Cerapteris, Link; Heicistopteris, J. Smith; Stenogramma, Klotzsch; Chrysodia, Fée; Argyria, Fée; Trismenia, Fée; Coniogramma, Fée; Pleurosorus, Fée; Eriosorus, Fée; Dicranodium, Newman; Asplenii sp., Auct.; Acrostichi sp., Auct.; Hemionitidis sp., Auct.; Grammitidis sp., Auct.; Scolopendrii sp., Auct.; Polyposii sp., Auct.; Osmundæ sp., Auct.; Cryptogrammatæ, Hooker Greville; ? Phyollitis, Neckor.

Sori non-indusiate, linear, sometimes elongated, simple or forked i.e. bi-partite, oblique, often at length confluent; the receptacles elongate above or continued below the forks of the veins. Veins simple or forked from a central costa, or the costa sometimes indistinct; venules free.

Fronds lobed pinnate or bi-pinnate, herbaceous or sub-membranaceous, often farinosely ceraceous sometimes lanate beneath. Rhizome short, erect, sometimes annual.—The characteristic feature of this genus is the forking of the linear sometimes much
elongated sori, which, though not occurring in every sorus, does occur more or less frequently over every frond. Of the many groups which it has been proposed to separate from Gymnogramma, none possess characters sufficiently marked and definite, at least when the sori and veins are made to afford the leading distinctions; hence we have declined to adopt them. Necker's genus Phyllitis, having compound fronds, probably belongs here.

§ Neurogramma.—Sori elongate-linear, parallel, approximate; fronds smooth or hairy.

Ex.: G. tomentosa, Desv. | G. javanica, Bl.
G. ruft, Desv. | G. procura (Gymnogramma, Wall.)

§ Pleurosorus.—Sori shorter, less regular or crowded; fronds smooth or hairy.

Ex.: G. flexuosa, Desv. | G. myriophylla, Sw.
G. filipendulaefolia, Desv. | G. pemila, Spr.
G. leptophylla, Desv. | G. charophylla, Desv.

§ Ceropteris.—Sori as in § Pleurosorus; fronds farinoso-ceraceous beneath.

Ex.: G. chrysophylla, Ktfs. | G. peruiana, Desv.
G. sulphurea, Desv. | G. pulchella, Linden.
G. triangularis, Ktfs. | G. roeca, Desv.

§ Eriosorus.—Sori as in § Pleurosorus; fronds lanate beneath.

Ex.: G. ferruginea, Ktse. | G. lanata, Kt.
G. scandens, Mett. | G. pedata, Ktfs.

Chilopteris, Presl; Pleurogramma, R. Brown; Leptogramma, J. Smith; Trichothemelium, Kunze; Trichocalymma, Zenker; Gymnogrammatis sp., Auct.; Micorsori sp., Klotsch; Ceterachis sp., Auct.; Cincinnalis sp., Desvaux; Notochlepus sp., Desvaux; Phlegopteridissp., Metteniuss; Acerostich sp., Auct.; Asplenii sp., Auct.; Polypondii sp., Auct.

Sori non-indusiased, oblong or elliptic, oblique; the receptacles medial or sub-terminal. Veins simple or forked from a central costa; venules free.

Fronds simple pinnate or bi-pinnate, herbaceous or sub-coriaceous, the rachis sometimes proliferous. Rhizome short erect, sometimes short or elongate creeping.—There are no satisfactory distinctions between the simple and compound ferns having short oblong naked sori, the former generally referred to Grammitis, the latter usually to Gymnogramma or Leptogramma. We have, on this account, ventured to differ from the usual practice, by uniting them, in order the better to distinguish Gymnogramma;
and we do this with the less reluctance, because we cannot as a principle, admit, that the habit and aspect of a species should override obvious characters of the fructification, in determining its genus. In this instance, the compound-fronded species, are the link connecting Grammitis with Gymnogramma—genera by no means too distinct, and only definable by giving its due prominence to the forked sori of the latter.

§ Chilopteris.—Fronds small, simple forked or pinnatifid, rigid or thin coriaceous.

Ex.: G. Billardieri, Wild. | G. marginella, Sw.
G. myosuroides, Sw. | G. furcata, Hk. and Gr.
G. blechnoides, Grev. | G. organensis, Gardn.

§ Lepichroa.—Fronds small, pinnate, densely scaly beneath.

Ex.: G. capensis (Ceterach, Kze.) | G. cordata, Sw.

§ Leptogramma.—Fronds larger, compound, i.e., pinnato-pinnatifid, herbaceous; spore-cases often echinate.

Ex.: G. aurita, Moore. | G. aspidioides (Ceterach, Willd.)
G. Hewardii, Moore. | G. totta, Presl.

87. CALYMMODON, Presl. Tent. Pterid. 203.

Plectopteris, Fée; Grammitis sp., Auct.; Polypodi sp., Auct.; Xiphopteris sp., Auct.

Sori non-indusiate, oblong (or sub-globose), solitary; the receptacles seated at the thickened apices of the simple vein which occupies each lobe, the margin of the lobe being longitudinally folded sub-cucullately over the sorus, in the manner of a spurious involucre. Veins simple.

Fronds small, fasciculate, thin, somewhat rigid, pinnatifid, the lower barren lobes longer, the fertile folded longitudinally. Rhizome short, erect.—Small plants, with a tendency towards polypodioid structure.

Ex.: C. cucullatus, Presl. | ? C. denticulatus (Grammitis, Bl.)

(b) Veins connivently anastomosing below.

Syneton, J. Smith MS.; Gymnogrammatis sp., Blume; Phegopteridis sp., Mettenius.

Sori non-indusiate, linear or oblong, oblique, parallel; the
GENERAE OF FERNS:

receptacles simple elongated and medial. Veins simple from a central costa; the lower or more opposite pairs angularly connivent-anastomosing.

Fronds herbaceous, pinnate or pinnato-pinnatifid. Rhizome thickish decumbent, or erect and sub-arborescent.—This is among the Gymnogrammeæ what Nephrodium is among the Aspidieæ.

Ex.: S. aspidioides, Blume. | S. sandwicensis, Brackenridge.

Sori non-indusiate, “roundish-oblong, oligocarpous, the spore-cases mixed with copious large capitate glands,” at length diffuse. Veins simple from a central costa, “similar to Stegnogramma,” i.e., connivently anastomosing in opposite pairs.

Fronds pinnate, coriaceous, the fertile contracted; the rachis sometimes proliferous.—We are unacquainted with the ferns referred to this genus, except by the brief account given of them by Kunze, from which it would appear that they come very near to Stegnogramma, differing chiefly in the contracted fertile fronds; as, however, they seem to have been considered distinct by that author, who was not addicted to the multiplication of genera, we retain the genus on his authority. Kunze alludes to the sori being “transverse,” but it is not clear in what sense this is intended, whether transverse in respect to the veins or costa. Can he possibly refer to some meniscioid plant, in which the sori would be transverse between the veins?

Ex.: A. elegans, Kze. | A. firma, Kze.

(c) Veins arcuate, forming costal areoles, the marginal venules free.

90. DIGRAMMARIA, Presl, Tent. Pterid. 116, t. 4, fig. 12, 17, (excl. syn.)

HETEROGONTUM, Presl; STENOSEMIA, J. Smith in part: Hooker et Bauer in part, non Presl.

Sori non-indusiate, linear-oblong; the receptacles linear medial. Veins (sterile) from a central (secondary) costa; the lower ones
(in base of segments) anastomosing and forming elongated oblique blunt costal areoles, from which free clavate venules extend to the margin; the areoles along the primary costa longer and more evenly arcuate; upper (apical) veins simple or forked, free, clavate; veins of the fertile fronds anastomosing only along the primary costa, the rest simple or forked, free.

Fronds herbaceous, pinnato-pinnatifid, the segments of the fertile fronds narrower. Rhizome?—There can be no doubt, from Presl’s figure and description, that this is the plant he intended to call Digrammaria, but all his synonyms are erroneous. The name is highly applicable to it, for its linear sori, borne on the two branches of the forked veins, look like double lines of spore-cases united below. We cannot agree with those who unite this plant with Stenosemia, which has a truly acrostichoid structure.

Ex.: D. ambigua, Presl (Heterogonium aspidioides, Presl.)

(d) Veins uniform reticulated, with free included veinlets.

91. LOXOGRAMMA, Blume, Flora Javae 73 (§); Presl, Tent. Pterid. 214.

Grammitidis sp., Auct.; Selliguea sp., Auct.; Antrophy sp., Auct.; Polypodii sp., Mettenius; Gymnogrammatis sp., Steudel; Synamiile sp., Presl; Phlebodi sp., J. Smith; Miscosori sp., Klotzsch; Deynaria sp., Fée.

Sori non-indusiate, oblong or linear, oblique, the elongate receptacles medial at intervals between the costa and margin. Veins uniform reticulated from a central costa, the venules forming unequal oblique hexagonal elongated areoles, with (rarely without) included free veinlets.

Fronds simple, coriaceous or sub-coriaceous. Rhizome creeping.—The uniformly reticulated venation distinguishes this genus from Selliguea, in which the primary veins are pinnate and prominent. The veins are often indistinct, immersed in the substance of the thickish fronds.

Ex.: L. avenia, Presl. L. elongata (Grammitis, Sw.)
L. lanceolata, Presl. L. macrophylla Grammitis, Wall.)
L. involuta, Presl. L. coriacea, Presl.
(e) Veins pinnate; venules reticulated, with free included veinlets.

Diagramma, Blume; Colysis, Presl; Dicotyogramma, Presl; Grammitidis sp., Auct.; Gymnogrammatis sp., Auct.; Hemionitidis sp., Auct.; Polyrodi sp., Auct.; Ceterachis sp., Auct.

Sori non-indusiate, oblong or linear, oblique; the elongate receptacles lying between and parallel with the primary veins. Veins pinnate or sub-pinnate from a central costa; venules compoundly anastomosing, producing within the areoles variously directed free curved veinlets.

Fronds simple, rarely pinnatifid or palmately-lobed, herbaceous or coriaceous. Rhizome creeping.—Separable from Loxogramma by the pinnate character of the venation.

Ex.: S. Fœdi, Bory. S. membranacea, Bl. S. pedunculata, Bl.
S. pothifolia, J. Sm. S. macrophylla, Bl. S. Finlaysoniana (Grammitis, Wall.)

§ PLATYLOMA.

Pellia, Link; Allosorus sp., Auct.; Pteridis sp., Auct.; Adianti sp., E. Brown; Asplenii sp., Bernhardi.

Sori spuriously-indusiate, marginal, oblong; the receptacles oblong at the apices of the veins, contiguous; the spore-cases laterally confluent and forming a broadish marginal band. Indusium (spurious) formed of a narrow continuous attenuated inflexed portion of the margin. Veins simple or forked, from a central costa; venules parallel, free, soriferous along a portion of their length at the upper end.

Fronds pinnate or bi-pinnate, coriaceous or sub-coriaceous, often glaucescent, the pinnae sometimes articulated. Stipes often ebeneous. Rhizome short, decumbent or creeping.—This genus unites the Platylobea with the Gymnogrammea, through Pterozonium. We do not find in it any affinity with the Pteridea, among which it is often placed.

Ex.: P. Brownii, J. Sm. P. rotundifolium, J. Sm.
P. falcatum, J. Sm. P. flexuosum, J. Sm.
P. sagittatum, J. Sm. P. pulchellum (Allosorus, M. & Gal.)

CERATODACTYLIS, J. Smith; BOTRYOGRAMMA, Flé; ALLOSSORI sp., Auct; ASPLENII sp., Sprengel; ALLANTODIE sp., Desvaux.

Sori spuriously-indusiate, linear, simple or forked; the receptacles occupying nearly the whole length of the veins, sub-confluent; the margins of the pinnules revolute membranaceous indusiiform. Veins simple or forked, from a central costa; venules free.

Fronds tri-pinnate, sub-coriaceous, glaucescent, fertile and contracted, the pinnules revolute siliquiform, in the upper part; the sterile pinnules serrulate, the apices of the venules being excised beyond the thickened margin. Stipes pallid flexuose. Rhizome erect, the fronds fasciculate.—There is no reasonable doubt that *Llavea* must be synonymous with *Ceratodactylis*, as was long since pointed out to us by Mr. Heward; this view Mr. Smith has also adopted.

Ex.: *L. cordifolia*, Lagasca (*Ceratodactylis osmundioideB, J. Sm.*)

ALLOSSORI sp., Auct.; GYMNOGRAMMATHIS sp., Presl; PHOROLORUS sp., Flé.

Sori spuriously-indusiate, oblong or linear, at length laterally confluent into an intramarginal band, covered by the revolute attenuated indusiiform margins of the pinnules; the receptacles also oblong or linear, near the apices of the veins. Veins simple or forked, from a central costa, which is sometimes evanescent in the sterile fronds; venules free.

Fronds dimorphous, dwarf, herbaceous, bi-tri-pinnate; the fertile contracted, i.e., with revolute siliculiform pinnules. Rhizome short decumbent.—This genus is intimately connected in habit with *Allossorus*, in its restricted sense, from which it differs in having oblong oblique, not punctiform, receptacles. We, with little hesitation, follow Mettenius in keeping them distinct. The two genera form the connecting links between *Platylomeæ* and *Polypodieæ*.

Ex.: *C. acrostichoides, R. Br.* | *C. Brunoniana, Wall.*
C. sitchensis (*Allossorus, Ruprecht.*)
§ Polypodium.

(a) Margins of the fronds revolute, indusioid, i.e., the sori spuriously-indusiate.

Sori spuriously-indusiate, rotundate, covered by the revolute sub-herbaceous margin of the pinnules, at length confluent into a transverse line (parallel to the margin), often becoming effuse; the receptacles punctiform. Veins in the fertile fronds simple or forked, from a central costa; in the more divided sterile fronds simple or forked in the ultimate segments; venules free.

Fronds dimorphous, dwarf, herbaceous, bi-tri-pinnate; the fertile contracted, i.e., with revolute siliculiform pinnules. Rhizome short, decumbent.—The only material difference between this genus, as represented by the common species, A. crispus, and Cryptogramma with which it was doubtfully associated by the author of the latter genus, consists in its having constantly punctiform instead of linear oblique receptacles. In habit and aspect they are the same—dwarf, elegant, much divided, with dissimilar fertile fronds. Nevertheless, attaching, as we do, considerable importance to the nature of the receptacle, we venture to regard them as distinct.

Ex.: A. crispus, Bernh. | A. Stelleri, Rupr.

Onoclea, Bernhardi, and Auct.; Osmundæ sp., Linnaeus.

Sori spuriously-indusiate, rotundate, approximate, at length becoming sub-confluent, covered by the revoluto-convolute attenuated (membranaceo-scarioso) margin of the frond, which simu-
lates an universal indusium; the receptacles medial, prominent. Veins simple or forked, from a central costa; venules free.

Fronds dimorphous, the sterile herbaceous, pinnato-pinnatifid; the fertile pinnate, with the pinnae much contracted, moniliform, the margins rolled inwards so as to cover the sori. Rhizome erect caudiciform, producing stolones.—A strikingly handsome, tallish and easily recognised fern, owing to the entire dissimilarity between the fertile and sterile fronds; yet technically very little removed from Polypodium, scarcely differing indeed, except in the production of contracted and revolute fertile fronds. The European and North American plants belonging to this genus, though quite distinguishable, are rather to be considered as varieties than species.

Ex.: S. germanica, Willd.; and S. pensylvanica.

98. JAMESONIA, Hooker and Greville, Icon. Fil. t. 178.

Pteridis sp., Auct.; Gymnogrammatis sp., Auct.; Allosori sp., Presl; Anogrammatis sp., Fée; Chilanthis sp., Desvaux.

Sori spurious-indusiate, few, rotundate, crinite, at length confluent over the whole disk, not covered by the revolute herbaceous margina of the pinnae (or pinnules); the receptacles punctiform near the base of the venulae. Veins forked from a central costa; venules free.

Fronds coriaceous, usually linear elongate, pinnate with numerous crowded concave, oblique or imbricated roundish cordate pinnae, sometimes bi-pinnate. Rachis villose; “indefinite in evolution,” (Fée.) Rhizome creeping or tufted.—A peculiar well-marked group as respects the majority of the species; nevertheless, having but slight technical characters.

Ex.: J. imbricata, Hk. and Gr. | J. verticalis, Kze.
J. scalaris, Kze. | J. cinnamomea, Kze.
J. hispidula, Kze. | J. paleacea, Kze.

(b) Margins of the fronds not indusoid.
* Veins free.

Cincinnalis Desvaux; Argyrochosma, J. Smith; Eriochosma, J. Smith; Lepichosma, J. Smith; Gymnogrammatis sp., Kaulfuss; [April 1857.]

Sori non-indusiate, small, rotundate, oligocarpous, contiguous, becoming laterally confluent into a narrow line or border; the receptacles terminal. Veins simple or forked from a central costa; venules free.

Fronds pinnate, or bi-tri-pinnate, the margins sometimes with a tendency to become revolute and indusioïd. Rhizome short erect or decumbent.—This genus has all the habit of Cheilanthes, with which some of its species have much affinity, differing chiefly in the absence of an indusium. The *Cincinalis* of Gleditsch seems to have included *Nothochlæna*.

§ *Cincinalis.*—Fronds plain or farinoso-ceraceous beneath.

N. flavescens (*Acrostichum, Sw.*), N. chrysoïdæ, *Linden.*

§ *Allocestes.*—Fronds scaly, hairy, or woolly beneath.

Sori naked, sub-rotund, oligocarpous, solitary at the thickened spiccs of the venules, on the lobes of the fronds. Veins pinnate (in the segments); venules simple or forked, free, soriferous at the apex, near the margin. *Kunze, ex icon. et desc.*

Fronds decoumpound, herbaceous.—This genus appears to have been founded on an aged specimen of *Acrophorus*.

Ex.: M. davallioïdës, *Kze.*

Sori non-indusiate, globose or ovoid, superficial or immersed; the receptacles terminal or medial on the free veins. Veins simple or forked from a central costa, or simple costaeform in the ultimate segments; venules free.

Fronds coriaceous herbaceous or membranaceous, simple pinnatifid pinnate or bi-tri-pinnate, articulated or continuous with the rhizome, the pinnae sometimes articulated with the rachis. Rhizome creeping, or short erect or decumbent; or caudiciform.

§ Ctenopteris.—Sori terminal; fronds articulated with the rhizome.

Ex.: P. pectinatum, Lin. | P. rigescens, Bory.
P. argyratum, Bory. | P. pilipes, Hook.
P. setigerum, Bl. | P. incarnum, Sw.
P. vulgare, Lin. | P. fraternum, Schlech.
P. procurrens, Kze. | P. ellipseoides, Fée.

§ Arthropteris.—Sori terminal; fronds and pinnae articulated.

Ex.: P. tenellum, Forst. | P. filipes, Moore.

§ Adenophorus.—Sori terminal, solitary on dilated, i.e., obovate receptacles terminating simple costa-like i.e. central veins; fronds adherent, i.e., continuous with the rhizome.

Ex.: P. hymenophylloides, Kf.s. | P. tamariscinum, Kf.s.
P. adenophorus, Hk. and Arn. | P. fallax, Schlech.

§ Prosechium.—Sori terminal on punctiform receptacles; fronds adherent.

Ex.: P. pendulum, Sw. | P. suspensum, Lin.

§ Phegopteris.—Sori medial, punctiform or sub-elongated; fronds continuous or adherent.

Ex.: P. Phegopteris, Lin. | P. Dryopteris, Lin.
P. hastefolium, Sw. | P. cordatum (Phegopteris, Fée.)
P. drepanum (Aspidium, Sw.) | P. effusum, Sw.
P. spectabile, Kf.s. | P. decussatum, Lin.

§ Themelium.—Sori basal solitary, i.e., the receptacles at the base of the simple costa-like veins; fronds adherent.

Ex.: P. tenuisectum, Bl.

** Veins connivently anastomosing.

102. GONIOPTERIS, Presl, Tent. Pterid. 181.

Sori non-indusiate, globose; the receptacles medial or terminal. Veins pinnate, prominent; venules (lower pair or more)
connivently anastomosing at an acute angle, from whose apex is produced an excurrent veinlet, which is either short and free, or lengthened to reach and unite with the next pair of the venules.

Fronds herbaceous or sub-coriaceous pinnatifid, pinnate or pinnato-pinnatifid. Spore-cases often echinate. Rhizome short, decumbent.—This genus is only removed from Polypodium (in the sense here adopted) by the connivent anastomosing of the veins. It is more exactly analogous to that division of Polypodium sometimes separated under the name of Phegopteris.

Ex.: G.trifurcata (Polypodium, Lin.) | G. scolopendricoides, Presl.
G. gracilis, Moore and Houlet. | G. reptans, Presl.
G. prolifera, Presl. | G. crispa (Ctenopteris J. Sm.)
G. urophylla, Presl. | G. bartschii, Feé.

*** Veins reticulated, without free included veinlets.

103. DICTYOPTERIS, Presl, Tent. Pterid. 194.

Dictyotynia, J. Smith; Polypodium sp., Auct.; Drynaria sp., Feé; Aspidium sp., Blume; Phegopteris sp., Mettenius.

Sori non-indusiate, globose or oblong, compital i.e. the receptacles uniting several radiating reticulated veinlets, or medial. Veins uniformly reticulated (or sub-pinnately branched) from a central costa, the areoles elongated, oblique, without free included veinlets.

Fronds coriaceous or sub-coriaceous, simple or bi-pinnate. Sori sometimes marginally serial. Rhizome creeping (?) always.
—The nearly uniform venation, without included free veinlets, distinguishes this group.

Ex.: D. macrodonta, Presl. | D. pteroides, Presl.
D. attenuata, Presl. | D. lanceolata, J. Sm.

*** Veins reticulated, with free included veinlets.
† Free veinlets excurrent.

Sori non-indusiate, globose or oval; the receptacles situated
(usually) on the converging apices of two or more included veinlets. Veins pinnate or pinnato-furcate from a central costa; the venules reticulated in variously-formed usually elongated areoles, which produce (a few) sterile excurrent veinlets, especially near the margin; the costal areoles transverse, usually void.

Fronds herbaceous or coriaceous, simple pinnatifid or pinnate. Sori transversely uni- bi- tri- or multi-serial, usually borne on the apex of converging veins, sometimes compital, rarely situated on simple veins. Rhizome creeping; fronds articulated.—One or two pinnate species are intermediate between Goniophlebiun and Phlebodium, having the sori generally on simple veins, but also producing them on the apices of converging veins, and having also sterile, i.e., empty costal areoles. These latter are the distinguishing peculiarities of this genus; which, however, in its most genuine species produces here and there compital sori, (i.e., with the receptacle forming a point whence several veins raditate), and hence is not much removed from Pleopeltis, as here extended.

§ Chrysopteris.—Sori usually at the apex of converging veins, the costal areoles void.

§ Marginariopeis.—Sori usually at the apex of single veins, the costal areoles void.
Ex.: P. inaequale, Moore.

105. GONIOPHLEBIUM, Blume, Flora Javae, 132 (§); Presl, Tent. Pterid. 185.

Marginaria, Presl, (non Bory); Synnemia, Presl in part; Pleurogonium, Presl; Lepicyttis, J. Smith in part; Lopholepis, J. Smith; Scheelolepis, J. Smith; Carypsinus, Presl; Chaspidaria, Link in part; Fée; Polypond sp., Auct.; Grammitinus sp., Desvaux; Campylonuru sp., Auct.; Acrostichi sp., Langsdorff et Fischer; Mecosori sp., Klotzsch.

Sori non-indusiate, globose (rarely oblong); the receptacles punctiform (rarely oblong), situated at the apex of the lower anterior venules, or of the simple excurrent free veinlets, one being included within each areole. Veins forked or pinnate from a central costa; the lower anterior venules usually free and
fertile, the rest angularly or arcurately anastomosing (in one or more, frequently several series), and producing from their angles free excurrent veinlets which are often fertile; the marginal veinlets free.

Fronds simple pinnatifid or pinnate, herbaceous or coriaceous, sometimes scaly, the fertile often much narrower. Sori transversely uni- bi- or tri-serial, sometimes squamiferous; the soriiferous excurrent veinlet in G. nummularium hardly developed. Rhizome creeping, the fronds articulated.—A tolerably well-defined group, yet merging into Phleodium through some aberrant species in which the free fertile veinlet in the costal areole is inconstant, and combined in the same fronds with sori on the apices of converging veinlets. The terminal scorus on the free veinlets, one of which occupies each costal areole, however, generally serves to distinguish the genus.

§ Marginaria.—Fronds monomorphous; sori round.

Ex.: G. albo-punctatum, J. Sm. | G. nerifolium, Hook.
G. argutum, J. Sm. | G. verrucosum, J. Sm.
G. dasyleurum (Polypodium, Kze.) | G. fraxinifolium (Polypodium, Jacq.)
G. furfuraceum (Polypodium, Schlach.) | G. lepidopteris (Acrostichum, L. and Fisch.; Polypod. septatum, Kifs.)
G. subauriculatum, Presl. | G. suraucochense (Polypodium, Hook.)

§ Cryptoptus.—Fronds dimorphous; sori round.

Ex.: G. ciliatum, J. Sm. | G. nummularium (Marginaria, Presl.)
G. pilosalloides, J. Sm. | G. tectum, J. Sm.
G. vaccinifolium, J. Sm. | G. myrtilifolium (Polypodium, Kifs.)

§ Synamnia.—Fronds monomorphous; sori elongated.

Ex.: G. trilobum (Polypodium, Cuv.; Synamnia, Presl.)

106. CAMPYLONEURUM, Presl, Tent. Pterid. 189.

Cryptopteris, R. Brown; J. Smith; Marginaria, Link; Polypodium sp., Auct.; Grammitidis sp., Auct.

Sori non-indusiate, globose; the receptacles medial, rarely terminal, on the lower anterior free venules, or on the simple excurrent free veinlets (of which two are usually included side by side within each of the sub-quadrate areoles). Veins pinnate from a central costa, prominent, parallel; venules opposite anastomosing transversely in a series of parallel angulate arcs, from which proceed two or more excurrent veinlets; the veinlets
sometimes short free, sometimes longer, with the centre one uniting with the next transverse venules so as to form two rows of areoles between the primary veins.

Fronds simple or pinnate, coriaceous or herbaceous. Rhizome creeping.—A group tolerably well-marked by the venation, yet in some of the smaller species approaching *Goniophlebidium*, from which it is distinguished in nearly every instance by producing two sori within the areoles instead of one, and by having medial receptacles. The anomalous series are found: (1) amongst the smaller ones, when the free veinlets are very short, and thus some of the sori become nearly or quite terminal, while, however, others are distinctly medial; and (2) in the only pinnate species, in which the sori are distinctly and constantly terminal, but in which the general structure of the venation forbids a separation from the more genuine species.

§ *Cytophlebidium.*—Sori distinctly medial on the veins.
C. repens, Presl. | *C. angustifolium*, J. Sm.

§ *Cephalosorium.*—Sori terminal on the veins.
Ex.: *C. decurrens*, Presl.

† † Free veinlets divaricate.

Cyclophorus, Desvauz; *Pyreosia*, Mirbel; *Candollea*, Mirbel in part; *Scytopetris*, Presl; *Craspedaria*, Link in part; *Spherochitonium*, Presl; *Polycampium*, Presl; *Apaleophlebidium*, Presl; *Gyrosoerium*, Presl; *Galeoglossa*, Presl; *Niphopsis*, J. Smith; *Polypodii* sp., Autl.

Sori non-indusiate, globose cycloce or elliptic, superficial or immersed, buried amongst dense stellate pubescence; the receptacles terminal or medial on the excurrent free or irregularly anastomosing veinlets. *Veins* internal obscure, pinnate prominent, or uniform, from a central costa; *venules* anastomosing, sometimes transversely parallel, forming parallelogramoid areoles with excurrent or recurrent free or occasionally connivent or generally anastomosed veinlets; sometimes uniting in roundish or oblong hexagonal unequal oblique areoles, with variously
directed simple or divaricately-forked veinlets. The veins of the fertile fronds, when contracted, less developed.

Fronds simple or lobed, rigid coriaceous opaque, clothed especially beneath with stellate hair-scales, or sometimes even lanate; the fertile often contracted, sometimes also more elongated, occasionally fertile at the apex only, and then there contracted, clothed especially beneath with dense stellate pubescence. Sori uni- or multi-serial, often crowded and confluent. Rhizome creeping, often elongated; or sometimes short, decumbent.—The species of Niphobolus may be known by their having polypodioid sori buried amongst stellate hairs. It is somewhat remarkable that slight as are these peculiarities for purposes of generic distinction, they have sufficed to procure for this genus almost universal acceptance, even by those who reject, as worthless distinctions, the most marked and obvious differences of vascular structure. According to this latter view, Niphobolus, bereft of its hair-scales, would simply be a net-veined Polypody. Even taking into account the peculiarities of the venation, the distinctive characters of the genus are not so broad as might be desired, there being, in some cases, a great resemblance to Campyloneurum.

§ Polycompium.—Sori multiserial; veins pinnate.
Ex.: N. Lingua, Spreng. N. penangianus, Hook.
N. venosus, Blume. N. Gardneri, Kze. Hb.
N. hastatus, Kze. N. splendens, J. Sm.

§ Cyclophorus.—Sori pauciserial or multi-serial; veins uniform.
Ex.: N. nummularifolius, J. Sm. N. porosus, Presl.
N. obovatus, Kze. N. alboceans, Bl.
N. carnosus, Bl. N. puberulus, Bl.
N. rupestris, Spreng. N. Smithianus (N. acrostichoides, J.
N. bicolor, Kfz. N. africanus, Kze. [Sm.]
N. pertusus, Spreng. N. samarensis, Fée.

§ Niphopsis.—Sori uniserial; veins uniform.
Ex.: N. angustatus Spreng. (N. sphærocephalus, Hk. and Gr.)

Pl. v. 211, (extens.)

Atactosia, Blume; Anaefeltis, J. Smith; Chrysoperteris, Link in part; Microgramma, Presl; Microsorium, Link; Anaxetum, Schott; Pleurodium, Presl; Ptymatodes, Presl; Lepisorus, J. Smith; Phyllitis, J. Smith; Symplectum, Kunze; Microteres, Presl; Deychemenis, J. Smith; Colysidis sp., Presl; Microsor sp., Klotzsch; Polypodium sp., Act.; Tectable sp., Caurenellae; Deymphale sp., Act.; Chaspedale...
Sori non-indusiate, sometimes covered while young by peltate scales, rotundate or elliptic, (sometimes with the receptacles diffuso-confluent in lines), superficial or immersed; the receptacles compital, i.e., produced on the points whence several reticulated veins radiate, rarely medial. Veins pinnate or pinnato-furcate, from a central costa, parallel or flexuose, sometimes evanescent; the venules much branched, reticulated in (usually) several series of irregular or hexagonal areoles, within the ultimate of which are produced variously-directed straight curved or hamate, often numerous, free sterile veinlets, which are generally distinctly clavate at their apices.

Fronds membranaceous or more or less coriaceous, often opaque, simple pinnatifid or pinnate, sometimes furnished with scattered peltate scales. Sori serial or irregular. Rhizome creeping; the fronds articulated.—An extensive genus, distinguished by the compital sori, and compound venation with free included variously-directed veinlets. The group Pleopeltis of authors has divaricate free included veinlets, and is therefore quite accordant in the character of its venation, and sufficiently so in degree, with that of the group Phymatodes of Presl; both having compital sori. There being, consequently, no good grounds for continuing to separate these groups, we have combined them, retaining the older name. We have kept separate the very distinct-looking little groups of Drynaria and Dipteris, the former distinguished by its peculiar sessile sterile fronds, the latter by its peculiar dichotomo-palmatifid fronds, rather perhaps than by differences of higher value.

§ Eupleopeltis.—Veins immersed, obscure; fronds usually scaly; sori covered when young with peltate scales.

Ex. : P. perussa, Hk. and Gr. | P. leucospora (Polypodium, Kf.)
P. leptidota, Presl. | P. angusta, H. B.
P. nudus, Hook. | P. Radiana (Drynaria, Hk.)

§ Phlebodiopsis.—Free veins comparatively few, straightish.

Ex. : P. lycopodioides, Presl. | P. accedens (Polypodium, Bl.)
P. squamulosa, Presl. | P. oodes, (Polypodium, Kze.)
P. stigmaticus, Presl. | P. stenophylla (Polypodium, Bl.)
GENERA OF FERNS:

§ Microsorium.—Free veins numerous, divaricate; sori scattered, often minute, sometimes obliquely sub-serial.

Ex.: P. irioides (Polypodium, Poir.) | P. heterocarpa (Polypodium, Bl.)
P. sessilis (Polypodium, Kf. f.) | P. myriocarpa, Presl.
P. polycarpa (Polypod. Cav.) | P. tenuiloris (Drynaria, J. Sm.)
P. musatifolia (Polypodium, Bl.) | P. rupestris (Polypodium, Bl.)

§ Pleuridium.—Free veins numerous, divaricate; sori large globose obliquely uniserial between the veins, i.e., in lines parallel to the veins.

Ex.: P. crassifolia (Polypodium, Lin.) | P. crassinervium (Polypodium, Bl.)

§ Phymatodes.—Free veins numerous, divaricate; sori longitudinally serial, i.e., in lines parallel to the costa.

Ex.: P. rhynchophylla (Polyp. Hk.) | P. ovata (Polypodium, Wall.)
P. Grevilleana (Polypodium, Wall.) | P. Griffithiana (Polypodium, Hk.)
P. pustulata (Polypod. Forst.) | P. Billardieri (Polypodium, Br.)
P. glauca (Drynaria, J. Sm.) | P. lomaroideis (Drynaria, J. Sm.)
P. longissima (Polypodium Bl.) | P. phymatodes (Polypodium, Lin.)

§ Microgramma.—Free veins numerous, divaricate; sori oblong, longitudinally serial.

Ex.: P. persicarisefolia (Polypodium, Schroder.)

§ Allotheicum.—Free veins numerous, divaricate; sori punctiform or oblong, variously directed, scattered.

Ex.: P. pteropus (Polypodium, Bl.) | P. grandifolia (Polypodium, Wall.)
P. tridactyla (Polypod. Wall.) | P. maxima (Drynaria, Broc.)

§ Arthromeris.—Pinnae articulated; sori longitudinally serial; free veins numerous.

Ex.: P. juglandifolia (Polypodium, Don; P. capitellata, Wall.)
P. apoda (Polypodium sessile, Wall., non Kfls.)

Polyponii sp., Auct.; Phymatonis sp., Presl.

Sori non-indusiate, large, rotundate, or by confluence elongated, sometimes immersed; the receptacle produced on the points where several reticulated veins join, i.e., compital. Veins pinnate prominent, from a central costa; venules compoundly anastomosing in two or three series of irregular quadrate areoles, within the ultimate of which are produced free divericate sterile veinlets.

Fronds pinnatifid or pinnate, dimorphous, the sterile short sessile, querciform, strongly veined; the fertile many times
larger, with the segments articulated. Rhizome creeping.—A very distinct group as to external characters, essentially differing from all the preceding genera in the production of small sterile oak-leaf-like fronds. The segments or pinnae of the normal or fertile fronds are articulated, and readily fall away. In D. coronans, the sori, which form a single oblique series between the pinnate veins, are sometimes here and there confluent, and occasionally almost continuous across the segments by the confluence of the receptacles, though normally polypodioid. In these instances, the structure of the (confluent) abnormal sori, is analogous to what occurs normally in Selliguea.

Ex.: D. quercifolia, J. Sm.
D. morbillosa, J. Sm.
D. Willdenovii (Polypodium, Bory.)
D. diversifolia, J. Sm.

110. AGLAOMORPHA, Schott, Gen. Fil. t. 19, (fasc. iv. t. 4.)

Psylgium, Presl; Drynariae sp., Gaudichaud; Polypodi sp., Goldmann.

Sori non-indusiate, rotundate, solitary in the contracted lobe-like segments of the fertile upper pinnae; the receptacles large hemispherical, situated usually at the point of confluence of two or more venules. Veins (sterile) pinnate, prominent, from a central costa, the venules transversely anastomosing forming ultimate sub-equal quadrangular areoles, from the sides of which proceed divergent free veinlets; or, (fertile) nearly obsolete, confluent.

Fronds coriaceous, dimorphous, the sterile sessile querciform, brown, rigid; the fertile also sessile, rigid, pinnatifid and sterile below, pinnate contracted and fertile above; the pinnae articulated. Rhizome creeping, tufted, epiphytal.—Allied in its sessile fronds to the true Drynarias, but differing in the contracted nature and obsolete venation of the fertile upper pinnae.

Ex.: A. Meyeniana, Schott.

Polypodi sp., Aud.; Drynariae sp., J. Smith.

Sori non-indusiate, small, round, superficial; the receptacles punctiform: (1) transversely sub-serial between the branches of
a dichotomous costa when the segments are confluent; or (2) longitudinally uniserial on each side a central costa in the ultimate segments, when more distinct. Venation diverse: (1) in the more confluent species, the costa dichotomo-flabelliform with the veins prominent, transversely anastomosing, the *venules* and *veinlets* (several series) thickly anastomosing, the ultimate or penultimate soriferous, the ultimate branches often free at the apex; or (2) in the more distinctly divided species, *costa* central, the veins and *venules* irregularly anastomosing, with divaricate free sterile *veinlets*.

Fronds binate, digitato-palmately-lobed, or repetitio-dichotomously partite, elongately stipitate, coriaceous. Rhizome woody creeping, the fronds adherent, or not readily separable.—So remarkable and peculiar in habit, that, relying partly on the oligocarpous sori, we have kept it distinct from our *Pleopeltis*, with which, in company with *Drynaria*, it is technically allied. The central position of the costa in one species, which might thus appear to be anomalous, is to be explained by the smaller size narrowness and more complete separation of its lobes.

§ *Eudipteris*.—Costa dichotomously-branched in the ultimate divisions.

Ex.: *D. conjugata*, Reinw. | *D. Wallichii* (Polypodium, E. Br.)

§ *Pseudodipteris*.—Costa simple central in the ultimate divisions.

Ex.: *D. Lobbliana* (Polypodium, Hook.)

112. LECANOPTERIS, Blume, Enum. Fil. Javae, 120.

Onychium, Reinwardt, (non Kaulfuss.)

Sori non-indusiate, sub-rotund, immersed in the concave or cupuliform cartilaginous (and when dry reflexed) marginal teeth; the receptacles broadly oval-orbicular. *Veins* pinnate from a central costa; *venules* anastomosing in very irregular elongate hexagonoid areoles, the *veinlets* free, divaricate straight or hamate, included.

Fronds coriaceous pinnatifid; the segments ovato-sub-rotund, (by the reflexion of the lobes oblong), inciso-dentate. Rhizome thick fleshy.—Of this fern we have no knowledge.

Ex.: *L. carnosa*, Blume.
§ 19 ASPIDIEÆ.

(a) Indusia cucullate behind the sori, on the contracted incurved pinnules.

113. ONOCLEA, Linnaeus, Phil. Bot. 156, (reduct.)

Angiopteris, Mitchell, (non Hoffmann); Calypterus, Bernhardi; Riedea, Mirbel, in part; Ragojpteris, Presl.

Sori indusiate, few, large, globose, approximate and at length confluent beneath the conniving margin of the roundish sessile bacciform pinnules; the receptacles medial, elevated. Indusium (special) a cucullate reticulated membrane placed behind each sorus. Veins (sterile) reticulated; the venules forming irregular hexagonoid areoles; or (fertile) simple, direct, free.

Fronds dissimilar, the sterile pinnato-pinnatifid, the fertile bi-pinnate; the pinnules contracted incurved, sub-globose, or bacciform. Rhizome creeping.—A very elegant and distinct genus, which we think Mr. Smith correctly refers to the Aspidieæ, though the nature of the special indusia, is not easily made out. Ragojpteris of Presl, is said to have the venules of the sterile frond forked or simple, and free. There is probably some mistake, although the figures of Schkuhr and Presl, have not been to us satisfactorily explained.

Ex.: O. sensibilis, Lin. | ? O. angescens, Lk.
? O. obtusilobata, Schkr.

(b) Indusia orbicular, peltately affixed.

* Veins reticulated, with free included veinlets.

114. ASPIDIDIUM, Swartz, Schrad. Journ. 1800, ii., 4, 29 (reduct.) : Schott, Gen. Fil. (t. 4.)

Bathyrium, Presl: Link; Proterea, Presl; Podopeltis, Fée; Polypodii sp., Auct.; Tectaria sp., Cavanilles; Phymatodes sp., Presl; Dehnare sp., Fée.

Sori indusiate, rotundate; the receptacles compital i.e. produced on the points where several veins join, or medial, more rarely terminal. Indusium orbicular peltate. Veins pinrate, [April, 1857.]
from a central costa, prominent; or rarely, uniform; *venules* and *veinlets* compoundly anastomosing in (about two or three series of) irregular or nearly equal-sided areoles, from the ultimate of which proceed free divericate included *veinlets*.

Froonds simple pinnate or bi-pinnate, herbaceous. Rhizome short, erect or decumbent.—This genus cannot be very exactly distinguished from *Sagenia*. Generally, the species of *Aspidium* have the venation more compoundly branched; and their sori are almost always compital or medial, but here and there terminal sori appear. The indusium affords the best means of discriminating them, but this becomes lost or difficult of observation in old specimens; besides which, in some of the species of *Sagenia*, its sinus is indistinct. It is therefore probable that some species we may include in our enumeration of *Aspidium*, may really belong to *Sagenia*, as here understood. We do not find, however, any other intelligible, or tolerably constant way of distinguishing them. On the other hand, we cannot consent to unite the species having reniform and peltate indusia, which would involve the necessity of also uniting *Lastrea* with *Polystichum*. The name *Aspidium* has been well applied to this group by Schott, for though both orbicular and reniform indusia were included by Swartz, under the terms umbilicate and dimidiate, the former as first mentioned may be taken as typical.

Ex.: *A. singaporianum*, Wall. | *A. trifoliatum*, Sw.
A. calcareum, *Prel.* | *A. platyphyllum*, *Prel.*

115. **CYRTOMIUM**, *Prel*, *Tent.* *Pterid.* 86.

Phanerophlebia, *Prel*; *Amelia*, *Prel*; *Aspidix* sp., *Auct.*; *Polypodii* sp., *Auct*.

Sori indusiate, globose, in several series parallel to the costa; the *receptacles* medial on the excurrent free or anastomosed *venules* or *veinlets*, rarely terminal near the margin. *Indusium* orbicular, peltate. *Veins* pinnato-furcate, from a central costa; the lower anterior *venules* free, the rest angularly and irregularly anastomosing, forming unequal sub-hexagonal areoles, within which are produced 1—3 excurrent *veinlets*; or, the upper *venulae* only, angularly anastomosing.
ASPIDIACE.

Fronds robust, coriaceous, pinnate. Rhizome short, thick, erect.—In one division of this genus, the venules (except the lowest) are all anastomosed. In the other, several of the lower venules are free; indeed some specimens of *C. nobile*, belonging to the latter group, are scarcely at all anastomosed.

§ *Cyrtomium.*—Venules generally anastomosed.

§ *Amblia.*—Upper venules only anastomosed.
Ex.: *C. nobile* (*Aspidium Schlecht.*) | *C. juglandifolium* (*Amblia, Presl.*)

Veins connivently anastomosing.

116. CYCLODITJMUM, Presl, Tent. Pterid. 85.

Sori indusiate, globose; the receptacles medial on the transversely anastomosed venules. *Indusium* orbicular, peltate. Veins pinnate, from a central costa, straight or zigzag; venules connivently anastomosing in arcuate or angulate areoles, sometimes producing from the angle an excurrent veinlet, which in the sterile fronds is either free or unites with the next pair of venules.

Fronds, thick, herbaceous, robust, pinnate; the fertile contracted. Rhizome sub-erect.—This genus is analogous to *Nephrodium* among the reniform *Aspidiace*, and to *Goniopteris* among the *Polypodiaceae*; but is somewhat peculiar in its robust fronds, of which the fertile are contracted. It is also nearly related to *Cyrtomium*, differing in having the transverse anastomosed venules, instead of the excurrent usually free veinlets, soriferous.

C. abbreviatum, Presl. | *C. Cumingianum* (*Anisocampium, Pr.*)

117. POLYSTICHUM, Both, Tent. Fl. Germ. iii. 69 (reduct): Schott, Gen. Fl. (t. 9).

Hypolepis, Richard; *Aspidium*, Swartz, in part: Auct; *Rumohra*, Radzi; *Hemigonium*, J. Smith; *Peltocblena*, Fée; *Cyclopeltis*, J. Smith; *Hemigardion*, Fée; *Tectable* sp., Cavonilles; *Nephrodii* sp., Presl.; *Lastre* sp., Auct.; *Polypodi* sp., Auct.

Sori indusiate, globose; the receptacles medial or rarely termi-
nal on the venules. *Indusium* orbicular, peltate. *Veins* pinnatofurcate or simply forked, from a central costa; *venules* free; the lower anterior one usually, sometimes more, fertile.

Froonds simple pinnate or bi-tri-pinnate, rigid, coriaceous, the margins usually mucronato-serrate. Rhizome short, thick, erect. —An extensive genus, very well marked by technical characters. Probably *Cyclopeltidis* should be included. The original *Polystichum* of Roth, *Aspidium* of Swartz, and *Tectaria* of Cavanilles, were all proposed about the same date, and intended to separate the indusiate species at that time referred to *Polypodium*, from among the typical non-indusiate group. In the disposition of the two former of these names, long since made by Schott and adopted by Presl, we entirely concur; but it is to be regretted that either the expressive name of Cavanilles, or the still older synonym of Adanson, was not used by Presl, instead of the more modern inexpressive one of Bory, for the group now known as *Lastrea*. The latter name having been, however, employed so long ago in the arrangements both of Presl, and J. Smith, on which modern views of classification are mainly based, and the group being so extensive that the substitution of another generic name would involve multitudinous changes, it is doubtless better now to acquiesce in Presl's nomenclature, both as to the application of *Lastrea* to the free-veined reniform *Aspidiæa*, and of *Nephrodium* to those having anastomosing veins.

§ *Hypopeltidis.*—*Pinnæ* and pinnules continuous with the rachis.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>P. Louchitias, Roth.</th>
<th>P. macronatum, Presl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. acrostichoides, Schott.</td>
<td>P. pungens, Presl.</td>
<td></td>
</tr>
<tr>
<td>P. aculeatum, Roth.</td>
<td>P. flexum, Philippi.</td>
<td></td>
</tr>
<tr>
<td>P. obtusum, J. Sm.</td>
<td>P. multifidum (Aspidium Mett.)</td>
<td></td>
</tr>
<tr>
<td>P. coriaceum, Schott.</td>
<td>P. stenopteris (Aspidium, Kze.)</td>
<td></td>
</tr>
</tbody>
</table>

§ *Cyclopeltidis.*—*Pinnæ* articulated.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>P. semicordatum (Cyclop. J. Sm.)</th>
<th>P. Presliana (Cyclopteris, J. Sm.)</th>
</tr>
</thead>
</table>

(c) Indusium reniform, affixed at the sinus.

Veins reticulated.

118. **FADYENIA**, Hooker, *Gen. Fil.* t. 53. (non Endl.)

Asplenii sp., *Auct.*; *Aspidii* sp., *Auct.*; *Polystichii* sp., *Auct.*

Sori indusiate, oblong-rotundate, large, uniserial on each side
the costa; the receptacles terminal on the lower anterior venules. *Indusium* oblong-reniform, affixed along the deep sinus. *Veins* (sterile) indistinctly pinnate-furcate, from a central costa, the venules anastomosing, almost without free veinlets, the lowest forming a series of elongated costal areoles, the rest forming oblique, mostly elongated, areoles; the marginal ones shorter: or (fertile) less distinctly pinnate, the veins forming a series of large costal areoles, which produce a free included anterior venule terminated by the large sorus.

Fronds small, simple, herbaceous; the sterile broader, recumbent, attenuated and proliferous at the point; the fertile erect, obtuse, narrower, the costal areole on each side, with its included sorus, occupying almost the entire width. Rhizome short, erect.—A curious and distinct little plant. The sorus and indusium are so much elongated, and the sinus by which the latter is affixed so deep, that the fructification has a good deal of affinity with that of *Didymochlæna* and *Mesochlæna*.

Ex.: *F. prolifera*, *Hook*.

119. **SAGENIA**, *Presl, Tent. Pterid. 86.*

Polydictyum, *Presl*; *Microbrochis*, *Presl*; *Cardiochlæna*, *Fée*; *Lobochlæna*, *Fée*; *Phlebionomium*, *Fée*; *Aspidii* sp., *Auct.*; *Nepheidii* sp., *Auct.*; *Polyfodii* sp., *Auct.*; *Bathmi* sp., *Auct.*

Sori indusiate, rotundate, superficial or immersed; the receptacles terminal on free veinlets, or medial or compatal on anastomosed veinlets. *Indusium* cordato-reniform, affixed at the deep sinus. *Veins* pinnate from a central costa, prominent; venules arcuately and compoundly anastomosing in about two or three series of irregular unequal variously-shaped areoles, from the sides of which are often produced free included divericate (sometimes fertile) veinlets.

Fronds simply or often pedately pinnate or bi-tri-pinnate, herbaceous, usually ample. Rhizome short, thick, erect or decumbent, or somewhat creeping.—We have already, under *Aspidium*, adverted to the unsatisfactory nature of the characters which separate that genus from *Sagenia*. The indusium appears to us to afford the best mark of distinction. There occur...
among these difficult *Aspidium*, some species in which the indusium is strictly orbicular and peltate, and others in which it is as strictly cordato-reniform. The union of these in one genus, as has been suggested, would also involve the union of such large and well-defined groups as *Polystichum* and *Lastrea*, in which we cannot concur; and we have consequently separated them by what seems to us the most available characteristic. We have, indeed, no doubt that if all the species could be examined in a sufficiently early stage, the indusium would be found to afford a perfectly satisfactory distinction.

§ *Eusagena.*—Free included veins few or none.

Ex.: *S. cicatrina* (*Aspidium, Sw.*), *S. Hippocrates, Presl.*
S. coadunata, J. Sm.
S. latifolia, Presl.
S. dilacerta (*Aspidium, Kze.*)

§ *Cardiochlora.*—Free included veins numerous.

Ex.: *S. decurrens, Houlston.*
S. microsora (*Aspidium, Presl.*), *S. sinuosa* (*Aspidium, Labill.*)
S. macrophylla (*Aspidium, Sw.*), *S. grandis* (*Aspidium, J. Sm.*)
S. pachyphylla (*Aspidium, Kze*)
S. vasta (*Aspidium, Bl.*)

120. PLEOCNEMIA, Presl, Tent. Pterid. 183.

Haploidictyum, Presl; *Polypodiæ sp.*, *Auct.*; *Aspidii sp.*, *Auct.*; *Nephrodii sp.*, *Auct.*

Sori indusiate, globose; the receptacles medial on the free or anastomosed venules. *Indusium* reniform, affixed at the sinus. *Veins* (of segments—venules) simple or forked from a costiform mid-vein, the lower opposite ones arcuately anastomosing, forming elongated angulate costal areoles; the upper free; the intermediate usually forming one series of unequal hexagonal areoles next the costiform vein; marginal veinlets free.

Fronds herbaceous, ample, bi-pinnato-pinnatifid, the lower pinnae bi-partite; or small and pinnatifid. Rhizome sub-arborescent.—The genuine species of *Pleocnemia* are large much divided ferns, having, according to Cuming and Brackenridge, a sub-arborescent caudex. *Nephrodium Blumei*, *J. Sm.*, agrees better with them than with *Nephrodium* in its venation, especially in the sterile fronds, but not in its general habit. There are perhaps not so many species as Presl has recorded; the original
Polypodium Leuzeanum of Gaudichaud, is, however, at least different from the plant collected by Mr. Cuming.

Ex.: P. Leuzeana, Presl. P. conjugata, Presl. P. Blumei (Nephrodium Sm.)

P. Cumingii, Presl. P. gigantea, Presl.

** Veins connivently anastomosing.

121. NEPHRODIUM, Richard, Mich. Fl. Bor. Amer. ii. 266 (reduct): Schott, Gen. Fil. (sub. t. 5; t. 10.)

Aspidium, Swartz in part: Auct.; Cyclosorus, Link; Abacopteris, Fée; Plecostichena, Fée; Pronemphrium, Presl; Arsenopteris, Webb et Berthelot in part; Polypodium sp., Auct.; Lastreopsis sp., Auct.; Hyperflidium sp., Bory; Tectaria sp., Cavaniiles; Menisci sp., Kunze; Cycloclad sp., Auct.

Sori indusiate, globose; the receptacles medial on the venules. Indusium reniform, affixed at the sinus. Veins (of pinnae) pinnate from a central costa, prominent; venules simple, the lower pair or more, sometimes all, angularly connivent-anastomosing, producing from the angle an excurrent veinlet, which (in deeply pinnatifid pinnae) is free, or (in less divided pinnae) joins the next anastomosed angle.

Fronds simple pinnatifid pinnate or pinnato-pinnatifid, herbaceous or sub-coriaceous. Spore-cases sometimes echinate. Rhi-zome short, erectish, or slowly creeping.—An extensive genus, the analogue of Goniopteris among the Polypodiaceae.

§ Tectaria.—Anastomosed angles few, the lowest or lower venules only being connivently united.

Ex.: N. arbuscula, Desv. N. molle, B. Br. N. caudiculatum, Presl.

N. Hookeri, Moore and Houlst. N. venustum, Heward. N. unitum, Bory.

§ Abacopteris.—Anastomosed angles numerous, all or most of the venules being connivently united.

Ex.: N. simplicifolium, J. Sm. N. cyatheoides, Presl. N. glandulosum, Presl.

N. acrostichoides, J. Sm. N. multilinatum, Presl. N. latifolium, Presl.

*** Veins free.

Dejoporteis, Adanson: Schott; Glischnia, Necker; Aspidium, Swartz
in part: Fée; NEPHRODIUM, Richard in part: Auct.; THELYPTERIS, Schott; ARTHROBOTRYS, Wallich; HYPODERMATUM, Kunze; AMAROPELTA, Kunze; ARSENOPTERIS, WEBB ET BERTHELOT in part; HEMIOTHEMUM, Newman; LOPHODIUM, Newman; GYMNOTHALLUM, ZENKER MS; DU CHASIS, A. BRUM; CAMPTODIUM, Fée; OCHLAMYS, Fée; PACHYDERMIS, J. SMITH MS; LASTRESTRUM, PRESL; PYCNOPTERIS, MOORE; POLYPODI SP, AUCT.; LASTREA SP, BORY; TECTABLE SP, CAVANILLES; PYCNOPTERIDIS SP, AUCT.; ARTHROPTERIDIS SP, J. SMITH; CYSTOPTERIDIS, SP, AUCT.; POLYSTICHI SP, AUCT.

Sori indusiate, globose; the receptacles medial, or rarely terminal or sub-terminal on the venules. **Indusium** roundish-reniform, or sometimes small and irregularly reniform, plane or fimbriate, fugacious or persistent; the basal sinus at which it is affixed, variously deep narrow broad or shallow. **Veins** simple forked or pinnate, from a central costa; **venules** free, the anterior usually (sometimes more) fertile.

Fronds herbaceous or coriaceous, pedate pinnate or bi-tripinnate, the fertile sometimes contracted. Rhizome short, thick, erect or decumbent, or elongately creeping.—We have, under **Polystichum**, stated our reasons for adhering to the name adopted for this genus by Presl and subsequently by J. Smith. It is an extensive group, presenting no very definite characters for sectional subdivision. The groups indicated below seem, however, for the most part recognizable. We are little acquainted with the **Camptodium** of Fée, but it seems to agree sufficiently with **Lastrea**, as here understood.

§ **Dryopteris.**—Veins usually forked sometimes pinnate, the anterior venule fertile; sori medial, or sub-terminal.

§ **Pycnopterus.**—Veins pinnate sub-clavate; sori in several series, infra-medial on both anterior and posterior venules.

Ex.: L. atrata, PRESL. | L. Sieboldii (Pycnopterus, MOORE)

§ **Camptodium.**—Veins pinnate; sori terminal or medial on both anterior and posterior venules.

Ex.: L. pedata (Aspidium, DEV.; Camptodium, Fée.)
ASPIDIACE.

§ Thelypteris.—Veins usually forked, both venules fertile towards the margin (indusium irregular fugacious.)

Ex.: L. Thelypteris, Presl. | L. montana, Moore (L. Oreopteris, Auct.)

§ Monophlebia.—Veins usually simple; sori medial or sub-terminal.

Ex.: L. invisa, Presl. | L. nevoboracensis, Presl.
L. serra, Presl. | L. chrysoloba, Presl. [Presl.]
L. patens, Presl. | L. albo-punctata, Presl.
L. angustiss., Houlst. | L. crinita (Polyp. Potr.; L. strigossa,
L. Sprengelii, Presl. | L. immersa (Aspidium, Bl.)

123. OLEANDRA, Cavanilles, Prælect. (1801) 252.

Neuronia, Don.; Ophiopteris, Reinwardt; Aspidiæ sp., Auct.; Hypopteris sp., Bory; Polyopteris sp., Auct.

Sori indusiate, globose, approximate to the costa, the receptacles, therefore, sub-basal on the veins or venules. *Indusium* reniform, affixed at the sinus. Veins simple or forked from a central costa; venules parallel, unisoriferous dorsally near their base, their apices curved forwards and connivent with the thickened margin.

Fronds simple, membranaceous or sub-coriaceous. Stipes nodoso-articulate. Rhizome creeping, or erect and frutescent.—A very natural group, yet in technical characters not far removed from Lastrea. The species are all simple-fronded, and are hence quite distinct in aspect; but the most important distinction is found in the nearly basal position of the sori, with respect to the vein.

Ex.: O. neriformiss, Cavan., | O. nodosa, Presl.
O. articulata, Presl. | O. pilosa, Hook.
O. Wallichii, Presl. | O. Cumingii, J. Sm.

124. NEPHROLEPIS, Schott, Gen. Fil. (t. 3.)

Nephrodonium, Link; Lepidonurus, Börè; Aspidiæ sp., Auct.; Nephrolepides sp., Auct.; Hypopteris sp., Bory; Polyopteris sp., Auct.; Davallia sp., Auct.; Tectale sp., Cavanilles; Polystichum sp., Auct.; Arthopeptis sp., J. Smith.

Sori indusiate, rotundate; the receptacles terminal on the lower anterior venules. *Indusium* (1) rotundo-cordato-reniform affixed at the sinus (nephrodioid); or (2) sub-reniform affixed oblique-transversely by the arcuate posterior margin (davallioid). Veins pinnato-furcate from a central costa; venules direct free, thickened at the apices.
Fronds pinnate, narrow elongate, herbaceous or sub-coriaceous, the pinnae articulated. Rhizome short erect, producing elongated slender stolones which bear fasciculate crowns at intervals; or elongately creeping; sometimes tuber-bearing. The fronds are annual in one tuberous species.—The attachment of the indusium is obviously different in the two groups forming this genus, in the one approaching the aspidioid, in the other the davallioid structure; so that were it not for their uniformity of character in all other respects, they might form separate genera.

§ Cardioeiegia.—Indusium roundish cordato-reiniform, affixed sub-centrally by its sinus.

Ex.: N. platyotis, Kze. | N. biserrata, Schott.
N. hirsutula, Presl. | N. punctulata, Presl.
N. splendens, Presl. | N. blaurita, Presl.
N. trichomanoides. J., Sm. | N. repens, Brackenridge.

§ Nephrolepis.—Indusium reniform, affixed by its oblique arcuate base.

Ex.: N. exaltata, Schott. | N. tuberosa, Presl.
N. pectinata, Schott. | N. undulata, J., Sm.
N. davallioides, Kze. | N. obtusifolia, Presl.

§ 20 Cystopterideae.

Sori indusiate, rotundate; the receptacles medial. Indusium roundish-ovate, fornicate or sub-hemispherical, affixed by its broad base, the apex often lacerate, sometimes acuminate. Veins simple, forked or pinnate from a central costa; venules free.

Fronds membranaceous-herbaceous, bi-tri-pinnate. Rhizome tufted, decumbent, or elongated and creeping.—A genus of small and elegant ferns, of which the species are sometimes not easily distinguished by the fronds only, even though, as in the case of the widely creeping C. tenuis, and the close tufted C. fragilis, there may be present, when growing, differences that, as we think, prevent their being united.

Ex.: C. fragilis, Bernh. | C. Douglasii, Hook.
C. regia, Desv. | C. tenuis, Desv.
C. bulbifera, Bernh. | C. montana, Bernh.
126. ACROPHORUS, Presl, Tent. Pterid. 93 (extensa);

Sori indusiate globose, superficial or immersed; the receptacles terminal (or rarely axillary in the forks of the venules.) Indusium sub-orbicular, affixed by its posterior margin or base, rarely two or three becoming confluent. Veins pinnato-furcate from a costa, or more rarely repeatedly dichotomous; venules free.

Fronds membranaceous-herbaceous or sub-coriaceous, pinnate or more frequently decompound; the divisions isomerous or dimidiate. Rhizome creeping.—This group appears to us to be properly separated from the Davallieae, on account of having its indusium fixed only by its base, very much in the way of Cystopteris. Both Leucostegia and Odontoloma appear to be entirely wanting in good distinguishing characters. Of Monachosorum we know nothing beyond Kunze's figure and description; judging from which, however, it appears to be founded on an aged specimen of Acrophorus, from which the indusium had fallen away. (See No. 100, ante p. lxx.)

§ Acrophorus.—Divisions of the frond isomerous.

Ex.: A. nodosus, Presl. | A. affinis, Moore.
A. immersus, Moore. | A. hispidus, Moore.
A. falcinellus, Moore. | A. bifidus (Davallia, Klfs.)

§ Odontoloma.—Divisions of the frond dimidiate.

Ex.: A. repens (Dicksonia, Bory.) | A. adiantoides (Aspidium, Bl.)
A. cuneifolins (Saccoloma, Pr.) | A. tenuifolius (Lindsaea, Bl.)
A. Parkeri (Davallia, Hook.)

127. HUMATA, Cavamilles, Praelect. (1801), 272.

Pachypleuria, Presl; Pteroneuron, Fée; Davallia sp., Auct.; Nephrordii sp., Auct.; Adianti sp., Linnæus; Nephrlepidins sp., Presl; Saccolomatis sp., Kunze.

Sori indusiate, rotundate; the receptacles terminal and vertical, or rarely sub-terminal and oblique on the venules. Indusium
sub-orbicular-reniform or transversely oblong-reniform, plane, broadly affixed at the posterior margin.
Veins stout, often thickened upwards, simple forked or pinnate, from a central costa; venules free.

Fronds small, rigid, coriaceous, simple lobed pinnatifid or pedately-pinnatifid, or sub-ternate. Sori usually vertical, rarely sub-terminal and oblique or sub-lateral to the veins. Rhizome creeping, hirsutely scaly; or tufted (Imrayana.)—A characteristic group, with small coriaceous fronds, differing from Acrophorus, in the broader base of the indusium. The Davallia Imrayana of Hooker, an anomalous plant, appears to have its place here, on account of its broad sub-reniform indusia.

§ Pachypleuria.—Sori apical, vertical.
Ex.: H. angustata, J. Sm. | H. alpina (Davallia, Bl.)
H. heterophylla, Desv. | H. pedata, J. Sm.
H. pectinata, Desv. | H. lepida (Davallia, Presl.)
H. ? Imrayana (Davallia, Hk.) | H. vestita (Davallia, Bl.)

§ Pteronaeuron.—Sori sub-terminal, oblique.
Ex.: H. Gaimardiana, J. Sm. (Davallia parallela, Wall.)

§ Davallia.

Sori indusiate, rotundate or transversely oblong, intramarginal or sub-marginal; the receptacles terminal or axillary on the veins or venules. Indusium semi-orbicular, attached by the base and sides, thus half-cup-shaped, the anterior margin free, truncate or rounded. Veins simple forked, or pinnate, from a central costa; venules direct free.

Fronds herbaceous or sub-coriaceous, pinnate bi-pinnate or decompound, the margin sometimes attenuated sub-membraneous and indistinctly crenated simulating accessory indusia. Rhizome creeping or tufted.—A genus of large-growing herbace-
ous ferns, distinguished from Davallia proper, by the short half-cup-shaped fructifications, and intramarginal sori. Saccoloma does not appear to us to present any material difference of structure; we have consequently placed it in Microlepia, retaining for the united group the more expressive name used by Presl.

§ Microlepia.—Sori distinctly intramarginal.

Ex.: M. calvescens, Presl. M. platyphylla, J. Sm.
M. trichosticha, J. Sm. M. inequalis, Presl.
M. stigiosa, Presl. M. splendens (Davallia, Bl.)
M. Spelunctæ (Polypodium, Lin.; Dicksonia multífida, Sw.)

§ Saccoloma.—Sori sub-marginal.

Ex.: M. elegans, Mett. M. Hookeriana, Presl.
M. pinnata, J. Sm.

Widella, Bornhardt; Stenolorus, Presl; Ondotosoria, Presl: Fée; Colposoria, Presl, in part; Parestia, Presl; Scephyllaria, Fée; Stenoloma, Fée; Lindl. sp., Auct.; Microlepia sp., Auct.; Polyplid sp., Auct.; Trichomanis sp., Auct.; Abianti sp., Auct.; Humace sp., Desvaux; Dalea sp., Auct.

Sori indusiate, roundish-oblong or elongate-oblong, marginal or sub-marginal; the receptacles terminal. Indusium membranaceous, cup-shaped or tubulose, affixed at the sides and base, thus forming a vertical oblong semicylindrical tubulose cyst, or cup, which is truncate and open at top, i.e., towards the margin. Veins forked or pinnate, from a costa; venules free.

Fronds herbaceous or coriaceous, pinnate or pinnately decom- pound. Rhizome creeping.—A well-marked genus, though the species differ in the length of the indusium or cup; those with the shorter cup-shaped sori are distinguished from Microlepia both by their texture and by having their sori marginal.

§ Stenoloma.—Indusia cup-shaped, marginal.

Ex.: D. tenuifolia, Sw. D. clavata, Sm.
D. Schlechtendallii, Presl. D. uncinella, Kze.
D. acuta, Sm. D. fumarioides, Sw.

§ Scephyllaria.—Indusia tubulose.

Ex.: D. pentaphylla, Bl. D. bullata, Wall.
D. dissecta, J. Sm. D. canariensis, Sm.
D. elegans, Sw. D. clava, Sor.
D. solida, Sw. D. polyantha, Hook.

Davallie sp., Auct.; Microlepia sp., Mettenius; Trichomanis sp., Forst.

Sori indusiate, oblique, marginal, transversely-oblong, solitary
on the oblique dilated spines of the segments; the receptacles at the apex of the veinlets i.e. terminal, with usually a longer branch of the veins prolonged past the sorus into the apex of the segments. Indusium sub-herbaceous, broader than long, opening along the truncated mouth, equalling the margin of the frond, and forming therewith a short oblique boat-shaped cavity. Veins single in the narrow ultimate segments, forking below the sorus, the fertile venule very short.

Fronds sub-coriaceous, opaque, compoundly pinnatifid, the ultimate segments short, narrow, single-veined, soriferous obliquely at the apex. Rhizome tufted.—A small group distinguished among the Davalliae, by their daëroid structure.

131. PROSAPTIA, Presl, Tent. Pterid. 165.

Sori indusiate, oblongo-rotundate, immersed in a short marginal cyst, open externally; the receptacles terminal at the apex of the costa. Indusium sub-coriaceous, continuous with, and scarcely differing from the under surface of the frond, forming an extrorse cavity in, as it were, the substance of the frond itself. Veins simple from a central costa or costaeform vein; the latter usually, and one or two of the upper veins (branches) sometimes, soriferous.

Fronds pinnatifid, rigid, sub-coriaceous. Rhizome tufted, decumbent.—This little group differs from Davallia, in the texture of the indusium being homogeneous with that of the frond; and in the sori being confined, almost always, to the apex of the costa or costaeform vein which traverses the centre of the pinnæ-like segments. It does not appear to have any relationship with Polypodium, in which it is sometimes placed; and the structure seems sufficiently different from Davallia to justify its separation from that genus.

Ex.: P. contigua, Presl. P. Emersonii, Presl.
132. DICKSONIA, L’Herilier, Sertum Anglicum 30.

Balantium, Kaulfuss; Presl; Culcita, Presl; Leptopleuria, Presl; Cystodium, J. Smith; Davaller sp., Auct.; Cibotii sp., Auct.; Microlepfe sp., Auct.; Patrickia sp., Auct.; Nephrolepidis sp., Meitenius.

Sori involucrately-indusiate, globose or short transverse oblong, marginal, more or less reflexed; the receptacles globose or transverse oblong, terminal. Indusium coriaceous, double i.e. two-valved; the outer or accessory valve formed of a more or less attenuated lobe of the frond, cuculate, sometimes equalling in size, but more frequently larger than the inner valve or proper indusium, which latter, when smaller, is less convex than the outer. Veins simple forked or pinnate, from a central costa; venules free.

Fronds coriaceous, usually large decompound, sometimes pinnate, the fertile portions appearing somewhat contracted. Rhizome thick, short, erect, or arborescent; sometimes (in D. Culcita) decumbent, criniferous.—A genus of noble ferns, including several arborescent species. It is distinguished from Dennstaedtia by the two-valved, not entire cup-shaped, indusium; and from Cibotium by the more or less herbaceous texture of the outer valve of the indusium, which in Dicksonia, is but a partially changed lobe of the frond.

D. squarrosa, Sw. | D. Sellowiana, Hook.
D. sorbifolia, Sw. | D. abrupta, Bory.

133. DICLISODON, M. (from diktis, double or two-valved, and odon.)

Sori involucrately-indusiate, rotundate, extra-marginal, i.e., occupying small projecting marginal teeth; the receptacles punctiform, terminal. Indusium extrorse-marginal, two-valved, flat; the outer or accessory valve a small rounded herbaceous projecting lobe of the frond; the inner valve, or proper indusium, membranaceous, larger than the lobe, distinctly reniform affixed
by the sinus. Veins forked or pinnate, from a central costa; venules free, terminating within the margin.

Fronds herbaceous, bi-pinnate, the sori entirely occupying the small projecting marginal teeth. Rhizome?—The structure of this plant appears to us unlike that of any established genus. The sori, though not stalked, project from the margin, and entirely occupy the small marginal lobes, thus producing in general aspect a similarity to Deparia; but instead of being an extrorse-marginal cup, as in that genus, this projecting body here consists of two flat valves. These valves we regard as analogous to those of Dicksonia, from which, however, the present plant differs in the larger size of the inner valve, and in both valves lying flat in the plane of the frond open round the margin (like a bi-valve shell), instead of being reflexed so as to stand at a right angle with the plane of the frond.

Ex.: D. deparioides (Ceylon, H5, Perad. 3062.)

134. (?) PÆSIA, St. Hilaire, Voy. Distr. Diamans, i. 381.

Sori sub-rotund or linear, sub-marginal, at first enclosed in the indusium. Indusium plane, membranaceous, thin, double or two-valved; the accessory valve growing from the margin, the special smaller sub-orbicular, at length reclinate. Veins pinnate free.

Fronds large, tri-pinnate, glandular-pubescent; pinnules spreading; the aspect of Pteris.—We know nothing of this plant, which, according to St. Hilaire, is certainly related to Dicksonia. He, however, compares the aspect of the plant with Pteris, and the sori with Adiantum.

Ex.: P. viscosa, St. Hil.

135. CIBOTIUM, Kaulfuss, Berl. Jahrb. der Ph. (1820); Id., Enum. Fil. 229, t. 1.

Sori involucrately-indusiate, sub-globose, marginal, reflexed; the receptacles slightly elevated, terminal. Indusium two-valved,
coriaceous, distinct from the substance of the frond; the outer valve larger cucullate, the inner operculiform. Veins forked or pinnate from a central costa; venules free.

Fronds large, decompound. Rhizome thick, short, decumbent, or erect.—This genus, like Dicksonia, has two-valved indusia; but in the present, the texture of the two valves is alike, and evidently different from that of the frond, on the extreme margin of which they are borne.

Ex.: C. Barometz, J. Sm. | C. assamica, Hook.
C. glaucum, Hk. and Arn. | C. Menziesii, Hook.

(b) Indusium cup-shaped, reflexed.

Dicksonia, Kaulfuss; Presl; Sitorolium, Desvoux; Patania, Presl; Sitolobium, J. Smith; Adectum, Link; Deparia sp., Hooker; Poly- podi sp., Auct.; Cyathrea sp., Auct.; Trichomanis sp., Auct.; Nep- rodii sp., Auct.

Sori involucrately-indusiate, globose, marginal, reflexed; the receptacles small punctiform, terminal. Indusium cupuliform or pateriform, sub-membranaceous, the special and accessory valves nearly equal, and coalescing into an almost entire, rarely sub-bilabiate, reflexed cup. Veins pinnate, from a central costa; venules simple or forked, free.

Fronds herbaceous, bi-pinnate or decompound; the sori exserted within the cup-shaped involucriform indusia, and reflexed. Rhizome creeping.—A group quite distinct in habit from Dicksonia, and also differing in the sori being seated within cup-shaped indusia, which are almost or quite entire, instead of distinctly two-valved. The cup, which is formed by the confluence of the special and accessory indusia, is sometimes, but rarely, slightly notched at the sides when this confluence is not quite perfect; these instances showing its affinity with Dicksonia.

Ex.: D. punctilobula (Aspidium, Sw.) | D. eicataria (Dicksonia, Sw.)
D. rubiginosa (Dicksonia, Eflies.) | D. apilfolia (Dicksonia, Sw.)
D. deltoides (Dicksonia, Hook.) | D. concinna (Davallia, Pr.)
D. adiantoides (Dickson. H.B.) | D. macrophylla (Dicksonia, Desv.)
D. nitidula (Dicksonia, Eze.) | D. cuneata (Sitolobium, J. Sm.)
D. moluccana (Dicksonia, Bl.) | D. Zippeliana (Dicksonia, Eze.)
Indusium cup-shaped, extrorse marginal.

* Veins free.

137. DEPARIA, Hooker and Greville, Icon. Fil. t. 154, et Addenda.

Dicksonia sp., Auct.; Cibotia sp., Auct.

Sori involucrately-indusiate, globose, marginal; the small punctiform receptacles and pateriform i.e. shallow cup-shaped membranaceous indusia, exserted and stipitate, terminating the veins, which are excurrent in the marginal teeth; the indusium extrorse-marginal, not recurved. Veins (of segments) simple, rarely forked, from a central costa, free, reaching the margin, beyond which those of the fertile teeth are exserted forming stalks to the sori.

Fronds herbaceous, pinnato-pinnatifid, proliferous. Rhizome thick, decumbent.—The peculiarity of this genus consists in its cup-shaped indusia, standing out direct from the edge of the frond on little stalks, which are variable in length. Sometimes, it appears, the plants bear here and there athyrioid sori, as well as the more abundant deparioid ones; this probably occurs when the plants are in a less vigorous condition, as we observe, that in cultivation, the earlier fronds have the sori mostly sessile, while afterwards, as the plants acquire vigour of growth, the little footstalks of the sori are more developed.

Ex.: D. prolifera, Hk. and Grev.

** Veins reticulated.

Trichiocarpa, Hooker ($) : J. Smith; Patanrema, J. Smith MS.; Duparle sp., Hooker.

Sori involucrately-indusiate, globose, marginal; the small punctiform receptacles, and pateriform i.e. shallow cup-shaped indusia, exserted and stipitate terminating the veinlets, here and there excurrent in the marginal teeth; the indusium extrorse-marginal, not recurved. Veins sub-pinnate or pinnately-forked from a central costa; venules reticulated, the lower forming
elongated costal areoles, the rest uniting in unequal oblong hexagonal areoles, with here and there an included free veinlet; marginal veinlets free, those opposite the teeth excurrent, and bearing the sori at their extremity.

Fronds pedately bi-pinnato-pinnatifid, membranaceous-herbaceous. Rhizome short, decumbent.—This genus differs from Deparia in the distinctly reticulated veins; it is also quite unlike it in general aspect.

Ex.: C. Moorii, T. Moore (Deparia, Hooker.)

§ 23 PERANEMAE.
(a) Veins free.
* Involucres stalked.

SPHEROPTERIS, Wallich; R. Brown (non Bernhardt); PODILEMA, R. Brown M.S.; NEMATOPERA, Kunze.

Sori involucrate, globose; the receptacles globose, stipitate, medial on the lower anterior venules. Involucre coriaceous, stalked, globose, entire, at length bursting vertically into two irregular valves. Veins forked or pinnate, from a central costa; venules free, thickened at the apex.

Fronds tri-pinnate, herbaceous, the stipes and rachis densely clothed with spreading scales. Rhizome large, globose.—Don's name for this genus has unquestionably priority of publication. It cannot be set aside on the personal grounds referred to by Dr. Wallich, nor on the more forcible and technical objection he has urged, of its similarity to Peronema, for there are numerous instances of generic names equally resembling other names, being admitted without question; nor does there appear any special reason for the change in the present instance.

Ex.: P. cyatheoides, Don.

** Involucres sessile.

ASPIDI sp., Wallich; PHYSEMATH sp., Kunze; CYSTOPTERIDIS sp., Presl; CYATHE sp., Mettenius.

Sori involucrate, globose; the receptacles punctiform medial
Genera of Ferns:

- on the anterior lower venules. Involucres firm membranaceous or sub-coriaceous, sessile, attached by a small point, globose, entire, at length bursting and splitting irregularly from the top. Veins simple forked or (in the secondary pinnules) pinnate; venules simple, free.

Fronds decompound, herbaceous. Rhizome short, erect?—The chief peculiarity in this genus is the hard globose entirely closed involucres, which at length burst open irregularly, and are affixed by a small point of contact. These characters separate it—not too definitely perhaps—from Woodsia; while from Pera-nema, on the other hand, it is distinguished by the sessile instead of stalked globose involucres.

Ex.: D. aspidioides, Bl.
D. microphylla (Cyathea, Mett.)

Sori involucrate, "roundish, scattered, inserted upon a slightly elevated receptacle. Involucres arachnoid, covering the sorus." (Bl.)

"Involucres a cobweb-like substance, so tender as scarcely to be called a membrane, covering each sorus."—Blume compares his plant with Aspidium as to habit, and with Chnoophora and Trichopteris as to its fructification. Hooker associates it doubtfully with Diacalpe and Woodsia. Fée places it without doubt, with Alsophila. We cannot, from the evidence we possess, form any decided opinion where it ought to be placed; but we may presume that it possibly belongs here, as Blume puts it in a section—"indusia sori subjecta," and places it next to Diacalpe.

Ex.: A. aspidioides, Bl.

142. Woodsia, R. Brown, Trans. Lin. Soc. xi. 173. t. 11;
(Woodia, Br. Prod. 158, in obs.)

Sori involucrate i.e. with inferior indusia, globose; the
receptacles medial or terminal. Involucres soft, membranaceous, pateriform and fimbriately crinite, or calyciform with the margin lobed, or sub-globose with a contracted mouth. Veins simple forked or pinnate, from a central costa; venules free.

Fronds membranaceo-herbaceous, small, pinnate pinnato-pinnatifid or bi-pinnate. Rhizome tufted, erect or decumbent.—A very well-marked group, distinguished by the involucriform nature of the indusium, the sessile sori, and free veins. There is some apparent difference between the involucres of the two extreme sections, but these seem sufficiently reconciled by the intermediate group; and Woodsia proper, may be regarded as having the sub-globose involucre of Physematium split at the margin into criniform incurved segments; thus retaining, in some measure, the cup-shaped character.

§ Woodsia.—Involucres minute pateriform, the margin incurvo-crinite.
Ex.: W. ilvensis, R. Br. | W. alpina, Gray.
 W. glabella, R. Br. | W. plosella, Ruprecht.

§ Perrinia.—Involucres sub-hemispherical irregularly-lobed.
Ex.: W. obtusa, Torrey. | W. incisa, Gillies.

§ Physematium.—Involucres sub-globose with a contracted apical mouth.
Ex.: W. mollis, J. Sm. | W. peruviana, Hook.
 W. fragilis (Dicksonia, Trev.; Hymnocyistis caucasica, Meyer.)

(b) Veins reticulated.

i., 16 (note).

Woodsia sp., Mettenius.

Sori involucrate, globose; the receptacles compital, i.e. situated at points where several reticulated veinlets join. Involucres membranaceous, calyciform, fimbriate at the margin. Veins pinnate from a central costa, prominent; venules compoundly anastomosing in about three series of unequal areoles, within the ultimate of which are produced free divaricate sterile veinlets.

Fronds herbaceous, simple or three-lobed. Sori uniserial on each side the veins, more scattered towards the margin. Involucres obscure. Rhizome creeping.—Distinguished from Woodsia by the reticulated venation only. We take the recognition of such genera as Hypoderris, and Dictyoxiphium, by botanists who
profess to reject venation as a generic character, as in reality, a tacit admission of its importance.

Ex.: H. Brownii, J. Sm.

Order—POLYPODIACEÆ. Tribe—CYATHEINEÆ.

§ 1 THYRSOPTERIDEÆ.

144. THYRSOPTERIS, Kunze, Linnea. ix. 507; Id., Schkuhr, Supp. i. 3, t. 1.

Paniculata, Colla.

Sori involucrate, globose, obliquely-reflexed on thyrsoid pinnacles; the receptacles large, globose, spongy, terminating the rachiform segments of the fertile portions. Involucres coriaceous, cup-shaped, entire, petiolate. Veins (of tertiary sterile pinnules) pinnate; venules simple or forked, free, the thickened apices terminating within the margin.

Fronds large supradecompond, the basal pinnules of the lower pinnae fertile with contracted rachiform unisoriferous ultimate segments; stipes several (4—5) feet long, "as thick as a walking stick," criniferous at the base; leafy portion four to five feet long, the lowest pinnae about two feet. Rhizome short thick decumbent, tufted.—A very curious large-growing fern, remarkable for the production of distinct contracted fertile, and leafy barren portions, intermixed on the decompond fronds, by which character it is known from the other genera of the cytathceous group.

Ex.: T. elegans, Kze.

§ 2 CYATHEÆ.

(a) Involucres complete cup-shaped.

Sphéropteris, Bernhardi; Disphenia, Presl; Notocarpha, Presl; Schizocæna, J. Smith; Polypond sp., Auct.; Alsophila sp., Auct.; Hemitelle sp., Auct.

Sori involucrate, globose; the receptacles columnar or globose, axillary at the forking of a vein, or medial. Involucres membro-
naceous, cup-shaped, at first globose and covering the sorus, opening in a circumference manner near the apex, the cup remaining entire; or the cup bursting unequally; or, sometimes, opening vertically in 4—6 nearly equal spreading divisions. Veins (in the ultimate divisions) simple forked parallel-forked or pinnate, from a central costa; venules free.

Fronds large, herbaceous, simple pinnate bi-pinnate or de-compound. Trunk or caudex arborescent.—Distinguished among the cyathaceous ferns by the cup-shaped involucres completely surrounding the sorus.

§ Spheropteris—Sori axillary, at the forks of the veins.
Ex.: C. modularis, Sw. C. divergens, Kze.
C. canaliculata, Willd. C. Pervillicana, Kze.
C. Dregel, Kze. C. excelsa, Sw.
C. cuspidata, Kze. C. spinulosa, Wall.
C. Schanschinum, Martius. C. vestita, Martius.
C. Smithii, Hk. fil. C. elegans, Heward.

§ Notocarpia.—Sori medial on the veins or venules.
Ex.: C. sinuata, Hook. and Gr. C. mexicana, Schlech.
C. Brunonis, Wall. ? C. levigata, Willd.

(b) Involucres half cup-shaped.

* Veins uniting in costal arcs (in some species rarely united.)

146. HEMITELIA, R. Brown, Prod. Fl. Nov. Holl. 158, (reduct.)

CNEMIDARIA, Presl; ELEUTHERIA, Kunze; HEMISTEGIA, Presl; MICROSTEGNUS, Presl; ACTINOPHILIA, Presl; CYATHEÆ sp., Auct.; POLYPODI sp., Auct.

Sori involucrate, globose; the receptacles globose, medial or axillary. Involucre dimidiate i.e. semicalyciform with the anterior side deficient, becoming at length reflexed. Veins forked parallel-forked or pinnate, from a central costa; the basal veins or venules (next the rachis) arcately anastomosing, forming elongated costal arcs from the exterior side of which free veinlets are produced; venules otherwise free. (In H. speciosa and some allied forms, whether species or varieties, the costal arc is only here and there produced, the veins being usually free.)

Fronds large herbaceo-coriaceous, pinnate bi-pinnate or de-compound. Trunk or caudex arborescent.—This genus, which is
for the most part easily recognised at sight, is known among the *Cyathea* by its half cup-shaped involucres, combined with the arcuately-anastomosed basal venules. In one species, indeed, *H. speciosa*, and in those nearly related forms which some botanists regard as distinct from it, the arcuately-anastomosed venules are only now and then produced, and are frequently entirely wanting in those portions of fronds which form herbarium specimens. These we must consider as aberrant species, too closely allied by their external aspect to admit of their being removed from the genus; their association with which, is moreover justified by the occasional occurrence of the arcuate veins, to be observed in the cultivated plants.

§ *Cnemidaria.*—Arcuate veins always apparent.

---|---

§ *Eleutheria.*—Arcuate veins rare, sometimes wanting.

Veins always free.

Hymenostegia, J. Smith, in part; *Alsophila* sp., *Auct.;* *Hemitellea* sp., *Auct.;* *Cyathæ* sp., *Auct.;* *Polypodium* sp., *Auct.;* *Aspidiæ* sp., *Auct.*

Sori involucrate, globose; the *receptacles* globose or sub-pyramidal, medial or axillary. *Involucrum* dimidiate i.e. semicalyciform with the anterior side deficient becoming reflexed, or rarely forming a small shallow cup-like scale buried beneath the spore-cases. *Veins* forked or pinnate, from a central costa; *venules* free.

Fronds large, herbaceous-coriaceous, pinnate or decompound. Trunk or caudex arborescent.—This group has the hemitelioid involucre, combined with constantly free veins.

§ *Hymenostegia.*—Sori medial on the veins.

A. Hostmannii (*Hemitelia*, *Hk.*). | *A. laevis* (Alsophila, *J. Sm.*)
F. alternans (Polypodium, *Wall.*)

§ *Chlamydia.*—Sori axillary at the forks of the veins.

Ex.: *A. Walkeræ* (*Cyathæ*, *Hk.*). | *A. Beyrichiana* (*Cyathæ*, *Presl.*)
§ 3 Alsophila.

Diochantphelia, Martinus; Haplophilehia, Martinus; Trichoptckis, Presl; Cmooophora, Kaulfuss; Gymnophles, Blume; Trichoptckis, J. Smith; Hymenostegia, J. Smith, in part; Dicbopexia, Presl; Longoconoria, Presl; Trichosorus, Kunze; Uolyopoph sp., Auct.; Cyathe sp., Auct.; Aspidii sp., Auct.; Hemitellia sp., Mettenius.

Sori naked, or sometimes spuriously (i.e. squamose)-involute; the receptacles globose or columnar, medial or axillary. Involucre not-apparent, or represented by a bullate scale, or a series of jointed hairs. Veins simple forked parallel-forked or pinnate, from a central costa; venules free, unisoriferous.

Fronds large, herbaceous or sub-coriaceous, bi-pinnate or decompound. Trunk or caudex thick, erect, sometimes branching, often arborescent.—This genus differs from the foregoing in the absence of any true indusia or involucres to the sori. Like the other Cyatheineae it is known from Polypodium (which also has round naked sori) by the elevated receptacle, but in this character, as well as in that of the obliquely-compressed form of the spore-cases, which is also a general characteristic of the Cyatheineae, the species referred to Alsophila offer some degree of variation. Indeed it sometimes becomes difficult to distinguish between Alsophila and Polypodium, and probably some species referred to the former may really belong to the latter genus.

§ Chnoophora.—Sori at the axis of the veins, or mostly so.

§ Gymnopohora.—Sori medial on the veins.

149. AMPHIDESMIUM, Schott, Gen. Fil. (under t. 1.)

Metanta, Presl; Trichoptckis, Parker; Chnoophora sp., Auct.; Al- sophila sp., Auct.; Polypoph sp., Auct.; Aspidii sp., Auct.

Sori non-indusiate, globose; the receptacles small ovoid,
slightly elevated, bearing long articulated hairs, medial, often more than one borne on the same vein. *Involucres* none. *Veins* simple from a central costa, rarely forked at the base, parallel, patent, plurisoriferous, connivent with the thickened margin.

Fronds large, coriaceous, pinnate. Trunk or caudex arborescent.—The chief peculiarity which distinguishes this genus from *Alsophila*, consists in the veins frequently bearing two or three sori.

Ex.: *A. blechnoides*, K7.

Order—POLYPODIACEÆ. Tribe—MATONINEÆ.

Pronopteriæ, Wallich, olim.

Sori indusiate, globose, situated at the posterior base of the segments, and consisting of few (5—6) sessile spore-cases; the *receptacles* compital, i.e., produced at the point of confluence of several (5—10) anastomosing venules. *Indusium* umbonato-hemispherical, attached by an axile petiole, round the base of which the spore-cases are inserted, its lower margin much incurved so as to enclose the sori in the manner of an inverted inflexed cup. *Veins* forked, from a central costa; *venules* anastomosed where fertile, otherwise free.

Fronds conjugato-sub-pedately flabellate, the pinnae produced on the anterior or upper side of the divergent branches, rigid, linear, pinnatifid, one to two feet long. *Stipes* slender, six to eight feet high. *Rhizome* creeping.—This remarkable and extremely handsome plant is quite unlike any other fern, and well deserves to rank as a distinct tribe, which we place in the neighbourhood of the *Cyatheineæ*, on account of the sub-oblique ring of the spore-cases. The indusium is very peculiar, and quite dissimilar; it is globular, with a stalk from its centre, its lower margin so much inflexed as almost or quite to join the base of the stalk, and thus to entirely enclose the spore-cases; at length bursting round the base. The change made in the
generic name—a mere change, since the former name does not appear to have been pre-occupied, and was entirely set aside—though sanctioned, or indeed, carried out, by high authority, and with Dr. Wallich's concurrence, is unfortunately bad in precedent, since no subsequent act can expunge from the records of science a name once imposed; and thus, what is now Matonia, has an unnecessary synonyme.

Ex.: M. pectinata, R. Br. (Prionopteris Farquhariana, Wall. olim.)

Order—POLYPODIACEAE. Tribe—GLEICHENINEAE.

Sori non-indusiate, punctiform, consisting of few (2—4) sessile spore-cases, which are soon deciduous, enclosed within the revolute-saccate pinæ; the receptacles terminal on the veins. Veins simple, incurvo-horizontal from a central costa, free, externally obscure, prominent on the inner surface.

Fronds narrow, linear, pinnate, rigid, cespitose; pinæ numerous, minute, sessile, sub-orbicular-ovate; the margins remarkably revolute and glanduloso-ciliate, the under or inner surface pulverulous. Rhizome short, creeping.—Owing to the minuteness and rigidity of the pinæ of this fern their structure is not easily seen, but we have distinctly traced the veins, and the insertion of the sori. The fertile pinæ are more convex, and are often found split down the costa, thus divided into two sub-hemispherical portions. The plant is peculiar in habit and appearance, much more resembling Jamesonia than Gleichenia, from which latter, however, it is scarcely distinguishable in words, or in strict characters. It is a particularly elegant little fern. The spores are bluntly triangular.

Ex.: P. microphyllum, R. Br.

152. GLEICHENIA, Smith, Mem. Acad. Turin. v. 419.

Meevotnria, Willdenow; Dicranopteris, Bernhardi; Calymella, Presl; Sicheres, Presl; Hicliopteris, Presl; Gleicheniastrum, Presl; Platyzomatis sp., Desvaux.

Sori non-indusiate, round, superficial or immersed, consisting
of few (usually 2—4, sometimes 5—6, and in one or two species 8—12) spore-cases, which are sessile, deciduous, globoso-pyriform, sometimes concealed by the revolute margins; the receptacles terminal or medial or axillary on the vennules. Veins simple or forked, from a central costa; vennules free, the lower anterior one usually soriferous.

Fronds rigid, rarely simply pinnatifid, usually once or oftener dichotomously branched, the ultimate branches pinnatifid or pinnate; the segments small ovate or orbicular and sometimes remarkably revolute, or larger plane linear or oblong. Rhizome creeping.—There appear to us no material distinctions between the plants referred to Gleichenia and Mertensia; we therefore agree with those who combine them. Sticherus of Presl, is said to have reticulated veins, and Hicriopteris veins anastomosing at the margin, but we have seen no such structure, and regard these as probably errors of observation.

§ Calymella.—Sori terminal, spore-cases 2—4.

Ex.: G. rupestris, R. Br.
G. polypodioides, Sm.
G. semivestita, Labill.

G. alpina, R. Br.
G. dicarpa, R. Br.
G. cincinata, Scop. (microphylla, Br.)

§ Mertensia.—Sori medial or axillary; spore-cases 3—12.

Ex.: G. gigantea, Wall.
G. Cunninghamii, Heward.
G. dichotoma, Hook.
G. flagellaris, Spreng.

G. flabellata, R. Br.
G. pubescens, Kth.
G. pectinata, Presl.
G. simplex, Hook.

Order—POLYPODIACEÆ. Tribe—TRICHOMANINEÆ.

(a) Involucres urn-shaped or tubular.

* Veins free.

Davallia sp., A. Cunningham MS; Trichomanis sp., Harvey MS.

Sori involucrate, seated in extrorse-marginal cysta placed at the sinuses of the marginal teeth, the veins continued into filiform much exserted receptacles, which are free within the cysts or involucral cups, and are clothed throughout with obovate sub-
TRICHOMANINAE.

sessile spore-cases, mixed with articulated, often elavate hairs. *Involucres* free, sub-coraceous, forming vertical marginal urn-shaped cysts, truncate at the mouth. *Veins* forked or pinnate, from a central costa; *venules* free, the upper anterior one soriferous.

Fronds sub-coraceous, decompound. Rhizome creeping.—The thickish texture of the fronds of this fern, and the mode of cutting, produce a general resemblance to *Davallia*. The extrorse-marginal cups, and free filiform receptacles, clothed even beyond the involucres with sessile oblique-ringed spore-cases, forbid, however, its association with that genus, and leave no alternative but to place it near *Trichomanes*, with which, in reality, the texture alone disagrees. We cannot indeed, place either *Loxsoma* or the *Trichomanes* group among the *Polypodineae*.

Ex.: L. Cunningham, R. Br.

Sori involucrate, seated in extrorse-marginal (rarely recurved) cysts, sunk in or free on the margins of the fronds; the veins continued into filiform exerted, sometimes capitated receptacles, which are free within the cyste, and bear sessile lenticular spore-cases at their base. *Involucres* funnel-pitcher-shaped or shortly bell-shaped, truncate and entire at the mouth, or two lipped. *Veins* simple forked or pinnate, from a central costa, or simple costa-like in the ultimate segments, or flabellato-dichotomous; *venules* free, sometimes excurrent in the marginal teeth.

Fronds simple pinnate or decompound, pellucid membranaceous, rarely coriaceous. Rhizome creeping (sometimes filiform) or cespitose.—Δ beautiful and extensive genus of delicate semi-
genera of ferns: transparent ferns. The species which have at different times been separated under the names above quoted as synonyms, do not appear to us to present any generic differences. We admit as distinct Féea and Hymenostachys with contracted fertile fronds, the former having free, the latter Anastomosed veins.

§ Eutrichomanes.—Involucres truncate, plane or spreading at the mouth.

Ex.: T. reniforme, Forst. | T. Baneroffilum, Hk. and Grev.
T. venosum, R. Br. | T. radicans, Sw.
T. rigidum, Sw. | T. feniculaceum, Bory.
T. elongatum, A. Cunn. | T. giganteum, Bory.
T. anceps, Hook. | T. trichoidem, Sw.

§ Didymoglasm.—Involucres two-lipped at the mouth.

Ex.: T. reptans, Sw. | T. membranaceum, Lin.
T. Filiculis, Bory. | T. intramarisnale, Hk. and Grev.
T. attenuatum, Hook. | T. humile, Forst.
T. lucens, Sw. | T. Lambertiannum, Hook.

The following groups have certain peculiarities in the arrangement of the cells of their tissue, which produce the appearance of their being traversed by obscure secondary veins. In other respects Abrodicyum and Neurophyllum, belong to the § Eutrichomanes; and Hemiphleum to § Didymoglasm.

* Abrodicyum.—Venuloid cells obliquely decurrent with the costa-like vein, and an intramarginal venuloid line.

Ex.: T. Smithii, Hook.

* Neurophyllum.—Venuloid cells wavy, transverse between the veins.

Ex.: T. pinnatum, Hedw. | T. pinnatum, Kfla.

* Hemiphleum.—Venuloid cells forming an intramarginal line, with recurrent lines proceeding inwards between the veins.

Ex.: T. muscoides, Sw. | T. pusillum, Sw.

155. FEÉA, Bory, Dict. Class. d'Hist. Nat. vi. 446, t. 68.

Trichomanis sp., Auct.; Hymenostachydis sp., Presl.

Sori involucrate, seated in extrorse-marginal cysts, placed on the margins of contracted fronds, the veins continued into filiform exserted clavate receptacles, which are free within the cysts, and bear sessile lenticular spore-cases at their base. Involucres free sub-pellucid club-funnel-shaped, truncate at the
TRICHOMANINEÆ.

mouth. Veins (sterile) simple or forked, from a central costa; the venules free; those of the fertile fronds simple, very short, pedicelliform.

Fronds dissimilar, sub-pellucid, membranaceous, the sterile pinnatifid or pinnate; the fertile reduced to the rachis, long-stipitate. Rhizome erect, with stout rigid roots.—The contracted rachiform fertile fronds, quite dissimilar to the barren ones, distinguish this genus from Trichomanes, and the free veins from Hymenostachys.

Ex.: P. spicata, Presl. P. nana, Bory.

** Veins reticulated.

156. HYMENOSTACHYS, Bory, Dict. Class. viii. 462, ? t. 69.

TRICHOMANIS sp., Auct.

Sori involucrate, seated in extrorse-marginal cysts, sunk in the margin of narrower fertile fronds; the veins continued into filiform exserted receptacles, which are free within the cysts, and bear sessile lenticular spore-cases at their base. Involucres bell-shaped, coalescent into a simple linear fertile frond, the mouth truncate entire. Veins (sterile) forked from a central costa; venules and veinlets anastomosing, forming elongated hexagonal areoles; (fertile) simple or forked, free.

Fronds dissimilar, pellucid membranaceous; the sterile pinnatifid or pinnate; the fertile narrow linear-elongated; the involucres sunk side by side along the margins.—A very elegant genus, in which the veins of the sterile fronds anastomose in several series of oblique elongated areoles.

Ex.: H. elegans, Presl.

(b) Involucres two-valved.

PTYCHOMANES, Hedw.; HYMENOGLOSSUM, Presl.; LEPTOCIONIUM, Presl.; SPHÆRIDIUM, Presl.; MYEMECOSTYLM, Presl.; CYCOGLOSSUM, Presl.;
Sori involucrate, i.e., seated within an extrorse-marginal oblong or sub-orbicolar two-valved involucre; the veins continued into the receptacle, which is free included cylindrical or globose at the apex, and bears sessile or sub-sessile lenticular or turbinate spore-cases. Veins dichotomously branched, simple and costa-like in the ultimate segments, or simple parallel from a central costa in undivided fronds; venules free.

Fronds simple or decompoundly divided, pellucid membraneous. Rhizome creeping, usually filiform.—This group, which is rather extensive, is in general well-distinguished from Trichomanes by the involucres consisting of two separate valves, instead of being blended into a cup. In some few species, however, where the valves are combined below, this difference becomes merely one of degree.

§ Hymenoglossum.—Veins simple from a central costa (fronds simple.)
Ex.: H. cruentum, Cav.

§ Hymenophyllum.—Veins simple costa-like in the ultimate segments.
Ex.: H. hirsutum, Sw. H. organense, Hook.
H. elegans, Spr. H. pulchellum, Schlech.
H. sericeum, Sw. H. äruginosum, Corm.
H. tanbrigense, Sm. H. unilaterale, Willd.
H. fuciforme, Sw. H. dilatatum, Sw.
H. crispatum, Wall. H. demissum, Sw.

Order—POLYPODIACEÆ. Tribe—SCHIZÆINEÆ.

§ 1 LYGODEÆ.
(a) Veins free.

Genre, Cavanilles; Hydroglossum, Wildenow, in part; Gisopteris, Bernhardi; Odontopteris, Bernhardi; Cenisium, Michaux; Astero-lygodes, Presl; Ramondia, Mirbel; Vallifilix, Thouars; Ophioglossi sp., Auct.

Fructifications forming compressed distichous spikelets, exerted on the marginal teeth. Spore-cases included beneath ovate cuculate imbricated persistent scariose bractiform indusia,
solitary on the anterior side of the venules, attached sideways; oval, resupinate, sessile or very shortly pedicellate, having a many-rayed apical ring. *Veins* forked, often repeatedly, from a central costa; *venules* free; in the fertile spikelets pinnate, the *veinlets* sporangiferous on the anterior side.

Fronds branched, the rachis scandent; branches usually conjugate, variously digitate- or palmato-partite or pinnatifid, or pinnate, the pinnae sometimes articulated and deciduous. Rhizome caespitose or creeping.—A beautiful group of scandent ferns. The name *Lygodium*, was first published by Swartz in Schrader's Journal for 1800. Willdenow's name *Hydroglossum*, intended for the same group, is always referred back to the Transactions of the Erfurt Academy for 1802. It is, however, quoted by Bernhardi in a paper coeval in date (1800) with the original text of Swartz. Though it is, therefore, probable we have no means of certifying the prior publication of Willdenow's name, and hence retain that of Swartz, which has obtained general acceptance, reserving that of Willdenow, as Presl has done, for the next genus, which includes one of Willdenow's species.

Ex.: L. *dictyotum*, Sw.	L. *volubile*, Sw.
L. *japonicum*, Sw. | L. *scandens*, Sw.
L. *venustum*, Sw. | L. *semibipinnatum*, R. Br.

(b) *Veins reticulated.*

Lygodictyon, J. Smith; *Lygodii sp., Auct.*

Fructifications forming compressed distichous spikelets, exerted on the marginal teeth. *Spore-cases* included beneath ovate cucullate imbricated persistent scariosiform *indusia*, solitary on the anterior side of the venules, attached sideways; oval, resupinate, sessile or very shortly pedicellate, having a many-rayed apical ring. *Veins* forked, from a central costa; *venules* anastomosing in from two to four series of unequal oblique-elongated hexagonal areoles.

Fronds branched, the rachis scandent; branches conjugate,
palmato-partite or pinnate; the pinnae sometimes articulated. Rhizome cæspitose.—This genus is distinguished from Lygodium by its reticulated venation.

Ex.: H. scandens, Presl. | H. madagascariense, Poir.
H. heterodoxum (Lygodium, Kze.)

§ 2 SCHIZÆA.

(a) Fructifications paniculate on special contracted pinnæform appendages.

160. SCHIZÆA, Smith, Mem. Acad. Turin. v. 419.

Ripidium, Bernhardi; Lophidium, Richard; Actinostachys, Wallich; Belvisæ sp., Mirbel; Acrostichi sp., Auct.; Osmundæ sp., Auct.

Fructifications paniculate; the spore-cases borne on the inner face of contracted fertile crests or appendages, which are digitato-pinnate or pectinato-pinnate, erect or incurved, and more or less connivent. Spore-cases bluntly ovate, having a many-rayed apical ring; sessile, arranged in one or two series on each side the costa of the linear segments or pinnae of the appendages. Veins reduced to the costa, or flabellato-dichotomous; the venules excurrent in the apical teeth.

Fronds simple, bearing (when fertile) a pectinate or digitate crest of crowded terminal resupinate pinnae; or flabellate or dichotomously multi-partite, bearing the fertile crests on the apex of the segments. Rhizome cæspitously creeping.—Of this curious genus there are three rather dissimilar groups, but they do not appear to present differences of generic value. Indeed, the § Lophidium, perhaps, hardly affords a valid sectional distinction in the dichotomous or flabellate condition of the fronds.

§ Ripidium.—Panicle pectinato-pinnate on the simple or forked stipes; spore-cases bi-serial.

Ex.: S. bifida, Wild. | S. australis, Gaud.
S. pectinata, Sm. | S. pusilla, Parish.

§ Lophidium.—Panicle pectinato-pinnate on the flabelliform more or less dichotomous fronds; spore-cases bi-serial.

Ex.: S. elegans, Sm. | S. dichotoma, Sm.

§ Actinostachys.—Panicle digitato-pinnate; spore-cases quadri-serial.

Ex.: S. digitata, Sw. | S. pennula, Sw.
(b) Fructifications paniculate on distinct fronds or lateral branches.

* Veins free.

161. ANEMIA, Swartz, Synops. Fil. 155.

ORNITHOPTERIS Bernhardtii; (Ornithopteris, Hook. Gen., ex. err. typ.);
COPTOPHYLLUM, Gardner; SPATHEPTERIS, Presl; ANEMIHEIZA, J. Smith;
OSMUNDE sp., Auct.; MOHER sp., J. Smith.

Fructifications paniculate on the lower (pair of) branches of a three-branched frond, or on distinct fertile fronds; the fertile branches or fronds erect contracted rachiform decompound, the segments unilaterally sporangiferous. Spore-cases oval or sub-globose, having a many-rayed apical ring, sessile, bi-serial on the ultimate segments. Veins flabellately dichotomous, sometimes dimidiate so; or forked, often repeated, from an evident or indistinct costa; or simple in the narrow ultimate segments; venules free.

Fronds pinnate or bi-tri-pinnate; dimorphous, the fertile and sterile distinct; or monomorphic, the fertile ones then always ternately branched, the two lateral branches distinct erect stipitate fertile, the terminal one spreading sterile. Pinnæ sometimes dimidiate. Rhizome short erect, or slowly or cespitously creeping.—A genus recognized by the distinct branches of its fronds, which respectively resemble the foliage and inflorescence of a phænogamous plant. It is distinguished from Trochopteris by bearing its fructification on atipitate decompound rachiform fronds or branches of the frond; and from Anemidictyon by its free venation. We are much inclined to regard the radical fructifications of the Coptophyllum group, and of Rhizoglossum among the Ophioglossaceæ, as deserving of generic distinction; but the separation of these would involve a similar division of Osmunda, which we are unwilling to disturb, though the species with distinct fertile fronds have been separated by Presl. Spathepteris seems known only from Plumier's figure, which probably represents the barren frond of some Pteris, and the fertile of Gymnogramma trifoliata. Swartz writes the name Anemia, nearly all subsequent authors Anemia.
§ Euanemia.—Fronds ternately branched.

Ex.: A. collina, Raddi. | A. tenella, Sw.
A. caudata, Kljfs. | A. ciliata, Presl.
A. mandioccana, Raddi. | A. Schraderiana, Mart.
A. trichorhiza, Hook. | A. mexicana, Kl.
A. Wightiana, Gardn. | A. tormentosa, Sw.
A. fulva, Sw. | A. adiantifolia, Sw.

§ Coptophyllum.—Fertile and sterile fronds distinct.

Ex.: A. millefolia, Gardn. | A. aurita, Sw.
A. bunifolia (Coptophyllum, Gardn.) | A. diplnata (Osmunda, Lin.—f. Hb.;
A. ciliata, Frew.) | A. dicutaria, Kze.)

** Veins reticulated.

Anemidictyon, Presl; Phyllitides, Presl MS.; Anemiae sp., Auct.; Osmundae sp., Auct.

Fructifications paniculate on the lower (pair of) branches of a branched frond, the branches erect, contracted rachiform compound, the segments unilaterally sporangiferous. Spore-cases oval, having a many-rayed apical ring, sessile, bi-serial on the ultimate segments. Veins parallel-forked, from a central costa; venules irregularly anastomosing in narrow oblique elongated areoles.

Fronds pinnate, the fertile always ternately branched, the two lateral branches distinct erect fertile, the terminal one spreading sterile. Rhizome short erect.—The reticulated venation distinguishes this genus from Anemia. Probably all the so-called species should be considered as varieties of one species.

Ex.: A. fraxinifolium, J. Sm. | A. hirtum, Presl.
A. Phyllitidis, J. Sm. | A. Tweedleanum (Anemia, Hk.)

(c) Fructifications sub-marginal on the plane sub-contracted segments.

163. MOHRIA, Swartz, Synops. Fil. 159, t. 5.

Lonicnitus, Bernhardi; Osmundae sp., Auct.; Adianti sp., Auct.; Polypodi sp., Auct.

Fructifications consisting of distinct oligocarpous sori, situated near the revolute margins of the concave, somewhat contracted, pinnules. Spore-cases scattered or sub-solitary, sub-globose,
having a many-rayed apical ring, attached at or near the apices of the venules in an irregular intramarginal series. Veins (of the pinnules) pinnate, from a central costa; venules simple or forked, free.

Frons bi-pinnate or sub-tri-pinnatifid, herbaceous. Rhizome short, creeping.—This genus and Trochopteris, differ from the other genera of the group, in the production of their spore-cases near the margin of the flat scarcely contracted segments.

Ex.: M. thurifraga, Sw.

Anemile sp., Auct.

Fructifications borne on the laciniated margins of the somewhat contracted flat leafy lobes (basal pair). Spore-cases bluntly ovate, having a many-rayed apical ring, which extends from the apex half-way down; sessile bi-serial on the upper or inner face of the narrow marginal segments. Veins flabellato-dichotomous; venules free.

Frons rosulate, scarcely an inch long, spreading horizontally, sub-rotund, pilose, five-lobed, the two basal lobes somewhat contracted, flat, laciniate, sporangiferous. Rhizome short, erect.—A singular little plant, in habit more like a rosulate lichen than a fern; sufficiently distinguished from *Anemile* by the fructifications being produced on flat lobes—so little changed and lying flat in the plane of the frond, that they look like mere diminished basal lobes.

Ex.: T. elegans, Gardn.

Ord.—POLYPODIACEÆ. Tr.—CERATOPTERIDINEÆ.

Telrozoa, E. Brown; *Cystoigenes*, Richard MS; *Chladostachys*, Wallich MS; *Ellobocearpus*, Kauffuss; *Parkeria*, Hooker; *Beltisia*, Mirbel, in part; *Fucaria*, Desvaux; *Pteridis* sp., Auct.; *Acrostichi* sp., Auct.

Sori indusiate, continuous, occupying the longitudinal veins. [May, 1857.]
Spore-cases few, loosely disposed, globose, furnished with a very broad incomplete ring, of which from one-third to three-fourths or more is wanting, (sometimes almost obsolete consisting only of 3—4 stries). *Indusium* universal, formed of the membranaceous revolute margins of the narrow siliquiform segments. Veins of the sterile fronds uniformly reticulated in oblique oblong hexagonal areoles; of the fertile few, longitudinal, distantly anastomosing.

Fronds herbaceo-membranaceous, annual, proliferous, bi-tri-quadri-pinnatifid, dimorphous; segments of the fertile ones linear, revolute, siliquiform. *Rhzome* short, erect. Aquatic herbes.—*Parkeria* differs only in the exaggerated reduction of the striae of the ring. The reputed species appear to be doubtfully distinct.

Order—POLYPODIACEÆ. Tribe—OSMUNDINEÆ.

(a) Fructifications paniculate.

Aphyllum, Cavanilles; *Struthiopteris*, Bernhardi; *Plenasion*, Prestl; *Osmundastrum*, Prestl; *Riedlea*, Mirbel, in part.

Fructifications paniculate, terminal or lateral on contracted rachiform portions of fronds, or occupying distinct contracted fronds. Spore-cases crowded on the margins or over the surface of the segments, obovate-globose, pedicellate or sessile, having an incomplete or rudimentary gibbous ring, (represented by a few parallel stries) near the apex, and bursting vertically in two equal hemispherical valves. Veins forked, from a central costa; venules free.

Fronds coriaceous or herbaceous, pinnate or bi-pinnate; the pinnae or segments often articulate; fertile segments contracted, usually rachiform, simple or compound, terminal medial or basal on the fronds, or sometimes occupying distinct contracted fronds.
Rhizome caudiciform or tufted.—The three groups indicated below, differ chiefly in the position of the fertile pinnae.

§ Euomunda.—Panicles terminal, i.e., upper pinnae transformed, sporangiferous.
Ex.: O. regalis, Lin. | O. gracilis, Link.

§ Plenasium.—Lateral pinnae transformed, sporangiferous.
Ex.: O. javanica, Bl. | O. Claytoniana, Lin. (interrupta, Mich.)

§ Osmundastrum.—Fertile and sterile fronds distinct.
Ex.: O. cinnamomea, Lin. | O. imbricata, Ake.

(b) Fructifications dorsal.

Leptopteris, Presl; Osmundæ sp., Auct.; Acrostichi sp., Auct.

Fructifications on the under surface of the pinnules, consisting of oblong or linear simple or forked sori, which are crowded and polycarpous at length confluent, or oligocarpous consisting of scattered spore-cases. Spore-cases obovate-globose, pedicellate, having an incomplete or rudimentary gibbous ring (represented by a few parallel striae) near the apex, and bursting vertically in two equal hemispherical valves. Veins simple in the ultimate (narrow) segments, or simple or forked from a central costa; venules free, evident in the unaltered fertile portions, either veins or venules, or both being soriferous.

Fronds monomorphous, coriaceous or pellucid-membranaceous, bi-pinnate; pinnae articulate with the rachis. Rhizome caudiciform.—A well-marked genus, with the spore-cases of Osmunda, but borne on fronds which are either not at all, or not sensibly contracted. Though strikingly different in appearance, and held to be generically distinct by high authority, we cannot find in the two groups we have referred here, any distinctive marks besides the coriaceous texture and polycarpous sori of the one, and the pellucid-membranaceous texture and less crowded sori of the other—differences elsewhere disregarded, and not, as it appears to us, of generic importance.

§ Todea.—Coriaceous: sori consisting of dense masses of spore-cases.
Ex.: T. barbara (africana, Willd.)
§ Leptopteris.—Pellinoid-membranaceous; sori consisting of fewer more scattered spore-cases.

Order—MARATTIACEÆ. Tribe—MARATTINEÆ.

§ 1 ANGIOPTERIDÆ.

168. ANGIOPTERIS, Hoffmann, Comm. Göt. xii. 29, t. 5.

Clemencea, Cavanilles; ? Psilodochea, Presl; Polypondi sp., Auct.

Sori dorsal, involucrare, sessile, linear-oblorg or oval-elliptic, consisting of two opposite contiguous series of (5—12) free spore-cases; which are obovate retuse, sometimes marginate, affixed by the base, and bursting on the inner face by an obovate or elliptic vertical cleft. Receptacles linear elevated. Involucres linear, scariose, fimbriate, persistent (? sometimes wanting). Veins simple or forked from a central costa; venules parallel, free, dorsally soriferous near the margins.

Fronds ample bi-pinnate; pinnules articulate. Spore-cases at first laterally connected, at length free. Rhizome fleshy, sub-globose, often becoming erect in age.—This genus is known by its free yet contiguous spore-cases ranged in two close opposite series. Psilodochea of Presl, containing one Indian species, which we have not seen, is said to differ in the absence of an involucere, and in some other minor points.

§ 2 MARATTIÆ.

(a) Sori sessile on the veins.

Myriotherca, Commerson; Chlantthera, Thouin; Discostegia, Presl.

Sori dorsal, involucrate, sessile, oblong, horny, opaque, lon-
MAEATTIE. cxxi.

gitudinally divided into two opposite valves or lobes, thus consisting of two opposite series of (8—11) connate spore-cases; the valves convex outside, plane within, the spore-cases of each valve bursting on their inner face by a vertical cleft or slit. Receptacles linear or globose, medial. Involucres linear-elliptic oval or orbicular, scariose, fimbriate, persistent. Veins simple or forked, from a central costa; venules parallel, free, dorsally soriferous near or at the margins.

Frods ample, bi-tri-pinnate; pinnules articulate. Rhizome large, globose, or caudiciform, consisting of the thick squamaeform bases of the fronds.—The Marattiæ are distinguished from the Angiopterideæ, by having the spore-cases consolidated into bi-valved sori, along which they form two opposite lines; while in the latter, the spore-cases, which are also placed in two opposite lines, are distinct and separable. The presence of an involucre distinguishes Marattia from Gymnotheca, while both these are known from Eupodium by having sessile instead of pedicellate sori.

Ex.: M. attenuata, Labill. M. alata, Sm. M. sorbifolia, Sw. M. sylvatica, Bl.

STIBASIA, Presl; MARATTIE sp., Auct.

Sori dorsal, non-involucrate, sessile, oblong, horny, opaque, longitudinally bi-valved, thus consisting of two opposite series of (6—12) connate spore-cases, the valves convex outside, plane within, the spore-cases of each valve bursting on their inner face by a vertical cleft or slit. Receptacles linear or globose, medial. Involucre none. Veins simple or forked, from a central costa; venules parallel, free, dorsally soriferous near the margins.

Frods ample bi-pinnate, the pinnules articulate. Rhizome large, globose, composed of the thick squamaeform bases of the fronds.—This group is distinguished from Marattia by the absence of an involucre.

Ex.: G. cicutaefolia, Presl. G. laxa, Presl.
G. Douglasii (Stibasia, Presl.) G. Mertensiana, Presl.

L 3
(b) Sori pedicellate.

Marattia sp., *Auct.*

Sori dorsal, non-involucrate, pedicellate, roundish-oblong, horny opaque, longitudinally divided into two opposite valves or lobes, thus consisting of two opposite series of (about 4) connate spore-cases, the valves convex outside, plane within, the spore-cases of each valve bursting on their inner face, by a vertical cleft or slit. *Receptacles* sub-globose, medial. *Involucres* none. *Veins* (pinnules) simple forked or pinnate, from a central costa; *venules* free, dorsally soriferous.

Fronds large, tri-pinnate; pinnules articulated. Rachis winged. Rhizome fleshy, sub-globose, or becoming erect in age.—A genus well-distinguished by the pedicellate sori.

Ex.: *E. Kaulfussii*, *J. Sm.*

Order—**Marattia-ceae**. Tribe—**Kaulfussiaeae**.

Macrostroma, Hooker *MS.*; *Aspidix* sp., *Auct.*

Sori dorsal, non-indusiate, sessile, globose, fleshy-coriaceous, concavo-hemispherical, crenate, consisting of 10—12 spore-cases arranged in a single concrete cyclose series; the spore-cases bursting on the inner face, by a vertical oblong or linear-obovate cleft or slit. *Receptacles* globose, compital. *Veins* prominent, pinnate; *venules* anastomosing in hexagonoid areoles, soriferous on the points of confluence, the ultimate areoles containing free clavate veinetls.

Fronds coarse, ternate, the under surface furnished copiously with cavities, which are probably secretory organs. Rhizome thick, ? decumbent.—The structure of the fructifications in this genus is very distinct from all others, the single series of concrete spore-cases forming a shallow circular cup-shaped, or rotate mass.

Order—MARATTIACEÆ. Tribe—DANÆINEÆ.

AETHERODANÆA, Presl; HOLODANÆA, Presl; HETERODANÆA, Presl; ? DANÆOPSIS, Presl; ASPLENIÆ, Linnaeus.

Sori dorsal, linear, occupying the whole length of the parallel veins, crowded so as to cover the whole surface of the fertile fronds; each sorus consisting of a double linear series of numerous erect fleshy spore-cases, which are oblique-ovate with a contracted mouth, united laterally and by their inner faces, sunk in a confluent fleshy persistent elevated mass (which may be taken to represent an involucre), and at length opening at top by a small round aperture. Receptacles slender (according to Presl). Veins forked, from a central costa; venules parallel, their apices acutely confluent with the margin.

Fronds pinnate, rarely simple, fleshy coriaceous, the fertile somewhat contracted; pinnae usually articulate. Rhizome woody, erect or decumbent.—A genus remarkable for its crowded spore-cases, consolidated in a fleshy mass, which represents an involucre, and opening by pores over the surface.

DanaöOPSIS of Presl, if possessing anastomosing venation, as figured by Raddi, together with the true fructification of this order, should form a separate genus.

§ Eudannæa.—Sori affixed to the veins by their whole length (Presl.)
Ex.: D. simplicifolia, Rudge. D. nodosa, Sm.
D. Leprieurii, Kze. D. alata, Sm.
D. trifoliata, Rehb. D. elliptica, Sm.

§ Heterodanæa.—Sori affixed at the centre, otherwise free (Presl.)
Ex.: D. stenophylla, Kze.

? § Danaöopsis.—Sori?; veins anastomosing (Presl.)
Ex.: D. paleacea, Raddi.

Order—OPHIOGLOSSACEÆ.

(a) Fructifications in a branched panicle.

OSMUNDA, Bernhardi, and Auct.; BOTRYXUS, Michaux.

Fructifications paniculate, formed of numerous second spikelets,
on a distinct branch of the frond. *Spore-cases* erect, sessile free, bi-serial, globose, fleshy-coriaceous, bursting vertically in two equal hemispherical valves. *Veins* flabellato-dichotomous or dichotomo-furcate, from a central costa; *venules* free.

Fronds herbaceous or sub-carnose, pinnatifid pinnate or ternately decompound; the sterile and fertile branches distinct. Rhizome short, erect, fleshy.

Ex.: B. Lunaria, Sw. | B. simplex, Hitchcock.
B. virginicum, Willd. | B. rutaceum, Sw.
B. lunarioides, Sw. | B. matricarioides, Willd.
B. lanuginosum, Wall, | B. australis, F. Br.

(b) Fructifications spicate, the spore-cases in glomerate tufts.

175. HELMINTHOSTACHYS, Kaulfuss, Enum Fil. 28, t. 1.

Botryopsis, Prell; Ophiola, Desvaux; Botrychii sp., Auct.; Ophioglossii sp., Auct.; Osmondii sp., Auct.

Fructifications consisting of glomerate verticillate pedicellate tufts of spore-cases, the whorls terminated by a crest-like appendage, and arranged in distichous spiked panicles on a distinct branch of the frond. *Spore-cases* fleshy-coriaceous, globose, sessile, inverse, bursting on the outer side, from the base upwards, in two equal or sub-equal hemispherical valves. *Veins* forked, from a central costa; *venules* parallel, free.

Fronds herbaceous or coriaceous, trifoliately digitato-pedate, the fertile and sterile branches distinct. Rhizome stout, horizontal, with coarse roots.

Ex.: H. zeylanica, Hook.

(c) Fructifications spicate, the spore-cases in a single marginal series.

Ophiodeema, Endlicher; Chiropoglossa, Prell; Rhizoglossum, Prell; Cassiopteris, Karsten MS, (Klotzsch.)

Fructifications in a distichous spike, terminating a distinct branch of the frond, or on distinct fronds. *Spore-cases* uni-
serial along each margin of the compressed spike, with which they are connate, horizontal, globose, bursting in two equal hemispherical valves. Veins uniformly reticulated in roundish or elongated hexagonal areoles, sometimes from an indistinct costa, occasionally obscure; the ultimate areoles with or without included free veinlets.

Frond sub-carnose two- or many-branched, the sterile branch simple dichotomously parted or palmato-lobate, the fertile simple; sometimes the fronds simple, the fertile and sterile distinct and dissimilar. Rhizome fleshy, sub-globose or short cylindrical-ovate.

§ Euophioglossum.—Fertile spikes solitary; sterile branches ovate or linear.

Ex.: O. vulgatum, Lin. | O. reticulatum, Lin.
O. pedunculosum, Desv. | O. Wightii, Hook and Gr.

§ Ophioderma.—Fertile spikes solitary; sterile branches fasciiform, dichotomous or sometimes undivided.

Ex.: O. pendulum, Lin. | O. intermedium, Hook.

§ Echizoglossum.—Sterile and fertile fronds distinct.
Ex.: O. Bergianum, Schlech.

§ Cheiroglossum.—Fertile spikes several from the margin of the sterile branch, at its base.
Ex.: O. palmatum, Lin.

Order—LYCOPODIACEÆ.

§ 1 Phylloglossæ.

177. PHYLLOGLOSSUM, Kunze, Bot. Zeit. 1843, 724, with fig.

LYCOPODII sp., Spring.

Spore-cases (antheridia) one-celled, two-valved, opening by a transverse vertical cleft, reniform, sessile and solitary in the axils of bracts which are collected into a short pedunculated spike. Spores numerous, very minute.

A dwarf herb, with orchidiform tubers, and a few simple fibres from the crown. Leaves few subulate, erect, radical, shorter than the erect scape, which is naked below and terminated by a
short spike of fructification.—This curious little genus is the link uniting *Lycopodium* with *Ophioglossum*, having the pedunculate spike of *O. Bergianum*, with the fructification of a *Lycopodium*.

Ex.: P. Drummondii, *Kze.*

§ 2 *Lycopodiæ.*

(a) Fructifications consisting of antheridia only.

* Spore-cases one-celled.

178. *LYCOPODIUM*, Linnaeus, Gen. Plant. 792 (reduct); Spring, Mon. Lycopod. i. 17.

Selago, Dillenius; Huperzia, Bernhardi; Didylce, Palisot de Beauvais; Lepidotis, Palisot de Beauvais; Plananthis, Palisot de Beauvais; Chamcolinis, Martius; Diphasia, Presl.

Spore-cases (antheridia) one-celled, two-valved, opening by a transverse vertical cleft, reniform; sessile and solitary in the axils of the leaves, or of bracts collected into spikes of fructification. Spores numerous minute, globosely-tetrahedral.

Moss-like terrestrial or epiphytal plants, with leafy stems, simple or branched, erect or pendulous; the leaves nearly uniform, and disposed in from eight to sixteen, rarely in about four rows, on the stems; the fructification sometimes occupying the axils of the upper leaves, sometimes those of bracts collected into terminal or lateral sessile or pedunculate cone-like cylindrical spikes.—This genus differs from *Selaginella*, in having but one kind of spore-case, that called an antheridium; it also differs in having the leaves nearly uniform, and usually disposed in many rows equally around the stem.

§ *Selago.*—Antheridia scattered in the axils of the leaves.

Ex.: L. Selago, *Lin.*
L. serratum, *Thunb.*
L. dichotomum, *Jacq.*
L. funiforme, *Cham.*
L. reflexum, *Lam.*
L. ulicifolium, *Vent.*
L. gnidioides, *Lin.*
L. verticillatum, *Lin.*

§ *Lepidotis.*—Antheridia in the axils of bracts collected into spikes.

Ex.: L. Phlegmaria, *Lin.*
L. inundatum, *Lin.*
L. alopecuroides, *Lin.*
L. carolinianum, *Lin.*
L. Jussieu, *Desv.*
L. ophioglossoides, *Lam.*
L. annotinum, *Lin.*
L. clavatum, *Lin.*
L. complanatum, *Lin.*
L. laterale, *R. Br.*
Lycopodeae. cxvii.

** Spore-cases two-lobed, the lobes one-celled.

Spore-cases (antheridia) two-lobed, the lobes divaricate subacute, two-valved, opening by a vertical cleft; coriaceous, sessile in a fork of the leaf. Spores oblong, with a single stria.

Stems leafy angulate. Leaves vertical, sessile, decurrent, coriaceous, the fertile ones didymous or dichotomous, stipitate.

Ex.: *T. tannensis*, Bernh.

*** Spore-cases three-celled.

Bernhardia, Willdenow; Hoffmannia, Willdenow; Iphigia, Noronha; Gamsaultia, Commerson MS.; Buchosia, Commerson MS.; Triesteca, Palisot de Beauvais; Lycopodi sp., Auct.

Spore-cases (antheridia) three-celled, three-valved, coriaceous, scattered; sessile in the axils of the minute bract-like leaves. Spores oval, with a single stria.

Stems compressed or angular, dichotomously forked. Leaves none, or reduced to minute bractiform subulate scales, in the axils of which are produced the scattered fructifications.

Ex.: *P. triquetrum*, Sw. | *P. complanatum*, Sw.

(b) Fructifications comprising both antheridia and oophoridia.

Stachygyneandrium, Palisot de Beauvais; Diplostachyum, Palisot de Beauvais; Gymnogynum, Palisot de Beauvais; Mirmau, Adanson; Acopodium, Necker; Lycopodi sp., Auct.

Spore-cases of two kinds: (1) antheridia, one-celled, two-valved, opening at the apex, erect, oblong or globose, containing numerous small spores; (2) oophoridia, one-celled, two to four
lobed, two to four valved, containing about 4, rarely 1—3 or 8 larger spores or corpuscles. Fructifications in the axils of bracts collected in four rows into spikes which are four-sided.

Jungermannia-like or fern-like plants, frequently creeping; the stems usually much dichotomously branched, clothed with leaves of two forms, disposed in four rows. The fructifications form angulate spikes.—This genus is separated from Lycopodium, on account of its producing two kinds of spore-cases. The stems usually bear two kinds of leaves, the larger disposed in a distinct manner, stipuliform ones being placed between them.

§ Stachygyjandrium.—Leaves monomorphous, disposed in several rows.

Ex.: S. rupestris, Spring.
S. spinosa, Pal. de B.
S. sanguinolenta, Spring.
S. uliginosa, Spring.

§ Diplastsachyum.—Leaves dimorphous, disposed in four rows.

Ex.: S. involvens, Spring.
S. apus, Spring.
S. serpens, Kt.
S. levisgata, Spring.
S. flabellata, Spring.
S. lepidophylla, Spring.
S. denticulata, Link.
S. incrsecentifolia, Spring.
S. inequalifolia, Spring.
S. stolonifera, Spring.

Order—MARSILEACEÆ.

§ 1 ISOÉTÉÆ.

Calamaria, Dillenius.

Spore-cases sessile, solitary in the axils of the (radical) leaves, adherent to their excavated dilated base, one-celled, traversed by delicate thread-like receptacles; of two kinds: (1) antheridia, those of the central leaves, containing very numerous minute oblong spores; (2) oophoridia, those of the outer leaves, containing numerous larger globose-tetrahedral spores.

Submersed aquatic plants, with a thick succulent tuberous rhizome or crown, and awl-shaped radical leaves, at the base of which the fructifications are borne. They have very strong affinity with Lycopodium.

Ex.: I. lacustris, Lin. | I. Engelmanni, A. Br.
§ 2 Salvinieæ.

183. SALVINIA, Micheli, Gen. 107, t. 58; Schreb. Gen. Plant. 1617.

Spore-cases (Conceptacles) clustered in short distichous cymes terminating short leafless branches on the under side of the stems; thin, globular, bursting irregularly, one-celled, containing bodies of two kinds: (1) antheridia, consisting of numerous minute spherical vesicles, borne on branching pedicels from a central receptacle, and full of small spores; (2) oophoridia, consisting of larger bodies, short stalked, on a central receptacle, each including a single large spore.

Floating branched plants, with sessile entire imbricated, cellular leaves above, the fructifications growing on short leafless branches from the under side of the stems, surrounded by long rootlets.

Ex.: S. natans, Hoffm. | S. oblongifolia, Martius.

Carpantesbus, Rafinesque; Rhizosperma, Meyer.

Spore-cases (Conceptacles) binate on short branches at the base of the pinnae, on the under side of the stems, one-celled, of two kinds: (1) antheridia, consisting of ovate-oblong bodies, opening transversely, and containing several roundish angular spores on a central erect column; (2) oophoridia, consisting of globose bodies, bursting irregularly, and containing spherical vesicles rising from the base on slender stalks, each containing globular hairy spores.

Floating pinnately-branched plants, with minute cellular imbricated leaves, the fructifications growing on short branches which proceed from the under surface of the stem at the base of the pinnae.

Ex.: A. filiculoides, Lam. | A. microphylla, Kläs.
A. pinnata, R. Br. | A. rubra, R. Br.
A. caroliniana, Willd. | A. africana, Desv.
[October, 1858.]
§ 3 PILULARIEÆ.

Spore-cases (Conceptacles) pedicellate, axillary or extra-axillary, solitary, globose, coriaceous, two- four-celled, two- four-valved; each cell containing bodies of two kinds: (1) antheridia, consisting of vesicles filled with many minute granular spores; (2) oophoridia, occupying the lower part of the cell, each containing a single large spore.

Submersed aquatic plants, with long creeping filiform rhizomes, producing the filiform leaves (? petioles), singly or in small tufts at intervals. Spore-cases inserted on the rhizome along with the tufts of leaves, or opposite to them.

Ex.: P. globulifera, Lin. | P. minuta, Durieu.

§ 4 MARSILEÆ.

186. MARSILEA, Linnaeus, Gen. Plant. 799, (reduct.)

LEMA, Jussieu; ZAlUZANSKIA, Necker.

Spore-cases (Conceptacles) pedicellate, solitary or several together, inserted laterally on the petioles, or axillary on the rhizomes at the base of the petioles, two-valved, containing numerous obovate cell-like receptacles in two longitudinal series, bearing bodies of two kinds: (1) antheridia, consisting of numerous sessile one-celled vesicles, containing small globose spores; (2) oophoridia, ranged in a single series along the receptacles, and consisting of oval pedicellate vesicles containing a single large spore.

Dwarf herbs, having a creeping rhizome and long-stalked leaves, growing at intervals, either singly or in small tufts, and consisting of about four cuneate-obovate leaflets placed crosswise at the petiole, the fructifications growing either from the rhizome at the axils of the leaves, or from the petiole of the leaf.

Ex.: M. quadrifolia, Lin. | M. pubescens, Tenore.
M. macropus, Hook. | M. vestita, Hk. and Gr.
M. brasiliensis, Martius. | M. polycarpa, Hk. and Gr.
ANALYTICAL TABLE OF GENERA,
WITH THEIR SYNONYMS.

Order—POLYPODIACEÆ. Tribe—POLYPODINEÆ.

<table>
<thead>
<tr>
<th>Order</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 1. Acrostichæ.</td>
<td></td>
</tr>
<tr>
<td>(a) Fronds wholly fertile.</td>
<td></td>
</tr>
<tr>
<td>* Veins free, i.e., disunited at the apices of their branches.</td>
<td></td>
</tr>
<tr>
<td>† Veins simple forked or pinnate.</td>
<td></td>
</tr>
<tr>
<td>1. Polybotrya, Humb. et Bonpl. 1810. . . [p. xv.]</td>
<td></td>
</tr>
<tr>
<td>Egenolfia, Schott, 1834.</td>
<td>Granulina, Bory; Fée, 1844.</td>
</tr>
<tr>
<td>Lacaussadesa, Gaudichaud, 1836-7.</td>
<td>Botryothallus, Kl. M.S. 1846</td>
</tr>
<tr>
<td>Ectoneura, Fée, 1844.</td>
<td>Psomiocarpa, Presl, 1849.</td>
</tr>
<tr>
<td>†† Veins flabellately forked; fronds small flabellately parted.</td>
<td></td>
</tr>
<tr>
<td>2. Rhipidopteris, Schott, 1834. . . . [p. xv.]</td>
<td></td>
</tr>
<tr>
<td>Peltapteris, Link, 1841.</td>
<td></td>
</tr>
<tr>
<td>††† Veins parallel forked.</td>
<td></td>
</tr>
<tr>
<td>† Fronds simple.</td>
<td></td>
</tr>
<tr>
<td>3. Elaphoglossum, Schott, 1834 . . . [p. xvi.]</td>
<td></td>
</tr>
<tr>
<td>Phyllitis, Necker, 1790.*</td>
<td>Acrostichum, Fée, 1844.</td>
</tr>
<tr>
<td>†† Fronds pinnate; rhizome scandent.</td>
<td></td>
</tr>
<tr>
<td>4. Lomariopsis, Fée, 1844. [p. xvi.]</td>
<td></td>
</tr>
<tr>
<td>** Veins transversely combined in a single series.</td>
<td></td>
</tr>
<tr>
<td>† Veins united to form narrow costal areoles.</td>
<td></td>
</tr>
<tr>
<td>5. Stenochlæna, J. Sm. 1841. . . . [p. xvii.]</td>
<td></td>
</tr>
<tr>
<td>Cafraia, Presl, 1849</td>
<td>Lomariobotrys, Fée, 1851.</td>
</tr>
</tbody>
</table>

* See under No. 85.
<table>
<thead>
<tr>
<th>No.</th>
<th>Genera</th>
<th>Reference</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*** Veins reticulated, i.e. united to form a network.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>† Venules connively anastomosing, i.e., united in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>superposed simple angles between the pinnate veins.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Soromanes, Fée, 1844.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>†† Venules uniform, forming hexagonal areoles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>† Areoles roundish, the costal ones longer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheliolepton, Fée, 1844.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>††† Areoles elongate oblique.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>††† Basal venules united to form costal areoles, the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ultimate or marginal ones free.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Stenosemia, Presl, 1836.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>†††† Venules arcuato-angularly united between the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pinnate veins, with excurrent veinlets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Campium, Presl, 1836.</td>
<td></td>
<td>Heteroneuron, Fée, 1844.</td>
</tr>
<tr>
<td></td>
<td>†††† Venules compoundly reticulated, with free</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dmaric veinlets in the areoles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheiropleuria, Presl, 1849.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Fronds fertile on the upper pinna only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Veins uniformly reticulated.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Belongs here rather than to No. 11.
Veins compoundly reticulated, with free divericate veinlets in the areoles.

§ 2. Platyceriæe.

(a) Sori in amorphous patches.

15. Platycerium, Desv. 1827. . . . [p. xxii.]

Neuroplatyceæs, Plak. 1705: | Scutigera, Fée, 1844.
Fée, 1844. | Platycerium, Fée, 1844.
Aclidornium, Gaud. 1826.

(b) Sori in quadrate patches.

(c) Sori in linear submarginal patches.

17. Jenkinsia, Hook. 1842. [p. xxiii.]

§ 3. Lomariæe.

(a) Veins free, or not uniting at their apices.

* Sori marginal, (the fronds contracted.)

18. Lomaria, Willd. 1809. [p. xxiv.]

Onoclea, Lin. (pt.) 1751. | Paralechnum, Pres, (pt.)
Stegania, Brown, 1810. | 1849.
Lomariidium, Pres, 1849. | Paraloma, Fée, 1847.
Polygramma, Pres, 1849.

**Sori distinctly within the margin.

Blechnopsis, Pres, 1849. | Paralechnum, Pres, (pt.)
Ditaha, Pres, 1849. | 1849.

(b) Veins transversely or arcuately combined.

*Veins united near the margin.

20. Salpichlæana, J. Sm. 1841. [p. xxv.]

Salpichlæana, Klotzh., 1847.
Salpichlæana, Pres, 1849.

**Veins united near the costa.

21. Sadleria, Klfs. 1824. [p. xxv.]

(a) Veins consisting of a costa only.

22. Monogramma, Schkuhr, 1809. . . [p. xxvi.]

Cochlidium, Klfs. (pt.) 1824.
Vaginularia, Fée, 1843.
TABLE OF GENERA.

23. Diclidopteris, Brackenridge, 1854. [p. xxvi.]
 (b) Veins consisting only of a costa, and the
 intramarginal receptacles parallel with it.

24. Pleurogramma, (Bl.1828.) Presl, 1836. [p. xxviii.]
 Cochlidium, Klfs. (pt.) 1824.
 Microptes, Desv. (pt.) 1827.
 ** Fronds entire, plane.

25. Xiphopteris, Klfs. 1824. [p. xxviii.]
 Microptes, Desv. (pt.) 1827:
 (c) Veins simple, oblique, from a central costa.
 * Fronds entire, plane.

 Belvisa, Mitr. (pt.) 1803; | Hyalolepis, Kze. 1835,
 MacroplethuS, Presl, 1849. |
 ** Fructification occupying distinct contracted fronds.

27. Gymnopteris, Bern. 1800, (emend.) [p. xxviii.]
 Leptoehilus, Klfs. 1824.
 Dendroglossa, Presl, 1849.

28. Scoliosorus, M. 1856. . . . [p. xxix.]
 ** Sori oblong, lying in a furrow of the solid quadrate
 fronds, on each side the costa.

29. Holcosorus, M. 1856. . . . [p. xxix.]
 (b) Veins uniform, reticulated, without free veinlets.
 * Sori submarginal, or medial.
 † Sori superficial.

30. Tenitis, Willd. : Sw. 1806. . . . [p. xxx.]
 Pteropsis, Desv. (pt.) 1827; | Digramma, Kze. 1848.
 Chilogramma, Bl. (pt.) 1828; |
 †† Sori immersed, the interior margin of the groove
 thickened, and subindusiform

31. Schizolepton, Fée, 1851. . . . [p. xxx.]

(b) Veins consisting only of a costa, and the
intramarginal receptacles parallel with it.

(c) Veins simple, oblique, from a central costa.
* Fronds entire, plane.

** Fronds toothed below, contracted, plicate, and
soriferous above.

(d) Veins compoundly anastomosing.
* Fructification borne on the contracted apices of
the fronds.

§ 5. TENITIDAE.

(a) Veins reduced to an obscure costa.
* Sori flexuose, subramose between costa and margin.

28. Scoliosorus, M. 1856. . . . [p. xxix.]
** Sori oblong, lying in a furrow of the solid quadrate
fronds, on each side the costa.

29. Holcosorus, M. 1856. . . . [p. xxix.]
(b) Veins uniform, reticulated, without free veinlets.
* Sori submarginal, or medial.
† Sori superficial.

30. Tenitis, Willd. : Sw. 1806. . . . [p. xxx.]
Pteropsis, Desv. (pt.) 1827; | Digramma, Kze. 1848.
Chilogramma, Bl. (pt.) 1828; |
‡‡ Sori immersed, the interior margin of the groove
thickened, and subindusiform

31. Schizolepton, Fée, 1851. . . . [p. xxx.]
<table>
<thead>
<tr>
<th>TABLE OF GENERA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sori marginal.</td>
</tr>
<tr>
<td>32. Lomogramma, J. Sm. 1841. . . . [p. xxx.]</td>
</tr>
<tr>
<td>(c) Veins uniform, reticulated, with included free veinlets in the areoles.</td>
</tr>
<tr>
<td>Sori linear, continuous, near the margin.</td>
</tr>
<tr>
<td>33. Drymoglossum, Presl, 1836. . . . [p. xxxi.]</td>
</tr>
<tr>
<td>Heteropteris, Fée, 1842.</td>
</tr>
<tr>
<td>Neurodium, Fée, 1842.</td>
</tr>
<tr>
<td>*Sori of two forms, linear near the margin, and punctiform towards the costa.</td>
</tr>
<tr>
<td>34. Diblemma, J. Sm. 1841. . . . [p. xxxi.]</td>
</tr>
<tr>
<td>**Sori oblong, submarginal.</td>
</tr>
<tr>
<td>35. Paragramma, (Bl. 1828.) M. 1856. [p. xxxii.]</td>
</tr>
<tr>
<td>(d) Veins forming simple costal arcs.</td>
</tr>
<tr>
<td>36. Dicranoglossum, J. Sm. 1855, (reduct.) [p. xxxii.]</td>
</tr>
<tr>
<td>Cuspidaaria, Fée, (pt.) 1851. (non D.C.)</td>
</tr>
<tr>
<td>(e) Veins straight, free (except where combined by the marginal receptacles.)</td>
</tr>
<tr>
<td>37. Tæniopsis, J. Sm. 1841. . . . [p. xxxiii.]</td>
</tr>
<tr>
<td>Chilogramma, Bl. (pt.) 1829.</td>
</tr>
<tr>
<td>Cuspidaaria, Fée, (pt.) 1851.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>§ 6. VITTARIEÆ.</td>
</tr>
<tr>
<td>38. Vittaria, Sm. 1793. [p. xxxiii.]</td>
</tr>
<tr>
<td>Aristaria, K. Mull. 1854.</td>
</tr>
<tr>
<td>§ 7. LINDSÆÆ.</td>
</tr>
<tr>
<td>(a) Veins free (except where combined by the receptacles.)</td>
</tr>
<tr>
<td>Lindsaya, Ktfs. 1824.</td>
</tr>
<tr>
<td>Hymenotomia, Gaud. 1826.*</td>
</tr>
<tr>
<td>(b) Veins reticulated, without free included veinlets.</td>
</tr>
<tr>
<td>40. Schizoloma, Gaud. M.S. : Bory, 1824; Gaud. 1826 [p. xxxv.]</td>
</tr>
<tr>
<td>Synaphlebium, J. Sm. 1841.</td>
</tr>
<tr>
<td>* Omitted in p. xxxiv.</td>
</tr>
<tr>
<td>Table of Genera</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>(c) Veins compoundly reticulated, with free included veinlets in the areoles.</td>
</tr>
<tr>
<td>41. Dictyoxiphium, Hook. 1838. ... [p. xxxv.]</td>
</tr>
<tr>
<td>42. Adiantum, Lin. 1737. [p. xxxvi.]</td>
</tr>
<tr>
<td>Adiantotum, Presl, 1836.</td>
</tr>
<tr>
<td>Apotonia, Fée, 1851.</td>
</tr>
<tr>
<td>(b) Veins reticulated.</td>
</tr>
<tr>
<td>43. Hewardia, J. Sm. 1841. [p. xxxvii.]</td>
</tr>
<tr>
<td>44. Adiantopsis, Fée, 1851. [p. xxxvii.]</td>
</tr>
<tr>
<td>Actinopteris, J. Sm. 1846.</td>
</tr>
<tr>
<td>Aspidotis, Nuttal MS.: Hook. 1852.</td>
</tr>
<tr>
<td>↑ Indusia orbicular, distinct (Adiantoid ferns.)</td>
</tr>
<tr>
<td>45. Cheilanthes, Sw. 1806. [p. xxxviii.]</td>
</tr>
<tr>
<td>Othonoloma, Lk. "olim."</td>
</tr>
<tr>
<td>↓ Indusia roundish, or by confluen more or less elongate (often Pteroid.)</td>
</tr>
<tr>
<td>46. Hypolepis, Bernh. 1806. [p. xxxix.]</td>
</tr>
<tr>
<td>(b) Sori slightly intramarginal, terminal on the veins.</td>
</tr>
<tr>
<td>47. Cassebeera, Kjfs. 1824. [p. xxxix.]</td>
</tr>
<tr>
<td>(c) Sori intramarginal, medial on the veins.</td>
</tr>
<tr>
<td>48. Plecosorus, Fée. 1851. [p. xl.]</td>
</tr>
<tr>
<td>Cryptostigma, A. Brown MS.: Metten. 1868.</td>
</tr>
</tbody>
</table>
§ 10. Pterideæ.

(a) Veins free.
* Sori oppositely marginal and connivent on the narrow segments.

49. Onychium, Kíja. 1820. [p. xli.]
Cenopteris, Thumb. 1793 (reduct.) : Presl, 1849.
Leptostegia, D. Don, 1825.

** Sori oblong, marginal.

50. Ochropteris, J. Sm. 1841. [p. xlii.]
*** Sori linear, continuous, marginal.
† Indusium subcoriaceous; fronds vittarioid.

51. Haplopteris, Presl, 1836. [p. xlii.]
†† Indusium membranaceous.

52. Pteris, Lin. 1737 (emend.) [p. xliii.]
Thelypteris, Adams. 1763.
Cincinnati, Gleditsch, 1764.
Oetosia, Necker, 1790.
Monogonia, Presl, 1836.
Eupteris, Agardh, 1839.
Ornithopteris, Agardh, 1839.
Pteridopsis, Link, 1841.
Eupteris, Newm. 1845.

(b) Costal veins only arcually anastomosing.

53. Campteria, Presl, 1836. [p. xliii.]
(c) Veins uniformly reticulated, without free included veinlets.
* Sori elongately lunate in the sinuses of the segments.

54. Lonchitis, Lin. 1737. [p. xliii.]

** Sori linear, continuous marginal.

55. Litobrochia, Presl, 1836. [p. xliii.]
Histiopteris, Agardh, 1839.
Doryopteris, J. Sm. 1841.

(d) Veins compoundly reticulated, with included free veinlets in the areoles.

56. Amphiblestra, Presl, 1836. [p. xliv.]

§ 11. Woodwardiæ.

57. Woodwardia, Smith, 1793. [p. xlv.]
Doodia, E. Br. 1810.
Lorinsenia, Presl, 1849.

Anchistea, Presl, 1849.
§ 12. Meniscium.

(a) Veins arcuately anastomosing, forming costal areoles; venules free.

58. Brainea, J. Sm. 1856. [p. xlv.]
Bowringia, Hook. (non Champ.) 1853.

(b) Venules regularly anastomosing arcuato-transversely between the pinnate parallel veins.

59. Meniscium, Schreb. 1791. [p. xlii.]

(c) Venules irregularly compound-anastomosing, with free included veinlets.

60. Dryomenis, Fée, 1851. [p. xlvii.]
Phytogenia, J. Sm. MS.

(a) Indusia simple, distinct.
* Veins free.
† Sori linear, elongate, marginal on the contracted rachiform segments; fronds small, flabelliform.

61. Actinopteris, Link, 1841. [p. xlvii.]
Belvisia, Mirbel (pt.) 1803.

†† Sori linear or oblong, oblique.

62. Asplenium, Lin. 1737. [p. xlviii.]
Canopteris, Bergius, 1782.
Darea, Jussieu, 1789.
Onopteris, Neck. 1790.
Phyllitis, Manch. 1794.
Allantodia, R. Br. (pt.) 1810.
Acropteris, Link, 1833.
Acmasium, Newm. 1844.
Homaloneuron, Kt. 1847.
Tarachia, Presl, 1849.
Brachysorus, Presl, 1849.
Hypochlamys, Fée, 1851.
Darastrum, Fée, 1851.

††† Sori lunate or more or less hippocrepiform.

63. Athyrium, Roth, 1788, (reduct.) . . [p. xlix.]
Solenopteris, Zonker MS. 1835: Xae. 1861.

** Veins parallel, transversely combined at the margin.

64. Thamnopteris, Presl, (1836 :) 1849. . . [p. l.]
Neottopteris, J. Sm. 1841.

*** Veins parallel below, their apices reticulated, and combined by a marginal vein.

65. Hemidictyum, Presl, 1836. [p. l.]
Aspleniocystus, J. Sm. 1854.

**** Veins reticulated, the marginal veinlets free.
† Indusia vaulted; fronds membranaceous, naked.

66. Allantodia, R. Br. 1810, (reduct.); Id. 1830, [p. li.]
<table>
<thead>
<tr>
<th>No.</th>
<th>Genus</th>
<th>Author</th>
<th>Year</th>
<th>Notes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Ceterach</td>
<td>Willd.</td>
<td>1810</td>
<td>†† Indusia obsolete; fronds coriaceous, scaly.</td>
<td>p. li.</td>
</tr>
<tr>
<td></td>
<td>Cetera, Adams, 1763.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notolepeum, Newm. 1844.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Indusia connivent in pairs, face to face.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Veins free.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phyllitis, Newm. 1844.</td>
<td></td>
<td></td>
<td>† Sori parallel, oblique.</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Antigrama, Presl, 1836.</td>
<td></td>
<td></td>
<td>†† Sori flabellately arranged.</td>
<td>p. lii.</td>
</tr>
<tr>
<td></td>
<td>** Sori irregular.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Schaffneria, Fée, 1856.</td>
<td></td>
<td></td>
<td>(c) Indusia connate in pairs, back to back.</td>
<td>p. liii.</td>
</tr>
<tr>
<td></td>
<td>* Veins free.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Callipteris, Bory, 1804.</td>
<td></td>
<td></td>
<td>Digrammaria, Hook, (non Pr.)</td>
<td>p. lv.</td>
</tr>
<tr>
<td></td>
<td>*** Veins reticulated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ochlogramma, Presl, 1849.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Didymochlæna, Desv. 1811.</td>
<td></td>
<td></td>
<td>(a) Veins free.</td>
<td>p. lvi.</td>
</tr>
<tr>
<td></td>
<td>Tegularia, Reiuw. 1825.</td>
<td>Hippodium, Gaud. 1828.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceramium, Reiuw. 1825.</td>
<td>Hysterocharpus, Langed. MS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monochlæna, Gaud. 1826.</td>
<td>Fée, 1861</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Veins connivently anastomosing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Mesochlæna, R. Br. 1838.</td>
<td></td>
<td></td>
<td></td>
<td>p. lvii.</td>
</tr>
<tr>
<td></td>
<td>Spherostephanos, J. Sm, 1838.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[No. 118 should perhaps follow here.]
Table of Genera

§ 15. Hemionitidææ.

| (a) Veins parallel, longitudinal, scarcely reticulated. |
|---|---|
| 77. Polytaenium, Desv. 1827. | [p. lvii.] |

| (b) Veins uniform, reticulated. |
|---|---|
| 78. Anetium, Splity. 1840. | [p. lviii.] |

** Sori sporadic.

| Sori continuous. |
|---|---|
| 79. Antrophyum, Klfs. 1824. | [p. lviii.] |

Solenopteris, Wall. HB. 1823.

† Sori partially reticulated, usually immersed.

| ** Sori universally reticulated, superficial. |
|---|---|
| 80. Hemionitis, Lin. 1742. | [p. lviii.] |

| (c) Veins pinnate, venules reticulated, without free veinlets. |
|---|---|
| 81. Dictyocline, Moore, 1855. | [p. lix.] |

| (d) Primary veins parallel forked; venules sparingly reticulated towards the margin. |
|---|---|
| 82. Syngogramma, J. Sm. 1845. | [p. lix.] |

Callogramma, Fée, 1851.

| (e) Primary veins arcuate, forming costal areoles; venules reticulated, the marginal ones free. |
|---|---|
| 83. Dictyogramma, Fée, 1851. | [p. lx.] |

Notogramma, Presl MS. 1849.

| (a) Veins free. |
|---|---|
| 84. Pterozonium, Fée, 1851. | [p. lxi.] |

** Sori linear, forked, distinct.

| ** Sori linear, forked, distinct. |
|---|---|
| 85. Gymnogramma, Desv. 1811. | [p. lxi.] |

Neurogramma, Presl, 1836.	Argyria, Fée, 1851.
Ceteruch, Presl. (pt.) 1836.	Trismeria, Fée, 1851.
Calomelanos, Presl, 1836.	Coniogramma, Fée, 1851.
Anogramma, Lk. 1841.	Pleurosorus, Fée, 1851.
Cerapteris, Lk. 1841.	Erlosorus, Fée, 1851.
Hecistopteris, J. Sm. 1842.	Dicranodium, Newm. 1854.
TABLE OF GENERA.

Hb. Ref.

∗∗∗ Sori linear oblong, simple.

86. Grammitis, Sw. 1800. [p. lxii.]
Chilopteris, Presl, 1838.
Pleurogramma, R. Br. 1838.
Leptogramma, J. Sm. 1841.
[Trichothemelium, Kze. 1851.
Trichoelymma, Zenker, 1851.
Mecosorus,KL. (pt.) 1847.]

∗∗∗ Sori oblong, lying in the folded cucullate lobes.

87. Calymmodon, Presl, 1836. [p. lxiii.]
Plectopteris, Fée, 1851.
(b) Veins connivently anastomosing below.

∗ Fords formable.

88. Stegnogramma, Bl. 1828. [p. lxiii.]

∗∗ Fertile fronds contracted; sori oligocarpous.

89. Ampelopteris, Kze. 1848. [p. lxiv.]
(c) Veins arcuate, forming costal areoles, the ultimate or marginal venules free.

90. Digrammaria, Presl, 1836. [p. lxiv.]
Heterogonium, Presl, 1849.
Stenosemia, J. Sm. (pt.) 1841.

(d) Veins uniform reticulated, with free included veinlets in the areoles.

91. Loxogramma, (Bl. 1828): Presl, 1836. [p. lxy.]
(e) Veins pinnate; venules reticulated, with free included veinlets.

92. Selliguea, Bory, 1829. [p. lxvi.]
Diagramma, Bl. 1828.
Colysis, Presl, 1849.
Diptyogramma, Presl, 1849.

§ 17. PLATYLOMEESE.

(a) Fertile divisions plane, conformable with the sterile.

93. Platyloma, J. Sm. 1841. [p. lxvi.]
Pallas, Link, 1841.
Allosorus, Auct.]

(b) Fertile divisions revolute.

∗ Fertile divisions (pinnae) linear.

93*. Plagiogyria, (Kze. 1850): Metten 1858.
(addenda.)
Lomaria, Auct. (pt.)
[January, 1859.]

N
** Fertile divisions (pinnae) siliquiform.

94. Llavea, Lagasca, 1816. . . . [p. lxvii.]
 Ceratodactylis, J. Sm. 1839.
 Botryogramma, Llavea, Lagasca, 1816 [p. ixvii.]
 Ceratodactylis, J. Sm. 1829.
 Cryptozoon, J. Sm. 1829.
 Botryogramma, Llavea, Lagasca, 1816 [p. ixvii.]

§ 18. POLYPODIACE.

(a) Margins of the fronds revolute, indusioid.
* Fronds dimorphous, the fertile contracted.
† Fertile divisions (pinnae) siliculiform.

96. Allosorus, Bernh. 1806 (reduct.) . . [p. lxviii.]
 Allosorus, Auch. Phorolobus, Desv. 1825.
 Homopteris, Exbr. 1846.
 †† Fertile divisions (pinnae) linear or moniliform.

97. Struthiopteris, Willd. 1809. . . . [p. lxviii.]
 Onoclea, Bernh. 1800.
 ** Fronds monomorphous; in evolution indefinite.

98. Jamesonia, Hk. et Gr. 1831. . . . [p. lxix.]
 (b) Margins of the fronds not indusioid.
* Veins free.
† Sori oligocarpos, confluent into a marginal band.

 Cincinnati, Gleditsch, 1784: Eriochosma, J. Sm. 1841.
 Desv. 1811. Lepichosoma, J. Sm. 1841.
 Argyrochosma, J. Sm. 1841.
 †† Sori globose, rarely subelongated, distinct.

100. [Monachosorum, Kze, 1848.—see 101.]

101. Polypodium, Lin. 1737 (reduct.) . . [p. lxx.]
 Psdorpodium, Necker, 1790.
 Adenophorus, Gaud. MS. Bory, 1824: Gaud. 1826.
 Marginaria, Bory, (pt.) 1824: 1826.
 Lastrea, Bory, (pt.) 1824: 1826.
 Amphoradenium, Desv. 1827.
 Ctenopteris, Bl. 1822: Presel, 1836: Kunze, 1843.
 Dicranopteris, Bl.
 Phlegopteris, Presel, 1836: Fée, 1851.
 Lecycatia, J. Sm. (pt.) 1841.
 Cryptosorus, Fée, 1843.
 Glaphyroropteris, Presel, 1847.
 Monachosorum, Kze, 1848.
 Pseudathrium, Norm. 1851.
 Gymnocarpium, Norm. 1851.
 Ctenopteris, Norm. 1851.
 Gymnodiurn, A. Br. 1852.
 Arthropteris, J. Sm. 1854.
 Catenularia, Zipp. MS.: Metten. 1855.
 Ctenopteris, A. Br. MS.: Metten. 1858.
 Leptostegia, Zipp. MS.: Metten. 1858.
 Thylacopteris, Kunze, MS.: Metten. 1858.
 Anopodium, J. Sm. 1857.
 Polypodium, J. Sm. 1867.
 Cystidium, J. Sm. MS.
 Dryopteris, J. Sm. MS.
 Desmopodium, J. Sm. MS.
Veins connivently anastomosing.

102. Goniapteris, Presl, 1836. . . . [p. lxxi.]
Glyphotanium, J. Sm. 1854.

Veins reticulated, without free included veinlets.

103. Dictyopteris, Presl, 1836. . . . [p. lxxii.]
Dictymia, J. Sm. 1856.

****Veins reticulated, with free included veinlets in the areoles.

† Free veinlets excurrent, i.e. directed towards the margin.

‡ Sori on the converging apices of two or more included veinlets, the costal areoles sterile.

104. Phlebodium, (Br. Br. 1838.) J. Sm. 1841. [p. lxxiii.]
Chrysopteris, Link, (pt.) 1841: Fée, 1861.

+++ Sori terminal, on solitary veinlets within the costal series of areoles; sometimes also on those of one or more additional series.

105. Goniophlebium, (Bl. 1823.) Presl, 1836. [p. lxxiii.]
Marginaria, Presl, 1836.
Synamnia, Presl, (pt.) 1836.
Pleurogonium, Presl, 1836.
Craspedaria, Link (pt.) 1841: Fée, 1861.

+++ Sori medial (rarely terminal), on the veinlets of the costal areoles and on the excurrent veinlets (two or more within each areole) from the transverse arcately anastomosing veinlets.

106. Campyloneurum, Presl, 1836. . . . [p. lxxiv.]
J. Sm. 1841.
Lepholes, J. Sm. 1841.
Leptocystis, J. Sm. (pt.) 1841.
Scheltopes, J. Sm. 1841.

+++ Free veinlets divaricate, i.e. variously directed.

† Fronds clothed (usually densely beneath) with stellate hair-scales.

107. Niphobolus, Klz. 1824. [p. lxxv.]
Pyrrobia, Mirbel, 1803.
Candollea, Mirb. (pt.) 1803.
Cyclophorus, Desv, 1811: Presl, 1849.
Scytopteris, Presl, 1836: 1849.
Craspedaria, Link, (pt.) 1841.
Galeoglossa, Presl, 1849.
Galeobdolon, Presl, 1849.
Pheopsestemon, Presl, 1849.
Physochros, Presl, 1849.
Niphopsis, J. Sm. 1856.
N 2
Fronds naked, or bearing scattered peltate scales.

Sori globose (rarely short oblong, or by confluence elongated), polycarpous; fronds articulated with the rhizome.

Fronds simple pinnatifid or pinnate, mono-morphous, or the fertile somewhat narrowed.

108. Pleopeltis, H. et B. 1810 (extensa) . [p. lxxvi.]
Atactosis, Bl. 1838. | Phyllitisidis, J. Sm. 1841.
Microsorum, Link, 1833. | Lepisorus, J. Sm. 1841.
Anaxetum, Schott, 1834. | Anapeltis, J. Sm. 1846.
Microgramma, Presl, 1836. | Microterus, Presl, 1849.
Pleuridium, Presl, 1836. | Symplecium, Kcz. 1846.
Phymatodes, Presl, 1836. | Phytogetia, J. Sm. M.S. olm.
Drynaria, Presl, (pt.) 1836. | Melanopteris, J. Sm. MS.

Fronds dimorphous, the sterile dwarfed, sessile, querciform.

(a) Fertile and sterile segments of the normal fronds uniform.

109. Drynaria, (Bory, 1825.) J. Sm. 1841. [p. lxxviii.]

(b) Fertile upper segments of normal fronds much contracted.

110. Aglaomorpha, Schott, 1835 . . . [p. lxxix.]
Psygmium, Presl, 1836.

Sori oligocarpous; fronds continuous with the rhizome.

111. Dipteris, Reimw. 1825 [p. lxxix.]

"Sori large, subrotund, immersed in the cupuliform cartilaginous marginal teeth," which are reflexed when dry.

112. Lecanopteris, Reimw. 1825 : Bl. 1828. [p. lxxx.]
Onychium, Reimw. 1825 (non Klfs.)

§ 19. ASPIDIREAE.

(a) Indusia cucullate behind the sori, on the contracted incurved pinnules.

113. Onoclea, Lin. 1751. [p. lxxxi.]
Angiopteris, Mitch. 1748. | Riedlea, Mirb. 1803.
Calypterium, Bernh. 1801. | Ragiopteris, Presl, 1836.
(b) Indusia orbicular, peltately affixed.

* Veins reticulated, with free included veinlets.

† Veins compoundly anastomosing, with included divaricate free veinlets.

114. Aspidium, Sw. 1800, (reduct.) : Schott, 1834.
[p. lxxxi.]

Bathmiium, Presl, 1836; Link. | Proseraea, Presl, 1849.
1841.

†† Veins angularly anastomosing with 1-3 excurrent veinlets in the areoles, (sometimes the upper venules only anastomosing.)

115. Cyrtomium, Presl, 1836. . . . [p. lxxxii.]

Phanerophlebia, Presl, 1836.
Amblia, Presl, 1836.

** Veins connivently anastomosing.

116. Cyclodium, Presl, 1836. . . . [p. lxxxiii.]

Anisocampium, Presl, 1849.

*** Veins free.

117. Polystichum, Roth, 1788, (reduct.): Schott, 1834.
[p. lxxxiv.]

Hypopeltis, Rick, 1803. | Peltochlamis, Fée, 1851.
Rumohra, Raddi, 1825. | Hemicardion, Fée, 1851.

(c) Indusium reniform, affixed at the sinus.

* Veins reticulated.

† Fronds dimorphous, the sterile proliferous.

118. Fadyenia, Hook. 1842. . . . [p. lxxv.]

†† Fronds monomorphous, or conformable.

† Veins compoundly anastomosing, often with free included divaricate veinlets in the areoles.

119. Sagenia, Presl, 1836. . . . [p. lxxvi.]

Polydictyum, Presl, 1849. | Lophochlamis, Fée, 1851.
Microbrochis, Presl, 1849. | Phlebiogonia, Fée, 1851.
Cardiochlamis, Fée, 1851.

†† Veins arcuately anastomosing, forming elongated costal areoles, the marginal ones free.

120. Pleocnemia, Presl, 1836. . . [p. lxxvii.]

Haplodictyum, Presl, 1849.
** Veins connivently anastomosing.

<table>
<thead>
<tr>
<th>Aspidium, Sw. (pt.) 1800.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclosorus, Linck, 1841.</td>
</tr>
<tr>
<td>Asaopteris, Fée, 1843.</td>
</tr>
<tr>
<td>Pronephrium, Presl, 1849.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arsenopteris Webb et Berth. (pt.) 1847.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plectochlisma, Fée, 1851.</td>
</tr>
</tbody>
</table>

*** Veins free.

† Veins simple or pinnate, the lower anterior venule (sometimes more) soriferous.

122. Lastrea, (Bory, 1824, mutat.): Presl, 1836. [p. lxxxvii.]

<table>
<thead>
<tr>
<th>Dryopteris, Adams. 1763: Schott, 1834.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleichenia, Neck. 1790.</td>
</tr>
<tr>
<td>Aspidium, Sw. (pt.) 1800.</td>
</tr>
<tr>
<td>Arthrobotrys, Wall., 1828.</td>
</tr>
<tr>
<td>Thelypteris, Schott, 1834.</td>
</tr>
<tr>
<td>Hypodematiom. Kze. 1837.</td>
</tr>
<tr>
<td>Amauropelta, Kze. 1840.</td>
</tr>
<tr>
<td>Dichasium, A. Br. 1841.</td>
</tr>
<tr>
<td>Lastrestrum, Presl., 1849.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arsenopteris, Webb et B. (pt.) 1847.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnothalamium, Zenker MS.: Kze. 1851.</td>
</tr>
<tr>
<td>Hemestheum, Newm. 1851.</td>
</tr>
<tr>
<td>Lophodinium, Newm. 1851.</td>
</tr>
<tr>
<td>Camptodium, Fée, 1851.</td>
</tr>
<tr>
<td>Ochlamys, Fée, 1851.</td>
</tr>
<tr>
<td>Pachydermis, J. Sm. M.S. (1854.)</td>
</tr>
<tr>
<td>Pycnopteris, Moore, 1854.</td>
</tr>
</tbody>
</table>

†† Veins parallel forked, soriferous at or near the base; fronds simple, articulated.

123. Oleandra, Cav. 1802. [p. lxxxix.]

<table>
<thead>
<tr>
<th>Neuronia, Dan., 1825.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ophiopertis, Zeino., 1825.</td>
</tr>
</tbody>
</table>

††† Veins pinnately forked, soriferous at their apices; fronds pinnate, the pinnae articulated.

124. Nephrolepis, Schott, 1834. . . . [p. lxxxix.]

<table>
<thead>
<tr>
<th>Nephromium, Linck, 1841.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoneuron, Fée, 1851.</td>
</tr>
</tbody>
</table>

§ 20. CYSTOPTERIDEAE.

(a) Sori medial.

125. Cystopteris, Bernh. 1806. [p. xc.]

<table>
<thead>
<tr>
<th>Cyclopteris, Gray, 1821.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystea, Sm. 1828.</td>
</tr>
</tbody>
</table>

(b) Sori terminal, rarely axillary in the forks of the venules; fronds membranaceous or herbaceous.

126. Aerophorus, Presl., 1836. [p. xci.]

<table>
<thead>
<tr>
<th>Leucostegia, Presl, 1836.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odontoloma, J. Sm. 1842.</td>
</tr>
</tbody>
</table>
Table of Genera

(c) Sori terminal vertical, rarely subterminal and oblique; fronds small, coriaceous.

127. **Humata**, Cav. 1801. [p. xci.]

Pachypleuria, Presl, 1836,
Pteroneuron, Fée, 1851.

§ 21. **Davallieae**.

(a) Sori intramarginal; indusium semi-orbicular, or half cup shaped, membranaceous.

128. **Microlepia**, Presl, 1836. [p. xcii.]

Scyphosilix, Aub. du Petit
Thouars, 1811.

Saccoloma, Kf., 1820.

Neopteris, Desm. 1827.

Selenidium, Presl, 1837.

Tapeinidium, Presl, 1849.

(b) Sori marginal.

* Indusium tubulose, or cup shaped, membranaceous.

129. **Davallia**, Smith, 1793. [p. xciii.]

Wibolia, Berth. 1800.

Stenolobus, Presl, 1836.

Colposoria, Presl, 1836.

Odontosoria, Presl, 1836: Fée, 1851.

** Indusium oblique boat-shaped, broader than long.

130. **Loxoscapha**, Moore, 1853. [p. xciii.]

(c) Sori immersed in a short marginal cyst, the indusium sub-coriaceous, continuous with and scarcely different from the substance of the frond.

131. **Prosaptia**, Presl, 1836. [xciv.]

§ 22. **Dicksonieae**.

(a) Indusium distinctly two-valved.

* Outer valve of indusium roundish cuvicate, sub-herbaceous, usually larger than the inner.

132. **Dicksonia**, L'Herit. 1788. [p. xcv.]

Balantium, Kf., 1824: Presl, 1836.

Leptopleuria, Presl, 1836.

Cystodium, J. Sm., 1841.

** Outer valve small herbaceous, and as well as the larger membranaceous inner one, plane.

133. **Diclisodon**, Moore, 1857. [p. xcv.]
TABLE OF GENERA.

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb. Ref.</td>
<td>Values of the indusium linear or subrotund, membranaceous, plane.</td>
</tr>
<tr>
<td></td>
<td>Values of the indusium coriaceous, the outer larger cucullate, the inner operculiform.</td>
</tr>
<tr>
<td>135. Cibotium, Klfs. 1824.</td>
<td>[p. xcvi.]</td>
</tr>
<tr>
<td></td>
<td>Pinonia, Gaud. MS.; Bory, Hiatea, Menzius, MS.; Hook. 1824: Gaud. 1826.</td>
</tr>
<tr>
<td></td>
<td>(b) Indusium cup-shaped, deflexed.</td>
</tr>
<tr>
<td>136. Dennstædtia, Bernh. 1800.</td>
<td>[p. xcvii.]</td>
</tr>
<tr>
<td></td>
<td>Sitobollum, Desv. 1827. Patania, Presl., 1836.</td>
</tr>
<tr>
<td></td>
<td>(c) Indusium cup-shaped, extrorse-marginal.</td>
</tr>
<tr>
<td></td>
<td>* Veins free.</td>
</tr>
<tr>
<td>137. Deparia, Hook. et Grev. 1823.</td>
<td>[p. xcviii.]</td>
</tr>
<tr>
<td></td>
<td>** Veins reticulated.</td>
</tr>
<tr>
<td>138. Cionidium, Moore, 1852.</td>
<td>[p. xcvi.]</td>
</tr>
<tr>
<td></td>
<td>Trichilocarpa, Hooker, 1852: Patanema, J. Sm. MS. (1854.)</td>
</tr>
<tr>
<td></td>
<td>§ 23. **PERANEMÆ.</td>
</tr>
<tr>
<td></td>
<td>(a) Veins free.</td>
</tr>
<tr>
<td></td>
<td>* Involucres stalked.</td>
</tr>
<tr>
<td>139. Peranema, Don, 1825.</td>
<td>[p. xci.]</td>
</tr>
<tr>
<td></td>
<td>Spheropteris, Wall. MS. 1829; Podilema, R. Br. MS. (1830); Nematopera, Kea, 1845.</td>
</tr>
<tr>
<td></td>
<td>** Involucres sessile.</td>
</tr>
<tr>
<td></td>
<td>† Involucreglobosuscoriaceous, bursting irregularly.</td>
</tr>
<tr>
<td>140. Diacalpe, Bl. 1828.</td>
<td>[p. xcii.]</td>
</tr>
<tr>
<td></td>
<td>†† "Involucr arachnoid, covering the sorus."</td>
</tr>
<tr>
<td>141 (?) Arachniodes, Bl. 1828.</td>
<td>[p. c.]</td>
</tr>
</tbody>
</table>

* This genus proves to have the same structure as Pteris aquilina, with which it must be associated, and probably separated from Pteris. Its double indusia indicate some affinity with the Lindaceæ. We leave it here, however, for the present, till its proper position is determined.
TABLE OF GENERA.

+++ Involucres pateriform, fimbriate, calyciform lobed, or sub-globose, membranaceous.

142. Woodsia, R. Br. 1813. [p. c.]
Hymenolea, C.A. Mey. (1831.) | Perrinia, Hook. 1846.

(b) Veins reticulated.

143. Hypoderris, R. Br. 1830. [p. ci.]

Order—POLYPODIACEÆ. Tribe—CYATHEINEÆ.

§ 1. THYSOPTERIDEÆ.

144. Thyrsopteris, Kze. 1834. [p. cii.]
Panicularia, Colla, 1836.

§ 2. CYATHEÆ.

(a) Involucres complete cup-shaped.

145. Cyathea, Smith, 1793. [p. cii.]
Disphenia, Presl, 1836. | Schizocoma, J. Sm. 1838.

(b) Involucres half cup-shaped.
* Veins unifying in costal arcs (in some species rarely united.)

146. Hemitelia, R. Br. 1810. [p. ciii.]
Caenidaria, Presl, 1836. | Microstegnus, Presl, 1847.
Eleutheria, Kze. 1844. | Actinophlebia, Presl, 1847.
Hemistegia, Presl, 1847.

** Veins always free.

147. Amphicosmia, Gard. 1842. [p. civ.]
Hymenostegia, J. Sm. (pt.) 1842.
Notoporia, Presl, 1847.

§ 3. ALSPHILÆÆ.

(a) Veins always uni-soriferous.

148. Alsophila, R. Br. 1810. [p. cv.]
Chnoophora, Klf. 1824. | Trichostegia, J. Sm. 1842.
Gymnosperma, Bl. 1828. | Dicoryxena, Presl, 1847.
Diceranophlebia, Mart. 1828-34. | Lophosorcia, Presl, 1847.
Haplophlebia, Mart. 1828-34. | Trichosorus, Liebm. 1848.

(b) Veins frequently bi-tri-soriferous.

149. Amphidessmium, Schott, 1834. [p. cv.]
Trichopteris, Parker, MS. | Metaxya, Presl, 1836.
Et, et Gr. 1829.
150. Matonia, R. Br. 1830. [p. cvi.]
Prionopteris, Wall. 1828.

151. Platyzoma, R. Br. 1810. [p. cvii.]
(b) Fronds dichotomously branched, (rarely unbranched), the branches pinnatifid.

152. Gleichenia, Smith, 1798. [p. cvii.]
Mertensia, Willd. 1804.
Platyzoma, Bory, 1836.
Dicyranopteris, Bernh. 1806.
Calymella, Presl, 1836.

†† Receptacles everted, bearing sessile lenticular spore-cases at their base; fronds pellucid.
† Fronds monomorphous.

154. Trichomanes, Lin. 1742. [p. cix.]
Achomanes, Necker, 1790.
Didymoglossum, Desv. 1827.
Leacomum, Presl, 1843.
Cardiomanes, Presl, 1843.
Cephalomarces, Presl, 1843.
Bagatcleus, Presl, 1843.
Pachychelatum, Presl, 1843.
Chilodium, Presl, 1843.
Crepidium, Presl, 1843.
Meringum, Presl, 1843.
Neurophyllum, Presl, 1843.
Hemiphlebium, Presl, 1843.
Microgonium, Presl, 1843.
Abrodictyum, Presl, 1843.
Homesotes, Presl, 1847.
Macroglea, Presl, 1847.
Taschmeria, Presl, 1849.
Leucomanes, Presl, 1849.
Pleuromanes, Presl, 1849.
Pseudachomanes, Presl, 1849.
Crepidomanes, Presl, 1849.
Odontomanes, Presl, 1849.
Amphipterum, Presl, 1849.
†† Fronds dimorphous, i.e., the fertile contracted.

155. Feea, Bory, 1824. [p. cx.]
Veins reticulated.

156. Hymenostachys, Bory, 1824. . . . [p. cxi.]

(b) Involucres two-valved.

157. Hymenophyllum, Sm. 1793. . . . [p. cxi.]

- Ptychomanes, Hedw. 1789.
- Hymenoglossum, Presl, 1843.
- Leptocionium, Presl, 1843.
- Spherosidium, Presl, 1843.
- Myrmecestylum, Presl, 1843.
- Cycloglossum, Presl, 1843.

Order—POLYPODIACEÆ. Tribe—SCHIZÆINEÆ.

§ 1. LYODIEÆ.

(a) Veins free.

158. Lygodium, Sw. 1800. [p. cxii.]

- Gisopteris, Bernh. 1800.
- Odontopteris, Bernh. 1800.
- Ramondia, Mirbel, 1801.
- Hydroglossum, Willd. (pt.) 1802.

(b) Veins reticulated.

159. Hydroglossum, Willd. 1802. (reduct.): Presl, 1845. [p. cxiii.]

Lygodictyon, J. Sm. 1842.

§ 2. SCHIZÆÆ.

(a) Fructification seated on special contracted converging pinnaform appendages.

160. Schizaæ, Sm. 1793. [p. cxiv.]

- Ripidium, Bernh. 1800.
- Lophidium, Rich. 1792.

(b) Fructification paniculate, on distinct fronds, or lateral branches.

* Veins free.

161. Anemia, Sw. 1806. [p. cxv.]

- Ornithopteris, Bernh. 1806
- Anemirhiza, J. Sm. 1855

** Veins reticulated.

162. Anemidictyon, J. Sm. 1842. . . . [p. cxvi.]

- Anemidictyon, Presl, 1845.
- Phyllitides, Presl, M.S. (1845.)
(c) Fructifications submarginal on the plane, sub-contracted segments.

* Veins of the pinnules pinnate.

163. Mohria, Sw. 1806. [p. cxvi.]
Lonchitis, Bernh. (non. Lin.) 1800.

** Veins flabellate dichotomous; plant small, spreading, rosulate.

164. Trochopteris, Gard. 1842. . . [p. cxvii.]

Order—POLYPOD. Tribe—CERATOPTERIDINEÆ.

165. Ceratopteris, Brongn. 1821. . . [p. cxvii.]
Belvisia, Mire. (pt.) 1803.
Chladostachys, Wallich. MS. Hb. 1823.
Cryptogenis, Richard MS. : Brongn. 1823.

Telezozma, R. Br. 1823.
Ellubocarpus, Kt. 1824.
Parkeria, Hook. 1825.

Order—POLYPODIACEÆ. Tribe—OSMUNDINEÆ.

(a) Fructifications paniculate, on contracted rachis form fronds or segments.

166. Osmunda, Lin. 1787. [p. cxviii.]
Struthiopteris, Bernh. 1800.
Aphyloca palpa, Cav. 1802.
Reidlea, Mire. (pt.) 1803.

Osmundastrum, Presl, 1845 (1846)
Plenasium, Presl, 1836.

(b) Fructifications dorsal, on plane normal scarcely contracted segments.

167. Todea, Willd. 1802. [p. cxix.]
Leptopteris, Presl, 1845.

Order—MARATTIAEÆ. Tribe—MARATTINEÆ.

§ 1. ANGIOPTERIDEÆ.

168. Angiopteris, Hoffm. 1793. . . . [p. cx.]
Clementea, Cav. 1802. | Psilodochea, Presl, 1845.

§ 2. MARATTINEÆ.

(a) Sori sessile on the veins.

* Sori involucrate, i.e. seated in an involucre.

169. Marattia, Sm. 1793. [p. cx.]
Cenanthera, Thouin, 1786. | Discostegia, Presl, 1845.
Myrlotheca, Comm. : Juss. 1789.
INDEX FILICUM.

Abacopteris, Fée, Congr. Scient. Fr. x. sess. i. 178.
elegans, Fée.—Nephrodium elegans.
glandulosa, Fée.—Nephrodium glandulosum.
philippinarum, Fée.—Nephrodium latifolium.
simplicifolia, Fée.—Nephrodium simplicifolium.
truncata, Fée.—Nephrodium latifolium.

Abrodictyum, Presl, Hymenoph. 20.
Cumingii, Presl.—Trichomanes Smithii.

Achomanes, Necker, Element. Bot. iii. 313; Presl, Hymen.

Aconiopteris, Presl, Tentamen Pteridogr. 236.
glabrescens, Presl.—Olfersia glabrescens.
longifolia, Fée.—Olfersia longifolia.
obtusa, Fée.—Olfersia obtusa.
Richardii, Bory Hb; Fée.—Olfersia Richardi.
subdiaphana, Presl.—Olfersia nervosa.

ACROPHORS, Presl, Tentamen Pteridogr. 93 (extens.)
Moore, Gard. Chron. 1854, 135; Id. Proceed. Lin.
Soc. ii. 286. [Synopsis p. xci.]

adiantoides, M. [Synop. xci.]—Moluccas; Java (Zoll. 356 z.)
Saccoroma adiantoides, Presl, Tent. Pter. 126.

affinis, Moore, Proc. Lin. Soc. ii. 286.—Philippines (Cuming
117, 215); Java, Penang, Singapore, Ceylon.

Journ. Bot. i. 428.

Cystopteris affinis, Fée, Gen. Fil. 293.

Microlepia tenuifolia, Presl, Epim. Bot. 97 (Cuming 215); Fée, Gen.
Fil. 327.

Humata affinis, Metten. Fil. Lips. 102, t. 27, f. 5, 6.

bifidus, M. [Synop. xci.]—Brazil.

Davallia bifida, Kf. Enum. 222; Hk. et Grev. Icon. Fil. t. 238; Spr:
Syst. 121; Presl, Tent. Pter. 129; Hook. Sp. Fil. i. 198.

Odontoloma bifidum, Metten. Fil. Lips. 104.

[June, 1857.] 1

[Genus 1. Species 3.]
Acrophorus.

charophyllus, Moore.—A. pulcher.
cuneifolium, M. [Synop. xci.]—Philippines (Cuming 217.)
Saccocoma cuneifolium, Presl, Tent. Pter. 129.
Davallia pulchella, Hook. Sp. Fil. i. 175, t. 53 B.
falcinellus, M.—Malay Isl.; Philippines (Cuming 304.)
Davallia falcinella, Tresl, Tent, Fter. 126.
Davallia ?cuneifoliurn, Haoh, Sp. Fil. i. 176.
Davallia ?pulchella, Sook, Sp. Mil. i. 176, t. 63.
Odontoloma cuneifoliurn, Preal, Epkn, Bot. 97.
Odontoloma ?falcinellus, Malay Isl.; Philippines (Cuming 304.)
Davallia falcinella, Treal, Bel. ?senki, 66, t. 11, f. 24;
Spr. Sm. 120; Presl, Tent. Pier. 129, t. 4, f. 24; Hk. Sp. Fil. i. 159; Fée, Gen.
Fil. 329.
Goudotianus, M.—Madagascar.
Odontoloma Goudotiana, Metten. Fil. Lips. 104.
—— ? emirnensis.—Madagascar.
Davallia emirnensis, Hook. M.S. in Hb.
Davallia Goudotiana a. Hook. Sp. Fil. i. 188, t. 50 C.
1866, 661, with fig.—New Zealand.
Davallia hispina, Heward M.S. in Hb.
Hk. Sp. Fil. i. 163, t. 51 B; Fée, Gen. Fil. 329; Hk. fil. Fl. N. Zeal.
t. 19.
Mierolepis nova-zelandiae, J. Sm. Cat. Kew Ferns, 1858.
Hookeri, M.—India: Sirmur, Khasya, Sikim (Hk. et Thom. 315.)
Leucostegia sp. Hb. Hook.
hymenophylloides, M. — Java.
Fil. i. 207.
—— S. major.—New Caledonia, Feejee Isl.
immersus, Moore, Proc. Lin. Soc. ii. 286.—India: Nepal,
Assam, Khasya, Kashmir, Sikim, Mussoorie, Moulaein; Java.
Davallia immersa, Wall. Cat. 256; Hook. Sp. Fil. i. 156.
Leucostegia immersa, Presl, Tent. Pter. 95, t. 3, f. 11; Hk. Gen. Fil.
Gard. Mag. Bot. iii. 324, fig. 70.
Humata immersa, Metten. Fil. Lips. 102.
Davallia jamaicensis, Hook. Sp. Fil. i. 183.
? javensis, M.—Java.
Cystopteris javensis, Desc, Prod. 285.

[Gen. 1. Sp. 12.]
Acrophorus.

Davallia membranulosa, Wall. Cat. 255; Hk. Sp. Fil. i. 159, t. 53 A; Fée, Gen. Fil. 329.

nodosus, Presl, Tent. Pter. 94, t. 3, f. 2.—Java, Moluccas;

India: Khasya, Assam, Sikkim, Bootan.

Aspidium ? foliolosum, Wall. Cat. 359 (Polypodium foliolosum, in note)

Davallia stipellata, Wall. Cat. 260.

Acrophorus stipellatus, Moore, Gard. Chron. 1854, 135.

? Monachosorum davallioideis, Kze, Bot. Zeit. vi. 119 (? Indus. delaps);

Id. Schkuhr, Supp. ii. 1, t. 101 (Zoll. 1898).

? Polypodium davallioideis, Metten, Fil. Lips. 30; Id. Pol. 32.

Davallia Parkeri, Hook. Sp. Fil. i. 176, t. 53 C.

Humata parvula, Metten, Fil. Lips. 102, t. 27, f. 7, 8.

pseudocystopteris, M. — Himalaya.

Davallia pseudocystopteris, Kze, Bot. Zeit. viii. 68.

Cystopteris davallioideis, Kze, in litt.

pulcher, M.—India: Nepal, Simla, Assam, Khasya, Kashmir, Kumaon, Neilgherries; Sirmur, and Kunawar (scales of rhiz. larger); Java; Penang.

Davallia cheeryphylla, Wall. Cat. 259; Presl, Tent. Pter. 129; Hook. Sp. Fil. i. 157, t. 51 A; Fée, Gen. Fil. 329.

Davallia ligulata, Wall. Hb. under No. 254.

Humata cheeryphylla, Metten, Fil. Lips. 102, t. 27, f. 9, 10.

repens, M. [Synop. xci.]—Mascaren Isl.; Philippines (Cuming 50); Java (Zoll. 896 a, 3093); Ceylon; Assam, Khasya;

Sandwich Isles.

Dicksonia repens, Bory, Voy. ii. 323; Sw. Syn. 138; Willd. Sp. 482.

Davallia repens, Devo. Prod. 314.

1* [Gen. i. Sp. 19.]
Acrophorus.—Acrostichum.

—β. incisus (Desv. Prod. 314).—Mascaren Isl.; New Caled.
Saccoloma Boryanum, Presl, Tent. Pter. 126, t. 4, f. 20.
Davallia Boryana, Hook. Sp. Fil. i. 175.
Odontoloma Boryanum, Hook. Gen. Fil. t. 114 B.

—γ. hemipterus.—Java (Zoll. 896 b, 3172).

stipellatus, Moore.—Acrophorus nodosus.
tenuifolius, M. [Synop. cxi.]—Java, Philippines (Cumîng 309);
Samoan Isl.
Odontoloma Blumeanum, Metten. Fil. Lips. 104.
Davallia Blumeana, Hook. Sp. Fil. i. 177, t. 54 A.
Stenoloma Blumeanum, Fée, Gen. Fil. 330, t. 27 bis. A, f. 2 (? indus. err.)

Thomsoni, M.—India: Sikkim (Hk. et Thom. 316.)
Lencostegia sp., Hb. Hook.

Acropteris, Link, Hort. Berol. ii. 56.
australis, Fée.—Actiniopteris australis.
radiata, Fée.—Actiniopteris radiata.
septentrionalis, Link.—Asplenium septentrionale.

ACROSTICHUM, Linnæus, Gen. Plant. 785 (reduct.)
[Synopsis, p. xxi.]
acidophyllum, Kze.—Elaphoglossum laminarioides.
acrocarpum, Mart.—Elaphoglossum acrocarpum.
actinotrichum, Mart.—Elaphoglossum actinotrichum.
acuteatum, Desv.—Gymnogramma chrysophylla.
acuteatum, Lin.—Davallia fumarioides
acuminatum, Willd.: { (Sp.)—Anapausia acuminata.
acuminatum, Juss.: Poir.—Elaphoglossum petioloSum.
acutissimum, Poir.—Elaphoglossum petioloSum.
adenelepis, Kze.—Elaphoglossum adenopisis.
amulum, Bl.—Elaphoglossum conforme.
amulum, Klîs.—Elaphoglossum amulum.
amulum, Moritz.—Elaphoglossum callæfolium.
athidiicum, Beauv.—Platycerium Stemmaria.
affine, Galeotti.—Elaphoglossum affine.
alatum, Fée.—Elaphoglossum alatum.
alatum, Roxb.—Lomariopsis spondiæfolia.
alatum, Hort.—Pleopeltis musefolia.
albidulum, Sw.—Nothochlæa nivea.
album, Arrab.—Gymnogramma Calomelanos.

[Gen. 3. Sp. 21.]
Acrostichum.

alcicorne, Sw. (Schrad. J.)—Platycerium Stemmaria.
alicorne, Willem.: Sw. (Syn. in part)—Platycerium alicorne.
auleum, Sw.—Anapausia aliena.
alismefolium, Fée.—Elaphoglossum alismefolium.
alismefolium, Hort.—Elaphoglossum Schiedei.
alpestre, Gardn.—Elaphoglossum alpestre.
alpinum, Bolt.—Woodia alpina.
andicola, Fée.—Elaphoglossum andicola.
angulatum, Bl.—Elaphoglossum angulatum.
angustatum, Schrad.—Elaphoglossum Schiedei.
aplebium, Kze.—Elaphoglossum aphlebium.
aplebium, Ktfs.—Elaphoglossum apodum.
aplebium, Wild.—Polybotrya appendiculata.
areolatum, Lin.—Woodwardia areolata.
arpectre, Desv.—Elaphoglossum Aubertii.
OMreo-mtens, Hook.—Ireurocallis aureo-nitens.
aureum, Lm. Sp. Pl. 1525.—W. Indies: Cuba (Otto 14),
Jamaica, Martinique (Sieb. Fl. Mart. 235; Syn. 183),
Guadeloupe; Florida; Mexico (Hartweg 864), Guatemala,
Panama; Venezuela; Philippine, Marianne, Society,
Samoa, and Feejee Isl.; Tongataboo; Galapagos; Aneitium;
N. Holland: Brisbane River.—Plum. t. 104;
Phuk. t. 288, f. 2.
Acrostichum aureum, Sw, Syn. 13; Schk. Crypt. 2, t. 1, 1 b; Willd. Sp.
116; Spr. Syst. 36; Desv. Prod. 210; H.B.K. Nov. Gen. i. 2; Raddi.
Fl. Bras. 6; Kte. Enum. 65 in part; Presl. Tent. 241, t. 11, t. 3;
v. 152; Moore et Houtl. Gard. Mag. Bot. iii. 133, i. 29; Brack.
U. S. Expl. Exped. xvi. 82.
Nat. Hist. iv. 490.
Acrostichum formosum, Presl. Del. Prag. i. 160; Id. Tent. 241; Spr.
Syst. 36.
? Acrostichum crassifolium, Wall. in Hb.—f. Presl, (non in Hb. Wall.);
Presl. Tent. 241; Id. Epim. 183.
Chryodium vulgare, Fée, Acroet. 97; Id. Gen. 61; Metten. Fil. Lipts.
21.
Chryodium aureum, Metten. Fil. Lipts. 21.
—β. minus.—Java, Philippines, Ceylon; India: Sunder-
bund, Sidbee Isl., Neilgherries; Bourbon; Brazil.
(simple state); Presl. Tent. 241; Id. Epim. 179; J. Sm. Hk. Jour.
Bot. iv. 152.
Acrostichum aureum, Wall. Cat. 31, in part.
Chryodium vulgare, γ. minus, Fée Acroet. 99; Id. Gen. 81.
—γ. rigens.—Bourbon, Mauritius (Sieb. Fl. Maur. Sup. 3);
1 ** [Gen. 2. Sp. 22]
Acrostichum.

Madagascar; Natal (Plant 312); Marianne Isles; ? Fernando Po (submembranaceous—Hb. Hk.)

Acrostichum maritimum, Guienzius, MS.

Chrysodium vulgare β rigens, Fée, Acrost. 99; Id. Gen. 61.

— 5 hirsutum.—Brazil (Mart. 365); F. Guiana; Guatemsals (Friedrichsthal 231); St. Domingo, Jamaica; Cape of Good Hope.

Acrostichum aureum. Arrabida Fl. Plum. t. 92.

Chrysodium hirsutum, Fée, Acrost. 99, t. 62, f. 2; Id. Gen. 61.

— s. marginatum.—Essequibo, Venezuela, Brazil.

Acrostichum marginatum, Schkuh, Crypt. 185, t. 3 b.; Meyer, Esseq. 296; Presl, Epim. 159.

Acrostichum juglandifolium, Klfs. Enum. 66; Spr. Syst. 37; Kze. Lin. xxiii. 214.

Chrysodium hirsutum β. marginatum, Fée Acrost. 99; Id. Gen. 61.

— 6. sculpturatum.—Panama, New Ireland.

Chrysodium sculpturatum, Fée, Acrost. 100, t. 61; Id. Gen. 61.

— 7. Urvillei.—Moluccas, N. Guinea, Tahiti, Friendly Isles, N. Caledonia; N. Holland; Brisbane R., Port Essington.

Chrysodium Urvillei, Fée, Acrost. 100, t. 60; Id. Gen. 61.

— 8. inaequale.—Indis: Peninsula, Travancore, Tranquebar, Ganges R., Martaban, Hoogly R.; Java (Zoll. 937); Philippines (Cuming 280); Penang, Singapore; Mariamne Isl.; Panama (Fendl. 396); Mexico (Leibold 1); Guiana (Rich. Schomb. 1672), Surinam (Kegel 901), Cayenne.

Acrostichum Wightianum, Presl, Tent. 241 (Wight, Hb. Prop. 44—t. Pr.)

Chrysodium inaequale, Fée, Acrost. 100; Id. Gen. 61.

Chrysodium cayennense, Fée, Acrost. 100, t. 59; Id. Gen. 61.

— 9. speciosum.—Indis (Dregge 57); Ceylon; Java (Zoll. 2425); Philippines; N. Holland; Brisbane R.

Acrostichum aureum, Wall, Cat. 31 in part.

Chrysodium speciosum, Fée, Acrost. 101; Id. Gen. 61.

aureum, Arrab.—Acrostichum aureum δ.

aureum, Bory.—Gymnogramma aurea.

aureum, Cav.—Ceterach aureum.

aureum, Meyer: Wall. in part.—Acrostichum aureum θ.

[Gen. 2. Sp. 22.]
Acrostichum.

aureum, Wall. in part.—Acrostichum aureum i.
auricomum, Kze.—Elaphoglossum auricomum.
auriculatum, Lam.—Pecilopteris punctulata.
auritum, Poir.—Pecilopteris punctulata.
aurita, Sw.—Stenosemia aurita.
australe, Lin.—Actiniopteris australis.
australe, Vahl.—Actiniopteris radiata.
axilare, Cav.—Gymnopteris axillaris.
Banksianum, Fée.—Elaphoglossum Banksianum.
barbarum, Lin.—Todea barbara.
barbirusa, Kze. Hb.—Elaphoglossum horridulum.
Bellermannianum, Kl.—Elaphoglossum Bellermannianum.
[bicolor, Cav. Ann. Hist. Nat. i. 103 ; Id. Prolect. (1801)
238.—Marianne Isl.—Sw. Syn. 113.
? Niphoboli sp.]
bigdum, Poir.—Schizaea bigd.
bigforme, Sw.—Platycerium bigforme.
bigfurcatum, Cav.—Platycerium alicorina.
bigfurcatum, Sw.—Polybotrya bifurcata.
blepharodes, Fée.—Elaphoglossum blepharodes.
Blumeanum, Fée.—Elaphoglossum viscosum β.
bonariense, Willd.—Nothochloena rufa.
Boryanum, Fée.—Elaphoglossum Boryanum.
brachyneuron, Fée.—Elaphoglossum brachyneuron.
? Breutelianum, Kze: { ster. fr.—Campyloneuron fasciale.
{ fert. fr.—Elaphoglossum viscosum.
brevipes, Kze.—Elaphoglossum brevipes.
brunneum, Willd.—? Gymnopteris aliena.
buxifolium, Kze.—Lomariopsis buxifolia.
Calaguala, Kl.—Elaphoglossum Calaguala.
callafolium, Bl.—Elaphoglossum callafolium.
callafolium, Link.—Elaphoglossum brevipes.
Callipteris, Ehrhart.—Lactrea cristata.
callolepis, Fée.—Elaphoglossum callolepis.
Calomelanos, Lin.—Gymnogramma Calomelanos.
calophyllum, Kze.—Elaphoglossum calophyllum.
canariense, Willd.—Nothochloena Marante β.
cardiophyllum, Hook.—Elaphoglossum cardiophyllum.
catanense, Cosent.—Nothochloena lanuginosa.
cevitum, Sw.—Olfersia cervina.
chrysocodium, Desv.—Gymnogramma chrysocodia.
crysophyllum, Sw.—Gymnogramma chrysophylla.
cylare, Pet. Th.—? Elaphoglossum hybridum: horridulum
(Fée) ; apathulatum (Klf.).
Acrostichum.

ciliatum, Desv.—Elaphoglossum succisæfolium.
ciliatum, Presl.—Elaphoglossum ciliatum.
circumscriptum, Bory.—Elaphoglossum perelegans.
citrifolium, Lin.—Anetium citrifolium.
cladorrhizans, Spr.—Anapausia aliena B.
cochleariafolium, Féé.—Elaphoglossum cochleariafolium.
cochleatum, Bory: Féé.—Elaphoglossum pilosum.
conforme, Bl.—Elaphoglossum marginatum.
conforme, Raddi: Link.—Elaphoglossum crassinerve.
conforme, Sw.—Elaphoglossum conforme.
conforme v. angustum, Kze.—Elaphoglossum conforme γ.
consobrinum, Kze.—Elaphoglossum consobrinum.
contaminans, Wall.—Pecílopteris contaminans.

cordatum, Wall. Cat. 2166 (not in Hb.)—Neilgherries.
coriaceum, Wall.—Elaphoglossum macropodium.

costatum, Wall.—Pecílopteris costata.
crassefolium, Gaud.—Hymenodium reticulatum.
crassifolium, Wall.—Acrostichum aureum.
crassinerve, Kze.—Elaphoglossum crassinerve.

crinum, Lin.—Hymenodium crinum.
crinum, M. et Gal.—Elaphoglossum blepharodes.
crispatulum, Féé.—Elaphoglossum crispatulum.
crispatulum, Wall.—Pecílopteris crispatula.
crispum, Vill.—Allosorus crispus.
cruciatum, Lin.—Gymnogramma cruciata.

Cumingii, Féé.—Elaphoglossum Cumingii.

curvans, Kze.—Elaphoglossum curvans.
cuspidatum, Wild.—Elaphoglossum cuspidatum.
danææfolium, Langs. et Fisch. Icon. Fil. 5, t. 1.—Brazil.

Acrostichum danææfolium, Wild. Sp. 118; Spr. Syst. 37; Desv. Prod. 211; Klyps. 64; Presl. Tent. 341; Brack. U. S. Exped. xvi. 82.

Chrysomium danææfolium, Féé, Acrost. 101; Id. Gen. 61.
decoratum, Kze.—Elaphoglossum decoratum.
decurrens, Desv.—Elaphoglossum decurrens.
decurrens, Wall.: Mett.—Gymnopteris decurrens.
dichotomum, Cav.—Schizsea bifida.
dichotomum, Forsk.—Actinopteris radiata.
dichotomum, Lin.: Forst.—Schizsea dichotoma.
dicksonioides, Desv.—? Polybotrya osmundacea.
didynamum, Féé.—Elaphoglossum didynamum.
digitetum, Lin.—Schizsea digitata.
dimorphum, Hk. et Grev.—Elaphoglossum dimorphum.

dimorphum v. furcatum, Féé.—Polybotrya bifurcata.
dissimile, Kze.—Elaphoglossum dissimile.
diversifolium, Bl.—Pecílopteris heteroclita γ.

[Gen. 2. Sp. 25.]
Acrostichum.

Dombeyanum, Fée.—Elaphoglossum lepidotum.
dubium, Poir.—Niphobolus adnascens.
durum, Kze.—Elaphoglossum durum.
ebenum, Lin.—Gymnogramma Calomelanos β.
elegans, Vahl.—Schizsea elegans.
elipticum, Fée.—Elaphoglossum ellipticum.
elongatum, Kze.—Elaphoglossum elongatum.
emarginatum, Ham.: Roxb.—Acrostichum aureum.
erinaceum, Fée.—Elaphoglossum erinaceum.
erthrodes, Kze.—Lomariopsis erythrodes.
erthrodes, Splitg.—Lomariopsis phlebodes.
erthrolepis, Fée.—Elaphoglossum erythrolepis.
falcatum, Fée.—Elaphoglossum falcatum.
fallax, Bory.—Gymnopteris acuminata β.
Feéi, Bory.—Elaphoglossum Feéi.
ferrucineum, Lin.—Polypodium incanum.
ferrugineum, Lind.—Elaphoglossum ferrugineum.

[filare, Forsk. Fl. Æg. Arab. 184.—Yemen.—Sw. Sys. 18.
? Pteridis sp.—f. Fée.]

fimbriatum, Cav.—Elaphoglossum erinaceum.
fimbriatum, Kl. MS.—Elaphoglossum Lindeni.
fimbriatum, Hort. Ber. (Pr.)—Elaph. scolopendrifolium.
fistulosum, Poir.—Schizsea fistulosa.
Finlaysonianum, Wall.—Pœcilopteris Finlaysoniana.
flabellatum, H. et B.—Rhipidopteris flabellata.
flabellatum? β. sphenophyllum, Kze.—Rhipidopteris flabellata β.

[flabellifolium, Link. Fil. Sp. 165.—?]
flaccidum, Bory.—Anetium citrifolium β.
flaccidum, Fée.—Elaphoglossum simplex.
flagelliferum, Wall.—Pœcilopteris heteroclitia.
flavens, Sw.—Nothochléna flavens.
floridum, Poir.—Stenosemia aurita.
flaviculaeum, Hk. et Grev.—Rhipidopteris peltata β.
formosum, Presl.—Acrostichum aureum.
fraxinifolium, R. Br. Prod. 145.—New Caledonia; Feejee Isl.; Trop. N. Holland.
Chrysodium fraxinifolium, Fée, Acrost. 101, t. 62; Id. Gen. 61.
fraxinifolium, Presl.—Neurocallis scandens.
frigidum, Lind.—Elaphoglossum frigidum.
fusiforme, Wall.—Platycerium bisforme.
futum, Galeotti.—Elaphoglossum vestitum.
Funcitii, Fée.—Elaphoglossum Funcitii.
furcatum, Lin.—Gleichenia furcata.
Gardnerianum, Kze.—Elaphoglossum Gardnerianum.

[Gen. 2. Sp. 28.]
Acrostichum.

Gayum, Fée.—Elaphoglossum Gayum.
glabellum, Kl.—Elaphoglossum martinicense.
glandulosum, Carm.—Elaphoglossum conforme S.
glaucum, Fée.—Elaphoglossum glaucum.
glaucum, Cav.—Pteris glauca.
gorgoneum, Bl.—Elaphoglossum marginaulatum.
gorgoneum, Klfs.—Elaphoglossum gorgoneum.
graminoides, Sw.—Monogramma furcata.
grande, A. Gunn.—Platyceium grande.
gratum, Fée.—Elaphoglossum gratum.
Hamiltonianum, Wall.—Polybotrya Hamiltoniana.
Hartwegii, Fée.—Elaphoglossum Hartwegii.
hastatum, Thunb.—Nephobolus hastatus.
hastatum, Hb. Madras.—Hemionitis cordata β.
hastatum, Liebm.—Anapausia aliena β.
Herminieri, Bory et Fée.—Elaphoglossum Herminieri.
heteroclitum, Presl.—Pecilopteris heteroclitis.
heterolepis, Fée.—Elaphoglossum heterolepis.
heteromorphum, Kl.—Elaphoglossum heteromorphum.
heterophyllum, Lin.—Drymoglossum piloselloides.
heterophyllum, Raddi.—Lomaria pteropus.
heterophyllum, Roxb.—Nephobolus carnosus.
hirtum, Sw.—Elaphoglossum squamosum.
horridulum, Klfs.—Elaphoglossum horridulum.
Huascnaro, Ruiz.—Elaphoglossum Ruizianum.
Hubertiunum, Bory Hb. } —Elaphoglossum hybridum.
hybridum, Bory }—Elaphoglossum hybridum.
hybridum, Hook.—Elaphoglossum erinaceum.
hybridum, Hb. Wight.—Elaphoglossum stelligerum.
hyperboreum, Liljebl.—Woodsia alpina.
hystrix, Kze.—Elaphoglossum hystrix.
ilvense, Lin.—Woodsia ilvensis.
ilvense, With.—Woodsia alpina.
impressum, Fée.—Elaphoglossum impressum.
inaequale, Willd.—Acrostichum aureum θ.
intermedium, Fée.—Elaphoglossum cognatum.
interruptum, Sw. Hb.: Mert. Hb.—Nothochsena distans.
Jamesoni, Hk. et Grev.—Elaphoglossum Jamesoni.
japurense, Mart.—Lomariopsis phlebodes.
javense, Willd.: (Hb. 19555—1).—Nothochsena javense.
javense, Willd.: (Hb. 19555—2).—Nothochsena distans.
juglandifolium, Klfs.—Acrostichum aureum ε.
Junghuhianum, Kze.—Elaphoglossum Junghuhianum.
Karstenianum, Kze.—Elaphoglossum Karstenianum.
laciniatum, Gilib.—Asplenium septentrionale.
laminarioides, Bory.—Elaphoglossum laminarioides.
lanceolatum, Lin.—Gymnopteris lanceolata.

[Gen. 2. Sp. 28.]
Acrostichum.

lancifolium, Desv.—Elaphoglossum viscosum β.
Langsdorffii, Pr.—Elaphoglossum Langsdorffii.
lanuginosum, Desf.—Nothochlæna lanuginosa.
lanuginosum, Willd.—Cheilanthes aquamosa.
latifolium, Sw: (Fl. Ind. Occ.)—Olfersia longifolia.
latifolium, Sw: (Schrad. J.)—Elaphoglossum conforme.
latifolium, Sieb.—
- Elaphoglossum ellipticum (Fée.)
- Elaphoglossum Sieberi (Hk.)
laurifolium, Pet. Th.—Elaphoglossum laurifolium.
Lechlerianum, Metten.—Elaphoglossum Lechlerianum.
Lepepianchii, Bory.—Elaphoglossum Lepepianchii.
lepidopteris, Langa et Fisch.—Goniophlebum lepidopteris.
lepidotum, Willd.—Elaphoglossum lepidotum.
leptophyllum, DC.—Gymnogramma leptophylla.
leptophyllum, Fée.—Elaphoglossum leptophyllum.
L'Herminieri, Bory MS.—Elaphoglossum erinaceum.
Lindenii, Bory.—Elaphoglossum Lindenii.
lineare, Fée.—Elaphoglossum lineare.
lineare, Spr.—Lomaria woodwardioides.
linearifolium, Preal.—Olfersia cervina.
lineatum, Cav.—Lomaria crenata.
Lingua, Raddi.—Elaphoglossum Lingua.
Lingua, Thunb.—Niphobolus Lingua.
Lingua, Hort.—Elaphoglossum brevipes.
linguaformae, Cav.—Elaphoglossum linguiforme.
loesense, Hook.—Elaphoglossum loesense.
loemoides, Bory.—Lomarioidea Boryana.
lonchophorum, Kze.—Paeilopteris lonchophora.
lonchophyllum, Fée.—Elaphoglossum lonchophyllum.
longifolium, Burm.—Niphobolus longifolius.
longifolium, Jacq.—Olfersia longifolia.
Lowei, Fée, Hb. ? —Elaphoglossum squamosum.
ludens, Wall.—Paeilopteris ludens.
luridum, Fée.—Elaphoglossum brevipes.
luteum, Desv.—Nothochlæna lutea.
macrolepis, Bojer MS.—Elaphoglossum obductum.
macropodium, Fée.—Elaphoglossum macropodium.
Maranta, Lam.—Nothochlæna lanuginosa.
Maranta, Lin.—Nothochlæna Maranta.
Maranta, Pall : Hænk.—Woodsia ilvensis.
marginatum, Lin.—Litobrochia grandifolia.
marginatum, Schkr.—Acrostichum aureum ε.
marginatum, Wall.—Elaphoglossum marginatum.
aritimum, Guienzius.—Acrostichum aureum γ.
martiniense, Desv. (Hb. Mua. Par.)—Elaph. martiniense.
mascarenense, Spr.—Paeilopteris punctulata.

[Gen. 2. Sp. 29.]
Acrostichum.

Mathewsii, Fée.—Elaphoglossum Mathewsii.
melanolepis, Fée.—Elaphoglossum melanolepis.
melanopus, Kze.—Elaphoglossum melanopus.
melanostictum, Bl.—Elaphoglossum apodum.
meridense, Kl.—Elaphoglossum meridense.
Mezieri, Bory.—Elaphoglossum splendens.
microadenium, Fée.—Elaphoglossum microadenium.
microlepis, Kze.—Elaphoglossum microlepis.
minutum, Fohl.—Elaphoglossum minutum.
minus, Metten.—Gymnopteris normalis.
Moritzianum, Kl.—Elaphoglossum Moritzianum.
muscusom, Kze.—Elaphoglossum perelegans.
muscusum, Sw.—Elaphoglossum muscosum.
neborale, Lam.—Blechnum Spicant.
nervosum, Bory.—Olfersia nervosa.
neriifolium, Wall.—Elaphoglossum viscosum β.
nicotianefolium, Sw.—Anapausia nicotianaefolia.
nigrum, Zippel. MS.—Elaphoglossum stigmatolepis.
niveum, Desv.—Nothochlæns nivea.
nivosum, Kze.—Elaphoglossum tectum.
notatum, Fée.—Elaphoglossum notatum.
nudum, Kze. Hb.—Elaphoglossum Gyanum.
nunnularifolium, Sw.—Niphobolus nunnularifolius.
obductum, Klfs.—Elaphoglossum obductum.
obloum, Bl.—Acrostichum sureum β.
oblongum, Desv.—Elaphoglossum conforme.
obovatum, Bl.—Niphobolus obovatus.
obtusum, Carm.—Elaphoglossum Jamesoni β.
obtusifolium, Bl.—Elaphoglossum decurrens.
obtusifolium, Willd.—Gymnopteris obtusifolia.
oligotrichum, Kze. Hb.—Elaphoglossum lineare.
ophioglossoides, Goldm.—Elaphoglossum decurrens.
Orbignyanum, Fée.—Elaphoglossum Orbignyanum.
ovatum. Hk. et Gr.—Elaphoglossum ovatum.
oryphylum, Kze. MS.—Elaphoglossum simplex.
pachydermum, Fée.—Elaphoglossum pachydermum.
pachyphylum, Kze.: ? Kl.—Hymenodium pachyphylum.
pachyphylum, Mart. Hb.—Elaphoglossum durum.
paleaceum, Pohl.—Elaphoglossum perelegans.
paleaceum, Hk. et Grev.—Elaphoglossum squamosum.
pectinatum, Lin.—Schizæa pectinata.
peltatum, Sm.—Rhipidopteris peltata.
pennula, Poir.—Schizæa pennula.
perelegans, Fée.—Elaphoglossum perelegans.
petiolatum, Sw.—Elaphoglossum viscosum.
petiolosum, Desv.—Elaphoglossum petiolosum.
phlebodes, Kze.—Lomariopsis phlebodes.

[Gen. 2. Sp. 28.]
Acrostichum

Phyllitidis, L'Herm. MS.—Elaphoglossum alismaefolium.
piilosella, Spr. — Elaphoglossum piloselloides.
piiloselloides, Pr. — Elaphoglossum piloselloides.
pilosiusculum, Wickstr.—? Grammitis totta.
pilosum, H. et B.—Elaphoglossum pilosum.
pilosum, Sol. MS.—Grammitis totta.
platyneuron, Fée.—Elaphoglossum platyneuron.
platyneuron, Lin.—Asplenium ebeneum.
p Licatium, Cav.—? Elaphoglossum lepidotum.
Plumieri, Desv.—Elaphoglossum viscosum.
Plumieri, Fée.—Elaphoglossum Plumieri.
plumosum, Fée.—Elaphoglossum muscosum.
podatrichum, Desv.—Elaphoglossum undulatum.
Peppigiana, Fée.—Elaphoglossum Peppigianum.
polylepis, Kze. Hb.—Elaphoglossum lepidotum.
polygodiojides, Lin.—Polyodium inceanum.
polygodiojides, Pet. Th. —Lomaria alpina.
portaricense, Spr.—Anapausia aliena β.
preamantissima, Bory Hb.—Neurocallis premantissima.
Presianum, Fée.—Elaphoglossum ciliatum.
Prieurianum, Kl.—Lomariopsis phlebodes.
proliferum, Bl.—Pecilopteris repanda.
proliferum, Hk.—Pecilopteris Hookeriana.
proliferum, Wall. Hb.—Polybotrya appendiculata.
Phorolobus pteroides, Desv. Prod. 291.
[? Chelanthus sp.; ? Gymnopteris sp.]
pteroides, Bernh.—NothochlEena trichomanoides.
pulchrum, Lin.—NothochlEena Marantæ.
pumilum, M. et Gal.—Elaphoglossum piloselloides.
punctatum, Lin.—Pleopeltis iroides β.
punctulatum, Lin. Supp.—Pecilopteris punctulata.
punctulatum, Presl.—Pecilopteris Presliana.
quercifolium, Retz.—Gymnopteris quercifolia.
Quoyana, Gaud.—Pecilopteris Quoyana.
rabdolepis, Fée.—Elaphoglossum rabdolepis.
Raddii, Desv. —Elaphoglossum horridulum.
Raddianum, Hk. et Gr. —Elaphoglossum horridulum.
Raddianum, Kze. Hb.—Neurocallis scandens.
radiatum, Kö nig MS.—Actinopteris radiata.
ramentaceum, Roxb.—Hemionitis cordata γ.
ramosisissimum, Fée.—Elaphoglossum ramosissimum.
recognitum, Kze.—Elaphoglossum Plumieri.
repandum, Bl.—Pecilopteris repanda.
[June,1857.] 2

[Gen. 2. Sp 29.]
Acrostichum.

Requienianum, Gaud.—Neurocallis Requieniana.
reticulatum, Klfs.—Hymenodium reticulatum.
rigens, Presl.—Acrostichum aureum γ.
rigidum, Wall.—Photinopteris speciosa.
rivulare, Ham. Hb.: Wall.—Gymnopteris decurrens.
Roestii, Schaffn. MS. : Fée.—Elaphoglossum Roestii.
rubiginosum, Fée.—{ Elaphoglossum Schiedei (Kze.)
{ Elaphoglossum tectum (Kl.)
rufum, Lin.—Gymnogramma rufa.
rufum, Spr.—Lomaria discolor.
salicifolium, Willd. Hb.—Elaphoglossum viscosum β.
sanctum, Lin.—Polypodium sanctum.
Sartori, Liebm.—Elaphoglossum alismæfolium.
scapellum, Mart.—Elaphoglossum scapellum.
sculpturatrum, Kze.—Pecilopteris costata.
sculpturatrum, Presl.—Acrostichum aureum ζ.
sandens, Bory.—Elaphoglossum sandens.
sandens, Lin.—Stenochlæna sandens.
sandens, Raddi.—Neurocallis sandens.
scapellum, Kze. : Fée.—Elaphoglossum scapellum.
scariosum, Sw.—Cheilanthes squamosa.
Schiedei, Kze.—Elaphoglossum Schiedei.
Schomburgkii, Fée.—Elaphoglossum Schomburgkii.
scolopendrifolium, Raddi.—Elaphoglossum scolopendrifolium.
seetacoonense, Boxb.—? Lomaria triquetra.
Selloxianum, Kl. Hb.—Elaphoglossum falcatum.
semipinnatum, Boxb.—? Gymnopteris taccæolia β.
septentrionale, Lin.—Asplenium septentrionale.
serratifolium, Mert. ; Klfs.—Pecilopteris serratifolia.
serratrum, Poir.—Polypodium minimum.
serrulatum, Sw.—Xiphopteris serrulata.
serrulatum, Willd.—Polybotrya ? Flumieri.
 sessile, Fée.—Elaphoglossum sessile.
setosum, Liebm.—Elaphoglossum setosum.
setosum, Wall.—Polybotrya appendiculata.
Sieberi, Hk. et Grev.—Elaphoglossum Sieberi.
siliquosum, Lin.—Ceratopteris thalictroides.
simplex, Spr.—Elaphoglossum crassinerve.
simplex, Sw.—Elaphoglossum simplex.
sinuatum, Lag. : Sw.—Nothochlæna sinuata.
sorbifolium, Lin.—Lomariopsis sorbifolia.
sorbifolium, Vahl. : Hb. Willd.—Lomariopsis phlebodes.
sorbifolium, Hort. Ang. et Ber.—Olfersia cervina.
spathulatum, Bory.—Elaphoglossum spathulatum.
spathulatum, L'Herm.—Elaphoglossum alismæfolium.
spathulinum, Raddi.—Elaphoglossum horridulum.
speciosum ? Bojer.—Acrostichum aureum γ.

[Gen. 2. Sp. 29.]
Acrostichum.

speciosum, Presl.—Stenochlæna scandeus.
speciosum, Willd.—Acrostichum aureum L.
sphenophyllum, Kze.—Rhipidopteris flabellata B.
Spicant, Vill.—Blechnum Spicant.
spicatum, Lin. fil.—Hymenolepis spicata.
splendens, Bory.—Elaphoglossum splendens.
spicatus, Hook.—Elaphoglossum squamatosus.
squamatum, Sw. : Willd.} — Elaphoglossum squamatum.
squamatum, Cav. } — Elaphoglossum stelligerum.
squamatum, Pr. : Spr.—Elaphoglossum lepidotum,
squamatum, Schk. (t. 15.)—? Elaphoglossum squamatosum.
squamatum, Sw.—Elaphoglossum squamulosum.
squarrosum, Kl.—Elaphoglossum squarrosum.
[staphyleum, Link, "Hort. Ber. 1833, nec seris" : Kze. Lin. xxiii. 215.—?]}
stelligerum, Wall.—Elaphoglossum stelligerum.
Stemmaria, Beauv.—Platycerium Stemmaria.
Stemmaria, Comm.—Platycerium alpicorne.
stenopteris, Kl.—Elaphoglossum stenopteris.
stigmatolepis, Fée.—Elaphoglossum stigmatolepis.
strictum, Bory.—Elaphoglossum strictum.
stipitatum, Bory.—Elaphoglossum stipitatum.
subcordatum, Cav.—Nothochlæna Marantæ.
suberenatum, Hook.—Pœciolopteris suberenata.
subdiaphanum, Hk. et Grev.—Olfersia nervosa.
succisafolium, Poir. } — Elaphoglossum succisæfolium.
succisum, Pet. Th. } — Elaphoglossum succisæfolium.
sulphureum, Sw.—Gymnogramma sulphurea.
ambillense, Hook.—Elaphoglossum ambillense.
tartareum, Cav.—Gymnogramma tartarea.
tectum, H. et B.—Elaphoglossum tectum.
tenellum, Desv.—? Elaphoglossum lineare.
tenuis, Retz.—Cheilanthes tenuifolia.
tereticaulum, Desv.—Nothochlæna flavens.
terminans, Wall.—Pœciolopteris terminans.
thalictroides, Lin.—Ceratopteris thalictroides.
Thelypteris, Lin.—Lastrea Thelypteris.
tomentosum, Bory : Willd.—Elaphoglossum obductum.
trichomanoides, Bernh.—Nothochlæna trichomanoides.
trifoliatum, Lin.—Gymnogramma trifoliata.
trifoliatum, Hk. et Grev.—Pteris Crenata.
trigrons, Comm. : Mirb.—Lomariopsis variabilis.
trinerve, Hassk.—Anapausia bicuspis.
tripartitum, Hk. et Grev.—Rhipidopteris tripartita.
triquetrum, Wall.—Lomaria triqueta.

2 *
Aerostichum.—Actinopteris.

triste, Arrab.—Pœcilopteris serratifolia.
umbrosum, Liebm.—Anapausia aliena.
undulatum, Willd.—Elaphoglossum undulatum.
unitum, Bory Hb.—Elaphoglossum affine.
Urvillei, Presl.—Acrostichum aureum η.
velleum, Fée : ? Liebm.—Elaphoglossum velleum.
vespertilio, Mett.—Anapausia vespertilio.
vexillatum, Ham. : Wall.—Elaphoglossum heterolepis.
vestitum, R. T. Lowe.—Elaphoglossum squamosum.
volvedum, Schlech.—Elaphoglossum vostitum.
villosum, Gaud.—Elaphoglossum horridulum.
villosum, Sieb.—Elaphoglossum hybridum.
villosum, Sw.—Elaphoglossum villosum.
vires, Wall.—Pœcilopteris vires.
viscosum, Hk. et Grev. : Bl.—Elaphoglossum viscosum β.
viscosum, Sw.—Elaphoglossum viscosum.
viviparum, Cav.—Onychium auratum.
viviparum, Ham.—Polybotrya appendiculata.
viviparum, Lin. fil.—Asplenium viviparum.
Wagneri, Kze.—Elaphoglossum Wagneri.
Webbii, Bory.—Elaphoglossum Webbii.
Wightianum, Presl.—Acrostichum aureum θ.
Wightianum, Wall.—Polybotrya asplenifolia.
yapurense, Mart.—Lomariopsis phlebodes.
Zollingeri, Kze.—Gymnopteris Zollingeri.

ACTINIOPTERIS, Link, Fil. Sp. Ber. 73, 79. [Synopsis xlvi.]

australis, Link, Fil. Sp. Ber. 80.—Mascaren Islands; Abyssinia.
Actinopteris radiata β Hook. Icon. Pl. t. 976.
Acrostichum australe, Lin. Supp. 444.
Acropteris australis, Fée, Gen. Fil. 76, 77, t. 6 A, f. 2.
Belvisia australis, Mirb.
Blechnum flabellatum, Presl. Tent. Pter. 103.
Pteris australis, Hook. et Grev. Icon. Fil. t. 8; Metten. Fil. Laps. 54.
radiata, Link, Fil. Sp. Ber. 80.—India: Neighberries (Schmid 76), Madras, Agra, Ava, Bombay, Scinde, N. India; Egypt; Arabia; S. Africa; Bourbon; Madagascar (Link.)
Acrostichum australe, Vahl. Symb. i. 84, t. 25 (excl. syn. Lin.)
Acropteris radiata, Fée, Gen. Fil. 77.

[Gen. 3. Sp. 32.]
Actinopteris.—Adiantopsis.

Blechnum radiatum, Presl, Tent. Pter. 103.
Pteris radiata, Metten. Fil. Lips 54, t. 15, f. 6.

Actinopteris, J. Smith, Bot. Mag. 1846, Comp. 20 (§).
radiata, J. Sm. MS. (Kze.)—Adiantopsis radiata.

Actinophlebia, Presl, Die Gefassb. Stipes der Pflanzen, 47.
horrida, Presl.—Hemitelia horrida.
obtusa, Presl.—Hemitelia subincisa.

Actinostachys, Wallich, Herb.: Id. Cat. 1.
digitata, Wall.—Schizaea digitata.
pennula, Hook.—Schizaea pennula.
sulbrijuga, Presl.—Schizaea subrubrijuga.
trilatralis, J. Sm.—Schizaea pennula.

Adectum, Link, Fil. Sp. Ber. 41, 42.
piilosisculum, Link.—Dennstaedtia punctilobula.

Adenophorus, Gaudichaud MS: Bory, Dict. Class. d'Hist.

bipinnatus, Gaud.—Polypodium tamariscinum B.
bipinnatus B. Fée.—Polypodium tamariscinum.
bipinnatus y. Fée.—Polypodium tripinnatifidum.
ymenophylloides, Hk. et Grev. }—Polypodium hymenophy-

loides, Gaud.

? pinnatifidus, Gaud.—Polypodium adenophorum.
tamarisci, Hk. et Grev.—Polypodium tamariscinum.
tripinnatifidus, Gaud.—Polypodium tripinnatifidum.

Adiantellum, Presl, Tent. Pter. 157 (§) = Adiantum.

ADIANTOPSIS, Fée, Gen. Fil. 145. [Synopsis xxxvii.]

californica, M. [Synopsis, xxxvii.]—California.

Aspidotis californica, Nutt. MS: Hb. Hooker.
Cheilanthes Coulteri, Harvey MS: Hb. Hooker.
Hypolepis californica, Hook. Sp. Fil. ii. 71, t. 89 A.
cepensis, Fée, Gen. 145.—S. Africa (Zeyh. 1882); Algoa Bay.

Allosorus capensis, Bernhardi—f. Steud.
Cheilanthes pratetx, Kf., Enom. 212; Spr. Syst. 116.
Hypolepis capensis, Hook. Sp. Fil. ii. 71, t. 77 C.

———B. crenatum, Kze. Lin. x. 530.—S. Africa.

chlorophylla, Fée.—Cheilanthes chlorophylla.

dichotoma M.—Quito; Brazil; Urugauy.
Pteris dichotoma, Cav. MS: Sw. Syn. 335.

2 **
Adiantopsis.—Adiantum.

Cheilanthes dichotoma, Sw. Syn. 129, 335, t. 3, f. 7; Willd. Sp. 460; Spr. Syst. 113; Desv. Prod. 305; Presl, Tent. 160; Hook. Sp. Fil. ii. 104, t. 102 B.

Hypolepis triitida, Kl. MS: Hb; Hb.

Monticola, M. [Synops. xxxvii.]—Brazil (Gardin. 3557.)

Hypolepis Gardineri, Hook. Sp. Fil. ii. 74, t. 92 B.

Pauperoula, Fée, Gen. 145.—Cuba (Lind. 1864.)

Cheilanthes pauperoula, Metten. Fil. Lips. 52.

Hypolepis pauperoula, Hk. Sp. Fil. ii. 73, t. 98 C.

Pedata, M.—Jamaica.

Hypolepis pedata, Hk. Sp. Fil. ii. 73, t. 92 A.

Pteroides, M.—[Synops. xxxvii.]—S. Africa (Un. Itin. 167.)

Java.

Casseebeera pteroides, Presl, Tent. Pter. 155, t. 6, f. 7; J. Sm. Bot. Mag. 1848, comp. 20.

Pteris orbicularis, Hook. Fl. Syst. xiii. 120, t. 96, f. 3.

Radiata, Fée, Gen. Fil. 145.—S. Amer.: Brazil (Regn. ii. 325), Venezuela (Fendl. 67), Caraccas, Columbia, (Moritz. 239), Guiana (Rich. Schomb. 1132), Peru, Mexico (Leibold 4; Galeott. 6400; Schaffn. (1855) 34), Guatemala, Panama; W. Indies: Jamaica, Martinique (Sieb. Fl. Mart. 398), Hispaniola.—Plum. t. 100; Pluk. t. 253, f. 3.

Actinopteris radiata, J. Sm. MS.—f. Kze.

Hypolepis radiata, Hk. Sp. Fil. ii. 72, t. 91 A.

Schimperi, M. [Synops. xxxvii.]—Abyssinia (Schimp. 1651).

Hypolepis Schimperi, Hk. Sp. Fil. ii. 70; Fée, Gen. 147.

Specabilis, Fée.—Cheilanthes chlorophylla.

Adiantum, Linnaeus, Gen. Plant. 782. [Synops. xxxvi.]

achilleaformium, Lam.—Asplenium rutacefolium β.

aculeatum, Lin.—Davallia aculeata.

acuminatum, Desv.—Adiantum villosum.

acutangulum, Wall. Hb.—Adiantum venustum.

[Gen. 5. sp 41.]
Adiantum.

sithiopieum, Lin. Sp. Plant. 1560.—S. Africa: Natal (Plant 322); Abyssinia (Schimp. 19); Mauritius (Schleich.); Tristan d’Acunha; Madagascar; India; Neigherries (Schmid 86, 139); Weigle 14; Japan; S. America: Chili, Mendoza, Quito, (Jameson, 56, 209), Columbia (Wagener 409; Moritz. i. 54), Peru (Mathews 3295), Venezuela (Tendl. 71), Caraccas (Lind. 84), Brazil, Mexico (Galeotti 6461, 6562; Hartweg 1624; Cout. 1675), Guatemala; Galapagos; N. Zealand; Tasmania; N. Holland, extra-trop. & sub-trop., Yarra R., Swan R.—Pluk. t. 253, f. 2; Hoult. Fl. Syst. t. 100, f. 3.—Sieb. Fl. Mixt. 244.

Adiantum trigonum, Labill. Nov. Holld. ii. 98, t. 248, f. 2; Willd, Sp. 463; Presl, Tent. 158; Link. Fil. Sp. 71; Féé, Gen. 114.

Adiantum thaliotroides, W. Hb. 20101; Schleich. Adumb. 53, t. 53; Kze. Lin. x. 530; Id. Bot. Zeit. iii. 286; Presl, Tent. 159; Féé, Gen. 114; (Mauritius, Natal, Abyssinia, India, Venezuela, Columbia, Mexico).

Adiantum cycloides, Zenker, Fl. Ind. 11, t. 11 (? inc.)—f. Kze.

Adiantum rotundifolium, Colenso MS: Hb. Hook.

Adiantum trisimutatum, Colenso MS: Hb. Hook.

Adiantum praepeniforme, Forest. Prod. 460; Schkuhr, Crypt. 113, t. 1215; (excl. syn. Lin. Sw. et alab.)

Adiantum exile, Colenso MS: Hb. Hk. (young).

Adiantum longissimum, Colenso MS: Hb. Hk. (lax).

Adiantum platyphyllum, Colenso MS: Hb. Hk. (large sterile).

affine, Hook.—Adiantum setulosem.

affine, M. et Gal.—Adiantum concinnum.

africanum, Br.—Adiantum Capillus-Veneris.

alarcoianum, Gaud.—Adiantum incisum.

americanum, Corn.—Adiantum pedatum.

amænum, Wall.—Adiantum flabbellulatum.

amplum, Presl, Rel. Hænk. i. 63.—Mexico, Guayaquil.

Adiantum amplum, Presl, Tent. 153; Hk. Sp. Fil. ii. 36.

angustatum, Kifs. Enum. 202—Brazil.

arborescens, Poir.—Hypolepis tenuifolia.

[Gen. 5. Sp. 45.]
Adiantum.

arcuatum, Sw.—Adiantum lunulatum, argutum, Splitg.—Adiantum intermedium, asarifolium, Willd.—Adiantum reniforme β.
asperum, Fée, Gen. Fil. 113, 115.—Cuba.
asperum, Desv.—Adiantum lucidum.
assimile, Link.—Adiantum tenerum.
assimile, Sw.—Adiantum aethiopicum.
Auberti, Desv.—Adiantum Poiretii.
auriculatum, Thunb.—Cheilanthes auriculata.
Berterianum, Balbia MS.—Adiantum pulverulentum.
bulbiferum, Klfs.—Adiantum suboordatum.
Bowlandii, Desv.—Adiantum rhomboideum.
borbonicum, Jacq.—Asplenium rufescens β.
boeae, Presl.—Adiantum pedatum.
brasiliense, Raddi, Fil. Bras. 56, t. 76.—Brazil (Gardn. 59; Tweedie 1132; Burchell 1816.)
Adiantum brasiliense, Hook, Sp. Fil. ii. 50; Fée, Gen. Fil. n. 129.
—β. majus, (Raddi, Fil. Bras. 58.)—Brazil.
Adiantum pedatum, Raddi, Syn. Fil. n. 128.
brasiliense, Link.—{Adiantum intermedium (Link.)
{Adiantum denticulatum (Kze.)
? brasiliense, Hk. (Coll. Spruce.)—Adiantum tomentosum.
Busbyanum, Coleno MS.—Adiantum formosum.
caffrorum, Lin. fil.—Mohria thurifraga.
caffrorum, Sw.—Cheilanthes hirta.
calcareum, Gardn. Hk. Icon. Pl. t. 467.—Brazil (Gardn. 3551.)
Adiantum calcareum, Hk. Sp. Fil. ii. 15; Fée, Gen. 114.
canonicum, Kze.—Adiantum tomentosum.
capense, Thunb.—Adiantopsis capensis.
capillaceum, Plum.—Davallia capillacea.
Capillus, Sw.—Adiantum Capillus-Veneris.
Capillus Gorgonis, Webb.—Adiantum caudatum β.
Capillus-Veneris, Lin. Sp. Pl. 1558.—Europe: Great Britain, Ireland, Switzerland, France, Belgium, Spain, Portugal, Italy, Dalmatia, Greece, Turkey; N. Africa; Algiers, Abyssinia (Schimper 214); Atlantic and Cape de Verd Isl.; S. Africa; Uitenhage, Algoa Bay; Mascaren Isl.; Madagascar; India: Nepal, Assam, Bootan, Khaysa, Kashmir, Kumaon, Beloochistan, Seinde, N. W. Thibet, Malabar, Ava, Oude, Neilgheries, (Schimper 35); Java; China; Persia; Arabia Petrea; Caucasus; Siberia; America: Florida, Arkansas, Alabama, California, Guatemala; Mexico (Schaaffner, (1854-5) 48, 44, 49 a, b.),

[Gen. 5. sp. 59.]
Adiantum.

Santarem, Caracca (Moritz. 61, 170); Jamaica, Dominica, Trinidad; Nissobe; Anietum; New Caledonia; Sandwich Isles.

Adiantum Capillus-Veneris, Sw. Schrad. Journ. 1800, ii. 83; Spr. Syst. 113; Link, Fil. Sp. 70; Kze. Lin. x. 530; xxiii. 215; xxiv. 273; Id. Bot. Zeit. vi. 211.; Wall. Cat. 73.

Adiantum coriandrinum, Lam. Fl. Fr. i. 29; Id. Encyc. 1. 43; Illustr. t. 870, f. 1.

Adiantum Moritzianum, Link, Fil. Sp. 71 (Caracca); Fée, Gen. 114.; Kze. Linn. xxiii. 216.

Adiantum fontanum, Salisbury, Prod. 404.

Adiantum repandum, Tausch: Sieb. exs. 176.

Adiantum dependens, Chapm. MS: Hb. Hk.

Adiantum trisporum, Wildl. Hb. 20108.

—ß. dissectum.—Guatemala, Mexico (Galeotti 6361); Caracca; East Florida, Texas; Oahu (Seemann 2235); India: Gossainthan, Scinde, Afghanistan, Simla, Kumaon, Sikkim; Persia; Great Britain.

Adiantum Capillus-Veneris ß. Hk. Sp. fil. ii. 36, t. 74 B.

—γ. latissimum, Kze. Lin. xxiv. 273.—India: Neilgherries (Schmid. 85, 135); Emodi; Persia; Algiers.

—δ. emarginatum, Desv. Prod. 310.—Bourbon, Madras, Malacca.

Adiantum emarginatum, Bory, MS. Wildl. Sp. Pl. v. 449; Spr. Syst. 113; Presl. Tent. 158; Hk. Sp. fil. ii. 39, t. 75 A (larger form); Fée, Gen. 114.

Capillus-Veneris, Spr.: Dregae.—A. pseudo-Capillus.

cardiochloa, Kze.—Adiantum polyphyllum.

caribaum, Wildl. Hb.—Adiantum prionophyllum.

cassioideae, Desv.—Adiantum obtusum.

caudatum, Lin. Mant. 308.—India (Jacquem. 211, 416, 2483); Malabar, Neilgherries (Schmid 5); Dacca, Poonah, Sylhet, Nepal, Assam, Scinde; Ceylon; Malay Isl.; Philippines (Cumming 292); Java (Zoll. 1547, 2873); China; Japan; Mauritius; Arabia Felix.—Burm. Zeyl. t. 5, f. 1.

Adiantum hirsutum, Bory, Voy. i. 198; Wildl. Sp. 432; Spr. Syst. 111; Desv. Prod. 307; Presl. Rel. Hank. i. 61; Wall. Cat. 2176; J. Sm.

[Gen. 5. Sp. 51.]
Adiantum.

Adiantum vestitum, Wall. Cat. 75; Presl, Tent. 158; Fée, Gen. 114.

—β. ciliatum,—With a. Java, Ceylon, Philippines (Cumming 11); China; Cape de Verd Ial.; India: Madras, Mussoorie, Mysoree, Sutlej valley.
Adiantum ciliatum, Blume, Enum. 215 (deeply cnt).
Adiantum flagelliferum, Wall. Cat. 76 (narrower).
Adiantum caudatum v. fissum, Fée, Gen. 114.
Adiantum Capillus Gorgonis, Webb, Hk. Nig. Fl. 192.

caudatum, Bory.—Adiantum rhizophorum.
cayennense, Willd. Hb. 20084.—B. Guiana (Rich. Schomb. 1201); Surinam (Kappl. 1477a; Kegel 1061), Brazil (Gardn. 1906).
Adiantum cayennense, Kt. Lin. xviii. 552; Kze. Lin. xxi. 223; Hk. Sp. Fil. ii. 20; i. t. 61 A; Fée, Gen. 113.
Adiantum imbricatum, Kze. MS.

—β. stenophyllum (Hk. Sp. Fil. ii. 20).—British Guiana; Ceylon; Tuna; Jamaica.

Adiantum Schomburgkianum, Kt. MS ; Hb. J. Sm. —f. Hook.
(See also Ad. rhomboideum β.)

chilense, Klfs. Enum. 207.—Chili; Concepcion to Valparaiso;
Valdivia (Lechl. 289a); Juan Fernandez; Mexico; (Aschenb. 165; Seemann 1947); Peru; Caraccas (Moritz. 98).

—β. hirsutum, Hk. et Grev. Icon. Fil. t. 173.—With a; Monterey.
Adiantum chilense β. hirsutum, Kze. Lin. ix. 83; Hook. Sp. Fil. ii. 43, t. 75 B.
Adiantum dilatatum, Nuttall MS: Hb. Hk.
Adiantum glanduliferum, Kze. Hb. Papp; Link. Fil. Sp. 72; Presl, Tent. 290.
Adiantum pilosum, Fée, Gen. 114, 118.
Adiantum pubescens, Presl, Rel. Hawk. i. 63; Id. Tent. 159, 290.
Adiantum podophyllum, Willd. Hb. 20060 (Fr).
Adiantum acutatum, Willd. Hb. 20079 (Fr.); Kze. Lin. ix. 84.

chinense, Lin.: Sw.—Davallia tenuifolia γ.
chusanum, Lin.—Davallia tenuifolia β.
viouzafolium, Lam.—Cheilanthes tenuifolia.

[Gen. 5. Sp. 53.]
Adiantum, Bl.—Adiantum caudatum β.

Clausseni, Flæ, Gen. 113, 115.—Brazil.

clavatum, Forst.—Davallia tenuifolia.

clavatum, Lin.—Davallia clavata.

cocinnum, H. et B.: Willd. Sp. Pl. v. 451.—S. America: Venezuela (Pendl. 73, 75); Colombias (Moritz. i. 75; 60, 63, 165; Wagen. 104; Otto 576), Guayaquil, Mexico (Schaaff. (1854) 38a; Galeott. 6518, 6436, 6447; Lind. 181; Leib. 9; Seemann 1946), Tepic; Central America (Cuming 1154); Panama (Seem. 16); W. Indies: Jamaica, St. Vincent; Galapagos.

Adiantum tenerum, Schkuhr. Crypt. 112, t. 121 (excl. syn.)

—β. integrum (Hk. Sp. Fil. ii. 42.)—Quito (Jameson 16).

—γ. laxum.—Peru: Chacapoyas (Mathews 1850).

conicum, Vellozo.—Adiantum subcordatum.

coriandrifolium, Lam.—Adiantum Capillus-Veneris.

Adiantum crenatum, Desv. Prod. 309; Prest. Tent. 159; Fée, Gen. 113; Hk. Sp. Fil. ii. 48.

(See also Ad. Wiesianum.)

crenatum, Juss.: Poir.—Adiantum Poiretii.

cristatum, Lin. Sp. Pl. 1558 (excl. syn. Sloane).—W. Indies: Jamaica, Cuba; Venezuela; Caracas.—? Plum. t. 97.

cristatum, Kze.—Adiantum melanoleucum.

cubense, Hook. Sp. Fil. ii. 8, t. 73 A.—Cuba (Lind. 1867).

Adiantum cubense; Fée, Gen. 114.

cultratum, J. Sm. MS: Hk. Sp. Fil. ii. 34.—W. Indies: St. Vincent; Brazil; St. Catherine.

cultratum, Presl.—? Adiantum cultratum, J. Sm.

[Gen. 5. Sp. 59.]
Adiantum.

culturatum, Willd.—Lindsea culturata.

cuneatum, Langsd. et Fisch, Icon. Fil. 23, t. 26.—Brazil (Regn. i. 488); Organ Mts. (Gardn. 186); S. Brazil; Uruguay; Colombia (Moritz. 166, 167, 168); Peru (Ruiz. Hb. 24).

Adiantum Radianum, Prel. Tent. 158.

Adiantum peltatum, Hort. Germ.

Adiantum tenerum, Hort. plurim.—f. Mett.

cuneatum, Forst.—Lindsea trichomauoides.

cuneatum, Hk. fil.—Adiantum concinnum.

cuneatum, Kze.—Adiantum fragile.

cuneatum, Schlech.—? Adiantum glaucophyllum.

Cunninghami, Hook.—Adiantum affine.

curvatum, Kfse. Enum. 202.—Brazil (Gardn. 4074).

Adiantum curvatum. Spr. Syst. 112; Link, Fil. Sp. 69; Koo. Lin. xxii. 215; Fée, Gen. 113; Hk. Sp. Fil. ii. 28, t. 94 C; Metten. Fil. Leps. 47.

? Adiantum ornithopodium, Prel. Tent. 158.

cycloides, Zonker.—Adiantum æthiopium.

decipiens, Desv.—Adiantum rhizophorum.

decurrentis, Jaceq.—Hymenophyllum decurrentis.

deltoideum, Mart. Icon. Pl. Crypt. 94.—Para.

delicateum, Mart. Icon. Pl. Crypt. 93, t. 56, f. 2.—Brazil (Gardn. 2391; Spruce 879); Cayenne, Panama.

deltoidi, Sw. Prod. 134.—W. Indies: Jamaica, Cuba, St. Domingo.

Allosorus domingensis, Prel. Tent. 158.

denticulatum, Sw. Prod. 135.—W. Indies: Jamaica, Martiniq.—Plum. t. 52; Pluk. t. 252, f. 5 (young).

Adiantum latifolium, Lam. Ency. i. 42 (excl. syn.)—f. Sw.

[Gen. 8. Sp. 65.]
Adiantum.

denticulatum, Burm.—Athyrium Filix-fœmina.
denticulatum, Houtt.—Davallia elegans.
denticulatum, Mett.—Adiantum humile.
dependens, Chapm.—Adiantum Capillus-Veneris.
diaphanum, Bl. Enum. Jav. 215.—Java; Philippines (Cuming 55); Féecees.

Adiantum diaphanum, Hk. Sp. Fil. ii. 10, t. 80 C; Fée, Gen. 113.
dichotomum, Poir.—Adiantopsis dichotoma.
discolorum, Ryan MS.—Adiantum Kaufussii.
dolabriforme, Hk.—Adiantum lunulatum.
dolosum, Kze.—Hewardia dolosa.

Adiantum Edgeworthii, Fée, Gen. 114.
etatum, Desv.—Adiantum prionophyllum.
emarginatum, Bory.—Adiantum Capillus-Veneris 5.
emarginatum, Poir.—Lindsæa reniformis.
eminens, Presl.—Adiantum trapeziforme.
enisfolium, Poir.—Schizoloma ensifolium.
excisum, Kze. Lin. ix. 82.—Chili : Valparaiso (Cuming 492; Bridges 550); ? Mexico (Galeott. 6360; 2630—f. Fée).

exile, Coleno MS.—Adiantum affine.
extensum, Fée, Gen. Fil. 114.—Mexico (Schaffn. (1854)40,41).
falcatum, Sw.—Adiantum villosum 5.
falcatum, Hort. Kew.—Adiantum prionophyllum.

Adiantum falcinellum, Desv. Prod. 308; Spr. Syst. 110.
falsum, Ræusch. (Steud.)—[?]
Féei, Moore in litt.—Mexico (Schaffn. 446).

filiforme, Gardn.—Adiantum delicatulum.

filiforme, Lodd.—Adiantum flabellulatum.

flabellulatum, Lin. Sp. Pl. 1558.—China (Fortune 23); India : [August, 1857.] 3 [Gen. 5. Sp. 75.]
Adiantum.

Nepal, Kumaon, Assam, Khasaya; Malacca; Ceylon (Gardn. 1239); Java (Zoll. 381; Lobb 212)—Pluk. t. 4, f. 3.

Adiantum fuscom, Retz. Obs. ii. 28, t. 5.

Adiantum amenum, Wall. Cat. 78; Hk. et G. Jo. Fil. t. 103; Pr. Tent. 158. P Adiantum fibellulorum Lodd. Cat. 1849 (Kze.); Kze. Lin. xxiii. 216.

flabellulatum, Wall.—Adiantum hispidulum.

flagelliferum, Wall.—Adiantum caudatum β.

flagellum, Fée, Gen. Fil. 114, 117; Id. Iconogr. Nov. 4, t. 2, f. 1.—Brazil.

fontanum, Salish.—Adiantum Capillus-Veneris.

formosissimum, Kl.—Adiantum trapeziforme.

formosissimum, Hort.—Adiantum tenerum.

formosum, R. Br. Prod. 155.—N. Holland, N. Zealand.

Adiantum Bushyanum, Coleus MS: Hk. Hk.

formosum, A. Cunn.: Rich.—Adiantum affine.

foveatum, Raddi.—Adiantum intermedium.

fragile, Sw. Prod. 135.—W. Indies: Jamaica, Cuba (Otto 254), St. Domingo, Martinique (Belang. 433).

Adiantum parvifolium, Fée, Iconogr. Nov. t. 23, f. 1 (small).

fragile v. pubescens, M. et Gal.—Adiantum tricholepis.

fragrans, Lin. fil.: Schkr.: D.C.—Cheilanthes fragrans.

fructuosum, Kze. Hb. Papp.: Id. Lin. ix. 81.—Cuba; New Grenada (Cuming 1183); Brazil (Gardn. 3549); Mexico (Galeott. 6300, 6416; Lind. 78).

Adiantum macrocarpum, Fregl. Tent. 158.

—β. laxum (Hk. Sp. Fil. ii. 24).—Guiana; S. Brazil.

(see also Ad. prionophyllum.)

fructuosum, Link.: Kze. (Ind.)—Adiantum prionophyllum.

fruticosum, Arrab.—Didymochlaena lunulata.

fuliginosum, Fée, Gen. Fil. 113, 116.—Fr. Guiana (Lepr. Cat. 256).

fulvum, Raoü, Choix Pl. Nouv. Zéal. 9.—N. Zealand.

Adiantum fulvum, Hk. Sp. Fil. ii. 52, t. 85 A; Hk. fil. Fl. N. Zeal. ii. 23; Fée, Gen. 114;? Lowe, Ferns iii. t. 19.

[Gen. s. Sp. 81.]
Adiantum.

furcatum, Lin. fil.—*Aspleniun rutefolium* β.
Polybotrya bifurcata.

fuscum, Retz.—Adiantum flabellulatum.

Adiantum Galeottianum, *Fée, Gen.* 114.

glanduliferum, Link.—Adiantum chilense β.

Adiantum hypoleucum, *Kze. MS.* (Lin. xxi. 222).
—β. parcel-pilosa (*Hk, Sp. Fil.* ii. 26).—Brazil: Para (*Spruce 48 in part*).

glauophyllum, *Hk. Sp. Fil.* ii. 40.—Mexico (*Galeott.* 6266. 6359 (rigid), 6566; *Lind.* 48, 1550; *Jurgensen 322*; *Schaffa.* 46; *Veraguas*.

globatum, Poir.—*Cheilanthes multifida*.

gracile, *Fée, Gen.* 116; *Id. Iconogr.* t. 11, f. 1.—Brazil.
graturn, *Fée, Gen.* 114, 119; *Id. Iconogr. Nouv.* t. 12, f. 3.—Mexico (*Galeott.* 6542).
guianerse, Aubl.—*Lindsaea guianensis*.

hastatum, Lin. fil.—*Pteris hastata*.

—*Hook. Sp. Fil.* ii. 45.

heterophyllum, Poir.—*Schizoloma heterophyllum*.
Hewardia, *Kze.*—Hewardia adiantoides,
hexagonum, Lin.—Pteris heterophylla.
hirsutum, Bory.—Adiantum caudatum.

3 *

—? β. (glabrous) Hk. Sp. Fil. ii. 20.—Panama (Seem. 379).
hirtum, Poir.—Cheilanthes hirta.
hirtum, Splt. — Adiantum cayennense.

hispidulum, Sw. Schrad. Journ. 1800, ii. 82.—New Holland (Sieb. Syn. 132 ; Fl. Mist. 246) : Port Jackson, Brisbane R.; Subtrop. N. Holl.; N. Zealand; Norfolk Island; New Caledonia: Aneteum; Sunday Isl.; Isl. of Pines; Feejee Isl.; Society Isl. (Cuming 1415; Mathews 11; Barclay 3351); Java (Zoll. 2498, 2503); Amboyna; Ceylon (Gardn. 1123); India: Neilgherries, Dendigal; Bourbon, Mauritius.
Adiantum pedatum, Forst. Prod. 83.
Adiantum plicatum, Kjfs. Enum. 201.
Adiantum seballatum, Wall. Cat. 79.
Adiantum fiabellulatum, Wall. Cat. 2177.

—β. glabrum, Hook. M.S. in Hb.—Dunk Island, Australia.

—γ. teneilum.—? New Holland.
Adiantum tenellum Moore, Veitch Cat. 1855.

hispidulum, J. Sm. (et Hort. Ang.)—Adiantum hispidulum γ. hispidulum, Boas.—Nothochlæna vestita.
humile, Kze. Lin. ix. 80.—Peru (Lech. 2319, 2319a.)
Adiantum denticulatum, Mett. Fil. Lech. 11.
hypoleicum, Kze. M.S.—Adiantum glaucescens.
imbricatum, Kze. M.S.—Adiantum cayennense.

incisum, Presl. Rel. Hawk. i. 61, t. 10, f. 3 : Id. Tent. 157.—
Mexico; Columbia (Jameson 539); Brazil; Sandwich Isle; Isle of Puna (Barclay 2425); Panama; Galapagos.
Adiantum incisum, Hook. Sp. Fil. ii. 16; Fæ, Gen. 113.
(See also Ad. varium).
incisum, Forsk.—Adiantum caudatum.

integrifolium, Poir.—Lindæa trapeziformis β.
intermedium, Sw. Vet. Acad. Handl. Stock. 1817, 76.—Brazil (Gardn. 58, 1228, 2758); Para (Spruce 48 in part. 578); Peru (Mathews 1857, less glauc.), Columbia, Equador, [Gen. 5. Sp. 95.]
Adiantum.

New Grenada (Lind. 259), Br. Guiana (Rob. Schomb. 48, 90; Rich. Schomb. 252, 1131, 1179), Surinam (Kegel 75, 128, 674; Hostm. 710; Focke 190), Panama, Mexico (Galeott. 6491; Lind. 78; Jurgensen 756), Guatemala (Hartweg 706), Taboga; W. Indies: Cuba (Otto 243), Guadeloupe (L'Herm. 5), Porto Rico.

Adiantum brailiense, Link, Hort. Ber. ii. 13, non Raddi.

Adiantum triangulatum, [Kfjs. Enum. 204.—f. Pr. Kl.; Kze.; Spr. Syst. 113.]

Adiantum villosum, Kze., Hb. Popp.; ? Lin. ix. 79 (Hk.)

—§ triangulatum (Hook. Sp. Fil. ii. 26)—Trinidad.

Irvinianum, Linden Cat. 1856—?

Jacobina, Fée, Gen. Fil. 113, 115.—Brazil.

Joverianum, Hort. Ang.—Adiantum prionophyllum.

juglandifolium, Willd. Hb.—Adiantum obliquum.

Kaulfussii, Kze. Lin. xxi. 221.—S. Amer; Columbia (Barclay 723), Venezuela (Fendl. 87), New Grenada (Lind. Schl. 722), Guiana (Rob. Schomb. 379), Surinam (Kegel 102), Mexico (Jurgens. 787); W. Indies (Sieb. Fl. Mart. 371); Chatham Isl.

Adiantum Kaulfussii, Hook. Sp. Fil. ii. 7; Fée, Gen. 113.

—§ platyphyllum (Hk. Sp. Fil. ii. 8.)—Amazon R.

Klotzschianum, Hook.—Adiantum tomentosum.

Klotzschianum, Presl.—Adiantum subcordatum (? trapeziforme)

Kohautianum, Presl.—Adiantum prionophyllum.

Kunzeanum, Kl.—Adiantum melanoleucum.

Kunzeanum, Presl.—Adiantum pulverulentum.

Kunzei, Miquel.—Adiantum obtusum.

latum, Presl.—Adiantum melanoleucum.

Lancea, Lin. Sp. Pl. 1557.—Surinam.—“Sieb. Thees. ii. t. 64, f. 7, 8.”

Adiantum Lancea, Sw. Syn. 123; Willd. Sp. 440; Spr. Syst. 112; Desv. Prod. 309; Fée, Gen. 113; Hk. Sp. Fil. ii. 27.

lanceolatum, Fée.—Adiantum villosum.

lanceolatum, Poir.—Schizoloma lanceolatum.

latifolium, Lam.—Adiantum denticulatum.

laxum, Kze. Lin. ix. 79.—Cuba.

lendigerum, Poir.—Chellanthes lendigera.

3 ** [Gen. 5. Sp. 100.]
Adiantum.

Le Prieurii, Hook.—Hewardia Le Prieurii.

Lindsea, Cav. Prolect. (1801), 271.—Quito.

lineare, Poir.—Lindsea linearis.

lobatum, Poir.—Davallia? lobata.

lobatum, Presl.—Adiantum chilenense.

Lobbianum, Hook. Sp. Fil. ii. 51, t. 86 C.—Java (Lobb. 264.)

Adiantum Lobbianum, Fée, Gen. 114.

[Adiantum pulchellum, Bl.—f. J. Sm. Hk. Hk.]

lobulatum, Kee. Hk.: Id. Bot. Zeit. iv. 445.—Mauritius.—

longissimum, Colemsn MS.—Adiantum affine.

lucidum, Sw. Syn. Fil. 121.—S. Amer: Columbia (Moritz. 112), Venezuela (Furneke 204), Brazil, Peru, Chagres; Panama (Fendl. 409); W. Indies.

Adiantum lucidum, Spreng. Synst. 110; Desv. Prod. 308; Presl. Rel. Haenk. i. 60; Kée. Lin. ix. 78; xxtl. 216; Fée, Gen. 113; Hk. Sp. Fil. ii. 4, t. 79 C; Lowe, Ferns lit. t. 4 A.

Adiantum pteridoides, Leprieur MS.—f. Fée.

Pteris lucida, Cav. Prolect. (1801), 268.

—β. majus, Hk. Sp. Fil. ii. 2.—Cayenne.

—γ. anomalum (Hk. Sp. Fil. ii. 4, t. 79 C, fig. 4.)—Caripe, Para (Spruce 39).

lucidum, Lodg. Cat.—Adiantum macrodon.

lunatum, Cav.—Adiantum lunulatum.

lunulatum, Burm. Fl. Ind. 235.—India (Jacquem. 663), Tota Hindustan: Rangoon, Ava, Serampore, Concan, Dehra Doon, Deccan, Sylhet, Assam, Nepal, Kumaon, Khasya, Nissobe; Ceylon, (Gardn. 1323), Java (Zoll. 2018), Philippines (Cumine 73), Moluccas, Malay Isl.; Samoa and Fæjee Isl.; Cape de Verd Isl.; Quorra Riv. Guinea; S. America: Brazil (Gardn. 2019, 2392, 23553), Venezuela (Fendl. 81, 82), Mexico, Panama (Seemann 10)—Rheede, Mal. xii. t. 40 (mala); Willd. Phytog. xiv. t. 9, f. 1.

Adiantum lunatum, Cav. Prolect. (1801), 272.

Pteris lunata, Retz. Obs. ii. 28, t. 4.

Adiantum.

lunulatum, Houtt.—Didymochlena lunulata.
lutescens, Mouge. Hb: Fée, Gen. 114, 119.—Mexico.
macrocarpum, Presl.—Adiantum fructuosum.
macrocladum, Kl. Lin. xviii. 554.—Peru.
Adiantum macrocladum, Hk. Sp. Fil. ii. 49, t. 83 B; Fée, Gen. 113.
1. 61 (excl. syn.)
Adiantum myriophyllum, Presl, Tent. 158.
microcarpum, Klf.: Adiantopsis capensis.
maculatum, Mathew.—Adiantopsis capensis.
maculatum, Heyne Hb.—Cheilanthes myersensis.
mexicanum, Presl.—? Adiantum glaucophyllum.
microcarpum, Presl, Tent. 158.—?

marginalum, Schrad.—Adiantopsis capensis.

Mathewsianum, Hook. Sp. Fil. ii. 35, t. 84 A.—Peru (Mathews
3296).
Adiantum Mathewsianum, Fée, Gen. 113.
melanocaulon, Heyne Hb.—Cheilanthes myersensis.
melanoleucum, Willd. Sp. Pl. v. 443.—W. Indies: St. Domingo (Plum.); Jamaica, Cuba (Otto. 63).—Plum. t. 96.

Adiantum melanoleucum, Sprang, Syst. 112; Desc. Prod. 309.
Adiantum cristatum, Kze. Lin. ix. 81.
Adiantum latum, Presl, Tent. 158.
mexicanum, Presl.—? Adiantum glaucophyllum.
microcarpum, Presl, Tent. 158.—?

Adiantum microcarpum, Sprang, Syst. 113; Kze. Lin. ix. 80; xxiii. 408; Fée, Gen. 113; Hk. Sp. Fil. ii. 47.
Adiantum striatum, Schkuhr, Crypt. 109, t. 118, fig. a—g.
—is coriaceum, (Hk. Sp. Fil. ii. 47).—Cuba (Otto. 230);
St. Domingo.
Adiantum microcarpum, Kl. Lin. xviii. 554.
Adiantum nigrescens, Fée, Gen. 113, 117; Id. Iconogr., t. 11, f. 2.

[Gen. 5. Sp. 113.]
Adiantum.

—y. decrescens (Hk. Sp. Fil. ii. 47).—Jamaica.
(See also Ad. pyramidale.)

microphyllum, Poir.—Lindsae microphylla.
microphyllum, Roxb.—Adiantum venustum.
microphyllum, Sw.—Cheilanthes microphylla.
micropteris, Poir.—Cheilanthes micropteris.
monosoratum, Willd.—Adiantum pulverulentum.

monotis, Nees ab E. Lin. xix. 684.—Mexico (Aschenb.348.)

Moritzianum, Link.—Adiantum Capillus-Veneris.
multifidum, Sw.—Cheilanthes multifida.
myriophyllum, Presl.—Adiantum macrocladum.
nervosum, Sw.—Adiantum hispidulum.

Adiantum obliquum, Willd. Sp. Pl. v. 420 (excl. syn.)—W. Indies: Porto Rico, Jamaica, Martinique, St. Vincent; Panama (Fendl. 410); S. America: Columbia (Moritz. 162), Caracas, B. Guiana (Rich. Schomb. 1127, 1175).

Adiantum obtusum, Desv. Berl. Mag. v. 327.—S. America: Brazil (Gardn. 71), Para (Spruce 748), Rio Negro (Spruce 1032), Venezuela (Fendl. 84; Funcke 193), Peru, Guiana (Klotz. 404; Krapf. 1733 a, b.); W. Indies: Jamaica, etc.

Adiantum odoratum, Desv. Prod. 309; Presl. Tent. 158; Hk. et Grav. Icon. Fil. t. 188; Hk. Sp. Fil. ii. 19, 64; Klotz. xxii. 222; Fries, Gen. 113; Brock, U. S. Expl. Exped. xvi. 98.

Adiantum cassiooides, Desv. Prod. 309.

—β. majus, (Hook. Sp. Fil. ii. 19)—St. Vincents; F. Guiana; Brazil (Gardn. 3550); Bay of Choco, W. coast Colombia.

odoratum, Poir. }—Cheilanthes fragrans.
odorum, De Cand. }—Cheilanthes fragrans.
orbiculatum, Lam.—Lindsæa flabellulata.
orientale, Bory.—Adiantum reniforme β.
ornithopodum, Presl.—? Adiantum curvatum.
pachysorum, Rehb. MS.—Adiantum prionophyllum.
pallens, Sw.—Ochropteris pallens.

[Gen. 5. Sp. 116.]
Adiantum, Desv. Prod. 307.—Mascaren Isl.
Adiantum papyraceum, Hk. Sp. Fil. ii. 54.

paradoxum, R. Br.—Platyloma Brownii.
parvulum, Sw.—Chelanthès hirta β.
parvifolium, Fée.—Adiantum fragile.

Adiantum parvulum, Hk. Sp. Fil. ii. 44.

patens, Willd. Sp. Pl. v. 439.—Columbia (Moritz, 240), Venezuela (Fendl. 79), New Grenada (Funkel 442; Lind. Schl. 626); Mexico (Seem. 1448, 1949), Isl. of Salango, Tepic; Galapagos.
Adiantum patens, Hk. Sp. Fil. ii. 29, t. 87 β; Fée, Gen. 113; Brack, U. S. Expl. Exped. xvi. 100.

patens, Hort. Belg.—Adiantum trapeziforme β.
patens, Hort.: Kze.—Adiantum polyphyllum.
pauverculum, Kze.—Adiantopsis pauvercula.

pedatum, Lin. Sp. Pl. 1557.—N. and N.W. America: California to Sitka; N. India; Sikkim, Nepal, Gurwhal, Simla, Kumaon; Japan.—Piluk. t. 124, fig. 2.

Adiantum boreale, Presl. Tent. 158.
pedatum, Forst.—Adiantum hispidulum.
pedatum, Raddi.—Adiantum brasiliense β.
pellucidum, M. et Gal.—Adiantum suthiopticum.
pelatum, Hort. Adiantum cuneatum.
pendulum, Hort. Ber.

pensile, Kze: Fée, Gen. 114.—?
—β. alchemillaefolium, Fée, Gen. 114.—?

pentadactylon, Langs. et Fisch.—Adiantum trapeziforme β.
pentadaactylon, Hort. Belg.—Adiantum cultratum.

peruvianum, Kt. Lin. xviii. 555.—Peru (Mathews 1854; Ruiz Hb. 25, 27.)
Adiantum populifolium, J. Sm. MS.—f. Hook.

peruvianum, Hk.—Adiantum sulphureum β.

Adiantum petiolatum, Spr. Syst. 110; Desv. Prod. 308.

[Gen. 5. Sp. 123.]
Adiantum.

Adiantum Phyllitidis, *Krz. Lin.* xxi. 220 (note); xxiii. 216; *Fée, Gen.* 113; *Hook. Sp.* fil. ii. 5, t. 72 B.

d. pilosum, *Fée.*—Adiantum chilense d.

Adiantum platyphyllum, *Spr. Syst.* 110; *Presl, Tent.* 157, t. 6, fig. 11, 12; *Krz. Lin.* ix. 79 in part; *Id. Anal.* 81, t. 20; *Hook. Sp.* fil. ii. 3; *Fée, Gen.* 113.

platyphyllum, *Krz.* (in part) — Adiantum Kaulfussii d.

platyphyllum, Colenso MS.—Adiantum affine.

picatum, Kfls.—Adiantum hispidulum.

podophyllum, Willd. Hh.—Adiantum chilense d.

Poeppigianum, Presl.—Adiantum lucidum.

politum, *J. Sm.*—Adiantum tomentosum.

polymorphum, *Poir.*—Cheilanthes polymorpha.

polyphyllum, *Wild. Sp.* Pl. v. 454.—Venezuela (Funch. 439; *Fendel.* 80), Caracasas (*Moritz.* i. 1; *Id.* 59; *Miquel.* 15; *Lind.* 78); La Guayra (*Wagner* 295); Peru: Trinidad.

Adiantum carolioides, *Krz. Lin.* xvii. 569; *xx.* 5; *Id. B. Zeit.* iii. 281.—f. *Krz.*; *Hk. Sp.* fil. ii. 50, t. 63 A; *Fée, Gen.* 114, t. 11 B, fig. 2.

—d. rigidum.—Caracasas (*Lind.* 125).

Adiantum carolioides *Hk. Sp.* fil. ii. 51.

polyphyllum, *Krz.*—Adiantum macrocladum.

Adiantum Kohautianum, Presl. Tent. 158.

Adiantum fructuosum, Hort. Ber. ii. 14; Slech. Lin. xxiii. 217; Prod. 308.—f. Pr.

Adiantum varium. Sort. Atw.

Adiantum falcatum, Hort. Kew. (Kze.)

Adiantum Kohautianum, Preal. Tent. 158.

Adiantum suborlanum (Schr. suborlanum) — S. Africa.

(See also Ad. Lobbianum.)

pulchellum, Blume, Enum. 216.—Java (Zoll. 233z.)

prionophyllum, M. et Gal.—Adiantum fructuosum.

prolixerum, Roxb.—Adiantum caudatum.

propinquum, Fée. Gen. 113, 114.—Fr. Guiana.

proximum, Gaud. Frey. Voy. 403.—Brazil.

Adiantum proximum, Hk. Sp. Fil. ii. 27.

pseudo-Capillus. Fée. Gen. 114, 118; Id. Iconogr. t. 12, f. 1.

—S. Africa.

pteridoides, Lepr. MS.—Adiantum lucidum.

pteroides, Lin.—Adiantopsis pteroides.

pubescens, Presl.—Adiantum chilense β.

pubescens, Poir.—Cheilanthes microphylla.

pubescens, Raddi.—Adiantum brasilense.

pubescens, Schkuhr.—Adiantum hispidulum.

pulchellum, Blume, Enum. 216.—Java (Zoll. 233z.)

(After also Ad. Lobbianum.)

pulverulentum, Lin. Sp. Pl. 1559.—W. Indies, freq.: Cuba (Otto 244); S. America: Columbia (Moritz. i. 81; Id. 57; Cuming, 1183), Venezuela (Fendt. 86), Caracas (Lind. 151), New Grenada (Lind. Schl. 483, 599, 1005), Mexico (Jurgensen 766), Guiana, (Rob. Schomb. 90), Brazil (Gardn. 56), Pernambuco (Gardn. 1226), Tabasco (Lind. 1492).—Plum. t. 55.

pumilum, Sw. Prod. 134.—Jamaica.—Pluk. t. 251, fig. 4. Adiantum pumilum, Sw. Syn. 122; Willd. Sp. 431; Spr. Syst. 111; Desv. Prod. 307; Mart. Icon. Crypt. 94, t. 50, fig. 4; Presl, Tent. 158; Hc. Sp. Fil. ii. 15; Fée, Gen. 114.
pusillunm, Allioni.—Cheilanthee fragrans.
pygmaeum, Lin. Hb.—Asplenium Ruta-muraria.
radicans, Fée, Gen. 114, 118, t. 29, fig. 2.—Bourbon. regulare, Kze. "Fil. Bras. ined. v. fig." (Schkuhr, Supp. ii. 66.) [Adiantopsidis sp.]
Reichenbachii, Moritz. MS.—Adiantum sessilifolium β.
repandum, Tausch.—Adiantum Capillus-Veneris. repens, Lin. fil.—Humata pedata.
Adiantum.

Adiantum caudatum, Bory, Voy. i. 198.
Adiantum decipiens, Desv. Prod. 307; Hook, Sp. i. 53.

rhizophyllum, "Schrad": Presl.—Adiantum rhizophyllum.

rhomboideum, H. B. K. Nov. Gen. i. 20.—Venezuela; Brazil; B. Guiana (Rich. Schomb. 266.)
Adiantum rhomboideum, Spr. Syst. 113; Pr. Tent. 157; Kl. Lin. xviii. 551 (a laxum); Kze. Lin. xxiii. 217; Hook. Sp. Fil. ii. 23.

—β. strictum, Kl. Lin. xviii. 551.—Colombia, Cumana (Moritz. 46 b, 163); Guiana (Rich. Schomb. 1184—f. Kl.)
Adiantum rigidum, Presl, Hb. Ber.—f. Kl.; ? Id. Tent. 158. (See also Ad. cayennense γ.)

rhomboideum, Schkuhr.—Adiantum trapeziforme.
rigidum, Link.—Adiantum prionophyllum.
rigidum, Presl.—Adiantum rhomboideum β.
rigida, Schott.—Adiantum pulverulentum.

rotundatum, Kze. Lin. x. 528.—? S. Africa.

rotundatum, Desv.—Adiantum chilense.
rotundifolium, Colenso MS.—Adiantum ethiopicum.

Ruizianum, Kl. Lin. xviii. 551.—Peru (Hb. Ruiz. 26).

rupestre, Wall. Hb.—Cheilanthes tenuifolia.
sagittatum, Aubl.—Lindsaea sagittata.

scabrum, Klfs. Enum. 207.—Chili.
Adiantum scabrum, Spr. Syst. 114; Presl, Tent. 159; Kze. Lin. ix. 84; xvii. 217; Fee, Gen. 114; Hook. Sp. Fil. ii. 43; Brack. U. S. Expl. Exped. xvi. 96.

scabrum, Willd: Kze.—Adiantum chilense β.
scabrum, Wall.—Adiantum hispidulum.
scandens, Lour.—Lygodium japonicum.
scandicum, Willd.—Cheilanthes mysurensis.
Schomburgkianum, Kl. MS.—Adiantum cayennense γ.

Seemannii, Hook. Sp. Fil. ii. 5, t. 81 A.—Veraguas (Seem. 1124); Panama.
Adiantum Seemannii, Fee, Gen. 113.

Sellowianum, Presl, Tent. 159.—Brazil.
serrato-dentatum, H. et B: Willd.—Adiantum rhomboideum.
serratum, Raeusch. (Steud.)—[?]
serrulatum, Lin. Sp. Pl. 1557.—Jamaica.—Pluk. t. 125, fig. 2; Sloane, Jam. i. t. 35, fig. 2 (pinnate form).

[August, 1857.] 4 [Gen. 5. Sp 143.]
Adiantum

(See also Ad. pulverulentum.)

Adiantum sessilifolium, Fée, Gen. Fil. 114.

— B. Reichenbachii.—Columbia (Moritz. 445); Venezuela (Fendl. 78).

Adiantum Reichenbachii, Moritz. MS. (Hb. Hook.)

— γ. glabrum.—Peru (Mathews, 3295).

Adiantum setulosum, Kze. Lin. xxiii. 217; Fée, Gen. 113; J. Sm. Cat. New Ferns 1556; Id. Cat. Ferns 34.

(Valde aff. Ad. diaphanum.)

Shepherdii, Hook. Sp. Fil. ii. 9, t. 73 B.—Mexico.

Adiantum Shepherdii, Fée, Gen. 114.

sinuosum, Gardn. Hook. Ir. Fl. t. 504.—Brazil (Gardn. 3550).

soboliferum, Wall. Cat. 74.—India: Ava.

speciosum, Hook. Sp. Fil. ii. 45, t. 85 C.—Equador (Semenmann, 953); Peru.

Adiantum speciosum, Fée, Gen. 114.

striatum, Kze. (Poeppl.)—{Adiantum creatatum (Pr.)—Adiantum cristatum (Hk.)}

striatum, Schkuhr.—Adiantum microphyllum.

striatum, Sieb. (Fl. Mart.)—Adiantum prionophyllum.

striatum, Sieb. (Fl. Maurit.)—Adiantum lobulatum.

striatum, Sw.—Adiantum cristatum.

strictum, Sw.—Lindseaea stricta.

suaveolens, Poir.—Cheilanthes fragrans.

Adiantum subcordatum, Spr. Syst. 114; Presl, Tent. 169; Hook. Sp. Fil. ii. 34; Fée, Gen. 113.

Adiantum heterophyllum, Ktfs. Enum. 207.

Adiantum Klotschianum, Presl, Tent. 158.

Adiantum conicum, Vellozo, Fl. Plam. xi. t. 97.

[Gen. 5. Sp. 156.]
Adiantum.

—β. obtusum, Kze. Lin. xxii. 577.—Brazil (Regn. i. 490).
—γ. lobatum.—Brazil (Gardn. 5299).

sulphureum, Klfs. Enum. 207.—Chili (Cuming 151; Lech. 289).
Adiantum sulphureum, Spr. Syst. 144; Presl. Tent. 159; Kze. Lin. ix. 84; Link. Fil. Sp. 73; Hook. Sp. Fil. ii. 43, t. 76 A, fig. 1, 2; Fée, Gen. 114; Metten. Fil. Lechl. 11.
—β. majus, Hook. Sp. Fil. ii. 44, t. 76 A, fig. 3, 4.—Peru (Mathews 1250).
Adiantum sulphureum, Kze. Anal. Pter. 34, t. 22, fig. 1;
Adiantum pervirideum, Hook. (Sp. Fil. ii. 44).

tenellum, Jacq.—Hymenophyllum ricciacolium.
tenellum, Moore.—Adiantum hispidulum γ.
tenenum, Swartz, Prod. 135.—W. Indies freq.: Guadeloupe (L’Herm. 1), Jamaica, Cuba (Otto 233), Bahamas, St. Vincent, Antigua; S. America: ? Peru (Mathews 1856), Columbia (Moritz. i. 74; Id. 169, 171; Wagener 55), Venezuela (Fendl. 69, 70, 74), Veraguas, Guatemala, Mexico (Leibold 12), California.—Plum. t. 95—f. Pr.
(see also Ad. trapeziforme β); Pluk. t. 254, fig. 1 (small);
Adiantum tenerum, Sw. Syn. 125; Willd. Sp. 450; Syst. Nat. 114;
Adiantum assimile, Link, Hort. Ber. ii. 17.—f. Lk.
Adiantum formosissimum, Hort.—f. Kze.
—γ. majus (Hook. Sp. Fil. ii. 46).—Veraguas.
—β. minus, Kze. Lin. ix. 83.—Peru.
tenerum, Link.—Adiantum aethiopicum.
tenerum, M. et Gal.—Adiantum trapezoides.
tenerum, Presl.—Adiantum excisum.
tenerum, Roxb.—Adiantum Capillus-Veneris.
tenerum, Schkuhr.—Adiantum concinnum.
tenerum, Hort. plur.—Adiantum cuneatum.
tenerum v. dissectum, M. et Gal.—Adiantum Capillus-Veneris, β.
tenuifolium, Lam.—Davallia tenuifolia.
tenuifolium, Sw.—Cœil.anthes tenuifolia.
terminatum, Kze.—Adiantum hirtum.

4 *

[Gen. 5. Sp. 159.]
(See also Ad. prionophyllum.
ternatum, Brack.—Adiantum intermedium.
tetragonum, Schrad. Goëtt. get. Anz. 1824, 872.—Brazil.
Adiantum tetragonum, Mart. Icon. Crypt. 93, t. 69; Presl, Tent. 157; Hk. Sp. Fil. ii. 28; Fée, Gen. 113.
tetraphyllum, Sieb.—Adiantum villosum.
thalictroides, Willd. Hb.—Adiantum æthiopicum.
tomentosum, Kl. Lin. xviii. 553.—B. Guiana (Rob. Schomb. 349; Rich. Schomb. 1202); Surinam (Kegel 1074); Para (Spruce 51).
Adiantum tomentosum, Kze. Lin. xxxi. 224.
Adiantum brasiliense, Hook. Fl. Fil. 61.
Adiantum Klotschianum, Hook. Sp. Fil. ii. 23, t. 82 C; Fée, Gen. 113.
trapeziforme, Lin. Sp. Pl. 1559.—W. Indies: Jamaica, Cuba (Lind. 1859) etc.; S. America: Brazil, Peru, Caracas (Moritz. 94); Panama, Mexico (Schaaff. 1854) 36.—
Sloane Jam. i. t. 59.
Adiantum trapeziforme, Sw. Syn. 125; Willd. Sp. 447; Spr. Syst. 114; Desv. Prod. 310; Presl, Rel. Hauk. i. 63; Id. Tent. 158, t. 6, fig. 8—10; Link, Fil. Sp. 70; Kze. Lin. ix. 82; xviii. 337; xxiii. 218; M. et Gal. Foug. Mex. 79; Hook. Sp. Fil. ii. 39; Fée, Gen. 113; Metten. Fil. Lims. 48; Lowe, Ferns, t. 3.
Adiantum rhombodendron, Schkuhr, Crypt. 114, t. 123.
Adiantum formosissimum, Kl. Lin. xviii. 556.
Adiantum eminens, Presl, Tent. 158.
—β. pentadactylon.—Brazil, Mexico (Lind. 73).
Adiantum patens, Hort. Belg.—f. Kue.
—γ. Plumieri (Hook. Sp. Fil. ii. 33—β.)—Mexico: (Lind. 70); St. Domingo (Plum. t. 95.—see also Ad. tenerum.
(? Ad. trapezoides, Fée.)
—δ. oblongatum (Hk. Sp. Fil. ii. 33—γ.)—Mexico: Vera Cruz (Galeott. 6338); Guatemala; Cuba.
trapeziforme, Bory Hb.—Adiantum trapezoides.
trapeziforme, Forst.: Schkuhr.—Adiantum affine.
trapeziforme, Huds.—Asplenium marinus β. (Bolt: Sm.)
trapezoides, Fée, Gen. 114, 117.—Vera Cruz (Galeott. 6317); St. Domingo.
Adiantum trapeziforme, Bory, Hb.—f. Fée.
(See also Ad. trapeziforme γ.)

[Gen. 5. Sp. 353]
triangulare, Poir.—Lindsea tenera.
triangulatum, Klfs.—Adiantum intermedium B.
triangulatum, Kl. et Auct.—Adiantum intermedium.
trichomanoides, Poir.—Lindsea trichomanoides.

tricholepis, Fée, Cat. lîth. Foug. Mex. 5.—Mexico (Gal. 6445).

tridatum, Willd. Hb.—Adiantum Capillus-Veneris.
trifoliatum, Lin.—Davallia trifolista.

trigonum, Labill.—Adiantum æthisiopicum.

trilobum, Lin.—Davallia triloba.

triphylum, Lam.—Cassebeera triphylla.

trisectatum, Colenso MS.—Adiantum æthisiopicum.

truncatum, Raddi.—Adiantum subcordatum.

umbrosum, Willd.—Adiantum pulverulentum.

Adiantum urophyllum, Fée, Gen. 113.

varianus, Poir.—Cheilanthes tenuifolia.

varium, H. et B.: Willd. Sp. Pl. x. 455.—S. America, Caripe; Central America (Barclay 2126).

varium, Presl.—Adiantum villosum.

varium, Hort. Ang.—Adiantum prionophyllum.

Adiantum venustum, Spr. Syst. 114; Wall. Cat. 81; Hk. Sp. Fil. ii. 40, t. 76 B; Fée, Gen. 114; Kze. Lin. xxiv. 279 (in obs.).

Adiantum acutangulum, Wall. Hb.

vestitum, Spr.—Nothochlæa vestita.

vestitum, Wall.—Adiantum caudatum.

villosum, Lin. Sp. Pl. 1558.—W. Indies: Jamaica, Trinidad, Cuba, St. Vincent's; S. America: Guiana, Surinam, Venezuela (Fendl. 85), New Grenada, Panama (Cuming 1203), Mexico (Galeott. 6303).

Adiantum lanceolatum, Fée, Gen. 113, 115. ?

Adiantum varium, Presl, Tent. 157, t. 8, fig. 13; Lowe, Ferns, iii. t. 18.

Adiantum.—Aglaomorpha.—Allantodia.

—\(\beta \). macrosorum, (\textit{Hk. Sp. Fil.} ii. 18.)—Trinidad.

—\(\gamma \). falcatum. W. Indies.—Sloane, Jam. i. t. 55, fig. 1;
 Pluk. t. 253, fig. 1.

viride, Vahl.—\textit{Pteris hastata}.

Wilesianum, \textit{Hook. Sp. Fil.} ii. 50, t. 83 C.—Jamaica; Mexico
 Tabasco (\textit{Lind.} 1503).
 Adiantum Wilesianum, \textit{Fée, Gen.} 113.

 Adiantum Wilsoni, \textit{Lowe, Ferns} iii. t. 16.
 Hawardia Wilsoni, \textit{Fée, Gen.} 122.

\textbf{AGLAOMORPHA}, Schott, \textit{Gen. Fil.} t. 19 [\textit{Synopsis} p. lxxix.]

 Psygnum elegans, \textit{Presl, Tent.} 200, t. 8, fig. 21, 22.

 vulgare, Gaud.—\textit{Platycerium alcicorne}.

\textbf{Aleuritopteris}.—\textit{Fée, Gen. Fil.} 153.
 argentea, \textit{Fée}.—\textit{Cheilanthes argentea}.
 argyrophylla, \textit{Fée}.—\textit{Cheilanthes farinosa}.
 candida, \textit{Fée}.—\textit{Notochlaena pulveracea}.
 dealbata, \textit{Fée}.—\textit{Cheilanthes farinosa}.
 farinosa, \textit{Fée}.—\textit{Cheilanthes farinosa}.
 indica, \textit{Fée}.—\textit{Cheilanthes farinosa}.
 mexicana, \textit{Fée}.—\textit{Cheilanthes farinosa}.
 pulveracea, \textit{Fée}.—\textit{Notochlaena pulveracea}.
 sulphurea, \textit{Fée}.—\textit{Cheilanthes farinosa}.

\textit{eumula}, \textit{Desv.—Lastrea eumula}.
 aspidioides, \textit{Kze.—Athyrium scandicinum}.
 aspleniioides, \textit{Kze.—Diplazium aspleniioides}.
 australis, R. Br.—\textit{Asplenium australre}.
 \textit{axillaris}, Klfs.—\textit{Asplenium axillare}.

[\textit{Gen. fil. Sp.} 171.]
Allantodia.—Allosorus.

Brunoniana, Wall. Pl. Asiæ. Rar. i. 44, t. 52; Id. Cat. p. 63.

—Ceylon, Java, Tahiti.

Hemidictyum? Brumonis, Presl., Tent. 111, t. 3, fig. 25, 28.

Asplenium reticulatum, Wall. Cat. 188.

cordifolia, Desv.—Llavea cordifolia.

costalis, Desv.—Asplenium costale.

decurtata, Kze.—Athryrium decurtatum.

deflexa, Kze.—Asplenium deflexum.

? denticulata, Wall.—Athryrium tenuifrons.

Fieldingiana, Kze.—Asplenium Fieldingianum.

Hohenackeriana, Kze.—Athryrium Hohenackerianum.

incisa, Wall.—Athryrium pectinatum.

nitidula, Kze.—Asplenium nitidulum.

oligantha, Desv.—Asplenium Aitoni.

paludosum, Zippel. MS.—Asplenium paludosum.

prosera, Wall.—Asplenium proserum.

? scabra, Kze.—Athryrium scabrum.

scandicina, Kfis.—Athryrium scandicinum.

Solenopteris, Kze.—Athryrium Solenopteris.

spectabilis, Wall.—Athryrium spectabile.

—“ Madeira”—Kze. Lin. xxiii. 218.]

sylvatica, Blume.—Asplenium sylvaticum.

? tenella, Wall.—Athryrium tenuifrons.

tenera, R. Br.—Asplenium assimile.

tenella, A. Cunn.—Asplenium australis.

umbrosa, R. Br.—Asplenium Aitoni.

Alloesthes, M. [§ sub Notochela p. lxx.]

ALLOSORUS, Bernhârdi, Schrad. neues Jour. Bot. 1806, i. part ii. 5, 36; t. 2, fig. 6. [Synopsis p. lxviii.]

acclivis, Kze.—? Pteris acclivis.

acoestichoides, Spr.—Cryptogramma acrostichoides.

acutilobius, Presl.—Pteris acutiloba.

aianthoides, Presl.—Pteris aianthoides.

andromedæfolius, Kfis.—Platyloba andromedaefolium.

angustifolius, Presl.—Cheilanthes angustifolia.

aquilinus, Presl.—Pteris aquilina.

arachnoideus, Presl.—Pteris aquilina β.

argentæus, Presl.—Cheilanthes argentea.

argyrophyllus, Presl.—Cheilanthes farinosa.

atropurpureus, Kze.: Presl.—Platyloba atropurpureum.

auratus, Presl.—Onychium auratum.

Allosorus.

aurantiacus, Presl.—Cheilanthes aurantiacus.
auriculatus, Presl.—Cheilanthes auriculatus.
Brunonianus, J. Sm.—Cryptogramma Brunoniana.
caspitosus, Kze.—Cheilanthes marginata.
caspitosus, Presl.—Cheilanthes varians.
caffrorum, Bernh.—Cheilanthes hirta.
Calomelanos, Presl.—Pteris Calomelanos.
capensis, Bernh.—Adiantopsis capensis.
capensis, Presl.—Onychium japonicum.
cartilagineus, Presl.—Cheilanthes rigidula.
candidus, Presl.—Cheilanthes marginata.
ciliatus, Presl.—Pteris aquilina γ.
cherophyllus, M. et Gal. {Cheilanthes marginata.}
contractus, Hook.—Pteris hastata 3.
cordatus, Hook.—Platyloma sagittatum.
cordatus, Presl.—Platyloma cordatum.
crispus, Bernh. Schrad. neues Journ. Bot. 1806, i. part ii. 36.—Europe: Lapland and Norway to Italy and Spain; Sitka; N. America; Isle Royal, Lake Superior (form, gracilior) —Pluk. t. 3, fig. 2.
Acrostichum crispum, Villare, Dauph. iii. 638.
Osmunda crispis, Lin. Sp. Pl. 1512; Botli. Fil. 10, t. 7; Fl. Dan. t. 496.
Onoclea crispis, Hoffm. Deutsch. Fl. ii. 11.
Phorolobus crispis, Desv. Prod. 291; Bee. Gen. 131, t. 7 D.
Pteris tenufolia, Lam. Fl. Franc. i. 13.
Riedles crispis, Michel.
Stegania onocleoides, Gray, Brit. Fl. ii. 16.
Struthiopteris crispis, Wallr., Bluff et Fing. Comp. Fl. Germ. iii. 27.
crispus, Klfs.—Cryptogramma acrostichoides.
cuneatus, Presl.—Cheilanthes cuneata.
cuspidatus, Hochst.—Onychium melanolepis.
dealbatus, Presl.—Cheilanthes farinosa.
decompositus, M. et Gal.—Cheilanthes angustifolia.
domingensis, Presl.—Adiantum deltoideum.
durus, Presl.—Cheilanthes dura.
esculentus, Presl.—Pteris esculenta.
Allosorus.

falcatus, Kze.—Platyloma falcatum.
farinosus, Kze.—Gymnogramma Ornithopteris.
farinosus, Presl.—Cheilanthes farinosa.
flexuosus, Kze.—Platyloma flexuosum.
formosus, Liebm.—Platyloma pulchellum.
foveolatus, Rupr.—Cryptogramma acrostichoides.
fragrans, Bernh.—Cheilanthes fragrans.
gracilis, Presl.—Allosorus Stelleri.
hastatus, Presl.—Pteris hastata.
heterophyllus, Bernh.—Pteris heterophylla.
heterophyllus, Presl.—Pteris pilosa.
hirsutus, Presl.—Cheilanthes chilensis.
hottentottus, Presl.—Pteris aquilina.
imbricatus, Presl.—Jamesonia imbricata.
intramarginalis, Presl.—Cheilanthes intramarginalis.
? involutus, Presl.—Pteris involuta.
Karwinskii, Kze.—Llavea cordifolia.
lunuginosus, Presl.—Pteris aquilina.
lorigerus, Presl.—Pteris semi-hastata γ.
macrophyllus, Hook.—Pteris hastata β.
marginalis, J. Sm.—Cheilanthes marginalis.
melanolepis, Don.—Onychium melanolepis.
microphyllus, Bernh.—Cheilanthes microphylla.
minutus, Turcz.—Allosorus Stelleri.
mucronatus, Eaton.—Cheilanthes mucronatus.
multifidus, Bernh.—Cheilanthes multifida.
nitidulus, Presl.—Cheilanthes nitidula.
ochraceus, Hook.—Cheilanthes ochracea.
paradoxus, Kze.—Platyloma Brownii.
parvulobus, Bernh.—Cheilanthes hirta β.
psittacinus, Presl.—Pteris esculenta β.
pteroides, Bernh.—Cheilanthes pteroides.
pulchellus, M. et Gal.—Platyloma pulchellum.
pulchellus, Presl.—Cheilanthes pulchella.
pulveraceus, Presl.—Nothochlamis pulveracea.
pusillus, Bernh.—Cheilanthes fragrans.
quadripinnatus, Presl.—Pteris quadripinnata.
recurvatus, Presl.—Pteris aquilina.
resistens, Kze. Hb.—Pteris resistens.
rigidus, Kze.—Cheilanthes rigida.

? robustus, Kze. Lin. x. 502; Id. Schkuhr, Supp. ii. 7, t. 104, fig. 1.—S. Africa.
Onychium ? robustum, Fée, Gen. 132.
rotundifolius, Kze.—Platyloma rotundifolium.
sagittatus, Presl.—Platyloma sagittatum.
sacerdatus, Presl.—Pteris scalarula.

[Gen. 3. Sp. 175.]
Allosorus.—Alsophila.

sitchensis, Rupr.—Cryptogramma sitchensis.

—Siberia: baikal. et orient.; India: Kumaon, N. W. Thibet (Hb. Hook.); N. America: Canada, United States
—Vermont to Wisconsin.

Cheilanthes gracilis, Kf. Enum. 203; Spr. Syst. 115.

Cryptogramma gracilis, Torrey—f. Kze.

Pteris Stelleri, Gmelin, Nov. Com. Petrop. xii. 519, t. 12, fig. 1.

Subverticillatus, Presl.—Cheilanthes ternifolia.

 sulphureus, Presl.—Cheilanthes farinosa B. tauricus, Presl.—Pteris aquilina.

 tenuifolius, Bernh.—Cheilanthes tenuifolia.

ternifolius, Kse. MS: Kl.—Cheilanthes ternifolia.

villosus, Presl.—Pteris aquilina.

viridis, Bernh.—Pteris hastata.

Allosorus, Auct.—Allosorus.

Allotheicum, M. [$§ sub Pleopeltis, p. lxxviii.]

ALSOPHILA, R. Brown, Prod. Fl. Nov. Holl. 158

[Synopsis p. cv.]

aculeata, J. Sm. Lond. Journ. Bot. i. 667.—S. America: Brazil, (Garden. 27), Santarem (Spruce 614), B. Guiana (Rich. Schomb. 245), Surinam (Kappl. 1773), Cayenne, I. of Morro, S. Darien; W. Indies: Trinidad, Jamaica.

Alsophila aculeata, Kse. Lin. xxi. 236 (note); xxii. 220; Id. Bot Zeit. ii. 327.

Alsophila armata, Mart. Icon. Crypt. Bras. 72, t. 28, 48; Splity. Tydusch. Nat. vii. 429; Schmizl. Icon. i. t. 26a; Metten. Fil. Lips. 109.

Alsophila Raddiana, Gaudichaud MS.

—S. bullata.—Guiana.

aculeata, Hook.—Alsophila echinata.

aculeata, Kl.—Alsophila mollissima.

[Gen. 9. Sp. 177.]
Alsophila.

acuminata, J. Sm.—Alsophila Miersii.
acuta, Presl.—Alsophila glauca β.
affinis, Fée.—Alsophila pruinata.
ala, "Kze.": Fée (?)
alutea, Kze. (err. typ.)—Alsophila phalerata β.
alternans, Wall.—Amphicosmia alternans.
arbuscula, Presl, Tent. Pter. 61.—Brazil (Garnd. 114, 5637);
Para (Spruce 32).
Polypodium arbuscula, Beyerich Ddb.—f. Pr.
Alsophila procer, Mart. Icon. Crypt. Bras. 64, t. 40 (excl. f. 1.)—f. Kze.
armata, Presl, Tent. Pter. 62.—W. Indies: Jamaica; S. America:
Brazil, New Grenada (Lind. 842), I. of Taboga.
Alsophila armata, Hook. Sp. Fil. i. 40; Fée, Gen. 346.
Alsophila schwartzi, Mart. Icon. Crypt. Bras. 73, t. 49.
Alsophila biserrata, Kl. MS: Hb. Hk.
Polypodium armatum, Swartz. Fl. Ind. Occ. iii. 1684; Id. Syn. 41;
—β. pilosissima (Hk. Sp. Fil. i. 40).—I. of Gorgona, Central America.
—γ. Menziesii (Hk. Sp. Fil. i. 40).—Brazil (Garnd. 118);
Venezuela (Pendl. 49); Cocos Island.
armigera, Mart.—Alsophila aculeata.
arbuscula, J. Sm. M.S.—Alsophila aspera.
aspera, R. Br. Prod. Fl. Nov. Holl. 158 (in obs.).—W. Indies:
Jamaica, St. Vincent’s, Martignon, Cuba (Lind. 1740, 2177),
Montserrat, Guadeloupe, Porto Rico, St. Kitt’s,
Grenada; S. Darien.
Alsophila aspera, Spr. Syst. 124; Desv. Prod. 319; Hk. et Greve. Icon.
Fil. t. 213-215; Hook. Gen. Fil. t. 21; Id. Sp. Fil. i. 39; Presl,
331, fig. 81.
Cyathea aspera, Swartz, Schrad. Journ. 1600, ii. 93; Id. Syn. 139;
—β. spinosa (Hk. Sp. Fil. i. 40, t. 19 B.)—St. Vincent’s.
—γ. serrata.—Jamaica.
[Gen. 9. Sp. 182.]
—S. gibbosa.—Br. Guiana (Rich. Schomb. 1124); Caracas.
Alsophila gibbosa, Kl. Lin. xviii. 542; Metten. Fil. Lips. 108.
atrovirens, Presl, Tent. Pter. 61.—Brazil: ? Rio Negro (Spruce 614), Caracas (Lindl. 177), Mexico Tabasco (Lindl. 1919).
Alsophila atrovirens, Hk. Sp. Fil. i. 46; Fée, Gen. 346.
Cyathea compta, Mart. Denksohr. Regens. ii. 146, t. 2, fig. 1, 2 (caud.)
Polypodium venerabile, Beyrich Hb. (Pr.)
aurea, Fée, Cat. íith. Fong. Mex. 25.—Mexico (Schaffn. 264).
axillaris, M.—Brazil; Guiana (Kze.); ? Jamaica.
Alsophila Pohlii, Presl, Tent. Pter. 62.
Cyathea hirsuta, Presl, Del. Prag. 1. 190; Spr. Syst. 126.
Phlegopterus axillaris, Fée, Gen. Fil. 243.
Polypodium, axillare, Raddi, Syn. Fil. 77; Id. Fil. Bras. 27, t. 41; Spr. Syst. 61; Desv. Prod. 242.

Beyrichiana, J. Sm. MS.—Amphicosmia Beyrichiana.
biserrata, Kl. MS.—Alsophila armata.
Blanchetiana, Presl, Epim. Bot. 28.—Brazil (Blanch. 77).
Alsophila Blanchetiana, Fée, Gen. Fil. 346.
blechnoides, Hook.—Amphidesmium blechnoides.
Blumei, Kze.—Alsophila gauca.
Alsophila brevis, Hook. Sp. Fil. i. 49.
Brunoniana, Wall. Cat. 7073.—India; Sylhet, Khasya, Mishtme, Naya Hills, Cachar (reg. trop.).
capensis, J. Sm.—Amphicosmia capensis.
caracasana, Kl.—Alsophila infesta.
caudata, J. Sm. Hook. Journ. Bot. iii. 419.—Philippines (Cu-
ming 267), ? Ceylon.
(See also Alsophila speciosa.)

[Gen. 9. Sp. 190.]
Alsophila.

40

cinerea, Mart. et Lind.—Alsophila pruinata.
Colensoi, Hook. fil. Fl. N. Zeal. ii, 8, t. 73.—New Zealand.
Polydodium ruahinense, Colenso MS: Hb. Hk.
comosa, Wall. Cat. note p. 64.—India: Khasya, Singapore;
Java.
Alsophila comosa, Hook. Sp. Fil. i. 53, t. 20 A; Fée, Gen. 346.
Athyrium comosum, Presl, Tent. Pter. 93, 280.
Cystopteris comosa, Presl, Tent. Pter. 93.
Polydodium comosum, Wall. Cat. 319.

—S. Walkeriae (Hk. Sp. Fil. i. 58).—Ceylon Gardn. 1267.
compta, Mart.—Alsophila atrovirens.
contaminans, Wall.—Alsophila glauca.

cordata, Kfl. Bot. Zeit. iv. 104; Id. Lin. xx. 441.—Columbia
(Karsten 168).

crenata, Kze. Bot. Zeit. ii. 312; Id. Lin. xxii. 580.—Brazil
(Regn. i. 479).
curida, (? err. typ.) Hort. Belg.—Alsophila Miquelii.

crinita, Hook. Sp. Fil. i. 54; Id. Icon. Fl. t. 671.—Ceylon
(Gardn. 1055): Neilgherries (Schmid 116, 171); Java.
Alsophila crinita, Fée, Gen. 346; Kze. Lin. xxiv. 294; Hkkl. Kew
dealbata, Presl.—Alsophila glauca.
debilis, Bl. MS.—Alsophila latebrosa.
Deckeriana, Kfl. MS: Kze.—Alsophila pruinata.
decurrens, Hook. Sp. Fil. i. 51.—South Sea Islands; Samoan
Islands.

Dombeyi, Desv. Prod. 320.—Peru.
echinata, M. [Synops. cv.]—Trinidad.
Alsophila aculeata, Hook. Sp. Fil. i. 49; non J. Sm: Kze.
elegans, Mart. Icon. Crypt. Bras. 63, t. 38.—Brazil.
xxii. 220.
Chnoophora elegans, Hort.—f. Kze.
Trichopteris elegans, Presl, Tent. 59; Id. Die Gefasbeh. 32, t. 6, fig. 13
(stipes); J. Sm. Lond. Journ. Bot. i. 668; Fée, Gen. 347.

elongata, Hook. Sp. Fil. i. 43.—Columbia (Hartweg 1528;
1521, Hb. Hk.); Esmeraldas (Barclay 865); S. Darien;
Isl. of Tumaco.
Alsophila tumacensis, J. Sm. Lond. J. Bot. i. 667; Hk. Sp. Fil. i. 49.

Alsophila.

excelsa, Mart.—Alsophila Tauritis.

extensa, R. Br.—Alsophila lunulata.

extensa, Desv.—Cyathea medullaris.

extensa, Hook. et Arn.—Cyathea medullaris γ.

extensa, Moritz.—Cyathea excelsa.

ferox, Presl.—Alsophila aculeata.

ferox, γ. Hook.—Alsophila paleolata.

Polypodium Finlaysonianum, Wall. Cat. 2221 (no spec. in Hb.)

Fischeriana, Regel.—Polypodium grande.

fragilis, Zoll.—Nephrodium lineatum.

fulva, M. et Gal.—Cyathea Schanschin.

fumata, Kl.—Alsophila infesta β.

Gardneri, Hook. Sp. Fil. i. 40.—Brazil (Garbn. 5330).

—β. nigrescens, (Hook. Sp. Fil. i. 40).—S. Brazil.

gibbosa, Kl.—Alsophila aspera δ.

gigantea, Mart.—Alsophila glabra.

glabra, Hook. Sp. Fil. i. 51.—Java, Penang, Ceylon, (Gardn. 1056); India: Nepal, Sylhet, Chittagong, Khasya, Assam, Bootan (pubescent), Sikkim, Coorg, Concan, Moulmein, Tenasserim, Mergui.
Alsophila glabra, Fee, Gen. Fil. 346.
Alsophila venulosa, Wall. Cat. p. 63 (note).
Alsophila umbrosa, Wall. Cat. p. 64 (note).
Alsophila gigantea, Mart. Icon. Crypt. Bras. 75 (in obs.); Presl, Tent. 61; Hook. Sp. Fil. i. 53; Fee, Gen. 346; Moore [Synops. cv.]
Alsophila Halteriana, Presl, Die Gefassab. 33. t. 6, fig. 17.

Cyathea venulosa, Wall. Cat. 150.

Dichorexia gigantea, Presl, Die Gefassab. 36. t. 7, fig. 5.

Polypodium altissimum, Wall. Hb.

Polypodium giganteum, Wall. Cat. 321.

Polypodium umbrosum, Wall. Cat. 339.

glauca, J. Sm. Hook. Journ. Bot. iii. 419; Id. Lond. Journ. Bot. i. 666.—Java (Zoll. 1897 a, 2540, 2541); Moluccas;

Alsophila.

Philippines (Cuming 71, 191); Penang; N. Guinea (Barclay 3576); India: Sylhet.
Alsophila Blumei, Kze. MS. olbm.
Alsophila spinosa, Kt. MS. Pl. Hoffmannsegg.
Alsophila dealbata, Presl, Die Gef. 35, note (Cum. 191); Fée, Gen. 346.
Alsophila Smithiana, Presl, Die Gefäßb. 34. t. 7, fig. 3 (Cuming 71); Fée, Gen. 346.
Alsophila Wallichiana, Presl, Tent. 61; Hook. Sp. Fil. i. 55.
Polypodium contaminans, Wall. Cat. 320.

--- S. acuminata.—Philippines (Cuming 345).
Alsophila contaminans, S. Hook. Sp. Fil. i. 52.
Alsophila acuta, Presl, Die Gefäßb. 35 (note); Fée, Gen. 346.

---γ. densa.—Java.

--- S. microloba.—Java.

---ε. setulosa.—Java.
Alsophila myelopolos, Hsslk. MS.

---ζ. squamulata.—Java.

[glauca, Hort: Metten. Fil. Lips. 109.—?]
glaucescens, Wall. Cat. 7074.—India: Sylhet.
Alsophila glaucescens, Hook. Sp. Fil. i. 55.

Grevilleana, Wall.—Microleopia Speluncæ β. guianensis, Hort.—Alsophila Miquelii.

Hænkei, Presl, Rel. Hænk. i. 68; Id. Tent. 62.—Marianne Isl.
Alsophila Hænkei, Hook. Sp. Fil. i. 55.
(Valde aff. Als. lunulata.)

Helferiana, Presl.—Alsophila glabra.
hirsuta, Kze.—Alsophila axillaris.
hirta, Klfe. Enum. 249.—Brazil, Peru.

Hostmannii, J. Sm.—Amphicosmia Hostmannii.

5 * [Gen. 9. Sp. 211.]
Alsophila.

Alsophila Humboldtii, Kl. MS: Kze. Lin. xxiii. 220.—Venezuela.
Alsophila villosa, Karst. MS. (non Presl).—f. Kze.
humilis, J. Sm.—Alsophila villosa.

infesta, Kze. Lin. ix. 98.—S. America; Peru (Lechli. 2149),
Brazili (Mart. 391), Para (Spruce 22), Guiana, Surinam
(Kegel 609; Kappl. 1774); Columbia (Moritz. 117, 394),
Venezuela (Fendl. 56), Panama (? Seem. 623); W. Indies:
Dominica.
Alsophila infesta, Presl. Tent. 61, t. 1, fig. 19; Hook. Sp. Fil. i. 42; Fée,
Gen. 346; Kze. Lin. xxi. 236 (excl. syn.); Id. Bot. Zeit. ii. 327;
Metten. Fil. Lechli. 23.
Alsophila caracasana, Kl. Lin. xviii. 541; Kze. Lin. xxiii. 220.
Alsophila microphylia, Karst. MS.
Zeit. ii. 327 (in obs.); Fée, Gen. 346.
(See also Als. Weigeltii; and Als. peruviann).

—S. fumata, (Hk. Sp. Fil. i. 42).—S. Brazil.

1295, 1297).
lavis, J. Sm.—Amphicosmia lavis.

lanuginosa, Presl, Epim. Bot. 29.—Java.
Cyathea lanuginosa, Jungh. Reis. d. Jav. 404?

latebrosa, Wall. Cat. p. 64, note.—Penang, Singapore, Java
(Zoll. 354 z.); India: Moulmein, Assam, Neilgherries.
Bot. i. 667; Hook. Sp. Fil. i. 37; Fée, Gen. 346; Kze. Lin. xxiv.
294.
Alsophila debilis, Bl. MS: Hb. J. Sm.
Dichorexia latebrosa, Presl, Die Gefasb. 36; Id. Epim. Bot. 34.
Hemitelia latebrosa, Metten. Fil. Lips. 111.
Polypodium latebrosum, Wall. Cat. 318.

—\\(b. Schmidiana, Kze. Lin. xxiv. 294.India: Neilgherries
(Schmid 142, 169; Kurz 42; Weigle 128).

lepidophora, Kze.—Alsophila lepifera.

Bot. i. 667.—Philippines (Cuming 180).
Alsophila lepifera, Hook. Sp. Fil. i. 54; Fée, Gen. 346.
294 (in obs.).

? Leprieuriana, Kze.—Amphicosmia Hostmanni.

Leschenaultiana, M.—Neilgherries.
Polypodium Leschenaultianum, Wall. Cat. 323.

[Gen. 9. Sp. 219.]
Alsophila.

leucolepis, *Mart. Icon. Crypt. Bras.* 70, t. 46.—Brazil *(Gardn. 5329; 5331—squam. paucior.)*

Loddigesii, *Kze. Lin. xx. 7; xxiii. 221.—"Patr. ignot. vix dubie australis" *(Kze.)*

(Prox. *Als. australis.—f. Kze.)*

Alsophila temulata, "*R. Br.*", *J. Sm. Lond. Journ.* Bot. i. 666 (err. typ.)

Hemitella extensa, *Presl, Die GesuBsb.* 43 (note); *Fée, Gen.* 349.

(See also *Als. Hancei*).

Chnaophora lurida, *Blume, Enum.* 244.

lurida, Hort. Belg.—Alsophila Miquelli.

manilensis, *Presl.—Amphicosmia manilensis.*

Trichopteris marginalis, *J. Sm. MS.* in *Hb.*

marianna, *Gaud.—Alsophila Hancei.*

martincensis, *Spr.—Lastrea subincisa.*

Hemitella Mertensiana, *Presl, Epim.* Bot. 34.

mexicana, *Mart. Icon. Crypt. Bras.* 70, t. 45.—Mexico *(Schaffn. (1854) 294).*

5 ** [Gen. 9. Sp. 228.]
Alsophila.

Alsophila microphylla, Karsten MS.—Alsophila infesta, microptera, Hort.—Alsophila Miquelli.

Miersii, Hook. Sp. Fil. i. 38.—Brazil (Gardn. 117).
Alsophila uniflora, Kze. MS.—f. Kze.

millefolia, Desv. Prod. 320.—St. Domingo—Plum. t. 33.

(micropTiylla, Karsten MS.—Alsophila infesta. microptera, Hort.—Alsophila Miquelli.)

alsophila mollissima, M.—Columbia (Karsten, i. 74).
Alsophila aculeata, Kl. Lin. xviii. 540 (excl. syn.); xx. 442; Presl, Die Gefäßbl. 35 (note).
Diaphania aculeata, Karst. MS.
Polypodium mollissimum, Kl. MS.—f. Kl.

mollissima, Kze.—Alsophila villosa.
monticola, Mart.—Cyathea monticola.
multiflora, Presl.—Amplicosmia multiflora.
munita, Kls. MS: Presl.—Alsophila paleolata.
muricata, Desv.—? Alsophila aspera.
? Cyathea muricata.
myelopoios, Hsckl.—Alsophila glauca, e.
nigra, Mart. Icon. Crypt. Bras. 71, t. 47.—Brazil.
Alsophila nigra, Presl, Tent. 62; Hk. Sp. Fil. i. 45; Fée, Gen. 346.
nitens, J. Sm.
nitida, Kze.

oligocarpa, Fée, Gen. Fil. 346.—S. America (Lind. Funcke et Schltdl. 1002).
oligosora, Miquel MS: Kze. Lin. xxiii. 221.—Java.
paleolata, Mart. Icon. Crypt. Bras. 68, t. 45.—Brazil (Bregn. i. 478); Peru (Lecp. 2190); Guiana.
Alsophila.

55

346; Presl, Die Geseassb. 34, t. 7, fig. 2; Kze. Lin. xxiii. 221; Id. Bot. Zeit. ii. 328; Metten. Fil. Lecl. 29.
Alsophila ferox, y. Hook. Sp. Fil. i. 41.
Polypodium alsophilum, Link, Hort. Ber. ii. 106.

pauciflora, Presl, Die Geseassb. 35 (note).—Columbia.
Perriniana, Spr.—Woodsia obtusa.

peruviana, Kl. Lin. xx. 441.—Peru (Ruiz Hb. 66).
(Alsophila infesta.)

phalerata, Mart. Icon. Crypt. Bras. 67, t. 42.—Brazil; ? New Grenada (Lind. 1033).
Cyathae phalerata, Mart. Denkschr. Regensb. ii. 146, t. 2, fig. 3 (caudex); Spr. Syst. iv. pt. ii. 320.

—ß. squamulosa (Hook. Sp. Fil. i. 42).—Brazil; Demerara;
W. Indies: Dominica (Imray 110), Guadeloupe.
Alsophila alata, "Kze." Fée, Gen. 346 (alutacea, mutat).

pilosa, M. et Gal.—Polyodium rude.

plagiopteris, Mart. Icon. Crypt. Bras. 73, t. 50.—Brazil; St. Paul; S. Brazil.
Alsophila plagiopteris, Presl, Tent. 62; Hook. Sp. Fil. i. 44; Fée, Gen. 346.
(Aff. Als. axillaris).

platyphylla, Presl, Epim. Bot. 29.—Fr. Guiana.

podophylla, Hook. MS. in Hb.—Chusan.

Poeppigii, Hook. Sp. Fil. i. 43.—Peru (Ruiz Hb. 21) : New Grenada (Lind. 223); Brazil (Hb. Klfs.—f. Kze.)

Pohlii, Presl.—Alsophila axillaris.

praeicta, Kze.—Alsophila infesta.

procera, Klfs. Hb.—South America: Brazil, Guiana.
Polypodium procercum, Wild. Sp. Pl. v. 206; Spr. Syst. 60.

procera, Hook. (part).—Alsophila pungens.

Alsophila.

prosera, Mart.—Alsophila arbuscula.
prosera, Willd. Hb.—Alsophila infesta.

pruinata, Kjfs. Hb: Mart. Icon. Crypt. Bras. 75.—W. Indies: Jamaica; S. America: Mexico (Gal. 6334; Lind. 18; Leibold 36; Schaffn. (1854), 233), S. Darien, Columbia (Moritz. i. 9; Id. 89; Karst. i. 53—f. Kl: see also A. senilis), Venezuela (Fendl. 48; Lind. 604), Caracas (Lind. 501), New Grenada (Lind. 1040 (tomentose beneath)); Id. Schl. 438, 649, Brazil, Chili (Cumings 153; Bridgey, 514; Lech. 514), Chiloé, Juan Fernandez (Bert. 1553).—Pluk. t. 282, fig. 2—f. Schkuhr.
Alsophila cinerea, Mart. et Lind. MS.
Alsophila affinis, Fée, Gen. 346.
Lophosoria pruinata, Presl, Die Gefassemb. 37, note (caud. arbor.—Pr.)
Lophosoria discolor, Presl, Die Gef. 36, 37, t. 7, fig. 6 (Rhiz. rep.—Pr.)
Lophosoria affinis, Presl, Die Gefassemb. 37 note; Kze. Lin. xxiii. 282 (Rhiz. rep.—Pr.)
Lophosoria polypodiooides, Presl, Die Gefassemb. 37 note (Rhiz. rep.—Pr.)
Polypodium pronatum, Sw. Pl. Ind. Occ. iii. 1652; Id. Syn. 41; Willd. Sp. 207; Spr. Syst. 60; Desv. Prod. 242; Kjfs. Enum. 122; Presl, Rei. Hänk. i. 27.
Polypodium glaucum, Sw. Prod. 134; ? Presl. Rei. Hänk. i. 28 (? young)
Polypodium caesium, Presl, Rei. Hänk. i. 27 (? young).
Polypodium griseum, Schkuhr, Crypt. Gem. 26, i. 23 b.
Trichosorus glansescens, Lieb. MS (Hb. Hook.)
Trichosorus frigidus, Lieb. MS (Hb. Hook.)

pycnocarpa, Kze. Lin. ix. 97; Id. Schkr. Supp. i. 208, t. 86; Id. Lin. xxiii. 221.—Peru; Brazil, St. Catherines.
Alsophila pycnocarpa, Presl, Tent. 61; Hook. Sp. Fil. i. 47; Fée, Gen. 346.

Raddiana, Gaud. MS.—Alsophila aculeata.

radens, Kjfs. Enum. 248.—Brazil, St. Catherines.
Alsophila radens, Spr. Syst. 124; Presl, Tent. 61; Id. Die Gefassemb. 32, t. 6, fig. 18, 16; Hook. Sp. Fil. i. 46; Kze. Lin. xxiii. 221; Metten. Fil. Lepa. 108.

rigida, Mart.—Alsophila villosa.
rostrata, Mart.—Amphidesmium blechnoides.

[Gen. 2. Sp. 254.]
Alsophila.

samoensis, Brack. U. S. Expl. Exped. xvi. 287, t. 40, fig. 1.—Samoa.

Schaffneriana, Fée, Cat. lith. Foug. Mex. 25.—Mexico (Schaffn. 232).

Schiedeana, Presl, Tent. 62.—Mexico.
Polypodium sp., Schlech. Lin. v. 609.
Sellowiana, Kt.—Alsophila paleolata.

senilis, Kl. Bot. Zeit. iv. 101; Id. Lin. xx. 442.—Columbia (Karst. i. 53, 173); Venezuela (Funcke 810).
Alsophila senilis, Kze. Lin. xxiii. 221.

serrata, J. Sm.—Alsophila aspera γ.

setosa, Klfs. Enum. 249.—Brazil.
Alsophila setosa, Spr. Syst. 124; Hook. Sp. Fil. i. 46; Fée, Gen. 346.

Smithiana, Presl.—Alsophila glauca.

speciosa, Presl, Tent. 62.—Brazil.
Polypodium speciosum, Meyn, Iter. 180.

spinosa, Kl. MS.—Alsophila glauca.
spinulosa, Hook. Hb.—Cyathea spinulosa.

Sprengeliana, Mart. Icon. Crypt. Bras. 75.—W. Indies; St. Domingo, Guadeloupe.
Alsophila Sprengeliana, Hook. Sp. Fil. i. 46.

squamata, Kl.—Alsophila microphylla.

squamulata, Hook. Sp. Fil. i. 51.—Java; Malacca (Cuming 396).
Alsophila squamulata, Fée, Gen. 346.

stipulacea, Beyrich Hb.—Amphicostia Beyrichiana.
strigosa, J. Sm.—Amphicostia strigosa.

subaculeata, Splitz, Tijdscbl. Nat. vii. 430.—Surinam.
Alsophila subaculeata, Hook. Sp. Fil. i. 47; Kze. Lin. xxi. 236 (note); xxii. 221.

Stwartziana, Mart.—Alsophila armata.

Tænitis, Kze. Lin. ix. 90 (in obs.)—Brazil (Gardn. 5835, 5336).

[Gen. 3. Sp. 264.]
Alsophila.

Polypodium corcovadense, Raddi, Syn. Fil. 76; Id. Fil. Bras. 26, t. 49; Dev. Prod. 241.
Polypodium arborinum, Raddi MS: Hb. Hook.
Trichopteris excelsa, Presl, Del. Plag. i. 172; Id. Tent. 59, t. 1, fig. 10; Id. Die Gesess. 32, t. 6, fig. 11 (stipes); Spr. Syst. 124; Schott, Gen. Fil. (t. 1); Hook. Gen. Fil. t. 34; J. Sm. Lond. Journ. Bot. i. 669; Fée, Gen. 347.
Trichopteris denticulata, Presl, Tent. 59; Id. Die Gesess. 32, t. 6, fig. 12 (stipes); Fée, Gen. 347.

tahitensis, Brack.—Amphicosmis tahitensis.
Telfairiana, Wall.—Cyathea canaliculata.
tenera, J. Sm.—Cyathea tenera.

tenueisecta, Blume MS: Hb. Hook.—Java.

temulata, "R. Br."? J. Sm.—Alsophila lunulata.

Chloophora tomentosa, Blume,Enum. 244.

tristia, Blume MS: Hb. Hook.—Java.

tumacensis, J. Sm.—Alsophila elongata.
unita, Kze.—Alsophila Miersii.
venulosa, Wall.—Alsophila glabra.

vestita, Presl, Epim. Bot. 27.—Fr. Guiana.

vestita, J. Sm.—Alsophila armata.

villosa, Dev. Prod. 319.—S. America: Columbia (Kart. ii. 24), Venezuela (Fendl. 47; Moritz. 395), Caracas (Lind. 195), B. Guiana (Kich. Schomb. 1199), Brazil (Gardn. 5332, 5334 ?), Santa Cruz.—Hb. Reg. Bras. Ber. 85.
Alsophila villosa, Presl, Tent. 62; Id. Die Gesess. 33, t. 6, fig. 18; Hook. Sp. Fil. i. 43; Fée, Gen. 346; Kl. Lin. xx. 443; Kze. Bot. Zeit. ii. 328.
Alsophila tomentosa, Presl, Tent. 62.

villosa, Kze. (Hb. Poepp.)—Alsophila Poeppigii.

villosa, Kart.—Alsophila Humboldtii.

Wallichiana, Presl.—Alsophila glauca.

[Gen. 9. Sp. 270.]
Ampelopteris.—Amphiblestra.—Amphicosmia.

Amauropelta, Kunze, _Schukhr._ _Supp._ 109, t. 51. _Breutelii_, Kze.—Lastrea Breutelii.

Ambia, _Presl., Tent. Pter._ 184 (Amblya, _Fée._) juglandifolia, _Presl._.—_Cyrtomium_ juglandifolium.

Amesium, _Newman, Hist. Brit. Ferns._ ed. 2, 10._ germanicum_, _Newm._.—_Asplenium germanicum._
Ruta-muraria, _Newm._.—_Asplenium Ruta-muraria._ septentrionale, _Newm._.—_Asplenium septentrionale._

AMPELOPTERIS, Kunze, _Bot. Zeit._ vi. 114; _Id. Lin._ xxiv. 251. [_Synopsis p. lxiv._]

Ampelopteris, Klotzsch. _Lin._ xx. 430 (§)= _TENIOPSIS._

AMPHIBLESTRA, _Presl., Tent. Pter._ 150. [_Synopsis p. xliv._]

latifolia, _Presl., Tent._ 151, t. 6, fig. 1.—Venezuela (_Moritz. 161; _Lind. Funcke 201_), Cumanacca (_H. B. K._) Amphiblestra latifolia, _J. Sm._ _Hook. Journ. Bot._ iv. 162; _Hook. Gen._ t. 120 C; _Fée, Gen._ 140, t. 11 B, fig. 1, 4-8; _Kl. Lin._ xx. 344; _Kze. Schkr._ _Supp._ ii. 43, t. 118.
Pteris macrophylla, _Martens et Lind._ _M.S._—t. _Kze._

[? longifolia, _Presl., Tent._ 151.—Chili._]

AMPHICOSMIA, Gardner, London Journal of Botany, i. 441. [_Synopsis p. civ._]

? alternans, _M. [Synopsis civ._]—Penang.
Alsophila alternans, _Wall._ _Cat._ p. 64 (note).
Hemitelia ? alternans, _Hook. Sp. Fil._ i. 39; _Id. Icon._ _Pl._ t. 622; _Fée, Gen._ 349.

Polypodium alternans, _Wall._ _Cat._ 329; (no spec. in _Hb_; in _Hb._ _Hk._)

australis, _M._.—_Tropical New Holland._

Hemitelia australis, _Presl._ _Epim._ _Bot._ 33.

Beyrichiana, _M. [Synopsis civ._]—Brazil (_Gardn. 135)._
Cyathea Beyrichiana, _Presl._ _Tent._ 55; _Hook. Sp. Fil._ i. 21; _Id. Icon._ _Pl._ t. 623.

Alsephila stipulacea, *Beyrich Hb.—f. Pr.
Alsephila Beyerichiana, *J. Sm. MS. in Hb.

capensis, M. [*Synop. civ.*]—S. Africa; Brazil (*Gardn. 5954*);
Java.
Hemitelia brasiliensis, *Gardn. M.S.

—*S. polyantha.

Cumingii, M.—Elizabeth Island (*Cuming 1860*).
Hemitelia Hostmannii, *Hook. Sp. Fil. i. 31; *Id. Icon. Pl. t. 646; *Fic, *Gen. 349; *Kze. Lin. xxiii. 257, 310; *Presl, *Die Gefassb. 44 (note).
Cyathea aspera, *Kl. Lin. xviii. 539 (non *Sw.)—f. Pr.

javanica, M.—Java.

Kegelii, M.—Surinam (*Kegel 1050*).

laevis, M. [*Synop. civ.*]—B. Guiana.
Hemitelia *? guianensis, *Ekt. Sp. Fil. i. 31; *Id. Icon. Pl. t. 649; *Fic, *Gen. 349; *Presl, *Die Gefassb. 44 (note).

lingulata, M.—Fr. Guiana.

macrocarpa, M.—Brazil (*Blanch. 17, 3227*).

[Gen. 12, *sp. 286.]
Amphicosmia.—Amphidesmium.

manilensis, M.—Philippine Islands.
Alsophila manilensis, Prél. Tent. 62; Hook. Sp. Fil. i. 55.
Hemitella manilensis, Prél, Die Gefäßb. 42, with note; Id. Epim. Bot. 34.

nigricana, M.—Guatemala.

Parkeri, M.—Br. Guiana (Rob. Schomb. 10).
Hemitella ? Parkeri, Hook. Sp. Fil. i. 32; Id. Icon. Pl. t. 643; Fée Gen. 349; Prél, Die Gefäßb. 44 (note).

riparia, Gardn.—Amphicosmia capensis.

strigosa, M.—Trinidad; B. Guiana (Rob. Schomb. 304).

tabitensis, M.—Society Isles.

urolepis, M.—Cuba; Guiana (Hb. Moricand).
Hemitella urolepis, Kze. Hb. (Lin. xxi. 235, note); Id Lin. xxiii. 293, 311.
Cyathea urolepis, Kze. MS.

Walkere, M. [Synop. civ.]—Ceylon.
Cyathea Walkere, Hook. Sp. Fil. i. 24; Id. Icon. Pl. t. 647.
Hemitella Walkere, Prél, Die Gefäßb. 43 (note); Fée, Gen. 349.

AMPHIDESMIUM, Schott, Gen. Fil. (t. 1. note). [Synopsis p. cv.]

blechnoides, Kl. Lin. xx. 372.—S. America: B. Guiana (Rob. Schomb. 18, 313; Rich. Schomb. 279), Surinam (Kegel 1057; Hostm. 73), Peru, Brazil, Sao Gabriel (Spruce 2404), Para (Spruce 35), Bay of Ardita S. Darien (Seem. 983), Panama (Fendl. 405; Cuming 1126), Island of Gorgona (Barelay 907), Guatmala; W. Indies: Trinidad, Guadeloupe.

Amphidesmium blechnoides, Kze. Lin. xxi. 233.
Amphidesmium Parkeri, Schott, Gen. Fil. under t. 1; Prél, Tent. 246; Fée, Gen. 349; Kze. Lin. xxii. 221.

[September, 1857.]
Amphidesmium.—Anapausia.

Polypondium giganteum, L’Hèrm. M.S.

—β. polycarpa.—D. Guiana (Hostm. 1080 ; 1180.—f. Kze.)
Alsophila blechnoides, β. Hook. Sp. Fil. i. 35.

fuscum, Prest.—Trichomanes fuscum.

Amphoradenium, Desvaux, Prod. 335—Ann. Soc. Linn. Par. vi. 335.

australe, Desv.—Polypondium tamariscinum β.
Gaudichaudii, Desv.—Polypondium tripinnatifidum.

minutum, Desv.—Polypondium hymenophylloides.

ANAPAUSIA, Prest, Tent. Pter. 244 (§); Id. Epim. Bot. 185. [Synopsis p. xxi.]

acuminata, Prest, Epim. Bot. 188.—W. Indies; Jamaica, Martinique, Guadeloupe (L’Hèrm. 9).—Plum. t. 115.

Gymnopteris acuminata, Prest, Tent. 244; Fée, Acrost. 86, t. 46, fig. 2 (excl. syn. Gymn. latifolia, et Polybotrya); Id. Gen. 56; J. Sm. Hook. Journ. Bot. iv. 156.

Chrysoodium acuminatum, Metten. Fl. Fil. Lips. 22.

Gymnopteris acuminata β. heterophylla, Fée, Acrost. 86.

Acrostichum fallax, Bory Hb.—f. Fée.

aliena, Prest, Epim. Bot. 187—W. Indies: Jamaica, Cuba, Martinique, Trinidad, Portorico, Guadeloupe; S. America; Columbia (Lind. 1751), New Grenada, Equador, Panama (Seem. 368), Guatemala, Mexico.—Plum. t. 10.

Acrostichum alienum, Sw. Fl. Ind. Occ. iii. 1595; Id. Syn. 13; Willd. Sp. 119; Spr. Syst. 37; Desv. Prod. 211.

Chrysoodium alienum, Metten. Fil. Lips. 21, t. 10, fig. 5.

—β. cladorrhizans.—Portorico, Mexico (Galeotti 6572).

Anapausia portoricensis, Prest, Epim. Bot. 188.

Gymnopteris portoricense, Fée, Acrost. 85; Id. Gen. 56.

bicusps, M. [Synop. xxi.]—Java (Zoll. 316 z.)
Polypodium bicuspe, Blume, Enum. 125; Id. Fl. Java 131.
Cheiropleuria bicusps, Presl, Epim. Bot. 189; Fée, Gen. 56.
decurvens, Presl.—Gymnopteris decurvens.
dentata, Presl, Epim. Bot. 188.—Fr. Guiana.
Gymnopteris dentata, Fée, Acrost. 85; Id. Gen. 56.
icotianæfollia, Presl, Epim. Bot. 189.—W. Indies: Jamaica, Cuba (Lind. 2117), Trinidad, St. Thomas, Portoricco; S. America: Guiana, Para (Spruce 28).
Chrysodium nicotianæfolium, Metten. Fil. Lips. 22.
Gymnopteris nicotianæfolia, Presl, Tent. 24, t. 11, fig. 6; Fée, Acrost. 88, t. 46, fig. 1; Id. Gen. 56; J. Sm. Hook. Journ. Bot. iv. 156; Id. Cat. Ferns 23; Moore et Houtl. Gard. Mag. Bot. iii. 183, fig. 31.

portoricensis, Presl.—Anapausia aliena β.

Gymnopteris semipinnatifida, Fée, Acrost. 83, t. 44; Id. Gen. 56.

—β. decurvens.—Brazil: Sao Gabriel (Spruce 2121).

vespertilio, M. [Synop. xxi.—err. typ: vespertilionis]—Java (Lobb. 198).
Acrostichum vespertilio, Metten. Fil. Lips. 20.
Cheiropleuria vespertilio, Presl, Epim. Bot. 189; Fée, Gen. 56.

lycopodioïdes, J. Sm.—Pleopeltis lycopodioïdes.
nitida, J. Sm.—Pleopeltis nitida.
serpens, J. Sm.—Goniophlebium serpens.
squamulosa, J. Sm.—Pleopeltis squamulosa.
vaccinifolia, J. Sm.—Goniophlebium vaccinifolium.
venosa, J. Sm.—Pleopeltis stigmatica.

Anaxetum, Schott. Gen. Fil. (t. 1).
crassifolium, Schott.—Pleopeltis crassifolia.

virginica, Presl.—Woodwardia virginica.

ANEMIA, Swartz, Syn. Fil. 6, 155. [Synopsis p. cxv.]
abscissa, Schrad.—Anemia caudata γ.
adiantifolia, Sw. Syn. Fil. 157.—W. Indies: Jamaica (Hartw. 6 *)
Anemia.

1578), Cuba (Otto, 255), St. Domingo, Bahamas, Guadeloupe (L'Hérm. 1), Portorico; S. America: Mexico (Galeotti 6324; Leibold 47; Scaffin, (1855) 104 a, b.), Tabasco (Lindl. 1488), Guatemala.—Plum. t. 158: Dict. Sc. Nat., (ed. Levr.) t. 100.

Ornithopteris adiantifolia, Bernh. Schrad. neues Journ. Bot. 1806, ii. 50, t. 3, fig. 15 b.

—β. aspleniformia, Wildl. Sp. Pl. v. 94.—St. Domingo, Jamaica.

Anemia adiantifolia, β. aspleniformia, Hook. et Grev. Icon. Fil. t. 18.

Osmunda aspleniformia, Lam. Enc. iv. 662.

—γ. caruiformia.—Mexico.

Anemia caruiformia, Presl. Bel. Hanx. i. 78; Id. Supp. Tent. 85; Id. Die Gefaßbl. 20, t. 4, fig. 1; Spr. Syst. 32.

adiantifolia, Schlech.—Anemia hirsuta.

anthriscifolia, Schrad.—Anemia tomentosa γ.

aspleniformia, Sw.—Anemia adiantifolia β.

Anemia aurita, Wildl. Sp. 95; Spr. Syst. 31; Desv. Prod. 197; Presl, Supp. Tent. 80; Hook. Icon. Pl. t. 903.

Osmunda aurita, Sw. Prod. 127.

bipinnata M. [Synop. cxvi.]—W. Indies: Cuba (Otto 66), Bahamas; Carolina, Campeachy.

Anemia cicutaria, Kze. Lin. ix. 23; Id. Anal. Pter. 9, t. 5, fig. 2; Spr. Syst. 31; Presl, Supp. Tent. 80; Id. Die Gef. 19, t. 3, fig. 16 (stipes).

Coptophyllum cicutarium, Fl. Lin. xviii. 527.

Breuteliana, Presl, Supp. Tent. 90.—W. Indies: Trinidad, St. Kitt's; S. America: Brazil (Blanch. 49, 50).

(See also Anem. collina.)

buniiifolia, M. [Synop. cxvi.]—Brazil (Gardn. 4084).

caruiformia, Presl.—Anemia adiantifolia γ.

caudata, Klfs. Enum. 52.—Brazil.

Anemia.

Anemia radicans, Raddi, Syn. Fil. 22; Id. Fil. Bras. 70, t. 10; Spr. Syst. 31; Desv. Prod. 196; Pr. Supp. Tent. 85; Kze. Lin. xxiii. 223.

—β. evoluta.—Brazil.
Anemia radicans, β. evoluta, Presl, Supp. Tent. 85.

—γ. abscissa.—Brazil (Gardn. 2, 3).
cheilanthoides, Klfs.—Anemia tomentosa ε.
cicutaria, Kze.—Anemia bipinnata.
cicuta, Moore et Houlet.—Anemia adiantifolia.
ciliata, Presl.—Anemia hirsuta.
—Kze. Lin. xxiii. 223].
collina, Raddi, Syn. Fil. 24; Id. Fil. Bras. 71, t. 12.—Brazil, Mexico (Gal. 6364; Seem. 1951).
(See also Anem. Breuteliana).

—β. evoluta, Presl, Supp. Tent. 86.—Brazil.
cordifolia, Presl.—Anemidictyon Phyllitidis γ.
cuneata, Kze. Lin. ix. 21; Id. Anal. Pter. 8, t. 5, fig. 1.—Cuba.
Anemia cuneata, Spr. Syst. 32; Presl, Supp. Tent. 85.
delicatula, Pobl. Hb.—Anemia millefolia.
deltioidea, Sw.—Anemia tomentosa δ.
densa, Link.—Anemidictyon hirtum.
dentata, Gardn.—Anemia filiformis.
dichotoma, Gardn MS.—Anemia bunifolia.
dissecta, Presl.—Anemia tenella.
distans, Kée, Cat. lith. Foug. Mex. 33.—Mexico.
diversifolia, Schrad.—Anemia Schraderiana.
Drègeana, Kze. Lin. x, 193; xxiii. 222; Id. Schkr. Supp. i. 38, t. 20.—S. Africa; Natal (Krauss 370).

—β. obtusissima, Kze. Schkr. Supp. i. 38, t. 20, fig. d.—S. Africa; Natal.
Anemia.

elegans, Presl.—Trochopteris elegans.
ferruginea, H. et B.—Anemis tomentosa.

[filiculifolia, Sw. Syn. 158.—St. Domingo.
Anemia filiculifolia, Willd. Sp. 95; Spr. Syst. 31; Desv. Prod. 197;
Presl, Supp. Tent. 86; (excl. fig. Plum.)

filiformis, Sw. Syn. 156.—America merid: Brazil (Gardn. 2387), Mexico; W. Indies: Jamaica.
Anemia filiformis, Willd. Sp. 90; Spr. Syst. 32; Presl, Supp. Tent. 87;
Kl. Lin. xviii. 526.
Anemia dentata, Gardn. Sert. Pl. sub. t. 70.—f. Pr.

flexuosa, Sw.—Anemis tomentosa.
flexuosa, Kze. Hb. Vien.—Anemis tomentosa γ.
flexuosa v.? anthriscifolia, Kze.—Anemis tomentosa γ.
flexuosa ? Schimp.—Anemis tomentosa β.
fraxinifolia, Raddi.—Anemidiotyon Phyllitidis β.
fraxinifolia, Goldm.—Anemidiotyon Phyllitidis.
fulva, Sw.—Anemis tomentosa γ.

Gardneri, Hook. Icon. Pl. t. 190.—Brazil (Gardn. 4).
Gardneriana, Presl.—A. glareosa.

glareosa, Gard. Sert. Pl. t. 70.—Brazil (Gardn. 4086).
Anemia Gardneriana, Presl, Supp. Tent. 82; Id. Die Gefassb. 20, t. 3,
fig. 18 (stipes).

glomerata, Gard. MS: Hb. Hook.—Brazil (Gardn. 5339).
goyazana, Pohl Hb.—Anemis humilis.
gracilis, Schrad.—Anemis humilis.
Haukei, M. et Gal.—Anemidiotyon Phyllitidis.
Haukei, Presl.—Anemidiotyon Phyllitidis γ.

helveola, Fée, Cat. lith. Foug. Mex. 32.—Mexico (Galeotti 6558 bis).

hirnsuta, Sw. Syn. 156.—S. America : Columbia (Moritz. i. 69;
Id. 5, 6. 158; Wagener 94; Hartweg 1482), Venezuela
(Fendl. 8, 15), New Grenada (Lind. Schl. 59, 625), Peru
(Mathews 3299); Brasil (Gardn. 218, 2388, 3558),
Panama (Seein. 12), Mexico (Gal. 6363, 6543, 6567; Leib.
30; Lind. 41; Schaffn. (1854) 106 b.), Guatemala;
W. Indies: Jamaica, Cuba, St. Domingo.—Plum. t. 162;
Sloane, Jam. i. t. 25, fig. 6.
Anemia ciliata, Presl, Del. Prod. 158; Spr. Syst. 32; Presl, Supp. Tent.
87; Kze. Lin. xxiii. 222.
Anemia repens, (major), Raddi, Syn. Fil. 25; Id. Fil. Bras. 71, t. 9, fig.
2 b; Kl. Lin. xviii. 526.

* Probably founded on Plumier's figure (t. 161), which is here referred to
Polybotrya cylindrica. [Gen. 15. Sp. 321.]
Anemia.

Anemia adiantifolia, Schlecht. Lin. v. 621.
Anemia opaca, Fée, Cat. lith. Foug. Mex. 33 (Gal. 6667).
hirta, Sw. W. Hb.—Anemidiotyon hirtum.
hirta, J. Sm.—Anemia collina.
hirta, Raddi : Poepp. Hb.—Anemidiotyon Phyllitidis β.
hispida, Kze. Lin. ix. 20.—Peru.
Anemia hispida, Presl, Supp. Tent. 86.
humilis, Sw. Syn. 156.—S. America: Brazil (Gardn. 2389, 3560 (Pr), 4087; Clausss. 79, 109, 195), Para (Spruce 948), British Guiana (Rich. Schomb. 1219), Columbia (Moritz. 159), Venezuela (Fendf. 9, 10), I. of Taboga, Panama (Seem. 992), Mexico (Galeotti 6353; Schaffn. (1854) 106 a.)
Anemia pilosa, M. & G. Foug. Mex. 19, t. 2, fig. 1; Presl, Supp. Tent. 86.
Anemia pumila, K. Lin. xviii. 526.
Anemia Schomburgkiana, Presl, Supp. Tent. 86; Id. Die Gefassth. 20, t. 4, fig. 2 (stipes).
Anemia goyazana, Pohl Hb.—(Pr.)
incisa, Schrad. Goett. gel. Anz. 1824, 865.—Brazil (Gardn. 3560 bis—Hb. Hk.); New Grenada; Venezuela (Fendel. 11; Lond. 693).
Anemia incisa, Mart. Icon. Crypt. Bras. 114; Presl, Die Gefassth. 20, t. 4, fig. 3.
Anemia pallida, Field. et Gardn. Sert. Pl. sub. t. 70.
Anemidiotyon incisum, Presl, Supp. Tent. 93.
—β. obtusa (Pr. Die Gefassth. 20).—Brazil (Gardn. 3560 bis—Hb. Heward.)
intermedia, R. Br. Ms.—Anemia bipinata.
Kunzeana, K. Ms: Id. Lin. xviii. 526, note.—?
laciniata, Link.—Anemidiotyon Phyllitidis ε.
lanata, R. Br. Ms.—Anemia collina.
lanceolata, Lodé: Sweet.—Anemidiotyon Phyllitidis.
Langsdorffiana, Presl, Supp. Tent. 89.—Brazil: St. Catherines.
Anemia Phyllitidis, var. Langsd. et Fisch. Icon. Fil. 23, t. 28.—f. Pr.
longifolia, Raddi : Goldm.—Anemidiotyon Phyllitidis β.
macrophylla, Hort.—Anemidiotyon hirtum.
[Gen. 15. Sp. 323.]
Anemia.

mandioccana, Raddi.—Anemia caudata γ.
mandioccana, Hook.—Anemia Breuteliana.

media, Link, Fil. Sp. 25.—Venezuela.
Anemia media, Presl, Supp. Tent. 90; Kze. Lin. xxiii. 223.
mexicana, Kl. Lin. xviii. 526.—Mexico (Aschend. 575); New Mexico (Wright 826); Texas (Lindheimer 524, 572).
Anemia spectosa, Presl, Supp. Tent. 89; Id. Die Geseh. 20, t. 4, fig. 4 (stipes).
Anemia striata, A. Braun MS.—f. Kze.

millefolia, Gardn. MS; Hb. Bras. 4083.—Brazil (Gardn. 4083).
Anemia millefolia, Presl, Supp. Tent. 80.
Anemia delicatula, Pohl MS; Hb. Imp. Vien.—f. Pr.
Anemia petrophila, Bongard MS.—f. Pr.

Milleri, R. Br. MS.—Anemia Breuteliana.
multifida, Pohl.—Anemia tenella.
obligua, Schrad.—Anemidictyon hirtum.
obtusa, Desv.—Anemia hirsuta.

oblongifolia, Sw. Syn. 156.—Brazil (Gardn. 3561); New Grenada, St. Martha; Panama.
Osmunda oblongifolia, Can. Icon. vi. 69, t. 592, fig. 2.
Osmunda longifolia, Poir.

opaca, Féé.—Anemia hirsuta.
pallida, Gardn.—Anemia incisa.
petrophila, Bongard MS.—Anemia millefolia.
pilosa, M. et Gal.—Anemia humilis.
Phyllitidis, Sw.—Anemidictyon Phyllitidis.
Phyllitidis, H. B. K.—Anemidictyon Phyllitidia γ.
Phyllitidis, Klfs.—Anemidictyon Phyllitidia δ.

Phyllitidis, Mart. Hb. Bras.—{Anemia Breuteliana (Pr.)
{Anemia collina (Pr.)

Phyllitidis, Raddi.—Anemidictyon Phyllitidis β.
Phyllitidis, var. Langds. et Fisch.—Anemia Langadorffiana.

pulchra, Pohl.—Anemia filiformis.
pumila, Kl.—Anemia humilia.

Raddiana, Link.—Anemia tomentosa.
radicans, Raddi.—Anemia caudata.
radioans, β. Raddi.—Anemia rotundifolia.
radicans, β. Presl.—Anemia caudata β.
repanda, R. Br. MS.—Anemidictyon Phyllitidia δ.
repens, (a), Raddi.—Anemia humilia.

[Gen. 15. Sp. 330.]
Anemia.

repens (b), Raddi.—Anemia hirsuta.
Riedelia ciana, Kze. MS.—Trochopteris elegans.

rotundifolia, *Schrader, Goett. gel.* Anz. 1824, 865.—Brazil;
South Brazil.

rubrostipes, Pohl.—Anemia tomentosa γ.

rufescens, *Spr.—Lomariopsis sorbifolia.*
*Schiimperiana, Presl.—Anemia tomentosa β.
Schomburgkiana, Presl.—Anemia humilis.*

Seemannii, Hook.—Anemia humilis.

sorbifolia, *Schrader.—Anemidiotyon Phyllitidis 5.*

speciosa, Presl.

striata, A. Braun MS. —Anemia mexicana.

tenella, *Sw. Syn. 156.—Jamaica; Mexico; Panama; Quito;
Brazil (Regn. ii. 340; Claussen 80).*

Anemia multiflora, *Pohl Hb.—f. Pr.*
Osmunda tenella, Cav. Icon. vi. 69, t. 592, fig. 1.

tenifolia, *Presl, Die Gefassb. i. 19, t. 3, fig. 17 (stipes); Id. Epim. Bot. 10, t. 4.—Brazil.*

tomentosa, *Sw. Syn. 157.—S. America: Buenos Ayres, Brazil (Regn. ii. 339, 340½; Gardn. 7, 89 (pt.), 90, 5340, 5341; Clauss. 67; Blanch. 3270—f. Pr.: see also var. γ.), B. Guiana (Rich. Schomb. 624; Rob. Schomb. 799), Peru Hartw. 860, Columbia (Otto, 670, 1049; Moritz. i. 70;
Id. 4, 72, 157; Wagen. 361), Venezuela (Fendl. 6), New Grenada (Lind. 652), Mexico.*

Anemia villosa, *H. et B: Willd. Sp. v. 92; Spr. Syst. 32; Desv. Prod. 196; Klft. Enum. 55; *H.B.K. Nov. Gen. i. 32; Presl, Supp. Tent. 82 (β, γ, δ); Id. Die Gefassb. 20, t. 3, fig. 19 (stipes δ);

[Gen. 15. Sp. 396.]
Anemia.

Anemia ferruginea, H. B. K. Nov. Gen. i. 32; Desv. Prod. 197; Presl, Rel. Fl. i. 75; Kze. Lin. ix. 22; Fl. Lin. xviii. 527.

Osmunda tomentosa, Lam. Ency, iv. 652.
Osmunda villosa, Poiret.
Osmunda ferruginea, Poiret.

—γ.—fulva.—S. America: Montevideo, Brazil (Gardn. 3559; Blanchat 3270—f. Pr.; sec also under tomentosa), Venezuela (Lind. 180; Id. F. et S. 692; Funkh 197), New Grenada, Peru (Mathews 3300, 3301), Mexico.

Anemia fulva, Sw. Syn. 157; Schkr. Crypt. 144, t. 142; Willd. Sp. 93; Spr. Syst. 32; Desv. Prod. 197; Presl, Supp. Tent. 84 (incl. β γ).

Anemia rubrostipes, Poiret MS. (Pr.)
Osmunda fulva, Can. Icon. vi. 70, t. 593, fig. 2; Id. Praecect. (1802) 555.

—δ. deltoides.—S. America: Buenos Ayres, Montevideo, Brazil (Gardn. 5338, 5556; Clausss. 63, 75, 194), Venezuela (Fendl. 7)? Mexico (Karwinsky 8).

Anemia villosa, a. deltoides, Presl, Supp. Tent. 82.

Anemia villosa, &. Karwinskiana, Presl, Supp. Tent. 83?

Osmunda deltoides, Can. Icon. vi. 70, t. 593, fig. 1.

—ε. cheilanthes.—Brazil.

Anemia cheilanthes, Kfro. Enum. 53; Spr. Syst. 32; Link, Fil. Sp. 26; Kze. Lin. xxiii. 222; Metten. Fil. Lips. 115.

—ζ. tripinnata.—Guatemala, Peru (Mathews 1111), Brazil (Gardn. 89 in part).

trichorhiza, Hook. Icon. Pl. t. 876.—Brazil (Gardn. 4080).

Tweedieana, Hook.—Anemidictyon Tweedieanum.

velluea, Schrad.—Anemia collina.

[verticillata, Sw. Syn. 158.—Jamaica; St. Domingo.

Anemia verticillata, Willd. Sp. v. 95; Spr. Syst. 31; Desv. Prod. 197.

Spathepterus verticillata, Presl, Supp. Tent. 95.]

vespertillo, Schrad.—Anemia Schraderiana.

villosa, H. et B.—Anemia tomentosa.

villosa, w. et ? ζ. Presl.—Anemia tomentosa δ.

* Altogether dubious; probably founded on Plumier's figure of which apparently the sterile fraud represents some Pteris, and the fertile Gymnonogramma trifoliata. [Gen. 15. Sp. 339.]
Anemidictyon.

adiantifolia, J. Sm.—Anemia adiantifolia.

densum, J. Sm.—Anemidictyon hirtum
fraxinfolium, J. Sm.—Anemidictyon Phyllitidis fl.
Hænkei, Presl.—Anemidictyon Phyllitidis fl. y.
hirtum, Presl, Supp. Tent. 92.—W. Indies: Jamaica, Cuba, St. Domingo, Martinique; Brazil.—Plum. t. 157.
Anemidictyon obliquum, Presl, Supp. Tent. 93.
incisum, Presl.—Anemia incisa.
lacinatum, Presl.—Anemidictyon Phyllitidis e.
obliquum, Presl.—Anemidictyon hirtum.

Phyllitidis, J. Sm. Lond. Journ. Bot. ii. 387.—W. Indies: Jamaica, Trinidad, etc.; S. America: Brazil (Gardn. 4082 in part; Mart. 360; Regn. ii. 338); Peru (Mathews 1804), Columbia (Moritz. i. 10; Wagen. 111; Otto 686), Venezuela (Fendl. 13; Funcke 497), New Grenada (Lind. Schl. 234), Veraguas, Mexico (Leibold 31; Lind. 3; Gal. 6399: Aschenb. 575).—Plum. t. 156.

—8. longifolium.—Brazil (Blanch. 2279; Gard. 4082 in part); Caraccas, Peru (Mathews 3303).
Anemia Phyllitidis, Raddi, Syn. Fil. 19.
Anemia hirta, Raddi, Syn. Fil. 20; Poppig Hb.—f. Kl.
Anemidictyon Hænkei, Presl, Supp. Tent. 94.

—y. cordifolium.—Brazil, Venezuala (Fendl. 13), Caraccas

Anemidictyon.—Anetium.

(Moritz. 3), N. Grenada, Peru, Mexico (Schaffn. (1854), 105).

Anemia cordifolia, Presl, Rel. Hauk. i. 73, t. 11, fig. 3; Spr. Syst. 31.

Anemia Henkei, Presl, Rel. Hauk. i. 74; Spr. Syst. 31; Kze. Lin. ix. 20; xxiii. 222.

Anemidictyon Henkei, β, Presl, Supp. Tent. 94.

—δ. fraxinifolium.—Brazil (Blanch. 9, 74, 178; Barclay 179; Gardn. 6).

Anemidictyon fraxinifolium, J. Sm. Lond. Journ. Bot. ii. 387; Presl, Supp. Tent. 92 (incl. β); Id. Die Gefäße 21, t. 4, fig. 5 (stipes).

Anemia fraxinifolia, Raddi, Syn. Fil. 21; Id. Fil. Bras. 69, t. 8 bis; Desv. Prod. 196; Gaud. Frev. Voy. 294; Kze. Lin. xxiii. 222.

Anemia Phyllitidis, Kifts Enum. 54 (excl. syn.)—f. Pr.

Anemia repanda, E. Br. MS: Ho, Mus. Brit.

Osmunda Phyllitidis, Velloz. Fl. Plam. xi. t. 55.—f. Pr.

—ε. laciniatum.—Brazil.

Anemidictyon laciniatum, Presl, Supp. Tent. 94.

Anemia lacinata, Link, Fil. Sp. 25; Kze. Lin. xxiii. 222.

Osmunda brasiliensis, Velloz. Fl. Plam. xi. t. 54.—f. Pr. (non—f. Kze.)

Phyllitidis, Hook.—Anemidictyon Phyllitidis δ.

Tweedieanum M. [Synops. cxvi.]—S. Brazil.

Anemia Tweedieana, Hook. Icon. Pl. t. 906.

[Synopsis p. lviii.]

citrifolium, Spl. Hoëv. et Vr. Tijd. Nat. vii. 395.—W. Indies: Jamaica, Trinidad, St. Vincent’s, Guadeloupe (L’Herm. 2) Porto Rico; S. America: Brazil (Mart. 369), Para (Spruce 274), Amazon R. (Spruce 2368), New Grenada, F. Guiana, Surinam (Kegel 1434), Mexico Vera Cruz (Galeotti 6801)—Plum. t. 116.

Antrophyum citrifolium, Fée, Antroph. 51; Id. Gen. Fil. 175.

Hemionitis Boryana, Bulbis Hb.—f. Pr.

Hemionitis spathulata, Presl, Tent. Pter. 221.

—β. flaccidum, Fée, Acrost. 97.—French Guiana.

Acrostichum flaccidum, Bory Hb.—f. Fée.

Antrophyum pendulum, Lepr. MS: Fée, Antroph. 61; Id. Gen. Fil. 175.

costatum, Hk. MS.—Anetium Sprucii.

crinitum, Presl.—Hymenodium crinitum.

pachyphyllum Presl.—Hymenodium pachyphyllum.

reticulatum, Presl.—Hymenodium reticulatum.

Sprucii, Hook. Hb.—Para (Spruce 52).

Antrophyum costatum Hook MS, in Hb.

[Gen. 17. Sp. 344.]
Anetium—Angiopteris.

crinitum, Presl.—Hymenodium crinitum.
pachyphyllum, Presl.—Hymenodium pachyphyllum.
reticulatum, Presl.—Hymenodium reticulatum.

Sprucei, Hook. Hb.—Para (Spruce 52).

Antrophyum costatum, Hook MS. in Hb.

29, t. 5; De Vriese, Maratt. 15.* [Synopsis p. cxx.]

acrocarpa, De Vriese, Mon. Maratt. 20.—Society Isles.
amboinensis, De Vriese, Epim. ad Ind. Sem. 1851; Id. Mon. Maratt. 32.—Amboyna.—? Rumph. Amb. vi. t. 27.

angustifolia, Presl, Supp. Tent. 21.; Id. Corda, Fl. d. Vorw. t. 45, fig. 6-8 (caud.); Id. Die Gefassb. 13, t. 1, fig. 12 (stipes).—Philippine Isles (Cuming 18; see also Ang. candaeta); ? Marianne Isles.

Angiopteris angustifolia, De Vriese, Mon. Maratt. 18.
Angiopteris evecta angustata, Kze. Anal. Pter. 4?
Clementea palmiformis, Cav. Presl, (1809) 584; Id. H. E. Madr. t. 47—f. Pr.

Angiopteris angustata, De Vriese, Epim. ad Ind. Sem. 1851; Id. Mon. Maratt. 28.

Angiopteris evecta, v. cuspidata, Blume, Enum. 257.

* We insert the species of this genus in accordance with the enumeration of Prof. De Vriese, which is the most recent and complete, but we confess to a strong opinion that they should be very much reduced in number; or perhaps, some of the more obviously diverse among them, should rather be considered as varieties of A. evecta, than as distinct species. While, with less complete materials within reach, than those which were at the disposal of Dr. De Vriese, we hesitate, in a mere Index like the present, to dissent from his views, an examination of a considerable number of the species of that author, as authenticated by himself in the Hookerian Herbarium, has suggested to us that they might be arranged as follows:—

Angiopteris evecta: (recurrent intermediate veins evident) may include—aphanosorus, De Vr., suboppositifolia, De Vr.

var. (1) longifolia, Hk. et Gr.—angustifolia, Presl, angustata, Miq.

Hartingiana, De Vr.—caudata, De Vr., acrocarpa, De Vr.,—microsporangia, De Vr., cuspidata, De Vr,

var. (2) polysporangia, De Vr.

var. (3) crassifolia, De Vr.

var. (4) hypoleuca, De Vr.—pruinosa, Kze.

var. (5) approximata, De Vr.

var. (6) austral, De Vr., empreata, De Vr.

var. (7) Taysmanniana, De Vr., pallescens, De Vr.—smaller; Wallichiana, Pr., Beecheyana, De Vr.—larger.

Angiopteris crassipes: (recurrent veins none or very short) may include—Hookeriana, De Vr., Wightiana, De Vr., Griffithiana, De Vr.—larger; Arnottiana, De Vr.—smaller.

var. (1) repandula, De Vr.—Brongniartiana, De Vr.

var. (2) uncinata, De Vr.

var. (3) sylvetensia, De Vr., amboinensis, De Vr.,

var. (4) commutata, Pr.

var. (5) laevis, De Vr.

var. (6) sessilicaulis, De Vr.—marginata, De Vr.

var. (7) magnifica, Miq.

[March 1858.]
Angiopteris.

ankolana, *De Vriese, Epim. ad Ind. Sem.* 1851; *Id. Mon. Maratt.* 19, t. 3, fig. 9, t. 4, fig. 9—Sumatra: Ankola.

aphanorosorus, *De Vriese, Epim. ad Ind. Sem.* 1851; *Id. Mon. Maratt.* 19.—Sumatra; ? Tahiti.

approximata, *De Vriese, Mon. Maratt.* 25.—Sumatra.

assamica, *De Vriese, Mon. Maratt.* 33.—Assam [Moulmein—Hb. Hk.]

aurata, *De Vriese, Mon. Maratt.* 22.—New Zealand (*De Vr.—ex Hb. Hk.); [*Ceylon—see Hb. fil. Fl. N. Zeal. ii. 49*].

Beecheyana, *De Vriese, Mon. Maratt.* 22.—Caroline Isles.

Brongniartiana, *De Vriese, Mon. Maratt.* 30, t. 3, fig. 5, t. 4, fig. 5.—Tahiti.

[Angiopteris Brongniartii, *Ind. Cat.* 1856.]

campophlebia, *De Vriese, Mon. Maratt.* 31 (campophlebia).—India.

caudata, *De Vriese, Mon. Maratt.* 20.—Philippine Isles (*Cu-

ming 18, Herb. Mus. Vindob.—f. De Vr.; see also Ang. angustifolia.) [Anetiteum—Hb. Hk.]

cochinchinensis, *De Vriese, Mon. Maratt.* 23, t. 3, fig. 22, t. 4, fig. 22.—Cochinotina.

[Barclay 3334: Hb. Mus Brit.]

Angiopteris commutata, *De Vriese, Mon. Maratt.* 33, t. 3, fig. 1, t. 4, fig. 1.

crassifolia, *De Vriese, Epim. ad Ind. Sem.* 1851; *Id. Mon. Maratt.* 17.—Java.

crassipes, Wall. (part.) — {Angiopteris sylhetensis.}

{Angiopteris Wallichiana.}

{Angiopteris latifolia.}

Angiopteris crassipes, *Presl, Supp. Tent.* 23; *Id. Die Gefasah.* 14, t. 1, fig. 15 (stipes); *De Vriese, Mon. Maratt.* 27, t. 3, fig. 12, t. 4, fig. 12.

cupreta, *De Vriese, Mon. Maratt.* 21.—Society Isles.

[Gen. 18. Sp. 304.]
Angiopteris.

cuspidata, De Vriese, Epim. ad Ind. Sem. 1851; Id. Mon. Maratt. 18, t. 3, fig. 7, t. 4, fig. 7.—Java.
distans, Presl, Supp. Tent. 23.—India (Hugel 2453, 2445).
Angiopteris distans, De Vriese, Mon. Maratt. 31.
Dregeana, De Vriese, Mon. Maratt. 17, t. 3, fig. 8, t. 4, fig. 8.
—Java.
D'Urvilliana, De Vriese, Mon. Maratt. 17, t. 3, fig. 11, t. 4, fig. 11.—Society Isles: Tahiti; Marianne Isles; Manilla.
evecta, Hk. et Grev.—Angiopteris Brongniartiana.
Brack. U. S. Expl. Expedit. xvi. 310]; De Vriese, Mon. Maratt. 16, t. 3, fig. 10, t. 4, fig. 10.
Polypodium evectum, Forst. Prod. 436.
evecta, Hk. et Arn.—Angiopteris Beecheyana.
evecta, J. Sm.—Angiopteris angustifolia.
evecta, Moritz.—Angiopteris pruinosa.
evecta, Willd. Hb.—Angiopteris commutata.
evecta angustata, Kze.—Angiopteris angustifolia.
evecta, Drege.—Angiopteris Dregeana.
evecta, Hk. et Grev.—Angiopteris Wallichiana.
Gaudichaudiana, De Vriese, Mon. Maratt. 30, t. 3, fig. 13, t. 4, fig. 13.—India: Calcutta (Wall.), Sylhet (Wall.)
Griffithiana, De Vriese, Mon. Maratt. 29.—Mergui.
Hartingeana, De Vriese, Mon. Maratt. 25.—Java.
Helferiana, Presl, Supp. Tent. 22; Id. Die Gefassb. 14, 1.
fig. 14.—India: Martaban, Moulmein.
Angiopteris Helferiana, De Vriese, Mon. Maratt. 22.
Hookeriana, De Vriese, Mon. Maratt. 29.—India.
Hugeliana, Presl, Supp. Tent. 25; Id. Epimel. Bot. 9, t. 2.—India.
Angiopteris Huigeliana, De Vriese, Mon. Maratt. 33.
hypoleuca, De Vriese, Epim. ad Ind. Sem. 1850; Id. Lin xxii. 204; Id. Mon. Maratt. 21.—Java.
(f Ang. polysporangia, or Ang. assimilica.)
7 *
Angiopteris.

javanica, Preal.—Angiopteris Dregena.

laciniata, De Vriese, Mon. Maratt. 30.—India: Sharapour.

Laségueana, De Vriese, Mon. Maratt. 25.—“Huachine.”

latifolia, Presl, Supp. Tent. 24; Id. Die Gefassb. 14, t. 1, fig. 16 (stipes).—India: Pundooa.

Angiopteris latifolia, De Vriese, Mon. Maratt. 27.

Angiopteris crassipes, Wall. Cat. 187, in part.

Leschenaultiana, De Vriese, Mon. Maratt. 31, t. 3, fig. 14, t. 4, fig. 14.—Ceylon.

Angiopteris longifolia, De Vriese, Kew Journ. Bot. iii. 323; Id. Mon. Maratt. 19, t. 3, fig. 2, t. 4, fig. 2; Metten. Fil. Lips. 117.

longifolia, Guill.—Angiopteris commutata.

longifolia, Miquel.—Angiopteris Miquelian.

macrocephala, Presl, Supp. Tent. 26; Id. Die Gefassb. i. 14, t. 1, fig. 17 (stipes); Id. Epim. Bot. 10, t. 3.—India: Punjab (Hugel 3312, 3252).

Angiopteris macrocephala, De Vriese, Mon. Maratt. 32.

macrophylla, Hort.: De Vriese, Mon. Maratt. 34.—?

madagascariensis. De Vriese, Mon. Maratt. 23.—Madagascar.

magnifica, Miquel, Verh. Kong. Nederl. Inst. 1851, 54, t. 7 B.

—Ceylon (Walker 15, 18).

Angiopteris magnifica, De Vriese, Mon. Maratt. 32.

marginata, De Vriese, Mon. Maratt. 29.—Ceylon (Gardn. 1177).

—ß. badioneura, (De Vriese, Epimet. 1851).—Java.

Miquelian; De Vriese, Mon. Maratt. 26.—Java.

muricata, Presl, MS: De Vriese, Epim. ad Ind. Sem. 1851; Id. Mon. Maratt. 30.—Borneo.

pallescens, De Vriese, Epim. ad Ind. Sem. 1851; Id. Mon. Maratt. 25.—Sumatra, Java.

plagiocarpa, De Vriese, Mon. Maratt. 34, t. 3, fig. 15, t. 4, fig. 15.—Ceylon.

(Valde aff. Ang. salicifolia.)

polysporangia, De Vriese, Mon. Maratt. 23.—Ceylon.
Angiopteris.

Presliana, De Vriese, Epim. ad Ind. Sem. 1850; Id. Lin. xxii. 203; Id. Mon. Maratt 20.—Java.

pruinosa, Kze. Bot. Zeit. iv. 417; vi. 100; Id. Schkuhr, Supp. i. 223, t. 91.—Java (Zolling. 1269).
Angiopteris evecta, Moritz. Vers. 106.

punctata, De Vriese, Mon. Maratt. 31, t. 3, fig. 3, t. 4, fig. 3.—Ceylon.

repandula, De Vriese, Mon. Maratt. 30, t. 3, fig. 4, t. 4, fig. 4.—India: Sharapur.
salicifolia, De Vriese, Mon. Maratt. 34.—India: Lahore.
Angiopteris salicifolia, Metten. Fil. Lipo. 117.
Psilodoches salicifolia, Presl, Supp. Tent. 29; Id. Die Gefasb. 14, t. 1, fig. 18 (stipes).
(See also Ang. plagiocarpa.)
similis, Presl, MS: De Vriese, Epim. ad Ind. Sem. 1851; Id. Mon. Maratt. 17.—Java.

suboppositifolia, De Vriese, Mon. Maratt. 23.—Bonin-Sima; Fook Island; Ceylon.
—ß. longi-acuminata, De Vriese, Mon. 23.—Ceylon.
sylhetensis, De Vriese, Mon. Maratt. 27.—India: Sylhet (Wall.)
Angiopteris crassipes, Wall. Cat. 187, in part.

Teymanniana, De Vriese, Epim. ad Ind. Sem. 1849, 1851; Id. Mon. Maratt. 24, t. 1, 2.—Java.
Angiopteris Teymanniana, Kze. Lin. xxiii. 408; J. Sm. Cat. Ferns, 80.

uncinata, De Vriese, Mon. Maratt. 29, t. 3, fig. 6.—Amboyna.

Angiopteris Wallichiana, De Vriese, Mon. Maratt. 27.
Angiopteris crassipes Wall. Cat. 187, in part.

Angiopteris Willinkii, De Vriese, Mon. Maratt. 21.

Cumingianum, Presl.—Cyclodium Cumingianum.

Anisogonium, Presl, Tent. Pter. 115.
attenuatum, Presl.—Callipteris attenuata.
decussatum, Prés.—Callipteris prolifer.
elegans, Presl.—Callipteris elegans.

7 **
Antigramma.

esculentum, Presl.—Callipteris esculenta.
fraxinifolium, Presl.—Callipteris fraxinifolia.
grossum, Presl.—Callipteris elegans.
integrifolium, Presl.—Oxygonium integrifolium.
pinnatidium, Presl.—Callipteris pinnatifida.
serrulatum, Presl.—Callipteris serrulata.
sylvaticum, Presl.—Callipteris sylvatica.
sylvaticum, Hook.—Diplazium sylvaticum.
Zollingeri, Presl.—Callipteris Zollingeri.

Anogramma, Link, Fil. Sp. 137.

ascensionis, Fée MS.—Gymnogramma ascensionis.
chærophylla, Link.—Gymnogramma chærophylla.
conspersa, Fée.—Gymnogramma conspersa.
? davallioides, Fée.—Polypodium subdigitatum [not Acrophorus nodosus, which see]
flabellata, Fée.—Gymnogramma flabellata.
? hispidula, Fée.—Jamesonia hispidula.
laserpitiifolia, Fée.—Gymnogramma laserpitiifolia.
leptophylla, Link.—Gymnogramma leptophylla.
microphylla, Fée MS.—Gymnogramma microphylla.
Ottonis, Fée.—Gymnogramma Ottonis.
? paradoxa, Fée.—{ Polybotrya bifurcata.
petroselinifolia, Fée.—Gymnogramma petroselinifolia.
refracta, Fée.—Gymnogramma flexuosa.
rosea, Fée.—Gymnogramma rosea.
Ruiiziana, Fée.—Gymnogramma Ruiziana.
Schomburgkiana, Fée.—Gymnogramma Schomburgkiana.
villosa, Fée.—Gymnogramma villosa.

Anopodium, J. Smith, Cat. Ferns, 16 (§)=POLYPODIUM.

ANTIGRAMMA, Presl, Tent. Pter. 120 [Synopsis, p. lii.]

brasilensis, M. [Synop, liii.]—Brazil.

Scolopendrium ambiguum, Raddi, Syn. Fil. 102; Id. Fil. Bras. 40, t. 37, fig. 1; Desv. Prod. 292; Metten. Fil. Lips. 67.

Scolopendrium repandum, Presl, Del. Prag. 1, 190; Spr. Syst. 69.

Scolopendrium Redelianum, Hort.—f. Kze.

Scolopendrium oblongatum, Schrad. (Pr.)

Douglasi, Hook.—Antigramma plantaginea.

{[Gen. 19. Sp. 407.]}
Antigrama—Antrophyum.

[lançifolia, Presl, Tent. Pter. 120.—Brazil.
Diplazium sp., Hb. Reg. Bras. Bot. 43 (Fr.)]

oblongata, Presl.—Antigrama brasiliensis.

plantaginea, Presl, Tent. Pter. 120.—Brazil.
Asplenium Douglasti, Hook. et Grev. Icon. Fil. t. 150.
Hemidictyum Douglasti, Presl, Tent. Pter. 111.
Scolopendrium plantagineum, Schrad : Kze. Lin. xxiii. 291.

[populifolia, Presl, Tent. Pter. 120; Id. Die Gefassb. 8 in obs.—Brazil.
Antigrama populifolia, Fée, Gen. Fil. 210.]

repanda, Presl.—Antigrama brasiliensis.
rhizophylla, J. Sm.—Camptosorus rhizophyllus.

subsessilis, Fée.—Antigrama brasiliensis.

ANTROPHYUM, Kaulfuss, Enum. Fil. 197. [Synopsis, p. iviii.]

alatum, Brack.—Antrophyum semicostatum.

angustatum, Brack.—Antrophyum plantagineum, β.
avenium, Bl.—Loxogramma avenia.

Boryanum, Klfs. Enum. Fil. 199.—Bourbon, Mauritius (Sieb. Fl. Mixt. 317); Tahiti.
Hemionitis Boryana, Willd. Sp. PI. v. 123; Poir. Enc. Supp. iii, 37; Desc. Prod. 216; Presl, Tent. 221, t. 9, fig. 19.

Hemionitis reticulata, Bory, Itin. i. 214.

Hemionitis fellea, Carm. MS.; Hb. Hook.

Boryanum, Bl.—Antrophyum latifolium.
oallafodii, Bl.—Antrophyum reticulatum, γ.

cayennense, Klfs. Enum. Fil. 199 (note).—S. America: Brasil, Para (Spruce 31), Amazon (Spruce 2369), Peru, B. Guiana (Rob. Schomb. 472; Rich. Schomb. 241), Surinam (Kapgl. 873; Kappl. 1740; Hostm. 1057), Columbia (Moritz, 84; Karsten 1. 30, in part); Porto Rico.

Hemionitis reticulata, Raddi, Syn. Fil. 37.

Hemionitis reticulata, β. brasiliensis, Raddi, Fil. Bras. 8.
(Near Ant. subsessilis.)

[Gen. 20. Sp. 413.]
Antrophyum.

cayennense, Kze. (Fil. Pœpp.)—Antrophyum subsessile.
citrifolium, Fée.—Anetum citrifolium.
coriaceum, Wall. Cat. 43.—India : Nepal, Sylhet, Mergui.
Antrophyum plicatum, Fée, Antroph. 44, t. 5, fig. 1; Id. Gen. 175.
? Antrophyum conceaeum, "Wall." [not in Cat. nor Hb.]; Presl, Tent. Pter. 221.
Remionitis coriacea, Don, Prod. Pl. Nep. 13; Presl, Tent. Pter. 221.
? Remionitis concava, Presl, Tent. Pter. 221, t. 9, fig. 20.
Solenopteris lanceolata, Wall. Hb.
coriaceum, Bl.—Loxogramma involuta.

Cumingii, Fée, Antroph. 42, t. 4, fig. 7; Id. Gen. 175.—India.
Philippines (Cuming 416) ? Jeejee Islands.

[Desvauxii, M.—W. Indies.
Remionitis gigantea, Desv. Prod. 216.]
discoideum, Kze.—Antrophyum subsessile.
D'Ureilla, Bory.—Antrophyum semicostatum.
elongatum, Fée, Antroph. 43 : Id. Gen. Fil. 175.—Java.
Antrophyum parvulum, B. elongatum, Bl. Fl. Jac. 78.
ensiforme, Hook.—Scoliosorus ensiformis.
falcatum, M. et Gal.—Antrophyum Galeottii.
falcatum, Bl.—Antrophyum reticulatum, B.
Féei, Schaffn. MS : Fée.—Antrophyum lanceolatum.

Galeottii, Fée, Antroph. 51, t. 5, fig. 4: Id. Gen. 175.—
Mexico (Gal. 6385, 6541).
giganteum, Bory, Belang. Voy. ii. 36.—Bourbon, Mauritius
(Sieb. Syn. 64).
Antrophyum giganteum, Fée, Antroph. 49, t. 5, fig. 3; Id. Gen. 175.
graminifolium, Lepr. MS.—Antrophyum lanceolatum.
Grevillii, Balf. Hb.—Polytenium Grevillii.

Antrophyum Hookerianum, Fée, Antroph. 46; Id. Gen. 175.
Antrophyum pamilum, Hook. et Grev. Icon. Fil. t. 46.
Remionitis Hookeriana, Presl, Tent. Pter. 221.

involutum, Bl.—Loxogramma involuta.

lanceolatum, Klots. Enum. Fil. 198.—W. Indies : Jamaica,
Cuba (Lind. 1897); Martinique, Barbadoes, St. Vincent's,
St. Thomas, St. Domingo, Guadeloupe, Dominica, Porto
Rico ; S. America : Mexico (Scheide 778 ; Schaffn. (1855)
133), Guatemala, Columbia (Moritz 140 ; Karsten i. 30,
in part), Fr. Guiana, Surinam.—Plum. t. 127.
Antrophyum lanceolatum, Spr. Syst. 67; Schleich. Lin. v. 613; Kt. Lin.

[Gen. 20. Sp. 430.]
Antrophyum. 81

iv. 68; Fée, Antroph. 50; Id. Gen. 175; Moore et Houlet. Gard. Mag. Bot. lii. 99, fig. 19.
Antrophyum Féei, Schaffn. MS: Fée, Iconogr. Nouv. t. 22, fig. 1. (small).
Antrophyum graminifolium, Leprieur MS: Hb. Webb.
Hemionitis lanceolata, Linn. Sp. Pl. 1535 (excl. syn.) Sw. Syn. 20; Schkuhr, Crypt. 6, tt. 6, 18; Desrousse, Lam. Enc. iii. 593; Willd. Sp. 127; Desv. Prod. 216; Presl, Tent. Pter. 221.

lanceolatum, Bl.—Loxogramma lanceolata.

latifolium, Bl. Fl. Jav. 75 (note)—Java (Zoll. 317 z, 2587); Khasya.
Antrophyum Boryanum, Bl. Fl. Jav. 75 (in text et icon. t. 31—excl syn.)
Hemionitis Boryana, Bl. En. Fil. 111 (excl. syn.)
Hemionitis Blumeana, Presl, Tent. Pter. 221.

Antrophyum latipes, Fée, Antroph. 48, t. 5, fig. 2; Id. Gen. 175.

Lessoni, Bory.—Antrophyum plantagineum, &.

Lindeni, Koch MS: Linden. Cat. 1857.—?

lineatum, Klfs.—Polytaenium lineatum.

marginale, Bl.—Tænitis marginalis.

nanum, Fée, Antroph. 44; Id. Gen. 175.—Java; Philippine Islands (Cuming 81).

niphoboloides, Kze.—Tænitis niphoboloides.

obtusatum, Bory.—Antrophyum obtusum.

obtusum, Klfs. Enum. 199.—Mascaren Islands, Madagascar.
Antrophyum obtusum, Spr. Syst. 67; Fée, Antroph. 49; Id. Gen. 175.
Antrophyum obtusatum, Bory, Dup. Voy. 256, t. 29, fig. 2.

obtusum, Bl.—Antrophyum nanum.

parvulum, Bl. Enum. 110; Id. Fl. Jav. 78, t. 34, fig. 3.—Java.
Hemionitis parvula, Presl, Tent. Pter. 221.
(=? Antroph. reticulatum, young state).

pendulum, Lepr. MS.—Anetium citrifolium, &.

plantagineum, Klfs. Enum. Fil. 197.—Philippine Isles; Ceylon (Gardn. 1173); Society Isles; New Guinea; Marianne Isles; Feejee Isles.

[Gen. 20. Sp. 427.]
Antrophyum.

—β. angustatum.—Society Isles: Tahiti.

—γ. longipes.—Pacific Isles (Hb. Hook.)

—δ. Lessoni, Hook. et Arn. Beech. Voy. 74.—Java; Amboyana; Feejee Isles; Coral Isles; Society Isles; I. of Jobia.
Antrophyum Lessoni, Bory, Dup. Voy. 255, t. 28, fig. 2; Fée, Antroph. 46; Id. Gen. Fil. 175; Antrophyum plantagineum, Bl. Enum. 109; Id. Fl. Jav. 74, t. 30 (excl. syn.)—t. Fée.
Antrophyum reticulatum, Wall. Cat. 40 in part (2).
Hemionitis Rehwardtiana, Presl. Tent. Pter. 221.
Hemionitis Lessoni, Presl. Tent. Pter. 221.

plantagineum, Bl.—Antrophyum plantagineum, δ. plicatum, Fée.—Antrophyum ooriacem.

pumilum, Klfs. Enum. Fil. 197.—India: Nepal; Bourbon; Java; Borneo; Mangsi Isles.
Antrophyum pumilum, Spr. Syst. 67; Bory, Dup. Voy. 254; Wall. Cat. 42; Fée, Antroph. 46; Id. Gen. Fil. 176; Brack. U. S. Expl. Exped. xvi. 64.

pumilum, Hk. et Gr.—Antrophyum Hookerianum.

reticulatum, Klfs. Enum. Fil. 198.—Society Isles: Tahiti (Barclay 3349 in part); Caroline Isles; Phillipsre Isles; Penang; Java (Zoll. 152 z, c, 2952); Borneo; Mishme; Ceylon (Gardn. 1228, 1229; lobate).

—β. falcatum.—Java (Zoll. 152 b.)

—γ. callasfolium.—Java.
Antrophyum callasfolium, Bl. Enum. Fil. 111; Id. Fl. Jav. 83, t. 35; Fée, Antroph. 41; Id. Gen. 175; Hemionitis callasfolia, Presl. Tent. Pter. 221.

reticulatum, Wall.—{Antrophyum semicostatum.

semicostatum, Bl. Enum. Fil. 110: Id. Fl. Jav. 77, t. 33.—Java (Zoll. 152); Borneo; Philippine Isles (Cuming 19); Ceylon (Gardn. 1307); Penang (Wall. 40, in part);
Antrophyum.—Arachniodes.

India: Khasya; Cochinchina; Society Isles: Tahiti; Feejee and Samoan Isles; New Ireland.
Antrophyum réticulatum, Wall. Cat. 40 in part.
Antrophyum alatum, Brack. U.S. Expl. Exped. xvi. 64.
Hemionitis semicostata, Presl, Tent. Pter. 221.

Antrophyum D'UrvillaBi, Bon/., Dwg. Tan. 254 (Urvillaei, Bory MS: Fée, Antroph. 42),
Antrophyum reticulatum. Wall. Bot. Zeit, n. 198; Me, AntropU. 42, Id. Gen. 175 (excl. syn.)
Hemionitis Bemicostata, Fred, Tent. Fter. 221.
Eemionitis rigida, Cam., Frail. (1801) 260 (form. monEtr. ?); Sm. Syn. 21.

Bessilifolium, Sfr. Syst. ir. 67.—Philippine Isles.
Antrophyum sessilifolium, Me, Antiroph. 52; Id. Gen. 175.

spathulatum, Fée.—Antrophyum subseesile.

subfalcatum, Brack.—Antrophyum Cumingii.

Antrophyum subseesile, Fée, Antroph. 47; Id. Gen. 175.
Antrophyum spathulatum, Fée, Antroph. 46, t. 4, fig. 6; Id. Gen. 175 (Columbia, Lind. 203—f. Fée.)
Antrophyum cayennense, Kze. Linn. ix. 78 (excl. syn.)

Urvillæi, Bory MS.—Antrophyum semicostatum.

zosteræfolium, Fée, Antroph. 52; Id. Gen. 175.—India.
Hemionitis falcata, Wild. Sp. Pl. v. 126; Poir. Enc. Supp. iii. 36; Desv. Prod. 216; Presl, Tent. 221 (excl. syn.)

costata, Presl.—Niphobolus venosus.
?f. flocculosa, Presl.—Niphobolus flocculosus, splendens, Presl.—Niphobolus splendens.
venosa, Presl.—Niphobolus venosus.

Aphylocalpa, Cavannilles, Anales de Ciencias Naturales v. 164; Id.Prælect. (1802) 556.
regalis, Cav.—Osmunda regalis.

Apotomia, Fée, Gen. Fil. 112 ($)—ADIANTUM.

[?] ARACHNIODES, Blume, Enumeratio Fil. Java 241.

[Synopsis p. c.]
Aspidium.

Argyria, Fée, Gen. Fil. 183 ($)=Gymnogramma.

Notochlæna.

Aristaria, Muller, Bot. Zeit. xii. 545. ($)=Vittaria.

Arthrobotrys, Wallich, Catalogue, 395.

Avara, Wall.—Lastrea cochleata.

Macrocarpa, Wall.—Lastrea cochleata.

Arthrobotrys, Presl, Tent. Pter. 77 ($)=Lastrea.

Arthromeris, M. [$§ sub Pleopeltis p. lxxviii.]

Arthropteris, J. Smith, Hook. fil. Fl. N. Zeal. ii. 43; Id. Cat. Ferns, 62.

Albo-punctata, J. Sm.—Lastrea albo-punctata.

Filipes, J. Sm.—Polypodium filipes.

Obliterata, J. Sm.—Nephrolepis ramosa.

Tenella, J. Sm.—Polypodium tenellum.

ASPIDIUM, Swartz, Schrad. Journ. Bot. 1800, ii. 4, 29
(reduct.): Schott, Gen. (t. 4) [Synopsis, p. lxxxi.]

Abbreviatum, Poir.—Lastrea Filix-mas, 8.

Abbreviatum, Schrad.—Cyclodium abbreviatum.

Abortivum, Bl.—Nephrodium abortivum.

Abruptum, Bl.—Nephrodium multilineatum.

Abruptum, Kze.—Lastrea abrupta.

Acrostichoides, Sw.—Polystichum acrostichoides.

Acutatum, Sw.—Polystichum acutatum.

Acutatum, Schkuhr.—Polystichum acutatum, 8.

Acutatum, Hook. (Pl. Hartiv.)—Polystichum ordinatum.

Acuminatum, Willd.—Nephrolepis ensifolia.

Acuminatum, Hort Ang.—Lastrea acuminata.

Acuminatum, Hort. Ber.—Athryrium oxyphylum.

Acutifolium, Bl. Hb.—Polystichum moluccense.

Acutum? Raddi.—Nephrolepis biserrata.

Acutum, Sw.—Nephrolepis ensifolia.

Adiantoides, Bl.—Aerophorus adiantoides.

Adnatum, Bl.—Lastrea Filix-mas, γ.

[Gen. 23. Sp. 44.]
Aspidium

Adenopteris, Metten.—Nephrodium Adenopteris.
adscendens, Loddd.—Nephrodium ?—f. Kze.
adulturn, Wickstr.—Nephrodium molle.
aduncum, Wall.—Lastrea hirtipes.
æmulum, Sw.—Lastrea Æmulum.
æmulum, Kze.—Lastrea frondosa.
æmulum, Hort. Belg.—Lastrea quinquangularis.
æsculifoium, Bl.—Kauffussia æsculifolia.
affe, Bl.—Nephrodium lineatum.
affe, Wall.—Polystichum aculeatum.
affe, Fisch. et Mey.—Lastrea Filix-mas, β.
affe, A. Br.—Lastrea Filix-mas, γ.
affe, Rb.—Lastrea rigida, β.
agatholepis, Fée.—Lastrea agatholepis.
alam, Wall. Cat. 378.—India: Sylhet, Sikim, Assam;
Philippine Isl. (Cuming 356, in part—f. J Sm); Society,
Samoa, and Feejee Islands.—f. Brack.
Aspidium alatum, Hook. et Gr. Icon. Fil. t. 184; Presl, Tent. Pter. 88;
Bathmiim alatum, Fée, Gen. Fil. 287.
alam, Metten.—Sagenia vasta.
albicaule, Fée.—Lastrea albicaulis.
albopunctatum, Bory.—Lastrea albopunctata.
alpestrum, Hoppé.—Polypodium alpestrum.
algpinum, Sw.—Cystopteris regia.
alsoemptaeum, Kze.—Lastrea aspidioides.
amabila, Bl.—Lastrea amabilis.
ambyotus, Kze.—Polystichum ambyotus.
amboinense, Willd.—Nephrodium amboinense.
amerinconeum, Fée.—Lastrea Ameristoneura.
ammiolium, Desv.—Polystichum coriaceum.
amplissimum, Metten.—Lastrea amplissima.
amplum, Metten.—Lastrea ampla.
amplum, Mart. et Lind.—Polystichum ordinatum.
anularum, Kitaib.—Polystichum angulare.
anustreum, Willd.—Athyrium asplenioides, β.
anisopterum, Kze.—Lastrea anisoptera.
anomophyllum, Zenker.—Cyrtomium carotidenum, β.
apertum, Fée.—Lastrea aperta.
apiciformum, Wall.—Lastrea apiciforma.
apifolium, Schkuhr.—Sagenia apifolia.
apicifolium, Bl.—Lastrea arista, β.
apicifolium, Wall. (Cat.)—Lastrea appendiculate.
apicifolium, Wall. (Hb.)—Polypodium erubescens.
apicifolium, Wall. in part.—Nephrodium molle.
Aspidium.

arborescens, Fée.—Lastrea equestris.
arboenum, Lodd.—Lastrea Kauffussii.
arbuscula, Willd.—Nephrodium arbuscula.
arceatum, Desv.—Lastrea serra.
arctatum, Klé.—Lastrea rigida, γ.
aridum, Don.—Nephrodium unitum.
aristatum, Sw.—Lastrea aristata.
articulatum, Sw.—Oleandra articulata.
articulatum, Schkuhr.—Oleandra nodosa.
articulatum, Lowe.—Nephrodium articulatum.
ascendens, Hew.—Polystichum ascendens.
aperum, Gray.—Polystichum Lonchitis.
aspelioideae, Sw.—Athyrium aspelioideae.
athamanticum, Kze.—Lastrea athamantica.
athyrioides, M. et Gal.—Athyrium sphærocarpon.
atomarium, Muhlg.—Cystopteris tenuiss.
atomochlæa, Kze.—{ Lastrea concinna.
atriatum, Wall.—Lastrea hirtípea.
attenuatum, Sw.—Nephrodium attenuatum.
attenuatum, Kze.—Nephrodium obscurum.
attenuatum, Kze. Hb.—Lastrea attenuata.
auTescens, Link.—Lastrea augescens.
auriculatum, Sw.—Polystichum auriculatum.
auriculatum, Schkuhr.—Polystichum acrostichoides.
auriculatum, Wall.—Nephrolepis tuberosa.
auriculatum, Hall.—Polystichum falcinellum.
auriculatum, Don.—Polystichum lentum.
aubillare, Sw.—Asplenium Aitoni, β.
bontamense, Bl.—Oleandra bontamensis.
Baromez, Willd.—Cibotium Barometz.
Benoitianum, Gaud.—Nephrodium Benoitianum.
Bergianum, Metten.—Lastrea Bergiana.
Berterianum, Colla.—Polystichum flexum.
birístatum, Bl.—Polystichum birístatum.
bidentatum, Presl.—Lastrea bidentata.
bifidum, Carm.—Lastrea tomentosa.
bifidum, Presl.—Sagenia macrophylla.
biserratum, Sw.—Nephrolepis biserrata.
blechnoides, Sm.—Polystichum semicordatum.
blepharochlæa, Kze.—{ Lastrea concinna, β.
 Bella, Kze.—Pleocnemia Blumei.
Boottii, Tuckerm.—Lastrea spinulosa, γ.
Boryanum, Willd.—Lastrea Boryana.
Boutonianum, Hook.—Lastrea albopunctata.
[?] brachiatum, Zol. Nat. en Geneesk. Arch. 1844, 399.—Java (Zoll. 655, 655a.)
Aspidium. 87

brachyotum, Bl.—Mesochlaena javanica.
brachypiterum, Kze.—Polystichum squarrosum.
brasilianum, Presl.—Cystopteris? brasiliana.
Brunnii, Spenn.—Polystichum angulare.
Breutelianum, Metten.—Lastrea Breutelii.
Breutelii, Metten.—Lastrea Breutelii.
Bridgesii, Sturm.—Polystichum Bridgesii.
Brunonianum, Wall.—Lastrea Brunonianum.
Brongniartianum, Sturm.—Polystichum Brongniartianum.
bulbiferum, Sw.—Cystopteris bulbifera.
bulbosum, Link.—Woodsia mollis.
bulbosum, Hort.—Nephrolepis tuberosa.
caducum, H.B.K.—Polystichum semicordatum.
caducum, Wall.—Cystopteris caducum.
cespitosum, Wall.—Polystichum obliquum.
calcaratum, Bl.—Lastrea calcarata.
calcareum, Presl, Epim. Bot. 63.—Philippine Islands (Cuming 310).

Callipteris, Wilms.—Lastrea spinulosa.
callosum, Bl.—Nephrodium unicum.
calyptratum, Desv.—Polystichum vestitum, γ.
campylopterum, Kze.—Lastrea dilatata, β.
canariense, Willd. Hb.—? Cystopteris fragilis, δ.
canariense, A. Br.—Lastrea canariensis.
canescens, Wall. in part.—Nephrodium molle.

canum, Wall.—Lastrea cana.
capense, Sw.—Amphicosmia capensis.
capense, Willd.—Polystichum coriaceum, β.
carpense, Metten.—Lastrea carpensis.
caryopteris, Wilms.—Nephrodium caryopteris.
catocalicum, Kze.—Lastrea aristata.
caryotideum, Wall.—Cystopteris caryotideum.
catocarpum, Kze.—Lastrea nemophila.
catophoron, Kze.—Lastrea sparsa, β.
catopteron, Kze.—Lastrea lanuginosa.
carthusianum, Steud.—Lastrea dilatata.
caucasicum, A. Br.—Lastrea Filix-mas, β.
caucasicum, Fisch. MS.—Woodsia fragilis.
caudatum, Sw. (Syn.)—Asplenium Aitoni, β.
caudatum, Sw. (Act. Holm.)—Polystichum caudatum.
caudatum, Hort.—Polystichum ordinatum.
caudatum, Moritz.—Polystichum platyphyllum.
caudiculatum, Sieb. (Syn)—Nephrodium caudiculatum.
caudiculatum, Sieb. (Fl. Mixt.)—Nephrodium parasiticum.

* [Gen. 22. Sp 437.]
Aspidium.

Aspidinm, Poir. (Presl.)—Polystichum chærophylloides.
chærophylloides, Moritz.—Lastrea mexicana, γ.
chælanthoides, Kze.—Lastrea chælanthoides.
chæloplotium, Fée.—Lastrea chæloplotia.
chrysocarpum, Fée.—Lastrea chrysocarpa.
chrysoplepis, Fée.—Lastrea chrysoplepis.
chrysolobum, Link.—Lastrea chrysoloba.
cicutarium, Sw.—Sagenia cicutaria.
cicutarium, Splitg.: Kl.—Lastrea funesta.
cicutarium, Hort. Ang.—Goniopteris tetragona.
ciliatum, Wall.—Lastrea ciliata.
cinnamomeum, Sw.—? Lastrea denticulata.
clypeolarium, Desv.—Polystichum coriaceum, β.
coadnantum, Klfs.—Nephrodium coadnantum.
coadnantum, Wall.—Sagenia coadnata.
coarctatum, Kze.—Lastrea coarctata.
cochleatum, Spr.—Lastrea cochleata.
cognatum, Fée.—Lastrea cognata.
colobodon, Kze.—Cystopteris fragilis, δ.
concinnum, Link.—Lastrea concina, β.
concinnum, Lowe MS.—Lastrea frondosa.
concinnum, Metten.—Lastrea concina.
condylodes, Kze.—Lastrea contermina.
confertum, Klfs.—Cyclodium confertum.
confertum, Hook. et Gr.—Cyclodium meniscoides.
confuens, Fée.—Lastrea confuens.
congener, Bl.—Polystichum squarrosum.
conifolium, Wall.—Lastrea aristata, et β.
conifolium, Presl.—Cheilanthes chlorophylla.
conioneuron, Metten.—Nephrodium terminans.
conjugatum, Bl.—Plecanemia Leuzeana, β.
consanguineum, Kze.—Nephrodium chielocarpum.
consoberinum, Bory.—Lastrea consoberina.
conspersoides, Fée.—Lastrea conspersoides.
conspersum, Schrad.: Fée.—Lastrea macroura.
conterminum, Willd.—Lastrea contermina.
contiguum, Klfs. MS.—Nephrodium unitum, β.
continuum, Desv.—Nephrodium, unitum, β.
contractum, Link.—Nephrodium? contractum.
cordatum, Steud.—Athryrium? Filix-femina.

cordifolium, Sw.—Nephrolepis cordifolia.
coriaceum, Sw.—Polystichum coriaceum.
coriaceum, Klfs. etc.—Polystichum coriaceum, β.
coriaceum, Lowe.—Polystichum flexum.
Aspidium

coriaceum, β., Banks et Sol. MS.—Polystichum vestitum.
coriaceum v. acutidentatum, Rich.—Polystichum vestitum.
coriandrisfolium, Sw.—? Sagenia cicutaria.
cornu-cervi, Don.—Polystichum Hamiltonii.
coronopus, Desv.—Sagenia cicutaria.
costale, Bl.—Athyrium costale.
crassifolium, Bl.—Lastrea crassifolia.
crenatum, Sommerf.—Athyrium crenatum.
crinatum, “Boj.” Wall.—Lastrea crinita.
crinatum, M. et Gal.—Lastrea Flex-mas, γ.
crinulosum, Desv.—Polystichum coriaceum, β.
cristatum, Sw.—Lastrea cristata.
cristatum, Fl. Wett.—Lastrea dilatata.
cristatum β., Rupr.—Lastrea spinulosa.
cristatum γ. et δ., Rupr.—Lastrea dilatata.
cruciatum, Willd.—Lastrea cruciata.
crystallinum, Metten.—Lastrea crystallina.
Ctenitis, Link.—Lastrea Ctenitis.
cistrochlamy, Kze.—Lastrea cistrochlamy.
cultratum, Bl.—Nephrodium unitum, ε.
cultratum, Presl.—Didymochlamy lunulata.
Cumingianum, Kze.—Nephrodium Cumingianum.
Cumingianum, Sturm.—Polystichum Cumingianum.
Cuneatum, Schkuhr.—Asplenium fissum.
Cunninghamii, Kze.—Goniopleris Forsteri.
Cunninghamii, Colenso.—Polystichum coriaceum.
Cunninghamianum, Colenso.—Polystichum coriaceum.
curvisulatum, Kze.—Lastrea aristata.

[cuspidatum, Desv. Prod. 244.—Hispaniola—Plum t. 153],
cuspidatum, Metten.—Polypodium elongatum.
cyatheoides, Klfs.—Nephrodium cyatheoides.
cyclochlamys, Fée.—Lastrea cyclochlamys.
davalliioides, Sw.—Nephrolepis davalliioides.
decompositum, Spr.—Lastrea decomposita.
decompositum v. quinquangularis, Metten.—Lastrea quinquangularis.
decrescens, Kze. Hb.—Lastrea decrescens.
decurrentens, J. Sm.—Sagenia pteropus.
decurrentens, Presl.—Sagenia decurrentens.
decurrentens, Lowe.—Lastrea decurrens.
decursive-pinnatum, Kze.—Lastrea decurrentens.
decurtatum, Kze.—Nephrodium abortivum.
decussatum, Sieb.—Lastrea decussata.
deflexum ? Kze.—Lastrea vestita.
deltoides, Sw.—Lastrea deltoidea.
demissum, Kze. Hb.—Lastrea Ctenitis, β.
densum, Wall.—Lastrea sparsa, β.
dentatum, Sw.—Cystopteris fragilis, δ.
denticulatum, Sw.—Lastrea denticulata.
denticulatum, Wall. MS.—Lastrea odontoloma.
deparoioides, Hook.—Diclisodon deparoioides.
depastum, Schkuhr.—Lastrea Filix-mas, β.
deversum, Kze.—Nephrodium molle, γ.
deversum, Kze.—Lastrea deversa.
diaphanum, Kze.—Polystichum diaphanum.
diaphanum, Bory.—Cystopteris fragilis.
diastematocarpon, Fée.—Lastrea diastematocarpa.
diffforme, Bl.—Dictyopteris difformis.
dilaceratum, Kze.—Sagenia dilacerata.
dilaceratum, Kze.—Sagenia latifolia, β.
dilatatum, Sm.—Lastrea dilatata.
dilatatum, Wall. Hb.—Sagenia coadunata.
dilatatum, Holl.—Lastrea semula.
dilatatum, Auct. Amer.—Lastrea spinulosa, β.
dilatatum v. recurvum, Bree.—Lastrea semula.
dimorphum, Kze.—Nephrodium dimorphum.
diplazioides, Moritz.—Lastrea diplazioides.
discolor, Lams. et Fish.—Polystichum coriaceum, β.
discretum, Don.—Polystichum aculeatum.
disjunctum, Wall. Hb.—Nephrodium disjunctum.
dissidens, Metten.—Pleocnemia dissidens.
[dissimile, Schrad. Goett. gel. Anz.—Brazil.]
distans, Viv.—Wood sia ilvensis.
distentifolium, Tausch.—Polypodium alpestre.
diversilobum, Metten.—Nephrodium abruptum.
diversifolium, Wall. Hb.—Nephrolepis ? hirsutula.
divisum, Wall.—Lastrea divisa.
Donianum, Spr.—Lastrea Filix-mas, γ.
Dregii, Fée.—Lastrea Thelypteris, β.
drepantopteron, Metten.—Athyrium oxyphyllum.
drepantum, Sw.—Polypodium drepanum.
drepantum, Schkuhr (in text sub. t. 47)—Lastrea dilatata.
drepantum, Hort. Ang.—Lastrea Shepherdii.
Dubreuiillianum, Gaud.—Nephrodium cyatheoides.
dumetorum, Sm.—Lastrea dilatata, 4.
duriusculum, Sturm.—Polystichum ? duriusculum.
D'Urrvillei, Bory.—Sagenia melanocaulis.
ebennum, J. Sm.—Sagenia Pica.
eburneum, Wall.—Athyrium oxyphyllum.

[Gen. 22. Sp. 441.]
Aspidium

Eckloni, Kze.—Nephrodium unitum, ð.
edentum, Kze.—Lastrea edentula.
edule, Spr.—Nephrolepis tuberosa.
etatum, Bory.—Lastrea Boryana.
elegans, Sturm.—Polystichum elegans.
elegans, Metten.—Lastrea recedens.
elongatum, Sw.—Lastrea elongata.
elongatum, Willd.—Lastrea canariensis.
emarginatum, Willd.—Polystichum emarginatum.
eminens, Wickstr.—Nephrolepis exaltata.
ensifolium, Sw.—Nephrolepis ensifolia.
ensifolium, Bl.—Nephrolepis exaltata.
equestre, Kze.—Lastrea equestris.
eriocarpum, Wall.—Lastrea hirsuta.
erosum, Schkuhr.—Lastrea dilatata.
erithrosorum, Eaton MS.—Lastrea erithrosora.
exaltatum, Sw.—Nephrolepis exaltata.
exaltatum, Schr.: Raddi.—Nephrolepis neglecta.
exaltatum, Spr.—Nephrolepis hirsutula.

exaltatum, Wall. in part — { Nephrolepis volubilis.
 exaltatum, Spr. — Nephrolepis splendens, et ensifolia.
 exaltatum, Spr. — Nephrolepis hirsutula.

 Aspidium excellens, Metten, Pfeug. und Aspid. 117.
excultum, Metten.—Lastrea exulta.
exiguum, Fée.: Kze.—Lastrea exigua.
exansum, Willd.—Athyrium expansum.
exansum, Mart.—Lastrea expansa.
exansum, Desv.—Sagenia macrophylla.
exansum, Dietr.—Lastrea Filix-mas, ß.
exansum, Bl.—Nephrodium expansum.
exansum, Fée.—Lastrea melanosticta.
Fadyenii, Metten.—Fadyenia prolifera.
falcatus, Sw.—Cyrtomium falcatum.
falciculatum, Raddi.—Lastrea falciculata.
falciculatum, Spr. Hb.—Lastrea Ctenitis.
falcinellum, Sw.—Polystichum falcinellum.
fallax, Fish. MS.—Lastrea fallax.
ferox, Bl.—Nephrodium ferox.
ferugineum, Fée.—Lastrea ferruginea.
ferugineum, Beyr. Hb.—Lastrea falciculata.
Felix-femina, Sw.—Athyrium Felix-femina.
Felix-mas, Sw.—Lastrea Felix-mas.
Felix-mas, Holl.—Lastrea elongata.
Felix-mas, Pursh.—Lastrea Goldiana.
Felix-mas, Hohenack.—Lastrea Felix-mas, ß.

[Gen. 22, Sp. 442.]
Aspidium.

Felix-mas v. crenatum, Milde.—Lastrea Felix-mas, β.
Felix-mas v. erosum, Hook. et Arn.—Lastrea Felix-mas, β.
Felix-mas v. pumilum, Hort.—Lastrea Felix-mas, ε.
Felix-mas v. recurvum, Francis.—Lastrea Felix-mas, ε.
Felix-Panna, Lucan.—Lastrea athamanica.

Aspidium fimbriatum, Spr. Syst. 96; Poir. Enc. Supp. iv. 607; Desv. Prod. 244.

fimbriatum, Wall.—Athyrion foliolosum.

Finsaysonianum, Wall.—Lastrea immersa.

Fischeri, Metten.—Lastrea obscura.
fissum, Kze.—Sagenia Menyanthidis.
fissum, Hort.—Sagenia pachyphylla.
flaccidum, Bl.—Lastrea flaccida.
flagelliferum, Wall.—Nephrolepis exaltata.
flexum, Kze.—Polystichum flexum.
foceigerum, Bl.—Nephrolepis floceigera.
foniseicui, Hort. Germ.—Lastrea dilatata.
foxiunion, "Poir.": Steud.—Sagenia cicutaria.
foniseicui, Kze.—Lastrea semula.
foliolosum, Wall. Cat. (359)—Acrophorus nodosus.
foliolosum, Wall. Hb. (2205—339)—Athyrion foliolosum.
fontanum, Sw.—Asplenium fontanum.
formosum, Féé.—Lastrea formosa.
Foersteri, Kze.—Sagenia melanocaulis.
fragile, Sw.—Cystopteris fragilis.
fragile, M. et Gal.—Cystopteris fragilis, θ.
fragile v. fumarioides, M. et Gal.—Cystopteris fragilis, β.
fragrans, Sw.—Lastrea fragrans.
fragrans, Gray.—Lastrea rigida.
fraxinifolium, Schrad.—Sagenia macrophylla, γ.
Freyreissii, Wickstr.—Polystichum caudatum.
frondosum, Lowe.—Lastrea frondosa.
frondosum, Wickstr.—Lastrea denticulata.
funestum, Kze.—Lastrea funesta.
furcatum, Kl.—Lastrea furcata.
fuscatum, Willd.—Polystichum angulare.
fuscipes, Wall.—Lastrea fuscipes.
Galeottianum, Kze. Hb.—Sagenia latifolia.
Gardnerianum, Metten.—Lastrea Gardneriana.
goldum, Kze.—Polystichum ? pycnolepis.
gemmiferum, Moritz.—Lastrea chrysoloba.
gibbosum, Willd.—Nephrolepis gibbosa.
giganteum, Bl.—Sagenia gigantea.
giganteum, Moritz. Hb.—Lastrea serra.
Aspidium.

glabellum, Lowe.—Lastrea glabellum.
glaberrimum, Rich.—Nephrodi um glaberrimum.
glabrum, Metten.—Lastrea glabra.
glanduliferum, Wall.—Lastrea glandulifera.
glanduliferum, Karst.—Lastrea Sprengelii.
glanduligerum, Kze.—Lastrea glanduligera.
glandulosum, Bl.—Nephrodi um glandulosum,
glandulosum, Hook. et Gr.—Polystichum ? glandulosum.
Göeringianum, Kze.—Lastrea Göeringiana.
gongylodes, Schkuhr.—Nephrodi um unitum, β.
Goldianum, Hook.—Lastrea Goldiana.
Goldianum, Hort.—Lastrea cristata.
gongylodes, Meyer.—Nephrodi um unitum, β.
gracile, Kze. Hb.—Lastrea glanduligera.
gracilescens, Bl.—Lastrea gracilescens.
grande, J. Sm.—Sagenia grandis.
grande, Fée.—Lastrea grandis.
grandifolium, Presl.—Sagenia grandis.
grandifolium, Metten.—Sagenia siifolia.
Grayanum, Regel.—Lastrea spinulosa, β.
Grunowii, Böllé.—Nephrodi um Grunowii.
Guinezianum, Metten.—Lastrea Guineziana.
guianense, KL.—Polystichum abbreviatum.

[Hænkei, Presl, Rel. Hænk. i. 30: Id. Tent. Pter. 88.—Ins.
Marianis.]

Halleri, Willd.—Asplenium fontanum.
Hamiltonii, Spr.—Polystichum Hamiltonii.

[Hamiltonianum, Wall. Cat. 2232 (not in Hb.).—India:
Rougamati.
Aspidium Hippocrepis, Ham. Hb.]

Hartwegii, KL.—Polystichum ordinatum.
hastulatum, Tenore.—Polystichum angulare.
heraclefolium, Willd.—Aspidium trifoliatum.
heraclefolium ? Moritz.—Aspidium brachiatum.
heraclefolium, Hort. in part.—Sagenia macrophylla.
heterocarpum, Bl.—Nephrodi um heterocarpum.
heterodon, Bl.—Nephrodi um heterodon.
heterodon, Schrad.—Polystichum heterodon.
heteromeron, Kze. Hb.—Sagenia melanocaulis.
heterophyllum, Hook.—Pleocnemia Blumei.
Hippocrepis, Sw.—Sagenia cicutaria.
Hippocrepis, Ham. Hb.—Aspidium Hamiltonianum.
hirsutulum, Sw.—Nephrolepis hirsutula.
hirsutulum, Ham. Hb.—Lastrea cana.
hirsutulum? Wall. in part—Nephrodi um molle.
hirsutulum? mauritianum, Ham. Hb.—Nephrodi um molle.

[Gen. 22. Sp. 445.]
Aspidium.

hirsutum, Kze. Hb.—Nephrodium hirsutum.
hirtipes, Bl.—Lastrea hirtipes.
hirtum, Sw.—Lastrea hirta.
hispidum, Sw.—Lastrea hispida.
Hoffmannseggii, Poir.—Nephrolepis sesquipedalis.
Hookeri, Wall.—Nephrodium Hookeri.
Hookeri, Sweet.—Padyenia prolifera.
Hookeri, Kl.—Cyclodium meniscoides.
humile, Willd.—Pteris diversifolia.
hymenophylloides, Bl.—Acrophorus pulcher.
ilicifolium, Don.—Polystichum ilicifolium.
imbricatum, Klfs.—Nephrolepis tuberosa.
immersum, Bl.—Lastrea immersa.
impressum, Fée.—Lastrea impressa.
impressum, Kze.—Lastrea immersa.
impressum, Kze MS.—Sagenia dilacerata.
inæquale, Schlech.—Lastrea inæqualis.
imcus, Swartz, Syn. Fil. 47.—Porto Rico.
Tectaria incisa, Cav. Prodr. (1801), 249.]
inquinans, Fée.—Lastrea inquinans.
intermedium, Willd.—Lastrea spinulosa, β.
intermedium, Sadt.—Polystichum aculeatum, β.
intermedium, Bl.—Lastrea Blumei.
intermedium, Link.—Athryrium Filix-femina.
intermedium, J. Sm.—Sagenia ceadunata, β.
invisum, Sw.—Lastrea invisa.
invisum, Pöpp.—Lastrea macoura.
irregularare, Brack.—Sagenia melanocaulis.
irriguum, Sm.—Athryrium Filix-femina, β.
(Cuming 31.)
Microsorium trifidum, Fée, Gen. Fil. 269.
isogramma, Kze. Hb.—Nephrodium glandulosum.
javanicum, Metten.—Mesochlæna javanica.
javense, Willd.—Acrophorus javensis.
juglandifolium, Kze. MS.—Cyrtomium juglandifolium.
Karsteni, A. Br.—Lastrea similes.
Karwinskyanum, Metten.—Lastrea Karwinskiana.
Kaulfussii, Link.—Lastrea Kaulfussii.
Klotzschii, Hook.—Lastrea lata.
latevirens, Lowe MS.—Lastrea frondosa.
lacerum, Sw.—Polystichum lacerum.
latum, Sw.—Lastrea lata.
latum, Moritz.—Lastrea exculta.
lave, Metten.—Nephrodium lave.
Aspidium.

lancestrinse, Spr. — Lastrea cristata, β.
lanceum, Kze. — Nephrodium lanceum.
lanosum, Sw. — Nothochlena vestita.
lanuginosum, Willd. Hb. — Lastrea lanuginosa.
lanuginosum, Bory (Hb. Hk.) — Nephrodium unitum, θ.
lasiastes, Kze. — Lastrea oligocarpa.
lasiastes, Metten. — Lastrea pilosula.
latebrosum, Kze. — Nephrodium latebrosum.
latifolium, Fresl. — Sagenia latifolia.
latifolium, J. Sm. — Sagenia melanocaulis.
latifrons, Metten. — Lastrea latifrons.
latum, Kze. Hb. — Lastrea crassifolia.
Lechlerianum, Metten. — Polystichum vestitum.
lentum, Don. — Polystichum lentum.
lepidotrichum, Desv. — Lastrea nemorosa.
leprosum, Kze. Hb. — Lastrea cognata.
leptocardis, Kze. — Lastrea leptocardis.
Lessoni, Bory, Dup. Voy. 265. — Tahiti.
leucoplepis, Fée. — Lastrea leucoplepis.
leucosticton, Kze. — Lastrea albobpunctata.
Leuzeanum, Kze. (Hb.) — Pleocnemia Leuzeana.
Leuzeanum, Kze. (Bot. Zeit.) — Pleocnemia Leuzea, θ.
ligatum, Kze. Hb. — Goniopterusium latum.
ligulatum, Kze. Hb. — Lastrea ligulata.
ligusticifolium, Desv. — Lastrea denticulata.
limbatum, Sw. — Lastrea limbata.
lineatum, Bl. — Nephrodium lineatum.
lobatum, Sw. — Polystichum aculeatum, β.
lobatum, Schkuhr. — Polystichum aculeatum.
lobatum, β. lonicitidioides, Hk. et Arn. — Polystichum aculeatum, β.
lobulatum, Bl. — Aspidium ? singaporianum, β.
loomatopeta, Kze. Hb. — Lastrea loomatopeta.
loomatopus, Kze. — Oleandra loomatopus.
Lonchitis, Sw. — Polystichum Lonchitis.
longifolium, Desv. — Sagenia macrophylla.
longipes, Bl. — ? Nephrodium longipes.
lorifrons, Kze. — Oleandra nerifolia.
lucens, Bojer. — Nephrodium unitum.
luctuosum, Kze. — Polystichum luctuosum.
Ludovicianum, Kze. — Lastrea canariensis.
lugubre, Metten. — Lastrea lugubre.
macrocarpon, Bl. — ? Lastrea macrocarpa.
Aspidium.

macrocarnaçon, Zippel. MS.—Lastrea sparsa, β.
macrochlamys, Fée.—Lastrea sparsa, γ.
macrolepidium, Desv.—Polystichum ? Sellowianum.
macrophylllum, Bl.—Sagenia pteropus.
macrophylllum, Poepp.—Sagenia macrophylla, β.
macrophylllum, Sw.—Sagenia macrophylla.
macrophyllum, Sieb.—Sagenia angulata.
macroporum, Bory.—Polystichum coriaceum, β.
macropterum, Kze. Hb.—Sagenia macrophylla, β.
macroorum, Klfs.—Lastrea macroura.
madagascariense, Fée.—Lastrea madagascariensis.
malaccense, Fée.—Lastrea malaccensis.
marginalis, Sw.—Lastrea marginalis.
marginaitum, Schkuhr.—Lastrea marginalis.
marginaitum, Wall. (366).—Polystichum marginaitum.
marginaitum, Wall. (391).—Lastrea marginata.
martinicense, Spr.—Sagenia macrophylla.
mascarenense, Klfs.—Nephrodium cadiuflatum.
mascarenhense, Fée.—Lastrea mascharenensis.
mauritianum, Desv.—Nephrolepis mauritianum.
medium, Carm.—Athyrium medium.
melanocaulon, Bl.—Sagenia melanocaulis.
melanochlamys, Kze. Hb.—Polystichum trapezoides, β.
melanochlamys, Fée.—Lastrea melanochlamys.

([melaupodium, Desv. Mag. Ber. v, 820; Id. Prod. 246.—
Terr. Magellan.
Aspidium melanopus, Spr. Syst. 101.])
melanopus, Spr.—Aspidium melanopus.
melanopus, Hw. MS.—Sagenia Pica.
melanorrhizum, Desv.—Sagenia cicitoria.
melanostictum, Kze.—Lastrea melanosticta.
membranaceum, Fée.—Lastrea membranifolia.
membranifolium, Kze. (Hb.)—Lastrea membranifolia.
membranifolium, Kze. (B. Z.)—Lastrea sagenioides.
menisciicarpon, Bl.—Sagenia ? menisciicarpa.
menisciicarpon, Metten. in part.—Dryomenis menisciicarpa.
meniscinerve, Gaud.—Nephroidium meniscincrve.
meniscioides, Willd.—Cyclodium meniscioides.
Menyanthidis, Presl.—Sagenia Menyanthidis.
Menyanthis, Presl.—Sagenia Menyanthidis.
meridionale, Willd. Hb.—Lastrea meridionalis.
mericanum, Kze.—Lastrea mexicana.
micranthum, Bl.—Oleandra micrantha.
micranthum, Klfs.—Lastrea decomposita.
microcarpon, Bl.—Pleopeltis ? myricarpa.
microcarpon, Fée.—Lastrea microcarpa.
Aspidium.

microcarpum, Willd. Hb.—Nephrodium unitum, β.
microchiena, Fée.—Lastrea microchiena.
microphyllum, Bl.—Polystichum microphyllum.
micropteris, Kze. Hb.—Polystichum ? platyphyllum.
microsorum, Kfls.: Sieb.—Lastrea decomposita.
microsorum, Presl.—Sagena melanocaulis.
Mildeanum, Göpp.—Lastrea Filix-mas, β.
mohrioides, Bory.—Polystichum mohrioides.
molle, Sw.—Nephrodium molle.
molle, Link.—Lastrea patens.
mollisculum, Metten.—Lastrea concinna.
molliscaecis, Bl.—Polystichum molluccense.
mimosorum, Kze. (olim.)—Lastrea monosticha.
montanum, Hb.—Lastrea monosticha.
montanum, Sw.—Cystopteris montana.
Moritzianum, Kl.—Polystichum ordinatum.
Moritzii, Kze.—Oleandra Moritzii.
mucronatum, Sw.—Polystichum mucronatum.
mucronatum, Don.—Lastrea Hamiltonii.
mucronatum, Beyr. Hb.—Lastrea mucronata.
mucronatum, Lowe.—Polystichum triangulum.
mucronifolium, Bl.—Polystichum squarrosum.
mucronulatum, Opiz. (Steud. Nom. Bot. 63)
multicaudatum, Wall.—Sagena caudunata.
multidentatum, Wall.—Acrophorus Thomsoni.
multifidum, Metten. (Fil. Lips.)—Nephrolepis ensifolia, δ.
multifidum, Metten. (Fil. Lechl.)—Polystichum multifidum.
multifidum, Beyr.—Lastrea amplissima.
multijugum, Wall.—Nephrodium extensus.
multilineatum, Wall.—Nephrodium multilineatum.
multilineatum, Benth.—Nephrodium abortivum.
multisorum, Desv.—Aspidium trifoliatum.
municipum, Kfls.—Polystichum falcinellum, β.
municipum, Sadl.—Polystichum aculeatum, β.
muricatum, Willd.—Polystichum muricatum.
musefolium, Bl.—Oleandra musefolia.
musefolia, Moritz.—1 Oleandra lomatopus.
musefolia, Moritz.—1 Oleandra Moritzii.
muscosum, Sw. (Presl.)—Polypodium charophylloides.
Napoleonis, Fée.—Lastrea Napoleonis.
natalensis, Fée.—Lastrea Gueniziana.
neglectum, Griseb.—Nephrolepis neglecta.
nemophilum, Kze.—Lastrea nemophila.
nemorale, Gray.—Lastrea Filix-mas.
nemorosum, Willd.—Lastrea nemorosa.
nepalense, Spr.—Polystichum lentum.
nepalense, Edgw.—Cystopteris fragilis.

[October, 1858.] 9 [Gen. 32. Sp. 449.]
Aspidium.

nephrodioides, Kl.—Lastrea nephrodioides.
nepriiforme, Sw.—Oleandra nepriiformis.
nerifolium, Poir.—Oleandra nepriiformis.
nevadense, Boiss.—Lastrea rigida, 3.
nevadense, Hort. Germ.—Lastrea Filix-mas.
Nidus, Griff. MS.—Lastrea Filix-mas, 7.
ngiricaule, Fée.—Lastrea nigricaulis.
nigripes, Bl.—Athyrium nigripes.
nigripes, Hort.—Sagenia melanocaulis.
nigropunctatum, Spr.—Nephrolepis sesquipedalis.
nitidulum, Wall.—Lastrea sparsa.
nitidulum, Kze. Hb.—Nephrolepis caudiculatum.
nitidum, Bory.—Lastrea crinita.
nivale, Bory.—Lastrea nivalis.
nobile, Schlech.—Cyrtomium nobile.
nodosum, Willd.—Oleandra nodosa.
nodosum, Kze.—Oleandra micans.
nodosum, Bl.—Acrophorus nodosus.
noveboracense, Sw.—Lastrea noveboracensis.
nymphale, Schkuhr.—Nephrolepis molle.
obliquum, Don.—Polystichum obliquum.
obliteratum, Spr.—Nephrolepis obliterata.
obscurem, Bl.—Nephrolepis obscurum.
obscurem, Fisch. et M.—Lastrea obscura.
obscurem, Colenso MS.—Lastrea hispida.
obtusatum, Sw.—Nephrolepis unitum, 3.
obtusifolium, Willd.—Nephrolepis tuberosa.
obtusifolium, Moritz.—Nephrolepis volubilis.
obtusilobum, Fée.—Lastrea obtusiloba.
obtusum, Web. et Mohr.—Woodia obtusa.
obtusum, Kze.—Polystichum obtusum.
ocellatum, Wall.—Polystichum lentum.
octhodes, Kze.—Lastrea ochthodes.
odoratum, Bory.—Lastrea bisutu.
odoratum, Spr.: Sieb.—Lastrea lanuginosa.
odoratum, Lowe MS.—Lastrea semula.
odoriferum, Gray.—Lastrea montana.
odontosorum, Hook. MS.—Dichisodon deparioides.
oliganthum, Desv.—Asplenium Aitoni.
oligocarpum, Kth.—Lastrea oligocarpa.
oligodonton, Desv.—Apleunium Aitoni, 3.
oppositum, Klfa.—Lastrea opposita.
opulentum, Klfa.—Nephrolepis opulentum.
orbiculatum, Desv.—Polystichum angulare.
ordinatum, Kze.—Polystichum ordinatum.
Oreopteris, Sw.—Lastrea montana.
orientale, Desv.—Polystichum coriaceum.
Aspidium

Orizaba, Fée.—Lastrea Orizaba.
Otaria, Kze. Hb.—Cyclodium Cumingianum.
Ottonianum, Kze.—Lastrea augescens.
Ottonis, Kze.—Lastrea augescens.
pachyphyllum, Kze.—Sagenia pachyphylla.
pachyrachis, Kze.—Lastrea pachyrachis.
palacecum, Sw.—Lastrea paleacea.
palacecum, Don.—Lastrea Filix-mas, γ.
?Palisotii, Desv.—Nephrolepis ramosa.
pallidum, Bl.—Lastrea pallida.
pallidum, Link.—Lastrea rigida, β.
pallidum, Hort.—Lastrea Filix-mas.
palmpes, Kze.—Lastrea aristata.
paludosum, Raddi.—Nephrolepis biserrata.
paludosum, Bl.—Lastrea paludosum.
paludosum, Metten.—Nephrodium unitum, β.
paludosum, Hort. Bonn.—Lastrea tenericaulis.
palustre, Gray.—Lastrea Thelypteris.
paradoxum, Fée.—Lastrea paradoxa.
paræene, Willd.—Nephrolepis tuberosa.
parallelogrammum, Kze.—Lastrea Filix-mas, γ.
[parallelogrammum, Desv. Prod. 245.—S. America.
—β. integrum, Desv. Prod. 245.—S. America.]

parasiticum, Sw.—Nephrodium parasiticum.
parasiticum, Link.—Lastrea Thelypteris, β.
patens, Sw.—Lastrea patens.
patens, Willd. (En.)—Nephrodium molle.
patens, Kth.—Lastrea Kunthii.
patens, Bl.—Mesochlæna javanica.
patens, Guerinzius.—Goniopteris patens.
patens, Kze.—Lastrea Guerinzius.
patens, β. Sprengelii, Kze.—Lastrea Bergiana.
patentissimum, Wall.—Lastrea Filix-mas, γ.
patulum, Sw.—Lastrea patula.
panciouspis, Sturm.—Polystichum ? angulare.
panciflorum, Klfs.—Lastrea crinita.
pancigum, Kl.—Lastrea panciguma.
pauver, Fée.—Lastrea pauperis.
paupertimum, Rœm. Hb.—Lastrea mexicana.
pectinatum, Willd.—Nephrolepis pectinata.
pedatum, Desv.—Lastrea pedata.
pellitum, Willd.—Lastrea pellita.
pellucidum, Beyr.—Lastrea Ctenitis, β.
pendulum, Raddi.—Nephrolepis pendula.
pendula, Spligt.—Oleandra pilosa.
pennigerum, Sw.—Goniopteris Forsteri.

9 *
Aspidium.

pennigerum, Bl.—Nephrodium pennigerum.
—Plum. t. 114.
Aspidium pentaphyllum, Spreng. Syst. 96; Desv. Prod. 245.]

Petersenii, Kze. (olim.)—Lastrea Napoleonis.
philippinum, Fée.—Lastrea ligulata.
phyllarthron, Kze.—Oleandra phyllarthron.
Pica, Desv.—Sagienia Pica.
pilosissimum, G. Don. MS.—Lastrea pilosissima.
pilosulum, Wall.—Lastrea hirsuta.
pilosulum, Kl. et Karst.—Lastrea pilosula.
pilosum, Langs. et Fish.—Nephrolepis hirsutula.
pilosum, Ham. Hb.—Nephrodium parasiticum.
pilosum, Hb. Mus. Par.—Lastrea pubescens.
pinnatifidum, Wall. MS.—Lastrea Felix-mas, γ. (form.)
pistillare, Sw.—Oleandra neriiformis.
plantagineum, Griseb.—Aspidium sinuatum.
Plaschnickianum, Kze.—Polystichum Plaschnickianum.
platynotus, Kze.—Sagienia pteropus.
platyphyllum, Willd.—Polystichum? platyphyllum.
platyphyllum, Presl.—Sagienia repanda.
platypus, Kze.—Lastrea platypus.
platypterum, Kze. (olim.)—Lastrea imberse.
placatum, Poepp.—Polystichum mohrioides.
Plukemetii, Steud.—Polystichum aculeatum, β.
Plumerianum, Sw.—Sagienia macrophylla.
Plumieri, Presl.—Sagienia angulata.
Plumieri, Lepr. MS.—Aspidium sinuatum.
podophyllum, Hook.—Lastrea podophylla.
podophyllum, Lowe.—Lastrea Sieboldii.
Poeppigii, Presl.—Sagienia macrophylla, β.
Pohlianum, Presl.—Nephrodium unitum, β.
politum, Hb. plur.—Sagienia Pica.
politum, Hort.—Sagienia Pica.
politum, Desv.—Polystichum oeriuaceum.
polyblepharum, Rœm. MS.: Kze.—Polystichum angulare.
polycarpon, Bl.—Mesochlora javanica.
polymerum, Kze. Hb.—Lastrea amplissima.
polymorphum, Wall. Cat. 382.—India: Nepal, Troglia, Chittagong, Chappadong, Khasya, Assam, Bhotan, Mishmee, Kumaon, Neillherries; Ceylon (Gardn. 1096, 1877.)
Aspidium rostratum, Wall. Cat. 383.

—β. laciniatum, M.—Rangoon, Malabar, Sikkim, Khasya.
Aspidium.

polyphyllum, Klfs.—Lastrea contermina.
polyphyllum, Metten.—Polystichum polyphyllum.
Pontederia, Sw.—Cystopteris fragilis, δ.
Prescotiannaum, Wall.—Polystichum Prescottianum.
Presliannum, Sturm.—Lastrea Cumingiana.
Presliannum, Metten.—Polystichum Presliannum.
prionitis, Kze. MS.—Lastrea prionitis.

prionophyllum, Wall. (confus.)—{
}
Nephrodium prionophyllum.

prionophyllum, Wall. (confus.)—{
}
Nephrodium multilinseatum.

prionophyllum, Wall. (confus.)—{
}
Lastrea falcifera.

procem, Spr.—Nephrodium procem.
productum, Klfs.—Nephrodium productum.
proliferum, R. Br.—Polystichum vestitum, β.
proliferum, Hk. et Grev.—Fadyenia prolifera.
prolixum, Willd.—Lastrea proliza.
prolongum, Fée.—Lastrea prolonga.
propinquum, Sw.—Nephrodium unitum.
propinquum, Gaud. MS.—Nephrodium consanguineum.
propinquum, Fée.—Lastrea propinququa.
propinquum, Hort.—Nephrodium molle, γ.
protenum, Sw.—Lastrea protensa.
pseudo-filix-mas, Fée.—Lastrea Filix-mas, β.
Ptarmicia, Kze. Hb.—Lastrea Ptarmica.
pteroides, Sw.—Nephrodium unitum, β.
pteroides, Bl.—Nephrodium unitum.
pteroides, Lowe.—Nephrodium terminans.
pteropus, Kze.—Sagenia pteropus.
puberulum, Desv.—Sagenia Pica.
puberum, Wall.—Nephrodium Hookeri.
pubescentum, Sw.—Lastrea pubescentum.
pubescentum, Lowe.—Lastrea quinquangularis.
pulchellum, Bl.—Polystichum pulchellum.
pulcherrimum, Colenso.—Polystichum vestitum, γ.
pulcherrimum, Hort. Ang.—Didymochlaena lunulata.
pulchrum Bory.—Lastrea pulchra.
pulverulentum, Desv.—? Lastrea Cutescens.
pumilum, M. et Gal.—Cyrtomium nobile.
pumilum, Lowe.—Lastrea Filix-mas, ε.
punctilobulum, Bl.—Athyrium punctilobulum.
punctilobulum, Sw.—Dennstaedtia punctilobula.
punctilobulum, Willd.—Dennstaedtia punctilobula.
punctulatum, Sw.—Nephrolepis ensifolia.
punctulatum, Sieb.—Nephrolepis subordinata.
pungens, Klfs.—Polystichum pungens.
pungens, Wall.—Polystichum ilicifolium.
pungens, Lowe.—Polystichum vestitum, β.
purpurascens, Bl.—Lastrea purpurea.
Aspidium.

pycnolepis, Kze. MS.—Polystichum? pycnolepis.
quinquangularis, Kze.—Lastrea quinquangularis.
Radialium, Metten.—Lastrea vestita.
radicans, Sieb.—Polystichum vestitum, B.
radicans, Fée.—Lastrea radicans.
radosum, Beauv.—Nephrolepis ramosa.
recrugum, Bres.—Lastrea amula.
refractum, A. Br.—Goniopteris refracta.
regium, Sw.—Cystopteris regia.
Reinwardtianum, Kze.—Lastrea Reinwardtiana.
remotum, A. Br.—Lastrea remote.
repandum, Willd.—Sagenia repanda.
repandum, J. Sm. (Enum. Phil.)—Sagenia Menyanthidis.
repandum, J. Sm. (Cat. F.)—Sagenia pachyphylla.
repandum, Bl.?—Nephrodium repandum.
repandum, γ. et δ.—Presl.—Sagenia siifolia.
(Goniopteris reptans.
reptans, Metten.—Goniopteris asplenioides.
Polyodium hastaeolium,
Polyodium cordatum.
resiniferum, Klfs.—Nephrodium unitum, γ.
retroflexum, Sw.?—Nephrodium retroflexum.
 rhaticum, Sw.—Polypodium alpestre.
 rhaticum, Willd.—Cystopteris fragilis, γ.
 rhaticum, Spr.—Athyrium Filix-femina, B.
 rhizophyllum, Sw.—Polystichum rhizophyllum.
 rhomboideum, Wall.—Lastrea amabilis.
 Riedliianum, Gaud. MS.—Nephrodium Riedliianum.
 rigidum, Sw.—Lastrea rigida.
 rigidum, B. A. Br.—Lastrea remota.
 rigidum, v. australis, Ten.—Lastrea rigida, B.
 riparium, Bory.—Lastrea riparia.
 riparium, Wall.—Lastrea Napoleonis.
 riparium, Roxb.—Lastrea tomentosa.
 riparium, Moritz.—Lastrea Kaulfussii.
 Rivoirei, Fée.—Lastrea Rivoirei.
 rivulare, Thunb.—Lastrea Thelypteris, B.
 rivulorum, Link.—Lastrea contermina.
 rivulorum v. Linkii, A. Br.—Lastrea contermina, B.
 rostratum, H.B.K.—Amphidesmium blechnoides.
 rotundatum, Willd.—Polypodium flavopunctatum.
 rufescens, Bl.—Polystichum? rufescens.
 rufescens, Schrad.—Nephrolepis ensifolia, B.
 rufescens, Klfs.—Sagenia latifolia, B.
 rufidulum, Sw.—Woodia ilvensis.
 rufobarbatum, Wall.—Polystichum squarrosum.

[Gen. 23. Sp. 452.]
Aspidium.

rutaceum, Willd.—Athyrium rutaceum.
sagenoides, Metten.—Lastrea sagenoides.
sagittatifolium, Bl.—Nephrodium sagittatifolium.
salaccense, Bl.—Oleandra neriiformis, γ.
sanctoides, Fée.—Lastrea sancta.

sanctum, Bl. Enum. 148.—Java.
sanctum, Metten.—Polypodium sanctum.
sanctum, Hort.—Sagenia pachyphylla.
aaxicola, Bl. Enum. 160.—Java.

scabrosum, Kze.—Lastrea scabrosa.
scaudens, Raddi.—? Polybotrya cylindrica.
scandicum, Willd.—Athyrium scandicum.
scariosum, Roxb. Hb.—Polystichum aculeatum.
Schimperianum, Hochst.—Lastrea marginata.
Schkuhrii, Bl.—Nephrolepis biserrata.
Schomburgki, Kl.—Lastrea Schomburgkii.
Schweinitzii, Beck.—Polystichum acrostichoides, β.
Schwenkii, β. Bl. MS.—Nephrodium terminana.
sclerophyllum, Kze.—Nephrodium sclerophyllum.
sclerophyllum, Pfepp.—Lastrea Pfeppigiana.
scolopendrioides, Metten.—Goniopteris scolopendrioides.
singaporianum, Wall. MS.; Hook. et Grev. Icon, Fil. t. 26.—
Singapore; Penang; Chebow (Griffith); Indian Archipelago (Seem. 2301); Malaoca (Cuming, 403).

Aspidium lobulatum, M.—Java.
Aspidium lobulatum, Bl. Enum. 142.
sinuatum, M.—Guiana; Amazon: Serra de Sao Gabriel (Spruce 2189 in part).
Aspidium plantagineum, Grisebach, Pl. Curib 139; Metten. Phlegopt. und Aspid. 125 (? exol. var. syn.)
Bathmiium sinuatum, Fée, Gen. 287, 288.
Bathmiium macrocarpon, Fée, Gen. 287, 288 (? exol. syn.)
(An Polypodium plantagineum, Jacq. endem sp. absque indusio.)
sinuatum, Gaud.—Sagenia apiifolia.
sinuatum, Lab.—Sagenia sinuata.
Skinneri, Hook.—Nephrodium Skinneri.
Smithii, Hort. Ang.—Lastrea Filix-mas.
solutum, Wall.—Nephrodium molle.
sorboirorides, Sw.—Nephrodium sorboirorides.
sorboirifolium, Willd.—Sagenia sorboirifolia.
sparsum, Spreng.—Lastrea sparsa.
speciosum, Don.—Lastrea aristata.
spectabile, Bl.—Lastrea spectabilis.
spectabile, Wall.—Lastrea Wallichii.
Speluncæ, Willd.—Microlepis Speluncæ.
sphondylifolium, Fisch.—Sagenia macrophylla, γ.
spinulosum, Sw. (Schrad.) : Lasch.—Lastrea dilatata.
spinulosum, Sw. (Syn. 420.)—Lastrea spinulososa.
spinulosum, Schkr.—Lastrea dilatata.
spinulosum, A. Gray.—Lastrea spinulososa, β.
spinulosum, γ. Hk. et Arn.—Lastrea semula.
spinulosum-cristatum, Lasch.—Lastrea spinulososa.
spinulosum americanum, Fisch. MS.—Lastrea dilatata, β.
spinulosum, v. dilatatum (forms).—Lastrea dilatata, β. et i.
spinulosum. v. uliginosum, A. Br.—Lastrea cristata, γ.
splendens, Willd.—Nephrolepis splendens.
sporadosorum, Kze.—Lastrea aristata.
Sprengelii, Kf.—Lastrea Sprengelii.
Sprengelii, Hb. Mart.—Nephrolepis parasiticum.
squamatum, Willd.—Didymochlaena lunulata.
squamatum, Kze.—Polystichum squamatum.
squamigerum, Fée.—Lastrea Thelypteria, β.

[Gen. 22. Sp. 456.]
Aspidium.

squamulosum, Klfs.—Lastrea Thelypteris, β.
squarrosum, Don.—Polystichum squarrosum.
squarrosum, Wall.—Athryrium foliolum.
stenopteris, Kze.—Pleocnemia stenopteris.
stimulans, Kze. Hb.—Polystichum illicifolium.
stipellatum, Bl.—Nephrodium stipellatum.
stipitatum, Metten.—Lastrea stipitata.
stipulaceum, Metten.—Lastrea stipulacea.
stipulare, Willd.—Nephrodium stipulare.
stromineum, Klfs.—Polystichum stramineum.
striatum, Schum.—? Nephrodium unitum.
striosum, Willd.—Lastrea crinita.
suboostale, Wall. Hb.—Oleandra neriiformis.
subdiaphanum, Willd.—Lastrea hirsuta.
subdigitatum, Bl.—Polypodium subdigitatum.
subelongatum, Bl.—Polystichum subelongatum.
subinermus, Kze.—Polystichum vestitum.
subintegerrimum, Hk. et Arn.—Polystichum vestitum, e.
subulansum, Wall.—{Nephrolepis tuberosa.
sublobatum, Bl.—Polystichum aculeatum.
submarginalis, Hort. Ber.—Lastrea similis.
subpubescens, Bl.—Nephrodium molle.
subpubescens, 5. Bl.—Goniopeteris appendiculata.
subquinquefidum, Beauv.—Lastrea protense.
sulcatum, Wall. Hb.—Lastrea fuscipes.
sulcatum, Klfs. (En.)—Lastrea crinita.
sulcatum, Klfs. (Sieb. Syn.)—Lastrea Sieberiana.
syrmaticum, Willd.—Lastrea ? symatica.
tacticopterum, Kze.—Polystichum tacticopterum.
tanacetifolium, Opiz.—Lastrea dilatata.
tasmanica, Metten.—Polystichum vestitum, β.
tavoyanum, Wall.—Nephrolepis tuberosa, β.
taygetense, Bory et Chamb.—Cystopteris regia.
tectaria, Desv.—? Sagenia repanda.
tectum, Wall.—Nephrodium molle.
Telfairianum, Wall.—Cyathea canaliculata.
tenerum, Spr.—Lastrea tenera.
tenerum, Schleich. (Steud. Nom. Bot. 64.)
tenuis, Sw.—Cystopteris tenuis.
tenuiculum, Fée.—Lastrea tenuicula.
tenuisectum, Bl.—Athryrium tenuisectum.
terminans, Wall.—Nephrodium terminans.
tetragonum, Metten.—Lastrea tetragona.
tetragonum, Steud.—? Goniopeteris tetragona.
tetragonum, Sturm.—Polystichum tetragonum.
Thelypteris, Sw.—Lastrea Thelypteris.
[Gen. 22. Sp. 456.]

\textit{thelypteroides}, Sieb.—Lastrea Sprengelii.

\textit{thelypteroides}, Metten.—Lastrea thelypteroides.

tomentosum, Willd.—Nephrolepis \textit{hirsutula}.

[Tonisetii, \textit{Lind. Cat.} 1856.—?]

Torresianum, Gaud.—Lastrea Torresiana.

\textit{trapezoides}, Sw.—Polystichum \textit{trapezoides}.

\textit{trapezoides}, Schkr.—Nephrolepis pectinata.

\textit{trapezoides}, Spr. Hb.—Polystichum falcinellum.

\textit{trapezoides}, Kze.—Polystichum ? polyphyllum.

\textit{triangularum}, Sw.—Polystichum \textit{triangularum}.

\textit{trichotomum}, Fee.—Lastrea trichotoma.

\textit{trifidum}, Sw.—Cystopteris \textit{regia}.

\textit{trifoliatum}, Sw. \textit{Schrad. Journ.} 1800, ii. 90.—W. Indies:

Jamaica, (\textit{Harbw. 1586}), Hispaniola, Cuba (\textit{Otto. 180, 232; Lind. 1929}; \textit{Wright} 835), Barbadoes, Guadeloupe (\textit{L'Herm. 2, 3}); Mexico (\textit{Galeot. 6312, 6313}; \textit{Leibold 46}; \textit{Lind. 25}; \textit{Schaffn. (1854), 243}); Guatemala; Central America (\textit{Barclay 2689}); Panama; Columbia (\textit{Moritz. 196, 197}); Venezuela (\textit{Fumcke 239}; \textit{Fendl. 164}); Amazon (\textit{Spruce 1624}, term. pin. elongate); Peru (\textit{Mathews 1824}); Surinam (\textit{Kegel 1431}); China: Sam-la Bay, Foo-chow-foo, Hong Kong (\textit{Bowring 20}; \textit{Champ. 558}); Java (\textit{Zoll. 2433}); Mauritius.—\textit{Sloane Jam. i. t. 42}; \textit{Plum. t. 147}.

Aspidium trifoliatum, Sw. \textit{Syn.} 43; Schkr. Crypt. 29, tt. 28, 285;

\textit{Linn. v. 610}; \textit{Desc. Prod. 245}; \textit{Presl. Tent. Pter. 88, t. 2, fig. 27};

\textit{Kt. Linn. xx. 363}; \textit{Houlist et Moore, Gard. Mag. Bot. iii. 280, fig. 54};

\textit{Metten. Fil. Leps. 95, t. 22, fig. 10—12}; \textit{Lowe, Fems. vi. t. 29};

Aspidium multisporum, \textit{Desc. Prod. 245}.

\textit{Poir. Enc. v. 524}.

Polypodium cordifolium, \textit{M. et Gal. Foug. Mex. 31, t. 4, fig. 2, junior.—}\textit{t. Liebm. (Galeotti, 6313)}.

Tectaria trifoliata, \textit{Cav. Praelect. (1601), 249}.

Bathium heracleifolium, \textit{Fée, Gen. 267}.

Drynaria cordifolia, \textit{Fée, Gen. 270} (\textit{Galeotti, 6313}).

[\textit{Gen. 22. Sp. 455}.
Aspidium.

trifoliatum, Sieb.—Sagenia Pica.
trifoliatum, B. Sieb.—Sagenia macrophylla.
trifoliatum, var., Sw.—Sagenia Pica.
tripteris, Eaton.—Polystichum tripterum.
tripterum, Kze.—Polystichum tripterum.
triseriale, Bory.—Nephrodium arbuscula.
triste, Bl.—Lastrea tristis.
triste, Kze. : Fée.—Lastrea mcesta.
triste, Metten.—Lastrea flebilis.
truncatulum, Sw.—Didymochlaena lunulata.
truncatum, Gaud.—Nephrodium truncatum.
tuberosum, Bory.—Nephrolepis tuberosa.
Tussacii, Fée.—Lastrea Tussacii.
tyloides, Kze.—Lastrea xyloides.
uliginosum, Bl.—Lastrea Filix-mas, γ.
uliginosum, Kze.—Lastrea tenericaulis.
umbilicatum, Desv.—Lastrea alboptunctata.
umbrosum, Sw.—Asplenium Aitoni.
undulatum, Sw.—Nephrolepis undulata.
unitum, Sw.—Nephrodium unitum.
unitum, Bl.: Hk. et Arn.—Nephrodium unitum, β.
unitum, Metten.—Nephrodium Hookeri.
variolatum, Wall.—Sagenia variolata.
varium, Sw.—Lastrea varia.
varium, Willd.—Sagenia vasta.
vastum, Bl.—Sagenia vasta.
velatum, Kze. Hb.—Lastrea velata.
velleum, Willd.—Lastrea ? vellea.
velutinum, Rich.—Lastrea velutina.
venulosum, Bl.—Nephrodium unitum.
venulosum, Wall.—{Nephrodium multilineatum.
 {Nephrodium unitum.
venustum, Hew.—Nephrodium venustum.
venustum, Hook. fil.—Polystichum vestitum, γ.
verrucosum, Kze.—Nephrodium heterodon.
verrucosum, Fée.—Lastrea verrucosa.
vestitum, Sw.—Polystichum vestitum.
vestitum, Sieb.—Polystichum stramineum.
vestitum, Zoll.—Polystichum squarrosum.
vile, Kze.—Lastrea vilis.
villosum, Sw.—Lastrea villosa.
villosum, Bory.—Lastrea cruciata.
? villosum, Hew.—Polypodium lachnopodium.
villosum, M.—(Hort. Belg. —f. Fée.)
Bathmiun villosum, Fée, Gen. Fil. 289.
violasascens, Link.—Nephrodium molle, γ.

[Gen. 22. Sp. 449.]
Aspidium.—Asplenium.

viridulum, Desv.—Cystopteris fragilis.
viscidulum, Metten.—Polystichum glandulosum.
viviparum, Metten.—Polystichum trapezoides, B. Vogelli, Hook.—Lastrea Vogelli.
vulcanicum, Bl.—Polystichum vulcanicum.
waikareense, Colenso.—Polystichum vestitum.
Woollichianum, Spr.—Lastrea Filix-mas, γ.
Woollichianum, Bory.—Oleandra neriiformis.
Woollichianum, Kze.—Polystichum setosum.
Woollichianum, Wall.—Oleandra Wallichii.
Wallichii, Hook.—Oleandra Woollichii.
Webbianum. A. Br.—Lastrea frondosa.
Webbii, Bory MS.—Polystichum falcinellum.
Weigleanum, Kze.—Lastrea sparsa.
xyloides, Kze.—Lastrea xyloides.
zeylanicum, Fée.—Lastrea zeylanica.
Zollingerianum, Kze.—Aspidium brachiatum.

californica, Nutt. MS.—Adiantopsis californica.

Finlaysonianum, J. Sm. MS.—Hemidictyum Hookeri-ianum.

ASPLENIUM, Linnaeus, Genera Plantarum 1783. [Synopsis, p. xlvi.]

abrotanoides, Presl.—Asplenium fœniculaceum.

abscissum, Willd. Sp. Plant. v. 321.—W. Indies: Jamaica, Trinidad, St. Vincent’s, Guadeloupe, (L’Herminier 18)
Cuba, (Otto 176; Lind. 1881), Dominica; Mexico (Ga- leotti 6288; Schaffn. (1856) 56); Panama; Tabasco (Lind. 1493); Columbia (Moritz. i. 18, 26; 23, 99, 182, 184, 365, 430; Otto 609); N. Grenada (Lind (Schl.)
397); Venezuela (Fendl. 136, 139 β, 143 β); Caracas; Amazon (Spruce 1623); F. Guiana; Galapagos (inciso-
dentate.)

Asplenium abscissum, Spr. Syst. 84; Desv. Prod. 273; Bl. Enum. 132;
Asplenium letum, Schkuhr, Crypt. 66, t. 70.
Asplenium bidentatum, Kze. Lin. ix. 66 (excl. syn. W. and Plum.)
Asplenium salicifolium, Kze. Hb. Papp.
Asplenium Schkuhrianum, Presl, Tent. Pter. 107; Fée, Gen. 191; Kl.
Asplenium pelargopus, Moritz MS.
Asplenium pellucidum, β, Lam. Enc. ii. 305. (Plum. t. 61.)
Asplenium.

109

abscissum, Raddi.—*Asplenium auriculatum*.

abyssinicum, Fée, *Gen.* 192, 199.—*Abyssinia* (Schimp. 668, 679.)

achilleæfolium, Liebm. *Mex.* *Bregn.* 97.—*Mexico* (Galeotti 6279, 6283 6569; *Schaffn.* (1854) 74, 75; (1856) 474; *Müll.* 1738.)

*Asplenium
athyrioides*, Fée, *Cat.* *lith.* *Foug.* *Mex.* 17; *Id.* *Iconogr.* *Nouv.* 83.

Asplenium grande, Fée, *Cat.* *lith.* *Foug.* *Mex.* 17; *Id.* *Iconogr.* *Nouv.* 82.

Asplenium conchatum, Fée, *Gen.* 186.*/

Athyrium *aconitioides*, Fie, *Gen.* 186, 189 (excl. t. 17 C, fig. 1); *Id.* *Cat.* *lith.* *Foug.* *Mex.* 15.

acrostichoides, Sw.—*Athyrium thelypteroides*.

acuminatum, Hook. et Arn., *Bot.* *Beech.* *Voy.* 106.—Sandwich *Isles*: Oahu (Barclay 1218.)

Asplenium acuminatum, *Brack.* *U.* *S.* *Exp.* *Expod.* *xvi.* 164.

acuminatum, Willd. *Hb.*.—*Asplenium Willdenovii*.

acuminatum, Wall.—*Diplazium sylvaticum*.

acuminatum, Klfs.—*Pr. Tent.* 107.)

acutum, Bory.—*Asplenium Adiantum-nigrum*, s.

adiantoides, Raddi, *Syn.* *Fîl.* 101; *Id.* *Fil.* *Bras.* 40, t. 51, fig. 2.—*Brazil* (Gard. 177, 178), St. Catherines; Jamaica.

adiantoides, Raoul.—*Asplenium Hookerianum*.

adiantoides, Lam.—*Asplenium praemorsum*, s.

Adiantum lanceolatum, Hoffm.—*Asplenium Adiantum-nigrum*.

Adiantum-nigrum. *Lin. Sp. Pl.* 1541.—Great Britain, *Swen*, *Norway*, *Denmark*, *Russia*, *Germany*, *Hungary*, *Transylvania*, *Dalmatia*, *Croatia*, *Greece*, *Turkey*, *Albania*, *Switzerland*, *Belgium*, *France*, *Italy*, *Spain*, *Portugal*, &c.; *Algers*; *S. Africa* (Sieb. *Syn.* 181); *Natal* (*Krugs* 364); *Madeira*, *Azores* (*Hochst.* 176; *Seubert* 15); *Cape Verd Islands*; *India*: Afghanistan, Mussoorie, Simla, Kashmir (*Hook. fil. et Th.* 177); *Mascaren Islands* (*Bory*); *Java*; *Syria*; *Erzeroum*; *Guriel*; *Caucasus*; *Siberia*; *St. Helena*.

[Gen. 23. *Sp.* 466.]
Asplenium.

Asplenium Adiantum lanceolatum, Hoffm. Deutschl. Fl. ii. 12 (exs. syn.)

Asplenium capense, Lin. MS. in Herb.
Asplenium humile, Bl. Enum. 165.
Asplenium lucidum, Salisb. Prod. 403.

Asplenium trichomanoides, Lunm. Fl. Pos. 1020.—f. Sall.

Phyllitis lanceifolia, Maouch, Meth. Supp. 316.

Tarachia Adiantum-nigrum, Presl, Epim. Bot. 82.

Asplenium acutum, Pollin. Fl. Ver. iii. 288, t. 2, fig. 2a.—Madeira, Azores, Tenerife (Bourq. 36), Canary Isles; Algiers (Boué, 365); Natal; South Africa; S. Europe: Greece, Macedonia, Croatia, Hungary, Spain, Sicily, Naples, Corsica, Ireland; Sandwich Isles (Douglas 55); Virginia (Hb. Mus. Brit.); Portorico (Hb. Willd.)—f. Heuff.

Asplenium Adiantum-nigrum, y. angustatum, Desv. Prod. 276.

Asplenium davalliioides, Tausch, Flore, xxii. (1839) 479.

Asplenium obtusum, M.—Silesia, Bohemia, Hungary, Croatia, Dalmatia, Saxony, Portugal, Italy; South Africa; Abyssinia, (Schimp. 669, 1356.)

Asplenium fissum, Wimm. Fl. Schles. i. 500.

Asplenium Forsteri, Sall. Fil. Hung. 32.—f. Heuff.

Asplenium incisum, Opiz, Kratos, ii. (1819) 17.—f. Pr.
Asplenium multicaule, Schottz, Enum. Fil. Siles. 43 (excl. syn.—f. Pr.)
Asplenium serpentinum, Tausch, Flora, xxii (1839); 477; Fle, Gen. 191.
Taraibia obtusa, Presl, Epim. Bot. 81.

Adiantum-nigrum, Bory.—Asplenium Adiantum-nigrum, β.
Adiantum-nigrum, Lumn.—Asplenium Trichomanes.
Adiantum-nigrum, v. capense, Schlech.—Asplenium Adiantum-nigrum.
Adiantum-nigrum, v. capense, Schimp.—Asplenium Adiantum-nigrum, γ.
Adiantum-nigrum Onopteris, Heuff.—Asplenium Adiantum-nigrum, β.
Adiantum-nigrum, γ. angustatum, Desv.—Asplenium Adiantum-nigrum, γ.
Adiantum-nigrum, v. serpentinum, Milde.—Asplenium Adiantum-nigrum, γ.

affine, Sw. Schrad. Journ. 1800, ii. 56; Id. Synops. 84, 279.—
India; Ceylon (Col. Ferad. 1800; Gardn. 1034);
Mascaren Islands (Sieb. Syn. 71; Boiv. 863); Java;
Borneo; Island of Jobia.

Prod. 278; Kze. Lin. xxiii. 231.
Asplenium cuneatum, Ham. ii.
Asplenium nitidum, Wall. Cat. 232 in part.
Canopteris cuneata, Desv. Prod. 267.
Darea cuneata, Desv. Mag. Ber. v. 323; Id. Journ. Bot. ii. 42, t. 12, fig. 1
africcanum, Desv.—Asplenium sinuaturn.

Aitoni, M. [Synops. xlix.]—Madeira, Teneriffe, Azores.

Id. Cat. Ferns, 47; Motten. Fil. Lips. 78; Love, Ferns v. t. 41.
179; Spr. Syst. 95; Desv. Prod. 269; Link, Fil. Sp. 42; Kze. Lin.
xxiii. 219.
Allantodia oligantha, Desv. Prod. 265.
Aspidium umbrosum, Sw. Schrad. Journ. 1800, ii. 42; Id. Synops. 60;
Schkuhr, Crypt. 59, t. 61; Willd. Sp. Pl. v. 283.
syn.)

Athyrium umbrosum, Presl, Tsent. Pter. 98; Fée, Gen. 186.

—B. axillare, M.—Madeira, Azores.

Bot. Mag. 1846, comp. 30; Id. Cat. Ferns, 47; Love, Ferns, v. t. 39.
Allantodia axillaris, Klfs. Enum. 179; Spr. Syst. 95; Desv. Prod. 265;
Kze. Lin. xxiii. 218.
Aspidium axillare, Sw. Schrad. Journ. 1800, ii. 42; Id. Synops. 60;
261.
Asplenium

Athyrium axillare, Presl, Tent. Pier. 98; Fée, Gen. 186.

Athyrium azoricum, Fée, Gen. 186.

Nephradium oligodontum, Desv. Prod. 261, p. 421; Desv.

alatum, Humb. et Bonpl. Willd. Sp. Pl. v. 319.—Columbia
(Moritz 175; Karsten 40), New Granada, Venezuela
(Tendler 145); Peru; Brasil (Gardn. 670); Organ
Mountains (Gardn. 6940); West Indies: Jamaica, St.
Vincents.

Asplenium alatum, Poir. Enc. Supp. ii. 507; Spr. Syst. 84; Desv. Prod.
Ex. Linn. ix. 65; xxii. 281; Kl. Linn. xx. 352; Presl, Tent. Pier.
107; Fée, Gen. 191; Metten. Fil. Lipp. 72.

Asplenium pterophorum, Presl, Tent. Pier. 107.

alatum, Sieb.—Asplenium Kohautianum.

alatum, Bert. Hb.—Asplenium fernandezianum.

altaerpterum, Kze. M.S.; Kl.—Asplenium rhizophorum.
alpestre, Bl. Enum. 172.—Java.

? alpinum, Poir.—Cystopteris regia.

alternans, Wall. Cat. 221.—India: Nepal, Himalaya, Simla
Kumaon (Hook. fil. et Th. 186); Sirmur (Jacquem
2910), Kashmir (Jacquem. 1099), Gurwhal (Jacquem.
105); Abyssinia (Schimp. 283.)

Asplenium Dalhousiae, Hook. Icon. Pl. t. 105.

alternifrons, Dillw. Ref. Hort. Mal. 64.—India.—Rheede,
Hort. Mal. xii. t. 16.

alternifolium, Wulf.—Asplenium germanicum.

alternifolium. Metten.—Diplazium alternifolium.

amabilis, Liebm.—Asplenium rachirhizon.
amazonicum, Hk. M.S.—Asplenium angustum, B.

ambiguum, Sw.—Callipteris ambiguа.

ambiguum, Schkuhr (t. 75.)—Diplazium Schkuhrii.

ambiguum, Raddi.—Diplazium radicans.

amblyodon, Fée, Gen. 191.—“Isles Vitea.”

amboinense, Willd. Sp. Pl. v. 303.—Amboyna; Feejee Islands;

Anetium.

Presl, Tent. Pier. 106 (W. Hb. 19865); Braek, U.S. Expl. Exped.
xxi. 147, t. 19, fig. 2.

ambigum, Presl.—Asplenium resectum.

ancps, Sol. M.S.: Hook. et Grev. Icon. Fil. t. 195.—Madeira,
Teneriffe, Azores.

Anchitrons, Chapm. MS.—Asplenium myriophyllum (dwarf.) angustatum, Presl.—Asplenium sulcatum, ß.

angustatum, Bl.—Asplenium lasiopityfolium.

angustatum, Desv.—Asplenium mucronatum.

angustilobum, Mich. Fl. Bor. Amer. ii. 265.—N. America:
Canada, Vermont, Pennsylvania, Ohio.

Asplenium sylcnecarpum, Spr. Anisit, iii. 112.
Asplenium salicifolium, Lin. Hb.! but probably not of Sp. Pl.

angustilobum, Guss.—Asplenium fiscum.

angustilobum, Jacq.—Grammitis linearis.

angustatum, Sw. Vet. Acad. Handb. Stock. 1817, 66, t. 4, f. 1,
—Brazil, Surinam (Kegel 1380, 1381; Hostm. 183a, 610.)

Asplenium lanceola, "Sw." (Presl, Tent. 106.)

—ß. loriforme, M.—Para (Spruce 18); B. Guiana (Rob. Schomb. 611.)

Asplenium loriforme, Hook. Icon. Pl. t. 926.
Asplenium amazonicum, Hook. MS.

angustum, avar., Kze.—Asplenium surinamense.

anisodontum, Presl, Epim. Bot. 73.—Java; Philippine Isles (Cumming 128 in part).

Asplenium anisodontum, Fée, Gen. 191.
Asplenium sororium, Miquel MS. Hb. Hook.

anisophyllum, Kze. Lin. x. 511.—S. Africa, Kaffraria, Natal; Bourbon (Boivin 857); Ceylon; Galapagos; Brasil (Gardn. 5494); Venezuela (Lind. F. and Schl. 606); Salanga; Central America; Cuba (Wright 845; Lind. 1887, 1890.)

anomalous, Desv.—Diplazium radicans.

anthesiophyllum, Jacq.—Asplenium pumilum.

apicidientatum, Hombr. et Jacq.—Asplenium obtusatum.

appendiculatum, Presl.—Asplenium bulbiferum, ß.

appendiculatum, v. angustilobum, Müller.—Asplenium flacoidum.

10 **
approximatum, Bl.—Asplenium pellucidum.

aquaticum, Kl. et Karst.—Asplenium obtusifolium.

aquilinum, Bernh.—Pteris aquilina.

arborescens, Metten.—Diplazium arborescens.

arboreum, Willd.—Diplazium arborescens.

asccatum, Liebm.—Asplenium Galeottii.

argutans, Fée.—Diplazium tomentosum.

argutum, Klfs.—Asplenium Adiantum-nigrum.

arifolium, Poir.—Diplazium arborescens.

articulatum, Wall.—Hemionitis articulata.

aspidiiforme, Fée, Gen. 192, 199.—Mexico (Galeotti 6483.)

aspidioides, Schlech.—Athyrium scandicinum.

aspidioides, Spr.—Athyrium asplenioides.

assimile, Endl. Prod. Fl. Norf. 10.—Norfolk Island; Ceylon (Coll. Perad. 1347.)

Athyrium assimile, Presl, Tent. Pter. 98.

atthyroides, Fée.—Asplenium achilleæfolium.

Athyrium, Spr.—Athyrium asplenioides.

Tarschia attenuata, Presl, Epim. Bot. 75.

attenuatum, Klfs.—Asplenium sulcatum, B.

attenuatum, Presl.—Callipteris prolifera.

atropurpureum, Bernh.—Platyloma atropurpureum.

auriculatum, Cav.—Ceterach aureum.

? auriculum, Bl.—Asplenium caudatum.

auriculatum, Desv.—Asplenium brasiliense.

auriculatum, Kl. MS.—Asplenium harpeodes.

auriculatum, Sw. Vet. Acad. Handl. Stock. 1617, 68.—Brazil (Gardn. 161); Mexico (Galeotti 6280, 6505.)—? Flora Flum. xi. 103.

Asplenium auriculatum, Spr. Syst. 90; Kze. Lin. xxi. 217, in obs.

auriculatum, Wall. Hb.—Diplazium porrectum.

auritum, Sw. Fl. Ind. Occ. iii. 1616; Id. Syn. 78;—W. Indies;
Asplenium.

Jamaica, Cuba (Wright 857 in part; Lind. 1937),
Dominica (Sieb. Syn. Fil. 171); Mexico (Galeotti, 6392;
Leibold 13; Schaffn. (1854) 69; Jurgen sen 637, 900),
Chiapas (Lind. 1528); Guatemala; Panama; Columbia
(Moritz i. 25; 1002, 180, 181; Cuming 1230, 1269),
New Grenada (Lind. Schl. 290, 589); Brazil (Mart.
348); Surinam (Sw.); Quito; Peru; Bay of Choco El
Equador; Island of Gorgona; Galapagos.—Sloane Jam.
t. 33, f. 2.

Schleich, Lin. v. 612; Prest, Del. Hank. i. 43; Id. Tent. Pter. 106 in part; Link, Fl. Sp. 92; Kze. Lin. ix. 67; xvi. 332; Id. Bot.

—B. macilentum, M.—W. Indies: Hispaniola, Jamaica;
Columbia (Hartw. 1503; Moritz 100, 183), New Granada
(Lind. Schl. 60, 1032), Venezuela (Fendl. 141, 142),
Caracas (Miquel 3; Lind. 532); Brazil (Gardn. 41;
Blanch. 2471); Sao Gabriel (Spruce 2275); B. Guiana
(Rich. Schomb. 1168); Surinam (Hostm. 168); Peru
(Barclay 649), Tarapota (Spruce 3956); Quito (Jameson
731); Galapagos; Guatemala; Mexico (Galeotti 6392).

—Plum t. 74.

Asplenium macilentum, Kze. Hb.: Kl. Lin. xx. 351; Poe, Gen. 192;
J. Sm. Cat. Ferns, 44.

Asplenium auritum, Prest, Tent. Pter. 106 in part.
Asplenium auritum, v. planis obtusis, Kze. Lin. xiii. 232; Metten, Fil.
Lips. 73, t. 8, fig. 3—4.
Asplenium curvatum, Kf's. Enum. 189; Spr. Syst. 83.
Asplenium rhizophyllum, Poppig, Hb. Hook.

auritum, Wall.—Asplenium bipartitum.
auritum v. bipinnatifidum, Kzo.—Asplenium sulcatum.
auritum v. petiolatum, Sieb.—Asplenium bipartitum.
australasicum, Hook.—Thamnopteris australasica.
xxix.—New Holland (Moss. 677), Broadribb River,
Moreton Bay; Tasmania; New Zealand; Norfolk Island;
India: Neilgherries (Weigle 16), Mysore (Hook. fl. et
Th. 200 in part), Nepal.

Allantodia australis, E. Br. Prod. Fl. Nov. Hol. 149; Spr. Syst. 95;
Allantodia tenera, E. Br. Prod. Fl. Nov. Hol. 149; Spr. Syst. 95;
Asplenium Brownii, J. Sm. Hook. Journ. Bot. iv. 174; Id. Cat. Ferns,
47; Hook. fl. Fl. N. Zeal. ii. 36; Hook. Icon. Fl. t. 978; Mitten,
Fl. Lips. 79; Lowe, Ferns, v. t. 30.

Asplenium.

Asplenium australis, Presl, Tent. Pter. 98; Hook, Gen. Fil. t. 16; Fée, Gen. 196.
Asplenium tenerum, Fée, Gen. 186

australis, Sw.—Actiniopteris australis.
axillare, Webb et B.—Asplenium Aitonii, β.
basilare, M.—Asplenium sylvaticum.

Belangeri, Bory, Voy. Bel. ii. 47.—Java.
Belangeri, Kze.—Asplenium Veitchianum.

bidentatum, Willd.—Asplenium auritum, β.
bidentatum, Kze.—Asplenium abscessum.
bifidum, Presl.—Asplenium inaequale.
bifidum, Hort.—Asplenium Fabianum.

bifissum, Fée, Gen. 192, 199.—Cuba (Lind. 1888.)
bifolium, Link. Sp. Pl. 1538.—Hispaniola.—Plum. t. 133.

Scolopendrium sp. f., Swartz.
bifurcum, Opiz.—Asplenium septentrionale.
Billotii, F. Schultz.—Asplenium lanceolatum.

Asplenium auritum, Will. Cat. 229.
Diplazium bipartitum, Presl, Epim. Bot. 98.

bipartitum, Link.—Asplenium dispersum.
bipartitum, Boj. MS.—Asplenium inaequale.
bipinnatum, Roxb.—Callipteris ambiguia.
bipinnatum, Brack.—Asplenium rutesfolium, β.
biserratum, Presl.—Diplazium biserratum.
biserratum, Carm. MS.—Asplenium erectum.

bissectum, Sw. Prod. 130 (excl. syn.); Íd. Syn. 82 (excl. syn.)
—Jamaica; Cuba (Wright 552); Columbia (Moritz 246; Lind. SchI. 602); Quito.

bissectum, Hort.—Asplenium dispersum.
blandulum, Fée Hb.—Asplenium monanthemum.
blectchnoides, Sw.—Bleichnun unilaterale.
Blumeanum, M.—Java.

[Gen. 23. Sp. 494.]
Asplenium.

Asplenium viviparum, Bl. Enum. 176.
(An Aspl persicifolium, J. Sm.)

Bojerianum, Hew. MS.—Asplenium inaequale.

Boryanum, M.—Mascaren Islanda.

Darea asplenioides, Bory, Bel. Voy. ii. 53.

Bowieanum, J. Sm. MS.—Asplenium flexuosum.

brachyopterum, Houst. et M.—Asplenium brachypteron.

brachyotatus, Kze. Lin. x. 512; xxi. 217 (note); xxiv. 261.—
S. Africa, Kaffraria, Natal (Plant 327); Neilgherries:
(Weige 22); Caraccas (Hostm. 168.)

Asplenium brachyptus, Moore, Hook: Kew Journ. Bot. v. 226; Pappe:

brachyphyllum, Gasp.—Asplenium fassum, B.

brachypteron, Kze. Lin. xxiii. 232.—Sierra Leone; Madagascar.

Asplenium brachypteron, J. Sm. Cat. Ferns 44; Hook. Fil. Exot. t. 44
(brachypterum)

typ.); Lowe, Ferns, v. t. 15B.

Asplenium dissectum, J. Sm. MS.—f. Kze.

brasiliense, Raddi, Fil. Bras. 36, t. 51, fig. 1.—Brasil (Regn.
i. 331; Gardn. 163, 165, 166; Mart. 340, 341 var.
brevisorum, Mart.; Clausen 2107); Columbia (Moritz 185, 186); Venezuela (Fendl. 138), Caraccas (Lind. 181?)

El Equador; Quito; Peru (Matthews 1099; Spruce 3966 in part); W. Indies: Jamaica, Cuba (Lind. 1895; Wright 549); India: Neilgherries (Hook. fil. et Th. 185), Bombay; Ceylon (Garden 1074.)

Asplenium brasiliense, Link, Fil. Sp. 91; Hew. Mag. Nat. Hist. 1838,
462; Kze. Lin. xxiv. 263, in obs.; J. Sm. Cat. Ferns, 44.

Asplenium auriculatum, Desv. Prod. 273; Presl, Tent. Pter. 107; Fée,
Asplenium dimidiatum, Hort.; Lowe, Ferns, v. t. 13A.

Asplenium pulchrum, Wall. Cat. 2311.

82; Presl, Tent. Pter. 107; Fée, Gen. 191; Kze. Lin. xxiii. 237.

Asplenium tenerum, Raddi, Syn. Fil. 93.

Asplenium triste, Kiff. Enum. 170; Spr. Syst. 83.

brasiliense, Sw.—Antigramma brasiliensis.
brasiliense, Deav.—Asplenium auriculatum.
brasiliense, Hort.—Asplenium serratum, B.
brevisorum, Wall.—Athyrium brevisorum.

Breynii, Retz.—Asplenium germanicum.

Brownii, J. Sm.—Asplenium australis.

Brunonianum, Metten.—Allantodia Brunonianiana.

Asplenium.

bulbiferum, Forst. Prod. 433.—New Zealand (Ralph 59 in part, 71, 73; Mossm. 638); Mt. Gambier, Victoria.

— γ. gracile, M.—New Zealand: Otago, Wangaraoa (Ralph 59 in part; Mossm. 633 in part.)

— δ. triste, Hook. fl. Fl. N. Zeal. ii. 34.—New Zealand.

bulbiferum, Bernh.—Diplazium radicans.
bulbiferum γ. Hook. fl.—Asplenium Fabianum.

[bulbosum, Lour. Fl. Cochin. ii. 833.—Cochinobina.

Asplenium bulbosum, Sw. Syn. 86; Desv. Prod. 275.]

bullatum, Wall. Cat. 215.—India: Nepal, Bhotan, Sikkim (Hook. fl. et Th. 192.)

canopteroides, Desv.—Asplenium darsaefolium.

cæspitosum, Bl. Enum. 175.—Java.

cæspitosum, Wall.—Asplenium laciniatum.

callipteris, Fée.—Asplenium sundense.

calophyllum, J. Sm.—Asplenium pallidum.

camptorachis, Kze. Lin. xxiv. 262.—India: Neilgherries. (Schmid 123.)

canaliculatum, Bl.—Asplenium macrophyllum.

canariense, Willd.—Asplenium premorsum.

capense, Linn. Hb.—Asplenium Adiantum-nigrum.

caraccasanum, Willd.—Diplazium radicans.

caryotoides, Presl.—? Asplenium dimidiatum.

Asplenium.

119

castaneum, Schlech. Linnæa v. 611.—Mexico (Leibold 123; ? Galeotti 6254; Lind. 53); Columbia (Moritz ? 219; Hartw. 1522), Caracas (Lind. 552.)

cataractarum, Bl. Enum. 177.—Java.

cataractarum, Moritz.—Diplazium phanerotis.

caudatum, Forst. Prod. 432.—Pacific Islands; Sandwich Islands: Tahiti, Owhyhee; Anietœum; Philippine Islands (Cumming 99, 128 in part); Java (Zoll. 3452, 3462.)

caudatum, Cav.—Asplenium elongatum.

celtidifolium, Metten.—Diplazium celtidifolium.

Ceterach, Lin.—Ceterach officinarum.

cylanense, Kl.—Diplazium ceylanense.

Chamoussonianum, Prenl, Tent. Pter. 107.—Manilla.

chlamyopterum Fée, Gen. 191, 194; Id. Iconogr. Nov. 47, t. 16, fig. 1.—Bourbon.

chondrophyllum, Bertero M.S.: Colla.—Asplenium obtusatum.

cicaturium, Sw. Prod. 130 (excl. syn.)—W. Indies: Jamaica, Trinidad, Cuba (Otto 30; Wright 855), Portorico, Antigua; Guatemala; Mexico (Galeotti, 6298, 6325, 6502; Schaffn. (1854) 61 (v. decussatum, Fée); Jurgensen 733); Tabasco (Lind. 148); Columbia (Moritz i. 54; 43, 211; Wagener 52; Karsten 39, 43, 93), Venezuela (Fendl. 124, 1248; Lind. F. et Schl. 416), New Grenada (Schlüm 67, large and lax; 614), Caracas (Lind. 153; Miquel 28); Quito (Hartw. 1520); Peru (Ruiz Hb. 77; Spruce 3795; Barclay 646); Brazil; Chatham Island (less divided); Island of Gorgona (less divided)—Plum. t. 48A.

Asplenium cirratum, Lam. Enc. ii. 310.
Caenopteris dissecta, Hort. Ang.—f. Kze.
cicutarium, Kth.—Asplenium myriophyllum.
cicutarium, Roxb.—? Asplenium præmorsum.
ciliatum, Fée (Fée).—Gymnogramma immersa.
ciliatum, Bert. MS.—Gymnogramma papaverifolia.
Asplenium cirrhatum, Poir. Enc. Supp. ii. 508; Spr. Syst. 84; Desv. Prod. 275; Fée, Tent. Pl. 107; Fée, Gen. 191; K. Lin. xx. 352.
cirrhatum, Sieb.—Diplazium radicans.
eladolepton, Fée, Iconogr. Nov. 55, t. 22, fig. 4.—New Grenada (Lindl. Schl. 324); Peru (Mathews 1793.)
coarctatum, Hort. Ber.—Diplazium radicans.
Colensoi, Colenso.—Asplenium Hookerianum, B. collinum, Colenso MS.—Asplenium flaccidum.
compressum, Sw. Schrad. Journ. 1800, ii. 52; Id. Syn. 79, 270.—St. Helena (Cuming 430.)
Asplenium fuscundum, Kze. Lin. xx. 3; xxiii. 234, 305, 409; Metten. Fil. Lips. 73.
Caenopteris vivipara, Hort. Lodg.
Darea fuscunda, Fée, Gen. 333.
concisatum, M.—Asplenium costale.
concinnum, Wall.—Asplenium tenuifolium.
concisum, Desv. Prod. 277, "t. 9, fig. 1."—?
confusum, Kze. Hb.—Asplenium cicutarium.
consimile, Remy, in Gay, Chil. vi. 501.—Chili.
Asplenium consimile, Fée, Gen. 191; Philippi, Bot. Zeit. xiv. 630; Sturm, En. Chil. 27.

[Gen. 23. Sp. 617.]
Asplenium.

contaminane, Wall. Cat. 2210 [not in Hb.];—Singapore.
contiguum, Klfs. Enum. 172.—Sandwich Islands; Ceylon
(Coll. Perad. 3140; Gardn. 1072 in part.)
Asplenium contiguum, Spr. Syst. 84; Presl, Tent. Pter. 106; Gaud. Frey.
Explad. xvi. 158.
Tarachia contigua, Presl, Epim. Bot. 78.

—— β. filiforme, M.—Sandwich Islands; Philippine Islands
(Cuming 211); India: Neilgherries.
Asplenium filiforme, Klfs. Enum. 172; Spr. Syst. 86; Presl, Tent. Pter.
xvi. 158.
Bot. 72.

cordatum, Sw.—Grammitis cordata.
cordifolium, Spr.—Llavea cordifolia.
cordifolium, Metten.—Oxygonium integrifolium.
coriaceum, Desv. Prod. 275.—W. Indies; Brazil.
Asplenium salicifolium, Spr. Anleit. iii. t. 3, fig. 23 (excl. syn.); Syst. 82.
coriaceum, Roxb.—Asplenium macrophyllum.
coriaceum, Bory.—Asplenium Wightianum.
coriaceum, Fée.—Asplenium pycnophyllum.
[coriandrifolium, Presl, Tent. Pter. 108.—]
coriifolium, Liebm.—Asplenium feniacleaceum.
costale, M. [ante p. 43.];—W. Indies: Jamaica, St. Domingo.
Allantodia costalis, Des. Prod. 265.
Asplenium conchatum, M. Synps. xl.
Athyrium conchatum Fée, Gen. t. 17 C, fig. 1.—t. Iconogr. 121.
Hypoehlamys pectinata, Fée, Gen. 200, t. 17 C, fig. 3; ld. Iconogr.
Nov. 121.
costale, Sw.—Diplazium costale.
costale, Sieb.—Diplazium stratum.
crassides, Fée, Iconogr. Nov. 82.—New Grenada (Lind.
Schl. 393.)
crassum, Pet. Th.—Asplenium lucidum, γ.
crenatum, Roxb.—Diplazium crenatum.
crenatum, Desv.—Asplenium cuneatum.
crenatum, Fries.—Athyrium crenatum.
crenato-serratum, Bl.—Asplenium pallidum.
crenulatum, Presl.—Asplenium serratum, β.
crinosum, Desv. Prod. 272.—Madagascar.
cristatum, Lam.—Asplenium cicutarium.
Asplenium.

cristatum, Brack.—Asplenium cuneatum, γ.
cristatum, Wall.—Asplenium resectum, β.

[culturatum, Roxb. Hb.: Wall. Cat. 2214 (not in Hb.)—India.]
culturatum, Sieb.—Asplenium falx.
culturatum, Gaud.—Asplenium falcatum.
culturatum, Lin.—Diplazium cultrifolium.
culturatum, Willd. in part.—Diplazium Reimerianum.
culturatum, Sieb. (Syn.)—Asplenium falx.
culturatum, Kl. MS.—Asplenium integerrimum.
culturatum, Kl. (Kze.)—Diplazium cultrifolium, β.
culturatum, Roxb.—Asplenium falcatum.
culturatum, Hort.—Asplenium firmum.
Cumingii, Metten.—Oxygonium aliabarfolium.

cuneatum, Lam. Enc. ii. 309.—W. Indies: Jamaica, St. Vincent's, Cuba; B. Guiana (Bruch. Schomb. 340); Brazil (Brack.); Para (Spruce 8); Peru; Natal; S. Africa; Mozambique; Mauritius; China: Hong Kong, Chusan; Philippine Islands (Cuming 54); Java (Lodd. 451; Zoll. 347 e.); Borneo; Society Islands; Feejee Islands; Samoan Islands.—Sloane, Jam. t. 46, fig. 2.

Asplenium cuneatum, Desv. Prod. 279.
Asplenium dareoides, Moritz, Verz. 110.
Asplenium nitidum, Bl. in Hb. Hook.
Taracbia cuneata, Presl, Epim. Bot. 81.

— β. caripense, Kl. Linn. xx. 356.—Columbia (Moritz 187.)

— γ. cristatum, M.—Philippines; Isle of Pines; New Caledonia; Apia Bay.

Asplenium cristatum, Brack. U.S. Expl. Exped. xvi. 163, t. 21, fig. 3.
cuneatum, Hook. et Gr.—Asplenium præmorsum.
cuneatum, Schimp.—Asplenium abyssinicum.
cuneatum, F. Schultz.—Asplenium lanceolatum.
cuneatum, Ham. Hb.—Asplenium affine.
cuneatum, Wight Hb.—Asplenium præmorsum, β.
cuneiforme, Viv.—Asplenium Adiantum-nigrum, γ.
curvatum, Klfs.—Asplenium auritum, β.

[Gen. 23. Sp. 525.]
Asplenium.

cuspidatum, Liebm.—Asplenium Galeottii.
cuspidatum, Lam. Enc. ii. 310.—Peru.

(An Asplenium faniculaceum, H.B.K. eadem sp.)
cuspidatum, Sol. MS.—Asplenium præmorsum, β.
cyathæfolium, Rich.—Diplazium cyathæfolium.
cyathoides, Bernh.—Athyrium Filix-fœnina.
cyrtopterōn, Kze.—Asplenium rhizophorum.

Dalyouia, Hook.—Asplenium alternans.
darœfolium, Bory MS. ; Willd. Sp. Pl. v. 395.—Bourbon.

Asplenium canœnteroides, Desv. Prod. 276.
dareoides, Bory, Bel. Voy. ii. 50.—Java.

Asplenium dareoides, Kze. Bot. Zeit. vi. 175, in obs.
dareoides, Desv.—Asplenium concisum.
dareoides, Moritz.—Asplenium cuneatum.
daucifolium, Lam. Enc. ii. 310.—Mauritius.

Canopteris daucifolia, Desv. Prod. 268.

(An Asplenium inaquale, Kze. eadem sp.)
davallioides, Tausch.—Asplenium Adiantum-nigrum, β.
decipiens, Zippel. MS.—Diplazium decipiens.
decorum, Kze. Bot. Zeit. vi. 176.—Java (Zoll. 1260.)

Darea appendiculata, Bl. Enum. 206, (excl. syn.)
decresens, Kze. Lin. xxiv. 261.—Neilgherries (Schmid 99, 122.)
decurrens, Willd.—Asplenium lucidum, γ.
decurrens, Wall.—Asplenium resectum.
decurtatum, Kze. : Link.—Athyrium decurtatum.
decussatum, Sw.—Callipteris prolifera.
decussatum, Presl.—Callipteris aoeodens.
decussatum, Wall.—Diplazium decussatum.
decussatum, Hort.—Asplenium pellucidum.
deflexum, M. [ante p. 43.]—Java (Zoll. 1962.)

delicatulum, Presl, Rel. Hænk. i. 47, t. 7, fig. 3; Id. Tent. Pter. 109.—Quito; Peru (Mathews 1785; Spruce 4035); ? Cuba (Lind. 2176.)

Asplenium delicatulum, Spr. Syst. 89; Kze. Lin. ix. 70; Fée, Gen. 192; Hook. Icon. Pl. t. 918.
deltoidæum, Presl.—Diplazium deltoidæum.
Asplenium.

densum, Brack. U.S. Expl. Exped. xvi. 151, t. 20, fig. 3.—Sandwich Islands; Peru.
dentatum, Lin. Sp. Pl. 1540.—W. Indies: Jamaica, Hispaniola, St. Vincent's, Trinidad, Guadeloupe, Bahamas, Cuba (Wright 853; Otto 31, 63, 179, 183); Carolina; Mexico (Lind. 77); Peru (Spruce 3966 in part)—Plum. t. 101 C; ? Pluk. t. 253, fig. 5.
Kee. Lin. is. 67; ixiii. 233; Kl. Lin. xx. 356; Sooi: et Qrev. Icon. mi.t.12; Me, Mii. 191.
dentatum, Krauss.—Asplenium Kraussii.
dentes, Sol. MS. (? Sweet: Kze.)—Asplenium præmorsum, β.
dentes, Lowe.—Asplenium erectum.
denticulatum, Bl. Enum. 186.—Java.
denticulatum, J. Sm.—Athryum tenuifrons.
denticulosum, Desv.—Diplazium denticulosum.
denticulosum, M. et Gal.—Diplazium lonchophyllum.
depauperatum, Fée, Iconogr. Novu. 52, t. 15, fig. 3.—Bolivia (Weddell 4236.)
depauperatum, Wall.—Asplenium laciniatum, β.
[depressum, Loud. Hort. Brit. 494 (ed. 1850); Kze. Lin. xxxii. 233.—W. Indies.]
dichroum, Kze.—Asplenium Trichomanes.
Diallui, A. Gray MS.—Asplenium patens.
dimidiatum, Sw. Fl. Ind. Occ. iii. 1615; Id. Syn. 77.—W. Indies: Jamaica, St. Domingo, Cuba (Wright 842); Columbia (Moritz i. 21; 154); New Grenada (Lind. Schl. 619; Lind. F. and Schl. 1689), Caraccas (Birschel); Peru (Mathews 3293; Spruce 4753).
Asplenium.

dimorphum, Kze. *Linn. xxi. 233.—Norfolk Island.

diodon, Fée, Gen. 191, 195.—Philippine Islands.

diplazioides, Bory, Bel. Voy. ii. 51.—Java.

diplazioides, Hook. et Arn.—Diplazium Arnottii.

dicolor, Kze.—Asplenium auriculatum.

discolor, Pappe et Raws.—Asplenium flexuosum.

discolor, Colenso MS.—Asplenium falcatum.

dispersum, Kze. *Linn. xxi. 233.—Trop. America; Jamaica.—Sloane, Jam. t. 33, fig. 1.

Asplenium dispersum, J. Sm. Cat. Ferns, 43; Metten, Fil. Lips. 76, t. 9, fig. 5—6.

Asplenium bissectum, Hort.

Asplenium bipartitum, Link, Hort. Ber. ii. 64; Id. Fil. Sp. 92.—f. Kze.

dissectum, Brack. U. S. Expl. Exped. xvi. 170, t. 24, fig. 1.—Sandwich Islands.

?dissectum, Gmel.—Asplenium sulcatum.

dissectum, Poir.—Asplenium bissectum.

dissectum, Link.—Asplenium cicutarium.

dissectum, J. Sm. MS.—Asplenium brachypteran.

dissectum, Nutt. MS.—Athyrium scandincum.

distans, Fée, Gen. 192, 198.—Mexico (*Galeotti 6579*)

distans, Don.—Athyrium distans.

distans, Brack.—Asplenium remotum.

distans, Colenso MS.—Asplenium falcatum.

[divaricatum, Wall. Cat. 2204 (not in Hb.)—Singapore.

Asplenium marginatum, Wall. Hb.]

divaricatum, Kze.—Asplenium myriophyllum, β.

diversifolium, Bl. Enum. 175.—Java (*Zoll. 2628, 2917*).

diversifolium, Wall.—Diplazium diversifolium.

diversifolium, A. Cunn.—Asplenium dimorphum.

dolabella, "Kze." Fée, Gen. 191.—S. Africa.
Asplenium.

 Asplenium pteropus, *Bory Hb.* — *Kze.*

Douglasii, Hook. et Grev.—Antigrama plantaginea.

Dregeanum, *Kze. Lin.* x. 517.—S. Africa; Natal (*Plant 310*).

drepanopteron, *A. Br.*—Athryrium oxyphyllum.

dubium, Gaud.—Antigrama brasiliensis.

dubium, *A. Br.*—Diplazium radicans.

Asplenium elongatum, Sw. Syn. 79.—Marianne Isles; Philippine Isles (*Cuming 163*); Singapore, Penang; Borneo; Java (*Zollinger 2220, 2935*); Ceylon (*Gardn. 1078; Coll. Perad. 1007*); Tahiti; Dangerous Archipelago; Nucahiva; *Khasya.*

Asplenium caudatum, Cav. Prolect. (1801) 256.

Asplenium productum, Presl, Bot. Haenk. 1. 43, t. 9, fig. 1.

Asplenium, Salisb.—Sclopendrium vulgar.

emarginato-dentatum, Zenker, M.S. ; *Kze. Linnæa* xxiv. 268—India: Neigherries (*Schmid 2*).
emarginatum, *Pal. de Beauf. Fl. d'Oware* ii. 6, t. 61.—Prince's Island, Gulf of Guinea.

ensifolium, *Wall. MS.*—Asplenium ensiforme.

ensifolium, *Wall.*—Asplenium ensiforme.

Asplenium ensiforme, *Wall. MS.*—S. Africa; Natal; Tristan d'Acunha; S. Africa (*Zeyheri* 4629; *Krattss* 735).

Asplenium biserratum, *Carm. MS. Hb. Hook.*

Asplenium dentex, *Lowe,* *Fern.* v. t. 43 A.

erectum, Metten.—Asplenium harpeodes.

erectum, Moritz.—Asplenium sordidum.

erectum, *v. proliferum,* *Hook.* in part.—Asplenium tenellum.

eroso-dentatum, Bl.—Asplenium resectum, β.

[Gen. 23. Sp. 566.]
Asplenium.

Asplenium, Wall. MS.—Diplazium lanceum.
Asplenium, Hort. Cantab.—Asplenium falcatum.
erythrocaulon, Bl.—Asplenium resectum.
esculentum, Presl.—Callipteris ambiguia.
excisum, Presl.—Asplenium resectum, β.
exile, Heward MS.—Asplenium Hookerianum.
expansum, Presl.—Diplazium expansum.

extensum, Fée, Iconogr. Novv. 51, t. 13, fig. 2.—New Grenada (Lind. Schl. 629); Peru (Mathews 1816.)

Fabianum, Hombr. et Jacq. Voy. au Pole Sud t. 3 bis, fig. β.
—Mascaren Islands; Bonin Islands, (Mertens 77); Peel Island; New Zealand; N. Holland; Sydney; ? Japan.

Asplenium bifidum, Hort.
Asplenium bulbiferum, γ. tripinnatum, Hook. fil. Fl. N. Zeal. ii. 34.
Asplenium foniculaeum, Hort.
Asplenium paniculatum, Hort.
Asplenium tremulum, Hombr. et Jacq. Voy. au Pole Sud t. 3 bis, fig. δ.
(Mascaren Isl.; N. Zealand).
Canopteris Fabiana, Bory MS. (Wild Sp. Pl. v. 299); Spr. Syst. 91; Desv. Prod. 268.
falcatum, Lam. Enc. ii. 306.—Ceylon (Gardn. 24, 1080, 1081, 1072 in part; Coll. Perad. 1340; Hook. fil. et Th. 172); India: Neilgherrres (Schmidt 124); Malabar, Khasya, Mishmee, Mouleme, Pegu, Towoy; Malacca; Philippine Islands (Cuming 42); Java (Zoll. 1996, 1996a); Ambon; Hong Kong; Louisiade Arch.; Marianne Isl.; Féejee Isl.; Anietium; Samaon Isl.; Society Isl.: Tahiti, Oahu; Isle of Pines; Sunday Island; Pitcairn Island (Cuming 1834); Navigator Islands; Friendly Islands; Lord Howe's Island; Norfolk Island; New South Wales: Moreton Bay; New Zealand (Ralph 20); Bourbon.—Burman Fl. Zeyl. t. 43; Rheede, Mal. xii. t. 18.

Asplenium diecolor, Colenso MS. Hb. Hook.
Asplenium distans, Colenso MS. Hb. Hook.
Asplenium intermedium, Kf!a, Sieb. Syn. 68; Spr. Syst. 84; Fée, Gen. 191.
Asplenium Kaulfussii, Presl, Tent. Pter. 106 (non Schlech.)
Asplenium.

Asplenium Tavoyanum, Wall. Cat. 1035.
Asplenium zamiafolium. Presl, Rel. Haenk. i. 43 (excl. syn. et pat.)
Tarachia falcata, Presl, Epim. Bot. 77.
Tarachia Henkeana, Presl, Epim. Bot. 76.
Tarachia polyodon, Presl, Epim. Bot. 76.
Trichomanes adiantiformis, Lin, Sp. Pl. 1581.

—γ. firmum. M.—St. Helena (Cuming 429; Seemann 2637); Madras; Ceylon; Mauritius.
Asplenium firmum, Fée, Gen. 191, 197.

falcatum, Rich.—Asplenium falcifolium.
falcatum, M. et Gal.—Asplenium harpeodes.

falcatum, Ham.; Don.—Asplenium planicaule.

falcatum, Thunb.—Asplenium lunulatum.
falcatum, β. laceratum, Kze.—Asplenium laciniatum.
falcatum, γ. abbreviatum, Kze.—Asplenium planicaule.

falcatum, Roxb.—Asplenium falcatum, γ.

falcifolium, M.—Vanikoro, New Hebrides.
("Fil. Richardiana e Vanikoro a nostra [falcatum, Lam.] differre videtur."—Kze.)

fallax, Lowe MS.—Asplenium anceps.
falsum, Retz.—Asplenium præmorsum, δ.

falx, Desv. Prod. 274.—W. Indies: Dominica, Martinique, St. Vincent’s, Gaudeloupe (L’Herm. 6), Portorico, Cuba (Wright 848 in part; Otto 318); Columbia (Moritz 245), Caracas (Lind. 169), New Grenada (Lind. Schl. 628); French Guiana: Cayenne; B. Guiana (Rich. Schomb. 1556; Rob. Schomb. 451 in part); Surinam (Kappel, 1768; Kege 1073); Brazil: Para (Spruce 38); Peru: Tarapota (Spruce 4675, 4676); Quito (Jameson 50); Bolivia; Mexico (Schaffn. (1854) 50).

Asplenium falx, Kze. Lin. xxi. 216; Fée, Gen. 191, t. 17, fig. 2.

Asplenium hastatum, Kl. MS.; Kze. Lin. xxii. 233, 305; Fée, Gen. 191; Metten. Fil. Leps. 73; Sturm, Enum. Chil. 28.
Asplenium pimpinellifolium, Schaffn. MS.; Fée, Iconogr. Novv. 52, t. 26, fig. 5. (Mexico.)

Asplenium salicifolium, Kl. Lin. xx. 355.
Asplenium salicifolium, β. semicordatum, Splitt. Tijdsch. Nat. vii. 419 (excl. syn.)

Féei, Kze. MS.; Fée, Gen. 192, 194; Id. Iconogr. Novv. 49, t. 15, fig. 2.—Mexico.

feejeense, Brack. U.S. Expl. Exped. xvi. 147, t. 19, fig. 1. Feejee Islands; Samoan Islands; Java.

[Gen. 28. Sp. 573.]
Asplenium.

Asplenium fernandezianum, Kze. Anal. Pter. 22.—Juan Fernandez (Cuming 1332; Bertero 1532); Columbia (Moritz 23 b.).

Asplenium fernandezianum, Kl. Lin. xx. 355; Fée, Gen. 191; Gay, Chit. vi. 503; Sturm, En. Fil. Chit. 27.

Asplenium alatum, Bertero Hb. No. 1532.

Asplenium stellatum, Colla, Mem. Acad. Turin. xxxix. 40, t. 69.

ferulacem, M.—New Grenada (Hartweg 1519); Quito (Jameson 1).

ficifoUum, Goldm.—Thamnopteris musefolia.

Fieldingianum, M. [ante 43.].—India: Neilgherries (Schmid 7.)

Allantodia Fieldingiana, Kze, Lin. xxiv. 289.

filiforme, Klfs.—Asplenium contiguum, β.

filipendulaeolium, Pet. Th.—Gymnogramma filipendulaeolium.

Felix-femina, Bernh.—Athyrium Felix-femina.

Felix-femina, var. a. Metten.—Athyrium asplenosides.

Felix-femina, var. b., Metten.—Athyrium asplenosides, β.

fimbriatum, Kze.—Asplenium varians.

Finlaysonianum, Wall.—Asplenium macrophyllum.

Finlaysonianum, Hook. et Grev.—Hemidictyon Hookeri anum.

firmum, Kze. Bot. Zeit. iii. 283; Id. Lin. xxii. 234, 304.—

Columbia (Moritz 99), Caracas (Moritz i. 18, 26; Miquel 4), Venezuela (Fédl. 143, 1438.); Rio Grande.

Asplenium firmum, Metten. Fil. Lips. 73.

Asplenium cultrifolium, Hort.

Asplenium pelargopus, Moritz, Pl. Col. 490.

firmum, Fée.—Asplenium falcatum, γ.

fissidens, Bory, Bel. Voy. ii. 49.—Mauritius.

fissum, Kitaibel M.S.: Willd. Sp. Pl. v. 348.—Europe;

Austria, Hungary, Croatia, Dalmatia; Turkey: Mount Scardus; Naples; Ins. Gothland.

Asplenium angustifolium, Gussone, Pl. Rav. t. 65.—f. Kze.

Asplenium tenuifolium, Gussone, Pl. Rav. 377, t. 65; Fée, Gen. 190.

Asplenium Trettenerianum, Jan, Flora (1835) xviii. 32.—f. Kze. (Italy.)

Aspidium cuneatum, Schkuhr, Crypt. 198, t. 664.

—β. lepidum, M.—Bohemia, S. Hungary; Italy; Russian Asia: Karabagh.

Asplenium lepidum, Presl, Verh. Vaterl. Mus. 1836, 63, t. 3, fig. 4; Id. Tent. Pter. 108.

Asplenium brachyphyllum, Gasparrini.

Asplenium fissum, β. latifolium, Habenh. Krypt. ii. 3, 318.

Asplenium. 131

fissum, Wimm.—Asplenium Adiantum-nigrum, y.
flabellifolium, Sw. Syn. 81, 273, t. 3, fig. 2.—New Holland: Victoria, Swan River; Tasmania; New Zeal. (Mossm. 611.)

Asplenium flabelliforme, Desv. Prod. 270.

Asplenium flavellosum, Cav. Proceed. (1801), 258.

flabellatum, Kze.—Asplenium radicans.
flabellatum, Kl.—Asplenium radicans.
flabellatum, Kze.—Asplenium myriophyllum.
flaccidum, Forst. Prod. 426.—New Zealand (Mossm. 645); New Holland: Victoria, Hastings River; Tasmania; Raoul or Sunday Island; S. Africa.

Asplenium appendiculatum, v. angustilobum, Müll. Lin. xxv. 718.

Asplenium collinum, Catenae MS. Hb. Hook.

Asplenium heterophyllum, Bich. Fl. N. Zeal. 74 (excl. syn. Bory.)

Canopteris nova-zeelandiae, Spr. Schrad. Journ. 1799, li. 269; Schkuhr, Crypt. t. 82.

flagelliferum, Fée, Iconogr. Nov. 83.—New Grenada (Lindl. Schl. 63.)

flagelliferum, Wall.—Asplenium longissimum.
flavifolium, Cav.—Asplenium flavellifolium.
flexuosum, Schrad, Goett. gel. Anz. 1818, 916.—S. Africa, (Krauss 787), Knysna (Ravson 279); Oahu; Bourbon (Hb. Hook.)

Asplenium Bowiesanum, J. Sm. in Herb.

Asplenium lucidum pinnatifidum, Schlech. Adumb. 25, t. 14, fig. b.

[Gen. 23. Sp. 584.]
Asplenium.

Asplenium. Wickstr.—Diplazium radicans.
Asplenium. Presl.—Diplazium flexuosum.
Asplenium. Kze.—Asplenium compressum.

funiculaceum, *H.B.K.* Nov. Gen. i. 15.—Columbia (*Moritz* 363, large; *Hartw.* 1523), Venezuela (*Lind. F. and Schl.* 959, 1011); New Grenada (*Lind. Schli.* 632 large, 883); Peru (*Mathews* 1110, large) Quito (*Jameson* 2, 271); Valparaiso (*Cuming* 324); Organ Mountains (*Brack.*); Mexico (*Jurgensen* 944); W. Indies: Cuba (*Wright* 857).

Asplenium *abrotanoides,* Presl, *Rel. Pl.* 1, 47, t. 8, fig. 2; *Id. Tent. Pter.* 108; *Spr. Syst.* 89; *Fée, Gen.* 192.

Canopteris *funiculaca,* *Desv. Prod.* 268.

funiculaceum, Hort.—Asplenium *Fabianum.*

foliolosum, Wall.—Athyrium *foliolosum.*

fontanum, Bernh. *Schrad. neues Journ.* 1806, i. part 2, 26.—

Europe: Great Britain; France: Arles, Jura; Belgium, Switzerland, Spain, Hungary, Naples, Greece; Kashmir; Siberia. († Shanghai, Hong Kong, Japan.)—Pluk. t. 89, fig. 2.

Athyrium *fontanum,* *Roth, Fl. Germ.* iii. 59; *Desv. Prod.* 266; *Presl, Tent. Pter.* 98; *Fée, Gen.* 186; *Mert. Fil. Lippa.* 77.

Athyrium *Halleri,* *Roth, Fl. Germ.* iii. 60; *Presl, Tent. Pter.* 98; *Fée, Gen.* 186; *Mert. Fil. Lippa.* 77.

Polypodium *fontanum,* *Linn. Sp.* Pl. 1550; *Bält. Fil.* 98, t. 21; *Sw. Syn.* Fil. 67; *Poir. Enc.* v. 526.

formosum, *Wdl. Sp. Pl.* v. 329.—Columbia (*Moritz* i. 42), Venezuela (*Moritz* 56; *Lind. Schl.* 836; *Funkoe* 443; *Fendl.* 133), Caracas, New Grenada (*Lind. Schl.* 58; *Lind.* 1158); B. Guiana (*Rich. Schomb.* 1661 dwarf); Brazil (*Gardn.* 5313; *Claussen* 59; *Regn.* i. 487); Guatemala; Mexico (*Galeotti* 6314, 6471; *Leibold* 23); Central America, (*Barclay* 2688); Panama; Galápagos (*Cuming* 108); W. Indies: Jamaica, Cuba (*Wright* 854; *Otto* 927; *Lind.* 2024), Guadeloupe (*L'Herm.* 10), Martinique; India: Kumaon (*Hook. fil. et Th.* 193, Malabar, Ceylon (*Col. Perad.* 3487); Congo.

[Gen. 23. Sp. 587]

Asplenium odontophyllum, Wall. Cat. 2216 (India.)

Asplenium subalatum, Hook. Fil. Exot. sub. t. 16.—Mexico; Columbia (Cuming 1287.)

Asplenium formosum, Sieb. (Fl. Mixt.)—Diplazium tomentosum.

Forsterianum, Colenso.—Asplenium falcatum.

Forsteri, Sadl.—{Asplenium Adiantum-nigrum, γ. (Heuf.)}

fragile, Presl, Tent. Pter. 108.—Andes of Peru (Lech. 2288); Columbia (Moriz. 326); Mexico (Ehrenb. 880); Sandwich Isles (Dougl. 49, elongated.)

Asplenium stoloniferum, Presl, Rel. Hank. i. 44, t. 6, fig. 4 (excl. syn.)

fragilimum, Jacq. MS.—Cystopteris fragilis.

fragrans, Sw. Prod. 180; Id. Syn. 84.—W. Indies: Jamaica, Cuba (Wright 257 in part), Dominic, Gaudeloupe; Veraguas; Chiapas (Lind. 1534, slender); Brazil, St. Catherines; Quito.—Pluk. t. 282, fig. 1. (mala—Willd.)

Asplenium planicaule, Lowe, Ferns, v. t. 10.

fragrans, Hook.—Asplenium odoratum.

fragrans, Schkuhr.—Asplenium premorsum, β.

fraternum, Presl.—Asplenium resectum.

fraxinifolium, Wall.—Diplazium fraxinifolium.

frondosum, Wall.—Diplazium frondosum.

fruticosum, Arrab.—Didymochlina lunulata.

Funkii, Fée, Iconogr. Novv. 84, in obs.—Columbia (Funcke, 655.)

furcatum, Thunb.—Asplenium premorsum, β.

furcatum, Schlk.—Asplenium premorsum, δ.

[July, 1859.] 12 [Gen. 33 Sp. 590.]
Asplenium.

fuscatum, Wall.—Asplenium psemorsum.
fuscatum, J. Sm.—Asplenium inaequale.
fuscatum, Jacquem.—Asplenium septentrionale.
fuscatum, 3. latum, Desv.—Asplenium psemorsum, 3.
fuscatum, y. angustifolium, Desv.—Asplenium psemorsum, 3.
fuscatum, y. et Bl.—Asplenium psemorsum, 3.
fuscatum, v. validum, Kze.—Asplenium psemorsum, 3.

Galeotti, Fée, Gen. 192; Id. Iconogr. Nov. 50, t. 16, fig. 2; Id. Cat. lith. Foug. Mex. 16.—Mexico (Galeotti 6369, 6370; Schaffn. (1855), 324; (1856) 476); Guatemala; Peru; Quito (Jameson 270); Venezuela (Lind. Schdl. 836, 840); New Grenada (Lind. Schdl. 325.)

Asplenium curvatum, “Liebm.” (Gal. 6370); Fée, Cat. lith. Foug. Mex. 16.

geminaria, Bory.—Asplenium psemorsum.
gemmifera, Schrad. Goett. gel. Anz. 1818, 916.—S. Africa (Zeyh. 4628), Natal (Krause 738.)

Asplenium luccidum, Schleich. Adumb. 26, t. 14, fig. a (excl. plur syn.)

Asplenium Breyngl, Retz. Obs. i. 32; Sw. Syn. 85; Schult. Crypt. 77, t. 51; Sw. Bot. t. 63; Fries, Summa 82; Koch, Syn. ed. 2, 983; Ledeb. Fl. Ross. iv. 520; Kze. Lin. xxxii. 232; Fée, Gen. 190; Metten. Fil. Lips. 76.

Asplenium Ruta-muraria, var., Bernh.

Phyllitis heterophylla, Metten, Meth. 724.
Scolopendrium alternifolium, Roth, Fl. Germ. iii. 53.
Tarachia germanica, Presl, Épim. Bot. 79.

gibbosum, Fée, Gen. 191, 195.—Gaudeloupe, Mexico.
Gilliesianum, Hook. et Grev. Icon. Fil. t. 73.—Andes of Peru.

Asplenium.

Asplenium Gilliesianum, Presl, Tent. Pter. 108; Sturm, En. Chil. 27.
Asplenium Gilliesii, Hook. Exot. Fl. sub. t. 208.

Gilliesii, Hook.—Asplenium Gilliesianum.
glaberrimum, Metten.—Diplazium glaberrimum.
glandulosum, Loisel.—Asplenium Petrarchae.
gracile, Fée, Gen. 191, 198; Id. Iconogr. Nouv. 52, t. 27, fig. 1.—Philippine Islands (Cuming s. n.)
gracile, Don.—Athyrium tenuifrons, B. tenellum.
gracilum, Pappe et Raws.—Asplenium Papei.
grudatum, Arrab.—Diplazium radicans.
graminoides, Sw.—Monogramma fureata.
graminoides, Hook.—Diplazium grammitoides.
grammitis, Wall. Hb.—Osmunda javanica, s.
grande, Sw. Syn. Fil. 77.—Marianne Isles.
grande, Fée.—Asplenium aechmeæfolium.
grandifolium, Sw.—Diplazium grandifolium.
Gourlieanum, M.—Penang.
Grevillii, Wall.—Thamnopteris Grevillii.
Griffithianum, Hook. Icon. Pl. t. 928.—India: Mishmee.

Halleri, Spr.—Asplenium fontanum.
Harvii, Har.—Asplenium Trichomanes, γ.

harpeodes, Kze. Lin. xviii. 329.—Caracas (Lind. 181, 197),
Venezuela (Moritz 248; Fendl. 135, 137), New Grenada
(Lind. Schl. 395, 588, ? 600); Equador (Seem. 950);
Brazil: Organ Mountains (Gardn. 164); B. Guiana
(Rich. Schomb. 1212); Peru (Mathews 1100; Lechli. 2106);
Quito; Pichincha (Jameson 269); Bolivia;
Mexico (Galeotti 6407; Schaffn. (1855) 55; Leibold
26); Jamaica; ? St. Vincent’s; ? W. Africa.
Asplenium harpeodes, Kl. Lin. xx. 353; Liebm. Mex. Breg. 90; Fée,
Cat. Lith. Foug. Mex. 16.
Asplenium erectum, Metten. Fil. Lechli. 15.
Asplenium parasiticum, Miers MS.
Asplenium pendulum, Fée, Gen. 192, 196.

hastatum, Kl. M.S.: Kze.—Asplenium falx.

Hemionitis, Lin. Sp. Pl. 1536; et Hb.—S. Europe: Spain,
Portugal; N. Africa: Tangiers, Algiers; Azores (Hochst. 178);
Canaries, Teneriffe (Bourgeau 33); Madeira; Cape
de Verd Isles.—Pluk. t. 287, fig. 4; Tourn. Inst. t. 322 B.

12 *
Asplenium palmatum, Lam. Enc. ii. 302; Sw. Syn. 75; Schkuhr, Crypt.
62, t. 66; Cav. Prolect. (1801) 255; Willd. Sp. Pl. v. 300; Spr.
165; Presl. Tent. Fler. 106; Link, Fil. Sp. 87; Fée, Gen. 190,
fig. Lam.); Lowe, Ferns v. t. 6.

—— S. multifidum, M.—Madeira.

Hemionitis, Lam.—Scolopendrium Hemionitis.
Hemionitis, Lour.—? Selliguea Finlaysoniana.
hemionitoides, Roxb.—Diplazium tomentosum.

Asplenium Hendersoni, Lowe, Ferns v. t. 12 A.

herbaceum, Fée, Iconograph. Nouv. 55, t. 22, fig 3.—New
Grenada (Lind. Schl. 326); Quito.
heterocarpum, Wall. Cat. 218.—India (Hook. fil. et Th. 188):
Nepal, Sikkim, Khasya, Assam, Moumein; Borneo;
Ceylon (Gardn. 1076; Col. Perad. 1006).
heterochroium, Kze. Lin. ix. 67.—Cuba; Mexico (Galeotti
6444).

Asplenium heterochroium, M. et Gal. Foug. Mex. 69; Fée, Gen. 192;
heterodon, Bl. Enum. 179.—Java.

Asplenium heterodon, Kze. Lin. xxiii. 235; Metten. Fil. Lips. 72, t. 8,
fig. 1—2.
heterodon, Moritz.—Asplenium nigrescens.

heterodon, Hort. Amstel.—Asplenium vulcanicum.
heterophyllum, Presl.—Asplenium pumilum.
heterophyllum, Rich.—Asplenium flaccidum.
heterophyllum, Zippel.—Asplenium diversifolium.
heterophyllum, Ham. Hb.—Callipteris ambigu.

Hilsenbergii, Sieb.—Asplenium pellucidum.

Hippomarathrum, Kze. Hb.—Loxoscaphe Lindeni, 8.
hirsutum, Heyne, Hb. : Wall.—Asplenium præmorsum.
hirtum, Klfs.—Asplenium pellucidum.

Hohenackerianum, Kze.—Athyrium Hohenackerianum.

Hookerianum, Colenso, Tasm. Phil. Journ. ii. 169.—New
Zealand (Ralph 64, 66).

Pl. N. Zeal. 10, t. 1, (non Raddi); Hook. fil. Fl. N. Zeal. ii. 35.
Asplenium adiantoides, v. minus, Hook. fil. in Hook. Icon. Pl. t. 983.

[Gen. 23. Sp. 607.]
—β. Colensoi, M.—New Zealand (Ralph 65).

Asplenium adiantoides v. Colensoi, Hook. Fl. in Hook. Icon. Pl. t. 984; Id. Fl. N. Zel. ii. 35.

Hookerianum, Wall. (2682).—Hemidictyum Hookerianum.

Hookerianum, Wall. (7090).—Diplazium fraxinifolium.

Hookeri, Bojer MS.—Athyrium scandicum.

Horridum, Klfs. Enum. 173.—Sandwich Isles: Oahu; Java.

Asplenium premossum, Bl. MS.: Hb. J. Sm.

Asplenium truncatum, Bl. Enum. 184.

Humile, Spr.—Asplenium pumilum.

Humile, Bl.—Asplenium Adiantum-nigrum.

Hymenophyloides, Fée.—Asplenium pumilum.

Asplenium bifidum, Presl, Tent. 109, t. 3, fig. 19; J. Sm. Cat. Ferns 82.
Asplenium Bojerianum, Hawkard MS. in Hb.

Asplenium furcatum, J. Sm. Cat. Ferns 45.

Canopteris furcata, Wall. Cat. 238.

Canopteris inaequalis, Bory, MS. (Willd. 298); Spr. Syst. 91; Desv. Prod. 267.

Darea bifida, Klfs. Sieb. Syn. 52; Fée, Gen. 332.

Darea vivipara, Ham. Hb.

—β. bifido-furcatum, M.—Mauritius.

Darea bifida, Bory. Bel. Voy. ii. 54.

Inaequilaterale, "Leib."; Fée, Cat. lith. Foug. Mex. 17.—Mexico.

Inaequilaterale, Willd.—Asplenium erectum.

Inaequilaterale, M. et Gal.—Asplenium Galeottii.

Inciso-alatum. M.—Island of Assumption.

Incisum, Thunb. Trans. Lin. Soc. Lond. ii. 342.—Japan (Zoll. 3.)

Incisum, Opiz.—Asplenium Adiantum-nigrum, γ.

12 **
Asplenium.

incisum, J. Sm.—Athyrium costale.
incisum, R. Br. MS.—Asplenium formosum.
insigne, Bl.—Asplenium nitidum.
insigne, Liebm.—Asplenium serra.

insulare, Carm.—Asplenium erectum.

integerrimum, Spr. Nov. Act. N.C. x. 231; Id. Syst. 81.—W. Indics: Portorico; Cuba (Lind. 1891, 1911; Wright 841); Panama (Seemann 361); Columbia (Moritz 177); Caracas (Funch 684); B. Guiana (Rob. Schomb. 451 in part); Surinam (Kappl. 1769; Kegel 1063; Hostm. 879); Para (Spruce 37.)

Asplenium cultrifolium Kl. MS.—f. Kl.

Asplenium Kapplerianum, Kze. Lin. xxi. 216.

Asplenium salicifolium, Späti. Tijdsh. Nat. vii. 419 (excl. syn. et β)

integerrimum, Wall. MS.; Hook. et Grev.—Hemidictyum Hookerianum.

integristifolium, Metten.—Oxygonium integristifolium.

integrum, Fee, Gen. 190, 193.—Gaudeloupe.

intermedium, Presl.—Asplenium viride.

intermedium, Bl.—Asplenium macrophyllum.

intermedium, Kfj.—Asplenium falcatum.

japonicum, Kze.—Onychium japonicum.

javanicum, Bl.—Allantodia Brunonianana.

juglandifolium, Lam.—Diplazium juglandifolium.

Kapplerianum, Kze.—Asplenium integerrimum.

Karstenianum, Kl. Bot. Zeit. iv. 101; Id. Lin. xx. 353.—Columbia (Moritz 366, 429); Venezuela (Pendl. 140, 434); Orinoco; Brazil (Gard. 171; 5941 larger and less cren.); Peru (Lecl. 2295); Tarapota; ? Mexico (Galeotti 6270); W. Indies: Jamaica, Gaudeloupe, Portorico.

Asplenium Karstenianum, Fee, Gen. 192; Metten. Fil. Lecl. 15.

Asplenium mastigophyllum, Fee, Iconogr. Nov. 83.

Karstenii, Hort.—Asplenium rhizophorum.

Kaulfussii, Schlecht. Adumb. 29 in obs.—Sandwich Isles (Barclay 1223.)
Asplenium.

Kaulfussii, Presl.—Asplenium falcatum.
Klotzschihi, Metten.—Diplazium Klotzschii.

Kohautianum, Presl, Tent. Pter. 107.—W. Indies; Martinique.

(An Asplenium pteropus, Kze. eadem sp.)

Kraussii, M.—Natal (Krauss 25).

Kunzei, Metten.—Callipteris pinnatifida.

laceratum, Desv.—Asplenium praeurn.

lacerum, Schlechtendal, Lin. v. 612.—Mexico.

lacinatum, Don, Prod. Fl. Nep. 8.—India: (Hook. fil. et Th. 174): Nepal, Bhotan, Sikkim, Khasya, Sylhet, Mishmee; Neillherries (Schmid. 120).

Asplenium cespitosum, Wall. Cat. 217; Presl, Tent. Pter. 108.
Asplenium falcatum, β. laceratum, Kze. Lin. xxiv. 260.
Tarachia cespitosa, Presl, Epim. Bot. 81.

Asplenium depauperatum, Wall. Cat. 234.

latum, Sw. Syn. Fil. 79, 271.—W. Indies.

latum, Schkuhr.—Asplenium absicissum.

latum, Sieb.—Asplenium obtusifolium.

latum, Wall.—Asplenium resectum.

latum, Hort.—Asplenium marinum.

lampreacon, Fée, Gen. 191, 197; Id. Cat. lith. Foug. Mex. 16.—Mexico (Galeotti 6340.)

lanceolatum, Huds. Fl. Ang. ii. 454.—Great Britain, Ireland, France, Belgium, Spain, Portugal, W. Germany; Algiers, Tangier, Madeira, Azores.

Asplenium Billotti, F. Schultz, Flora, 1845, ii. 733.
Asplenium cuneatum, F. Schultz, Flora 1644, ii. 907.
Asplenium rotundatum, Kifts. Flora, 1830, i. 374; Presl, Tent. Pter. 106.
Asplenium lanceolata, Presl, Epim. Bot. 82.

(An Asplenium fontanum, Bernh. form. magn.)

Asplenium obovatum, M.—S. Europe: Naples; Sardinia; Sicily: Messina, Catania; Ischia; Corsica; I. of Hyeres; Greece: I. Paros, I. Siphanto.

Asplenium obovatum, Vor., Fl. Cors. 18; Id Fil. Lib. Spec. 66; Spr. Syst. 69; Link, Fil. Sp. 95; Guss. Pl. Eur. 378, t. 62; Hook. et Greve. Icon. Fil. i. 147; Kze, Linn. xxiii. 236.

Asplenium obovatum, Vor., Fl. Hung. 32.—f. Link: Kze.

Asplenium microdon, Moore, Handb. Brit. F. 3 ed. 166; Id. Ferns of Gt. Brit. Nat. Pr. Octavo ed. t. 69. ined.—Guerney; Cornwall, Devon.

Asplenium microdon, Moore, Hb.

Asplenium lanceolatum, Forsk.—Asplenium erectum?—Asplenium lanceolatum, Thunb.—Diplazium lanceolatum.

Asplenium lanceolatum, Forsk.—Asplenium erectum?—Diplazium lanceolatum.

Asplenium microdon, Moore, Hb.

Asplenium microdon, Moore, Hb.
Asplenium lanceolatum, Thunb.—Diplazium lanceolatum.

Asplenium microdon, Moore, Hb.

Asplenium microdon, Moore, Hb.
Asplenium lanceolatum, Thunb.—Diplazium lanceolatum.

Asplenium microdon, Moore, Hb.

Asplenium microdon, Moore, Hb.
Asplenium lanceolatum, Thunb.—Diplazium lanceolatum.
Asplenium.

lasiopitiifolium, Ham.; Don.—Asplenium bullatum.
lasiopitiifolium, Metten.—Diplazium decussatum.
lasium, Raddi.—Asplenium mucronatum.
latifolium, Bory.—Oberach canariensis.
latifolium, Don.—Diplazium latifolium.
latifolium, Sturm.—Athryum latifolium.
laxum, R. Br.—Asplenium bulbiferum, β.
laxum, Willd. Hb.—Asplenium macilentum.
Lechleri, Metten.—Diplazium Lechleri.
lepidum, Presl.—Asplenium fissum, β.
leptophyllum, Cav.—Gymnogramma leptophylla.
leptophyllum, Znker MS.—Asplenium varians, β.
leptophyllum, Fée.—Asplenium monanthemum, γ.
leptophyllum, Schultz.—Asplenium Ruta-muraria, β.
lepturus, J. Sm.—Asplenium contiguum, β.
limbatum, Willd.—Hemidiotyum marginatum.
lineare, Presl.—Litobrochia tripartita.

lineatum, Sw. Schrad. Journ. 1800, ii. 51; Id. Syn. 77, 262.—Mauritius, Bourbon.

Asplenium nodulosum, Kt.f. Sieb. Syn. 69; Sieb. Fl. Mist. 301; Spr. Syst. 83.
Diplazium lineatum, Presl, Tent. Pter. 113.

lineatum, Finlays, Hb.—Asplenium macrophyllum.
linguaforme, Roxb.—Selliguea Feeli.
lobulosum, Wall.—Diplazium longifolium.

Asplenium longifolium, Kt.e. Anal. Pter. 21, in obs.
longifolium, Don.—Diplazium longifolium.
longipes, Fée.—Asplenium vulcanicum.

longissimum, Bl. Enum. 178.—Java (Zoll. 148) Moluccas:
Ternate; Singapore (Hook. fil. et Th. 171); Penang, Malacca (Cuming 373); Solomon Isles; India: Sylhet, Mergui, Assam; Mauritius.

Asplenium flagelliferum, Wall. Cat. 219.
Asplenium,

—β. robustum, Kze. Bot. Zeit. iv. 442.—Java (Zoll. s. n.)

loriforme, Hook.—Asplenium angustum, β.

lucidum, Forst. Prod. 427.—New Zealand (Ralph 21; Mossm. 641); Lord Howe Island; Kermadec Isles: Sunday Island.

—β. scleroprium, M.—Auckland Isles.

—γ. obliquum, M.—New Zealand; New Holland; Tasmania; New Caledonia; Sandwich Islands; Sunday Island; Lord Howe Island; Auckland Isles; Tristan d’Acunha; Chili (Cuming 1361; Poepp. ii. 140; Philippi 283); Valdivia (Lechli. 228, 228a); Mauritius (Willd.)

Asplenium sphenoides, Kze. Lin. ix. 63; Metten. Fil. Lechli. 15; Sturm, Enum. Fil. Chil. 29.

lucidum, Burm. Hb.—Polystichum pungens.

lucidum, Salish.—Asplenium Adiantum-nigrum.

lucidum, Schlech.—Asplenium gemmiferum.

lucidum, β. Hook. fil.—Asplenium Lyallii.

lucidum, v. pinnatifidum, Schlech.—Asplenium flexuosum.

lugubre, Liebm. Mez. Bregm. 91.—Mexico.

lunulatum, Sw. Syn. fil. 80.—S. Africa; Natal.

—β. sphenolobium, Kze. Lin. xxiv. 264.—India; Neilgherries (Schmid 11, 72, 73, 82, 96, 118, 125); Java (Zoll. 2113, 2942).

[Gen. 23. Sp 635.]
Asplenium

Asplenium sphenolobium, Zenker MS. — Kze.
Asplenium minus, Moritz, Verz.

luridum, Brouss. Hb. — Asplenium premorsum.
luzoniense, Spr. — Callipteris prolifera.

Lyallii, M. — New Zealand.
macilentum, Kze. — Asplenium auritum, β.

macrocarpon, M. — Mexico (Galeotti 6555).

macrocarpum, Desv. — Asplenium monanthemum.
macrocarpum, Bl. MS. — Athyrium foliolosum.
macrocarpum, Telfair MS. — Asplenium nitens.

macrophyllum, Sw. Schrad. Journ. 1800, ii. 52; Id. Syn. 77, 261. — Mauritius; Java (Zoll. 151, 1367); Sumatra; Borneo; Penang; Singapore (Lobb 17, small); Louisiade Isles; Philippine Isles (Cuming 42); Solomon Isles; Fœjeë Isles; Island of Jobie; Malacca (Cuming 375); Hong Kong (Bouring 36) — Rheede H. Mal. xii. t. 18?

Asplenium intermedium, Bl. Enum. 181 (Java).
Asplenium lineatum, Finlayson Hb.
Asplenium megaphyllum, Desv. Prod. 275.
Asplenium splendens, Zippel MS.
Asplenium urophyllum, Wall. Cat. 192; Presl. Tent. Pter. 106 (Penang)
Tarachia Finlaysoniana, Presl, Epim. Bot. 76.
Tarachia macrophylla, Presl, Epim. Bot. 78.

macrophyllum, Cav. — Asplenium grande.
macrophyllum, Hh. Mus. Par. — Asplenium nitens.

Asplenium macroseron, Colla, Mem. Acad. Turin, xxxix. 39, t. 67;
Fée, Gen. 191; Gay, Chil. vi. 500; Storm, Enum. Chil. 28.
maderense, Penny. — Asplenium premorsum.
magellanicum, Kfis. Enum. 175. — Fuegia, Cape Horn; Juan Fernandez (Bert. 1534) ; Chilœ ; Chili (Poepp. ii. 142;

[Gen. 23. Sp. 640]

malabaricum, Metten. — Callipteris ambigua.

marginatum, Lin. — Hemidictyum marginatum.

marginatum, Wall. (2209) — (Diplazium marginatum.

marginatum, Wall. Hb. (2204) — Asplenium divaricatum.

marinum, Lin. Sp. Pl. 1540. — Great Britain; Ireland; France: Bayonne, Biarritz, Isle d’Hyères; Corsica; Balearic Isles; Ionian Isles; Italy: Naples, Pantellaria; Spain; Portugal; Africa: Barbary, Tangiers; Canary Isles (Bourgeau 145); Azores (Seub. 15; Hochst. 173); Madeira; St. Helena; Bermudes (Pluk.); N. Holland; Rio Grande.

— Petiv. Gaz. t. 91, fig. 1; Pluk. t. 253, fig. 5.

Asplenium latisum, Hort.; Love, Ferns, v. t. 21 A.

Asplenium tovarensae, Hort. (form. maj. — f. Baum.)

Asplenium marinum, Schkuhr, Crypt. t. 68, fig. c. — f. Link.

Asplenium trapeziforme, “Huds.” — cit. Sw. (Syn 79), Willd." (Sp. 318.)

— γ. assimile, Moore, Handb. Brit. Ferns, 3 ed. 180—

Ireland; Jersey, Guernsey,

marinum, Pet. Th.— Asplenium erectum.

marinum, v. microdon, Moore.— Asplenium lanceolatum, δ.

Martensii, Kze.— Athyrium Martensii.

Martensii, Fée.— Asplenium salicifolium.

martinicense, Willd. Sp. Pl. v. 344.— W. Indies; Martinique (Sieb. Fl. Mart. 364).— Plum. t. 41.

[Gen. 23. Sp. 642.]
Asplenium.

martinicense, Raddi.—Asplenium pseudo-nitidum.
mastigophyllum, Fée.—Asplenium cirrhatum.
mascarenense, Fée, Gen. 191, 194.—Bourbon.

Asplenium mascarenense, Metten. Aspl. 96.
mascarenense, Desv.—Asplenium præmorsum, 8.

Mathewsi, M.—Peru (Mathews 1851.—Hb. Hook.)

Mathioli, Gasp.—Asplenium Bata-muraria.

maximum, Don.—Diplazium diversifolium.

Mecanum, Gay (err. typ.)—Asplenium Neanum.

meagalophyllum, Desv.—Asplenium macrophyllum.
melanocaulon, Willd.—Asplenium Trichomanes.
melanocaulon, Poepp.—Asplenium heteroecrum.

Menziesii, Hook. et Grev. Icon. Fil. t. 100.—Sandwich Isles;

Chili.

Asplenium Menziesii, Presl. Tent. Pter. 108; Fée, Gen. 191; Gay,

Crypt. Chili. 92; Metten. Aspl. 136.

Mertensianum, Kze.—Asplenium Fabianum.

mexicanum, M. et Gal. Foug. Mex. 62, t. 15, fig 4.—Mexico

(Galeotti 6391, 6580, 6581; Leibold 15; Schaffn.

(1853-4) 67 a, b, c.)—Guatemala.

Asplenium mexicanum, Fée, Gen. 192; Kze. Lin. xviii. 332; xxiii. 235
(excl. syn. Wall. et Don); Metten. Fil. Lips. 70; Id. Aspl. 104;

Meyenianum, Metten.—Diplazium Meyenianum.

Meyenianum, Presl.—Asplenium pellucidum.

Michauxii, Spr.—Asplenium asplenioides, β.

Michauxii, M. et Gal.—Athyrium Martensii.

microdon, Moore.—Asplenium lanceolatum, 5.

microdonton, Desv. Prod. 274. — ?

Asplenium microdonton, Metten. Aspl. 155.

millefolium, Tin.—Asplenium Trichomanes.

Mikani, Presl.—Hemidiotyum marginatum.

millefolium, Presl. Tent. Pter. 109.—Chili (Cuming 324).

Darea? millefolia, Fée, Gen. 333.

(An Aspl. myriophyllum, β.)

mimosafolium, J. Sm. MS.—Athyrium sandwichianum.

minimum, M. et Gal. Foug. Mex. 55. t. 15, fig. 1.—Mexico

(Galeotti 6286, 6424).

Asplenium minimum, Fée, Gen. 192.

(See also Asplenium pumilum, Sw.)

December, 1859. 13

[Gen. 23, Sp. 649]
Asplenium.

Asplenium, Bl.—Asplenium normale.
Asplenium minus, Moritz.—Asplenium lunulatum.
Asplenium minutum, Willd. Hb.—Asplenium fragile.

miradoreense, Liebm. Mex. Bregn. 91.—Mexico.
mixtum, Roxb.—Diplazium sylvaticum.
monanthemoides, Roxb.—Asplenium normale.

monanthemum, Sm. Icon. Inded. t. 73.—South Africa (Zeyher 4630; Krauss 733); Natal (Plant 323); Abyssinia (Schimp. 671, 1274); Canary Islands (Bourg. 1169); Madeira; Azores; Cape Verd Isles (Hochst. 456); Tristan d’Acunha; Philippine Isles; Mariauene Isles; Sandwich Isles; Chili (Lechli. 769; Bridges 808); Quito (Jameson 72, 218, 270; Peru (Lecll. 2021; Ruiz Hb. 79); New Spain (Sw.); Brazil; Columbia (Moritz 219, 328, 456), Venezuela (Fendl. 134), New Grenada; Guatemala; Mexico (Galeotti 6262, 6296, 6339, 6365, 6871, 6479, 6556; Leibold 28; Ehrebl. 599; Aschenh. 198; Andries 39; Coult. 1701; Botteri 51; Schaffn. 59 a, b. 475), Chiapas (Lindl. 1554, ?1535).

Asplenium intermedium, Moritz MS. (No. 466).
Asplenium macrocarpum, Desv. Prod. 271; Metten. Aspl. 137.

Asplenium monanthes, Lin. Mant. 130; Houtt. Ph. xiii. 150, t. 47, fig. 2; Persol. Tent. Pier. 107.
Asplenium obtusissimum, Fée, Gen. 191, 197.
Asplenium deuterex, Buch, Beschr. Canarischen. Ins. 189,

—ß. proliferum, M.—Madeira.

—γ. leptophyllum, M.—New Grenada (Lind. Schl. 328, 479); Mexico (Galeotti 6446; Harv. 410).

monanthes, Lin.—Asplenium monanthemum.
monodon, Liebm.—Asplenium auritum, ß.
monotrosa, Hort. Ber.: Kze.—Athyrium Filix-femina (monstrous forms = multifidum, etc.)

montanum, Willd. Sp. Pl. v. 342.—N. America: Pennsylvania to Virginia; Alleghany Mountains; Carolina; Georgia; Alabama.

Asplenium. 147

Asplenium montanum, Poir. Enc. Supp. ii. 513; Desv. Prod. 278;

Montbrisonia, Fée, Gen. 76, 191, 198, t. 6 A. fig. 3.—Bourbon.

Moorcroftianum, Wall. MS.—Asplenium caudatum.
Moritzii, Metten.—Callipteris ambiguia.

mucronatum, Presl, Del. Prag. i. 178; Id. Tent. Pter. 107
(excl. syn. A. pterop.)—Brazil; Organ Mountains (Gardn. 162).

Asplenium mucronatum, Spreng. Syst. iv. 82; Hook. Icon. Pl. t. 917;
Fée, Gen. 191; Metten. Aspl. 122.
Asplenium angustatum, Desv. Prod. 274.
Asplenium lassum, Raddi, Syn. Fil. 96; Id. Fil. Bras. 37, t. 22, bis fig. 4.
Asplenium refractum, Hook. MS. in Hb.
Asplenium retortum, Klfs. Enum. 171.

multicaudatum, Wall.—Asplenium spectabile.
multicaule, Wall.—Asplenium normale.
multicaule, Presl.—Asplenium Ruta-muraria, β.
multicaule, Scholtz.—Asplenium Adiantum-nigrum, γ.
multifidum, Brack. U.S. Expl. Exped. xvi. 171, t. 23, fig. 2.—
Society Islands; Feejee Islands.

Asplenium multifidum, Metten. Aspl. 110.
multifidum, Nutt. MS.—Asplenium strictum.
multiflorum, Roxb.—Diplazium multiflorum.
multijugum, Wall.—Asplenium normale.
multisectum, Bl.—Asplenium caudatum.
multisectum, Brack.—Athyrium scandicinum.
multisoratum, Wall.—Diplazium porrectum.
murale, Berhn.—Asplenium Ruta-mursria.
murorum, Lam.—Asplenium-Ruta-muraria.
mutilatum, Klfs.—Asplenium erectum, β.
mutilum, Metten.—Diplazium mutilum.

myapteron, Fée, Cat. lith. Foug. Mex. 18; Id. Iconographie
Now. 82.—Mexico (Galeotti 6555; Schaffn. (1854) 70;
(1855) 294; Müll. 1478).

Asplenium myapterum, Metten. Asplen. 168.

myriophyllum, Presl, Rel. Hænh. i. 48; Id. Tent. Pter. 108.—
S. America: Peru (Lechli. 2029), Quito (Jameson 28,
298), Bolivia, Venezuela (Lind. F. et Schl. 833, 839,
1368), New Grenada (Lind. Schlim 324, 370, 624, 841
in part, 849), Mexico (Galeotti 6250; Schaffn. 62 a,
62 b.), Chiapas (Lind. 1548); N. America: Florida
(simpler dwarf form); W. Indies: Jamaica, Cuba (Lind.
1880, 1888; Wright 856), Trinidad, Portorico.

13 *
Asplenium.

Asplenium pusillum, Chapman MS. Hb. Hook. simpler dwarf form. {Asplenium psylium, Chapman MS. Hb. Hook.}

Asplenium divaricatum, M.—S. America: Peru (Mathews 1800; Ruiz. Hb. 78), E. Peru (Spruce 4782), Quito (Jameson 788); Columbia, Venezuela (Tendl. 123), New Grenada Lind. Schi. 624, 841 in part); S. Chili; Chatham Island; Galapagos; St. Domingo.

Asplenium divaricatum, Kze. Lin. ix. 71; Id. Schéuchzer, Supp. ii. 94, t. 159; Kl. Lin. xx. 358; Fée, Gen. 192; Metten. Aspl. 115, t. 5, fig. 7, 8.

myriophyllum, β. minus, Presl.—Asplenium rhizophyllum, myriophyllyum, Nutt. MS.—Asplenium strictum.

mysuresense, Roth: Wall.—Asplenium præmorsum, β.

nanum, Willd. Sp. Pl. v. 323.—W. Indies; Mexico (Galeotti 6315).—Plum t. 66, B.

Asplenium Neenanum, Fée, Gen. 191; Gay, Chil. vi. 500 (Neenanum, err. typ.); Sturm, Enum. Chil. 28; Metten. Aspl. 154.

Newmanii, C. Bolle.—Asplenium Trichomanes.

Nidus, Lin.—Thamnoderis Nidus.

Nidus, Br.—Thamnoderis australasica.

Nidus, Raddi.—Asplenium serratum, β.

Thamnoderis muscosula.

Nidus, Wall. {Thamnoderis Phyllitidis.

{Thamnoderis stipitata.

Nidus, Moritz.—Thamnoderis simplex.

Nietneri, Kl.—Asplenium contiguum.

nigrescens, Bl. Enum. 180.—Moluccas; Java (Zoll. 1994).

Asplenium.

nigriscens, Hook. fil.—Asplenium nubilum.

nigricans, Kze.—Asplenium premorsum.

nigripes, Bl.—Athryum tenuifrons, B.

nigripes, Hook.—Schaffneria nigripes.

nigrum, Bernh.—Asplenium Adiantum-nigrum.

nitens, Sw. Syn. Fil. 264, 421.—Bourbon; Mauritius (Sieb. Syn. 65; Id. Fl. Mixt. 321—f. Mett.)—Plum t. 41 (Sw.)

Asplenium macrocarpum, Telfair MS.

Asplenium macrophyllum, Müll. Par.;owe, Peck, v. t. 42.

nitidulum, M. [ante p. 93.]—Java (Zoll. 358 z).

Asplenium nitidulum, Metten. Aspl. 169.

Asplenium nitidum, Sw. Syn. Fil. 84, 280.—India (Hook. fil. et Thom. 175); Assam, Moulemin, Nepa, Sikkim; Malacca (Cuming 376); Singapore (Lobb 26); Java (Zoll. 1446, ? 352 z); Moluccas; Ceylon; Mascaren Islands.

Asplenium nitidum, Schkuhr, Crypt. 76, t. 81; Willd. Sp. Pl. v. 344; Poir. Enc. Supp. ii. 514; Spr. Syst. 89; Desv. Prod. 377; Bl. Enum. 188; Kze, Bot. Zeit. iv. 442; Metten. Aspl. 160, t. 5, fig. 31 (excl. syn. J. Sm.)

Asplenium insigne, Bl. Enum. 188.

Asplenium pulchellum, Wall. Cat. 214 (Singapore).

nitidum, Bl. Hb.—Asplenium cuneatum.

nitidum, Wall. {Asplenium affinis.

nitidum, Wight Hb.—Callipteris ambigua.

nodosum, Lawr. Fl. Cochim. ii. 832.—Cochin China.

nodosum, Lin.—Dansea nodosa.

nudulosaum, Klfs.—Asplenium lineatum.

normale, Don, Prod. Fl. Nep. 7.—India: Nepal, Sikkim, Khasia (Hook. fl. et Th. 184), Sylhet, Chittagong, Assam; China; Java; Ceylon (Gardn. 25, 1073; Coll. Perad. 1005).

Asplenium normale, Spr. Syst. 82; Kze, Lin. xxiv. 262 in obs.; Metten. Aspl. 135.

Asplenium minus, Bl. Enum. 188? (Java); Metten. Aspl. 139.

Asplenium multicaule, Wall. Cat. 205.

Asplenium multijugum, Wall. Cat. 207; Presl, Tent. Pter. 108; Metten. Aspl. 135.

Asplenium unilaterale, Hamilt. MS.

novae-caledoniae, Hook. Icon. Pl. t. 911.—New Caledonia.

13 ** [Gen. 23. Sp. 687.]
Asplenium.

novum, Sadler. { Asplenium obovatum (Kze.)
{ Asplenium Adiantum-nigrum, γ. (Heuf.)

nubilum, M.—Ins. Galapagos.

obliquum, Wall. Cat. 2217 (not in Hb.)—Mauritius.

obliquum, Forst.—Asplenium lucidum, γ.
oblongifolium, Colenso.—Asplenium lucidum, γ.

obovatum, Viv.—Asplenium lanceolatum, γ.
obscurum, Bl.—Asplenium resectum, β.

obtusatum, Forst. Prod. 430.—New Zealand, New Holland, Tasmania; Sunday Isl., Kermadec Isl.; Lord Auckland Isl., Campbell Isl., Chili: Valdivia (Bridges 509), Chile; Juan Fernandez (Bert. 1531); Pitcairn’s Isl. (Mathews 22); Oahu.

Asplenium obtusatum, Sw. Syn. Fil. 73, 267; Schkuhr, Crypt. 64, t. 88; Labillard. Fl. Nov. Holl. ii. 93, t. 242, fig. 2 (var. minor—f. Br.);
Metten. Aspl. 92 (excl. syn. in part); Love, Ferns v. t. 5 B.
Asplenium apicidentatum, Hemb. et Jacc. Voy. au Pol Sud Crypt. t. 1, fig. A.

Asplenium chondrophyllum, Bert. MS.: Colla, Mem. 'Acad. Turin xxxix. 40, t. 68; Kt. Lin. xx. 361; Sturin, Enum. Chil. 27.
Asplenium consimile, Bory.—f. Hook.: (which see).

obtusatum, Bory.—Asplenium retusum,

obtusatum, β. Hook.—Asplenium lucidum, γ.

obtusatum, var. Hook.—Asplenium difforme.
obtusatum, var. A. Rich.—Asplenium lucidum.

obtusifolium, Lin. Sp. Pl. 1538.—W. Indies: Martinique (Sieb. Fl. Mart. 363), Dominica, Montserrat, Guadeloupe (L’Herm. 2), Cuba; Columbia, Venezuela (Fendl. 131, ? 189 β.), New Grenada (Lind. Schlim. 653); Rio Grande.
—Plum t. 67.

obtusifolium, Hort. Petrop.—Asplenium pulchellum, β.
obtusifolium, Metten (pt.)—Asplenium salicifolium.

[Gen. 23. Sp. 671]
obtusilobum, *Hook. Icon. Pl. 1000*.—New Hebrides: Tanna; Anietem; Ovolau; Feejee Isl.

(Near Aspl. Dregei, but less diminiate).

obtusilobum, Desv.—Asplenium cuneatum.

obtusissimum, Fée.—Asplenium monanthemum.

obtusum, Kitaib.—Asplenium Adiantum-nigrum, γ.

obtusum, Metten. (Fil. Lips).—Diplazium Wageneri.

obtusum, Metten. (Aspl.)—Diplazium obtusum.

odontophyllum, Wall.—Asplenium forsomus.

odontites, R. Br.—Asplenium flaccidum.

Asplenium subdecurrens, *Miers MS*: *Hb. J. Sm.*.

Oonopteris, Lin.—Asplenium Adiantum-nigrum.

orientale, Bernh.—Blechnum orientale.

Otites, Link.—Asplenium pulchellum, β.

Otites, Hort.—Diplazium angustifrons.

ovatum, Wall.—Oxygonium integrifolium.

ovatum, Wall.—Syngonmna alismæfolia.

oxyphyllum, Wall.—Asplenium pellucidum.

oxyphyllum, *J. Sm.*—Asplenium macrophyllum.

pachyphyllum, Kze.—Thamnopteris pachyphylla.

pallidum, *Bl. Enum. 177*.—Java (*Zoll. 2337*; *Lobb 223*); Sumatra; Philippine Islands (*Cumings 188*).

palmatum, Lam.—Asplenium Hemionitis.

palmatifidum, M. Hb.—Mauritius.
Asplenium.

Darea fumaroides, Carmich MS: Hb. Hook.
Asplenium inequale, y. palmato-turcatum, M. oliv.
paludosum, M. [ante p. 43].—Java (Zoll. 352 z).
Asplenium paludosum, Metten. Aspl. 168.
paniculatum, Hort.—Asplenium Fabianum.
paradoxum, Bl. En. 179.—Java; Sandwich Isles (Douglas 34, 46).
Asplenium paradoxum, Metten. Aspl. 122.
parallelum, Wall.—Diplazium sorozoneense.
parasitica, Miers.—Asplenium harpeodes.
parvulm, M. et Gal. Foug. Mex. 60, t. 15, fig. 3.—Mexico (Galeottii 6462, (6442—f. Fée); Leibold 24, 123, 124
in part).
Asplenium parvulum, Fée, Gen. 192; Id. Cat. litt. Foug. Mex. 15.
Aspl. 137.
parvulum, Hook.—Asplenium trapezoides.
parvulum, Wall. (Cat. 2207—not in Hb.)
patens, Kfis. Enum. 175.—Sandwich Isles; Bonin Island.
Asplenium patens, Spr. Syst. 90; Kze. Bot. Zeit. vi. 524; Brack. U.S.
Expt. Exped. xvi. 165; Metten. Aspl. 159.
Diplazium patens, Presl, Tent. 114; Id. Epim. Bot. 88, in obs.; Fée,
Gen. 214.
patens, Gaud.—Asplenium Adiantum-nigrum, β.
patens, Hook. et Arn.—Asplenium strictum.
pavonicum, Brack.—Asplenium tenellum.
pectinatum, Moore MS.: Hb. Hook.—Sao Gabriel, Rio Negro
(Spruce 2357); Esmeraldas.
pectinatum, Wall.—Athyrium pectinatum.
pelargopus, Moritz.—Asplenium firmum.
pellucidum, Lam. Enc. Bot. ii. 305 (excl. syn. Plum.)—Mauritius; Madagascar; Ins. Marianne; Philippine Isles
(Cuming 147); Java; Borneo; Mergui; Khasya.
Syst. 83; Desv. Prod. 273; Presl, Rel. Hawk. i. 43; Id. Tent. Pier.
106; Wall, Cat. 226, 7091; J. Sm. Hook. Journ. Bot. iii. 408;
Metten. Aspl. 148.
Asplenium approximatum, Bl. Enum. 179 (Cuming 147).
[Gen. 33. Sp. 685.]
Asplenium decussatum, Hort.
Asplenium Hülsenbergii, Sieb. Fl. Mict. 316.
Asplenium hirtum, Elyt. Enum. 169; Spr. Syst. 85.
Asplenium Meyenianum, Frel MS t. 167; Mey.; Id. Tent. Pter. 106; Id. Epim. Bot. 73; Fie, Gen. 181.
Asplenium oxyphyllum, Wall. Cat. 223, non Metten.
Asplenium plumosum, Carm. MS.; Hook.; H. Bory—see lineatum.
Asplenium Torreianum, Gaud. Voy. 317.

pellucidum, B. Lam.—Asplenium abscissum.

? penangianum, Wall.—Blechnum Finlaysonianum.
pendulum, Fée.—Asplenium harposodes
pendulum, Miers MS.—Asplenium scandicurn.

Perreymonndii, Balb. MS.—Asplenium lanceolatum.

Isi. (Cuming 125); Ceylon (Coll. Perad, 3461); India:
Neilgherries; Solomon Isles; ? Venezuela.

Asplenium persicifolium, Fée, Gen. 191; Metten. Asp. 97.

peruvianum, Desv. Prod. 271.—Peru.

Asplenium peruvianum, Kze. Lin. ix. 69, in obs.; Metten. Asp. 125.

Petersenii, Kze.—Diplazium decussatum,
petiolatum, Colenso.—Asplenium Hookerianum.

Petrarchae, De Candolle, Fl. Franc. vi. 238.—France:
Montpellier, Vaucluse, Toulon; Spain; Sicily; Palermo,
Monte Pellegrino, Monte Gallo; Italy, Nice, etc.

Asplenium Petrarchae, Poir. Enc. Supp. v. 659; Spr. Syst. 83; Hook. et
Grev. Icon. Fil. t. 152; Link, Fil. Sp. 90; Kze. Lin. xxiii. 236;
Fée, Gen. 190; Lowe, Ferns, v. t. 36 A; Hookf. Aspl. Eur. 48;
Metten. Asp. 139.

563; Presl. Tent. Pter. 108.

Asplenium Trichomanes. S. Lin. Hb.

Asplenium valliclavae, Requien, in Guérin’s Descr. Vasc. 2 ed. 239.
Polyodium Petrarchae, Guérin, Descr. Vasc. 1 ed. 124.

—ß. lata, M.—Hort. Wentworth.

Asplenium Petrarchae, var., Lowe, Ferns, v. t. 38 B.

philippense, Wild. Hb.—Asplenium lascrtitifolium.

Phyllitidis, Don.—Thamnopteras Phyllitidis.

pilosum, Guss.—Asplenium Petrarchae.

pimpinellifolium, Schaffn.—Asplenium falk.

pinnatifidum, Nut. Gen. N. Amer. Pl. ii. 251.—N. America:
Philadelphia southwards along the Alleghanies, Tennessee,
North Carolina, Missouri.

Asplenium pinnatifidum, Spr. Syst. 80; Presl. Tent. Pter. 106; Fée,
Gen. 192; Kze. Lin. xxiii. 236; Id. Sil. Journ. 2 series, vi. 85; A.
Gray, Bot. North U. States 594; Hook. Icon. Pl. t. 927; Metten,
Fil. Lips. 72, t. 10, fig. 1, 2; Id. Aspl. 126.

[Gen. 23. Sp. 669.]
Asplenium.

Asplenium rhizophyllum, β. pinnatifidum, Barton, Eaton's Man. 5 ed. 120.—f. Kze.

planicaule, Wall. Cat. 189.—India; Nepal, Assam, Sikkim, Khasya (Hook. fil. et Th. 173*), Simla, Kumaon, Gurwhal, Mishmee, Malabar, Concan, Neilgherries (Schmid 49, 132.)

Asplenium planicaule, Metten. Asp. 187.
Asplenium falcatum, Don, Prod. Fl. Nep. 8. nov. Lam.
Asplenium falcatum, γ. abbreviatum, Kze. Lin. xxiv. 260
Asplenium seminaetatum, Wall. MS.; Hb. Hook.
Tarachia truncata, Presl, Epim. Bot. 78.

planicaule, Lowe.—Asplenium fragrans.
plantagineum, Lin.—Diplazium plantagineum.
plantagineum, B. Lam.—Loxogramma lanceolata.
platybasis, Kze.—Asplenium falcatum, γ.

platychlamys, Fée, Iconographie Nov. 48, t. 14, fig. 3.—Caracas (Moritz 26).

platyphyllum, J. Sm.—Asplenium macrophyllum.
plebeium, E. Br.—Asplenium varians.
plamosum, Bory.—Asplenium lineatum.
Poeppigii, Presl.—Asplenium serra.
Poiretiunum, Gaud.—Athyrium scandicum.

polymeris, M.—Gautemala.

polymorphum, M. et Gal. Foug. Mex. 56, t. 15, fig. 2.—Mexico (Galeotti 6295; Leibold 18); Peru; Columbia (Moritz 350), Venezuela (Fendl. 139).

Asplenium Ruizianum, Kl. Lin. xx. 354.
Tarachia Ruiziana, Presl, Epim. Bot. 76.

(Diplazium polymorphum.

polymorphum, Wall.— (Diplazium frondosum.

polymorphum, Boekl. et Zeyh.—Asplenium erectum, γ.
polymorphum, Hort.—Asplenium sulcatum.
polyodon, Forst.—Asplenium falcatum.
polyodon, Wall.—Asplenium protensum.
polypodioides, Sw.—Asplenium ebeneum.
polypodioides, Metten.—Diplazium polypodioides.
Polypodium, Bory.—Asplenium resectum.

polyphyllum, Presl MS.; Hb. Meyen; Id. Tent. Pter. 108.—

Sandwich Isles.

[Gen. 23. 'Sp. 694.]"
Asplenium.

155

polyphyllum, Bert.—Asplenium polymeris.

Asplenium polystichoides, Metten. Aspl. 160.

porphyrocaulon, Bl.—Asplenium sectum.

porrectum, Wall. (204).—Diplazium porrectum.

porrectum, Wall. (224).—Asplenium protensum.

præmorsum, Sw. Prod. 13; Id. Syn. Fil. 83.—W. Indies: Jamaica; Central America (Barclay 2131); Mexico (Galeotti 6547; Schaffn. (1855) 307, 68 a, b; Hartw. 417; Leibold 17; Jurgensen 627); Guatamala; Brazil (Gardn. 181, 5314; Claussen 76); Peru (Mathews 983; Lechl. 2013); Quito (Jameson 273); Columbia (Moritz. i. 24; 16, 150, 356; Hartw. 1524 more attenuated; Wagener 432), Venezuela (Fendl. 157), New Grenada (Lind. Sclium 638); Galapagos; Island of Gorgona; Cape de Verds Isalnds, Teneriffe (Bourg. 144), Madeira, Canaries; S. Africa; Abyssinia (Schimp. 678, 718); Mauritius; Sandwich Isles; India: Neilgherries, Mysore; Taurus (Kotschy 552).

Asplenium cuneatum, Hook. et Grev. Icon Fil. t. 189.

Asplenium furcatum, Wall. Cat. 2206; Slechel. Lim. v. 612.

Asplenium geminaria, Bory, Ess. Isles Fort. 313; Desv. Prod. 279.

Asplenium hirsutum, Heyne Hb.: Wall. Cat. 212.

Asplenium luridum, Brouss. Hb.—f. Webb.

Asplenium nigricans, Kze. Lim. ix. 69; Presl, Tent. Pter. 105; Fée, Gen. 191, 192; Id. Cat. lith. Fong, Mex. 17.

Tarachia geminaria, Presl, Epim. Bot. 79.

Tarachia nigricans, Presl, Epim. Bot. 79.

—B. furcatum, M.—S. Africa (Burch. 3092; Zeyh. 1875; Krauss 734); Natal (Plant 324); Abyssinia (Schimp. 263); Madagascar; Teneriffe; Madeira; Mauritius (Sieb. Syn. Fil. 138): Bourbon; India: Tranquebar, Neill. [Gen. 23. Sp. 698]
Asplenium.

gherries (Schmid 1, 6, 16, 19, 84, 121, 131, 160; Weigle 19; Hohenack. 910; Kurz 31; Hook. fl. et Th. 173); Cochín, Assam, Mergui; Ceylon (Gard. 1341; Coll. Perad. 3497); Java (Zoll. 2336, 2898); St. Helena; Sandwich Isles; New Holland; Swan River (Drummond 349); Trop. America: Venezuela (Fendl. 156), New Grenada (Lind. Schl. 846); ? Mexico (Galeotti 6390).—Pluk. t. 73, fig. 5; t. 123, fig. 6.

Asplenium fragrans, Schkuhr, Crypt. 199, t. 130 b.

Asplenium furcatum, v. angustifolium, Desv. Prod. 278.

Asplenium premorsum, Br. Prod. 150; Lowe, Ferns, v. t. 7.

Asplenium strictum, Bory MS. (Schlech. Adumb. 30 note).

—γ. validum (Kze. Bot. Zeit. vi. 175).—Java Zoll. 605z.)

Asplenium tripartitum? Zoll. Hb. 605 z.

—S. latum (Desv. Prod. 278).—S. Africa; Natal; New Holland; Island of St. Paul; Java; India: Assam; Sylhet, Mysore, Neilgherries; Ceylon (Gardn. 33, 1082.)

Asplenium cuneatum, Wight Hb.

Asplenium falsum, Retz. Obs. vi. 309.

Asplenium furcatum, Schkuhr, Crypt. 73, t. 79.

Asplenium mascaricense, Desv. Prod. 278.

Asplenium tripartitum, BL. Enum. 185.

premorsum, R. Br.—Asplenium premorsum, β.

premorsum, BL.—Asplenium horridum.

premorsum, Pappe et Rawas.—Asplenium premorsum, 3.

Prescottiannum, Wall.—Diplazium Prescottianum.

Prionites, Kze. Lin. x. 511.—S. Africa: Graham’s Town; Natal (Plant 348.)

Asplenium prionurus, Metten. Aspl. 97.

procerum, Wall. Cat. 2203.—India : Nepal, Sikkim, Khasya, (Hook. fil. et Thom. 203 b, c.)

Asplenium procerum, M. ante p. 43.

Allantodia procura, Wall. Hb.

procerum, Bernh.—Lomaria procosa.

productum, Presl.—Asplenium elongatum.

productum, Lowe.—Asplenium Adiantum-nigrum, β.

progregiens, Fée, Iconogr. Nouv. 82; Id. Cat. lith. Fong. Mex. 15.—Mexico (Schaffn. (1854) 54, (1856) 449).

Asplenium progregiens, Metten. Aspl. 165.

projectum, Kze. Lén. ix. 68; xiii. 141, in obs.—Peru.

Asplenium projectum, Presl, Tent. Æter. 108; Metten. Aspl. 124.

proliferum, Sw.—Fadyenia proliferata.

proliferum, Lam.—Callipteris proliferata.

proliferum, Wall. (236).—Callipteris accedens.

proliferum, Wall. (Hb.)—Callipteris ambiguæ.

propingillum, M.—Diplazium marginatum.

protensum, Schrad. Goëtt. gel. Anz. 1818, 916.—S. Africa (Krauss 736); Natal; Abyssinia (Schimp. 611, 1264); Mauritius.

Asplenium porrectum, Wall. Cat. 224 prius.

Asplenium polyodon, Wall. Cat. 224 corrug.

protensum, Willd. (Hb.) 19938—Philippines; Schlech. Adumb. 29, 31.

protensum, Klfs.—Asplenium Kaulfussii.

pseudo-nitidum, Raddi, Fil. Bras. 39, t. 55.—Brazil (Gardn. 179, 180; Blanch. 2513?).

Asplenium martineセンセ, Raddi, Syn. Fil. 98.

pterophorum, Presl.—Asplenium alatum.

pteropus, Klfs. Enum. 170.—Brazil (Mart. 347); Venezuela (Fendl. 439); W. Indies : Jamaica, St. Vincent’s, Guadeloupe (L’Herm. 9), Portorico.

Asplenium pteropus, Spr. Syst. 83; Kze. Flora 1839, i. beibl. 40 Metten. Aspl. 119.

January, 1860. 14
Asplenium.

—β. majus, Metten. Aspl. 120.—Venezuela (Lind. F. et Schl. 249), Columbia (Moritz 23 b.)

—γ. radicana, Metten. Aspl. 120.—Brazil (Mart. 340).

pteropus, Bory Hb.—Asplenium Doreyi.

puberulum, Wall.—Callipteris ambigua.

pubescens, Metten.—Callipteris ambigua.

pubescens, Houlst. et M.—Athyrium decurtatum.

pubescens, Wall. Hb. (204).—Diplazium porrectum.

pubescens, Wall. Hb. (235).—Diplazium Pracottianum.

pulchellum, Radii, Syn. Fil. 95; Id. Fil. Bras. 37, t. 52, fig. 2.—Brazil; Peru.

—β. Otites, Metten. Aspl. 123.—Brazil.

Asplenium Otites, Liak. Hort. Ber. ii. 60; Id. Fil. Sp. 91; Kze. Lin. xxii. 236; Metten. Fil. Lips. 74, t. 9, fig. 1–4.

Asplenium pulchellum, Hort.; Moore et Houlst. Gard. Mag. Bot. iii. 259; Lowe, Forns v. t. 31 A.

Asplenium obtusifolium, Hort. Petrop.

pulchellum, Wall.—Asplenium nitidum.

pulchellum, Hort.—Asplenium pulchellum, β.

pulchrum, Pet. Th. M.S.: Willd. Hb. 19342.—S. Africa:

Kaffiraria, Macalisberg, Graham's Town; Natal; Abyssinia (Schimp. i. 679); Mauritius.

pulchrum, Wall.—Asplenium brasiliense.

pumilum, Sw. Fl. Ind. Occ. iii. 1610; Id. Syn. Fil. 76.—W. Indies: Jamaica, Martinique, (Sieb. Fl. Mart. 361; Belanger 803), Cuba (Wright 861), St. Vincent's, Guadeloupe.—larger, St. Christopher, Antigua; *Columbia (Moritz i. 71), Venezuela (Fendl. (130) Caracas (Moritz 19, 20); N. Andulasia; Veraguas; Guatemala; Mexico (Galeotti 6424; Leibold 19; Schaffn. (1854) 49, (1856) 471; Botteri 45); Teapa (Lind. 1486); Philippine Isles; Abyssinia.—Plum. t. 66 A; Lam. Ill. t. 876, fig. 3

Asplenium. 159

Tent. Pter. 108; Link, Fil. Sp. 88; Kze. Lin. IX. 62; xvi. 329; xxiii. 237; Id. Bot. Zeit. iii. 281; Fl. Lin. xx. 354; Metten. Fil. Laps. 75; Id. Aspl. 127; Fée, Gen. 191; Lowe, Ferns v. t. 31 B.
Asplenium humile, Spr. N. Ent. iii. 6.—f. Klfs.; Desv. Prod. 276.
Asplenium hymenophyllodes, Fée MS. (pumilum var., Id. Iconogr. Novv. 54, t. 15, fig. 4).
Asplenium minimum, M. et Slat. Fouq. Mex. 55, t. 15, fig. 1.—f. Liebm.

—β. incisum, M.—San Blas, Central America (?HB. Hook.)

Purdieanum, Hook.—Hemidictyum Purdieanum:

pusillum, Bl. Enum. 183.—Java.
Asplenium pusillum, Metten. Aspl. 136.

pusillum, Banks Hb.—Asplenium Hookerianum.

pseudophyllum, Chapm. MS.—Asplenium myriophyllum (form).
pycnocarpus, Spr.—Asplenium angustifolium.
pycnophyllum, M. [ante p. 121]—Mexico.
Asplenium coriaceum, Fée, Gen. 190, 193; Id. Iconogr. Novv. 48, t. 15, fig. 1; Metten. Aspl. 146.

pugmæum, Lin. fil.—Asplenium Ruta-muraria.
pyramidatum, Desv. Prod. 271.—? Tristan d’Acunha.

pyramidatum, Liebm.—Asplenium sulcatum.
quintense, Willd. Hb.—Asplenium delicatulum.
rachirhizon, Raddi, Fil. Bras. 39, t. 56.—Brazil (Gardn. 42),
Organ Mountains (Gardn. 176); Peru; S. Darien; Mexico; Caracas (Lind. 158); Solomon Isles.
Asplenium flavillulatum, β. Metten. Aspl. 131 in part.
Asplenium unisoriale, Raddi, Syn. Fil. 100; Desv. Prod. 279.

Raddii, Fée.—Asplenium serratum, β.
Raddiaum, Gaud.—Asplenium brasiliense.
radiatum, Sw.—Actiniopteris radiata.
radicans, Sw. Syn. Fil. 84.—W. Indies: Jamaica, Cuba (Wright 851, P 850); S. America: Columbia (Moritz 43; ii. 44; 187, 264—f. Mett.), Caracas (Otto 651), Venezuela (Fendl. 127), New Grenada (Lind. Schlim 63; Funk 655, F. et Schll. 248, 954); Peru; Tarapota 14* [Gen. 23. Sp. 718.]
Asplenium.

(Spruce 4021, 4680) ; Quito (Jameson 34) : Salanga.—Columbia (Moritz 364), Caracas (Lind. 163), Venezuela (Fendl. 125) : more divided form, approaching rachizone.

Asplenium radicans, Kze. Lin. xxiii. 237, 409.
Asplenium flabellatum, Kl. Lin. xx. 357 (incl. β) ; Metten. Asplen. 130, in part.
Asplenium rhizophorum, Sw. Schrad. Journ. 1800, ii. 56—non Syn. fil. 81 ; Kze. Lin. xxiii. 237, 409 (rhizophyllum, ex. err.)

radicans, Schkuhr.—Diplazium radicans.
radicans, Wight MS.—Thamnopteris Nidus.
radicans, Auct.—Diplazium varium.
radicans, Hort.—Asplenium rhizophorum.
ramosum, Spr. : Bernh.—Diplazium radicans.
ramosum, Poir.—Didymochlaena lunulata.
Raylik, Metten.—Asplenium Hookerianum.
raffitorum, Wall.—Asplenium lasertipitfolium.
reclinatorum, Houlst.—Asplenium tenellum.
recognitum, Kze.—Asplenium sulcatum.
Asplenium recurvatum, Spr. Syst. 92; Metten. Aspl. 122.
regulare, Sw.—Asplenium brasiliense.
regulare, Wall.—Asplenium Wallichianum.
reflexum, Bory.—Asplenium lunulatum, β.
refractum, Moore, Ferns of Gt. Brit. Nature-Printed, sub. t 35 A ; Id. Octavo Nature-Printed British Ferns, ii. 6v.
—? Scotland.
Asplenium refractum, Lowe, Ferns v. t. 35 A.
refractum, Hook. MS.—Asplenium mucronatum.
remotum, M. [ante p. 125.]—Samoa Islands.
repandulum, Kze. Lin. ix. 65 ; xxiii. 237.—Peru ; Brazil.
repandulum, M. et Gal.—Asplenium salicifolium.
repente, Desv. Prod.—271.—Madagascar.
Asplenium repente, Metten. Aspl. 137.
resectum, Sm. Icon. Ined. t. 72.—Bourbon ; Mauritius (Sieb. Syn. 70 ; Fl. Mixt. 300) ; Fernando Po (narrow and slender) ; India (Hook. fil. et Thom. 187, 189) : Chittagong, Chappedong, Moulmein, Khasya, Sikkim, Simla, [Gen. 23. Sp. 718.]
Asplenium.

Nepal, Malabar, Dendigal, Cochin; Ceylon (Gardn. 29, 32, 1075, 1077, 1336, 1338; Col. Perad. 1896, 3269); Java (Zoll. 2331); Sumatra; Philippine Isles (Cuming 40); Society Isles; Sandwich Isles: Oahu; Fejee Isles; Mexico (Schaffn. (1854) 51.)

Asplenium amicumum, Presl. Tent. Pter. 107; Metten. Aspl. 131, t. 5, fig. 11.

Asplenium decurrens, Wall. Cat. 190.

Asplenium erythrocaulon, Bl. Enum. 182; Metten. Aspl. 133.

Asplenium latum, Wall. Cat. 209 (slender lobate form); Kze. Lin. xxiv. 264, in obs.

—β. cristatum, M.—India (Hook. fl. et Thom. 187*):

Nepal, Sikkim, Khasya, Bhotan, Assam, Mishmee, Tavoy; Ceylon (Col. Perad. 1337); Java (Zoll. 2967?); Philippine Isl. (Cuming 110); Bourbon; Owheyhee.

Asplenium cristatum, Wall. Cat. 211.

Asplenium erosodentatum, Bl. Enum. 182; Metten. Aspl. 133.

Asplenium serraforme, Metten. Aspl. 119, t. 4, fig. 13.

resiliens, Kze.—Asplenium parvulum.

reticulatum, Wall.—Allantodia Brunoniana.

reticulatum, Roxb. MS.—Lorogramma macrophylla.

retortum, KLs.—Asplenium mucronatum.

Asplenium retusum, Desv. Prod. 270; Metten. Aspl. 127.

rhizophorum, Linn. Sp. Pl. 1540—f. spec. in Hb.—W. Indies:

Jamaica, Portorico, Cuba (Lind. 1755); S. America: Venezuela (Fendl. 126, 126 β.—less divided), Carraeae (Lind. 165; Funck 657); Guiana (Rich. Schomb. 1150, 1206); Brazil (Gardn. 5944, 5308—smaller); [Mexico].

Asplenium alleptopteron, Kze. MS.: Kl. Linn. xx. 363; Fée, Gen. 191.

Asplenium Karstenii, Hort. non KI.
Asplenium radicans, Hort.: Lowe, Forna v. t. 12 B.
rhizophorum, Sw. (Schrad. J.)—Asplenium radicans.
rhizophorum, Schkuhr.—Diplazium radicans.
rhizophorum, Metten.—Asplenium cirrhatum.
rhizophyllum, Kze. Lin. ix. 71.—W. Indies: Cuba, Jamaica, St. Domingo, Portorico; Central America; Columbia (Cuming 1246), Venezuela (Linden: Funch et Schlim 839, 1577), New Grenada; Cocos Island (Barclay 2196); Sandwich Islands.—Sloane Jam. i. t. 52, fig. 3; Lam. III. t. 867.
Asplenium myriophyllum, β. minus, Prel. Rel. Hawk. 45.
rhizophyllum, Lin.—Camptosorus rhizophyllus.
rhizophyllum, S. Barton.—Asplenium pinnatifidum.
rhizophyllum, var. Metten.—Asplenium myriophyllum.
rhizophyllum, Poepp.—Asplenium auritum, β.
rhizophyllum, Metten.—Diplazium rhoifolium.
rhomboidale, Desv. Prod. 272.—St. Domingo.—Plum. t. 65. (Desv.)
Asplenium rhomboidale, Metten. Aopl. 133.
rhomboidem, Brack.—Asplenium fragile, β.
Richardi, Hook. fil. Fl. N. Zeal. ii. 35.—New Zealand.
rigidum, Sw.—Asplenium sulcatum.
rigidum, Wall. M. S.—Diplazium lanceum.
riparium, Liebm.—Asplenium salicifolium.
riparium, Brack.—Asplenium lasperitifolium.
robustum, Bl. Enum. 189.—Java.
Röemerianum, Kze.—Diplazium Röemerianum.
rotundatum, Kfls.—Asplenium lanceolatum.
Ruizianum, Kl.—Asplenium polymorphum.
rutaceum, Metten. Asplen. 129, t. 5, fig. 32, 33.—Columbia (Moritz 402).—Plum. t. 57, coarse.

[Gen. 33. Sp. 726]
Asplenium.

Asplenium elegantulum, Moritz MS.
Athyrium rutaceum, Presl, Tent. Pter. 98.

rufosulpholium, Presl, Tent. Pter. 108.—Bourbon; S. Africa (Krauss 743; Zeyh. 4634); Natal (Plant 328).
Canopteris rufosulpholium, Bergius, Act. Petrop. vi. 249, t. 7, fig 2; Spr. Syst. 91; Desv. Prod. 267.

—β. furcata, M.—Bourbon (Boiv. 868); Mauritius; S. Africa: Kaffraria; India: Himalaya; Mishmee (prolif. filif. apex); Ceylon (Hook. fil. et Thom. 190; Gardn. 1348); Feejee Islands (Brack.)
Adiantum achilleofolium, Lam. Enc. i. 43; Poir. Enc. Supp. i. 145.
Adiantum borbonicum, Jaeg. Coll. ill. 206, t. 21, fig. 1.
Darea stans, Bory, Belang. Voy. ii. 55.

—γ. distichum, M.—Arabia Felix.
Darea disticha, Křfě. Enum. 80; Metten. Aspl. 112.
Canopteris disticha, Spr. Syst. 91.
Lonchitis bipinnata, Forsk. Fl. Ægypt. Arab. 184.

—δ. palmatum, M.—Mascaren Islands.
Darea palmata, Křfě. Enum. 181; Fée, Gen. 332; Metten. Aspl. 111.
Canopteris palmata, Spr. Syst. 91.

Ruta-muraria, Lin. Sp. Pl. 1541.—Great Britain, Ireland; France, Belgium, Holland, Russia, Scandinavia, Switzerland, Germany, Spain, Portugal, Corsica, Sicily, Italy, Hungary, Transylvania, Dalmatia, Croatia, Greece, Turkey, Crimea; N. Africa: Algiers; S. Africa: Caucasus, Altai; Siberia: Baikal, Davuria; Kashmir (Hook. fil. et Thom. 180), Thibet; N. America: Vermont to N. Carolina, Michigan, etc.—Plum t. A, fig. 3.

Asplenium.

Asplenium murale, a. Bernh. Schrad. Journ. 1799, i. 311; Id. 1801, i. 19; Salisb. Prodr. 403.
Asplenium murorum, Lam. Fl. Franc. i. 28.
Asplenium pygmeum, Lin. fil.
Adiantum pygmeum, Lin. Hh.
Scolopendium Rutamuraria, Roth, Fl. Germ. iii. 52.
Tarachia Rutamuraria, Presl, Epim. Bot. 81.
S. elatum, Lang. Syll. Pl. Ratieah. 1825, 188.—Hungary, Bohemia, Banat; Tyrol; Gt. Britain; Asia: Karabagh.
Tarachia multicaulis, Presl, Epim. Bot. 81.
Rutamuraria, Wall. (pr.)—Asplenium varians.
salicifolium, Lin. Sp. Pl. 1538.—W. Indies: Jamaica, Hispaniola, Martinique, Cuba (Wrigt 848 in part); Columbia: Venezuela (Fendel. 143), New Grenada (Lind. Schle. 397); British Guiana (Rob. Schomb. 451 in part); Brazil (Gardn. 168; ? Mart. 342); Peru; Mexico (Lind. 68; Galeotti 6274; Schaffn. (1854) 52, 53, 56; (1856) 473).
—Plum t. 60 (Sw.)
Asplenium Martensii, Fée, Cat. lith. Foug. Mex. 16.
Asplenium obtusifolium, Metten. Aspl. 100, in part.
salicifolium, Sieb. (pt.)—Diplazium cultifolium.
salicifolium, Kl.: Sieb.—Asplenium falx.
salicifolium, Kze.: Poepp.—Asplenium abscliasmum.
salicifolium, Spr.—Asplenium coriaceum.
salicifolium, Splitg.—Asplenium integerrimum.
salicifolium, var. Mett.—Asplenium integerrimum.

[Gen. 23. Sp. 728.]
Aspleniom, 165

salicifolium, B. Splitg.—Asplenium falx.

salignum, Bl. Enum. 175.—Java (Zoll. 344. z.)

Asplenium salignum, Kze. Bot. Zeit. vi. 146; Id. Lin. xxiii. 237; Metten. Fl. Leps. 72, t. 7; Id. Asplen. 95.

sanguinolentum, Kze. Hb.—Asplenium anisophyllum.

sarmientosum, Willd.—Asplenium obtusatum.

saxatile, Salisb.—Asplenium Trichomanes.

saxosum, Colenso.—Asplenium obtusatum.

Asplenium scandens, Metten. Aspl. 108.

Darea scandens, Fée, Gen. 332.

scandens, Houlet. et M.—Asplenium Veitchianum.

scandicinum, Kfis. Enum. 177.—Brazil ; St. Catherines.

Asplenium pendulum, Miers MS.;

scariosum, Colenso.—Asplenium bulbiferum, B.

Schiedei, Metten.—Diplazium lonicophyllum.

Schimperianum, Hochst.—Asplenium pumilum.

Schkuhrianum, Prasl.—Asplenium abscessum.

Schkuhrii, Metten.—Diplazium Schkuhrii.

Schomburgkianum, Kl.—Asplenium serratum, B.

Schottii, Prasl.—Asplenium sulcatum.

scleroprium, Hombr. et Jacq.—Asplenium lucidum, B.

scopendrioides, J. Sm. Hook. Journ. Bot. iii. 408.—Philippine Islands (Cumming 318) ; Feejee Islands ; Samoan Islands.

Asplenium scopendrioides, Hook. Icon. Pl. t. 930.

Scopendrium, Lin.—Scopendrium vulgare.

Scopendrium, Lour.—? Thamnopteris Nidus.

Seelosii, Leibold, Flora 1855, 81, 348, t. 15.—S. Tyrol: Salurn.

Asplenium Seelosii, J. Sm. Bonpl. iii. 246; Metten. Asplen. 141.

Asplenium tridactylites, Bartling, Hb. Kze.—I. Metten.

Selnopteris, Metten.—Athyrium Selnopteris.

Sellowianum, Prasl. Tent. Pter. 107.—Brazil.

semicordatum, Raddi.—Asplenium auriculatum.
Asplenium

semicordatum, M. et Gal.—Asplenium lamprocalon.

semihastatum, Wall.—Asplenium planicaule.

semihastatum, Kze. Hb.—Diplazium semihastatum.

semihastatum, v. obtusum, Metten.—Diplazium angustifrons.

septentrionale, Hoffm. Deutschl. Fl. ii. 12 (1795)—Great Britain; Scandinavia, Russia, France, Belgium, Switzerland, Germany, Spain, Portugal, Italy, Hungary, Croatia, Transylvania; Caucasus; Siberia: Altai; India: Kashmir (Hooker, fl. et Thomson 182), Kumaon, Kuma-war (Jacquemont 1201), Gurwhal; New Mexico (Wright 2122).

Asplenium bifurcun, Opiz, Flora, 1823, 667.

Acroteris septentrionalis, Link, Hort. Ber. ii. 56; Id. Fl. Sp. 80; Fée, Gen. 77, t. 8 A, fig. 1.

Acrostichum septentrionale, LIN. Sp. PL 1524; BOLT. Fl. Brit. 12, t. 9; CAV. FRALEST (1801), 239; Fl. Don. t. 60; Lam. Enc. i. 38; Id. Ill. t. 865.

Acrostichum laciniatum, GILIB. Eacero. Phytol. ii. 555.

Amesium septentrionale, NEWm. Brit. Ferns 2 ed. 10; 3 ed. 265.

Belsis septentrionalis, MIRBel, Hist. Nat. Veg. iii. 473.

Blechnum septentrionale, WALLR. Bluff et Fingerh. Comp. Fl. Germ. iii. 34.

Pteris septentrionalis, SM. MEM. ACAD. TURIN. v. 412, in obs.

Scelopendrium septentrionale, ROTH, Fl. Germ. iii. 49.

serpentini, Tausch.—Asplenium Adiantum-nigrum, γ.

serra, LANGS. ET FISCH. ICON. Fil. 16, t. 19.—BRAZIL (Mart. 343; REGN. ii. 332; Gardn. 5309, 5312, 5393), Organ Mountains (Gardn. 174, 175 bis); PERN (RUtz Hb. 30; Lech. 2500, 2500 a; Matthews 1852); Quito; Columbia (Moritz 153; Lind. F. et Schl. 1467),! Venezuela (Fendel. 155, 332), Caracas (Lind. 191, 535); New Grenada (Lind. Schl. 321); British Guiana (Rich. Schomb. 1158, 1176); Central America (Barol. 2138); Mexico (Galetotti 6417; LEIBOLD 20; BOTTERI 44; SCHAFFN. 56); W. Indies: Jamaica, Dominica, Cuba (Lind. 2174; Wright 840), Gaudeloupe; Galapagos; New Ireland.

Asplenium

191; Liebm. Mex. Bregn. 94; Metten. Fil. Lips. 76; Id. Fil. Lecl. 15; Id. Aspl. 151; Lowe, Ferns v. t. 8.
Asplenium Poeppigii, Presl, Tent. Pter. 106, t. 2, fig. 21.

—β. Woodwardiioides, M.—Brazil (Gardn. 43, 175, 5938)
Caraccas; St. Martha; Mexico (Schaaff. 449).

serratum, Lin. Sp. Pl. 1538.—W. Indies: Jamaica, Hispaniola, Martinique, St. Vincent’s, Grenada, Trinidad, Guadeloupe, Cuba (Wright 537; Otto 41, 244); Panama; Guiana (Hostm. 153; Kappel. 1736 a; Focke 199; Keigel 349); Brazil (Blanch. 2458; Mart. 376), Pernambuco (Gardn. 223), Amazon R. (Spruce 575, 1113) Rio Negro (Spruce 2291) Peru (Lecl. 2498, 2498 a); Chatham Island.—Plum. t. 124.

—β. crenulatum, M.—Brazil (Gardn. 75, 160), Para (Spruce 30); Amazon R. (Spruce 564), Rio Negro (Spruce 2295); Peru (Ruiz Hb. 36); New Grenada (Lind. Schl. 771), Venezuela (Fendl. 489); B. Guiana (Rob. Schomb. 323; Rich. Schomb. 285); F. Guiana; Guadeloupe.
Asplenium crenulatum, Presl, Tent. Pter. 106; Link; Fil. Sp. 87; Fée, Gen. 190; Kze. Flora 1839 i. beibl. 50; Id. Lin. xxii. 239; Kl. Lin. xx. 359; Brack. U. S. Expl. Exped. xvi. 146; J. Sm. Cat. Ferns, 43.
Asplenium brasiliense, Hört., non Sw.; Houlst. et M. Gard. Mag. Bot. iii. 258; Lowe, Ferns v. t. 14 B.
Asplenium integrum, Fée, Gen. 193.—f. Griseb. (Guadeloupe).
Asplenium Nidus, Raddi, Fil. Bras. 34. t. 53.
Asplenium Raddii, Fée, Gen. 190, 192.
Asplenium Schomburgkianum, Kl. Lin. xx. 360; Fée, Gen. 190, 191.
serratum, Link.—Asplenium serratum, β.
serratum, var. Kze.—Asplenium surinamense
serrula, Fée.—Asplenium Wightianum.
(An Aspl. Adiantum-nigrum, var.)
serrulatum, Sw.—Xiphopteris serrulata.
serrulatum, Roxb.—Diplazium serrulatum.

[Gen. 23. Sp. 740.]
Asplenium.

serrulatum, Presl.—Callipteris serrulata.

setisectum, Bl. Enum. 187.—Java.

Asplenium setisectum, Metten. Aspl. 159.

—Madagascar.

Asplenium setosum, Spr. Syst. 85; Fée, Gen. 191; Metten. Aspl. 136.

setulosum, Presl.—Diplazium setulosum.

setulatum, J. Sm.—Athyrium tenuifrons.

scelluliferum, Desv.—Asplenium ternatum, β.
Shepherdii, Spr.—Diplazium radicans.

Shuttleworthianum, Kze. Schkuhr, Supp. i. 26, t. 14.—Pitcairn’s Island (Cuming 1574.)

sibiricum, Turcz.—Athyrium crenatum.

silesiacum, Milde.—Asplenium Adiantum-nigrum.

simile, Bl. Enum. 181.—Java; Philippine Islands (Brack.)

simile, Hort Amstel.—Asplenium vulcanicum.

Simonsianum, Hook.—Thamnopteris Simonsiana.

simplex, Bl.—Thamnopteris simplex.

simplex, Zoll. Hb.—Asplenium amboinense.

sinuatum, Pol. de Beauv. Fl. d’Oware, ii. 33, t. 79.—Trop. W. Africa: Oware; R. Nun (Vogel 45); Fernando Po (Vogel 129); St. Thomas’s Island.

Asplenium Afromanum, Desv. Mag. Ber. v. 322; Id. Prod. 268; Spr. Syst. 80.

sinuatum, Salisbury.—Ceterach officinarum.

sobiliferum, Wall.—Diplazium porrectum.

solidum, Kze. Lin. x. 520.—S. Africa.

—β. stenophyllum, Kze. Lin. x. 520.—S. Africa; Algoa Bay.

sorbofolium, Willd.—Diplazium sorbofolium.

sorbofolium, Jacq.—Meniscium reticulatum.

sordidum, Kze.—Asplenium longissimum.
sororium, Miq.—Asplenium anisodonton.
sorogonense, Presl.—Diplazium sorogonense.
spathulimum, *J. Sm. Hook. Journ. Bot. iii. 408.—Philippine Islands (*Cuming 210*); Borneo; Isle of Pines; *Faæjée* Islands; Sandwich Islands (*Douglas 45, 44*—pinnules smaller); Ceylon (*Gardn. 1083; Hook. fil. et Thom. 176*).

spectabile, Metten.—Diplazium speciosum.

speciosum, Wall. Cat. 237.—India: Nepal (*Hook. fil. et Thom. 203 a*); Sikkim, Khasya, Mishmee, Assam; Ceylon (*Gardn. 1066*).

Allantodia spectabilis, *Wall. Hb*.

Athyrium spectabile, *Presl. Tent. Pter. 98*.

Athyrium multicaudatum, *Presl. Tent. Pter. 98*.

sphenoides, Kze.—Asplenium lucidum, γ.

sphenolobium, Zenker MS.—Asplenium lunulatum, β.

Spicant, Bernh.—Blechnum Spicant.

spinulosum, Metten.—Callipteris accedens.

splendens, *Kze. Lin. 516*.—S. Africa; Natal.

splendens, Zippel. MS.—Asplenium maerophyllum.

splendidulum, Lind.—Asplenium crruratulum.

Sprengelii, Wickstr.—Asplenium ambiguum.

squamulatum, *Bl. Enum. 174*.—Java (*Zoll. 960 x*); Borneo.

Neoptopteris squamulosa, *Fée, Gen. 203*.

squamulosum, M.—St. Domingo.

Hypochlamys squamulosus, *Fée, Gen. 201*; Metten. *Aspl. 186*.

stans, Kze.—Asplenium rufæfolium, β.

stellatum, Colla.—Asplenium fernandezianum.

Asplenium stenopteris, Metten. *Aspl. 148*.

February, 1860. 15
Asplenium.

Asplenium stereophyllum, Metten. Aspl. 153.

stoloniferum, Bory, Itin. i. 329.—Bourbon ; Ascension.

stoloniferum, Metten.—Asplenium fragilum.

striatum, Metten.—Diplazium striatum.

striatum, Metten.—Diplazium expansum.

triatum, Hort.—Diplazium radicans.

strictum, Brack. U.S. Expl. Exped. xvi. 168, t. 23, fig. 1.—Sandwich Isles.

Asplenium strictum, Metten. Aspl. 115.
Asplenium multifidum, Nuttall MS.; Hb. Hooker.
Asplenium myriophyllum, Nuttall MS.; Hb. Hooker.

strictum, Bory.—Asplenium praemorsum, b.

strigillosum, Lowe.—Athyrium tenuifrons.

subalatum, Hook. et Arn.—Asplenium formosum, b.

subcaudatum, Colenso.—Asplenium lucidum.

subdecurrens, Miers MS.—Asplenium oligophyllum.

subhastatum, Hook. Icon. Pl. t. 929.—Caraccas.

Asplenium subhastatum, Metten. Aspl. 91.

subseratatum, Bl.—Diplazium subseratatum.

subsessile, Cav. Prelect. (1801), 254.—Marianne Islands.

subsinuatatum, Hook et Grev.—Diplazium lanceum.

sulcatum, Lam. Enc. Bot. ii. 308.—W. Indies : Martinique, Dominica, Guadeloupe (L’Herm. 11), Portorico; S. America: Brazil (Garín. 182, 5311; Regn. i. 486; Claussen 193), S. Brazil; Peru (Mathews 1855), Tarapota (Spruce 4677); Quito, Bolivia; Columbia (Moritz. 362), Venezuela (Lind. F. et Schl. 290), Caraccas (Funck et Schl. 250); New Grenada (Lind. Schl. 465); Veragua (Seem. 1548); Mexico (? Galeotti 5647; Lind. 5; Leibold 14; Jurgensen 739, 963; Schaffn. (1854) 64, 65, 66, (1856) 469; Botteri 19, 48); Galapagos?; Neillgerries: Ootacamund; Bourbon.—Plum. t. 46—f. Lam.

Asplenium.

Asplenium auritum, v. bipinnatidium, Kze. Lin. xviii. 332.
Asplenium mandiocanum, Hook. Hb.
Asplenium polymorphum, Hout. (? var.—primord. fr. dissected).
Asplenium erectum, v. proliforum, Hook. Fil. Exot. i. t. 72 in part (incl. the fig.).
Asplenium lunulatum, v. proliferum, Metten. Asplen. 121.
Asplenium pavonicum, Brack. U. S. Expl. Exped. xvi. 150. t. 20, fig. 1; Metten. Aspl. 136.
Asplenium reclinatum, Houtson, Gard. Mag. Bot. iii. 280; J. Sm. Cat. Kew Ferns 5; Ill. Cat. Ferns 44; Lowe, Ferns v. t. 13 B. 15 *

Asplenium.

tenellum, Banks Hb.—Asplenium Hookerianum.
tenellum, Fée.—Asplenium tenuilobum.

tenerum, Forst. Prod. 431.—Pacific Isles; Samoan Islands; Sandwich Islands: Tahiti (Barclay 5333).

—B. terminans (Metten. Aspl. 113).—Ceylon (Gardn. 26).
Asplenium terminans, Kze. Hb.
tenerum, Raddi.—Asplenium brasiliense.
tenerum, R. Br. MS.—Diplazium grammitoides.
tennerrimum, Hochst.—Asplenium pumilum.
tenue, Presl, Rel. Hænk. i. 44, t. 6, fig. 5; Id. Tent. Pter. 108.
—Peru, Quito.
Asplenium tenue, Spr. Syst. 86; Kze. Lin. ix. 68; Fée, Gen. 192; Metten. Aspl. 125, 136.
tenuicaua, Kze. Hb.—Asplenium caudatum.
tenuifolium, Don, Prod. Fl. Nep. 8.—India: Nepal, Sikkim (Hook. fil. et Thoms. 191) Khasya, Assam, Mishme, Neillgheries (Schmid 9, 47, 75, 80, 85, 113, 119, 127, 129; Weigle 20); Ceylon (Gardn. 1079); S. Africa.
Asplenium tenuifolium, Spr. Syst. 90; Kze. Lin. xxiv. 265; Metten. Aspl. 128.
Asplenium concinnum, Wall. Cat. 216; Presl, Tent. Pter. 109; Fée, Gen. 191.
tenuifolium, Guss.—Asplenium fissum.
tenuijrons, Wall.—Athyrium tenuifrons.
tenuilobum, M.—Quito.
Asplenium tenuilobum, Fée, Gen. Fil. 191, 198; Metten. Aspl. 104.
terminans, Kze. Hb.—Asplenium tenerum, B.
ternatum, Presl, Rel. Hænk. i. 45; Id. Tent. Pter. 108.—Peru (Lechtl. 1966).
Asplenium ternatum, Spr. Syst. 88; Kze. Lin. ix. 69; Metten. Fil. Lechtl. 15; Id. Aspl. 125.

Asplenium ternatum, Fée, Iconogr. Novum. 54, t. 16, fig. 4.
Asplenium sessilifolium, Desv. Mag. Ber. v. 322; Id. Prod. 276; Spr. Syst. 96; Metten. Aspl. 126.

? thalictroides, Kze. Lin. xxiii. 238.—Jamaica.
[Gen. 23, Sp. 768.]
Asplenium.

(An Asplenium cicatricatum.)

thelypteroides, Mich.—Athyrium thelypteroides.

Thunbergii, Kze. Lin. x. 517.—S. Africa; Natal.

Thunbergii, b. Kze.—Asplenium Veitchianum.

Thwaitesii, A. Br.—Diplazium Thwaitesi.

tomentosum, Lam.—Gymnogramma rufa.

tomentosum, Metten.—Diplazium decussatum.

Torresianum, Gaud.—Asplenium pellucidum.

tovarense, Hort.—Asplenium maritimum.

Asplenium trapeziforme, Wall. Cat. 2213 (not in Hb.; in Hb. Hook.) Metten. Asplen. 136.

trapeziforme, 'Huds.'—Asplenium maritimum, b.

trapezoides, Sw. Syn. fil. 76.—Peru (Dombev 70), S. Brazil; Chili (Poëpp. ii. 141; Cuming 820; Lecht. 593.

Asplenium parvulum, Hook. Icon. Pl. t. 222.

Tarachia trapezoides, Presl, Epim. Bot. 75.

tremulum, Hombr. et Jacq.—Asplenium Fabianum.

Trettenerianum, Jan.—Asplenium fissum.

Trichomanes, Lin. Sp. Pl. 1540.—Great Britain, Scandinavia, Russia, Switzerland, Germany, Belgium, France, Italy. Corsica, Sicily, Spain, Portugal, Dalmatia, Croatia, Transylvania, Hungary, Greece, Turkey, Crimea, &c.; Madeira, Teneriffe (Bourg, 1170), Azores, Cape de Verd Islands; Algeria (Bové 367); S. Africa, Kaffraria; Caucasus; Ural Mountains; Siberia: Altai, Baikal; Tauria; Broussa; Karabagh; Persia: Ghilon (Aucher-Eloy 5486); India: N. W. Himalaya (Hook. fil. et Thoms. 183), Kashmir (Jacquem. 1103), Kunavar (Jacquem. 1384), Kumaon, Afghanistan, Luddak, Simla, Bhotan; Sandwich Islands (Douglas 48); ? Japan; N. America: Nootka Sound, Canada, Saskatchewan, United States; Mexico (Galeotti 6386; Schaffn. (1854) 57, 472, (1856) 59 c); New Mexico ** [Gen. 23. Sp. 772.]
Asplenium.

(Fendl. 1203); Columbia, Venezuela (Moritz, 329); Peru (Kuiz Hb. 30); Tarapota (Spruce 4670); W. Indies: Jamaica, Cuba; Australia: Paramatta, Buchan River, Mount Aberdeen Victoria; Tasmania.—Plum. t. B, fig. 1.

Asplenium Adiantum-nigrum, Linn. Fl. Poison, 1020; according to Sadler.

Asplenium oclachophyllum, F. Muell. MS. in lit. et Herb.

Asplenium Newmanii, C. Bolle, Bonpl. vii. 106.

Asplenium saxatile, Salisb. Prod. 493.

Phyllitis rotundifolia, Mannch. Meth. 724.

—§. incisum, Moore, Ferns of Gt. Brit. Nature-Printed t. 39 D. E.; Id. Octavo ed. 102, t. 76 bis A; Id. Handb. Brit. Ferns, 3 ed. 181—Europe: Great Britain, Ireland, France, Bohemia.—Tourn. Inst. t. 315, fig. C; Pluk. t. 73, fig. 6; Schkuhr, t. 74, fig. f.

Asplenium Trichomanes, Schkuhr, Crypt. 69, t. 74 in part. i. e. fig. c. d.

Trichomanes, Thunb.—Asplenium incisum.

{Gen. 28. Sp. 772}
Asplenium.

Trichomanes, b. Lin. Hb.—Asplenium Petrarchae.
Trichomanes ramosum, Lin.—Asplenium viride.
Trichomanes elegans, Soland. MS.—Asplenium viride.
Trichomanes v. majus, Metten.—Asplenium anceps.

[trichomanoides, Lour. Fl. Cochín. 833.—Cochin China.

Asplenium trichomanoides, Sw. Syn. 86.]

trichomanoides, Mich.—Asplenium ebeneum.
trichomanoides, Web. et M.—Asplenium Trichomanes.
trichomanoides, Lumn.—Asplenium Adiantum-nigrum.
trichomanoides, Kze.—Asplenium parvulum.
trichomanoides, Bartl.—Asplenium Selosii.
trichomanoides, Mich.—Asplenium Adiantum-nigrum.

trigonopterum, Kze. Bot. Zeit. vi. 524.—Bouin Isles; Peel Island (Mart. 66).

Asplenium trigonopterum, Metten. Aspl. 107, t. 5, fig. 25.

trilobum, Cav. Praë Lect. (1801) 255.—San Carlos, Chiloe; Marianne Isles.

triptartitum, Bl.—Asplenium prémorsum, 6.
triptartitum? Zoll.—Asplenium prémorsum, γ.

triphylllum, Presl, Rel. Hænck. i. 45; Id. Tentam. Pterid. 108.—Peru (Mathews 606, 966, 1799; Lechl. 1812); Quito (Jameson 80), Pichincha, Chimborazo.

triptinnatum, Roxb.—Asplenium laserpitiifolium.

triste, Klfs.—Asplenium brasiliense.

triste, Raoul.—Asplenium bulbiferum, 8.

truncatilobum, Fée.—Asplenium caudatum.

truncatum, Willd.—Diplazium obtusum.

truncatum, 'Don.' (Pr.)—Asplenium planicaule.

truncatum, Bl.—Asplenium horridum.

truncatum, Kze. Hb.—Diplazium decussatum.

Tussaci, M.—St. Domingo.

Hypochlamys Tussaci, Fée, Gen. Fil. 201; Metten. Aspl. 186.

umbrosum, Klfs. Enum. 168.—Brazil (Mart. 348); Peru; Mexico; Neighbouries (Kurr 29—f. Kze.)

Asplenium umbrosum, Spr. Syst. 84; Presl, Tent. Pter. 106; Kze. Lin. xxiv. 264.

Asplenium auritum, Kze. Lin. ix. 67.—f. Pr.

Asplenium auritum, var. c. Metten, Aspl. 103.
[Gen. 23. Sp. 78.]
Asplenium.

—B. angustum, (Kze. Lin. xxi. 217).—Surinam (Kegel 1439).

umbrosum, J. Sm.—Asplenium Aitoni.

umbrosum, Schrad.—Asplenium auritum, β.

umbrosum, Vill.—Asplenium viride.

umbrosum, Metten.—Callipteris ambiguæ.

unilaterale, Lam.—Asplenium resectum.

unilaterale, β. Lam.—Asplenium monanthemum.

unilaterale, γ. Lam.—Asplenium rhomboidalæ.

unilaterale, Ham. MS.—Asplenium normale.

Asplenium unilobum, Desv. Prod. 276.

unisoriæ, Raddi.—Asplenium rachihbizon.

urophyllum, Wall.—Asplenium macrophyllum.

vacillans, Kze. Bot. Zeit. vi. 172.—Java (Zoll. 412 z.)

Asplenium vacillans, Metten. Aspl. 177.

Tarachia vacillans, Presl, Epim. Sot. 78.

varians, Wall. MS.; Hook. et Grev. Icon. Fil. t. 172.—India:

Nepal, N.W. Himalaya (Hook. fil. et Thom. 179), Kash-

mir (Id. 178), Mussoorie (Jacquem. 504), Simla, Kumaon,

Sirmur, Bhotan, Neillheries; Ceylon (Col. Perad. 318): 3139 in some colls.; Natal.

Asplenium varians, Presl, Tent. Pterid. 108; Fée, Gen. 191; Kze. Lin.

xxiv. 266, in obs.; Metten, Aspl. 141.

Asplenium spinifrom, Kze. Lin. xviii. 117; Metten, Aspl. 141.

Asplenium parvulum, Wall. Cat. 2207.

Asplenium plebsignum, R. Br. in Wall. Cat. 233.

Asplenium Ruta-muraria, Wall. Cat. 233, prius.

—S leptophyllum, Zenker MS.—Neillheries (Schmid 13, 29, 34; Weigle 20 a.)

Asplenium spinifrom, v. leptophyllum, Kze. Lin. xxiv. 266.

varians, J. Sm.—Asplenium cuneatum.

varium, Roxb.—Diplazium Roxburghii.

Veitchianum, M. [Synops. xlix.]—Java (Zoll. 1627); India: Madura.

Darea Belangeri, Bory, Bel. Voy. ii. 51.

Darea furcata, (et var. elongata, pallidum) Bl. Enum. 207.

—β. decorum, M.—Java (Zoll. 1260.)

Asplenium Belangeri, β major, Metten. Aspl. 112.

Darea appendiculata, Bl. Enum. 206 (excl. syn.)

[Gen. 23. sp. 782.]
Asplenium.

villosum, Presl.—Diplazium villosum.
violaescens, M.—Mascaren Islands.
Darea violaescens, Bory, Rel. Voy. ii. 55.
(An Asplenium Fabianum.)
virens, Presl, Rel. Haenk. i. 41. t. 6; Id. Tent. Pter. 107.—Quito; Peru: Ins. Puna (Barcl. 651); Panama; Guyaquil (Fr.)
virens, Desv.—Asplenium abscissum.
villoescens, Metten.—Diplazium villoescens.
Virgilii, Bory.—Asplenium Adiantum-nigrum, β.

Asplenium viridans, Metten. Aspl. 107.
Cenopteris viridans, Spr. Syst. 51.
Darea viridans, Bory, Rel. Voy. 54, in obs.

viride, Hudson Fl. Ang. 385; 2 ed. 453.—Great Britain, Lapland, Finland, Norway, Sweden, Germany, Belgium, France, Italy, Spain, Dalmatia, ? Greece (Heufl.); Russia; Tauria; India: Kumaon; E. Siberia; N. America: Sitka, Rocky Mountains.
Asplenium intermedium, Presl, Del. Prag. 233; Id. Tent. Pter. 108 t. 3, fig. 22; (Heufl. Aspl. Eur. 23.)

vittatiforme, Cav. Praelect. (1801) 255.—Marianne Isles;
Philippine Isles (Cuming 106, 308); Java; Anieteum: Feejee Islands.

Asplenium Callipteris, Fée, Gen. Fil. 180, 193.
Asplenium sundense, Bl. Enum. 175; Mett. Aspl. 91.

vittatiforme minus, Moritz.—Diplazium subserratum.
Asplenium viviparum, Presl, Tent. Pter. 109, t. 8, fig. 20 (excl. syn. H.B.K.)—Mascarene Islands.

Camaropteris vivipara, Berg. Act. Petrov. vi. 250, t. 7, fig. 3; Sw. Syn. 99; Spr. Syn. 99; Desv. Prod. 263; Wall. Cat. 239.

Darea fusciculaceae, Sieb. Fil. axsic.

Asplenium Blumeanum. viviparum, Bl.—Asplenium Blumeanum.

Asplenium vulcanicum, Bl. Enum. 176.—Java (Zoll. 2106); Penang; Ceylon (Col. Perad. 1010 in part; Gardn. 1070 in part.)

Asplenium vulcanicum, Kze. Bot. Zeit. vi. 149; Metten. Aspl. 94, t. 4, fig. 2.

Asplenium longipes, Fée, Gen. Fil. 191, 185; Id. Iconogr. Nov. 49, t. 16, fig. 3; Metten. Aspl. 95.

Wagnerianum, A. Br.—Diplazium Wagnerianum.

Wagnerianum, Bl. Enum. 176.—Java (Zoll. 2106); Penang; Ceylon (Col. Perad. 1010 in part; Gardn. 1070 in part.)

Asplenium coriaceum, Bory, Bot. Voy. ii. 46, non Desv.; Metten. Aspl. 95.

Asplenium serricula, Fée, Gen. Fil. 196 (Gardn. 30, Ceylon)

Willdenovii, Presl, Tent. Pter. 290.—?

woodwardioides, Bernh.—Lomaria woodwardioides.

woodwardioides, Gardn.—Asplenium serra, f.

zamisefolia, Willd. Sp. Pl. v. 325.—Columbia: Caracas (Moritz 102; Otto 662)—f. KL; Mexico (Pr.)

Asplenium zamisefolium, Presl, Epin. Bot. 76, (excl. syn. Spr.)

zamisefolium, Lodd.—Asplenium dimidiatum.

zamisefolium, Presl. (Rel. H.)—Asplenium falcatum.

[Gen. 23. Sp. 794.]
Athyrium.

Zenkerianum, Kze. Lin. xxiv. 259.—India: Neilgherries (Schmidt 39, 100.)

Asplenium Zenkerianum, Metten. Aspl. 98.

Zeyheri, Pappe et Raws.—Asplenium erectum, γ.

Zolienae, Kitaib. Hb.—Asplenium Ruta-muraria, γ.

Athyrium, Roth. Tent. Fl. Germ. iii. 58 (reduct); Presl, Tent. Pter. 97. [Synopsis p. xlix.]
aichilleifolium, Fée.—Asplenium aichilleifolium.
aerostichoidesum, Bory.—Athyrium Filix-femina.
alpestre, Nyland.—Polypodium alpestre.
alpinum, Spr.—Cystopteris regia.
angustum, Presl.—Athyrium asplenioides, β.
angustum, Liebm.—Athyrium Martensii.

Athyrium arcuatum, Metten. Aspl. 201.
aspidioides, Presl, Tent. Pter. 98.—India.

Athyrium asplenioides, Metten. Aspl. 199.
Asplenium asplenioides, Spr. Syst. iv. 90.
Cystopteris asplenioides, Desv. Prod. 268.

asplenioides, Desv. Prod. 266.—N. America: Indiana, New Orleans (Drum. 497), Oregon; Labrador; Newfoundland; Peru (Lechli. 2033).

Athyrium asplenioides, Fée, Gen. 186.

—β. angustum, M.—N. America; Nootka Sound; Mexico (Schaffn. (1855) 317).

Asplenium angustum, Presl, Rel. Hauk. i. 39; Id. Tent. Pter. 98; Desv. Prod. 268; Fée, Gen. 186.

Athyrium Michauxii, Fée, Gen. 188; Id. Cat. lith. Foug. Mex. 15.

Asplenium Michauxii, Spr. Syst. 89; Kze. Sill. Journ. 2 ser. vi. 88; Id. Lin. xxiii. 235; Lowe, Ferns. v. t. 37.

Athyrium.

Asplenium elatius, Link, Fil. Sp. 94; Kze. Lin. xxiii. 294.
asimile, Presl.—Asplenium assimile.
atomarium, Presl.—Cystopteris tenuis.
australe, Presl.—Asplenium australale.
aureum, Presl.—Asplenium Aitoni, B.
axillare, Presl.—Asplenium Aitoni, B.
basilare, Fée.—Asplenium sylvaticum.
comosum, Presl.—Alsophila comosa.
conchatum, Fée.—Asplenium achillesfolium.
conchatum, Fée (fig.)—Asplenium costale.
convexum, Newm.—Athyrium Filix-femina, B.
crenatum, Opiz.—? Athyrium Filix-femina.
corsicum, Fée, Gen. 186.—Corsica.
Athyrium corsicum, Metten. Aspl. 199.

costale, M. [Synops. xlix].—Java (Lodd 272); India: N.W. Himalaya, Sikkim (Hook. fil. et Thom. 206), Khasya, Neighberries; Ceylon (Gardin. 1944, 1945).
Aspidium costale, Bl. Enum. 170.
—B. polystichoides, Moore, Sched. Hb. Ind. Or.—India: Khasya (Hook. fil. et Thom 206*).
crenatum, Ruprecht, Dist. Crypt. Ross. 40.—N. Europe:
Lapland, Norway, Sweden, Russia, ? Hungary; Ural Mountains, Siberia, Davuria, Kantschatka.
Athyrium deltoideum, Newman, Phytol. 1851, app. xi.
Aspidium sibiricum, Turcz. ‘Pl. Excis. a 1832’; Besser, Flora, 1834, 268.
cuneatum, Heufi.—Asplenium fissum.

Athyrium.

brevisorum, M.—India: Ava; Mishmee.
Asplenium brevisorum, Wall. Cat. 220.

eylanenses, M.—Ceylon.
Asplenium eylanense, "KL": Cat. Hort. Van Houtte, 1558.
Diplazium eylanense, Moore, ante p. 119.
cyclorum, Rupr.—Athyrium Filix-femina, ζ.
decurtatum, Presl, Tent. Pter. 98, t. 3, fig. 3 (sori simple)—
Brazil (Kze.)
Athyrium decurtatum, Fée, Gen. 186.
Asplenium decurtatum, Kze. Hort. Ber.—f. Presl; Id. Lin. xxxii. 233;
Link, Fil. Sp. 94; Fée, Gen. 191; J. Sm. Cat. Kew Ferns, 5; Id. Cat.
Ferns, 47; Metten. Fil. Lips. 17, t. 13, fig. 17, 48; Id. Aspl. 201;
Low, Ferns, v. t. 45.
Allantodia decurtata, Kze. Lin. xxiv. 269, in obs.
Diplazium pubescens, Lowe, Ferns, v. t. 52.
deltoides, Newm.—Athyrium creuatum.
depauperatum, Schum.—Athyrium Filix-femina.
distans, M. [ante p. 125].—India: Nepal.
Asplenium distans, Don, Prod. Fl. Nep. 9; Spr. Syst. 90; Metten.
Aspl. 200.
Dombeyi, Desv. Prod. 266.—Peru.
Athyrium Dombeyi, Metten. Aspl. 200.
expansum, M. [ante p. 91].—America merid. —f. Willd.
Filix-femina, Roth, Fl. Germ. iii. 65.—Great Britain, Scandi-
navia, Russia, Holland, Belgium, France, Switzerland,
Germany, Italy, Spain, Portugal, Hungary, Transylvania,
Croatia, Greece; Caucasus; Ural Mountains; Siberia:
Altaï, Lake Baikal; Davuria; Kamtschatka: Ajan (Tiling
355); India: Kumaon, Sikkim, (Hook. fil. et Thom. 205,
205* narrow), Simla, N. W. Himalaya; ? Japan (subdel-
toid); Madeira; Tenerife; Canary Islands: Palma
(Bourg. 145); Azores; Algiers; N. America; Sitka;
Vancouver’s Island; Caracas (Lind. 518); Cuba.

Athyrium Filix-femina, Desv. Prod. 266; Presl, Tent. Pter. 98, t. 3,
fig. 5; Fée, Gen. 186; Rupr. Dist. Crypt. Ross. 40, (incl. β.)
144; Id. Ferns of Gt. Brit. Nature Printed, tt. 30—32; Id. Octavo
ed. ii. 8, t. 52; Sowerby, Ferns of Gt. Brit. 43, t. 28.
3 ed. 215; Moore, Handb. Brit. Ferns, 1 ed. 94; 2 ed. 139; Sowerby,
Ferns of Gt. Brit. 44.
Athyrium acrostichoides, Bory; Merat, Fl. Par. 4 ed. 372,—f. Metten.
Athyrium.

Athyrium molle, Roth, Fl. Germ. iii. 61; Newm. Nat. Alm. 1845, 46; Id. Phytol. 1861, app. xii.; Id. Hist. Brit. Ferns, 3 ed. 216, in part. Athyrium ovatum, Roth, Fl. Germ. iii. 64. (Mull. Fl. Frd. t. 2, fig. 3.)

Athyrium triquetrum, Roth, Fl. Germ. iii. 68.

Asplenium cyathoides, Bernh.—f. Webn. et M.

Asplenium intermedium, Link, Enum. alt. ii. 469.—f. Link.

Polypodium Felix-femina, B. dentata, Weis, Crypt. 315.

Polypodium dentatum, Hoffm. Deutschl. Flora, ii. 7 [Sturm, Fl. (Farnn.) i. t. 6.]

Polypodium dentigerum, Wall. Cat. 334 (Kumaon).

Polypodium trifidum, Hoffm. Ram. und Ust. Bot. Mag. 1790, pt. 9, 10; Id. Deutschl. Fl. ii. 7 (non With.).

Polypodium pediculiferum, Hoffm. Deutschl. Fl. ii. 10 (molle).

Polypodium Lessblati, Merat, Fl. Por. 2 ed. 276.

Polypodium leptatum, Bory.—f. Metten.

Cystopteris Felix-femina, Cos. & Germ. Fl. Par. 676 (Webb).

Tectaria Felix-femina, Cuv. Pral. (1801) 251; Ann. Cien. Nat. iv. 100;

—β. rhaticum, Moore, Ferns of Gt. Brit., Nature-printed t. 31 A; Id. Octavo ed. ii. t. 57 A; Id. Handb. Brit. Ferns, 3 ed. 144.—England, France, Germany.—Bauhin iii. 477 (fig. bona.—f. Roth.) ; Pluk. t. 180, fig. 4.

Adiantum denticulatum, Burn. Fl. Ind. 296.

Athyrium.

Spreng. Syst. 104.
Aspidium rhaeticum, Spreng. Syst. 107.

— y. marinum, Moore, Pop. Hist. Brit. Ferns, 1 ed. 91;
 t. 53 A.—Scotland.

145; Id. Ferns of Gt. Brit. Nature Printed, t. 31 B; Id. Octavo
ed. ii. 9, t. 54 A.
Athyrium latifolium, Babington MS.—not of Presl.
Presl); Id. Phytol. 1851, app. xii (excl. syn. Hoffm. Roth, Newm.)
Asplenium Filix-femina, 5. latifolium, Hooker and Arnott, Brit. Fl.
6 ed. 674; Moore and Houltson, Gard. Mag. Bot iii. 262.

—6. acuminatum, Moore, Handb. Brit. Ferns, 3 ed. 156;
Id. Ferns of Gt. Britain, Nature Printed, Octavo
ed. ii. 10, t. 55 A.—Wales.

—c. cyclosorum, Rupr. Dist. Crypt. Ross. 41.—Great
Britain; France; Lapland; Unalaschka; Sitka; North
America.
243; 3 ed. 214; Sowerby, Ferns of Gt. Brit. 44; Moore, Ferns of
Gt. Brit. Nature Printed, under t. 30; Id. Octavo ed. ii. 10, t. 56; Id.
Handb. Brit. Ferns, 3 ed. 159.
Ferns, 3 ed. 214; Id. Fec. Gen. Fl. 157; Id. Iconogr. Novw. 130;
Mitten, Aspl. 109.
Ross. iv. 519.
Athyrium cordatum, Opiz.
Polypodium incisum, Hoffmann, Roem. und Ust. Mag. Bot. 1790, pt. 9, 10,
fig. 13 b; Id. Deutschl. Fl. ii. 7.

—η. plumosum, Moore MS.: Id. Phytologist, n. ser., iii.
(1859) 19; Id. Ferns of Gt. Brit. Nature Printed,
Octavo ed. ii. 10, t. 52 B, 56 bis.—England.

—θ. gracile, Moore, Handb. Brit. Ferns, 3 ed. 158; Id.
—England.

Nature-printed, under t. 30; Id. Octavo ed. ii. 11, t.
60 C, 60 bis.—Ireland.

16 *
Athyrium.

Tasselled varieties—

—multifidum, Moore, Handb. Brit. Ferns, 1 ed. 94; 3 ed. 146, 156; Id. Ferns of Gt. Brit. Nature-Printed, t. 33; Id. Octavo ed. ii. 11, 49, t. 61.—England, Scotland, Ireland.—Pluk. t. 254, fig. 3.

Filix-femina, v. Athyrium, Metten.—Athyrium asplenioides.

Filix-femina, v. convexum, Newm.—Athyrium Filix-femina, β.

Filix-femina, v. cristatum, Woll.—Athyrium Filix-femina multifidum.

Filix-femina, v. furcatum, Hort.—Athyrium Filix-femina multifidum.

Filix-femina, v. incisum, Newm.—Athyrium Filix-femina, γ.

Filix-femina, v. latifolium, Bab.—Athyrium Filix-femina, δ.

Filix-femina, v. Michauxii, Metten.—Athyrium asplenioides, β.

Filix-femina, v. molle, Newm.—Athyrium Filix-femina.

Filix-femina, v. marimum, Moore.—Athyrium Filix-femina, γ.

Filix-femina, v. ramosum, Moore and H..—Athyrium Filix-femina depauperatum.

Filix-femina, v. rhæticum, Deak.—Athyrium Filix-femina, β.

Filix-femina, v. sitchense, Ruhr.—Athyrium Filix-femina, γ.

Filix-femina, v. vivipara, Steele.—Athyrium Filix-femina multifidum.

[Gen. 24. Fr. 909.]
Athyrium.

? flexile, Moore.—Polypodium alpestre, β.

foliolosum, Moore, Cat. Hort. Sim., 1859 ; Id. Sched. Hb. Ind. Or.—India : Nepal, Sikkim, (Hook. fil. et Thom. 207. 209), Khasya, Assam, Neigberries; Ceylon (Gard. 1065, 1112, 1372); Java.

Asplenium foliolosum, Wall. Cat. 2205.

Asplenium desiplens, Metten. Aspl. 195, t. 6, fig. 9, 10.

Asplenium macrocarpum, Bl. MS. : Hb. Hook.; J. Smith, Cat. Ferns 47.

Aspidium foliolosum, Wall. Hb.

Aspidium squarrosum, Wall. Cat. 356.

fontanum, Roth — Asplenium fontanum.

fragile, Sadler.—Cystopteris fragilis.

fumarioides, Preel.—Cystopteris fragilis, 5.

Galeottii, Fée.—Athyrium Martensii.

Gaudichaudii, Fée, Gen. Fil. 186, 188.—Sandwich Isles.

Goringianum, M.—Japan, (Goring 115.)

Asplenium Goringianum, Metten. Aspl. 198, t. 6, fig. 11, 12.

Lastrea Goringiana, Moore, ante p. 93.

grammitoides, Fée MS.—Diplazium grammitoides.

Halleri, Roth.—Asplenium fontanum.

Hankeanum, Preel.—Asplenium eciutarium.

Hohenackerianum, M. [Synops. xlii.]—India : Malabar, Concan, Hatta (Hook. fil. et Thom. 213, 213*), Canara (Hohenack. 211); Crete.

Hookerianum, M. Sched. Hb. Ind. Or.—India : Sikkim, (Hook. fil. et Thom. 204)

incisum, Newman.—Athyrium Filix-femina, δ.

irriguum, Gray.—Athyrium Filix-femina, β.

lanceolatum, Heufl.—Asplenium lanceolatum.

lanceum, M.—Java. (Zoll. 1714).

Asplenium fallax, Metten. Aspl. 194, t. 6, fig. 7, 8.

Nephroidium lanceum, Moore, ante p. 95.

latifolium, Bab. MS.—Athyrium Filix-femina, δ.

latifolium, Preel., Tent. Pler. 98, t. 3, fig. 4; Id. Epim. 66.—Chili, (Cuming).

Athyrium.

macrocarpum, Fée.—Asplenium macrocarpon.
Martensii, M.—Mexico (Lind. 46; Galeotti, 6269, 6366; Schaffn. (1855) 291, 316); California (Bridges 303; New Grenada (Lind. 1406).

Athyrium Galeottii, Fie, &en. & Ml. 186, 187.
Id. Oat. lith. Foug. Mex. 15.

medium, M.—Tristan d'Acunha.

Michauxii, Fée.—Athyrium asplenioideis, β.
molle, Roth.—Athyrium Felix-femina.
montana, Röhl.—Cystopteris montana.
multicaudatum, Presl.—Asplenium multicaudatum.
nigripes, Moore,—Athyrium tenuifrons, β.
oboatum, Fée.—Asplenium oboatum.
ovoatuam, Roth—Athyrium Felix-femina.
oxophyllum, Newman.—Athyrium Felix-femina, 8.

oxophyllum, M. [Synops. xlix.]—India: Nepal, Assam, Sylhet,
Khasya (Hook. fl. et Thoms. 215), Sikkim, Bootan;
Ceylon.
Asplenium ebumeum, J. Sm. Cat. Ferns, 47; Metten. Asplen. 194.
Polyodium oxophyllum, Wall. Cat. 324.
Polyodium drepanopteris, Kunze, Lin. xxiii. 318.
Polyodium crispum, Ham. MS.
Asplenium ebumeum, Wall. Cat. 369; Kunze, Lin. xxiii. 226.
Aspidium drepanopteron, Metten, Fil. Lipe. 93 t. 19, fig. 1, 4.

pectinatum, Presl, Tent. Pier. 98.—India: Nepal, Kumaon,
Simla, (Hook. fl. et Thom. 204*).
Asplenium pectinatum, Wall. Cat. 231, (excl. Allantodia incisa); Metten. Asplen. 197 (excl. Allantodia indica).
Allantodia pectinata, Kunze Hb.—f. Metten.

pentagonum, M.—Moulmein, (Lobb 370).
Poirietianum, Presl.—Athyrium scandicum.
Pontederas, Desv.—Cystopteris fragilis, 5.
puncticaule, M.—Java.
Athyrium.

Aspidium puncticaule, Bl. Enum. 159.
(An Athyrium foliolosum.)

regium, Spreng.—Cystopteris regia.
rhaticum, Roth.—Athyrium Filix-femina, β.
rhaticum, Sadl.—Cystopteris fragilis, γ.
rutaceum, Presl.—Asplenium rutaceum.

Athyrium sandwichianum, Fée, Gen. Fil. 186; Metten. Asplen. 197.
Asplenium mimosefolium, J. Sm. MS.

scandicinum, Prest, Tent. Pter. 98; Id. Epim. Bot. 67.—
Bourbon; Madagascar; South Africa; Natal; Sandwich Isles (Douglas 41); India: Dendigal; Ceylon (Gardn. 1346; Col. Perad. 1346.)

Athyrium scandicinum, Fée, Gen. Fil. 186.

Athyrium Poiretianum, Prest, Tent. Pter. 98; Fée, Gen. Fil. 186.

Asplenium dissectum, Nuttall MS.

Allantodia scandicina, Kautf. Enum. 179; Spreng. Syst. 95.

Cystopteris scandicina, Desv. Prod. 264.

Nephrodium scandicinum, Bory, Bel. Voy. ii. 63.

Athyrium Schimperi, Metten. Asplen. 200.

Skinneri, Moore, in Hb. Hook.—Guatemala.

Solenopteris, M. [ante p. 43].—India: Neilgherries (Schmid 68, 69, 71, 97, 128; Weigle 18; Hohenack. 1270).

Allantodia Solenopteris, Kunze, Lin. xxiv. 296.

Asplenium Solenopteris, Metten. Asplen. 106.

Lotzea Solenopteris, Kunze Hb.—Metten.

Solenopteris, nov. gen. Zenker MS.

—β. pusilla, M.—Neilgherries.

spectabile, Prest.—Asplenium spectabile.

[Gen. 24 Sp. 831.]
Athyrium.

sphaeroarpum, Fée, Gen. Fil. 186.—Mexico (Galeotti 6425; Coulter 1699, 1710).

Athyrium sphaeroarpum, Metten. Aspl. 201.

stramineum, J. Sm.—Athyrium tenuifrons, γ.
strigillosum, Moore Hb.—Athyrium tenuifrons.
tenua, Presl.—Cystopteris tenuia.
tenerum, Fée.—Asplenium australe.

tenuifrons, M. [ante p. 43]—India: Nepal, Kashmir (Hook. fil. et Thom. 216); Neilgherries.

Athyrium strigillosum, Moore Hb.
Athyrium setulosum, J. Sm. Sched. Hb. Ind. Or.
Asplenium tenuifrons, Wall. Cat. 206.
Asplenium denticulatum, J. Sm. Cat. Ferns, 47.
Asplenium setulosum, "Wall."; J. Sm. Cat. Kew Ferns, 5.
Asplenium strigillosum, Lowe, Ferns, v. t. 38; Metten. Aspl. 190.

Allantodia? tenella, Wall. Hb. (Cat. 206, in part).
Asplenium gracile, Don, Prod. Fl. Nep. 8; Spreng. Syst. 88; Metten. Aspl. 105.
Athyrium nigripes, Moore, Synon. xlix; et ante 98; Metten. Aspl. 195.
Asplenium nigripes, Bl. MS.; Hb. Hook.
Aspidium nigripes, Bl. Enum. 162.

—γ. stramineum, Moore, Sched. Hb. Ind. Or.—India: Khasya (Hook. fil. et Thom. 212); Ceylon.

Athyrium stramineum, J. Sm. MS.

tenuisectum, M.—Java.

Aspidium tenuisectum, Bl. Enum. 170.

Thelypteris, Spreng.—Lastrea Thelypteris.

thelypteroides, Desv. Prod. 266.—N. America: Kentucky, Ohio, Canada, Ottawa; Hong Kong; N. W. India; Sikkim, Simla (Hook. fil. et Thom. 210, in part).

Athyrium thelypteroides, Fée, Gen. Fil. 186.
Asplenium acrostichoides, Sw. Schrad. Journ. 1800, ii. 54; Id. Syn., Fil. 82, 275.
Diplazium thelypteroides, Presl, Tent. Pier. 114; J. Sm. Cat. Ferns 48; Lowe, Ferns, v. t. 51.

trifidum, Roth.—Athyrium Filix-femina.

umbrosum, Presl.—Asplenium Aitoni.
AZOLLA, Lamarck, Enc. Bot. i. 343 [Synopsis p. cxxix.]

Africanana, Desv. Prod. 178.—Africa; Natal.
Azolla africana, Metten. Lin. xx. 274.
Azolla plumosa, Kunze, Lin. x. 556.

arbuscula, Desv.—Azolla filiculoides.
Azolla densa, Desv. Prod. 178.
(Probably same as the A. magellanica of all S. America.—A. Gray).
cristata, Kfzs. Enum. 274.—Amer. merid.: Demerara, (Kogel. 673), F. Guiana.
Azolla cristata, Metten. Lin. xx. 278, t. 2, fig. 1—21; Kunze, Lin. xxi. 241.
densa, Desv.—Azolla caroliniana.

filiculoides, Lam. Enc. Bot. i. 343; Id. Ill. t. 863.—Magelhaen's Straits; Chili, (Pöpp. iii. 267); Monte Video; Brazil; Peru (Lech. 1983); Surinam; N. Grenada; Cuba; N. Holland: Murray River, Victoria.—Dill. Musc. t. 43, fig. 72.

Azolla arbuscula, Desv. Prod. 178.

magellanica, Willd. { Azolla filiculoides.

magellanica, Miq.—? Azolla cristata.
mexicana, Schlecht. Linnaea, v. 625—Mexico (Leibold 150; Schaffn. (1856) 455).
Azolla mexicana, Kunze, Lin. xviii. 352.
mexicana, Presl.—Azolla caroliniana.

microphylla, Kfzs. Enum. 273.—S. America: Peru, (Lech. 1539); Brazil, California; W. Indies: Porto Rico, Cuba.

Azolla portoricensis, Spreng. Syst. iv. 9.
Salviniis Azolla, Ruddi, Fil. Bras. 2, t. 1, fig. 3.
pinnata, Kunze.—Azolla africana.

[Gen. 25. Sp. 841.]
Azolla—Bathmium.

Azolla microphylla, Spreng.—Azolla microphylla.

Azolla rubra, Spreng. Syst. 9; Desv. Prod. 178; Hook. fil. Flora N. Zealand, ii. 56; Metten. Lin. xx. 275.

Balantium, Kaufsuss, Enum. Fil. 228, t. 1; Presl, Tentamen Pter. 134.

antarcticum, Presl.—Dicksonia antarctica.

arborescum, Hook.—Dicksonia arborescens.

auviculum, Klfs.—Dicksonia auviculum.

Berteroanum, Kunze.—Dicksonia Berteroana.

Beyrichii, Röm. MS. : Kunze—? .

Blumei, Kunze.—Dicksonia Blumei.

Brownianum, Presl.—Dicksonia dubia.

Culicita, Klfs.—Dicksonia Culicita.

chrysochlamium, Hassk.—Dicksonia chrysochlamia.

fibrosum, Fée.—Dicksonia antarctica.

glaucescens, Link.—Cibotium Barometz.

Karstenianum, Kl.—Dicksonia Karsteniana.

lanatum, Fée.—Dicksonia lanata.

magnificum, De Vr.—Dicksonia chrysochlamia.

Sellowianum, Presl.—Dicksonia Sellowiana.

squarrosum, Kunze.—Dicksonia squarrosa.

alatum, Fée.—Aspidium alatum.

Aubletianum, Fée.—Aspidium sinuatum.

Billardieri, Fée.—Sagenia sinuosa.

ebeneum, Fée.—Sagenia Pica.

fraxinifolium, Link.—Sagenia macrophylla, γ.

heracleifolium, Fée.—Aspidium trifoliatum.

macrocarpon, Fée.—Aspidium sinuatum.

macrophylhum, Link.—Sagenia macrophylla.

repondum, Fée.—Sagenia repanda.

sinuatum, Fée.—Aspidium sinuatum.

? subfalcatum, Fée.—Pleopeltis Zippelii.

trifoliatum, Link.—Aspidium trifoliatum.

[Oen, 25. Sp 843]
Belvisia—Blechnopsis.

? undulatum, Fée.—Pleopeltis membranacea.
? villosum, Fée.—Aspidium villosum.

Belvisia, Mirbel, Hist. Nat. des Veg. iii. 473.
australis, Mirb.—Actiniopteris australis.
digitata, Mirb.—Schizaea digitata.
silicuosa, Mirb.—Ceratopters thulictroides.
spicata, Mirb.—Hymenolepis spicata.
septentrionale, Mirb.—Asplenium septentrionale.

ovatifolia, Schaffn. MS.—Trichomanes quercifolium.
? serratifolia, Schaffn. MS.—Trichomanes muscoides.

antillarum, K. Müll.—Psilotum triquetrum.
californica, K. Müll.—Psilotum californicum.
capensis, K. Müll.—Psilotum triquetrum.
complanata, Willd.—Psilotum complanatum.
complanata, Sieb.—Psilotum triquetrum.
Deppeana, K. Müll.—Psilotum triquetrum, γ.
dichotoma, Willd.—Psilotum triquetrum.
floridana, K. Müll.—Psilotum triquetrum.
indica, K. Müll.—Psilotum triquetrum, δ.
mariana, K. Müll.—Psilotum triquetrum.
mascarena, K. Müll.—Psilotum triquetrum, δ.
nova-hollandia, K. Müll.—Psilotum triquetrum, β.
oahuensis, K. Müll.—Psilotum triquetrum.
pedunculata, Desv.—Psilotum triquetrum.
ramulosa, K. Müll.—Psilotum complanatum, γ.
Schiedeaana, K. Müll.—Psilotum complanatum, δ.
tannensis, K. Müll.—Tmesipteris tannensis.
truncata, K. Müll.—Tmesipteris tannensis, β.
Zollingeri, K. Müll.—Psilotum flaccidum.

Blechnum melanopus, Hook. Sp. Fil. iii. 64, t. 161.

? adnata, Presl.—Blechnum orientale, δ.
brasiliensis, Presl.—Blechnum brasiliense.
cartilaginea, Presl.—Blechnum cartilagineum.

[Gen. 26 Sp. 844.]
Blechnum. [Synopsis p. xxiv.]

acuminatum, J. W. Sturm, Flora, 1853, 362; Id. Bibra, Reise Südamerika, ii. 81; Id. Enum. Crypt. Chil. 22.—Chili (Lechli. 508 a; Philippi 127); S. Chili; Chiloe.

Blechnum acuminatum, Metten. Fil. Lechli, 13, t. 2, fig. 7—9.
Blechnum Bibreae, Metten. Fil. Lechli. coll. i. 509a.

acuminatum, Fée.—Blechnum occidentale, 8.

adnatum, Reinw. Hb.: Klfs.—Blechnum orientale, 5.
aduncum, Liebm.—Blechnum confuens.
agrostifolium, Goldm.—Blechnum orientale.

alpinum, Metten.—Lomaria alpina.

ambiguum, Klfs.: Sieb.—Blechnum levigatum.
angustatum, Schrad.—Blechnum serrulatum.
angustifolium, Willd.—Blechnum serrulatum.
angustifolium, Poir.—Woodwardia areolata.

angustifolium, Roxb. —? Tänitie blechnoides.

angustifrons, Fée.—Blechnum asplenioides.

arcuatum, Remy M.3.—Blechnum acuminatum.
asperum, Sturm.—Lomaria aspera.

[Blechnum, Linnaeus, Genera Plantarum, ed. 5, 1039.]
Blechnum, Sw. Vetens. Acad. Handl. Stockh. 1817, 72, t. 3, fig. 3.—Brazil: Rio Janeiro, Minas Geraes (Gard. 5304), Goyaz; B. Guiana (Rich. Schomb. 1142, 1174); N. Grénada; Peru (Mathews 1507); Panama (Seem. 18, in part); Mexico (Galeotti 6883).

Blechnum angustifrons, Fée, Cat. Jth. Foug. Mex. 3; Id. Iconogr. Nouv. 25, t. 9, fig. 2.

Blechnum ceteraccinum, Baddi, Ssn. Mfl. 119; Id. Ml. Bras. 52, t. 60, fig. 1; Desv. Prod. 293; Kl. Lin. xx. 348.

attenuatum, Metten.—Lomaria attenuata.

auriculatum, Cav.—Blechnum hastatum.

auritum, Goldm.—Blechnum hastatum.

australe, Lin. Mant. 130.—S. Africa (Eckl. Un. Itin. 29, in part; Krauss 729); Natal; Tristan d'Acunha; Bourbon.

—Pluk. t. 89, fig. 7, sterile.

Blechnum rigidum, Willd. Sp. Pl. v. 400.—f. Hb. (Link.)

Lomaria australis, Link, Fil. Sp. 75 (excl. sym. Presl); J. Sm. Cat. Ferns 40.

Mesothema austral, Presl, Epim. Bot. 112.

—b. obtusum, M.—Island of St. Paul.

australe, Hort.—Blechnum cognatum.

Banisterianum, Poir.—Woodwardia virginica.

Bibra, Metten.—Blechnum acuminatum.

Blumii, M.—Java.

Lomina auriculata, Bl. Enum. 202 (excl. sym.—f. Presl.)

boreale, Sw.—Blechnum Spicant.

boreale, v. strictum, Franc.—Blechnum Spicant, ζ.

Boryanum, Schlech.—Lomaria Boryana.
blechnum, Desv. Bert. Mag. v. 330; Id. Prod. 283.—Brazil
(Mart. 372; Clausen 2116; Gardn. 47; Blanch. 82,
83; Regn. ii. 333): Rio Janeiro; Organ Mountains;
St. Catherine's; S. Brazil; F. Guiana; Peru: Tarapota
(Spruce 4673).

Blechnum brasilense, Ktis. Enum. 159; Spreng. Syst. 94; Presl, Tent.
Pter. 103; Link, Fl. Sp. 79; Kunze, Lin. xxiii. 239; Fée, Gen.
Fil. 74; Brack. U.S. Expl. Exped. xvi. 132; Metten. Fil. Leps. 83;

Blechnum campestre, Hortic. Kze.
Blechnum fluminense, Arrab. Fl. Flum. xi. t. 108.
Blechnum nitidum, Presl, Del. Prag. i. 187.
Blechnum Rileyanum, Hort. Lod.tit.;

—β. corcovadense, Moore, Cat. Hort. Sim. 1859.—Brazil.

Blechnum corcovadense, Radii, Syn. Fil. 16 (excl. syn. —f. Pr.); Id.
calophyllum, Langed. et Fisch.—Blechnum serratulum,
campestre, Hortic.—Blechnum brasiliense.
canariense, Brouss. Hb.—Chelianthes pulchella.
capense, Burm.—Blechnum rigidum.
capense, Schlech.—Lomaria capensia.
caraccaasanum, Jaq. Hb.—Blechnum longifolium.
carolianum, Walt.—Woodwardia virginica.
cartilagineum, Sw. Syn. Fil. 114, 312.—New Holland [Cay-
—f. Wickstr.]: Port Jackson, King George's Sound,
Victoria: Sealer's Cove.

103; Fée, Gen. Fil. 74; Kze. Lin. xxiii. 239, 409; Metten. Fil.
Lips. 83, t. 5, fig. 1–5; Lowe, Ferns, iv. t. 42; Hook. Sp. Fil. iii. 43.
cartilagineum, Schkr.—Blechnum occidentale, β.
caudatum, Cav.—Blechnum occidentale, β.
caudatum, M. et Gal.—Blechnum occidentale, γ.
caudatum, Presl.—Blechnum cognatum.
ceteracinnm, Radii.—Blechnum asplenioideae.
chilense, Metten.—Lomaria chilensis.
ciliatum, M. et Gal.—Blechnum Galeottii.
ciliatum? Bert.—Blechnum hastatum, β.
ciliatum, Presl, Rel. Hænk. i. 50; Id. Tent. Pter. 103.—
Chili.

Blechnum ciliatum, Spreng. Syst. 93; Gay. Chil. vi. 478; Sturm,

[Gen. 27. Sp. 863.]
Blechnum. 195

cognatum, Presl, Epim. Bot. 107.—Peru; Brazil; S. Brazil; Columbia; Mexico.

Blechnum cognatum, Fée, Gen. Fil. 73.
Blechnum australe, Hort.
Blechnum caudatum, Presl, Rel. Hawk. i. 50 (excl. syn.)—f. Pr.
Blechnum digitans, Presl, Tent. Pter. 103; Id. Epim. Bot. 105; Fée, Gen. Fil. 73.
Blechnum glandulosum, Kze. Schler. Supp. i. 132, t. 58, fig. 2 (excl. syn.)—f. Pr.; Id. Bot. Zeit. iii. 284; Id. Lin. xxiii. 239 (excl. var. elongatum); Liebm. Mex. Bregn. 86; Lowe, Ferns iv. t. 41 (too acute).
Blechnum occidentale, Hort. in part.
Blechnum occidentale, v. minor, Hook. Sp. Fil. iii. 51, (excl. var. syn.)

confertifolium, Pohl.—Blechnum serrulatum.

confluens, Schlech. Lin. v. 613.—Mexico.

(Perhaps Blechnum triangulare.)

conjugatum, "Kl."—Blechnum occidentale, γ.
corcovadense, Raddi—Blechnum brasiliense, β.
crispin, Hartm.—Allosorus crispus.

Cunninghamii,* M.—Brazil: Rio de Janeiro (Cunningham), Organ Mountains (Gardn. 184).

Blechnum orientale, Hort. Lodá, olím.

cycadifolium, Sturm.—Lomaria Boryana.
decurrens, Roxb.—? Blechnum orientale, δ.

denticulatum, Sw. Syn. Fil. 113, 311.—Teneriffe.

distans, Presl.—Blechnum cognatum.
divergens, Metten—Lomaria Plumieri.

* (An Blechnum Spicant form. magn.)
elongatum, Presl.—Blechnum orientale.

* B. Cunninghamii: fronds oblong ovate, pinnate with 10-12 pairs of approximately pinnae, abruptly caudate, with a long terminal pinna; pinnae spreading, somewhat falcate, oblong-lanceolate acute, the lower ones unequally subcordate and petiolate, upper ones more or less dilated rounded and adnate at the base, uppermost ones crowded; sori costal, often not reaching to the primary rachis; stipes pale-coloured, with scattered scales.—This plant looks like an enlarged form of gracile, with more numerous pinnae, merging into occidentale: between which species it is intermediate in general aspect. Stipes 6 inches long; lamina excl. terminal caudate pinna 6 inches; terminal pinna 3 inches; lower pinnae 2-2½ inches.
Blechnum elongatum, Gaud.—Blechnum nitidum.

Blechnum extensum, Metten.—Lomaria elongata.

Blechnum extensum, Fée, Gen. Fil. 73, 75.—Brazil.

Blechnum falcatum, Lodd.—Blechnum occidentale.

Blechnum falcatum, Moritz Hb.—Blechnum occidentale, γ.

Blechnum falcatum, Presl.—Blechnum occidentale, γ.

Fendleri, Hook. Sp. Fil. iii. 48, t. 158.—Venezuela (Fendl. 116).

Finlaysonianum, Wall. Cat. 2172 : Hook. et Grev. Icon Fil. t. 225.—India : Martaban, Tenasserim, Malacca (Cuming 370) ; Penang ; Singapore ; Borneo : Labuan.

Blechnum zamiifolium, Griff. MS.

Blechnum orientale, Wall. Cat. 57, in part (no. 3).

Asplenium ? penangianum, Wall. Cat. 196 (young, sterile).

Salpichliana Finlaysoniana, Fée, Gen. Fil. 79.

flabellatum, Presl.—Actiniopteris australis.

fluminense, Arrab.—Blechnum brasiliense.

Fontanevianum, Gaud.—Sadleria cysteoides.

fraxineum, Willd. Sp. Pl. v. 413.—Columbia (Moritz 129) ;

Cumaná (Funk 212), Venezuela (Fendl. 112, 113),

N. Grenada (Schlim 752) ; La Paila ; Antioquia.

Blechnum fraxineum, Sprang. Syst. 93 ; Presl, Tent. Pter. 103; Fée, Gen. Fil. 74.

Blechnum fraxinifolium, Desv. Prod. 284.

Blechnum latifolium, Moritz, Bot. Zeit. xii. 855.—f. A. Br.

Lomaria Bredemeyeriana, Kl. Lin. xx. 346.

fraxinifolium, Desv.—Blechnum fraxineum.

Galeottii, M.—Mexico (Galeotti 6284 bis)

Gayanum, Sturm.—Lomaria alpina, β.

Giganteum, Schleich.—Lomaria heterophylla.

Gilliesii, Metten.—Lomaria Gilliesii.

Glabrum, Roxb.—Tænitis blechnoides.

Glandulosum, Link.—Blechnum unilaterale.

Glandulosum, Kze.—Blechnum cognatum.

glandulosum, Wall.—Blechnum occidentale.

Glandulosum v. elongatum, Kze.—Blechnum occidentale, γ.

Gracile, Kfis. Enum. 158.—Brazil ; Peru (Mathews 1806),

[Gen 27. Sp. 884.]
Blechnum.

Tarapota (Spruce 4026); B. Guiana (Rich. Schomb. 1177); Columbia (Moritz 630), Caracas, Venezuela (Fendl. 113); Guatemala; Mexico (Galeotti 6302—f. Pr.; Schaffn. (1854) 99, (1856) 478; Jurgen sen 734.)

gracile, M. et Gal.—Blechnum intermediate (Hk.) gracile, Hort. in part.—Blechnum longifolium.

Gueinzii, M.—Natal.

Lomaria Gueinzii, Mougot Hb.: Bée, Gen. Fil. 68, 69, t. 5 B, fig. 9 (stipep.)
Lomaria salicifolia, Bée, Gen. Fil. 68; Hook. Sp. Fil. iii. 41.

hastatum, KLfs. Enum. 161.—Chili (Cuming 36, 87, 489; Lechli. 508; Poepp. 287; Philippi 213, 387; Bridges 178, 807); Juan Fernandez (Bert. 99, 847, 1559); Buenos Ayres; Monte Video; Uruguay; Brazil; Peru.

Blechnum tribulum, Presl, Bot. Hæm. i. 50, t. 9, fig. 2; Id. Tent. Pter. 103; Hook. et Grev. Icon. Fil. t. 192; Bée, Gen. Fil. 74.
Lomaria blechnoides, Don. Prod. 289.
Lomaria hastata, Kze., Lin. x. 608 obs.; xxiii. 260; Id. Schlr. Supp. i. 119, t. 55, fig. 1; KL. Lin. xx. 346 (excl. syn. Pr.—f. Presl.)
Lomaria mucionata, Gillies MS.—f. Hk. and Grev.
Lomaria trihosa, Bée, Gen. Fil. 68.
Mesotheca auriculatum, Presl, Epim. Bot. 112.
Mesotheca tribulum, Presl, Epim. Bot. 112.

—β. minor, Hook. Sp. Fil. iii. 58.—Juan Fernandez.

Blechnum ciliatum, Bert. MS. Hb. 1535.—f. Kze.
Blechnum pubescens, Hook. Icon. Pl. t. 97.
Blechnum remotum, Presl, Tent. Pter. 103; Bée, Gen. Fil. 74; Sturm, Enum. Crypt. Chil. 28.
Blechnum pubescens, Kze. Schlr. Supp. 122, t. 55, fig. 2.

—γ. pinnato-pinnatifidum, M.—Chili.

17** [Gen. 27. Sp. 886.]
Tenitis decipiens, Spreng. MS.

Blechnum helveolum, Fée, Gen. Fil. 73, 75.—Brazil (Blanch. 2243); Caracas (Moritz 17).

Blechnum helveolum, Hook. Sp. Fil. iii. 61.

heterocarpon, Fée, Gen. Fil. 73, 74.—Brazil.

Blechnum heterocarpon, Hook. Sp. Fil. iii. 45.

heterophyllum, Schlecht.—Lomaria heterophylla.

heterophyllum, Opiz.—Blechnum Spicant.

Houttuynia, Poir.—Woodwardia orientalis.

humile, Salisbury.—Blechnum occidentale.

hymenureum, Kl. MS.—Salpichlena volubilis.

imbricatum, Bl.—Blechnum orientale, γ.

impressum, Fée, Gen. Fil. 73, 75.—Columbia (Lind 256).

Blechnum impressum, Hook. Sp. Fil. iii. 61.

indicum, Burma.—Blechnum serrulatum.

integerrimum, Spreng. Syst. iv. 93.—Brazil.

Blechnum integerrimum, Presl, Tent. Pter. 103; Id. Epim. Bot. 103.

intermedium, Link, Hort. Ber. ii. 71; Id. Fil. Sp. 77 (excl. syn. Klfa.)—Columbia (Moritz 126), Venezuela; Brazil; Guatemala; Mexico (Lind. 72; Galeotti 6302).

jamaicense, Hort.—Blechnum occidentale.

japanensis, M.—Japan : Hakodadi.

Lomaria Spicant, β. japonicum, Hook. Sp. Fil. iii. 15.

japonicum, Houtt.—Woodwardia orientalis.

japonicum, Lin.—Woodwardia japonica.

javanicum, Bl.—Blechnum orientale, β.

Kaulfussianum, Gaud.—Sadleria cyathoidea.

lævigatum, Cav. Præl. (1801) 263.—N. Holland, Port Jackson.

Lomaria ambiguæ, Fée, Gen. Fil. 68.

Orthogramma lævigata, Presl, Epim. Bot. 121.

—Brazil (Gard. 50); Peru : Tarapota (Spruce 4672.)

[Gen. 27. Sp. 674.]
Blechnum.

199

Blechnum trifoliatum, Presl, Epim. Bot. 104.—Brazil; Panama: Veraguas (Seem. 1556).—Hook. Icon. Pl. t. 970, left hand fig.

Blechnum lanceolata, A. Br.—Lomaria lanceolata.

Blechnum lanceolatum, Raddi.—Blechnum lanceolata.

Lanceolatum, A. Br.—Lomaria lanceolata.

lanceolatum, Spreng. Syst. 92; Presl, Tent. Pter. 103.

—B. trifoliatum, Presl, Epim. Bot. 104.—Brazil; Panama: Veraguas (Seem. 1556).—Hook. Icon. Pl. t. 970, left hand fig.

Blechnum lanceolata, A. Br.—Lomaria lanceolata.

Blechnum lanceolatum, Raddi.—Blechnum lanceolata.

Lanceolatum, A. Br.—Lomaria lanceolata.

Blechnum lancifolium, H. B. : Willd. Sp. Pl. v. 413.—N. Andalusia; Columbia (Moritz. 24, 127; Wagener 109), Venezuela (Fend. 114, 115 large; N. Grenada; Peru (Spruce 4026) W. Indies: Trinidad, St. Vincent’s.

Blechnum caracassanum, Jusq. Hb.—f. Pr.

Blechnum gracile, Hort.—form. magn.

Blechnum meridense, Metten. Fœe, Gen. Fil. 73.

—B. serrulatum, Cav.—Blechnum orientale, β.

Blechnum serrulatum, v. robustior, Hook.—Blechnum fraxineum.

L’Herminieri, Metten.—Lomaria L’Herminieri.

Lyratum, Moritz. (Bot. Zeit. xii. 855.)

Magellanicum, Metten.—Lomaria Boryana.

Malaccense, Fée.—Blechnum serrulatum.

Macrophyllum, Goldm.—Blechnum orientale.

Melanopus, Hook.—Blechnidium melanopus.

Meridionale, Presl.—Blechnum occidentale, γ.

[Gen. 27. Sp. 876.]
Blechnum, KL.—Blechnum longifolium.
meridense, Metten.—Lomaria meridensis.
moluccanum, Desv.—Blechnum serrulatum.
moluccanum, Roxb.—Blechnum orientale.
Moritzianum, KL. MS.—Salpichlaena volubilis.
nitidum, Presl, Rel. Hanc. i. 49 (excl. syn.)—Philippine Islands; Marianas Islands; India: Mishmee; S. Brazil (Tweedie 1122).
Blechnum nitidum, Hook. Sp. Fil. iii. 44, t. 155 (excl. syn. Schlech.)

—ß. contractum, Hook. Sp. Fil. iii. 44, t. 156—Luzon (Cuming 164); Boyd’s Creek, Island of Gaudalcomar.
nitidum, Presl.—Blechnum brasiliense.
nudum, A. Br.—Lomaria nudus.
occidentale, Linnaeus, Sp. Pl. 1534.—W. Indies: Cuba (Otto 347; Wright 863), Trinidad, St. Domingo, Martinique (Siev. Fl. Mart. 369; Id. Syn. 170), St. Thomas, Jamaica, Dominica, St. Vincent; Mexico (Galeotti 6234, 6440; Schaffn. (1856) 479); Guatemala; Panama (Fendl. 401); Columbia (Otto 446; Moritz 8, 11, 12, 13, 14; Wagener 54), Venezuela (Fendl. 106 ß. 109 small); N. Andalusia; Tumaco; Peru (Ruiz Hb. 32; Spruce 3950; Matthews 3282); Brazil (Mart. 371; Gard. 48; Blanch. 56, 3236); Chili (Cuming 78); Galapagos; Society Isles; Coral Islands.—Plum. t. 62 B; Sloane Jam. i. t. 44, fig. 2; Lam. Illust. t. 869.
Blechnum falcatum, Lodg. Cat.; Kze. Lin. xxiii. 239.
Blechnum glandulosum, Wall. Cat. 56.
Blechnum humile, Salish. Prod. 402.
Blechnum jamaicense, Hort.

—ß. caudatum, Hook. Sp. Fil. iii. 51.—Philippine Islands; Galapagos; Chili (Cuming 156); Quito (Jameson 13); Peru (Spruce 3950); Demerara; Brazil (Gardn. 1903);
Blechnum.

Columbia (Moritz i. 17, 415), Caraccas, Venezuela (Fendl. 106, 111), Ecuador, N. Grenada; Panama (Fendl. 400; Seem. 18) ; Guatemala; Mexico (Galeotti 6397; Schaffn. (1854) 101, 308; (1856) 477; Leibold 48; Lind. 23) ; Galapagos.

Blechnum riparium, Moritz Hb. No. 415.

— γ. minor, Galeotti, Hb. Mex. 6384.—Mexico (Galeotti 6384, 6397, 6285; Leibold. 49; Jurgenscn 634); Guatemala; Panama; Brazil; Columbia (Moritz i. 20, 8, 9, 10 in part, 414; Hartw. 1527; Lind. 38), Venezuela (Fendl. 107, 109 β. acute ant. auricles), Caraccas (Lind. 88, 94, 190, 528), New Grenada (Schlim 227); Peru (Mathews 1805, in part); Quito.

Blechnum acuminatum, Fée, Gen. Fil. 75.

Blechnum occidentale, v. elongatum, A Braun MS.

Blechnum falcatum, Moritz Hb. No. 414.

Blechnum pectinatum, Hook. Icon. Pl. i. t, 95; Presl, Epim. Bot. 106; Fée, Gen. Fil. 73.

Blechnum falciculatum, Presl, Epim. Bot. 106; Fée, Gen. Fil. 73.

Blechnum meridionale, Presl, Del. Prag. i. 186; Id. Tent. Petr. 103; Id. Epim. Bot. 105, 261; Spreng. Syst. 42; Fée, Gen. Fil. 73; Kze. Lin. xxi. 409.

occidentale γ. minor, Hk. { Blechnum occidentale, γ.

occidentale γ. minor, Gal.—Blechnum meridionale.

occidentale γ. elongatum, A. Br.—Blechnum occidentale, γ.

occidentale γ. pectinatum, Hook.—Blechnum occidentale, γ.

occidentale γ. onolecoides, Sw.—Lomaria onolecoides.

orientale, Lin. Sp.Pl. 1535.—India (Hook. fl. et Thoms. 162) : Nepal, Sylhet, Neiugheries (Weigle 15), Sikkim, Khaya, Assam, Chittagong, Moulmein, Amherst; Ceylon (Gard. 1085); Penang; Singapore; Malacca; Java (Zoll. 1034, —spec. min. Fr., 3094); Sumatra; Moluccas; Amboyna; Philippines; China: Hong Kong (Champ. 551; Seem. 2391); Society Islands: Tahiti; Coral Island; Fitzroy Island; Feejee Islands; Samoan Islands.

[Gen. 27. Sp. 679.]

Blechnum elongatum, Presl MS. Hb. Meyer; Id. Tent. Pter. 103.
Blechnum latifolium, Presl, Tent. Pter. 103.
Blechnopsis orientalis, Presl, Epim. Bot. 117.
Blechnopsis pyrophylla, Presl, Epim. Bot. 117.
Salpichlaena orientalis, Fée, Gen. Fil. 79.

—β. longifolium, (Sw. Syn. Fil. 114.)—Marianne Islands; Philippine Islands (Cumming, 257, 166: not 165); Java; Penang; New Ireland; New Caledonia; S. China (Seemann 2308): Canton, Hong Kong.

Blechnum javanicum, Bl. Enum. 197.
Blechnum longifolium, Cavan. Prefect. 1851, 263.
Blechnum pectinatum, Presl, Rel. Hock. i. 61; Spreng. Syst. 93; Presl, Tent. Pter. 103; Kze. Linn. xxiii. 240; Hook. Sp. Fil. iii. 53.
Blechnum salicifolium, Kf. Enum. 160; Spreng. Syst. 92; Presl, Tent. Pter. 103.
Blechnum usnifolium, Fée, Gen. Fil. 74.
Salpichlaena Cumingiana, Fée, Gen. Fil. 79.

—γ. undulatum, Hook. Sp. Fil. iii. 52.—Java, Borneo.
Blechnum imbricatum, Bl. Enum. 198.

—ι. adnatum, M.—Java (Zoll. 1004, 1034—spec. maj. f. Presl.)
Blechnum adnatum, Reiss. MS. Hb. Kf.s.; De Pr. Nederl. Arch. i. 10; Flora 1847, 711.
Blechnum orientale, Moritz, Verz. 112.

orientale, Moritz—Blechnum orientale, β.
orientale, J. Sm.—Blechnum orientale, β.
orientale, Goldm.—Blechnum orientale, γ. [Gen. 27. Sp. 879.]
Blechnum.

orientale, Wall. (57—3)—Blechnum Finlaysonianum.
pallidum, Brack.—Sadleria cyatheoides.
Patersoni, Metten.—Lomaria Patersoni.
pectinatum, Hort.—Blechnum conjugatum.
pectinatum, Presl.—Blechnum orientale, β.
plantagineum, Hook.—Blechnum occidentale, γ.
Plumieri, Metten.—Lomaria Plumieri.
Poöppigianum, Sturm.—Lomaria alpina.
Pohlianum, Presl.—Blechnum unilaterale.
polyethoides, M. et Gal.—Blechnum asplenioides.
polyethoides, Goldm.—Blechnum occidentale.
polyethoides, Kl. (pt.)—Blechnum triangulare.
polyethoides, Raddi.—Blechnum unilaterale.
polydichoides, Brack.—Sadleria squarrosa.
procera, Sw.—Lomaria procera.
productum, Moritz. (Bot. Zeit. xii. 855).
pteropus, Metten.—Lomaria pteropus.
pteridioides, Griff. MS.—Blechnum serrulatum.
pubescens, Hook.—Blechnum hastatum, β.
pubescens, Desv. Prod. 284.—S. America.

Blechnum pubescens, Presl, Epim. Bot. 108; Fée, Gen. Fil. 73.

Blechnum punctulatum, Poir. Enc. Supp. i. 643; Willd. Sp. Pl. 409; Schlech. Adamb. 31, t. 21, 22, fig. 2; Desv. Prod. 284; Spreng. Syst. 39; Fée, Gen. Fil. 74; Metten. Fil. Laps. 65.
Blechnum rigidum, Ecklen, II; Cap.; Un. Itin. 130 b.
Blechnum tricuspe, Kf’s. Sieb. Syn. 5; Id. Fl. Mixt. 283.—f, Kze. et Hook.

Lomaria australis, Lowe, Ferns iv. t. 57, 58.
Lomaria rigida, Fée, Gen. Fil. 68.

pyrophillum, Bl. { Blechnum orientale.
pyrophillum, Kze. }
radiatum, Presl.—Actiniopteris radiata.
rematum, Presl.—Blechnum hastatum, β.
radicans, Lin.—Woodwardia radicans.

[Gen. 27. Sp. 681]
Blechnum.

rigidum, Eckl.—Blechnum punctulatum.

rigidum, Willd. Hb.—Blechnum australe.

Rileyanum, Hort.—Blechnum brasiliense.

riparium, Moritz Hb.—Blechnum occidentale, β.

salicifolium, Klfs.—Blechnum orientale, β.

scabrum, Liebm.—Blechnum unilaterale.

scandens, Ham. Hb.—Lomaria attenuata.

scandens, Bory.—Salpichlæa volubilis.

Schlimense, Fée.—Blechnum fraxineum.

semnivum, Willd.—Pleurogramma pumila.

septentrionale, Wallr.—Asplenium septentrionale.

—N. America: East Florida; S. America: B. Guiana, (Rob. Schomb. 445; Rich. Schomb. 625, 1467; 1436 f. Hook.) D. Guiana: Surinam (Kappl. 1770; Kegel 380); F. Guiana; Brazil (Mart. 870; Blanch. 72, 261; Gaud. 188), St. Catherines; Para (Spruce 35*, 653); S. Brazil: Rio Grande; Panama (Fendl. 329); Guayaquil; W. Indies: Dominica (Imray 77), Trinidad, Bahamas; India: Misbme, Malacca (Cuming 385); Borneo; Amboyna; New Holland; Port Jackson; Australia Felix; Victoria; Moreton Bay; North Australia; Borneo.—Dict. Sc. Nat., Botanique, ed. Levrault t. 88.

Blechnum angustifolium, Willd. Sp. Pl. v. 414; Presl, Bot. Hk. i. 50; Id. Tent. Pter. 103; Spreng. Syst. 93; Splity. Tijdsc. Nat. vii. 419.

Blechnum confrertifolium, Pohl Hb.—f. Presl.

Blechnum indicum, Burm. Fl. Ind. 231; Poir. Enc. Supp. i. 644.

Blechnum malaccense, Fée, Gen. Fil. 74.

Blechnum moluccanum, Desv. Herb. Mag. v. 325; Spreng. Syst. 93 (Amboyna).

[Gen. 27. Sp. 883.]
Polybotrya
PLATE I.

Gen. 1.—**POLYBOTRYA**, *Humboldt* and *Bonpland*.

[Synopsis of Genera p. xv.]

Fig. 1. Portion of sterile frond of *P. osmundacea*, *H.B.K.* (n. s.)

2. Segment of the same, enlarged.

3. Portion of the fertile frond of the same (n. s.)

4. One of the lobes of the fertile frond enlarged, and showing its under surface.

5. Another lobe showing the upper surface.

7. Spores.

8. Fragment of fertile frond of *P. apiifolia*, *J. Sm*.

9. The same, showing its upper surface.

* The figures throughout marked (n. s.) are natural size; the rest are more or less enlarged.
PLATE II.

A.
Gen. 2.—**Rhipidopteris**, Schott. [Synopsis p. xv.]

Fig. 1. Sterile frond of *R. flabellata*, Fée (n. s.)

2. Ultimate segments of the same, enlarged.

3. Fertile frond of the same (n.s.)

4. Portion of the same enlarged, with the spore-cases partially removed.

5. Spore-case.

6. Spores.

B.
Gen. 3.—**Elaphoglossum**, Schott [Synop. p. xvi.]

Fig. 1. Fragment of the sterile frond of *E. conformis*, Schott.

2. Fragment of the fertile frond of the same, with the spore cases partially removed.

3. Spore-case

4. Spores.
A. Rhipidopteris B. Elaphoglossum
PLATE III.

A.

Gen. 4.—**LOMARIOPSIS**, Fée. [Synopsis p. xvi.]

Fig. 1. Fragment of sterile frond of *L. longifolia*.

2. Fertile pinna of the same (n. s.)

3. Fragment of the fertile frond with spore-cases partly removed.

5. Spores.

———

B.

Gen. 5.—**STENOCHLÆNA**, J. Sm. [Synopsis p. xvii.]

Fig. 1. Fragment of sterile frond of *S. scandens*, *J. Sm.* showing the elongated costal areoles.

2. Base of sterile pinna of the same, showing the gland (n. s.)

3. Fertile pinna of the same (n. s.)

4. Fragment of the fertile frond enlarged, under surface.

5. Spore case.

6. Spores.
A. Lomariopsis B. Stenochlaena.
PLATE IV.

A.

Gen. 6.—**OLFERSIA**, Raddi. [Synopsis p. xvii.]

Fig. 1. Fragment of sterile frond of *O. OBVINA*, Kze. (n.s.)

2. Pinna of fertile frond of the same (n.s.)

4. Spores.

5. Fragment of sterile frond of *O. SUBDIAPANA*, Moore (n.s.)

B.

Gen. 7.—**SOROMANES**, Fée. [Synopsis p. xviii.]

Fig. 1. Fragment of sterile frond of *S. SERRATIFOLIA*, Fée (n.s.)

2. Fertile pinna of the same in a somewhat monstrous or partially fertile state (n.s.)

3. Segments of the same, enlarged.

5. Spores.
A. Olfersia
B. Soromanes
PLATE V.

Gen. S.—Neurocallis, Fée. [Synopsis p. xviii.]

Fig. 1. Fragment of sterile frond of N. praëstantissima, Fée, showing the venation (n. s.)
2. Pinna of fertile frond of the same (n. s.)
3. Fragment of the fertile frond enlarged.
5. Spores.
6. Pinna of sterile frond of N. Pinnata, Moore (n. s.)
7. Pinnule of sterile frond of N. Bipinnata, Moore (n. s.)
Neurocallis.
PLATE VI.

A.

Gen. 9.—HYMENODIUM, Frée. [Synopsis p. xix.]

Fig. 1. Fragment of sterile frond of H. crinitum, Frée.
2. Fragment of the fertile frond of the same.
4. Spores.

B.

Gen. 10.—STENOSEMIA, Prest. [Synopsis p. xx.]

Fig. 1. Fragment of sterile frond of S. aurita, Prest (n. s.)
2. Fragment of the fertile frond of the same.
4. Spores.
A. Hymenodion
B. Stenosemia
PLATE VII.

Gen. 11.—**POECILOPTERIS**, Presl. [Synopsis p. 11.]

Fig. 1. Fragment of sterile frond of *P. epifda*, Presl (n. s.)

2. Fragment of sterile frond of *P. subcrenata*, Moore (n.s.)

3. Fertile pinna of the same (n. s.)

4. Fragment of the fertile pinna enlarged, with the spore-cases partially removed.

5. Spore-case.

6. Spores.
Poecilopteris.
PLATE VIII.

A.

Gen. 12.—ANAPAUSIA, Presl. [Synopsis p. xxi.]

Fig. 1. Fragment of the sterile frond of A. aliena, Presl (n. s.)

2. Fertile pinna of the same (n. s.)

3. Fragment of the fertile pinna, with spore-cases partially removed.

4. Spore case.

[5. Spores.

B.

Gen. 13.—ACROSTICHUM, Presl. [Synopsis p. xxi.]

Fig. 1. Fragment of sterile frond of A. aubrum, Lin. (n. s.)

2. Fragment of fertile frond of the same (n. s.)

4. Spores.
A. Anapausia. B. Acrostichum.
PLATE IX.

A.

Gen. 14.—Photinopteris, J. Sm. [Synopsis p. xxii.]

Fig. 1. Fragment of sterile frond of P. speciosa, Bl.
2. Fragment of fertile frond of the same.
4. Sporangiostre.
5. Spores.

B.

Gen. 15.—Platycerium, Desv. [Synopsis p. xxii.]

Fig. 1. Fertile apex of frond of P. alcicornne, Desv. (n. s.)
2. Fragment of the same enlarged.
3. Stellate scales from the surface.
4. Spore case and stalked stellate scale or sporangiostre.
5. Spores.
A. Photinopteris. B. Platycerium.
PLATE X.

A.

Gen. 16.—Dryostachyum, J. Sm. [Synopsis p. xxii.]

Fig. 1. Fragment of sterile frond of D. splendens, J. Sm. (n. s.)
2. Portion of fertile pinna of the same (n. s.)
3. Fragment of the fertile pinna enlarged.
5. Spores.

B.

Gen. 17.—Jenkinsia, Hook. [Synopsis p. xxiii.]

Fig. 1. Fragment of sterile frond of J. undulata, Hook. (n. s.)
2. Pinna of fertile frond of the same (n. s.)
3. Fragment of fertile pinna enlarged.
5. Spores.
A. Dryostachyum. B. Jenkinsia.
PLATE XI.

A.

Gen. 18.—**LOMARIA**, Willd. [Synopsis p. xxiv.]

Fig. 1. Segment of fertile frond of *L. elongata*, Bl. (n. s.)
1. Fragment of the same enlarged.
2. Spore-case.
3. Spores.

B.

Gen. 19.—**BLECHNUM**, Lin. [Synopsis p. xxiv.]

Fig. 1. Portion of fertile pinna of *B. orientale*, Lin. (n. s.)
1. Fragment of the same enlarged.
2. Spore-case.
3. Spores.
4. Fragment of fertile frond of *B. spicant*, Sm.

C.

Gen. 19.*—**BLECHNIDIUM**, Moore. [Synop. addenda.]

Fig. 1. Fragment of fertile pinna of *B. melanopus*, Moore,
showing the sorus, and netted veins on one side the costa, (ex icon. Hook.)
Plate XI

A. Lomaria. B. Blechnum. C. Blechnidium.

J. Fitch, del.
PLATE XII.

A.
Gen. 20.—**SALPICHLÆNA, J. Sm.** [Synopsis p. xxv.]

Fig. 1. Portion of fertile pinna of *S. volubilis, J. Sm.* (n. s.)
2. Fragment of the same enlarged.
4. Spores.

B.
Gen. 21.—**SADLERIA, Klf.** [Synopsis p. xxv.]

Fig. 1. Fragment of frond of *S. cyathroides, Klf.* (n. s.)
2. Apex of segment of the same enlarged, showing the veins.
3. Portion of same still more enlarged.
5. Spores.
A. Salpichlæna. B. Sadleria.
PLATE XIII.

A.

Gen. 22.—**MONOGRAMMA**, Schkuhr. [Synopsis p. xxvi.]

Fig. 1. Small plant of *M. graminea*, Schkuhr, (n. s.)
2. Upper part of one of the fronds enlarged.
3. Fragment of the same, more enlarged.
4. Sporangiastrae.
5. Spores.

B.

Gen. 23.—**DICLIDOPTERIS**, Brack. [Synopsis p. xxv.]

Fig. 1. Fragment of fertile frond of *D. angustissima*, Brack.
(ex icon. Brack.)
2. Fragment of sterile frond.
4. Spores.
A. Monogramma. B. Dichidopteris.
PLATE XIV.

A.

Gen. 24.—PLEUROGRAMMA, Blume. [Synopsis p. xxvii.]

Fig. 1. Frond of P. graminifolia, Presl, (n. s.)
2. Fragment of the same, enlarged.
4. Spores.

B.

Gen. 25.—XIPHOPTERIS, Klfs. [Synopsis p. xxvii.]

Fig. 1. Plant of X. sebrulata, Klfs. (n. s.)
2. Fragment of fertile frond of the same, showing the costal sori.
3. Fragment of the sterile frond of the same.
A Pleurogramma. B Xiphopteris.
PLATE XV.

A.
Gen. 26.—HYMENOLEPIS, Kfz. [Synopsis p. xxviii.]
Fig 1. Upper part of fertile frond of H. spicata, Prest. (n. s.)
2. Fragment of fertile frond of the same.
3. Fragment of sterile frond of the same.
4. Spore-case and sporangiastre.
5. Spores.

B.
Gen. 27.—GYMNOPTERIS, Bernh. [Synopsis p. xxviii.]
Fig. 1. Fertile frond of G. quebecifolia, Bernh. (n. s.)
2. Fragment of sterile frond of the same (n. s.)
3. Fragment of fertile frond of the same.
5. Spores.
A. Hymenolepis. B. Gymnopteris.
PLATE XVI.

A.

Gen. 28.—Scoliosorus, Moore. [Synopsis p. xxix.]

Fig. 1. Fragment of frond of S. ensiformis, Moore, showing the irregular lines of spore-cases (ex icon. Hook.)

2. Spore-case.

B.

Gen. 29.—Holcosorus, Moore. [Synopsis p. xxix.]

Fig. 1. Small plant of H. pentagonus, Moore, (n. s.)

2. Fragment of the frond enlarged, showing its thickness, and the solitary embedded central vein.
A. Scoliosorus. B. Holeosorus.
PLATE XVII.

A.

Gen. 30.—**TÆNITIS, Willd.** [Synopsis p. xxx.]

Fig. 1. Portion of pinna of *T. BLECHNOIDES, Sw. (n. s.)*

1. Fragment of the same enlarged.
2. Spore-case, and sporangiastres.
3. Spores.

B.

Gen. 31.—**SCHIZOLEPTON, Fée.** [Synopsis p. xxx.]

Fig. 1. Fragment of sterile frond of *S. CORDATUS, Fée.*

1. Fragment of fertile frond of the same.
2. Spore-case.
4. Spores.
A. Tænitis B. Schizolepton.
PLATE XVIII.

A.

Gen. 32.—LOMAGRAMMA, J. Sm. [Synopsis p. xxx.]

Fig. 1. Portion of fertile pinna of L. pteroides, J. Sm. (n. s.)
2. Fragment of the same enlarged.
3. Fragment of sterile frond of the same.
5. Sporangia-stre.
6. Spores.

B.

Gen. 33.—DRYMOGLOSSUM, Presl. [Synopsis p. xxxi.]

Fig. 1. Fragment of sterile frond of D. langolatum, J. Sm.
2. Fragment of fertile frond of the same.
4. Spores.
A. Lomagramma, B. Drymoglossum.
PLATE XIX.

A.

Gen. 34.—DIBLEMMA, J. Sm. [Synopsis p. xxxi.]

Fig. 1. Portion of frond of D. samarensis, J. Sm. (n. s.)
2. Fragment of the same enlarged.
4. Spores.

B.

Gen. 35.—PARAGRAMMA, Blume: Moore. [Synopsis p. xxxii.]

Fig. 1. Fragment of frond of P. longifolia, Moore.
2. Spore-case.
3. Sporangiaestre,
4. Spores.
A. *Diblemma*. B. *Paragramma*.
A.

Gen. 36.—Dicranoglossum, J. Sm. [Synopsis p. xxxii.]
Fig. 1. Fragment of frond of D. subpinnatifidum, Moore.
2. Spore-case.
3. Spores.

B.

Gen. 37.—Tæniopsis, J. Smith. [Synopsis p. xxxiii.]
Fig. 1. Fragment of frond of T. graminifolia, J. Sm.
2. Spore-case.
4. Spores.
A. Dicranoglossum. B. Tæniopsis