DIE Beteiligung Deutschlands
an der
Internationalen Meeresforschung

1. Jahresbericht.
DIE BETEILIGUNG DEUTSCHLANDS
AN DER
INTERNATIONALEN MEERESFORSCHUNG

I. BERICHT
BIS ZUM SCHLUSS DES ETATSJAHRES 1902
ERSTATTET VON DEM
VORSITZENDEN DER WISSENSCHAFTLICHEN KOMMISSION

Dr. W. HERWIG
WIRKL. GEIL. OBER-REGIERUNGSRAT.

MIT DREI ANLAGEN:
BERICHTE DER ABTEILUNGEN: KIEL (2) UND HELGOLAND (1).

Reichsforschungsdampfer „Poseidon“.

BERLIN
VERLAG VON OTTO SALLE
1905.
Einleitung.

Es besagt im Wesentlichen:

*) Man vergleiche hierzu die Mitt. des Deutsch. Seefischerei-Vereins Bd. XX. 1904, Seite 112 ff.

Sämtliche obengenannten Staaten nahmen das Christiania-Programm unverändert an. Später trat noch Belgien bei.

Die Deutsche Wissenschaftliche Kommission für die Internationale Meeresforschung setzt sich zur Zeit zusammen aus:

Dr. W. Herwig, Wirkl. Geh. Ober.-Regierungsrat, als Vorsitzendem

Prof. Dr. K. Brandt, Kiel

F. Heinecke, Helgoland

H. Henking, Hannover

O. Krümmel, Kiel

als Mitgliedern
Die von ihr geleiteten Arbeiten werden ausgeführt:
A. durch das zu diesem Zweck im Jahre 1902 begründete Laboratorium der Kgl. Preußischen Kommission zur wissenschaftlichen Untersuchung der deutschen Meere in Kiel mit je einer Abteilung für die hydrographischen und für die biologischen Arbeiten.
B. durch die Kgl. Preußische Biologische Anstalt auf Helgoland.
C. durch das Laboratorium des Deutschen Seefischerei-Vereins in Hannover.

Der Vorsitzende der Deutschen Wissenschaftlichen Kommission

Dr. W. Herwig,
Inhaltsverzeichnis.

Dr. Herwig, I. Bericht bis zum Schluß des Etatsjahres 1902
Dr. Brandt, Bericht über allgemeine biologische Meeresuntersuchungen
Die Fahrten und die Tätigkeit der Kieler Biologen an Bord
Die Tätigkeit der Kieler Biologen im Laboratorium an Land
Dr. Krümmel, Bericht über die hydrographischen Untersuchungen
Personal
Terminfahrten
Laboratorium

Dr. Heincke, Bericht über die Tätigkeit der Biologischen Anstalt auf Helgoland im Etatsjahre 1902

Dr. Herwig, II. Bericht bis zum Schluß des Etatsjahres 1903
Anhang zum II. Bericht von Dr. W. Herwig
Dr. Apstein, Bericht über den Reichsforschungsdampfer „Poseidon“
Dr. Krümmel, Bericht über die Terminfahrt in der Nordsee an Bord des Dampfers „Poseidon“ vom 3. bis 12. August 1903
Vorbemerkung
Verlauf der Fahrt im Allgemeinen
Der wissenschaftliche Betrieb während der Terminfahrt
Das Schiff

Dr. Brandt, Bericht über allgemeine biologische Meeresuntersuchungen
Die Fahrten und die Tätigkeit der Kieler Biologen an Bord
Die Tätigkeit der Kieler Biologen im Laboratorium an Land

Dr. Krümmel, Bericht über die hydrographischen Untersuchungen
Die Arbeiten an Bord
Die Arbeiten im Laboratorium
Einige allgemeine Ergebnisse

Dr. Heincke, Die Arbeiten der Königl. Biologischen Anstalt auf Helgoland im Interesse der internationalen Meeresforschung in der Zeit vom 1. April 1903 bis 31. März 1904. (Mit 7 Abbildungen, 3 Tabellen und 1 Karte)
Methode der Arbeit auf See ... 70
Orte und Zahl der mit dem großen Trawl angestellten Fischzüge 73
Die wissenschaftliche Analyse der Trawlfänge 74
Die Bestimmung des Alters der Fische 76
Die Bestimmung des Geschlechts der Fische 81
Die Bestimmung des Reifegrades der Fische 81
Die Bestimmung der Nahrung der Fische 82
Die Ordnung des in den Trawlzügen gewonnenen Materials 84
Die Fänge mit dem Helgoländer Jungfischtrawl und dem Obertrawl ... 84
Die Untersuchungen über die Eier und Larven der Nutzfische 84
Das Zeichnen (Marken) von Fischen und das Aussetzen gezeichneter Fische . 86
Zusammenstellung aller von der Biologischen Anstalt gezeichneten und wiedergefangenen Schollen 88
Sind durch unsere Arbeiten schon jetzt positive Resultate erzielt, die für die Lösung der praktisch-wissenschaftlichen Fischereifragen von Bedeutung sind? ... 90

Dr. Henking, Bericht über die Tätigkeit des Deutschen See-
fischerei-Vereins bis zum Schluß des Etatsjahres 1903. (Mit mehreren Tabellen und Figuren im Text, 2 Karten und 1 Tafel) 93
Methode der statistischen Anschreibungen 93
Die Fanglisten ... 94
Prüfung der Fanglisten ... 94
Der Fangort ... 97
Prüfung der Fangorte .. 98
Die Beobachtung von Fischerfahrzeugen auf See 98
Monatskarten über die Fischereibetriebe in der Nordsee und den angrenzenden Gewässern ... 100
Umfang der statistischen Ermittlungen 101
Die in Geestemünde 1902 von Fischerfahrzeugen angelandeten Mengen frischer Fische, nach Fangorten verteilt 102
Unterscheidung von Größen-Sortierungen der Nutzfische 104
Zahl und Reisedauer der Fischerfahrzeuge 110
Beachtung der hydrographischen Verhältnisse 111
Erweiterung der Beobachtungen ... 111

Über die Ergebnisse der Fahrt hat der Deutsche Seefischerei-Verein einen eingehenden Bericht erstattet.*)

Vom Mai 1902 ab trat der Forschungsdampfer „Poseidon“ in seinen bestimmungsmässigen Dienst. Am 15. Mai 1902 machte er unter den Augen

des Herrn Staatssekretärs des Innern, Graf von Posadowsky, seine voll befriedigende Probefahrt.

Mit Eintritt des „Poseidon“ in den ihm bestimmten Dienst war ein erstes mühsames Stück der Tätigkeit der wissenschaftlichen Kommission beendet. Es war reich an Arbeit und Verantwortung von dem Tage ab, wo der beste Plan eines Fahrzeuges für zum größten Teil neue eigenartige Zwecke gefunden werden mußte, bis zu dem Tage, an welchem die Herstellung als fertig bezeichnet werden durfte und dem noch freudigeren, an welchem die Erprobung das Schiff als ein ausgezeichnet gelungenes Werk hinstellte.

Die Zeit bis zur November-Terminfahrt wurde dazu benutzt, den „Poseidon“ für die biologischen Zwecke mit der anfangs noch fehlenden hinteren Dampf-Winde und mit den vielfachen Apparaten für die praktisch wissenschaftliche Fischerei auszurüsten. Es erfolgte dann im Oktober die biologische Probefahrt der Königlich Biologischen Anstalt auf Helgoland, welche, durch ungünstiges Wetter in den Erfolgen beeinträchtigt, Ende November noch eine kurze Fortsetzung erfuhr.

Zwischen die beiden Teile der biologischen Probefahrt schob sich die November-Terminfahrt ein, auf welcher der „Poseidon“ nach einander die Kreuzfahrt in der Ostsee und in der Nordsee ausführte.

Die Mängel und Lücken, die bei diesen ersten Fahrten an dem seiner Zweckbestimmung nach für Deutschland völlig neuen Schiff und seiner Ausstattung hervortrat, waren über Erwarten geringfügig und nur solche, die erst aus dem praktischen Gebrauche des Fahrzeuges erkannt werden konnten. Sie wurden zwischen den einzelnen Fahrten rasch beseitigt.

Beheimatet wurde „Poseidon“ in Geestemünde. Die Rücksichten, die die Wahl dieses Hafens herbeiführten, haben sich bis jetzt als richtig herausgestellt.

Nach Beendigung der norwegischen Reise schloß sich im Februar die Termini Fahrt in der Nordsee und in der Ostsee an. Sie füllte fast den ganzen Februar, nachdem der Bremer Vulkan in entgegenkommanderster Weise sich einverstanden erklärt hatte, die unter Garantie fallenden Nacharbeiten nach dem kontraktmäßigen Termin (15. Februar) noch ausführen zu wollen.

Fast der ganze März ging mit einer Untersuchung über die Laichverhältnisse der Nordschifische hin. Sie führte die Biologische Anstalt Helgoland unter Benutzung des „Poseidon“ aus.

Im April wurde mit den Garantiearbeiten auf der Werft des Bremer Vulkan begonnen.
Die wissenschaftliche Kommission, die bekanntlich
1. aus dem unterzeichneten Präsidenten Dr. W. Herwig, Wirklichem
 Geheimen Ober-Regierungs-Rat in Hannover, als Vorsitzendem
 und den Mitgliedern:
2. Prof. Dr. K. Brandt in Kiel, Leiter der Kieler biologischen Arbeiten,
3. Professor Dr. F. Heincke, Helgoland, Leiter der Helgoländer
 biologischen Arbeiten,
4. Professor Dr. H. Henking in Hannover, Generalsekretär des
 Deutschen Seescherei-Vereins, Leiter der statistischen Arbeiten,
5. Professor Dr. O. Krümmel in Kiel, Leiter der hydrographischen
 Arbeiten, besteht,
hat abgesehen von ihren Beratungen bei besonderen Gelegenheiten, z. B.
bei den internationalen Kongressen, sich je nach Bedarf zu Sitzungen
zusammengefunden. Die Zahl der Sitzungen betrug im Jahre 1901 sechs,
im Jahre 1902 sieben. Wiederholt sind zu ihnen Vertreter des Bremer
Vulkan und Vertreter aus Fischereikreisen zugezogen.

Die sonstige Tätigkeit der wissenschaftlichen Kommission läßt sich
in folgende Gruppen einteilen:
1. Es ist darüber beraten, wie der „Poseidon“ für seine praktisch
 wissenschaftliche Tätigkeit am zweckmäßigsten in seinen Einzelheiten
 einzurichten sei, und wie er
 2. mit wissenschaftlichen Geräten, Netzen und dergleichen Inventar-
 stücken auszurüsten und die Ausrüstung dauernd im Stande zu halten sei.
 3. Es wurden die Fahrten des „Poseidon“ vorbereitet.
 4. Das wissenschaftliche Personal für die Untersuchungen wurde
 herangezogen und seine Tätigkeit organisiert.

In naturgemäßer Anpassung an diese Tätigkeit entstanden die drei
Geschäftsstellen in Kiel, Helgoland und Hannover. Über die an diesen
Stellen von den Mitgliedern der wissenschaftlichen Kommission geleistete
Arbeit sind gesonderte Berichte\(^*\) beigefügt. Nur bei der Statistik haben
wir z. Zt. noch auf die Beifügung eines Sonderberichtes verzichtet, weil
die mit Nachdruck in Angriff genommenen Arbeiten sich noch in dem
ersten organisatorischen Stadium befinden, dann aber auch, weil sie —
soweit die internationale Meeresforschung in Betracht kommt — nur einen
kleinen Teil der großen Unternehmung bilden, die der Deutsche Seescherei-
Verein in der Form einer allgemeinen deutschen Seescherei-statistik ins
Leben zu rufen hofft. Hierüber wird er an anderer Stelle eingehend
berichten.

Der Mittelpunkt der äußeren Verwaltungstätigkeit der wissen-
schaftlichen Kommission lag seit deren Beginn in den Händen des Unter-

\(^*\) Siehe die Anlagen.
Die Tätigkeit im Erstsjahr 1902. Hauptbericht.

Am 22. Juli 1902 fand die konstituierende Sitzung des Zentralausschusses für die internationale Meeresforschung in Kopenhagen statt. Von Deutschland wurden zur Teilnahme entsandt Dr. W. Herwig, Wirklicher Geheimer Ober-Regierungsrat und Professor Dr. Krümmel, Kiel.

Die Konferenz beschäftigte sich namentlich mit der allgemeinen Organisation des Unternehmens. Sie setzte verschiedene Kommissionen ein, nämlich:

a. eine Kommission für die Fischwanderungen, Kommission A.
b. eine Kommission für die Überfischung, Kommission B.
c. eine Kommission für die Ostsee, Kommission C.

Da es als erwünscht bezeichnet war, daß die Kommissionen A u. B sich über die zu lösenden Fragen tunlichst bald verständigen sollten, so vereinigten sich ihre Mitglieder in den Tagen vom 4. bis 9. September 1902 auf einer Konferenz in Edinburg, an der von Deutschland Professor Heincke (Helgoland) als Mitglied der Kommission A und Professor Henking
(Hannover) als Mitglied der Kommission B teilnahmen. Leider konnte die Kommission C (Ostsee) in 1902 noch nicht in Tätigkeit treten, weil der Geschäftsführer Dr. Nordquist (Helsingfors) seitens der russischen Regierung seines Amtes enthoben wurde.

Faßt man das Gesamturteil über die Tätigkeit der wissenschaftlichen Kommission zusammen, so darf ihr das ehrende Zeugnis gegeben werden, daß sie die großen Anfangsschwierigkeiten einer eigenartigen neuen Sache glücklich überstand, daß ihre fortlauende Tätigkeit in der angebahnten Organisation eine energische, fruchtbringende und reiche Aussichten eröffnende war und daß dieser schöne Erfolg dem verständnisvollen Zusammenwirken arbeitsgewohnter Männer in erster Reihe zu verdanken ist.
I. Abteilung: Kiel.

1.

Bericht über allgemeine biologische Meeresuntersuchungen.

Von
Prof. Dr. K. Brandt (Kiel).

In dem zweiten Jahre erfolgte zunächst die Anstellung von 3 biologischen Assistenten, deren erste Tätigkeit in der Einrichtung des neuen Meereslaboratoriums bestand. Ende Mai 1902 begannen die Terminfahrten und damit auch die wissenschaftliche Arbeit der 3 Angestellten. Innerhalb der wissenschaftlichen Kommission mußte gleich anfangs eine Arbeitsteilung zwischen den zoologischen Mitgliedern Professor Heincke in Helgoland und mir erfolgen. Dieselbe fand im Mai und Juni 1901 im wesentlichen so statt, daß Professor Heincke die gründliche Untersuchung der Fische, besonders der Nutzfische, übernahm, während mir die übrige Biologie zufiel: die Erforschung der Beziehungen der gesamten Tier- und Pflanzenwelt des Meeres (mit Ausschluß der Nutzfische) zu einander und zu dem umge-
benden Medium. Vor allem kam es mir darauf an, den Kreislauf des Stoffes im Meere, die Ertragsfähigkeit der verschiedenen Meeresgebiete und weiterhin die gesetzmäßigen Beziehungen zwischen der Erzeugung organischer Substanz im Meere und den allgemeinen Produktionsbedingungen näher zu ermitteln. Mir ist kein anderes Problem der Meeresbiologie bekannt, das so, wie die Erforschung des Kreislaufes des Stoffes, das Geschehen im Meere in seinem Kern erfaßte. Aber auch für die mehr praktischen und volkswirtschaftlichen Endziele der internationalen Meeresuntersuchungen ist es von großer Bedeutung, wenn die für das Land ermittelten Erfahrungen und Untersuchungsergebnisse auch auf die Wasserkultur übertragen werden unter Berücksichtigung der besonderen Verhältnisse, denen die im Wasser lebenden Organismen im Gegensatz zu den von Luft umgebenen Lebewesen unterworfen sind.

Als Zoologen wurden zwei Privatdozenten der Kieler Universität gewonnen, die sich schon seit Jahren mit ausgezeichneterem Erfolg der Meeresbiologie gewidmet haben, Dr. Karl Apstein und Dr. J. Reibisch. Dr. Apstein fielen die Untersuchungen über das Plankton zu und außerdem die Leitung der Terminfahrten. Dr. Reibisch wurde vor die Aufgabe gestellt, über den Boden und seine Besiedelung mit Pflanzen und Tieren Untersuchungen auszuführen und daneben seine Untersuchungen über die Altersbestimmung von Fischen fortzusetzen. Als dritte Kraft für die in Betracht kommenden biologischen Untersuchungen wurde der Chemiker Dr. Raben, ein erfahrener und gewissenhafter Analytiker, angestellt. Er hat in den verflossenen Jahren sich ausschließlich mit dem quantitativen Nachweis der nur spurenweise im Meerwasser vorkommenden Pflanzennährstoffe (Ammoniak, salpetrige Säure, Salpetersäure, Phosphorsäure und Kieselsäure) beschäftigt. Weiterhin kommen für den Chemiker die Untersuchungen der Bodenproben nach neuen Gesichtspunkten und Methoden in Betracht. Endlich ist auch eine Bereicherung unserer Kenntnis von dem Stoffwechsel und der chemischen Zusammensetzung der pflanzlichen und tierischen Organismen des Meeres dringend erforderlich.
Auf Grund von Berichten, welche die 3 Forscher über ihre Tätig-
keit im ersten Jahre der wissenschaftlichen Kommission erstattet haben,
gebe ich eine kurze Zusammenfassung über die allgemein biologischen
Arbeiten

I. auf den Fahrten,
II. im Laboratorium an Land.

I. Die Fahrten und die Tätigkeit der Kieler Biologen an Bord.

1. Die erste Untersuchungsfahrt des „Poseidon“ durch die Nord-
see fand in der Zeit vom 23. Mai bis 2. Juni statt. Außer den 3 an-
gestellten Biologen nahm der cand. med. Karrer als Gehülfte teil. Wegen
starker Dünung mußten die Untersuchungen an Station 8 ausfallen. Eine
Ostseefahrt wurde nicht ausgeführt.

2. Für die Augustfahrt in Ost- und Nordsee wurde die „Holsatia“
mußte in Saßnitz die Winde repariert werden. Außerdem wurde die „Holsatia“
durch Weststurm vom 9. bis 11. August in Memel festgehalten. Die Nordsee-
fahrt verlief in der Zeit vom 15. bis 25. August vollkommen programmäßig.

Die biologischen Teilnehmer der Ostseefahrt waren Dr. Apstein als
Leiter, Dr. Reibisch und cand. med. Karrer. An der Nordseefahrt nahm
statt des Letztgenannten der cand. med. Meyer als Gehülfte teil.

3. Die beiden Terminfahrten im November wurden wieder vom
„Poseidon“ ausgeführt. An beiden Fahrten nahmen Dr. Apstein (Leiter
der Fahrt) und Dr. Reibisch teil, an der Ostseefahrt außerdem Dr. Raben,
an der Nordseefahrt Dr. Immermann. Der „Poseidon“ verließ am 29. Okt-
tober Kiel und mußte wegen Südweststurmes vom 1. bis 3. November in
Stolpmünde verweilen. Die Beobachtungen an den einzelnen Stationen
konnten jedoch ausgeführt werden. Die Terminfahrt durch die Nordsee,
die am 9. November von Kiel aus begann, wurde wiederholt durch stür-
misches Wetter beeinträchtigt, doch brauchte nur die letzte Station (15)
wegen Oststurmes ausgelassen zu werden. Am 20. November traf der
„Poseidon“ wieder in Kiel ein.

4. Die Februar-Terminfahrten des „Poseidon“ fanden wiederum
unter der bewährten Leitung von Dr. Apstein statt. Es wurde zuerst die
Nordsee untersucht; doch konnten von den 15 Stationen nur die 3 ersten
erledigt werden. alle übrigen mußten wegen stürmischen Wetters ausfallen.
in Kiel ein. Am 16. Februar früh begann die Ostsee-Terminfahrt, die bis
auf die zwei letzten Stationen (12, 13) glücklich durchgeführt werden
konnte. Während der Nacht vom 19. zum 20. mußte der Dampfer hinter

5. Dr. Reibisch hat endlich an der ersten größeren Fischereifahrt, die vom 5. bis 26. März 1903 stattfand, teilgenommen. Ihm wurde zur Unterstützung bei den notwendigen Arbeiten der erste Assistent des zoologischen Instituts Dr. Immermann mitgegeben. Während der Terminfahrten hatte nur mit kleinen Schleppnetzen (Dredgen) und ganz nebenher Material über die Besiedelung des Meeresbodens gewonnen werden können, weil jeder Zeitverlust im Interesse der hydrographischen Untersuchungen vermieden werden sollte. Es mußte daher die erste sich darbietende Gelegenheit zur Förderung dieses wichtigen Zweiges der Meeresforschung unbedingt benutzt werden. —

Es hätte sich nicht rechtfertigen lassen, wenn nicht auch in dem abgelaufenen Jahre die kostspieligen Fahrten so ausgiebig, wie es irgend möglich war, für wissenschaftliche Zwecke ausgenutzt worden wären. So ist für spezielle zoologische und chemische Untersuchungen gelegentlich Material auf den Terminfahrten gesammelt worden, das von anderen Forschern als den 3 angestellten Biologen bearbeitet wurde. Ferner wurden Bodenproben für geologische und physikalische Untersuchungen durch sachkundige Bearbeiter gewonnen. Endlich wurden im Interesse der wichtigen Untersuchungen über die Bedeutung der Stickstoffbakterien für den Haus-
Die Tätigkeit im Erstesjahro 1902. Alt I: Kiel.

halt des Meeres wiederholt die vorbereiteten sterilisierten Nährlösungen mit bestimmten Quantitäten von einwandfrei entnommenen Boden- oder Meerwasserproben an Bord von Dr. Apstein geimpft, um nach Beendigung der Fahrt im zoologischen Universitätsinstitut weiter untersucht zu werden.

Die Tätigkeit an Bord regelte sich in folgender Weise. Dr. Apstein übernahm die verantwortliche Leitung der Terminfahrten, führte an jeder hydrographischen Station in Nord- und Ostsee (zusammen 28) verschiedene Züge mit Planktonnetzen aus, untersuchte während der Fahrt von einer zur nächsten Station die frischen Planktonfänge mit dem Mikroskop und stellte Versuche mit lebenden Planktonorganismen an. Dr. Reibisch entnahm an jeder der 28 Stationen Bodenproben und außerdem bestimmte Quantitäten von Meerwasser für chemische Untersuchungen im Interesse der biologischen Meeresforschung und bereitete sie für die Untersuchung an Land vor; er machte außerdem die Züge mit dem Schleppnetz, sorgfältig für das Absieben und Sichten des Fanges und stellte mikroskopische Untersuchungen über die am Meeresgrund lebenden kleinen Organismen an.

Ostsee Februar 1903.

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vormittag</td>
<td>Kiel</td>
<td>St. 1</td>
<td>St. 2</td>
<td>St. 3</td>
<td>St. 4</td>
<td>St. 5</td>
<td>St. 6</td>
<td>St. 7</td>
<td>St. 8</td>
<td>St. 9</td>
<td>St. 10</td>
<td>Hela</td>
</tr>
<tr>
<td>Nachmittag</td>
<td></td>
<td>Pillau</td>
</tr>
</tbody>
</table>

Fahrzeiten,
Bei der großen Mannigfaltigkeit der Untersuchungen ist eine gegenseitige Ergänzung und gelegentliche Vertretung notwendig, und zwar um so mehr, als es sich an Bord nicht bloss um sorgfältige Ausführung von zahlreichem Fängen und um Sammeln von Material handelt, sondern auch um Untersuchungen an lebenden Organismen. Es kommt außerdem darauf an, geeignete Kräfte für die freiwillige Mitarbeit an den Untersuchungen an Land zu gewinnen und für die gelegentliche Vertretung von Dr. Apstein und namentlich auch von Dr. Reibisch auszubilden. Der letztere wird in dem bevorstehenden Jahre möglichst an allen Fischereifahrten teilnehmen müssen, weil diese für die Bodenorganismen unvergleichlich viel reichere Ergebnisse liefern, als die vorzugsweise hydrographischen Zwecken dienenden Terminfahrten.

Jetzt ist die Organisation so, daß die beiden ersten Biologen etwa 4 Monate des Jahres durch die Fahrten (mit Einschluß der Vorbereitungen) in Anspruch genommen sind, so daß nach Abzug eines Ferienmonats nur 7 Monate für die Tätigkeit im Laboratorium übrig bleiben. In den verflossenen Jahren kamen für die wissenschaftlichen Arbeiten von Dr. Apstein und Dr. Reibisch sogar nur 6 Monate an Land in Betracht, weil erst nach Beendigung der ersten Fahrt (Anfang Juni) überhaupt Material vorlag. Es ist zu wünschen, daß durch geeignete Vertretung an Bord die Laboratoriumstätigkeit der wichtigsten Kräfte verlängert wird.

II. Die Tätigkeit der Kieler Biologen im Laboratorium an Land.

1. Dr. Apstein's Planktonuntersuchungen.

2. Untersuchungen über den Gehalt des Meerwassers an Ammoniak, salpetriger Säure, Kieselsäure und Phosphorsäure von Dr. Raben.

a. Es kam zunächst die Frage in Betracht, ob im Meerwasser der Ost- und Nordsee wirklich, wie ich auf Grund allgemeiner Erwägungen wahrscheinlich gemacht hatte, mehr anorganische Stickstoffverbindungen sich finden, als in dem Wasser wärmerer Meeresgebiete. Zum Vergleich kommt nur das östliche Mittelmeer und das Rote Meer in

Vergleicht man die von Natterer für das Mittelmeer und das Rote Meer erhaltenen Werte mit denjenigen, die Dr. Raben für Nord- und Ostsee gewonnen hat, so tritt mit voller Klarheit hervor, dass die stets äußerst geringe Menge von Stickstoffverbindungen in den heimischen Meeren immerhin größer ist als in dem wärmeren Mittelmeer.

Ein zweites Ergebnis besteht darin, dass nicht bloß in verschiedenen Wasserschichten, sondern auch zu verschiedener Zeit an derselben Stelle und in derselben Schicht verschiedene grosse Mengen von Stickstoffverbindungen nachgewiesen werden. In der Nordsee war der Ammoniakgehalt des freien Wassers während der Maifahrt im allgemeinen grösser als während der August- und Novemberfahrt. In der Ostsee waren die Werte im August höher als im November (im Mai hatte keine Fahrt stattgefunden.)

Leider sind die besten z. Z. vorliegenden Methoden noch nicht genau genug, um kleine Differenzen, die biologisch von hoher Bedeutung sind, mit der nötigen Sicherheit festzustellen. Dr. Raben ist daher jetzt damit beschäftigt, unter Leitung von Professor H. Rodewald im hiesigen landwirtschaftlichen Universitäts-Institut die vorliegenden Methoden nach Möglichkeit zu verbessern oder durch andere Verfahren zu ersetzen.

Die von Dr. Raben für die gelöste Kieselsäure gewonnenen Zahlen ordne ich nachstehend für die beiden Gebiete unter Zufügung des Monats, in dem die untersuchten Proben entnommen sind, nach ihrer Größe.

<table>
<thead>
<tr>
<th>Monat</th>
<th>Nordsee</th>
<th>Ostsee</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI.</td>
<td>0,57</td>
<td></td>
</tr>
<tr>
<td>XI.</td>
<td>0,763</td>
<td></td>
</tr>
<tr>
<td>XI.</td>
<td>0,93</td>
<td></td>
</tr>
<tr>
<td>VIII.</td>
<td>1,03</td>
<td>0,90.</td>
</tr>
<tr>
<td>VIII.</td>
<td>1,23</td>
<td></td>
</tr>
</tbody>
</table>

In der freien Ostsee (von den 3 Proben der Kieler Förhrde abgesehen) findet nach den bis jetzt vorliegenden — allerdings wenig zahlreichen — Untersuchungen eine deutliche Zunahme des Gehaltes an gelöster Kieselsäure vom August nach dem November, und von November bis Februar statt.

In der freien Ostsee (von den 3 Proben der Kieler Förhrde abgesehen) findet nach den bis jetzt vorliegenden — allerdings wenig zahlreichen — Untersuchungen eine deutliche Zunahme des Gehaltes an gelöster Kieselsäure vom August nach dem November, und von November bis Februar statt.

c. Die Untersuchung der Wasserproben auf Phosphorsäure ergab niedrige und ziemlich schwankende Werte, die in der nachstehenden Übersicht zusammengestellt sind.

<table>
<thead>
<tr>
<th></th>
<th>Nordsee</th>
<th>Ostsee</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Proben Mittel</td>
<td>0,142</td>
<td>0,272</td>
</tr>
<tr>
<td>5 Proben Mittel</td>
<td>0,203</td>
<td>0,36</td>
</tr>
<tr>
<td>5 Proben Mittel</td>
<td>0,403</td>
<td>0,45</td>
</tr>
<tr>
<td>5 Proben Mittel</td>
<td>0,74</td>
<td>0,556</td>
</tr>
<tr>
<td>1,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittel überhaupt: 0,75 Teile Phosphorsäure (P_2O_5) in 1 Million Teilen Meerwasser.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Es bedarf noch näherer Untersuchungen, um sowohl die Differenz gegenüber den schon vorliegenden Untersuchungen von Schmidt (1878), als auch die grosse Verschiedenheit der von Raben gefundenen Werte zu erklären. Außerdem ist bei sehr geringem Gehalt an Phosphorsäure zu prüfen, ob in solchen Fällen nicht doch die Phosphorsäure im Minimum vertreten ist.

Auch auf Grund der zahlreichen und sorgfältigen Analysen Raben’s ist der Satz aufrecht zu erhalten, daß die Stärke der Produktion im Meer in erster Linie abhängt von der Menge der anorganischen Stickstoffverbindungen.

3. Untersuchungen über die Besiedelung des Meeresbodens in der Nordsee durch Dr. J. Reibisch.

Dr. Reibisch mußte während des ersten Untersuchungsjahres vor allem in das große Gebiet, das ihm zugefallen war, sich einarbeiten und systematische Vorarbeiten erledigen. Über die Beziehungen zwischen der Besiedlung des Meeresbodens mit Tieren und Pflanzen einerseits und dem hydrographischen Verhältnissen, der Bodenbeschaffenheit und der Verteilung der Nutzische andererseits kann genaueres erst ausgesagt werden, wenn nicht bloss zahlreiche Bodenproben physikalisch und chemisch untersucht sind, sondern auch die etwa 1000 Arten von Tieren, die am Boden der Nordsee leben, im Kieler Laboratorium leicht und sicher bestimmt werden können.

Dr. Reibisch hat außerdem an der im März ausgeführten Fischereifahrt durch die Nordsee zusammen mit Dr. Immermann teilgenommen. Diese eine Fahrt hat mehr Material gebracht, als alle Termini­fahrten zusammen hatten ergeben können. Die Durcharbeitung dieser Fänge vom März kommt erst für den nächsten Jahresbericht in Betracht, ebenso die gleichfalls von Dr. Reibisch auf der März­fahrt begonnenen Alters­bestimmungen von Nordseefischen nach den Otolithen.
Bericht über die hydrographischen Untersuchungen.

Von
Prof. Dr. O. Krümmel (Kiel).

Meine Tätigkeit im Bereich der wissenschaftlichen Kommission bezog sich in der Hauptsache auf die Organisation und Überwachung der eigentlich ozeanographischen Arbeiten, wie sie in dem Programm von Christiania als Resolution A (Hydrographie) vorgeschrieben sind.

Außerdem wandte ich mein besonderes Interesse der Einrichtung des Forschungsdampfers in den Laboratorien- und Wohnräumen zu, deren allgemeine Anordnung in ihrer endgültigen Ausführung wesentlich nach meinen Anträgen erfolgt ist.

Die deutschen hydrographischen Arbeiten sind sowohl an Bord wie an Land auszuführen und für beide Zwecke mußten das erforderliche Personal und die Einrichtungen beschafft werden.

Personal.

Es schien zweckmäßig, als wissenschaftliche Kraft für diese Arbeiten einen tüchtigen jüngeren Chemiker zu gewinnen, da die zu lösenden Aufgaben, soweit sie physikalischer Art sind, als verhältnismäßig einfach
gelten dürfen, während die chemischen Analysen des Seewassers, wie namentlich der absorbierter Gas, eine große Gewandtheit und Sicherheit in chemischen Arbeiten zur Voraussetzung haben, wenn sie brauchbare Ergebnisse liefern sollen.

Nachdem Verhandlungen mit dem Chemiker der deutschen Tiefsee-Expedition, Herrn Dr. P. Schmidt in Leipzig, ergebnislos verlaufen waren, gelang es in Herrn Dr. Ernst Ruppin, einem geprüften Nahrungsmittel-Chemiker, damals am bakteriologischen Staatslaboratorium in Bremen angestellt, uns eine in jeder Hinsicht gut ausgebildete und, wie die Erfahrung gezeigt hat, an Bord wie an Land gleich leistungsfähige Kraft zu sichern.

In Anbetracht des großen Umfanges der vorliegenden Arbeiten wurde von vornherein ins Auge gefaßt, dem Chemiker einerseits für die Terminfahrten an Bord, andererseits für eine Reihe von einfacheren Laboratoriumsarbeiten, jedesmal einen älteren Studierenden gegen besondere Honorierung zur Seite zu stellen.

Überdies wurde Herr Dr. Ruppin durch solche Zwischenfälle bisher daran verhindert, sich der weiteren Verbesserung der noch ziemlich

unvollkommenen Methoden der Gasanalysen in der Weise zuzuwenden, wie das seiner Neigung und Befähigung entsprechend von ihm zu erhoffen wäre. Doch hat er Versuche, eine genauere Methode zur Bestimmung der im Seewasser vorhandenen Kohlensäure auszuarbeiten, immerhin soweit gefördert, daß sie demnächst veröffentlicht werden können.

Terminfahrten.

Den Schwerpunkt meiner Tätigkeit im Berichtsjahr bildete ohne Zweifel die Organisation der Terminfahrten, wie sie wesentlich zu hydrographischen Zwecken viermal im Jahr, im Februar, Mai, August und November stattzufinden haben. Das deutsche Untersuchungsgebiet, das sich über einen großen Teil der Nordsee (mit 15 Stationen) und die ganze südliche Ostsee (mit 13 Stationen) erstreckt, wie aus den auf einem Separatblatt beigefügten Kartenskizzen ersichtlich, bietet die mannigfaltigsten ozeanographischen Probleme dar, und dementsprechend mußte die instrumentelle Ausrüstung sehr vielseitig und reichhaltig bemessen werden.

Die zur ersten Feststellung des Salzgehalts an Bord benutzten Aräometer sind durchweg aus Jenaer Glas gearbeitet und konnten zum Teil aus Beständen der kgl. preußischen Kommission zur wissenschaftlichen Untersuchung der deutschen Meere in Kiel zur Verfügung gestellt werden. Von jeder aufgeholten Wasserprobe ist ein Teil in numerierte Seltersflaschen von 1/2 Liter Inhalt mit Patentverschluß zu füllen und für die nachträgliche genauere Untersuchung des Salzgehalts durch Titeranalyse an das Kieler Laboratorium abzuholen. Ebenso werden auf jeder Station noch einzelne Seewasserproben zur späteren Analyse der darin enthaltenen Gase (Sauerstoff, Stickstoff, Kohlensäure) aus bestimmten Tiefen in luftleer gemachten Röhren von etwa 300 cm Inhalt gesammelt, die unmittelbar nach der Füllung vor der Gebälkelampe an Bord wieder zugeschmolzen werden.

Soweit die Stationen bei Tageslicht bearbeitet werden, wird auch die Durchsichtigkeit des Seewassers bestimmt, indem eine 45 cm breite weisslackierte Scheibe langsam versenkt wird, bis sie dem Auge entwirkt, wobei die verschiedenen Sichttiefen der Durchsichtigkeit des Seewassers proportional sind.

Endlich werden auf jeder Station auch die vorgeschriebenen meteorologischen Beobachtungen ausgeführt: so wird der Luftdruck, die Temperatur des trocknen und des feuchten Thermometers (mit Asmanns Aspirationspsychrometer), die Windstärke mit einem kleinen Schalenkreuzanemometer bestimmt. Während der ganzen Dauer der Terminfahrt wird ein meteorologisches Tagebuch (nach dem Muster der deutschen Seewarte) geführt, wobei meistens die Instrumente alle zwei Stunden abgelesen werden; hieran beteiligt sich auch das Schiffspersonal. Ein guter Barograph (von Fuess) registriert ausserdem kontinuierlich die Luftdruckkurve.

Die für alle diese Zwecke erforderlichen Apparate, Instrumente, Flaschen, Transportkisten u. s. w. wurden mit einem Aufwande von fast 5000 Mark beschafft.

Vorläufig verzichtet wurde auf die Ausführung von feineren Messungen der Meeresströme. Es geschah das einerseits deshalb, weil die sonst hierfür üblichen, in der Wasserbautechnik benutzten Apparate an Bord nicht einwandfrei arbeiten und andere Konstruktionen zur Zeit noch auf ihre Leistungsfähigkeit durch das Zentrallaboratorium in Christiania geprüft werden; andererseits aber ist das Ankergeschirr des Forschungsdampfers bisher nicht geeignet gewesen, das Schiff in den grösseren Tiefen der norwegischen Rinnen und des westlichen Skagerak (300 bis 500 m) sicher zu verankern. Jedes freitreibende Schiff legt sich in kurzer Zeit so auf die See, daß es den Wellen die Breitseite darbietet, und ein so „steif“ gebautes Fahrzeug wie „Poseidon“, gerät dann bei höherer See (von Stärke 4 und mehr) alsbald in so heftige Schlingerbewegung, daß alle
Arbeiten abgebrochen werden müssen, wenn nicht in kurzer Zeit die meisten Instrumente beschädigt oder verloren werden sollen.

Es wurden im Berichtsjahr folgende Terminfahrten ausgeführt:

3. in die Ostsee an Bord des „Poseidon“ vom 29. Oktober bis 8. November 1902 und:

in die Ostsee vom 16. bis 27. Februar 1903; Beobachter wie ad 3. Auch hier gestattete das Wetter die wissenschaftlichen Arbeiten auf den letzten Stationen 12 und 13 sowie auf den von uns aushilfsweise übernommenen beiden schwedischen Stationen östlich von Bornholm leider nicht.

Auch die Einrichtung, unserm ersten Hydrographen Dr. Ruppin für seine Tag und Nacht fortlaufenden Arbeiten einen Studierenden als Gehilfen mitzugeben, hat sich nicht so bewährt, wie gehofft wurde. Abgesehen davon, daß jeder neu eingestellte Beobachter sich erst an den Aufenthalt und das Arbeiten an Bord gewöhnen muß, sind die Studierenden genötigt, außer im August, ihre Vorlesungen zu versäumen oder, wenn sie schon im Examen stehen, ihre Prüfungsarbeiten zu vernachlässigen; leider hat beides bereits unerwünschte Folgen gehabt. Auch aus diesem Grunde ist die Einstellung eines fest besoldeten zweiten Hydrographen als Hilfsarbeiter erwünscht, der dann alle Arbeiten an Land wie an Bord neben dem ersten Hydrographen auszuführen hätte.

Laboratorium.

Das hydrographische Laboratorium ist mit dem biologischen zusammen in einem, nahe der Universität gelegenen und vom Universitäts-

Die Beobachtungen während der vier deutschen Terminfahrten ergeben, für sich allein betrachtet, natürlich kein abgeschlossenes Bild: sie sind nur im Rahmen der gesamten internationalen Organisation voll verständlich. Vom Zentralbureau in Kopenhagen sind bisher allein die Beobachtungen für August 1902 veröffentlicht; der Bericht für November ist im Druck.

Daß die Zustände in dem von uns bearbeiteten Teil der heimischen Meere außerordentlich wechselvoll sind, war schon aus früheren gelegentlichen Beobachtungen zu schließen. Immerhin bleibt es doch eine erstaunliche Sache, solche gewaltigen Unterschiede festzustellen, wie das in der beigeggebenen graphischen Darstellung in den Profilen Fig. 1 und 2 für die Nordsee, 3 und 4 für die westliche Ostsee auf den ersten Blick hervortritt. Die Darstellungen geben senkrechte Schnitte, wobei der horizontale Maßstab gegenüber dem vertikalen sehr beträchtlich verkürzt ist; die Profile 1 und 2 erstrecken sich über einen horizontalen Abstand von 315 Kilometer (170 Seemeilen), die Profile 3 und 4 über 75 Kilometer (41 Seemeilen). Die senkrechten Linien zeigen die Beobachtungsstationen, die darüber stehenden Ziffern die Nummern derselben (vgl. auch die beigegene Karte). Die Kurven sind Isohalinen, d. h. Linien gleichen Salzgehalts in Promille, also Gramm Salz im Kilogramm Seewasser.

![Diagram 1: Mai 1902](image1)

![Diagram 2: November 1902](image2)

Fig. 1 und 2: Salzgehalt und Temperatur in der nördlichen Nordsee, im Querschnitt durch die Große Fischerbank und die norwegische Rinne für Mai und November 1902. — Die ausgezogenen Linien sind Isohalinen und geben den Salzgehalt in Promille; die Lage der Stationen ist aus der Karte für die Terminfahrten in der Nordsee ersichtlich; längs den Lotlinien sind die beobachteten Temperaturen eingetragen.

Salzgehalt Juli 1877

Temperatur Juli 1877

Fig. 3: Profile für den Salzgehalt und die Temperatur in der Arkonatief e zwischen Trelleborg und Arkona. Die Zahlen über den senkrechten Linien sind die Nummern der Stationen, auf den beiden Figuren vom Juli 1877 nach F. L. Ekman (1877), auf den beiden andern nach den deutschen Terminfahrten (s. die Karte). — Die Salzgehalte sind durch die ausgezogenen Isohalinen in Promille angegeben.

Salzgehalt August 1877

Salzgehalt 31. Oktober 1903.

Februar 1903.

Fig. 4: Profil für den Salzgehalt in der Arkonatief e Febr. 1903. Die Stationen sind dieselben wie in Figur 3.

In Profil 1 erkennt man, wie das großenteils dem Kattegat entstammende und entlang der norwegischen Küste aus dem Skagerak abfließende Wasser von weniger als 30 Promille Salzgehalt sich im Mai 1902 als eine dünne oberflächliche Decke von 15 bis 20 m von Ekersund her bis mitten auf die Große Fischerbank erstreckte, in einer Breite von
220 Kilometer: Der Mai ist in der Tat die Zeit, wo dieser sogenannte baltische Strom seine größte Entwicklung auch sonst erreicht. Im August 1902, der hier nicht dargestellt ist, war das Bild im wesentlichen unverändert; dagegen im November (Profil 2) fand sich das baltische Wasser, und zwar nunmehr mit 31 bis 32 Promille, hart an die Küste zurückgedrängt und die Schichten in größere Tiefen zusammengeschoben. Am auffälligsten aber ist das Verhalten der tieferen Lager. Im Mai ist das sogenannte Nordseewasser von 34 bis 35 Promille Salzgehalt hauptsächlich in der tiefen Rinne zu finden, wo es nahe am Lande bis zum Boden in mehr als 300 m Tiefe herrscht; seine niedrige Temperatur von 4,7° bis 4,8° und der dieser genau entsprechende Luftgehalt zeigt, daß es sich um Wasser handelt, welches im Winter über der Großen Fischerbank gelegen hat und dann vom Rande der Nordseebank her durch den herrschenden Meeresstrom in die Tiefe hinabgedrängt ist. Das ozeanische Wasser von mehr als 35 Promille Salzgehalt herrscht auf der Großen Fischerbank von 20 m bis zum Grunde und ist auch an der Südwestseite der Rinne in die Tiefe hinabgestiegen.

Im November 1902 aber liegt das Nordseewasser normal über der Großen Fischerbank von der Oberfläche bis 60 m hinab; nur dicht am Boden findet sich das ozeanische Wasser. Dieses erfüllt dann aber die tiefere Rinne unterhalb von 150 m gänzlich. Dabei waren hier die Temperaturen bis zu 2° höher als im Mai; an der Oberfläche dagegen in beiden Monaten ungefähr gleich (8° bis 9°).

Daß beide Schnitte denselben Meeresteil angehören, ließe sich aus der Anordnung der Isohalinen nicht schließen. Klar ist auch, daß mit solchen Verschiebungen der Wasserschichten auch große Änderungen in der Verbreitung der Organismen Hand in Hand gehen müssen, indem zunächst das Plankton, in seiner Funktion als Fischnahrung, und damit die Verbreitung der Speisefische selbst notwendig davon beeinflußt werden wird.

Noch bemerkenswerter sind die Unterschiede in der Salzgehaltschichtung der westlichen Ostsee zwischen Rügen und Schonen (Fig. 3 u. 4).

Im August 1902 entspricht das Bild ungefähr dem nach früheren gelegentlichen Beobachtungen (z. B. Juli 1877) zu erwartenden Zustande: an der Oberfläche findet sich die nach Westen ausfließende sogenannte Deckschicht, mit 7,5 bis 8 Promille Salzgehalt, an der schwedischen Seite bis 25 m, an der Rügenschen bis 10 m hinab; in der Tiefe das aus der Beltsee ostwärts einströmende salzige Wasser, das sich normaler Weise rechts an die deutsche Seite drängt und in Station 8 seinen größten Salzgehalt mit 14,40 Promille besitzt.

Am 31. Oktober 1902 aber ist die Deckschicht sonderbarer Weise bei Station 8 mit 8,28 Promille etwas salziger als normal, im Übrigen aber wie sonst (zwischen 7,7 und 7,8 Promille): das Bodenwasser zeigt seinen größten Salzgehalt in der nördlichen Station 7, und die hier gefundenen
15.97 Promille sind wahrscheinlich ausnahmsweise über die nur 7 m tiefe Drogdenschwelle aus dem Sund herübergekommen, während der normale Weg über die 18 m tiefe und sehr viel breitere Darß-Schwelle, zwischen Möen und dem Darß, hinaüber führt.

Besonders auffällig war der Zustand im Februar 1903 (Fig. 4). Die Deckschicht hat 8.2 bis 9.0 Promille Salzgehalt, ist also um 1 Promille salziger als gewöhnlich. Außerdem aber war auch der Unterstrom unerhört salzreich und am Boden in Station 8 mit 23.50 Promille so salzig, wie sonst wohl im Großen Belt. Dieses unzweifelhaft aus der Beltsee stammende, dabei recht kalte Wasser (2°) ist offenbar durch die starken und anhaltenden Weststürme über die Darß-Schwelle hinübergedrängt worden und erfüllte die Arkonatiefe, von wo es entsprechend der Bodengestaltung seinen Weg auch in die 100 m messende Bornholmtiefe östlich von der gleichnamigen Insel gefunden haben dürfte. Nach älteren schwedischen Untersuchungen pflegen aber mit dem salzigen Unterstrom auch wertvollere Speisefische in die westliche Ostsee einzuwandern, und um so mehr ist zu bedauern, daß das vom 19. Februar ab wieder stürmisch gewordene Wetter nicht gestattete, die Bornholmtiefe, wie beabsichtigt war, näher zu untersuchen, namentlich dort auch mit Dredge und Kurre zu arbeiten. Dies wird voraussichtlich in diesem Frühling von schwedischer Seite nachgeholt werden, zumal die Bornholmtiefe in den Bereich der schwedischen Termin- und Fischereifahrten fällt.

II. Abteilung: Helgoland.

Bericht über die Tätigkeit im Etatsjahre 1902.

Von
Prof. Dr. F. Heincke (Helgoland).

In Übereinstimmung hiermit sind der Biologischen Anstalt bei der notwendigen Teilung der internationalen Arbeit zwischen ihr, der Kommission zur Untersuchung der deutschen Meere in Kiel und dem deutschen See- Seefischerei-Verein vorwiegend jene Untersuchungen zugewiesen worden, die in den §§ 2 bis 11 des biologischen Teils des Christiania-Programms vom Mai 1901 näher bezeichnet sind und die den Kern der im unmittelbaren Interesse der Seefischereien auszuführenden biologischen Forschungen bilden. Die Anstalt hat hiernach die Aufgabe, die Naturgeschichte der wichtigsten Nutzfrische vom Ei an bis zur ausgebildeten Form zu bearbeiten, die Lage und natürliche Beschaffenheit der Fischgründe, namentlich der Jungfischgründe, zu studieren und zur Erreichung dieses Zweckes biologische Unter-
suchungsfahrten und Versuchsfischereien mit dem Reichsforschungsdampfer und anderen Fahrzeugen anzustellen.

Für diese internationalen Arbeiten sind im verflossenen Etatsjahre sowohl die sächlichen Fonds der Anstalt als auch ihr wissenschaftliches Personal bedeutend verstärkt worden.

Einmalige Fonds von 2500 und 1800 Mark und eine laufende Summe von 4600 Mark sind verwendet worden, um durch Mietung eines Hauses Raum für das vermehrte Personal zu schaffen, neue Laboratoriumsräume einzurichten und den wissenschaftlichen Apparat der Anstalt zu vergrößern, ferner, und dies in erster Linie, um eine ganze Reihe neuer auf den Untersuchungsfahrten zur Verwendung kommender wissenschaftlicher und praktischer Apparate, wie hydrographische Instrumente und Fanggeräte jeder Art, Netze, Angeln u. a. zu beschaffen und zu erneuern, endlich, um die Einrichtungen der Motorbarkasse der Anstalt für wissenschaftliche Fischerei zu vervollständigen. Ein äußerst wichtiges und für die internationalen Arbeiten der Anstalt schon jetzt unentbehrlich gewordenes Hilfsmittel wurde der Anstalt zu Teil durch ihr neues Aquarium, das mit einem Kostenaufwand von 86000 Mark errichtet wurde.

Von den älteren wissenschaftlichen Beamten der Anstalt widmen der Direktor und der Custos Prof. Ehrenbaum ihre ganze freie Arbeitskraft den internationalen Untersuchungen. Der erstere hat außer der Leitung der gesamten Arbeiten die Untersuchung der Fischgründe und die Frage nach den Wanderungen und den Lokalformen der Nutzfische über-
nommen, der letztere die Erforschung ihrer Eier und Larven. An der Bearbeitung der Bodenfauna der nordischen Meere und gewisser Teile des planktons beteiligen sich alle wissenschaftlichen Mitglieder der Anstalt. Im besonderen behandeln der in dem von Prof. Brandt herausgegebenen für die Zwecke der internationalen Untersuchungen bestimmten Werke „das nordische plankton“, der Custos Professor Dr. Hartlaub die Quallen, Prof. Ehrenbaum die Fischeier und Larven.

biologischen Arbeitsmethoden an Bord zu prüfen. Die sehr befriedigenden Ergebnisse dieser Probebefahrt zeigten namentlich, daß der neue Dampfer und seine Einrichtungen bis auf unwesentliche Einzelheiten vorzüglich für die praktische wissenschaftliche Arbeit auf See geeignet ist.

Eine zweite größere Untersuchungsfahrt mit dem „Poseidon“ unternahm die Anstalt unter der Leitung von Prof. Dr. Ehrenbaum und Dr. Strodtmann und der Beteiligung von Dr. Bolau und Dr. Maier aus Helgoland, und Dr. Reibisch und Dr. Immermann aus Kiel vom 5. bis 26. März in die deutsche Nordsee, westlich bis zur Doggerbank und nördlich bis zum Skagerak. Aufgabe dieser Fahrt war in erster Linie, die Verbreitung der schwimmenden Fischeier während der Hauptlaichzeit der wichtigsten Nutzfische, wie Kabeljau, Schellfisch, Wittling, Scholle, Flunder u. a. zu untersuchen und zugleich zur möglichen Feststellung der Laichplätze mit Grundnetzen und Angeln die laichenden Fische selbst zu fangen. Die Ergebnisse dieser Fahrt waren gute, zum Teil sehr gute, namentlich in der ersten vom Wetter außerordentlich begünstigten Hälfte.

Auf allen ihren bisherigen Untersuchungsfahrten hat die Anstalt zur notwendigen Ergänzung der Mannschaften des „Poseidon“ einen Teil ihres eigenen in den Methoden der praktisch-wissenschaftlichen Fischerei geschulten und bewährten Personals mitgenommen, vor allem ihren Fischmeister Lörnsen und einen ihrer Fischer.

Das große auf den bisherigen Fahrten und in der Zwischenzeit auf den kleinen Exkursionen der Anstalt mit ihrer Motorbarkasse gesammelte Material konnte natürlich noch nicht vollständig verarbeitet werden. Immerhin lassen sich schon jetzt einige beachtenswerte Ergebnisse der Untersuchungen angeben.

Eins der wichtigsten Hilfsmittel zur Erforschung der Fischgründe und der Bewegungen der Nutzfische in der Nordsee ist die Anstellung wissenschaftlicher Fischerei-Versuche mit Grundnetzen, Treibnetzen und Angeln und die genaue wissenschaftliche Analyse jedes einzelnen Fanges nach Art, Zahl, Größe, Gewicht, Alter, Geschlecht und geschlechtlicher Reife und Mageninhalt der Fische. Obwohl wir bis jetzt erst ans etwa 30 Fängen mit dem großen Trawl und einigen wenigen Versuchen mit Angeln und anderen Geräten nur etwa 12.000 Fische in der genannten genauen Weise untersucht haben, bekundet sich doch schon die Vortrefflichkeit dieser Methode für die Lösung vieler hier vorliegenden Probleme. Es hat sich schon jetzt deutlich gezeigt, daß die verschiedenen Alters- und Größenklassen mancher Nutzfische sich auf nach Ort und Bodenbeschaffenheit verschiedenen Gründen aufhalten und daß die Jungfischgründe meistens, wenn auch nicht immer, der Küste näher liegen als die Reviere der älteren Fische, ferner daß die Fischschwärme nach der Jahreszeit ihren Standort nicht unwesentlich verändern. Bei weiterer Fortsetzung solcher Fischgänge

Als sehr wichtig wurde ferner festgestellt, daß die Eier der Flander sich immer nur in mäßiger Entfernung von der Küste finden, aber auf der eigentlichen hohen Nordsee nicht vorkommen.

Die geplanten Sommerfahrten sollen auch eine genaue Untersuchung derjenigen Fischgründe ausführen, auf denen untermaßige Schollen in größeren Mengen vorkommen.
DIE Beteiligung Deutschlands an der Internationalen Meeresforschung
II. Jahresbericht.
DIE BETEILIGUNG DEUTSCHLANDS
AN DER
INTERNATIONALEN MEERESFORSCHUNG

II. BERICHT
BIS ZUM SCHLUSS DES ETATSJAHRES 1903
ERSTATTET VON DEM
VORSITZENDEN DER WISSENSCHAFTLICHEN KOMMISSION
Dr. W. HERWIG
WIRKLICHER GEHEIMER OBER-REGIERUNGSRAT.

MIT VIER ANLAGEN:
BERICHTE DER ABTEILUNGEN: KIEL (2), HELGOLAND (1), HANNOVER (1).

Füge ich noch das Telegramm**) des Dr. Apstein aus Egersund bei, so dürfte über diesen Punkt weiter Nichts angeführt zu werden branchen.

Außerdem machte „Poseidon“ zur Vollendung der Garantiearbeiten noch eine Fahrt im Mai (bis Anfang Juni) nach Vegesack und kehrte auch im Oktober und im Dezember zur Aufnahme von Inventarstücken nochmals nach dort zurück.

*) Siehe Seite 43, 44. (Anhang.)

Als Vertrauensmann in allen örtlichen Angelegenheiten des „Poseidon“ hat auch im abgelaufenen Jahre der Königliche Hafenmeister Duge wertvolle Dienste geleistet. Mit ihm ist die örtliche Korrespondenz geführt, namentlich dann, wenn der „Poseidon“ nicht im Hafen war. Auch die

*) Es bezieht sich dieses auf die Zeit der Niederschrift dieses Berichtes, im Mai 1904. Anm. d. Red.

A) das zu diesem Zweck im Jahre 1902 begründete Laboratorium der Königlichen Preußischen Kommission zur wissenschaftlichen Untersuchung der deutschen Meere in Kiel. In der hydrographischen Abteilung sind beschäftigt die Drs. Ruppin und Kemnitz, in der biologischen Abteilung Privatdozent Dr. Apstein als Leiter der Terminfahrten, Privatdozent Dr. Reibisch, Dr. Raben, Dr. Süßbach, und Dr. Rauschenplat.

B) Die Königliche Preußische Biologische Anstalt auf Helgoland. Hier sind speziell die Gelehrten Dr. Strodtmann, als Königlich Preußischer Oberlehrer zu diesem Zweck beurlaubt, ferner Dr. Bolau und Dr. Immermann auf Kosten der Internationalen Meeresforschung angestellt.

C) Gewisse Fragen des gleichen Gebietes bearbeitet außerdem der Deutsche Seefischereiverein, soweit die Ostsee in Betracht kommt. Zur Hilfeleistung hierbei ist Dr. E. Fischer angenommen.

(A. Kiel. Hydrographische Abteilung Nr. 1)

Dr. E. Ruppin, Beitrag zur Bestimmung der im Meerwasser gelösten Gase, 1903, ferner (B. Helgoland Nr. 1)

E. Ehrenbaum und S. Strodtmann, Eier und Jugendformen der Ostseefische. 1904.

Es wird beabsichtigt, außer diesen in Quartformat erscheinenden Aufsätzen spezieller Natur auch noch Aufsätze allgemeineren Inhalts zu veröffentlichen und diese in dem handlicheren Oktavformat erscheinen zu lassen. In solcher Weise würden z. B. die Jahresberichte behandelt zu werden verdienen.
Seitens des Internationalen Zentral-Ausschusses wurden bekanntlich drei Kommissionen eingesetzt, nämlich

A) die Kommission für die Fischwanderungen
B) die Kommission für die sog. Überfischung
C) die Kommission für die Ostsee. Diese ist seit dem letzten Jahresbericht in zwei Sektionen geteilt, für die 1. östliche und 2. westliche Ostsee, mit den Geschäftsführern Dr. Trybom (Stockholm) und Dr. Petersen (Kopenhagen).

Im abgelaufenen Jahre hat eine Sitzung der Kommission C im Juli in Stralsund stattgefunden. Von Deutschland nahmen hieran die Herren Präsident Dr. Herwig und die Mitglieder dieser Kommission Professor Brandt und Henking teil.

Ferner fand eine Sitzung der Kommission B im Dezember v. Js. in Amsterdam statt. Als deutscher Teilnehmer war Professor Heincke zugegen.

Anhang
zum II. Bericht von Dr. W. Herwig,

I.
Bericht über den Reichsforschungsdampfer „Poseidon“
von Dr. C. Apstein (Kiel).

Im Februar 1903 lief „Poseidon“ von Mandal bis Helgoland vor dem Winde. Trotzdem wir Windstärke 10, zeitweise 11, hatten, ging „Poseidon“ recht ruhig und nahm gar kein Wasser über, außer ganz wenigen minimalen Spritzern.

Wenn "Poseidon" direkt gegen Sturm anarbeiten muß, wie im November 1903 bei der Fahrt von Rügen nach Kiel, stampft er nicht sehr stark, wird aber durch die hohen Deckaufbauten in seiner Schnelligkeit sehr behindert, wie das bei allen Schiffen ähnlicher Maschinenstärke der Fall ist.

II.
Bericht über die Terminfahrt in der Nordsee an Bord des Dampfers "Poseidon"

vom 3. bis 12. August 1903,
von Professor Dr. O. Krümme (Kiel).

Vorbemerkung.

I. Verlauf der Fahrt im Allgemeinen.

Montag den 3. August vormittags wurden die Ausrüstungsgegenstände mit dem großen Schiffsboot an Bord geschafft und abendlich der weitere Verkehr mit dem kleinen Klappboot Moses durch fast ununterbrochene Hin- und Herfahrten aufrecht erhalten. Es zeigt sich, daß es ohne dieses erstaunlich leicht von einem Manne zu handhabende und abei in ruhigem Hafenwasser 6 Mann tragende Boot nicht möglich wäre, den nunmehr ständig gewordenen, sehr unbequemen Liegeplatz an den Kieler Dullen beizubehalten. Sollen Kohlen ubergangen werden, so ist es allerdings geboten, an den Kajen zu verholen, und zwar hat die Firma Sartori und Berger, die die Kohlen liefert, abendlich dem Kapitän für die Zeit von 12 Uhr bis 7 Uhr nachmittags den Liegeplatz ihrer Postdampfer zur Verfügung gestellt.

Montag nachmittags 5 Uhr wurde bei strömendem Regen die Fahrt angetreten. In den Schlesen von Holtenau gab es, da ein außerordentlichlicher starker Verkehr herrschte, einen Aufenthalt von fast 2 Stunden. In der Nacht wurde der Kanal passiert, mit dem Morgengrauen die Elbe und um 8 Uhr vormittags Helgoland erreicht. Hier kamen in dem Boot der biologischen Station Herr Professor Ehrenbaum mit mehreren anderen jüngeren Herren längsseit; ein junger Präparator der Station schiffte sich ein, um im Auftrage von Herrn Professor Heincke mit dem Scheerbrutnetz Fänge auszuführen.

Bei wolkigem Wetter und auffrischenden westlichen Winden wurde nachmittags 6½ Station 1 erreicht und der Dampfer verankert. Es gelang, wenn auch nicht ohne Schwierigkeiten, trotz des hohen Seegangs die Arbeiten zu erledigen.

Nachts wuchs die Windstärke stetig an und erreichte in den Morgen- und Vormittagsstunden des 5. August Stärke 8 Beaufort. Wir hatten also Gelegenheit, unsern Dampfer in stürmischbewegter See zu beobachten. Wissenschaftliches Arbeiten war freilich unmöglich und so mußte sich Herr Dr. Apstein entschließen, Station 2 auszufallen zu lassen. Im Verlaufe des Tages ließ jedoch der Wind bei langsam steigendem Barometer nach und auch die See mäßigte sich soweit, daß Station 3 erledigt werden konnte. Als der Dampfer verankert war, kam der Wind aus West mit ²³ Meter pro Sek.; doch ließ eine starke Dünung aus Norden das Schiff periodisch heftig rollen; die Stampfbewegung war, wie immer bei „Poseidon“, ganz minimal.

In der Nacht zum 6. August ging der Wind nach Nordwesten herum, ohne wesentlich abzulaufen, doch wurde das Wetter sonnig und Station 4 konnte so gut erledigt werden, als es die noch immer laufende, das Schiff beim Ankern von der Seite fassende nördliche Dünung zuließ.

Um zu prüfen, ob künftighin die Station 4 nicht vielleicht weiter nach Nordwesten in den Fladengrund hinauf zu verschieben sei, wurde
versuchsweise eine neue Station 4a in 57° 2' N. Br., 16 37' O. Lg., 97 m bearbeitet, jedoch mit dem Ergebnisse, daß wesentliche Unterschiede gegenüber Station 4 nicht erkennbar wurden und die letztere deshalb beizubehalten ist.

Freitag den 7. August wurde von 2 bis 5 Uhr früh Station 5, von 9 bis 12 h. a. Station 6, und 4 bis 10 h. p. m. Station 7 bei ganz flauer Brise erledigt. Für Station 7 war es bei 270 m Wassertiefe zum ersten Mal notwendig, die Tief-Anker-Vorrichtung zu verwenden. Der Nordwestwind ging hierbei bis auf 4,7 m. p. s. herunter; doch war nun eine lange Dünnung aus Südwest ebenso wie der herrschende Meeresstrom nach Nordwesten den Arbeiten insofern hinderlich, als der Dampfer stetig gierte und schwaute; wir lagen mit 800 m Hanftrosse vor dem großen Warpanker.

Sonntag den 9. August früh 4 Uhr wurde Kleven verlassen und vormittags 6 Uhr Station 9 mit 468 m angelotet; es ist dieses die tiefste Station des deutschen Arbeitsgebietes und eine der wichtigsten von allen. Der Kapitän ließ vor dem großen Warpanker noch einen kleinen anschäkeln und gab fast 1500 m Hanftrosse aus. Das Schiff lag nun fest. Aber während der fünfständigen Arbeit nahm einerseits der Westwind wieder zu (auf 8,5 m. p. s.), ebenso wuchs eine neue Dünnung aus Südwesten an, während der Meeresstrom aus Südosten stark auf das Schiff drückte, so daß die See immer häufiger über die Reeling zu spritzen und schließlich die an Deck Arbeitenden mit Wassergarben zu überschütteten begann. Nach dem gegen Mittag wieder eine recht unangenehme See steuerbords über die Reeling übergekommen war und auch der Wind weiter aufzufrischen begann, beschloß Dr. Apstein, die Arbeiten abzubrechen, was durchaus richtig gehandelt war, und der Kapitän ließ sofort die Ankerzüge einziehen. Dies ging anfangs leicht von statten, verlangsamt sich aber schließlich, ja mehr Trosse eingeholt war. Eine Rolle brach und mußte ersetzt werden. Die große Winde auf dem Vorderdeck vermochte zuletzt nur sehr langsam zu arbeiten, und als noch 50 m Trosse aus waren, brach bei einer heftigeren Schlingerbewegung das armdicke Tau, während gleichzeitig eine See über die Reeling des Achterdecks schlug. Das zurückschlagende Tauende traf den ersten Steuermann am Bein, glücklicherweise jedoch ohne ihn ernstlich zu verletzen. Die beiden Warpanker mit 50 m Trosse gingen verloren; wahrscheinlich hatten sie hinter Wrackteile gehakt und diese mit aufgenommen.

2. Der wissenschaftliche Betrieb während der Terminfahrt.

Die Arbeiten auf jeder Station vollzogen sich nach einem bestimmten, von Herrn Dr. Apstein durchaus zweckmäßig ausgearbeiteten Programm. Sobald der Kapitän die Station erreicht zu haben glaubte, wurde gestoppt und mit der Leblanc'schen Maschine gelotet, was sich auch bei bewegter See noch sicher ausführen läßt. Zeigte sich, daß die nach der Karte zu erwartende Wassertiefe nicht vorhanden war, so wurde einige Seemeilen weiter der Versuch erneuert und dann meist auch die genügende Tiefe gefunden. Sobald der Anker lag, begannen die Arbeiten, indem die hydrographischen Schöpfzüge mitschiffs an der Steuerbordseite, die biologischen Netzzüge backbords mehr achter ausgeführt wurden. Gegenseitige Störungen durch die gleichzeitig ausgegebenen Seile oder Apparate sind bisher nicht vorgekommen. Nach Erledigung dieser Arbeiten wird, wenn der Anker auf ist, an einzelnen Stationen die Dredge herabgelassen und dann bei ganz langsam vorwärts gehender Maschine einige Minuten nachgeschleppt. Gekurrt wurde auf unserer Nordseefahrt nicht, da Herr Dr. Apstein keine entsprechende Weisung von Herrn Professor Heincke erhalten hatte.

Während der Ankerzeit, und zwar zu Beginn der Arbeiten auf jeder Station, haben die beiden Hydrographen auch die international vorgeschriebenen meteorologischen Beobachtungen auszuführen, die ihnen in beschränktem Umfange auch während der Fahrt von 6 Uhr vormittags bis 10 Uhr abends zufallen, während nachts 12 und 4 Uhr die Schiffsoffiziere für sie eintreten, falls nicht eine Station in diese Zeit fällt.
Der Dienst während der Terminfahrten ist keineswegs bequem für die eingeschifften Herren. Namentlich sind die dicht aufeinander folgenden Stationen 6, 7, 8, sowie 9, 10, 11, 12 mit teilweise sehr großen Wassertiefen eine recht anstrengende Aufgabe. Auch in der Ostseefahrt sind die ersten 9 Stationen durch kurze Fahrtstrecken von einander getrennt und folgen die Stationen 6, 7, 8, 9 zwischen Trelleborg und Arkona fast unmittelbar auf einander. Ein Teil der Stationen ist immer nachts zu erledigen: auf unserer Nordseefahrt waren es 4, 5 und 8. Die Gelehrten müssen dann lernen, wie die Seeleute zu jederzeit den verlorenen Schlaf wieder zu gewinnen.

Aus meinen Wahrnehmungen geht hervor, daß die Besetzung mit wissenschaftlichen Kräften, wie sie auf den letzten Terminfahrten üblich geworden ist, als durchaus zweckmäßig gelten darf. Bei einer so umsichtigen Leitung, wie sie Herr Dr. Apstein handhabt, und durch sein auch etwa seekranke, jüngere Herren fortreibendes persönliches Beispiel, ist jede Garantie gewährt, daß alle Kräfte an Bord nützlich angespannt werden. Es war mir eine besondere Genugtuung, dies auf der Nordseefahrt mehrfach feststellen zu können.

3. Das Schiff.

Nach der ersten Fahrt im Mai 1902 in der Nordsee war unser Dampfer „Poseidon“ in den Ruf gekommen, als sei er wegen zu starker Schlüngerbewegungen für wissenschaftliche Arbeiten in See ungeeignet, ja sogar nicht ungefährlich. Schon damals mußte daran hingewiesen werden, daß erstens das Urteil der jüngeren Gelehrten, denen zumeist alle Seeerfahrung abging (leider erkrankte Dr. Apstein damals) nicht maßgebend sein könne, und zweitens die Ausrüstung des „Poseidon“ damals noch unvollständig, und fester Ballast überhaupt nicht an Bord war. Freilich war das Schiff den speziellen Anforderungen des Reichsmarineamts zufolge sehr „steif“ konstruiert und mußte daher in der Tat bei ungenügender Belastung in seitlichem Seegang heftig stoßende Rollbewegungen ausführen. Durch die inzwischen schrittweise getroffenen Veränderungen (Aufstellung der zweiten Winde, Verlängerung der Masten, Gaffeltakelung), insbesondere aber durch Einbau von 33 Tons Steinballast im Provintraum (unter dem Fischlaboratorium) sind diese Mängel in einem solchen Grade gehoben, daß ich nicht anstehe, nunmehr unsern „Poseidon“ für ein ausgezeichnetes Seeschiff zu erklären. Das ist auch die Meinung des Kapitäns wie Dr. Apsteins. Auch die jüngeren gelehrt Herren gaben mir während der Fahrt zu, daß ihr erstes Urteil voreilig und nach Lage der Dinge unbedacht gewesen sei. Ich kann nur hervorheben, daß bei dem stürmischen Wetter am 5. August, wo zeitweilig Windstärke 8 Bl. überschritten wurde, der Dampfer in der hohen See trotz seines jetzt grösseren Tiefgangs nur Spritz-

Meinen früheren Anträgen entsprechend hatte sich der Kapitän für diese Fahrt mit einer provisorischen Tiefanker-Vorrichtung versehen, wozu er eine dem Seescherei-Verein gehörende 1800 m lange Hanftrosse und die beiden Warpanker benutzte. Die wissenschaftlichen Arbeiten lassen sich in der norwegischen Rinne nicht vorschriftsmäßig erledigen, sobald das Schiff frei treibt, da dann die Instrumente nicht senkrecht in die Tiefe geführt werden können. Für die Wassertiefen bis 100 m genügt.
einer der großen Schiffsanker mit Kette, um den Dampfer fest zu legen. Aber in Station 7 mit 270 m, 8 mit 360 m, 9 mit 470 m und 10 mit 230 m Tiefe genügen die vorhandenen Ketten nicht mehr, da für jede Wassertiefe die doppelte bis dreifache Länge erforderlich ist. Der Kapitän gab auf Station 7 die Hanftrosse über die Rolle eines am Bug eingesetzten Davit aus. Dieser erwies sich aber als zu schwach und verbog sich beim Einziehen. Auf Station 8 und 9 verfuhr der Kapitän so, daß er die Hanftrosse zunächst über die Rolle des vorderen Kriegsagiens führte. Der Dampfer lag dann aber nicht mit dem Bug gegen den Wind und begann in störender Weise zu rollen. Die Trosse wurde darauf aussenbords an dem Eisraum vorüber auf eine Länge von 9 m an den Bug herangezogen und dort festgemacht. Der Erfolg war insofern günstig, als der Dampfer nun besser lag, aber es trat eine neue Gefahr auf, da der auf- und abschwingende Bug die Trosse durchzuscheuern drohte. Durch entsprechende Bewickelung und stetige Überwachung durch den ersten Steuermann wurde dies verhindert. Es erscheint unbedingt geboten und technisch leicht ausführbar, eine besondere starke Rolle am Backbordbug für das Abbieben der Ankertrusse neu einzubauen. Es wird dann gut möglich sein auf den genannten vier Nordseeestationen 7 bis 10 bei handigen Wetterwissenschaftlich zu arbeiten.

Ich kann nicht schließen, ohne auch einige Worte über das Schiffspersonal hinzuzufügen; es können nur Worte voller Anerkennung sein. Kapitän, Schiffssoffiziere, Maschinisten und Leute wetteiferten darin, den Gelehrten die Arbeit zu erleichtern. Die Maschinisten hatten in der dienstfreien Zeit oder auf den Stationen nicht selten Gelegenheit zu kleineren oder größeren Reparaturen an Instrumenten und Netzen, die sie immer eben so flink wie zweckmäßig auszuführen verstanden. Die Verteilung der einzelnen Leute an die Winden und anderen Arbeitsstellen ist wohl geregelt, und die Ablösungen beim Wechsel der Wache vollzogen sich ganz unmerklich. Der Koch ist auch weitgehenden Anforderungen gewachsen, die Verpflegung war reichlich und sehr gut, die Bedienung ließ nichts zu wünschen übrig. Kurz, wir können mit unseren gesamten Einrichtungen für die Terminfahrten jetzt sehr zufrieden sein.
I. Abteilung: Kiel.

Bericht über allgemeine biologische Meeresuntersuchungen.
Von Prof. K. Brandt (Kiel).

Im ersten Jahre (1902) hatten nur 3 Kieler Biologen die sehr mannigfaltigen und zeitraubenden Untersuchungen über allgemeine Meeresbiologie im Interesse der internationalen Meeresforschung betrieben, und zwar hatte der Privatdozent Dr. Apstein die wirbellosen Tiere und die Pflanzen des freien Wassers (das Plankton), der Privatdozent Dr. Reibisch die wirbellosen Tiere und die Pflanzen des Meeresgrundes, und der Chemiker Dr. Raben die Untersuchung des Meerkawassers auf die nur spurenweise vertretenen Pflanzennährstoffe übernommen. In meinem Berichte über das erste Arbeitsjahr habe ich hervorgehoben, daß es dringend erwünscht sei, sowohl dem Planktologen Dr. Apstein, als auch dem Untersucher der Bodenorganismen Dr. Reibisch noch je eine Kraft zur Seite zu stellen. Eine vierte Stelle, die schon im Dezember 1901 bewilligt worden war, konnte am 15. August 1903 zum ersten Male besetzt werden. Außerdem wurde im Laufe des Etatsjahres noch eine fünfte Stelle bewilligt, die am 1. Dezember 1903 besetzt wurde.

1. Die Fahrten und die Tätigkeit der Kieler Biologen an Bord.

Bei allen vier Terminfahrten des abgelaufenen Rechnungsjahres wurde zuerst die Nordsee und dann die Ostsee untersucht. Stets nahmen 3 Kieler Biologen teil.

Am nächsten Tage begann die Ostseefahrt, die bis zum 15. Mai dauerte. Die Besetzung war dieselbe. Alle Stationen konnten untersucht werden. Überhaupt war die Mai-Terminfahrt so vom Wetter begünstigt, daß zum ersten Male die ganze Fahrt in 20 Tagen ausgeführt werden konnte.

2) Die August-Terminfahrt durch die Nordsee fand in der Zeit vom 3. bis 12. August statt. An derselben nahm Professor Dr. Krümmel als Mitglied der wissenschaftlichen Kommission teil. Die Stationen 2 und 10 konnten wegen starken Windes und Seeganges nicht untersucht werden, dagegen wurde versuchsweise noch eine weitere seewärts gelegene Station 4a einer eingehenden Untersuchung unterworfen. Da sich nichts Besonderes ergab, soll diese neue Station in Zukunft nicht aufrecht erhalten werden. Als Biologen nahmen an der Nordseefahrt teil: Dr. Apstein, Dr. Reibisch und Dr. Zander.

Die Ostseefahrt wurde in der Zeit vom 13.—22. August fast programmäßig ausgeführt. Nur die östlichste Station (13) mußte wegen hoher See ausfallen. Dagegen wurde auf dem Rückwege in der Bornholmtiefe die Kurre mit Erfolg angewendet. Die biologischen Teilnehmer waren Dr. Apstein, Dr. Immermann und Dr. Zander.

3) Die November-Terminfahrt durch die Nordsee dauerte vom 2. bis 13. November. Bis zur Station 8 einschließlich konnte bei gutem Wetter alles erledigt werden, dann aber mußten auf dem Rückwege die Stationen 9—14 wegen stürmischen Wetters und starken Seeganges ganz ausfallen. Nur auf Station 15 konnten noch die vorgeschriebenen Terminarbeiten gemacht werden. Die biologischen Teilnehmer waren Dr. Apstein, Dr. Süßbach und Dr. Feit tel.

Die Ostseefahrt, die vom 14. bis 24. November stattfand, verlief günstiger. Es konnten alle 13 Stationen untersucht werden, nur die Untersuchungen in der Bornholmtiefe auf der Rückfahrt mußten wegen Südweststurmes unterbleiben. Als Biologen nahmen Dr. Apstein, Dr. Reibisch und Dr. Rauschenpl at teil.

4) Die Terminfahrt im Februar 1904 fing am 28. Januar an. In der Nordsee konnten nur die erste und die beiden letzten Stationen
Die Tätigkeit im Etatsjahre 1903. Abt. I: Kiel 1. 53

erledigt werden; die Arbeit an den anderen 12 Stellen mußte wegen starken Sturmew ganz unterbleiben. Auf der Jütlandbank bei Station 14 und 15 hatte sich das Wetter so gebessert, daß auch die Kurre angewandt werden konnte. Der „Poseidon“ traf am 8. Februar in Kiel wieder ein. Die biologischen Teilnehmer waren Dr. Apstein, Dr. Rauschenplat und Dr. Feitel.

Die Fahrt durch die Ostsee, die vom 9. bis 20. Februar stattfand, wurde anfangs durch schlechtes Wetter so gestört, daß bei Såbnitz Schutz gesucht werden mußte. Dann aber konnten nicht bloß alle 13 Stationen erledigt, sondern auch noch die Bornholmtiefe untersucht werden. Es nahmen teil die Biologen Dr. Apstein, Dr. Rauschenplat und Dr. Süßbach.

Die Terminfahrten wurden wie im Vorjahr von Dr. Apstein geleitet. Die Verteilung der Arbeiten auf die drei Biologen und die Tätigkeit an Bord war im wesentlichen dieselbe wie im ersten Jahre.

der chemischen Zusammensetzung des Planktons, 1898) der chemischen Analyse unterworfen worden. Zu diesem Zweck war während einiger Monate des vergangenen Jahres der Chemiker Dr. Stiehr als Hülfsarbeiter der Kommission zur wissenschaftlichen Untersuchung der deutschen Meere engagiert worden. Im nächsten Jahre werden diese Untersuchungen in ähnlicher Weise fortgesetzt.

2. Die Tätigkeit der Kieler Biologen im Laboratorium an Land.

1. Plankton-Untersuchungen von Dr. Apstein, Dr. Zander und Dr. Rauschenplat.

Die quantitativen Planktonfänge, die auf den Terminfahrten des abgelaufenen Rechnungsjahres gewonnen worden sind, konnten fast alle gründlich nach dem Zählverfahren bearbeitet werden. Es wurden 103 Fänge aus der Nordsee, sammlich von Dr. Apstein, und 104 Fänge aus der Ostsee von Dr. Apstein, Dr. Zander und Dr. Rauschenplat gezählt. Ausser diesen 207 quantitativen Fängen sind noch zahlreiche Plankton-Proben nach der Schätzungsmethode untersucht worden, namentlich von solchen Stationen, an denen schlechten Wetters wegen nicht quantitativ gearbeitet werden konnte. Tabellarische Übersichten der Untersuchungs-ergebnisse sind an das Zentralbureau in Kopenhagen gesandt und in den Bulletins veröffentlicht worden.

Im Winter 1904/5 wird Dr. Apstein eine grössere Abhandlung über seine Untersuchungen in Nord- und Ostsee in Druck geben. Ferner gedenkt er eine Bearbeitung der Mysideen und Euphausiden im kommenden Jahre abzuschließen und die Bearbeitung der Decapodenlarven, die schon in Angriff genommen ist, weiter zu fördern. Über die aus den Fängen herausgesuchten Appendikularien, darunter tropische Arten in den kalten Tiefen der norwegischen Rinne, wird Dr. Lohmann berichten.

Über die Fangergebnisse berichtet Dr. Apstein folgendes:

In der Nordsee waren im Mai Peridineen und Diatomeen fast überall sehr spärlich; nur die deutsche Bucht machte eine Ausnahme insofern, als dort einige Diatomeen, z. B. Guinardia, stärker wucherten. Von pflanzlichen Organismen fanden sich in der nördlichen Nordsee namentlich Halosphaera und Dinobryon. — Im August fanden sich nur verhältnismäßig wenig Diatomeen, reicher waren nur die Jütlandbank und die deutsche Bucht, dagegen war die Zahl der Peridineen überall grösser, namentlich von Ceratium macroceros. — Im November fanden sich Peridineen überall häufig, von Diatomeen im Norden vorzugsweise Chaetoceros, in der deutschen Bucht bis nach Norwegen hin Bidulphia.

55

Überhaupt war im November der nördliche Teil der Nordsee reich. Die Hauptmasse des Planktons befand sich in den obersten Wasserschichten; der Unterschied den tieferen Schichten gegenüber war viel stärker als im Mai und August. Copepoden fanden sich in allen drei Monaten ziemlich allgemein; nur die grossen Tiefen im Norden lieferten besondere Arten.

In der Ostsee war das Volumen an Plankton durchschnittlich geringer als in der Nordsee; nur im Mai wurden in der westlichen Ostsee sehr grosse Mengen von Plankton erhalten, weil Chaetoceros sich dort in voller Vegetation befand. Entweder lag bei den Terminfahrten die Grenze zwischen westlicher und östlicher Ostsee zwischen Station 4 und 5, oder in dem Schnitt Schweden-Rügen. Die Plankton-Organismen der westlichen Ostsee verbreiteten sich aber in der Tiefe bis weit nach Osten; so fanden sich in der Danziger Tiefe noch Oithona und Sagitta, die von Station 5 an in den oberen und mittleren Schichten fehlten.

Die Februarfahrt lieferte für die Nordsee des schlechten Wetters wegen wenig Material, so daß keine allgemeineren Resultate abzuleiten sind; für die Ostsee hat das Material bis zur Abfassung des Berichtes noch nicht vollständig untersucht werden können.

2. Untersuchungen von Dr. Raben über den Gehalt des Meerwassers an spurenweis vertretenen Pflanzenährstoffen.

Während des Jahres 1903 war der Chemiker Dr. Raben bemüht, mit gütiger Unterstützung des Herrn Prof. Rodewald, Direktor des landwirtschaftlichen Instituts zu Kiel, die Methoden des Nachweises von Stickstoffverbindungen in vergiftetem Seewasser zu verbessern. Das ist bis Anfang Januar 1904 soweit gelungen, daß der mittlere Fehler des anzuwendenden Schätzungsverfahrens erheblich verkleinert ist. Um zunächst das zu erreichen, hat es mehr als 300 sorgfältig ausgeführter Vorversuche bedurft, ehe die Zuverlässigkeit der verbesserten Methoden durch weitere 80 Einzelbestimmungen an Kontrollflüssigkeiten geprüft werden konnte.

In 1 Liter Oberflächenwasser

<table>
<thead>
<tr>
<th>von 41 Proben aus dem Mittelmeere u. dem Roten Meer (Natterer)</th>
<th>0,0063</th>
<th>0,051</th>
<th>0,083</th>
<th>0,125</th>
<th>0,21—0,26 mgr N (als NH₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>—0,05</td>
<td>0,082</td>
<td>0,124</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td>73%</td>
<td>15%</td>
<td>10%</td>
<td>—</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>von 19 Proben aus Nord- und Ostsee (Raben)</th>
<th>0,0063</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,051—0,082</td>
</tr>
<tr>
<td></td>
<td>0,124—0,20</td>
</tr>
<tr>
<td></td>
<td>0,21—0,26 mgr N (als NH₃)</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>53%</td>
</tr>
<tr>
<td></td>
<td>21%</td>
</tr>
</tbody>
</table>

Während nach Natterer’s Angaben 1 Liter Oberflächenwasser des Mittelmeeres usw. im Mittel etwa 0,05 mgr N (in Form von Ammoniak) enthält, finden sich nach den Bestimmungen von Raben in 1 Liter Oberflächenwasser der Nord- und Ostsee im Mittel 0,1 mgr N (in Form von Ammoniak).

Während ferner nach Natterer im Mittelmeerwasser die Nitrite in sehr geringer, kaum messbarer, die Nitrate in überhaupt nicht nachweisbarer Menge vorhanden sind, sind nach Raben’s Untersuchungen Nitrate und Nitrite zusammen im allgemeinen in größerer Menge vertreten als Ammoniak. Das Mittel beträgt 0,175 N (in Form von N₂O₃ und N₂O₅). Der durchschnittliche Gesamtgehalt an gebundener Stickstoff beträgt mithin in den heimischen Meeren 0,275 Teile N in einer Million Teilen Meereswasser.

In den meisten Fällen gibt sich der größere Reichtum der westlichen Ostsee gegenüber der östlichen auch in dem höheren Gehalt an Stickstoffverbindungen kund. Auch ist in der Nordsee der Gesamtgehalt an Stickstoffverbindungen meist deutlich geringer als in der westlichen Ostsee.

Nicht verständlich ist mir die geringe Verschiedenheit des Gehaltes an Stickstoffverbindungen in den verschiedenen Jahreszeiten und vor allem der Umstand, daß nach den bis jetzt vorliegenden Untersuchungen über die Terminfahrten des Jahres 1903 im Februar die Stickstoffverbindungen in geringerer Quantität als im August und November vertreten sind. Auf Grund allgemeiner Überlegungen hätte ich diese beiden Ergebnisse nicht

erwartet. In 97 Proben von Oberflächenwasser aus Nord- und Ostsee hat Dr. Raben folgende Werte für den gebundenen Stickstoff überhaupt (in Form von Ammoniak und Nitrit und Nitrat) gefunden:

<table>
<thead>
<tr>
<th>Monat</th>
<th>Nordsee</th>
<th>Ostsee</th>
<th>Erwartung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Februar</td>
<td>0,183</td>
<td>0,105</td>
<td>Teile N in einer Million Teilen</td>
</tr>
<tr>
<td>Mai</td>
<td>0,136</td>
<td>0,137</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>0,194</td>
<td>0,222</td>
<td>Meerwasser.</td>
</tr>
<tr>
<td>November</td>
<td>0,246</td>
<td>0,178</td>
<td></td>
</tr>
</tbody>
</table>

Neben den Untersuchungen über die Stickstoffverbindungen hat Dr. Raben in 26 verschiedenen Proben von filtriertem Meerwasser aus der Nord- und Ostsee die Menge der gelösten Kieselsäure bestimmt. Die neuen Bestimmungen haben diejenigen des Vorjahres durchaus bestätigt, so daß auch dieser Gegenstand in der jetzt abgeschlossenen ersten Abhandlung von Dr. Raben der Öffentlichkeit übergeben wird.

Bei den Phosphorsäure-Bestimmungen haben sich Fehler in der Methodik herausgestellt, die zuerst bei der Terminfahrt im Februar 1904 haben gänzlich vermieden werden können. Für diese Fahrt und die folgenden werden nun einwandfreie Ergebnisse zu erwarten sein.

Für das bevorstehende Jahr sind dem Chemiker zwei Aufgaben gestellt: 1. durch vergleichende Untersuchungen von Wasser der Nord- und Ostsee einerseits und andererseits von Wasserproben, die ich jetzt aus dem Mittelmeer und aus dem Tropengebiet erhalte, festzustellen, ob in der Tat in warmen Meeren die Menge der gelösten Stickstoffverbindungen geringer ist, als in den kühleren Meeren,

3. Untersuchungen über die Besiedelung des Meeresbodens von Dr. Reibisch und Dr. Süssbach.

Dr. Reibisch, der bis November 1903 die zeitraubenden Vorarbeiten des Sortierens usw. allein hat besorgen müssen, ist nun nach dieser Richtung durch Dr. Süssbach entlastet worden. Er hat daher die Untersuchung der in großer Zahl am Meeresgründe vorkommenden und daher auch recht wichtigen Amphipoden (Flohkrebs) zu einem vorläufigen Abschluß bringen können und wird im Laufe des Winters 1904/05 eine Abhandlung über

Wie Dr. Reibisch in den ersten zwei Jahren eingehende systematisch- faunistische Studien über Amphipoden zum Abschluß gebracht hat, wird er nun ähnliche Untersuchungen über die Species der Würmer, zunächst der Chätopoden, und ihre Verbreitung in der Nord- und Ostsee machen. Daneben wird auch die Untersuchung der Fänge im ganzen und der Abhängigkeit des Vorkommens der Organismen von der Bodenbeschaffenheit usw. fortgesetzt werden. Über diese allgemeineren Untersuchungen können zuverlässige Resultate erst auf Grund zahlreicher Fänge mit verschiedenen Schleppgeräten erreicht werden. Aber schon jetzt haben die vergleichenden Untersuchungen ergeben, daß die Menge der kleinen Tiere diejenigen der großen ganz bedeutend überwiegt, auch an solchen Stellen, an denen die engmaschige zoologische Dredge (Sacknetz) anscheinend nur eine sehr geringe Anzahl von kleinen Tieren liefert, während bei langem Schleppen
von großen, weitmaschigen Fischschleppnetzen (Trawl, Kurre) neben Fischen ein reicher Beifang von vorwiegend großen Tieren erhalten wird.

Außerdem machen sich beide Zoologen mit den häufigeren Arten der übrigen Tiergruppen soweit bekannt, daß sie an die allgemeinen Aufgaben herantreten können.
Bericht über die hydrographischen Untersuchungen.

Von
Prof. Dr. O. Krümmel (Kiel).

1. Die Arbeiten an Bord.

So wurden leider die in die Nordsee gerichteten Terminfahrten vielfach durch anhaltend stürmisches Wetter und rauhe See behindert; vollständig gelang nur die Fahrt im Mai 1903, während im August die Stationen 2 und 10 (in der norwegischen Rinne, vergleiche die kleine Karte im vorjährigen Bericht) und im November die Stationen 9 bis 13 ausfallen mußten. Im Februar 1904 war leider, ganz wie im Vorjahr, die Terminfahrt fast erfolglos, da nur die Stationen 1, 14 und 15 gelangen.

In der Ostsee hatten die Terminfahrten ungleich besseren Erfolg. Nur einmal, im August, mußte die Station 13 (auf der Höhe von Memel) ausfallen, während dafür auf der Rückfahrt nach Kiel im Mai, August und Februar auf einer Extrastation in der großen Tiefe östlich von Bornholm mit gutem Erfolg hydrographisch und biologisch bearbeitet werden konnte.
Leiter der Terminfahrten war regelmäßig Herr Dr. Apstein. Die hydrographische Arbeit lag an erster Stelle in Herrn Dr. Ruppins Händen; ihm assistierten darin im Mai auf der Nordsee-Fahrt Herr Kandidat Pichert, auf der Ostsee-Fahrt Herr Privatdozent Dr. Meinardus aus Berlin; im August auf der Nordsee-Fahrt wieder Herr Dr. W. Meinardus, auf der Ostsee-Fahrt Herr O. Baschin, Kustos am geographischen Institut der Universität Berlin. Im November und Februar war für die ganze Dauer der Fahrten als zweiter Hydrograph der im Laboratorium seit 1. Oktober angestellte Chemiker Dr. P. Kemnitz eingeschifft. Im August 1903 nahm ich an der Fahrt in die Nordsee selbst teil und habe über die gewonnenen Eindrücke, wie über den gesamten Betrieb der Terminfahrten ausführlich unter dem 18. August v. J. berichtet (Vergl. S. 44—50).

Die auf den Terminfahrten besuchten Stationen blieben in der Nordsee die anfänglich festgesetzten (vgl. die Karte im vorjährigen Bericht). In der Ostsee mußte seit dem August 1903 auf der Strecke zwischen Arkona und Trelleborg eine kleine Verschiebung der Stationen 6, 7, 8 um einige Seemeilen nach Westen eintreten, da der Kapitän Heinen mit Recht die Besorgnis äußerte, daß die nahe bei den genannten Stationen verlegten Telegraphenkabel Arkona-Trelleborg und Möen-Bornholm von den Ankern des „Poseidon“ leicht einmal erfaßt und beschädigt werden könnten.

Die Ausrüstung des „Poseidon“ für die hydrographische Arbeit ist die im Vorjahr beschriebene. Neu hinzugekommen ist inzwischen eine Tiefankervorrichtung, die sich von wesentlichem Vorteil erweist. Bei mäßig bewegter See gelingt es jetzt, auch in der tiefen norwegischen Rinne (bei fast 500 m Tiefe) das Schiff zu verankern; dadurch sind die unkontrollierbaren Fehler, die früher, als das Schiff auf den Stationen 7, 8, 9, 10 im dort herrschenden Meeresstrom frei treiben mußte, in der Tiefenbestimmung der zu untersuchenden Wasserschichten unvermeidlich waren, jetzt ausgeschlossen.

Die im vorigen Bericht erwähnten, von der Firma C. Richter in Berlin in verbesserter Ausführung gelieferten Umkippthermometer haben sich nach längerem Gebrauch leider nicht nach Wunsch bewährt: auf das Abreissen des Quecksilberfadens an der dazu bestimmten Stelle ist auf die Dauer nicht mit Sicherheit zu rechnen und nur ganz neue Instrumente arbeiten einige Zeit gut. Wir haben deshalb seit dem August 1903 den Nansen'schen Wasserschöpftapparat mit den dazu gehörigen Tiefseethermometern ausschließlich in Gebrauch genommen; mit dem Nachteil, daß damit nur ein kleines Quantum Tiefenwasser aufge hobt werden kann, muß man sich in der einen oder anderen Weise abfinden.

Seit dem November wurde auch mit einem vom Zentral-Laboratorium in Christiania bezogenen, nach Nansen's Angaben konstruierten Strommesser versucht, die Strömungen in den Tiefenschichten zu messen. Die Beobachtungen

versprechen guten Erfolg und werden nach Möglichkeit fortgesetzt. Da sie nur bei gutem Wetter ausführbar sind, liegen erst wenige Messungen aus der westlichen Ostsee vor.

2. Die Arbeiten im Laboratorium.

Endlich begann Herr Dr. Ruppin eine Reihe von Versuchen, um den Gehalt des Seewassers an organischer Substanz während der Fahrt selbst an Bord zu bestimmen, wobei in erster Linie das Reduktionsvermögen gegen Kaliumpermanganat in Betracht kommt.

3. Einige allgemeine Ergebnisse.

Die Bedeutung der auf unsern Terminfahrten ausgeführten Messungen der Temperaturen und des Salzgehalts für die Verbreitung der Organismen ist aus den inzwischen erschienenen Spezialarbeiten der Biologen in Helgoland und Kiel ohne weiteres erkennbar. Unser seit dem
Mai 1902 geführtes, dem internationalen Programm von Christiania (A, § 6) entsprechendes Verfahren, während der Terminfahrten an Bord selbst das spezifische Gewicht der Wasserschichten sofort an den aufgeholten Wasserproben wenigstens angenähert mit einem Aräometer zu bestimmen und den Salzgehalt auszurechnen. Hat sich sehr bewährt: die Biologen sind so- gleich über die auf der Station vorhandene Lagerung der Wasserschichten orientiert und können danach ihre Arbeiten, wie die Plankton- oder Fisch- eierfänge, einrichten. In dieser Hinsicht darf also auf die Berichte der beteiligten Biologen verwiesen werden.

Von rein hydrographischem Standpunkte aus betrachtet, ergeben, wie schon im vorigen Bericht ausgesprochen werden mußte, unsere deutschen Messungen allein nur ein sehr lückenhaftes Bild; um zu einem Überblick zu gelangen, muß man auf alles übrige, aus gleicher Zeit vorliegende Material zurückgreifen. Von einer Terminusfahrt zur andern zeigt sich dann eine mehr oder weniger erhebliche Veränderung in den Eigenschaften des Seewassers, und es ist zur Zeit noch nicht zu übersehen, ob etwa für diese Veränderungen irgend ein regelmäßiger Cyclus bestehe. Daß die meteorologischen Verhältnisse, das Auftreten und die Dauer westlicher oder östlicher Winde, diese Wasserschichtveränderungen und -Mischungen in erster Linie beherrschen, bestätigt sich manngfach, ist aber keineswegs eine neue Tatsache. Um zu verstehen, wie die atmosphärischen und ozeanischen Bewegungen von Fall zu Fall auf einander wirken, bedarf es allem Anscheine nach viel längerer Reihen von Beobachtungen, als sie die internationale Meeresforschung seit dem August 1902 liefern konnte.

Bei dieser Gelegenheit mag daher, ähnlich wie im Vorjahr, kurz auf Erscheinungen in den Tiefengewässern der südlichen Ostsee hingewiesen werden, die sich in der Hauptsache aus unserm deutschen Beobachtungen allein verstehen lassen.

Die im vorigen Bericht erwähnte Einströmung von verhältniß-
mäßig recht salzigem Wasser in die Ostsee bei Rügen im Februar 1903 (Temperatur = 2,2°, Salzgehalt = 23,5 Promille) hat sich, wie damals vermutet, in der Tat weithin in die Ostsee nach Osten geltend gemacht. Die auf unserer Extrastation in der tiefen Mulde östlich von Bornholm erhaltenen Beobachtungen hatten vor dieser Einströmung eine Temperatur von 4,58° und einen Salzgehalt von 16,42 Promille am Boden in 95 m ergeben. Als Folge der erwähnten Einströmung zeigt sich eine Abkühlung der Temperatur und eine Steigerung des Salzgehalts; beides hat sich dann im Laufe des Jahres wieder abgeschwächt durch fortlaufende Vermischung mit den darüber liegenden Schichten, wobei die Temperatur auch wohl zum Teil durch die innere Erdwärme, vom Boden aus, ein wenig gesteigert wird (hierfür liegen auch sonst Anzeichen vor). Folgende kleine Tabelle zeigt, wie dieser Prozeß sich bis zum Februar d. J. ungestört weiter vollzog.

<table>
<thead>
<tr>
<th>Bornholm-tiefe (95 m)</th>
<th>Temperatur:</th>
<th>Salzgehalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>im Mai 1903</td>
<td>3,16°</td>
<td>17,81 Promille</td>
</tr>
<tr>
<td>im August 1903</td>
<td>3,28</td>
<td>17,63</td>
</tr>
<tr>
<td>im Februar 1904</td>
<td>3,47</td>
<td>16,94</td>
</tr>
</tbody>
</table>

Dieser Einzug kalten und salzigen Wassers aus der Beltsee in die südl. Ostsee im Februar 1903 hat sich anscheinend auch in die Danziger Bucht erstreckt. Hier ist im Bodenwasser ebenfalls eine Abkühlung und Versalzung festzustellen, die freilich nicht sehr stark waren und seitdem ebenfalls wieder langsarn gewissermaßen in der Rückbildung in den alten Stand vor Februar 1903 begriffen sind:

<table>
<thead>
<tr>
<th>Danziger Bucht (105 m)</th>
<th>Temp.:</th>
<th>Salzgeh.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>im November 1902</td>
<td>5,58°</td>
<td>11,98 Promille</td>
</tr>
<tr>
<td>im Mai 1903</td>
<td>3,44</td>
<td>13,10</td>
</tr>
<tr>
<td>im August 1903</td>
<td>3,68</td>
<td>12,94</td>
</tr>
<tr>
<td>im November 1903</td>
<td>3,97</td>
<td>11,96</td>
</tr>
<tr>
<td>im Februar 1904</td>
<td>4,02</td>
<td>11,82</td>
</tr>
</tbody>
</table>

Auch die Gasanalysen zeigen sehr deutlich, wie hier neues, an Sauerstoff relativ reicheres Wasser damals seinen Einzug gehalten hat. Der Anteil des Sauerstoffs an der dem Tiefenwasser beigemengten Luft war nämlich:

| im November 1902 | 6,2 Prozent |
| im Mai 1903 | 25,3 |

Der Sauerstoffgehalt hat aber seitdem ebenfalls wieder abgenommen: er betrug

| im November 1903 | 14,9 Prozent |
| im Februar 1904 | 9,0 |

Hieraus ist sofort zu erkenne, daß seit dem Februar 1903 das Tiefenwasser nicht erneuert ist. Die Abnahme des Sauerstoffs ist wesentlich dem Atmungsprozeß der Seetiere zuzuschreiben. Dem entspricht auch die auffallend große Menge der Kohlensäure im Februar d. J., die mit 41 cc (im Liter See-wasser) um 6 cc größer als normal war.

Für die großen Mulden der östl. Ostsee ist hiernach, wie bereits aus älteren unvollständiger Beobachtungsreihen geschlossen wurde, in der Tat anzunehmen, daß ihre tieferen Bodenschichten nur in längeren, unregelmäßigen Zwischenräumen stoßweise vom Unterstrom aus der Beltsee erreicht und aufgefrischt werden. Je weiter nach Westen aber, desto häufiger und intensiver finden diese Einströmungen statt. Am Boden der nur 50 m tiefen Mulde nördlich von Rügen bewirken sie einen so ausgiebigen Wechsel, daß bei unserer dort gelegenen Station S der Lauf der Jahreszeiten noch

deutlich hervortritt. Aus der nachstehenden Zahlenreihe dürfte dies wenigstens für die Beobachtungsperiode 1903/04 erkennbar sein.

<table>
<thead>
<tr>
<th>Boden der Station 8:</th>
<th>Temp.:</th>
<th>Salzgeh.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Februar 1903</td>
<td>2,20°</td>
<td>23,50 Promille</td>
</tr>
<tr>
<td>Mai 1903</td>
<td>3,61</td>
<td>13,84 "</td>
</tr>
<tr>
<td>August 1903</td>
<td>14,83</td>
<td>16,94 "</td>
</tr>
<tr>
<td>November 1903</td>
<td>8,03</td>
<td>15,73 "</td>
</tr>
<tr>
<td>Februar 1904</td>
<td>2,17</td>
<td>10,41 "</td>
</tr>
</tbody>
</table>

Der auffallend geringe Salzgehalt im Februar 1904 zeigt dabei, daß auf Zustrom aus der Beltsee nicht etwa regelmäßig in jedem Winter zu rechnen ist. Der hohe Salzgehalt von rund 17 Promille im August 1903 zusammen mit der hohen Temperatur von fast 15° zeigen vielmehr, daß das gelegentlich auch im Sommer sehr ergiebig eintreten kann: Wasser von der gleichen Temperatur und Salinität lag im August 1903 im Fehmarnbelt in 10 m Tiefe und nach dänischen Beobachtungen bei Samsö an der Oberfläche; jener Einschub stammte also aus dem südlichen Kattegat.
II. Abteilung: Helgoland.

Die Arbeiten der Königl. Biologischen Anstalt auf Helgoland im Interesse der Internationalen Meeresforschung
in der Zeit vom 1. April 1903 bis 31. März 1904.

Von
Prof. Dr. Fr. Heincke (Helgoland).
Mit 7 Abbildungen, 3 Tabellen und 1 Karte.

Die Arbeiten wurden ausgeführt von dem Direktor der Anstalt, Prof. Dr. Heincke, dem Kustos Prof. Ehrenbaum, den wissenschaftlichen Hilfsarbeitern Dr. Strodtmann und Dr. Bolau und dem Assistenten Dr. Maier. Alle beteiligten sich sowohl an der Arbeit auf See, wie an der Landarbeit im Laboratorium. Ehrenbaum und Strodtmann bearbeiteten die Eier und Larven der Nutzfische; der letztere führte zugleich die physikalischen Beobachtungen und die Salzgehaltsbestimmungen der gesammelten Wasserproben aus. Heincke, Bolau und Maier bearbeiteten die ausgebildeten Fische vom ersten Bodenstadium an bis zur Geschlechtsreife. Hierbei untersuchten Heincke und Maier im besonderen das Alter und die Reifestadien der Fische, Bolau die Nahrung derselben. Von dem Letzteren wurde auch das Marken lebender Fische und das Aussetzen der gemarkten (gezeichneten) Fische besorgt.

Die Arbeit auf See wurde in der unmittelbaren Umgebung von Helgoland und in der Nähe der deutschen Küste meistens mit der Barkasse...

Außer auf ihren eigenen biologischen Fischereifahrten war die Anstalt auch auf den hydrographischen Terminfahrten an der internationalen Arbeit beteiligt. Einer ihrer Gelehrten, meist Dr. Strodtmann, nahm fast an allen Terminfahrten sowohl in der Nordsee wie auch in der Ostsee teil, hauptsächlich um Eier und Larven von Nutzlichen zu fangen.

Für die ordentliche Ausführung der mannigfaltigen Arbeiten an Bord des "Poseidon" war die Anstalt auch in diesem Jahre wie im vorigen genötigt, regelmäßig einen ihrer Fischer sowie einen Hilfspräparator als Laboratoriumsdiener mitzunehmen, einige Male auch den Fischmeister der Anstalt Lornsen, der sich durch Konstruktion neuer wissenschaftlicher Fanggeräte verdient machte. Die Kosten, die hieraus erwuchsen, übernahm die Anstalt auf ihre Fonds.

** Methode der Arbeit auf See.**

Die Hauptarbeit auf unseren biologischen Fischereifahrten in der Nordsee bestand in der Ausführung von Fischereiver suchen mit dem Grundschleppnetz. Wir benutzten dazu nur das sogenannte Scherbrettennetz oder Ottertrawl und zwar in zwei Größen, meistens das auf den Fischdampfern gebräuchliche Gerät (commercial trawl) von 90 Fuß Kopftau, seltener ein kleineres, der Anstalt gehöriges, von 50 Fuß Kopftau (Hjortsches

Trawl). Diese Trawlzüge brachten uns das Hauptmaterial für die programm-

Um die Tierwelt des Meeresgrundes auf den Fangplätzen der Fische genauer kennen zu lernen, wurden neben dem Trawl stets auch Dredgen verschiedener Art angewendet. Wir konnten so die Fauna des Bodens mit dem Mageninhalt der auf ihm gefangenen Fische vergleichen. Von allgemeinen Gesichtspunkten aus, d. h. zur Bestimmung der Bodenfauna überhaupt, wurden die Dredgefänge von einem der Kieler Gelehrten, Dr. Reibisch, bearbeitet, der an fast allen Fahrten der Anstalt teilnahm. An fast allen Stationen, an denen mit Grundnetzen gearbeitet wurde, gelangten auch Geräte zum Fang der im freien Wasser über dem Boden lebenden Tiere zur Anwendung. Da die Erforschung des Planktons im allgemeinen eine Aufgabe der Abteilung Kiel ist, beschränkten wir uns auf den Fang der freischwimmenden Eier, Larven und größeren Altersstadien der Fische. Hierzu wurden teils das alte Helgoländer Brutnetz und die Hensen’schen quantitativen Eiernetze gebraucht, teils und mit Erfolg zwei neue von der Anstalt nach den Angaben des Fischmeisters Lornsen konstruierte Geräte, bei denen das Prinzip der Scherbretter zur Anwendung kommt. Das eine dieser Netze ist das sogenannte Scher-Brutnetz (Fig. 1), das zum Fang von Eiern und Larven in bestimmten Tiefen unter der Oberfläche dient. Dieses in der Abhandlung von Ehrenbaum und Strodtmann über die Eier und Jugendformen der Ostseefische bereits beschriebene und abgebildete Netz besitzt an seiner Öffnung ein schräg nach unten geneigtes, feststehendes sogenanntes Scherbrett; dieses Brett verhindert durch den Widerstand, den es beim Zuge durch das Wasser diesem entgegengesetzt,

Das zweite neue Gerät, das neue Helgoländer Obertrawl oder Dreischerbrettternetz (Fig. 2—4), dient zum Fang von größeren Larven und kleinen Jungfischen im freien Wasser. Es ist ein 34 Meter langer konisch zulaufender Netzbeutel von Hanfgarn, mit vorderer dreieckiger Mündung, jede Dreieckseite 15 Meter lang mit einer Gesamteingangsfäche von rund 100 Quadratmetern. Die Maschen sind vorne am Eingang 80 mm weit und verkleinern sich ganz allmählich bis auf 5 mm im Steer des Netzes. Das Offenhalten des Netzbeutels geschieht durch die starken, eisenbeschlagenen Scherbretternach Art der Scherbretter der Grundnetze, zwei davon sind ganz gleich, eins aber etwas abweichend gestaltet und befestigt und stärker beschwert (Fig. 4). Dieses dritte Scherbrett befindet sich, wenn das Netz fischt, seiner größeren Schwere wegen stets unten, an ihm ist also dann die nach unten gerichtete Spitze der dreieckigen Netzmitte befestigt, während die beiden anderen Scherbrettern an den Enden der nach oben gewendeten Dreieckseite befestigt sind. An jedem Scherbrett ist eine 50 Faden lange, starke Stahlrosse befestigt und alle drei Trossen (Sprinken) sind vorne durch Schäckel an die große Kurtrrosse angeschlossen. Die drei Sprinken sind derartig an den drei Scherbrettern befestigt, daß diese beim Zuge des ganzen Geräts durch den Gegendruck des Wassers selbsttätig, soweit wie es möglich ist, auseinander scharren, das schwere nach unten, die beiden anderen nach den Seiten. So wird das ganze Netz offen und zugleich unter Wasser gehalten; wie tief, hängt von der Länge der ausgegebenen Trosse und der Schnelligkeit der Fahrt ab. Die Vorzüge dieses neuen Geräts gegenüber den vielen anderen bisher für den Fang von freischwimmenden Jungfischen konstruierten, z. B. dem Oberflächentrawl von Monaco, dem Hjort'schen Bügelnetz u. a., liegen wesentlich darin, daß es mit sehr bedeutender Größe sehr leichte Handhabung vereinigt. Es wird vorne auf Deck von einem Baume des Vordermastes aus heruntergelassen, wobei die drei Scherbretter zusammenliegen; sobald diese aber ins Wasser gelangen und durchs Wasser gezogen werden, scharren sie auch schon von selbst auseinander und das Netz öffnet sich. Ein weiterer Vorzug ist die Möglichkeit einer ziemlich schnellen Fahrt mit diesem Netz; man kann ohne Bedenken mit ihm 3, 4 und mehr Seemeilen in der Stunde Fahrt machen ohne Schädigung des Netzes. Obwohl die Versuche mit diesem
(Zu Bericht Heincke 1903)

Fig. 2. Heigoländer Dreischerbretternetz oder Obertrawl.
(Zu Bericht Heincke 1903)

Fig. 3. Helgoländer Dreischerbretternetz oder Obertrawl.
Der Netzbeutel (34 Meter lang) aufgehängt, um seine Länge und die allmähliche Abnahme der Maschenweite von der Mündung (rechts) bis zum Sack (links) zu veranschaulichen.
Fig. 4. *Das Helgoländer Dreischerbretternetz oder Obertrawl.*

Die drei Scherbretter, die beiden seitlichen oberen und das mittlere untere.
Die Tätigkeit im Etatsjahre 1903. Abt. II: Helgoland. 73

Versuche mit Treibnetzen haben wir leider so gut wie gar keine und solche mit Angelleinen nur sehr wenige ausführen können. Diese Versuche nehmen sehr viel Zeit in Anspruch, sehr viel mehr als die übrigen Fischerei-Versuche, und es zeigt sich bald, daß zu ihrer ordentlichen Ausführung besondere Spezialfahrten gemacht werden müssen. Dafür reichten aber die wenigen Tage, die uns der „Poseidon“ zur Verfügung stand, entfernt nicht aus.

Orte und Zahl der mit dem grossen Trawl angestellten Fischzüge.

Solche, den Haupteil unserer Arbeit auf See bildenden Züge mit dem großen und mittleren Scherbrötternetz haben wir im Jahre 1903/4 auf unseren Poseidonfahrten im ganzen 72 gemacht; vorher vom Oktober 1902 bis Ende März 1903 30, zusammen seit Beginn unserer Arbeiten 102 Züge in 67 Arbeitstagen auf See, also per Tag durchschnittlich 1,5 Zug. Die Zahl dieser Züge ist gering, sehr gering sogar und jedenfalls zu klein, um die uns zugewiesenen Probleme der Verbreitung der Nutzfische zu lösen. Die Engländer haben in derselben Zeit etwa die dreifache Zahl wissenschaftlicher Trawlzüge gemacht, die Schotten etwa die doppelte. Wir sollten es — glaube ich — auf etwa 150 Züge im Jahre bringen, um einigermaßen hinreichendes Material an Fischen zu bekommen. Übrigens ist bei dem
Vergleich unserer Trawlzüge mit denen der Engländer und Schotten zu beachten, daß diese auf ihren wissenschaftlichen Fahrten nur wenig Gewicht auf jene zahlreichen Versuche mit anderen Geräten legen, die wir regelmäßig anstellen, daß sie also vorwiegend nur trawlen, daß sie ferner ihren Dampfer längere Zeit zur Verfügung haben, als wir und endlich, daß sie die Trawlänge nicht so genau und nach so vielen verschiedenen Richtungen hin analysieren, wie wir. Die Engländer begnügen sich meistens damit, die gefangenen Fische nur zu messen und auch nur bei einem Teil des Fanges; wir messen von den wichtigeren Nutzfischen alle durch und machen außerdem sofort an Bord Bestimmungen des Geschlechts, des Reifegrads und des Alters; Arbeiten, die bei größeren Fängen viele Stunden in Anspruch nehmen.

Die wissenschaftliche Analyse der Trawlänge
im Sinne des Christiania-Programms B. II § 2 (S. 11) liefert die ersten und wichtigsten Grundlagen für die Erforschung der Verbreitung, der Lebensweise und Lebensbedingungen unserer Nutzfische. Die hier von der internationalen Meeresforschung gestellten Aufgaben sind nur zu lösen, wenn wir wissen, welche Größen, Altersstufen (Jahrgänge) und Reifestadien der Nutzfische auf den verschiedenen Fischgründen zu den verschiedenen Jahreszeiten vorkommen. Nur auf Grund solcher Kenntnisse können wir schließlich ein Urteil darüber gewinnen, was uns die Fischerei-Statistik, besonders die sogenannte Fangstatistik, lehren kann, welche berechtigten Schlüsse sie uns

*) Auf dieser Karte fehlen die Stationen 47 und 48 (braune Bank in der südlichen Nordsee) und 28 (NO Hirshals im Skagerrak), weil sie über den Rahmen der Karte hinausliegen.

gestattet über das, was der Mensch dem Meere an Fischen entnimmt, an jungen und alten, an reifen und unreifen; ob mehr junge oder mehr alte Fische weggefangen werden, als die Erhaltung eines hinreichenden Bestandes erlaubt, ob dieses oder jenes Gerät stärker oder schwächer, zerstörender oder schonender fischt und vieles andere mehr.

Wissenschaftliche Trawlfänge der Biologischen Anstalt

<table>
<thead>
<tr>
<th>Oktober 1902 bis 1. April 1904.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trawlänge</td>
</tr>
<tr>
<td>Gefangen:</td>
</tr>
<tr>
<td>Davon:</td>
</tr>
<tr>
<td>Gemessen:</td>
</tr>
<tr>
<td>Davon:</td>
</tr>
<tr>
<td>Gemessen und nach dem Geschlecht bestimmt,</td>
</tr>
<tr>
<td>Gemessen u. nach Geschlecht und Reife bestimmt,</td>
</tr>
<tr>
<td>Gemessen und nach dem Alter bestimmt,</td>
</tr>
</tbody>
</table>
Die Bestimmung des Alters der Fische.

Die Messung der Fische nach ihrer Länge ist der erste Anfang zur Altersbestimmung. Mißt man z. B. alle Schollen eines großen Trawl-
fanges und trägt die einzelnen Längen von Zentimeter zu Zentimeter als
Abscissen, die Häufigkeitszahlen jeder Länge als Ordinaten auf, so erhält
man fast immer eine Kurve (geknickte Linie) mit mehreren Einsenkungen
und Gipfeln. Vergl. die Rückseite der anliegenden Tabelle 1 von 889 im Sept.
bei Helgoland gefangenen Schollen. Man nimmt an, daß die Einsenkungen in
solchen Maßkurven ungefähr die Grenzen der verschiedenen Jahrgänge der
betr. Fischart andeutet; in dem Beispiel hier würde es sich um drei Jahrgänge
handeln, nämlich zweijährige, dreijährige und vierjährige Schollen,
von denen die ersteren weitaus am häufigsten auftreten. Diese sogenannte
Petersen'sche Methode der Altersbestimmung ist aber sehr elementar und
sicher, namentlich für die Trennung der älteren Jahrgänge von einander,
die mit ihren Körperlängen oft so stark übereinandergreifen, daß kaum
noch wahrnehmbare Einsenkungen der Altersmaßkurve eintreten. Außerdem
gibt diese Methode höchstens die Grenzen der einzelnen Jahrgänge an, aber
icht, wie alt jede Gruppe absolut ist. Endlich bezeichnet gleiche Größe
zweier Gruppen nicht immer gleiches Alter; die Ostseeschollen sind z. B.
bei gleicher Größe entschieden älter als die Nordseeschollen und in der
Nordsee selbst gilt dasselbe von den Schollen der südlichen Nordsee (Süd-
seeschollen) verglichen mit denen der nördlichen und östlichen Nordsee (Nord-

Zu einer genauen Altersbestimmung genügt kein Körperraß,
hierzu bedarf man eines anatomisch unzweideutig ausgeprägten Charakters
irgend eines Organes, in dem sich die Zahl der Jahre, die ein Fisch seit
seiner Geburt zurückgelegt hat, deutlich ausprägt. Es ist ein großes
Verdienst von Dr. Reibisch in Kiel, in den Gehörsteinen oder Otolithen
der Fische ein solches Organ nachgewiesen zu haben, an dem man
das Alter unmittelbar bestimmen kann. Jeder Otolith enthält einen
 wahrscheinlich auf dem Embryonal- und Larvenstadium des Fisches ge-
bildeten, mehr oder weniger undurchsichtigen Kern, um den sich dann
abwechselnd in sehr regelmäßiger Folge durchsichtige und undurchsichtige
Schichten ablagen, erstere reicher an Kalk als die letzteren, die relativ
mehr organische Substanz enthalten. Die durchsichtigen Schichten erscheinen
auf schwarzer Unterlage dunkel, die undurchsichtigen weiß. Es zeigt sich

Bei der Bestimmung des Alters der Fische eines Trawlfanges ist es meistens praktisch unmöglich, weil zu zeitraubend, alle Fische durch Herauspräparieren der Otolithen auf ihr Alter zu untersuchen, obwohl nicht nur wir Gelehrte, sondern auch unsere Fischer und Präparatoren eine sehr große Gewandtheit in dem Herausnehmen der Otolithen erworben haben. Die Untersuchung aller Otolithen bei jedem Fange ist aber auch ganz unnötig, da eine Verbindung der Messung aller Fische mit der Untersuchung der Otolithen bei einem recht kleinen Procentsatz, etwa 5%, aller Fische völlig genügt, sobald man nur einzelne Fische aller vorhandenen Größenstufen auf die Otolithen untersucht. Auf unstehender Figur 5 hat Dr. Maier die 889 bei Helgoland am 6. Sept. 1903 in einem Trawlzuge gefangenen Schollen

Fig. 5.

Fig. c. Die Altersbestimmung der Fische nach den Otolithen und Knochen.

1. Scholle von 251 mm Länge, ca. 3 1/2 Jahre alt. 2. Scholle von 285 mm Länge, ca. 4 1/2 Jahre alt. 3. Scholle von 423 mm Länge, ca. 5 1/2 Jahre alt. a Otolithen, b Wirbel, c d Subpercom und Interpercom, e Operculum, f Caudal-Ende der Wirbelsäule.

(Zu Bericht Heincke 1903)

Von höchstem Wert für eine genaue Altersbestimmung ist nun die Tatsache, daß meistens da, wo die Otolithen das Alter undeutlich angeben, dies ein bestimmter Skelett-Teil sehr deutlich tut, bei der einen Spezies dieser, bei der andern jener. Bei der Scholle erkennt man die jüngsten Jahrgänge, von 1 bis 5, am bequemsten und sichersten an den Otolithen, die älteren viel besser an den Kiemendeckelknochen. Ähnlich ist es mit
anderen Platteisen. Beim Schellfisch leisten für die Erkennung aller
Jahrgänge die besten Dienste nicht die Otolithen, sondern die Schulter-
knochen und die Wirbel; beim Kabeljau die Schulterknochen, beim Hering
die Wirbel.

Über die Methoden und Ergebnisse unserer Untersuchungen über
das Alter der Fische sind zwei größere Publikationen von Maier und
Heincke in Vorbereitung. Einige wichtige Ergebnisse verdienen auch
hier mitgeteilt zu werden.

1. Es ist möglich, an fast jedem einzelnen Nutzfisch das Alter
genau zu bestimmen, oft so genau, daß nicht nur die vollen Jahre seines
Alters, sondern auch Bruchteile eines Jahres angegeben werden können.

2. Die Fische wachsen am stärksten in die Länge in den ersten
2 bis 5 Lebensjahren bis zum Eintritt der geschlechtlichen Reife (Fort-
pflanzungsfähigkeit). Von da an wird das Längenwachstum von Jahr zu
Jahr langsamer, kann aber noch viele Jahre lang anhalten, sodaß viele
Fische ein relativ hohes Alter erreichen.

3. Die Scholle der östlichen und nördlichen Nordsee, die sogenannte
Nordscholle, wächst am stärksten in Länge und Höhe in den ersten vier
Lebensjahren, namentlich im zweiten und dritten. Die Weibchen sind
großer und werden sehr wahrscheinlich später geschlechtsreif als die kleineren
Männchen; jene nach Vollendung des vierten Lebensjahres, diese wohl
schon nach Vollendung des dritten. Die Männer messen dann etwa
30 bis 35 cm in der Länge, die Weibchen 35 bis 40 cm. Das spätere jähr-
liche Längen-Wachstum ist von da an ein langsameres. Die Scholle kann
ein relativ sehr hohes Alter erreichen; eine von 66 cm Länge aus der öst-
lichen Nordsee war sicher mindestens 20 Jahre alt.

Die überwiegende Mehrzahl aller Schollen, die von den
Segelfischern und Fischdampfern in der Nordsee gefangen
werden, d. h. fast alle sogenannten kleinen Schollen und Mittel-
schollen sind 2- bis 4-jährige Fische. Die allermeisten von ihnen
— wenigstens die Weibchen — sind unreife d. h. zur Fortpflanzung noch
nicht fähige Fische, die für die Erhaltung des Bestandes durch Produktion
von Eiern noch nichts geleistet haben.

4. Ein Kabeljau-Weibchen von 85 cm Länge ist mindestens
7 Jahre alt, ein solches von 100 cm Länge mindestens 11 Jahre, ein Schell-
fisch von 65 cm Länge mindestens 8 Jahre. Ein Steinbutt von 19 Pfund
Gewicht ist sicher 10 bis 11 Jahre alt; norwegische Frühjahrsfische von
300 mm und noch mehr Länge sind 6 bis 8 Jahre alt.

5. Der Nachweis, wie alt die Nutzfische der See überhaupt
werden können, ist für die Beurteilung der Produktion des Meeres an
Fischen und der Überfischungsfrage ebenso wichtig, wie die Kenntnis
davon, in welchem Lebensalter die verschiedenen Arten der Nutzfische fort-

pflanzungsfähig werden. Mit Hilfe unserer Altersbestimmungen wird es jetzt möglich sein, in jedem einzelnen Trawlfang das Verhältnis zu bestimmen, in dem die einzelnen Jahrgänge der Nutzfischarten neben einander vorkommen.

Die Bestimmung des Geschlechts der Fische

Die Bestimmung des Reifegrades der Fische

Solche Reifegrads-Bestimmungen, an einer größeren Zahl von Fischen jedes Trawlfanges ausgeführt, sind das einzige exakte Mittel, um zu erfahren, in welchem Alter und bei welcher Größe die verschiedenen Nutzfischarten zum ersten Male geschlechtsreif werden, ob ein und derselbe Fisch nur einmal oder mehrere Male im Jahre laicht, wie lange die Laichperiode jeder Art in jedem Jahre dauert, wo sich die unreifen, die halbreifen und die
ganz laichfreien Individuen aufhalten, ob während des Heranreifens der Geschlechtsprodukte und nach der Ablage derselben Wanderungen stattfinden (nach und von den Laichplätzen). Alles dies zu wissen, ist nicht nur wünschenswert, sondern notwendig für die Lösung der praktisch-wissenschaftlichen Probleme, die die internationale Meeresforschung beschäftigen.

Die Bestimmung der Nahrung der Fische.

Sowohl auf den „Poseidon“-Fahrten, wie auf denen unserer Anstaltsbarkasse in der Nähe von Helgoland wurden von den meisten Trawlfängen von einer bestimmten Individuenzahl jeder Nutzfaschart Magen und Darm konserviert und im Laboratorium am Land auf ihren Nahrungsgehalt untersucht. Das Ergebnis dieser Untersuchung konnte dann mit der durch Dredge-Fänge festgestellten Fauna derjenigen Stellen verglichen werden, an denen die betreffenden Fische gefangen waren.

Die Untersuchung, die von Dr. Bolau ausgeführt wurde, umfaßt über 100 Nummern und mit Ausnahme der Rochen und Haie fast alle unsere Nutzfische der Nordsee, in erster Linie die Plattfische und die dorschartigen Fische und unter diesen wieder Scholle und Kliesche. Von den Ergebnissen, die bald veröffentlicht werden, sei hier nur erwähnt, daß nahe verwandte Arten, die zusammen an einer Stelle vorkommen, z. B. Scholle und Kliesche, keineswegs dieselbe Nahrung nehmen, sondern daß jede eine spezifische Vorliebe für gewisse Tierarten zeigts — die Scholle frisst z. B. vorwiegend schalentragende Mollusken, die Kliesche dagegen mehr Stachelhäuter und Krebse. Für die richtige Beurteilung der Ernährungsverhältnisse unserer Nutzfische ist dies von grosser Bedeutung.

Die Ordnung des in den Trawlzügen gewonnenen Materials.

Wir haben uns in Helgoland nicht für das Petersen'sche Verfahren entschieden, sondern eine andere Art der Darstellung der Fang-Analysen gewählt, die aus den beiden anliegenden Tabellen 2 und 2a

83

Diese Tabellen wurden in der Sitzung der Kommission B in Amsterdam (Dezember 1903) vorgelegt und haben großen Beifall gefunden. Es wäre sehr erwünscht, wenn die anderen Staaten diese Methode der Darstellung der Fang-Analysen annehmen würden. Es ist wahrscheinlich, daß dies geschicht.

Die Fänge mit dem Helgoländer Jungfischtrawl und dem Obertrawl.

Die wichtige Frage, zu welchen Zeiten und an welchen Orten die Brut unserer Nutzfische die planktonische Lebensweise des Larvenstadiums aufgibt und endgültig zum Leben am Boden übergeht, kann nur durch zahlreiche Fänge mit den beiden oben genannten, oben schon etwas näher beschriebenen Netzen gelöst werden. Die Zahl unserer Fänge dieser Art ist leider noch recht gering, etwa 80 seit Beginn unserer Arbeiten, auch konnten wir nicht immer zu den richtigen Zeiten fischen. Immerhin haben wir eine ziemlich große Zahl dieser jüngsten Bodenstadien gefangen, und einige Ergebnisse dieser Fischerei sind von besonderem Interesse. Von Plattfischen haben wir junge Klieschen (Pleuronectes limanda) überall über dem Boden des von uns befischten Gebietes der Nordsee gefangen, fast immer aber nur in etwas größerer Tiefe, selten auf ganz flachen, 5 bis 1 m tiefem Wasser in unmittelbarer Küstennähe. Umgekehrt fingen wir die ersten Bodenstadien der Scholle mit ganz vereinzelten Aus-

Die Untersuchungen über die Eier und Larven der Nutzfische.

1. In der Ostsee finden sich in erheblichen Mengen die schwimmenden Eier folgender Nutzfische: Scholle, Flunder, Kliesche, Dorsch und Sprott.

Das Material an Eiern und Larven von Nutzfischen, das in der Nordsee gesammelt wurde, ist viel größer als das aus der Ostsee, aber noch nicht vollkommen gesichtet und verarbeitet. Einige vorläufige Ergebnisse sind die folgenden:

2. In gewissen Bezirken finden sich besonders große Mengen von schwimmenden Fischeiern. Dies sind aber anscheinend nicht die eigentlichen flachen Bänke, z. B. die Doggerbank und die Jütlandbank, sondern mehr die Ränder dieser Bänke, z. B. der Südrand der Doggerbank, die Gegend zwischen Jütlandbank und der sog. südlichen Schlickbank.

3. Vertikal sind die Eier in allen Schichten verbreitet, besonders aber in den oberflächlichen.

4. Was die Verbreitung der Eier nach Fischarten betrifft, so findet man die Eier der Kliesche (Pleuronectes limanda) überall in der Nordsee. Ebenso sind auch Wittlings- und Kabeljau-Eier fast überall verbreitet, erstere am zahlreichsten über den geringeren Tiefen (bis 40 m), letztere mehr über den größeren Tiefen. Die Eier von Sprott und Flunder gehören
den flacheren Küstenzonen an und geben selten über die 40 m-Kante hinaus, während umgekehrt Schellfisch und Drepanopeptta ihre Eier fast ausschließlich jenseits der 40 m-Kante ablegen. Die Laichplätze der Scholle liegen zerstreut über verschiedenen Tiefen sowohl jenseits wie dieses der genannten Grenze.

5. Von den wichtigeren im Winter laichenden Nutzfischen laicht am frühesten die Scholle (von Ende Januar ab), dann kommt der Kabeljau, etwas später, im Februar, der Schellfisch, erst im März beginnt die Kliesche zu laichen und noch etwas später der Sprott. Der Abschluß des Laichens erfolgt ziemlich in gleicher Reihenfolge, am längsten scheint die Laichperiode bei der Kliesche zu sein, von der wir noch im September auf der Großen Fischerbank zahlreiche Eier erhielten.

Das Zeichnen (Marken) von Fischen und das Aussetzen gezeichneter Fische.

Da uns die bisher für Schollen gebräuchlichen Marken der Dänen und Engländer diese Bedingungen nicht hinreichend zu erfüllen schienen, haben Heinecke und Bolau besondere neue Marken konstruiert. Zuerst bestanden diese neuen Marken aus Aluminium-Ringen nach Art der Alters-Fußringe für Hühner. Diese Ringe, an der Innenseite mit dem Zeichen D. H. (Deutschland, Helgoland) 02 (Jahreszahl) und fortlaufenden Nummern versehen, wurden durch ein Loch am oberen Flossenträgerteil des Schwanzes hindurchgezogen und mit einer Zange zusammengeklemmt; das Loch wurde mit einem scharfen Lochisen vorher durchgestoßen (Fig.7a). Die Befestigung dieser Marke geht sehr schnell vor sich, sie ist nach genügenden Erfahrungen im Aquarium und an wiedergefangenen Schollen hinreichend widerstandsfähig gegen Seewasser, sie ist ferner leicht und sehr billig. Mit dieser Marke gezeichnete Schollen haben in unserm Aquarium gut und lange gelebt. Die Übelstände der Marke sind ihre zu freie Beweglichkeit am Schwänze des Fisches, die möglicherweise dem freien Schwimmen
Fig. 7. Gemarkte Schollen.

a mit Aluminiumring-Marke; b mit Hartgummi-Stopf-Marke; c wie b, untere Ansicht.
hinderlich ist, das beständige Offenbleiben des Loches am Schwanz und vielleicht auch der Umstand, daß die anfangs wenigstens metallisch glänzende Marke für Raubfische wie ein Köder wirken kann und das Leben des gezeichneten Fisches gefährdet.

Wir haben aus den letzteren Gründen jetzt diese Aluminium-Ringe durch eine andere, wie uns dünkt, bessere Marke ersetzt (Fig. 7 b u. c). Diese neue Marke ist aus schwarzen Hartgummi gefertigt und hat die Gestalt eines Vorhenden-Knopfes mit unterer Platte, dünnem Mittelstück (Stiel) und kegelförmigem, ziemlich spitzem Oberstück (Kopf). Auf der unteren Platte sind die Erkennungszeichen der Marke eingeprägt (siehe Fig. 7c: D. H. 1234. 03). Diese Marke wird sehr schnell und sehr bequem in der Weise in der Scholle befestigt, daß man sie von der unteren (blindten) Seite her mit dem spitzen, hinreichend scharfen Kopfe voran mit einem einzigen Griff durch den Flossenbragerteil des Schwanzes drückt. Des besseren Sitzen wegen wird dann noch oben über den Kopf des Knopfes eine dünne Platte aus biegsamen schwarzen Gummi übergestreift. Diese Hartgummi-Marke hat fast nur Vorzüge; sie ist sehr leicht und absolut indifferent sowohl gegenüber den Einwirkungen des Seewassers als auch gegenüber den Wundrändern. Letztere schließen sich nach geschehener Befestigung der Marke fest um den Hals des Knopfes; die Marke sitzt ganz fest. Die Marke ist für den Fischer fühlbar und sichtbar zu gleicher Zeit. Wegen der großen Härte des Hartgummis werden die auf der Unterseite der Kopfplatte eingeschnittenen Zeichen nicht leicht undeutlich oder ganz verwischt. Die Marke ist endlich billig; das Stück kostet etwa 10 Pfg.

Wir hatten die Absicht, mindestens 5000 Schollen jährlich in unserem deutschen Untersuchungsgebiet zu zeichnen und auszusetzen. Leider haben wir dies bei weitem nicht durchführen können. Der Grund lag daran, daß wir, um größere Mengen genügend lebenskräftiger Schollen zum Zeichnen zu erhalten, unsere gewöhnlichen, zum Zweck der Fanganalysen gemachten Trawlzüge meistens nicht benutzen konnten, sondern besondere, vor allen Dingen kürzere Trawlzüge mit schonender fischendem Gerät (50 Fuß-Trawl) machen mußten. Um viele solcher besonderen Trawlzüge zu machen, dazu reichte aber die Zeit nicht aus, während welcher uns der „Poseidon“ zur Verfügung stand. Es zeigte sich hier, wie anderwärts, daß wir in der kurzen Zeit von jährlich etwa 40 Arbeitstagen auf See unmöglich alle Aufgaben, die uns gestellt waren, gründlich lösen konnten.
Zusammenstellung aller von der Biologischen Anstalt gezeichneten und wiedergefangenen Schollen.

Gezeichnete Schollen.

<table>
<thead>
<tr>
<th>Ausgesetzte</th>
<th>Zahl</th>
<th>Wiedergefangene</th>
<th>Zahl</th>
<th>Prozent der Ausgesetzten</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Aluminium-Ringe</td>
<td>1004</td>
<td>Vom 1. April 1903 bis 31. März 1904</td>
<td>106</td>
<td>10,5 %</td>
</tr>
<tr>
<td>b) Hartgummi-Knöpfe</td>
<td>885</td>
<td>Vom 1. April 1903 bis 31. März 1904</td>
<td>8</td>
<td>0,9 %</td>
</tr>
<tr>
<td>Im Ganzen ausgesetzt . 2651</td>
<td>Davon im Ganzen wiedergefangen . . . 140</td>
<td></td>
<td></td>
<td>5,3 %</td>
</tr>
</tbody>
</table>

Die 46 verschiedenen Stellen, an denen gezeichnete Schollen ausgesetzt wurden, verteilen sich über das ganze durch unsere Trawlänge (s. Karte am Schluss dieses Berichts) gegebene Gebiet der Nordsee.

Die Zahl der wiedergefangenen Schollen im Verhältnis zu den ausgesetzten erscheint in der obigen Zusammenstellung sehr klein; im Ganzen wurden nur 5,3 % aller ausgesetzten Schollen wiedergefangen. Dieses Resultat ist jedoch nur ein scheinbares, da reichlich 1/4 aller ausgesetzten Schollen, nämlich fast 700 Stück und zwar alle die mit Hartgummi-Marken, erst im letzten Monat, d. h. im März 1904 ausgesetzt worden sind. Von den 1766 mit Aluminium-Marken ausgesetzten Schollen, die allein für einen richtigen Schluß in Betracht kommen können, wurden 132 Stück, d. h. rund 7,5 % wiedergefangen. Wahrscheinlich werden wir schließlich 8 bis 10 % der ausgesetzten Schollen wiederbekommen. Die Dänen und Engländer haben einen viel höheren Prozentsatz aufzuweisen; sie erhielten 10 % bis 30 % ihrer ausgesetzten Schollen zurück. Wir halten das für ein Zeichen dafür, daß die Gebiete des Kattegats und der Nordsee, in denen die Dänen und Engländer ihre gezeichneten Schollen aussetzten, stärker beisicht werden, als unser Untersuchungsgebiet.

Von den 140 wiedergefangenen Schollen wurden etwa die Hälfte bereits im Laufe des ersten Monats nach dem Aussetzen wiedergefangen und nahe der Stelle des Aussetzens, ein weiteres Viertel im zweiten und
dritten Monat, das letzte Viertel 4 bis 12 Monate nach dem Aussetzen. Von den letzteren wurde ein Individuum 353 Tage nach dem Aussetzen wiedergefangen; dasselbe, am 20. Oktober 1902 auf der nördlichen Schlickbank ausgesetzt, wurde 353 Tage später von einem englischen Trawler auf 55°37' N. und 5°32' O. wiedergefangen, d. h. 52 Seemeilen in grader Linie vom Ausgangspunkt; es hatte während dieser Zeit um zirka 5 cm, von 37 auf 42 cm Länge, zugenommen.

Es unterliegt nach den bisherigen Ergebnissen unserer Schollenaussetzungen und auch nach denen der englischen Aussetzungen, die auf der Tagung der Kommission B in Amsterdam im Dezember v. Js. vorgeführt wurden, keinem Zweifel, daß das Zeichnen und das Aussetzen gezeichneter Schollen uns sehr wichtige Aufschlüsse über die Bewegungen der Schollenschwärme über den Boden der Nordsee geben werden und daß diese Aufschlüsse von großer Bedeutung für die Lösung der uns vorliegenden
Probleme der Fischerei sein werden. Einstweilen ist aber die Zahl der ausgesetzten Schollen noch viel zu klein, um zu sicheren Schlüssen zu gelangen. Diese Versuche müssen in möglichst großem Maßstab fortgesetzt werden; für uns ist dies nur möglich, wenn wir in der Lage sind, bedeutend mehr Trawlzüge im Jahre zu machen als bisher, d. h. auch mehr Untersuchungsfahrten.

Sind durch unsere Arbeiten schon jetzt positive Resultate erzielt, die für die Lösung der praktisch-wissenschaftlichen Fischereifragen von Bedeutung sind?

Obwohl unsere bis Ende März d. Js. gemachten wissenschaftlichen Fänge, namentlich die Fänge mit den verschiedenen Arten des Trawls, noch nicht vollständig bearbeitet sind, können wir jene Frage doch schon jetzt bejahen, wenigstens was unser wichtigsten Nutzfisch, die Scholle, und unser spezielles Untersuchungsgebiet, die deutsche Bucht der Nordsee, betrifft.

Wir können jetzt beweisen, daß die Scholle in unserer deutschen Nordsee ein eingeborener Fisch ist, der an verschiedenen Stellen dieses Gebietes lebt und dessen schwimmende Eier über weite Strecken desselben bis nahe an Helgoland heran angetroffen werden.

Küstenhähe meist nur der erste, zweite und dritte Jahrgang der Scholle so gut wie ungemischt gefunden werden, kommen weiter hinaus die älteren Jahrgänge, von vierten an, immer mehr durcheinander gemischt vor; zum Teil hängt dies sicher damit zusammen, daß von diesen Altersstufen bereits größere Wanderungen ausgeführt werden, während die ersten drei Jahrgänge anscheinend stationär sind.

Wenn die männlichen Schollen das dritte, die weiblichen das vierte Lebensjahr vollendet haben, laichen sie zum erstenmal bei Längen von 30 bis 40 cm. Die Laichplätze liegen in der deutschen Bucht sowohl diesseits wie jenseits der 40 m Linie, aber stets außerhalb der 20 m Linie. Das Laichen findet statt vom Januar bis April, und vom Juni an trifft man die ersten Bodenstadien der Scholle (von 14 mm an) in flachem Küstenwasser. Das Laichen der Scholle wiederholt sich alljährlich und kann nach dem ersten Male noch 15 und mehr Male stattfinden, d. h. eine Scholle der deutschen Nordsee kann reichlich zwanzig Jahre alt werden und erreicht dann eine Länge von 60 bis 70 cm. So grobe und alte Schollen sind aber im Gebiet überhaupt selten und scheinen in einigermaßen größerer Zahl nur weiter hinaus in See und mehr nördlich — auf der kleinen und großen Fischerbank u. a. — vorzukommen.

II. Arttabelle.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Gewicht: 78 kg</th>
<th>Pleuronectes platessa</th>
<th>Zeit</th>
<th>Länge</th>
<th>Reife</th>
<th>Alter</th>
<th>Otol-Ringer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helgoland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW n. W von Helgoland</td>
<td>41 42 43 44 45 46 47 48 49</td>
<td>50 51 52 53 54 55 56 57 58 59</td>
<td>60 61 62 63 64 65 66 67 68 69</td>
<td>70 71 72 73 74 75 76 77 78 79</td>
<td>80 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O N O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79° N</td>
<td>44° 44</td>
<td>28° 28</td>
<td>28°</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Geschlecht: \(513 \, \text{kg} + 376 = 889 \) S.

Tiefe:
- 30 m
- 40 m

Grund:
- 7

Temperatur:
- 10°C
- 11°C
- 12°C
- 13°C
- 14°C
- 15°C
- 16°C
- 17°C
- 18°C

Salzgehalt:
- 30,34% 90

Gerät:
- 16
- 17

Gr. Kurre:
- 17
- 18

Schwindigkeit:
- 19

S. Sm. in 3 Std.:
- 20
- 21

Mageninhalt: Vorwiegend Crustacea, pelliculae und Solen estpin: Röhren von Thelepus, wenig Venus gallina, viel Anneliden-Reste, wenig Cyclochlamys sp, einzelne Nucula nucula, einzige Röhrenreste von Pectinaria sp, wenig Macula solida u Cardium edule, ganze junge Buccinum. (50 Tiere untersucht.)

Tab. I. Wissenschaftliche Analyse eines Schollenfanges bei Helgoland. Vordersseite.
Tab. 1a. Wissenschaftliche Analyse eines Schollenfanges bei Helgoland.
Rückseite mit Maßkurve des Fanges nach Gesamtzahl (---), Männchen (---) und Weibchen (---).
I. Fangtabelle.

Borkum-Riff

<table>
<thead>
<tr>
<th>Ort</th>
<th>Arten</th>
<th>Zahl</th>
<th>Mittel cm</th>
<th>Grenzen cm</th>
<th>Gewicht kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kante</td>
<td>Solea vulgaris</td>
<td>66</td>
<td>22</td>
<td>19-29</td>
<td>10,5</td>
</tr>
<tr>
<td></td>
<td>Rhombus maximus</td>
<td>4</td>
<td>23</td>
<td>21-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"hacvis"</td>
<td>1</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pleuronectes platessa</td>
<td>3371</td>
<td>17</td>
<td>11-32</td>
<td>208,5</td>
</tr>
<tr>
<td></td>
<td>"flesus"</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>limanda</td>
<td>1259</td>
<td>19</td>
<td>10-27</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>microcephalus</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"cynoglossus"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grund</td>
<td>Hippoglossus vulgaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feiner Sand mit Schlick</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatur</td>
<td>16,29°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salzgehalt</td>
<td>33,10.9‰</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerät</td>
<td>Raja clavata</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr. Kurre</td>
<td>"batis"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschwindigkeit</td>
<td>4,8 m in 2 Std.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,5 m in 1 Std.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fische: 61/2 Körbe

Beifang: gering, viel Asterias, Flustra, Quallen (Cyanen), Pagurus.

Ganzer Fang

<table>
<thead>
<tr>
<th>Edelfische</th>
<th>Zahl</th>
<th>Gewicht kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andere Plattfische</td>
<td>4885</td>
<td></td>
</tr>
<tr>
<td>Rundfische</td>
<td>967</td>
<td></td>
</tr>
<tr>
<td>Rochem n. Haie</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Zusammen</td>
<td>5947</td>
<td></td>
</tr>
</tbody>
</table>

II. Arttablelle.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Gewicht: 205.3 kg</th>
<th>Mittel: 17 cm</th>
<th>Juli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borkum-Riff</td>
<td>3351 kg</td>
<td>11-32 cm</td>
<td>1903</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geschlecht:</th>
<th>Reife</th>
<th>Alter (Otol.-Ringe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit</td>
<td>Länge</td>
<td>0</td>
</tr>
<tr>
<td>23. VII. 03</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>1-3 pm</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Tiefe</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Grund</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Temperatur</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Salzgehalt</td>
<td>33,10%</td>
<td>34</td>
</tr>
<tr>
<td>Gerät</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Gr. Kurre</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Geschwindigt</td>
<td>140</td>
<td>141</td>
</tr>
<tr>
<td>7 Sm. in 2 St.</td>
<td>20</td>
<td>21</td>
</tr>
</tbody>
</table>

Mageninhalt: Vorwiegend Muscheln: Tellina fabula, T. natica, Solea solea, Clavelina clavelina, ferner Ophiocoma siliiformis, Bruchstücke von Echinocardium; ziemlich viel Sand. (50 Tiere.)

Tab. 2a. Wissenschaftliche Analyse eines Trawlanges bei Borkum-Riff nach dem Muster der Helgoländer Biologischen Anstalt. II. Arttablelle (Vorderseite).
Tab. 2a. Wissenschaftliche Analyse eines Trawflanges bei Borkum-Riff nach dem Muster der Helgoländer Biologischen Anstalt. II. Arttablelle.
Rückseite mit Maßkurve des Fanges nach Gesamtzahl (---), Männer (-----) und Weibchen (-----).

Pleuronectes platessa
Zahl: 3351
Gewicht: 208,5 kg.

Mittel: 17 cm
Grenzen: 11–32 cm

<table>
<thead>
<tr>
<th>Prozente</th>
<th>Absolute Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Σ</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Mittel</td>
<td>16</td>
</tr>
<tr>
<td>Grenzen</td>
<td>11–31</td>
</tr>
<tr>
<td>Gewicht</td>
<td>208,5</td>
</tr>
</tbody>
</table>

Kollektive: 1, II, III, IV, V, VI, VII, VIII

50 %
30 %
25 %
20 %
15 %
10 %
5 %
0 %

cm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Die Trawlstationen des Poseidon in der Nordsee.
III. Abteilung: Hannover.

Bericht über die Tätigkeit des Deutschen Seefischerei-Vereins

bis zum Schluß des Etatsjahres 1903

im Auftrage des Präsidenten Dr. W. Herwig erstattet

von Professor Dr. Henking (Hannover).

Mit mehreren Tabellen und Figuren, 2 Karten und 1 Tafel.

1. Methode der statistischen Anschreibungen.

Dieses Material war die Basis, von der ausgegangen werden konnte. Es wurde daher der Berichterstatter beauftragt, in eine Bearbeitung des Stoffes einzutreten und eventl. weitergehende Anträge zu stellen.

Das bisherige Ergebnis ist folgendes:

Die Fanglisten.

Die übliche Form der Geestemündener Anmeldung wurde beibehalten. Sie enthält also Angaben über a) das Fahrzeug, b) Reisedauer, c) Fangort und d) Fangmengen.

Die Fangmengen sind gesondert nach den einzelnen Handelssortierungen der Fischarten aufgeführt.

Prüfung der Fanglisten.

Aber es war eine größere Genauigkeit zu erreichen. Die gelandeten Fischmodgen werden für die Auktionen bis auf das Pfund genau abgewogen. Es wurde daher von uns veranlaßt, daß wir neben den Schätzungen der Kapitäne auch die genauen Gewichtsmengen aus den Auktionswägungen erhielten. In dem Probeblatt (Seite 95) sind die Schätzungen des Kapitäns und die ermittelten Auktionsgewichte nebeneinander gestellt.

Dabei ergab sich die interessante Tatsache, daß zwar die geschätzte und die gewogene Menge einer Fischart, z. B. Rothzungen oder Schellfisch, gut übereinstimmte, daß aber zwischen den geschätzten und gewogenen
Anmeldung

des Fischdampfers **Makrele**

beim **Königlichen Haßenamt.**

<table>
<thead>
<tr>
<th>Abgegangen am</th>
<th>31. Oktober</th>
<th>1902</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angelkommen am</td>
<td>9. November</td>
<td>1902</td>
</tr>
<tr>
<td>Fangort:</td>
<td>Skagerrack</td>
<td>1902</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Die Lading beträgt aus</th>
<th>Pfund</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitung n. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>do. II</td>
<td>Schätzungen des Kapitains</td>
<td>Genaue Gewichtsbestimmungen bei der Auktion.</td>
</tr>
<tr>
<td>do. III</td>
<td></td>
<td>Pfand.</td>
</tr>
<tr>
<td>Zeitvüest 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>do. II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarbutt</td>
<td>50</td>
<td>68</td>
</tr>
<tr>
<td>Schollen 1</td>
<td>300</td>
<td>78</td>
</tr>
<tr>
<td>do. II</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>do. III</td>
<td>2200</td>
<td>2524</td>
</tr>
<tr>
<td>Rabian 1</td>
<td>2400</td>
<td>596</td>
</tr>
<tr>
<td>do. II</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>Rochen</td>
<td>1056</td>
<td></td>
</tr>
<tr>
<td>Küstenh. und Petermann</td>
<td>2000</td>
<td>1918</td>
</tr>
<tr>
<td>Zeche</td>
<td>300</td>
<td>362</td>
</tr>
<tr>
<td>Kohler</td>
<td>200</td>
<td>326</td>
</tr>
<tr>
<td>Zöör</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeeal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pfennig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mkreien</td>
<td>6200</td>
<td>6816</td>
</tr>
<tr>
<td>Zeetenfis</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Kummer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taschenkreide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rustern</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Unterschrift des Kapitains): gez. Fr. Tievz.

Ähnliche Gemische bilden die „Rotzungen“, und auch sonst kommen Gemische verschiedener Plattfischsorten vor.

Eine letzte Abteilung von Fischen erscheint in den Auktionsprotokollen unter der Bezeichnung „Verschiedenes“ und umfaßt eine große Mannigfaltigkeit, nämlich die in kleineren Mengen angebrachten Fischarten, sowie Reste verschiedener Art. Wenn wir aber sehen, daß selbst ein so bedeutender Posten, wie auf der „Anmeldung“ (Seite 95) die Rochen mit 1056 Pfund hierin gelegentlich aufgenommen werden kann, so ist der Wunsch gerechtfertigt, auch diese Abteilung noch näher zu analysieren, als bisher möglich war. Im Jahre 1902 belief sie sich auf fast 1 Million Pfund (939891 3/10 Pfund).

Schließlich sei noch auf die Einsendungen durch Handelsdampfer und Eisenbahnen, auf die neuen Fischarten von den südeuropäischen Dampferfangplätzen hingewiesen, welche noch einer genaueren Betrachtung bedürfen, um zu einem vollen Verständnis der statistischen Angaben zu kommen.

2. Der Fangort.

Die Kenntnis der Fangorte in Verbindung mit Beschaffenheit und Menge des Fanges ist für die Benutzbarkeit der gesamten Statistik von allergrößter Bedeutung. Dabei bildet aber die Ermittelung einer zuverlässigen Angabe hierüber ganz bedeutende Schwierigkeiten; denn der Fangplatz entzieht sich der allgemeinen Kontrolle. Während alle sonstigen von der Statistik gewünschten und in dem Fangzettel enthaltenen Angaben ohne Schwierigkeiten am Materiale selbst nachgeprüft werden können, ist das bei der Angabe über den Fangplatz nicht der Fall. Hier ist man völlig auf den guten Willen des Schiffskapitäns angewiesen. Es sei daher nochmals hervorgehoben, daß es ein großes Verdienst des Herrn Hafenmeisters Duge ist, eine Form gefunden zu haben, in welcher die Kapitäne zu einer Angabe über den Fangplatz bewogen werden können. Denn an sich sind die Schiffsführer keineswegs geneigt, das preiszugeben, was sie oft als ihr Geheimnis betrachten. Es ist das ihnen auch keineswegs zu verdenken, hängt doch nicht nur ihr Verdienst, sondern oft auch ihre Existenz davon ab, wie ihnen das Fischen gelingt. Die Rückkehr mit einem geringen Fang mag dem Dampferkapitän wohl einige Male hingehen, wird das aber chronisch, so verliert er sehr bald seine Stellung. Daher ist es für ihn unter Umständen keineswegs gleichgültig, einen guten Fangplatz bekannt zu geben.

Es tat daher Herr Duge einen glücklichen Griff, als er eine Angabe erzielte, welche die Privatgeheimnisse der Fischer schonte und doch der Wahrheit im ganzen entspricht.

Allerdings begegnete die Richtigkeit der Angabe auf den Fangzetteln lebhaften Zweifeln. Selbst aus Fischerkreisen kam die Meinung, „es sei ja alles falsch. Die Kapitäne machten die Ortsangabe nur, weil sie müßten. Sie schrieben irgend etwas in die Rubrik, da eine Kontrolle doch nicht möglich sei“.

In der Tat erschien es geboten, die Angaben über die Fangplätze nicht auf Treu und Glauben anzunehmen, sondern bei ihrer Wichtigkeit eingehend auf die Zuverlässigkeit zu prüfen. Eine solche Erwägung hatte mich bereits veranlaßt, die ausführliche Bearbeitung des in einer früheren Arbeit*) vorläufig besprochenen Materials aufzuschieben, bis die weitere Prüfung erfolgt sei.

*) Dr. Henking, Die Befischung der Nordsee durch deutsche Fischdampfer. (Mitt. des Deutschen Seefischerei-Vereins Nr. 1, 1901.)
3. Prüfung der Fangorte.

Es gelang, eine Reihe solcher Fangjournalen zur Benutzung zu erhalten und damit ein äußerst wichtiges Vergleichsmaterial zur Prüfung der von den Kapitänen ausgefüllten Fangzettel zu gewinnen.

Solche Wahrnehmungen bestärken uns nur noch in unserem Bestreben, die Fischer zur Mitarbeit heranzuziehen. Gelingt dieses, so verfügen wir nicht mehr über den einen Forschungsdampfer „Poseidon“, sondern wir haben plötzlich eine ganze Flotte solcher zu unserer Unterstützung erworben, welche die eingehendere Tätigkeit des „Poseidon“ auf das glücklichste ergänzen.

Schließlich benutzten wir noch die Beobachtungen der deutschen und holländischen Fischereikreuzer, welcher letztere in den „Mededeelingen over Visserij“ veröffentlicht werden.
Die Tätigkeit im Etatsjahre 1903. Abt. III: Hannover. 99

<table>
<thead>
<tr>
<th>Monat und Tag</th>
<th>Ort, Länge und Breite und Name der Bank</th>
<th>Bezeichnung der Fischerfahrzeuge a) Name, Zeichen und b) Schiffssort Nummer event. Nationalität Ritter etc.</th>
<th>Fischgerät</th>
<th>Fischend in fahrer oder wie beschäftigt</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Verkleinert)

Abgesehen von den Aufzeichnungen der deutschen und holländischen Fischereikreuzer sind uns bis zum Schluß des Berichtsjahres 125 ausgefüllte Beobachtungslisten zugegangen.

Die Beobachtungslisten sind in folgender Weise verwertet:

a) Es ist verglichen, ob die Fischdampfer, welche z. B. beim Fangen an einem bestimmten Ort beobachtet wurden, auf dem von ihnen ausgefütterten und im Hafenamte Geestemünde abgelieferten Fangzettel eine übereinstimmende Angabe gemacht hatten.

Dabei ergab sich folgendes: Im allgemeinen waren die Ortsangaben auf den Fangzetteln recht zuverlässig. Hatten die Kapitäne aber an mehreren Plätzen gefischt, so waren sie oft in Verlogenheit, was sie angegeben sollten und führten entweder nur einen Ort auf oder machten eine allgemeinere Angabe. Erst durch die Beobachtungslisten wurde eine richtige Beurteilung der Ortsangaben möglich gemacht. Es gelang dadurch, gewisse Territorien zunächst für 1902 abzugrenzen, auf welche die Angaben der Fangzettel mit großer Sicherheit bezogen werden konnten.

Es sind das die folgenden (siehe die Statistische Übersicht Seite 102).

I. Südliche Nordsee (bis einschließlich kleine Fischerbank).

III. Skagerak.

IV. Kattegat.

V. Nördliche Nordsee (von großer Fischerbank einschl. nordwärts).
VI/VII. Island, einschl. Färöer.
VIII. Hebriden.
IX. Atlantischer Ozean (vor Spanisch-Portugiesischer Küste),
In diese Rubriken wurden jene Fahrzeuge aufgenommen, deren Fang weit aus überwiegend auf dem betreffenden Gebiete gemacht ist. Ferner sind noch folgende gemischte Fangplätze angenommen:
II. Süßliche Nordsee und Skagerak, für Fahrzeuge, welche etwa gleichmäßig in beiden Gebieten fischten.
X. Gemischte Fangplätze, für Fahrzeuge, welche mehrere der genannten Fanggebiete auf der gleichen Reise besucht haben.
Die statistischen Berechnungen aus den Fangzetteln für die gewählten Territorien wurden weiterhin verglichen mit den statistischen Angaben in den speziellen Fischjournalen. Hierdurch war eine weitere Kontrolle gegeben.

In der Anlage Karte I ist die Karte vom Mai 1903 beigefügt.
Wir erhalten somit, abgesehen von der oben besprochenen Ermittlung der Aufenthaltsorte der einzelnen Fahrzeuge, durch die Karten einen Überblick über den Umfang der Fischerei in der Nordsee und den angrenzenden Meeren. Sie zeigen das Auftreten der Fischerflotten der beteiligten Nationen auf den verschiedenen Fangplätzen und die Häufigkeit der Fahrzeuge.
Ich habe im Anschluß an meinen Vortrag bei der Tagung des Zentral-Ausschusses in Hamburg in Anregung gebracht,* die Anstellung solcher Beobachtungen tunlichst international zu regeln, um die Lückenhaftigkeit des m. E. sehr wertvollen Materials zu bekämpfen.

*) Seite 17 des Hamburger Protokolls [Procès-verbal de la Réunion du Conseil Hambourg. Février 1904. — (Copenhagae 1904)].
Eine interessante Tatsache scheint aber jetzt schon aus den Karten hervorzugehen, nämlich die starke Befischung der Randgebiete der östlichen und südlichen Nordsee. Arm dagegen ist das eigentliche Becken der Nordsee und nur vereinzelt die Zahl der hier angetroffenen Fischerfahrzeuge (siehe Karte I).

Sollte sich diese sehr auffällige Wahrnehmung bewahrheiten und als Regel herausstellen, so wäre damit eine Tatsache von allergrößter Bedeutung ermittelt, welche bei allen weiteren Maßnahmen sowohl auf gesetzgeberischem wie wissenschaftlichem Gebiete berücksichtigt werden müßte.

6. Umfang der statistischen Ermittelungen.

Für das Jahr 1902 sind die statistischen Gesamtzahlen für Geestemünde zusammengestellt.

Eine Übersicht hierüber ist umstehend auf Seite 102 ff. gegeben. Es ergibt sich daraus, welche Fischmengen aus den einzelnen befischten Gebieten angebracht sind.

Wir erhalten also einen Überblick über die Ergiebigkeit der Fischgründe, deren Umgrenzung Seite 99 und 100 besprochen ist.

Das Zahlenmaterial kann auf ziemliche Genauigkeit Anspruch machen, denn es ist darin eine Fischmenge von über 40 Millionen Pfund seiner Herkunft nach analysiert. Auch beschränkt sich die ausgeführte Analyse nicht auf die Gesamtzahlen eines ganzen Jahres wie sie auf Seite 102 angegeben sind, sondern sie zeigt die angeführten Mengen jedes einzelnen Monats, und läßt somit die Schwankungen in den einzelnen Jahreszeiten erkennen. Die Gründe der Schwankungen sind damit freilich noch nicht ermittelt.

Es erheilt hieraus, wie wichtig es ist, die Ergebnisse der Fischerfahrzeuge in enge Verbindung zu bringen mit der Tätigkeit der Forschungsdampfer. Das Material, welches diese beibringen, ist naturgemäß verschwindend klein gegenüber demjenigen, was die Gesamtheit der Fischerfahrzeuge dem Meere entnimmt. Aber die Forschungsdampfer sind unentbehrlich in der weiteren Verfolgung spezieller Fragen und, soweit die Fische in Betracht kommen, namentlich in Bezug auf die Klärung aller Fragen, welche die Fischbrut und die Jungfische betreffen, und alle sonstigen Spezialia der Lebensgeschichte der Nutztiere, zu deren eingehenderer Beachtung an Bord der Fischerfahrzeuge keine Zeit und kein Platz ist. Somit sind die Forschungsdampfer auch für das Verständnis einer Marktstatistik nach vieler Richtung geradezu unentbehrlich.
Die in Geestemünde 1902 von Fischer-frischer

<table>
<thead>
<tr>
<th>Fischsorten</th>
<th>I. Südliche Nordsee (bis einschl. Kl. Fischerbank)</th>
<th>II. Südliche Nordsee und Skagerak (Gemische Fänge)</th>
<th>III. Skagerak</th>
<th>IV. Kattegat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schellfisch I</td>
<td>1083355</td>
<td>11886</td>
<td>481614</td>
<td>17947</td>
</tr>
<tr>
<td>II</td>
<td>767640</td>
<td>11991</td>
<td>639391</td>
<td>10535</td>
</tr>
<tr>
<td>III</td>
<td>1714736</td>
<td>47298</td>
<td>3001025</td>
<td>69646</td>
</tr>
<tr>
<td>IV</td>
<td>1259707</td>
<td>37030</td>
<td>2276060</td>
<td>24672</td>
</tr>
<tr>
<td>Wittling</td>
<td>1581775</td>
<td>33189</td>
<td>1777774</td>
<td>65449</td>
</tr>
<tr>
<td></td>
<td>1059</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kablian I</td>
<td>757146</td>
<td>34856</td>
<td>1200088</td>
<td>68822</td>
</tr>
<tr>
<td>II</td>
<td>1480641</td>
<td>30998</td>
<td>878437</td>
<td>136058</td>
</tr>
<tr>
<td></td>
<td>513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leng</td>
<td>65688</td>
<td>6466</td>
<td>270686</td>
<td>2426</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Köhler</td>
<td>91459</td>
<td>25705</td>
<td>979533</td>
<td>6366</td>
</tr>
<tr>
<td>Knurrhahn und Petermann</td>
<td>347695</td>
<td>3630</td>
<td>40120</td>
<td>95974</td>
</tr>
<tr>
<td></td>
<td>10212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seechacht</td>
<td>190081</td>
<td>4424</td>
<td>427857</td>
<td>2742</td>
</tr>
<tr>
<td></td>
<td>156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katfisch</td>
<td>39154</td>
<td>882</td>
<td>89616</td>
<td>1840</td>
</tr>
<tr>
<td>Seezungen I</td>
<td>45144</td>
<td>947</td>
<td>3743</td>
<td>31851</td>
</tr>
<tr>
<td>II</td>
<td>17208</td>
<td>525</td>
<td>1330</td>
<td>27116</td>
</tr>
<tr>
<td>III</td>
<td>7413</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td></td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2499</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>89329</td>
<td>1472</td>
<td>5109</td>
<td>58967</td>
</tr>
</tbody>
</table>

Anmerkung: Die gewöhnlichen Ziffern sind Fangergebnisse der Fischdampfer
fahrzeugen angelandeten Mengen Fische.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>97902</td>
<td>2797122</td>
<td>822</td>
<td>-</td>
<td>33843</td>
<td>4524555</td>
<td>Schellfisch I</td>
</tr>
<tr>
<td>176455</td>
<td>534553</td>
<td>1822</td>
<td>-</td>
<td>13256</td>
<td>2155718</td>
<td>" II</td>
</tr>
<tr>
<td>439958</td>
<td>533822</td>
<td>2473</td>
<td>-</td>
<td>18254</td>
<td>5829345</td>
<td>" III</td>
</tr>
<tr>
<td>346778</td>
<td>64669</td>
<td>477</td>
<td>-</td>
<td>9477</td>
<td>4018867</td>
<td>" IV</td>
</tr>
<tr>
<td>1061090</td>
<td>3930166</td>
<td>5594</td>
<td>-</td>
<td>74830</td>
<td>1652485</td>
<td></td>
</tr>
<tr>
<td>295816</td>
<td>44777</td>
<td>1069</td>
<td>-</td>
<td>13648</td>
<td>3814556</td>
<td>Wittling</td>
</tr>
<tr>
<td>92447</td>
<td>4151480</td>
<td>18113</td>
<td>-</td>
<td>33739</td>
<td>6356906</td>
<td>Kablian I</td>
</tr>
<tr>
<td>148755</td>
<td>177498</td>
<td>2749</td>
<td>-</td>
<td>13759</td>
<td>2869408</td>
<td>" II</td>
</tr>
<tr>
<td>241202</td>
<td>4328978</td>
<td>20862</td>
<td>-</td>
<td>47498</td>
<td>9226314</td>
<td></td>
</tr>
<tr>
<td>28177</td>
<td>188906</td>
<td>4083</td>
<td></td>
<td>497</td>
<td>566979</td>
<td>Leng</td>
</tr>
<tr>
<td>32247</td>
<td>597272</td>
<td>13777</td>
<td>-</td>
<td>2674</td>
<td>1749033</td>
<td>Köhler</td>
</tr>
<tr>
<td>38222</td>
<td>2082</td>
<td>225</td>
<td>35100</td>
<td>1575</td>
<td>574835</td>
<td>Knurrhahn u. Petermann</td>
</tr>
<tr>
<td>17426</td>
<td>1522</td>
<td>17046</td>
<td>36110</td>
<td>835</td>
<td>698199</td>
<td>Seehecht</td>
</tr>
<tr>
<td>7416</td>
<td>253367</td>
<td>-</td>
<td>-</td>
<td>1403</td>
<td>393678</td>
<td>Katfish</td>
</tr>
<tr>
<td>554</td>
<td>260</td>
<td>-</td>
<td>161</td>
<td>560</td>
<td>100428</td>
<td>Seezungen I</td>
</tr>
<tr>
<td>128</td>
<td>309</td>
<td>-</td>
<td>48</td>
<td>302</td>
<td>54369</td>
<td>" II</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2597</td>
<td>" III</td>
</tr>
</tbody>
</table>

und die Kursiv-Ziffern (liegend) sind Fangergebnisse der Segelfahrzeuge.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinbutt I/II</td>
<td>129688</td>
<td>1097</td>
<td>17542</td>
<td>4654</td>
</tr>
<tr>
<td>" III</td>
<td>119948</td>
<td>658</td>
<td>6557</td>
<td>5089</td>
</tr>
<tr>
<td></td>
<td>4097</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarbutt</td>
<td>49162</td>
<td>1634</td>
<td></td>
<td>49977</td>
</tr>
<tr>
<td>(Glattbutt)</td>
<td></td>
<td></td>
<td>8871</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schollen I/II</td>
<td>276486</td>
<td>3779</td>
<td>43705</td>
<td>16928</td>
</tr>
<tr>
<td>" III</td>
<td>26470</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1946177</td>
<td>23836</td>
<td>242692</td>
<td>182662</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>132725</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2381858</td>
<td>27645</td>
<td>286397</td>
<td>199590</td>
</tr>
<tr>
<td>Heilbutt</td>
<td>6028</td>
<td>480</td>
<td>18987</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>6031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotzungen</td>
<td>41076</td>
<td>19210</td>
<td>1368248</td>
<td>18644</td>
</tr>
<tr>
<td></td>
<td>41091</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scharben</td>
<td>66335</td>
<td>869</td>
<td>182749</td>
<td>2533</td>
</tr>
<tr>
<td></td>
<td>12377</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>78712</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rochen</td>
<td>279862</td>
<td>15298</td>
<td>427777</td>
<td>22725</td>
</tr>
<tr>
<td></td>
<td>15993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>205855</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeteufel</td>
<td>579</td>
<td></td>
<td>11209</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>628</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rot-(See-)Barsch</td>
<td></td>
<td></td>
<td>9913</td>
<td></td>
</tr>
<tr>
<td>Großaugen</td>
<td></td>
<td></td>
<td>3604</td>
<td></td>
</tr>
<tr>
<td>Brassen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lachs</td>
<td>84</td>
<td></td>
<td>12000</td>
<td></td>
</tr>
<tr>
<td>Scaal</td>
<td>1727</td>
<td></td>
<td>2935</td>
<td></td>
</tr>
<tr>
<td>Hering</td>
<td>2300</td>
<td></td>
<td>17350</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1030100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1032400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung: Die gewöhnlichen Ziffern sind Fangergebnisse der Fischdampfer
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2439</td>
<td>94</td>
<td>17</td>
<td>4</td>
<td>299</td>
<td>166097</td>
<td>Steinbutt I/II</td>
</tr>
<tr>
<td>1045</td>
<td>40</td>
<td></td>
<td></td>
<td>300</td>
<td>137734</td>
<td>"</td>
</tr>
<tr>
<td>3484</td>
<td>134</td>
<td>17</td>
<td>4</td>
<td>599</td>
<td>303831</td>
<td>Steinbutt I/II</td>
</tr>
<tr>
<td>1037</td>
<td>911</td>
<td></td>
<td></td>
<td>892</td>
<td>112484</td>
<td>"</td>
</tr>
<tr>
<td>10369</td>
<td>48758</td>
<td>214</td>
<td></td>
<td>2650</td>
<td>429359</td>
<td>Schollen I/II</td>
</tr>
<tr>
<td>26916</td>
<td>191630</td>
<td></td>
<td></td>
<td>5211</td>
<td>2751849</td>
<td>"</td>
</tr>
<tr>
<td>37285</td>
<td>240388</td>
<td>214</td>
<td></td>
<td>7861</td>
<td>3181208</td>
<td>Heilbutt</td>
</tr>
<tr>
<td>3530</td>
<td>70495</td>
<td>120</td>
<td></td>
<td>376</td>
<td>100594</td>
<td>"</td>
</tr>
<tr>
<td>109710</td>
<td>105311</td>
<td>3957</td>
<td></td>
<td>1084</td>
<td>1667255</td>
<td>Rotzungen</td>
</tr>
<tr>
<td>8598</td>
<td>48877</td>
<td>1146</td>
<td></td>
<td>362</td>
<td>323846</td>
<td>Scharben</td>
</tr>
<tr>
<td>28470</td>
<td>99006</td>
<td>4620</td>
<td>10820</td>
<td>1362</td>
<td>905933</td>
<td>Rochen</td>
</tr>
<tr>
<td>1645</td>
<td>2532</td>
<td>500</td>
<td></td>
<td></td>
<td>16814</td>
<td>Seentenfel</td>
</tr>
<tr>
<td></td>
<td>169231</td>
<td></td>
<td>13703</td>
<td></td>
<td>192847</td>
<td>Rot-(See-)Barsch</td>
</tr>
<tr>
<td></td>
<td>48719</td>
<td></td>
<td>48719</td>
<td></td>
<td>3604</td>
<td>Großangen</td>
</tr>
<tr>
<td></td>
<td>71068</td>
<td></td>
<td>71068</td>
<td></td>
<td>48719</td>
<td>Brassen</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td></td>
<td>1190</td>
<td>35</td>
<td>1049760</td>
<td>Lachs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seefisch</td>
</tr>
</tbody>
</table>

und die Kursiv-Ziffern (liegend) sind Fangergebnisse der Segelfahrzeuge.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Haliisch</td>
<td>34509</td>
<td>-</td>
<td>3125</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>361</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34870</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeigranat</td>
<td>200</td>
<td>150</td>
<td>14225</td>
<td>-</td>
</tr>
<tr>
<td>Stilt</td>
<td>13380</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Butt</td>
<td>18020</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sprotten</td>
<td>23700</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Seekarpfen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diverse</td>
<td>2224</td>
<td>70</td>
<td>550</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2246</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hummer</td>
<td>1349</td>
<td>-</td>
<td>3761</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>219</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1508</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fangergebnis

der Dampfer in Pfd. | 12399220 | 316908 | 14454239 | 856531 |
der Segler in Pfd. | 1338262 | - | - | - |
Gesamtsumme | 14737482 | 316908 | 14454239 | 856531 |

	2060	-	230	-
	394			
Makrelen	2454	50		-
	6030	-		-
Taschenkrebs	12657			-
	18087			-
Austern	14960	100		-
	9618			-
	24578			-

Zahl der Dampfer-Reisen

| = Dampfer | 869 | 23 | 725 | 66 |
| Zahl der Segler-Reisen

| = Segelfahrzeuge | 408 | - | - |
| | 156 | - | - |

Anmerkung: Die gewöhnlichen Ziffern sind Fangergebnisse der Fischdampfe.
<table>
<thead>
<tr>
<th>V. Nördliche Nordsee</th>
<th>VI/VII. Island und Faeroer</th>
<th>VIII. Hebriden</th>
<th>IX. Atlant. Ozean</th>
<th>X. Gem. Fangpl.</th>
<th>Gesamtsumme</th>
<th>Fischsorten</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>14230</td>
<td>1400</td>
<td>18378</td>
<td>2800</td>
<td>75103</td>
<td>Haifisch</td>
</tr>
<tr>
<td>1500</td>
<td>377</td>
<td>700</td>
<td>-</td>
<td>-</td>
<td>17152</td>
<td>Seeigrat</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13380</td>
<td>Stint</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18020</td>
<td>Butt</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23700</td>
<td>Sprotten</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12040</td>
<td>-</td>
<td>12040</td>
<td>Seekarpfen</td>
</tr>
<tr>
<td>-</td>
<td>385</td>
<td>-</td>
<td>216</td>
<td>-</td>
<td>601</td>
<td>Diverse</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2866</td>
<td>Stör</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6279</td>
<td>Hammer</td>
</tr>
</tbody>
</table>

| 1917882 | 10099546 | 75780 | 247557 | 159193 | 40536826 | |
| - | - | - | - | - | 1338262 | |

| 1917882 | 10099546 | 75780 | 247557 | 159193 | 41875088 | |

85	-	-	-	-	2769	Makrelen
-	-	-	-	-	18137	Taschenkrebse
-	-	-	-	-	24678	Austern

137	163	6	7	9	2006	Dampfer-Reisen
49	36	2	4	9	286	Dampfer
-	-	-	-	-	408	Segler-Reisen
-	-	-	-	-	156	Segelfahrzeuge

und die Kursiv-Ziffern (liegend) sind Fangergebnisse der Segelfahrzeuge.
Schollen, Sorte I/II und II/III. (Erklärung Seite 109).
Gefangen 55°15' N. B., 5°3' Ö. L., am 24. November 1903 vom Fischdampfer „Makrele“.

Es wurden Sorte I/II hell gehaltene Fische = 75 Pfd., 20 Stück gemessen: II/III Fische mit dunklem Überdruck = 92 " 95 " ausgenommen.

Jeder Punkt (• = Sorte I/II, ○ = Sorte II/III) bedeutet ein Stück der betreffenden Größe.
Die Tätigkeit im Etatsjahre 1903. Abt. III: Hannover. 109

In der Berechnung der Geestemünden Marktstatistik für 1902 sind die Größensortierungen getrennt gehalten, welche der Handel unterscheidet. Man kann also ersehen, auf welchen Fanggebieten sich die großen und die kleinen Fische aufhalten, resp. wie sie in den einzelnen Monaten dort auftreten. Überhaupt sind von manchen Fischarten, wie bereits erwähnt, lebhaften Schwankungen in den einzelnen Monaten zu beobachten, deren Deutung als Wanderungen in einigen Fällen jedenfalls das Richtigtreffen dürfte.

Was bedeuten nun aber die einzelnen Handelssortierungen?

Hierüber mußten Messungen am Markt Aufklärung geben.

— Ähnlich sind die in Fig. 3 (am Schluß des Berichtes) gezeichneten Umrisse von Schellfischen der Größensortierungen I, II und III dieses Beispiels zu verstehen.

Man ersieht aus den Beispielen, welche größten und welche kleinsten Fische an dem betr. Fangorte und Fangdatum erbeutet wurden und in welcher Weise sie am Markte gruppiert und verwertet wurden. Es ist wenig wahrscheinlich, daß dort noch größere Fische vorhanden gewesen seien, jedenfalls nicht in erheblicher Zahl; denn sonst würden sie gefangen und an den Markt gebracht sein. Kleinere Fische, als in Fig. 1 (Seite 108) und Fig. 3 dargestellt sind, können recht wohl vorhanden gewesen sein, wenn sie auch nicht an den Markt kamen, sei es, daß sie nicht gefangen wurden, oder zu wertlos waren, oder daß (bei der Scholle) das Minimalmaß im Wege stand. Und doch sind die Kleinen als Nachwuchs der Größen auch für die Statistik wichtig. Ihnen nachzuspüren sind die Forschungsdampfer geeigneter als die Fischfahrzeuge, und können in bester Weise ergänzend eintreten.
Was indessen die Marktware und ihre Sortierung anbetrifft, so wird sie durch die im Vorstehenden geschilderte Methode dem Verständnis ihrer Herkunft, Verbreitung und Menge erheblich näher gebracht. Es trägt hierzu wesentlich bei der folgenden Punkt:

In Fig. 2 ist ein Beispiel hierfür gegeben.

Man ersieht aus der graphischen Darstellung, wieviel große Schollen (ausgezogene Linie) und wieviel kleine Schollen (unterbrochene Linie) im Tagesdurchschnitt gefangen wurden. Überraschend ist dabei die Schwankung in der Zahl der letzteren. Der Januar (1) und Dezember (12) stehen mit geringstem Fange gegenüber den hohen Erträgen von Juni bis August (6–8).

Da die Reisedauer nach den nahen oder fernen Fischbänken recht verschieden ist und schlechtes Wetter und dergleichen die eigentliche Fangzeit erheblich ver-
kürzen können, so mag die Methode bei geringeren Schwankungen der Fänge nicht völlig einwandsfrei erscheinen.

Bei einigen der oben erwähnten genaueren Fangjournaale war es jedoch möglich, noch einen Schritt weiter zu gehen. Es wird nämlich für gewöhnlich von den Fischerfahrzeugen nur der Ankunftstag im Hafen resp. der Abfahrtstag (bei den Segelfahrzeugen auch dieser nicht einmal immer), also die Summe der Zeit des Fahrens und des Fischens angegeben (siehe die „Anmeldung“ auf Seite 95). In den erwähnten Journalen war dagegen die Zeit des Fischens genau notiert, so daß es möglich wurde, nicht nur die Zusammensetzung der Arbeitszeiten des Fischdampfers zu ermitteln, sondern auch genau zu berechnen, welcher Fang auf eine Stunde Fischzeit entfällt.

Die Forschungsdampfer ermitteln in 4 Terminfahrten auf vorgeschriebener Bahn die Beschaffenheit der Wasserschichten von der Oberfläche bis zum Meeresboden. Es wird dadurch ein höchst wertvolles Material gewonnen, welches auch für die Seefischerei auszunutzen, das Ziel der Internationalen Meeresforschung ist. Auch wir wenden dieser Frage unsere ständige Aufmerksamkeit zu.

In der anhängenden Karte II, welche eine Übersicht über die Ausübung der großen Heringsfischerei nach den Beobachtungen der deutschen und holländischen Fischereischutzschiffe im Jahre 1903 gibt, ist ein Versuch gemacht, solche Beziehungen zwischen Seefischerei und Wasserbeschaffenheit aufzufinden.

Die Lage der 35 Promille Salzgehaltskurve des Meerwassers in der Höhe der Fanggeräte unserer Heringsfischer ist durch eine schwarze (im August) resp. grüne (im November) gestrichelte Linie eingezeichnet. Es weichen im August die (schwarzen) Heringfsicher vor dieser Kurve anscheinend zurück und mit ihnen wohl die Heringe. Im November aber liegt die (grüne) Kurve im Heringfanggebiet. Hier im Süden im November haben wir es aber mit einer anderen Heringrasse zu tun, als weiter im Norden.

Ob durch eine Kombinierung der hydrographischen mit den fischereilichen Beobachtungen sich praktische Resultate erzielen lassen, verdient nach allem Bisherigen sorgfältige Aufmerksamkeit.

10. Erweiterung der Beobachtungen.

Das statistische Material hat der Deutsche Seefischerei-Verein im abgelaufenen Berichtsjahre von Geestemünde und Bremerhaven erhalten, an letzterem Orte durch die freundliche Vermittelung des Herrn Stadt-
direktors Hagemann. Bearbeitet ist indessen vollständig erst das Jahr 1902, während die Ziffern für 1903 noch in Arbeit sind.*) Eine raschere Erledigung ist unser Bestreben, indessen ist dies mit unseren bisherigen Arbeitskräften nicht durchzuführen.

Die geistige Verarbeitung des eingegangenen Materials und die Art der Disponierung ist bisher ausschließlich von dem Berichterstatter ausgeführt, der hierbei nur für die mechanische Arbeit geeignete Hilfskräfte zur Verfügung hatte.

Inzwischen wird der Ausbau der Statistik nach verschiedenen Seiten betrieben.

In den Sitzungen des Zentral-Ausschusses der Internat. Meeresforschung in Hamburg im Februar 1904 wurde der Antrag angenommen, derartige Messungen von Fischen, wie sie oben unter Abschnitt 7 (Seite 109) besprochen sind, an den wichtigsten Fischereihäfen international auszuführen, namentlich im Hinblick auf die Frage der Vernichtung untermäßiger Plattfische.

Die entsprechenden vom Deutschen Seefischerei-Verein schon vor den Hamburger Verhandlungen eingeleiteten Arbeiten sind seitdem in größerem Umfange weitergeführt.

Eine Reihe anderer in Angriff genommener statistischer Arbeiten werden erst in dem nächsten Jahresberichte zu erwähnen sein, soweit die internationale Meeresforschung davon berührt wird.

*) Inzwischen beendet.
Drei Sortierungen von Schellfisch.
Geestemünde. Oktober 1903.
DIE Beteiligung Deutschlands
an der
Internationalen Meeresforschung

I. und II. Jahresbericht
Erstattet von dem
Vorsitzenden der Wissenschaftlichen Kommission
Dr. W. Herwig
WIRKL. GEH. OBER-REGIERUNGSRAIT.

Reichsforschungsdampfer „Poseidon“.

Berlin
Verlag von Otto Salle
1905.